

Rational Statemate
Simulation Reference Manual

Before using the information in this manual, be sure to read the “Notices” section of the Help or
the PDF file available from Help > List of Books.

This edition applies to IBM® Rational® Statemate® 4.6 and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.
ii

Contents
Getting Started with the Simulation Tool . 1
Simulation Tool Overview. 1

Opening a Project and Workarea . 2

Creating a Statechart to Simulate . 3

Opening the Simulation Tool . 4
Opening a Monitor Window. 5

Advancing Through A Simulation . 7
Simulation Stage 1 — The GoStep . 7
Simulation Stage 2 — GoRepeat . 12
Simulation Stage 3 — GoExtended . 13
Simulation Stage 4 — GoAdvance . 15
Simulation Stage 5 – Condition Connectors . 16

Exiting Simulation . 17

Model Execution: Concepts and Terms . 19
The Tool . 19

Simulation Scope . 19
Determining a Simulation Scope. 20
Adding Testbenches to the Simulation Scope . 20
External Elements . 22
Status Of The System . 24
Simulation Step . 24
Notes on Simulation Steps . 25
Events . 26

Microstep. 27
Superstep . 27

Nondeterminism And Racing. 28
Transition Priority Rule . 28
Non-determinism. 29
Non-determinism – Example 2 . 30
Racing . 31
User-Case Diagnostics . 31
Rational Statemate iii

Table of Contents
Time In The Simulation Execution . 32
Relationship Between Step and Time . 32

Step-Independent . 32
Step-Dependent . 32
Synchronous and Asynchronous Time Scheme . 33

Time in Asynchronous Simulation. 33
Phase Limit . 33

Time in Synchronous Simulation. 34
Statechart Clocks . 34
Steps in Synchronous Time Scheme . 34
Empty Steps . 34
Buffering Events . 34
Scheduling Timeouts. 34
Toggling Events. 34

Go Commands . 35

AutoRun Mode . 36
Asynchronous Time Model . 36
Synchronous Time Model . 36

Simulation Support of Flowcharts . 37
Flowchart Semantics. 37
Code Compatibility Settings . 38
Flowchart in Simulation . 39
Flowchart in Simulation - Limitations. 39

Interactive Mode Simulation . 41
The Three Phases Of Interactive Simulation . 41

Starting the Simulation Tool. 42
Starting the Simulation Tool from the Statemate Main Menu . 42
Starting Simulation from the Graphic Editor . 43

The Profile Editor. 43
Profile Scope Definition. 44
Creating a New Simulation Profile. 45
Adding Components to the Profile . 46
Saving the Profile . 48
Starting Simulation from the Simulation Profile Editor. 48

Entering Commands To The Simulator . 48
Menus/Toolbars . 48
Command Line . 48
iv Simulation Reference Manual

Table of Contents
Input Changes . 49
Do Action Commands . 49
Using DO Action . 49
Valid Input To Do Action . 50
Invalid Input to Do Action . 51
Response to Invalid Do Action . 51

Go Commands . 52
The Go Menu . 53

Pausing Execution. 53

Observing The System’s Behavior . 54
Graphic Animation Display . 54

Show Command . 55
Show Changes . 55
Show Future . 56
Show Racing . 56
Show Clock . 57
Examine . 58
Non-determinism. 59

Panels in Simulation . 60
 Defining and Editing Panel Profiles . 61

Adding a Panel to the Profile. 61
Editing a Panel in the Profile . 61
Deleting a Panel from the Profile. 62
Font Appearances in Simulation Panels . 62

Waveforms in Simulation . 63
On-Line Mode of Waveforms . 63
Setting Waveforms to be Displayed in Simulation. 63
Activating Waveforms During a Simulation Session . 64
Checking Waveform Elements . 64
Unresolved Data-Items in the Scope. 65
Displaying Values in Waveform. 65
Off-Line Mode of Waveforms . 66

Trace Files Menu. 66
No Waveform in the Workarea . 66
Waveform Profiles in the Workarea. 68

Waveform Profiles as Configuration Items . 69

Use-Case Diagrams in Simulation . 69
Animation of Sequence Design. 69
Recording a Sequence Diagram . 70
Rational Statemate v

Table of Contents
Monitors in Simulation . 71
Adding Monitors to the Profile . 71
Simulation Monitor Fields . 74
Shared Monitor . 75
File Menu . 75
Edit Menu . 76
View Menu . 76

The Microdebugger Tool. 77
Defining a Breakpoint in a Subroutine. 77
Debugging a Textual and Graphical Procedure . 78
Adding Elements . 80
Simulating a Textual Procedure . 80
Simulating a Graphical Procedure. 81

Interactive Simulation Example . 83
The Traffic Light System . 83
 Description Of The Traffic Light System. 83
Simulating the Traffic Light in the Asynchronous Time Model . 84
Initiating the Simulation Tool . 84
Setting Some Time Parameters . 85
Stage 1 . 85
Stage 2 . 87
Stage 3 . 88
Stage 4 . 89
Stage 5 . 90
Stage 6 . 91
Stage 7 . 92
Stage 8 . 94
Some Variations to Consider . 94
Simulating the Traffic Light in the Synchronous Time Model . 94

Recording a Simulation Session . 97
Setting the Simulation Parameters . 97

Saving and Restoring Status . 100
Record > Snapshot Status – Saving the Status . 100
Actions > Restore Status – Restoring the Status . 101
The Status File . 101
Status File Management . 102

Tracing a Simulation . 103
Automatically Recording a New Trace File . 104
Record > Start Trace – Creating a Trace File . 104
Trace File Management . 104
vi Simulation Reference Manual

Table of Contents
Creating Reports . 106
Formatted Report . 107
Spread Changes . 108
Spread Full . 109
Spread Compressed . 110
Interpreting Raw Data . 111

Record and Playback of Simulation . 113
Record For Playback. 113

Batch Mode Simulation . 115
The Simulation Control Program . 116

The Structure Of The Simulation Control Program . 117
The Program Header. 117
Constant Program Section . 117
Variable Program Section . 118
Initialization Program Section . 118
Breakpoint Program Section . 119
Main Program Section. 119

Basic Syntax Rules . 120
SCL Statements . 120
Semicolons As Delimiters . 121
Statemate Expressions In the Simulation Control Program . 122

Predefined Variables. 123
List of Predefined Variables . 123

Random Functions . 124
List of Random Functions . 124
Random Functions In Simulation Control Program Statements . 125

SCL Session Control Statements . 126

File Operation Statements . 126
OPEN Statement. 126
READ Statement . 126
WRITE Statement . 127
CLOSE Statement. 127

Structured SCL Statements . 127
IF/THEN/ELSE Statement. 128
WHEN/THEN/ELSE Statement . 129
WHILE/LOOP and FOR/LOOP Statement . 130
Go Statements . 131

Breakpoints . 132
Breakpoint Definition . 132
Every numeric_expression . 133
Cancelling Breakpoints . 134
Rational Statemate vii

Table of Contents
Setting Breakpoints . 134
Other Set/Cancel Commands . 135
Miscellaneous Commands . 135
Manipulating Breakpoints with Menus. 135
Breakpoint > Add – Adding a Breakpoint . 136
Breakpoint > Edit – Editing a Breakpoint. 136
Breakpoint > Deleting – Removing a Breakpoint . 137

Simulating a Truth Table. 137
Setting Breakpoints in a Procedural Truth Table. 141
Adding a Breakpoint to a Subroutine . 142
Subroutine Debug Tool . 143
Stepping through a Truth Table Simulation. 143
Simulating an Action Truth Table . 145
Simulation of an Activity implemented by a Truth Table . 147

Simultaneous SCP Execution . 150

Assign Files . 150

The Order of SCL Statements Execution . 151
Section Execution . 151
Breakpoint Processing . 151

Working with a Simulation Control Program (SCP) . 152
Actions > Run SCP – Running an SCP File . 153
Switching Modes of Model Execution . 153
Switching from Interactive to Batch. 154
Actions > Monitor SCP - Monitoring the SCP . 154
Actions > Stop SCP – Stopping an SCP . 155
Actions > Continue SCP - Restarting an Interrupted SCP . 156

A Sample Simulation Control Program . 156
What the Traffic Light Simulation Control Program Accomplishes . 156
The Program . 157
Explaining the Program. 158

Simulation Command Reference . 163
Interactive Commands . 163

The Simulation Profile Editor. 163
Simulation Execution Menu. 166
Save Profile . 167
Save Profile As . 167
Restart Simulation. 168
Rebuild Simulation . 168
Simulation File Management. 169
Analysis Profile Management . 169
viii Simulation Reference Manual

Table of Contents
SCP File Management . 170
Trace File Management . 171
Status File Management . 171
Messages . 172
Tool Bar. 173
Command Line . 174
Examine . 175
GoBack . 176
Pause . 176
AutoGo . 176
GoStep . 176
AutoRun . 177
GoStepN . 177
GoRepeat . 178
GoNext . 178
GoAdvance . 178
Go Extended . 179
Simulation Execution Option . 179
Panels . 180
Waveforms . 180
Monitors . 182
Animate All Charts . 183
 Animate Selected Charts . 184
DoAction . 185
Breakpoints . 186
Run SCP . 187
Quit SCP . 187
Continue SCP . 187
Monitor SCP . 188
Restore Status . 189
Generate Interface . 190
Start Trace . 190
Stop Trace. 191
Record SCP . 191
Snapshot Status . 192
Show Changes . 193
Show Clock . 194
Show Future . 195
Show Racing . 196
New Profile . 197
Open Profile . 198
Close . 199
Print Profile Report . 199
Add With Descendants . 200
Rational Statemate ix

Table of Contents
Add Testbench . 200
Add/Edit Panel . 200
Add/Create Waveform. 200
Monitors . 201
Remove From Scope . 201
Exclude From Scope. 201
Select . 201
Show Scope as Tree. 202
Show Scope as List. 202
Show Boxes . 202
Hide Boxes . 203
Execute Simulation . 203
Simulation Execution Options . 204
Time Settings . 204
Logic Settings . 206
Preference Management. 206

Auto Batch Commands. 207
ASSIGN. 207
CANCEL . 207
CHOOSE. 207
CLOSE . 208
COMMENT . 208
CONSTANT . 209
DO. 210
ELSE . 210
END. 210
EVERY . 211
EXEC . 211

STATEMATE ACTIONS . 212
AUTOGO. 212
GO ADVANCE . 212
GO BACK . 213
GO EXTENDED . 213
GO NEXT . 213
GO REPEAT . 213
GO STEP . 213
GO STEPn . 214
IF . 214
INIT . 215
LOOP . 215
MAIN SECTION . 216
OPEN . 216
PROGRAM . 217
x Simulation Reference Manual

Table of Contents
RANDOM SOLUTION. 217
READ . 218
RESTORE STATUS . 218
SAVE STATUS . 218
SET BREAKPOINTS. 219
SET DISPLAY . 219
SET GO BACK . 220
SET INFINITE GO. 220
SET INFINITE LOOP . 221
SET INTERACTIVE . 221
SET TRACE . 221
SKIP . 222
STOP SCP . 222
THEN . 222
VARIABLE. 223
WHEN . 224
WHILE. 225
WRITE. 226

Supplementing the Statemate Model with Handwritten Code 227
Supplementing the Model with Subroutines. 228

Entering Handwritten Code . 229
Using Subroutines. 229
Disabling Subroutines . 229

Supplementing the Model with a Procedure. 230
Using Globals . 232
Producing a Template for a Procedure . 233
Filling in the Procedure’s Template . 234
Subroutine Binding . 235
Supplementing the Model with a Task . 236
Using Globals . 238
Using the Template for a Task . 239
Filling in the Task’s Template . 241

Synchronizing Tasks. 242
Tasks. 242
Synchronization. 242

Scheduler Package . 244
Status of a Task . 244
Scheduling Policy . 244
Restrictions . 245
Rational Statemate xi

Table of Contents
Binding Callbacks . 245
Callback Binding . 245
Callback Statement . 245
Disabling Callbacks. 246
Callback Example . 246

Referencing Model Elements . 249
Referencing Events. 249
Where Elements are Defined . 250
Accessing an Element Value . 250

Mapping Statemate Types into C . 251
Records. 251
Unions . 251
Arrays . 252
Enumerated Types . 252
Constant Operators. 252
General Operators . 253
Bit Arrays. 253
Bit Array Functions . 254
Rules for Mapping into C. 257

BNF Syntax, Structure and Conventions . 259
BNF Structure And Conventions . 259

Symbol Types . 260
BNF Notations. 260

BNF for SCL Statements Syntax . 261

SCL Reserved Words . 265

Index . 267
xii Simulation Reference Manual

Getting Started with the Simulation Tool
This section introduces you to the Rational Statemate Simulation tool. It describes how to start
simulation and takes you through the different stages of simulation by using a simple example.

Before you begin, it is assumed that you have Rational Statemate installed on your system and you
can access a project and a workarea. If you are not familiar with window and mouse operations,
you may want to refer the Rational Statemate User Guide.

The section explains how to:

� Start the Simulation tool.
� Setup a Monitor window to examine and change values of different system elements.
� Use various commands to advance through simulation.

Simulation Tool Overview
The Simulation tool allows you to execute a graphical model. You are able to verify the behavior
of your design by examining the animation of the graphical elements in your design. You can also
modify and examine the values of the textual element in your design. Using the Simulation tool,
you are able to experiment with “What if?” scenarios and observe the effect on your design. This
aids you in detecting faults.

Simulation capabilities include:

� The ability to simulate in batch mode or in interactive mode.
� Batch mode allows for the automation of simulations with little or no user involvement.
� Global simulations can be started from the main Rational Statemate menu or local

simulations can be started from an Activity-chart or Statechart.

Interactive mode simulation allows you to have complete control over the simulation and
is very useful when debugging the model.

� With global simulations you can setup a Simulation Profile. This profile allows you to set
the scope of your simulation and define simulation settings. The Simulation Profile can be
saved and run later.
Rational Statemate 1

Getting Started with the Simulation Tool
� Playback scripts can be recorded to automate repeated execution of the model in the same
scenario.

� Trace files can be recorded so that simulation data can be examined following a
simulation.

� Monitor windows can be used to examine and change the current value of elements of the
system.

� Waveforms can be used for graphical representation of the execution history; they display
the current and past values of element of the system.

� Graphical panels representing a realistic mock-up of the system’s user interface can be
used to change inputs and examine outputs of the system.

Opening a Project and Workarea
To open a project and workarea:

1. Select File > Open Project from the top menu bar of the Rational Statemate main menu.

The Open Project dialog box opens.

2. Select the project name to open. The screen displays all the available workareas.

3. Select a workarea to open.

After you make your selection, the workarea path name appears in the Workarea:
selection box.

4. Select OK. The Rational Statemate main menu appears with the tool icons available for
use.
2 Simulation Reference Manual

Creating a Statechart to Simulate
Creating a Statechart to Simulate
The example used in this section is of a single Statechart. Enter the statechart shown below into
your workarea using the Rational Statemate Graphic Editor. Refer to the Rational Statemate User
Guide for details on creation of Statecharts. After creating the statechart, save it and return to the
Rational Statemate main window.
Rational Statemate 3

Getting Started with the Simulation Tool
Opening the Simulation Tool
Simulation can be started from either the Rational Statemate Main window, an Activity-chart, or a
Statechart. In this exercise, we are starting simulation from a Statechart.

Select Tools > Simulation from the Graphic Editor menu bar. The Simulation Execution window
opens. From this window, you are able to control simulation and define simulation parameters.
4 Simulation Reference Manual

Opening the Simulation Tool
Opening a Monitor Window

Monitors allow you to examine and change the status of elements within your model.

1. Select Displays > Monitors. The Simulation Monitor opens

2. Select Edit > Add from the Simulation Monitor window. The Element Selection for
Monitor browser opens on your screen.

3. Under Type, the default is Data-Item. Change this setting to All. This specifies that all the
textual elements within the chart are added to the Statechart list.

4. Select Filter.

C1, C2, E1, E2, SYNC and VAR1 are listed.

5. Click Select All.
Rational Statemate 5

Getting Started with the Simulation Tool
6. Click OK. All selected elements are added to the Monitor window and their types; values
and status are displayed.
6 Simulation Reference Manual

Advancing Through A Simulation
Note
You can resize the Simulation Monitor dialog box so only the elements your are
monitoring are displayed.

Advancing Through A Simulation
When simulating a Rational Statemate model, you advance through the simulation based on steps
and time. This is accomplished by using various Go commands.

Simulation Stage 1 — The GoStep

The most basic Go command is the GoStep. The GoStep causes the simulation to attempt to
advance one step
Rational Statemate 7

Getting Started with the Simulation Tool
1. From the Simulation Execution menu, select Go > GoStep or click .

The result is entrance of the statechart into its default states of S1 and X1.

2. From the Simulation Monitor generate E1 by selecting the value cell with the left mouse
button.

An X appears in the value column indicating that the event is generated and is an input for
the next step.

3. Select another GoStep.

The transition from state S1 to state S2 is taken because the trigger E1 was present during
this step. The default transition into state S21 is also taken. The transition from state X1 to
state X2 is taken because the trigger E1 was present during this step. The action of
generating event E2 also occurred as a result of the transition from X1 to X2.
8 Simulation Reference Manual

Advancing Through A Simulation
4. Select Analyze > Show. The Show Change dialog box opens on your screen. The Show
Change dialog box lists all the changes that occurred in the model during the last step.
Rational Statemate 9

Getting Started with the Simulation Tool
5. Select Future. The Show Future dialog box opens. The Show Future dialog box
displays all events and actions scheduled to occur in the future.

Future for step 2:

Time Type Name/Definition

1 Event tn{E2,VAR1}
2 Event tn{en(S2),5}

10 Simulation Reference Manual

Advancing Through A Simulation
The transition from state X1 to X2 is made when E1 is generated, that, in turn,
generates the event E2. The timeout event, tm(E2, VAR1), shown in the Show
Future dialog box, was scheduled based on the generation of E2. E2 is still pending
and requires another GoStep to allow the model to react to it. Also the timeout event,
tm(en(s2), 5) was scheduled based on the fact that the system entered the state S2.

6. Select Automatic Update.

This allows you to observe all changes related to scheduled timeouts as the changes occur.

7. From the Simulation Execution menu, select Go > GoStep or click GoStep.

E2 has occurred but no transition is directly depending on it so the system remains in
states S21 and X2.
Rational Statemate 11

Getting Started with the Simulation Tool
Simulation Stage 2 — GoRepeat

The GoRepeat advances simulation steps until the system reaches a stable configuration (this is
referred to as a superstep). A stable condition occurs when no further steps can be taken without
changing a system input value or incrementing time.

1. From the Simulation Monitor, generate E1 by selecting the Value cell with the left mouse
button.

2. Select Go > GoRepeat. The transition is made from X2 to X3 and the event SYNC is
generated. The SYNC event causes the transition from S21 to S22 to be taken.

3. The timeout events tm(en(s2), 5) and tm(E2,VAR1) have previously been scheduled.
During the GoRepeat command, the timeout event tm(SYNC,2) was scheduled when the
event SYNC was generated. Observe that the timeout is added in the Show Future dialog
box.
12 Simulation Reference Manual

Advancing Through A Simulation
Simulation Stage 3 — GoExtended

The GoExtended either executes a GoRepeat or if no steps can be taken, it advances time to the
nearest timeout or scheduled action. It then runs a GoRepeat.

1. Select Go > GoExtended from the Simulation Execution menu. This advances the time
to 1.

Note
Observe the time stamp in the status line of the Simulation Execution window. It shows the
current time as 00:00:01. The timeout tm(E2,VAR1) occurs and a transition is made from
S22 to S21.

2. Observe that the timeout tm(E2,VAR1) no appears in the Show Future dialog box.

3. Select Go > GoExtended From the Simulation Execution window.

The time is now 2 and the transition from X3 to X1 is made because the timeout
tm(SYNC,2) occurred.
Rational Statemate 13

Getting Started with the Simulation Tool
4. Observe that the timeout tm(SYNC,2) is no longer in the list of scheduled timeouts in the
Show Futures dialog.
14 Simulation Reference Manual

Advancing Through A Simulation
Simulation Stage 4 — GoAdvance

The GoAdvance advances the simulation time by a specified number (n) of units, then perform a
superstep.

1. Select Go > GoAdvance from the Simulation Execution menu.

The Go Advance dialog box appears on your screen.

2. Enter 3 into the Value field. Click OK.

This advances the time by three units causing a transition between S2 and S1 because it is
due in five time units since S2 was entered. This is the meaning of the timeout
tm(en(S2),5).
Rational Statemate 15

Getting Started with the Simulation Tool
Simulation Stage 5 – Condition Connectors

1. Toggle condition C2 by selecting the value cell with the left mouse button in the
Simulation Monitor dialog box.

The value C2 should be true.

2. Select Go > GoStep.

The transitions to state X3 from X1 is taken via the condition connector because the
trigger [E1] evaluated the true during the step.
16 Simulation Reference Manual

Exiting Simulation
Exiting Simulation
1. Select File > Exit.

A message appears asking if you want to save in profile your simulation environment (in
this case the definition of the scope and of the monitor).

2. Click Yes.

The Simulation tool is terminated for this session and simulation setup is saved for reuse.
Rational Statemate 17

Getting Started with the Simulation Tool
18 Simulation Reference Manual

Model Execution: Concepts and Terms
This section details the terminology and underlying concepts that make up the Rational Statemate
Simulation Tool. Prior to reading this section, it is advised that you become familiar with the
principles discussed in the Rational Statemate User Guide.

The Tool
The Rational Statemate Simulation Tool is used to examine the behavior of the specification
modeled using the Statechart and Activity-chart graphic languages. During simulation, you can
interactively simulate the model and view the results or you can write a program that runs in batch
and portrays a test scenario. When simulating, you can examine the state of your system using
graphical animation. Monitors and waveforms can be used to examine the value of elements
during simulation. After the simulation is executed, you can analyze a trace report of that
simulation. Refer to Interactive Mode Simulation for details on interactively simulating and Batch
Mode Simulation for details about writing and executing a program in batch.

Simulation Scope
The Simulation Scope contains the set of components that are included in the simulation session.
During the development of your specification, you may want to validate the behavior of only a
portion of the model rather than study it in its entirety. Your choice of which aspect to examine is
the simulation scope.
Rational Statemate 19

Model Execution: Concepts and Terms
Determining a Simulation Scope

A simulation scope can combine any number of Statecharts and Activity-charts or portions of
these. A portion a chart is a box (Activity and State) with its descendents. The simulation scope
may include:

Adding Testbenches to the Simulation Scope

To help analyze your model, it is often beneficial to add an auxiliary Statechart that monitors or
drives your model during analysis. These Statecharts are called Testbenches. Testbenches have the
unique ability to relate to all the elements in the simulation scope.

Syntactically, Testbench charts are no different than other Statecharts. Semantically, however, all
elements in the scope are visible to the Testbench. Testbench charts can be used in the following
ways:

Note
Testbenches cannot be used to relate to elements in generic instances.

Single Statechart This scope is used when analyzing a component of the system or
when the behavior of the entire system is described by a single
Statechart. The single Statechart need not be connected to a control
activity.

Multiple Statecharts This scope illustrates the interaction between components that are
described by the different Statecharts. This technique is also useful
when a Statechart represents the system and another represents the
external environment.

Portion of a Statechart This scope is useful when the specification is incomplete but you want
to analyze the completed portion. For example, simulate one
orthogonal component of a vast Statechart.

Activity-chart This scope is used to analyze the interaction of various parts of the
system each described in a different Statechart or mini-spec
corresponding to the control activities.

Observers Statecharts that help monitor, debug or check the performance of parts of the
system. These charts do not influence the behavior of the system.

Drivers Statecharts which represent the environment and feed the system with the
needed input.

Components Statecharts which are currently not part of the system but may be integrated
later as part of the entire specification.
20 Simulation Reference Manual

Simulation Scope
The following figure represents a simple Statechart where the event E is detected and causes a
transition from state A1 to A2 during this transition the value of X is incremented. This Statechart is the
specification of a system, where the event E is defined as coming from the environment and the system
reacts to it.

Assume that the specification also states that if event E occurs, it must wait 5 time-units before
reoccurring. This is expressed in the Testbench Statechart as shown in the following figure. Also assume
that once X is equal to 10, event E is no longer generated.

SPEC

A1

A2

E/X:=X=1

/X:=0
Rational Statemate 21

Model Execution: Concepts and Terms
When the Testbench chart is simulated with chart SPEC, the reference to E in the Testbench is
resolved to event E defined in SPEC. Therefore, SPEC receives E every 5 time-units until X gets the
value of 10.

Note
The elements X and E is defined to a chart in the model, but must be left unresolved in the
testbench Statechart.

External Elements

External elements are inputs and outputs to the system. Some of the elements in the simulated
scope are marked as external. These are the elements that according to the specification may change
outside of the simulated scope. Elements that flow from activities outside the simulated scope into
activities inside the simulated scope are external.

It is recommended that you modify only the external elements, since these appear to be
environment-driven. Modifying non-external elements is allowed to provide corrections to the
behavior of the model, or to complete under-specified portions of the model.

The following figure illustrates a portion of the Activity-chart for a garage door opener. Activities
DOOR and REMOTE_CONTROL correspond to the two system components.

IDLE

WAIT

/E tm(en(WAIT), 5)

DONE

[X=10]

WATCHDOG
22 Simulation Reference Manual

Simulation Scope
Assume that the primary interest is in the garage door subsystem. The scope is set to the activity
DOOR and contains the Statechart D_CONTROL. With DOOR as the scope, the
REMOTE_CONTROL becomes part of the environment and, therefore, event OPEN_DOOR and event
CLOSE_DOOR are external in this simulation execution. You must generate the events OPEN_DOOR
and CLOSE_DOOR.

If you later want to execute the model on the entire system, the scope is defined as the
OPENING_SYSTEM activity. In this case, the events OPEN_DOOR and CLOSE_DOOR are no longer
external, but the events OPEN_BUTTON and CLOSE_BUTTON are now external.

DRIVER

@D_CONTROL

OPEN_ACT CLOSE_ACT

@RC_CONTROL

OPEN_BUTTONOPENING_SYSTEM

REMOTE_CONTROL

DOOR

CLOSE_DOOR

CLOSE_BUTTON
OPEN_DOOR

OPENING CLOSING

WAIT CLOSE_DOOROPEN_DOOR
Rational Statemate 23

Model Execution: Concepts and Terms
Status Of The System

Throughout the remainder of this section, the term status of the system is defined to include:

� Status of activities in the scope (active, hanging ornactive)
� The set of states the system is in (configuration)
� Values of all conditions and data-items in the scope
� Events generated in the previous simulation step
� Time delays until each scheduled action and timeout event occur
� History of the states

Context variables (their name begins with a dollar ($) sign), are not part of the status of the system.
They do not retain their value from one step to another.

Simulation Step

A simulation step is a change in the system status in response to external stimuli or internal
changes. A step can be triggered by an action (internal or external) or the trigger can be a timeout event
occurring as a result of incrementing time.

A simulation step is a two stage process; it occurs as follows:

� Stimulus to the system occurs via actions or timeout events
� The system reacts by processing transitions, static reactions and mini-specs.

When the simulation execution begins, and before the first step is performed, the default initial status
of the system is:

� When using software style activities, the activities in the top level hierarchy in the scope
are active.

� When using hardware style activities, all activities in the scope are active.
� The system is not in any of its states.
� All primitive conditions are false. All primitive numeric data-items are zero and string

data-items are blank.
� No events are generated.
� No timeout events or actions are scheduled.
� States have no history.
24 Simulation Reference Manual

Simulation Scope
After the first simulation step is taken, the system status is:

� The state configuration includes the default states of the Statecharts connected to any
active control activity, or defined to be a Testbench.

� All other elements of the system status are modified in accordance with actions performed
on default connectors or by static reactions on entrances into these states.

Notes on Simulation Steps

A state cannot be entered and exited in the same step. Consider the following figure (a). Assume
the system is in state S1 and the condition c is true. When event e is generated, a transition from S1
to S2 is taken. The transition from S2 to S3 is taken only in the next step.

In the following figure, assume the system is in state S1 and condition C is true. When event E is
generated, a transition from S1 to S2 is taken. This represents one simulation step. The transition from S2
to S3 is taken only in the next simulation step.

There is a special case in which a state may be exited and then entered in the same step. This
happens when the target state and the source state are the same – as in (b) above.

S1 S2 S3
E [C]

S
e

(a)

(b)
Rational Statemate 25

Model Execution: Concepts and Terms
Events

An event is alive from the end of the step that generated it until the end of the following step. The
following examples illustrate how events work.

In Chart A, make the following assumptions:

� The current active states are S1 and S3.
� Event E is generated, and the step is performed. When this happens, the following occurs:

� The transition from S1 and S2 is taken. This causes the action of generating event
F (which is present during the next step).

� The transition from S3 to S4 occurs.
� Perform another Step triggered by F (event E is no longer present).

� The transition from S4 to S5 occurs.

S1

S2

S3

S4 S5

E/F E

F

A

26 Simulation Reference Manual

Simulation Scope
In Chart B, make the following assumptions:

� The current active states are S1 and S3.
� Event E is generated and the step is performed. When this happens, the following occurs:

� The transition from S1 and S2 is taken. This causes the action of generating event
F (which is present during the next step).

� The transition from S3 to S4 does not occur because only event E is present during
this step.

� Perform another Step.

The transition from S3 to S4 is not taken because only event F is present during the step.

Microstep
The execution of a single subroutine statement is termed a ‘microstep’.

Superstep
Sometimes, as a reaction to external changes, the system is able to perform more than one step
without additional external stimuli. Each step in such a series of steps, except for the initial one, is
triggered by changes the system itself produced in the previous step. This chain of steps continues
until the system reaches a status from which it cannot advance without further external input and/
or without advancing the clock. Such a status is called a stable status. The progression from one
stable status to another is called a Superstep.

S1 S3

S2 S4

E/F E and F
Rational Statemate 27

Model Execution: Concepts and Terms
� States S1 and S4 define a stable status since no change in the system status occurs without an
external stimuli being introduced.

� Event E is generated.
� When the step is performed, the new configuration becomes S2 and S5.
� Event F is generated internally. This allows the simulation to take the transition from S5 to S6

without additional external stimuli.
� The resulting configuration, S2 and S6, is the next stable status. Without generating event G or

advancing the clock at least 5 units, no transition takes place. Therefore the sequence of steps
from states S1 to S2 and S6 is a superstep.

Nondeterminism And Racing

Thus far all the Statechart examples have had unambiguous reactions. For each given system status
only one set of reactions was enabled and the next status was clearly determined. Simulation
progresses smoothly along the one legal path.

Transition Priority Rule
Conflict may occur when there are two or more enabled transitions which cause an exit from the
same state. Some of these situations are resolved in the semantics of Statecharts by the transition
priority rule.

S1

S2

S4

S5

S6

S7

S3

E/F

tm(en(S2), 5)

E

F

G

28 Simulation Reference Manual

Simulation Scope
When event E is generated, both the S3 to S4 transition and the S1 to S2 transition are enabled.

In such cases, priority is given to the transition for which the parent state common to both target
states is of a higher hierarchical level.

In the above figure, the parent state of S2 is S3. The parent state of S4 is S5. Since S5 is a higher level
state than S3, the S3 to S4 transition is taken.

Another conflict situation in which the Transition Priority Rule applies is when some state in the
current system’s status contains an enabled static reaction simultaneously with an enabled
transition exiting the state. The priority is given to the transition and the static reaction is not
performed.

The analsim/base library, shared by Simulation and Code Generators, create “dummy” states to
wrap the source and target states of transitions with a priority setting. If there are two transitions
with the same source and target, but different priority settings, the analysis tools behave as if there
is no priority setting. These “dummy” states are referenced in the code generated by C, Ada, and
MicroC generators but are not displayed in Simulation monitors, the Shoe utility, or C CodeGen
debugger.

Non-determinism
Conflict situations can occur where the system’s reaction is not deterministic and thus the next
status can be defined in several different ways. These situations are known as non-determinism and
racing.

S1 S2

S3

S5

E

E

S4
Rational Statemate 29

Model Execution: Concepts and Terms
In the above figure, if both conditions are true when event E occurs, there are two legal Statechart
reactions. This is an example of non-determinism. During simulation execution, you must tell the tool
which solution is appropriate.

Non-determinism – Example 2
When event E is generated, both the S1 to S2 transition and the S3 to S4 transition are enabled. Since in
both cases the parent state of the target state is identical, no transition priority rule can determine the
correct transition. A nondeterminism has been found.

S1

S2

S3

E

[C1]

[C2]

C

S1

S2

S4

S3

E

E

S5
30 Simulation Reference Manual

Simulation Scope
Racing
Another type of conflict, racing, occurs when (at the same point in time) a condition or data-item is
modified more than once.

If E occurs when the system is in S1 and S3, X may be assigned two different values. This is a racing
condition. In this example, racing occurs when a condition is modified more than once in the same step.
See Show Racing for information how to resolve a racing condition.

User-Case Diagnostics
The ability to record a sequence diagram during a simulation run is enhanced to allow the creation
of multiple lifelines, following the selection of activities in the model.To record a sequence
diagram:

1. Select Simulation profile > Options > Sequence Diagram Generation.

2. Select Generate Sequence Diagram.

This dialog box has an additional field named Activities Lifeline Selection.

Two recording modes are now supported:

� Record Only Toplevel - The tool generates a sequence diagram with two lifelines: one for
the system and one for the user.

� Lifeline Entities to Record - A dialog box opens to enable you to select the activities in
the model that the tool should generate a lifeline for. In this mode, the tool generates an
external lifeline for each external activity that interacts with the defined lifelines
(activities).

S1

S2

S3

S4

E/X:=1 E/X:=2
Rational Statemate 31

Model Execution: Concepts and Terms
Note
The list of (internal) activities is based on semantic entities, those activities that have a
separate internal clock, like a control-activity with a statechart, or a reactive mini-spec.

Click Add to open an easy to use tree-view of the model hierarchy. When an activity is selected
and added to the list, a check is made so that only a single activity in the hierarchy is recorded at
any time. For example, if both the activity and its descendant are listed in the Lifeline Entities list,
only one of them has the flag that controls recording set ‘yes’. The top-most element is the default.

Time In The Simulation Execution
Until now, simulation execution has dealt with its progression in terms of steps. This section
discusses time in the simulation execution.

Relationship Between Step and Time

The question is, “How does the progression of the simulation (steps) relate to the progression of
time?” The Simulation Tool provides two time schemes. In both, transitions between states and
static reactions within states take place in zero time, that is, no time passes during the step.

Step-Independent
In this scheme (called asynchronous time scheme), there is no relationship between the simulation
step and incrementing time.

Several steps can be performed at the same time without advancing the time and time may be
advanced without any steps occurring.

Therefore, the Simulation Tool differentiates between the role of step and time during the
simulation. In the normal flow of simulation, time is advanced when the system is in a stable
status.

In the step-independent time scheme, time is advanced after each superstep and not after each step as
in the step-dependent scheme.

Step-Dependent
In this scheme (called synchronous time scheme), steps and time are related. Time is advanced one
clock unit with each simulation step. Therefore, the Simulation Tool does not differentiate between
the role of step and time during the simulation. In the normal flow of simulation, time is advanced
based on stepping through the model regardless of external stimuli.
32 Simulation Reference Manual

Time In The Simulation Execution
Synchronous and Asynchronous Time Scheme
The division between synchronous and asynchronous time has been performed in the Simulation
Tool.

The two schemes, synchronous and asynchronous are strictly separated. They cannot be mixed in
the same simulation session. You must choose the scheme before the model execution starts.

Time in Asynchronous Simulation

Phase Limit
Since in the step-independent scheme more than one step may be taken at a time, there may be a
situation in which the specified system is able to perform an infinite number of reactions without
incrementing time. This is called an infinite loop.

If the system is in state S1 and event E is generated or if in state S2 and event F is generated, the
simulation toggles infinitely between S1 and S2.

To avoid infinite loops, a phase limit is defined which restricts the number of steps that can be
taken without advancing time. Phase limit restricts the length of all supersteps, even those that
would not result in an infinite loop. The phase limit is set using the Steps per Go parameter.

S1 S2

F/E

E/F
Rational Statemate 33

Model Execution: Concepts and Terms
Time in Synchronous Simulation

Statechart Clocks
For each of the Statecharts in a simulation scope, the time increment per step (duration of the step
in the chart) can be defined individually. A clock increment of a chart defines the point in time
when the chart gets control for step execution. If a simulation session includes Statecharts which
have different clocks, the following interactions occur:

Steps in Synchronous Time Scheme
At the very first step of the simulation, all top level Statecharts in the scope execute their default
transitions; this step finishes at time 0.

At any other step, the clock is advanced to the nearest time when some chart can obtain control for
step execution.

Empty Steps
If the execution of a step by a chart does not cause any changes in the model, then the step counter
is not advanced. Note that the clock is always advanced as described above.

Buffering Events
Whenever an event is generated, either internally or externally, it is buffered by all charts waiting
for their turn to execute a step.

A buffered event remains active for a chart until the chart gains control (i.e., until the chart senses
the event and reacts to it). After the chart accomplishes its steps, the event becomes non-active in
reference to that chart.

Scheduling Timeouts
When the same timeout TMO (defined as tm(E,T)) is used in Statecharts with different clock
increments, it is scheduled differently for each of the charts. In chart S, TM0 is scheduled to occur
at T0 +T, where T0 is the first moment of time after the event E was generated that chart S gets
control. S reacts to TMO in the first step it runs after T0+T.

Toggling Events
When an event is generated, its status with respect to each of the charts is toggled. If the event is
active for some charts that are waiting for their turn to step, it becomes non-active for these charts.
For charts that the event is not active, it becomes active.
34 Simulation Reference Manual

Go Commands
Go Commands
Go commands are used to advance the model execution. This section provides an initial definition
of each Go command. The following table supplies a description of each step in asynchronous and
synchronous simulation mode.

Asynchronous Simulation Synchronous Simulation

GoStep Runs one step and consumes no time. Runs one step and consumes one time
unit.

GoStepN Runs a specified number (N) of steps. Runs a specified number (N) of steps.

GoRepeat Performs a superstep and consumes no
time.

Performs a superstep and consumes the
amount of time units equal to the number
of steps taken during the superstep.

GoNext Advances time to the next scheduled
action or timeout event. Then performs a
GoRepeat.

Advances time to the next scheduled
action or timeout event. The number of
steps taken are equal to the number of
time units.

GoExtend Performs a GoRepeat. If a superstep
can’t be taken, then it performs a GoNext
then a GoRepeat.

Performs a GoRepeat. If a superstep
can’t be taken, then it performs a
GoNext then a GoRepeat.

GoAdvance Allows you to advance the time by
specifying the increment of time. A
GoRepeat is taken.

Allows you to advance the time by
specifying the increment of time. The
number of steps are equal to the number
of time units advanced.

AutoGo The AutoGo command is used to
perform a GoStep in an unstable status
otherwise it performs a GoNext.

The AutoGo command is used to
perform a GoStep in an unstable status
otherwise it performs a GoNext.

GoBack Undo last Go command Undo last Go command
Rational Statemate 35

Model Execution: Concepts and Terms
AutoRun Mode
In Autorun mode, simulation runs continuously with the entire interaction being performed
through panels and monitors. Simulation behaves as if it was a real-time execution of the model.
This is achieved by the following:

� Each time the simulation clock is advanced by T time units, a real-time delay is included
with a duration proportional to T.

� By default, one unit of simulation time is represented by 1 second of real-time. When
needed, a different mapping can be defined. This is done using the field Autorun Time
Factor of the Time Setting dialog box in the Analysis profile.

AutoRun can be interrupted and the simulation clock advanced busing the Go Advance and Go
Next commands. This does not involve any real-time delay.

Asynchronous Time Model

When there are external inputs, AutoRun performs a GoRepeat command and the clock is not
advanced.

In a stationary situation, AutoRun continues to advance the simulation clock by 1 time unit.

When distance to the nearest scheduled item is less than 1 time unit, the simulation clock is
advanced to the time of this scheduled item, and not by 1 unit.

Synchronous Time Model

AutoRun performs an ongoing execution of the Go Step command. Correspondingly, the simulation
clock is advanced between successive control points, in which at least one of the charts takes control
according to the definitions of local clock.
36 Simulation Reference Manual

Simulation Support of Flowcharts
Simulation Support of Flowcharts
The Rational Statemate Simulation was enhanced to support Flowchart as a control activity
implementation. That means that a control activity may be now an instance of a Flowchart, in
addition to a Statechart.

The controlling Flowchart may be the top-level of a hierarchy of flowcharts descending from it,
through offpage and generic instances.

Flowchart Semantics

There is a major difference between Statechart and Flowchart behavior in the model: whereas the
execution of a Statechart is time-consuming, with each transition in a Statechart is considered a
simulation “step”, a flowchart is executed in “zero time” and single simulation step. Whenever the
Flowchart is entered, it is executed from start to end in one simulation step (much like a
Procedural-Statechart).

Since the Flowchart is executed in a single simulation step, the elements used in the flowchart are
single-buffered during the Flowchart execution, except for events and event expressions. Events
and event expressions are sensed in the next step. Timeout and Delay expressions are not allowed
at all.

A Flowchart connected to a control-activity are executed (start to end) once in every simulation
step, for as long as the controlled activity is active.

Examples:

� Example A: When setting a value in one action box of the Flowchart, that (new) value is
sensed in the next action box, e.g.: The condition “[num==5]” evaluated immediately
after the action box “num=5” is always “true”.

� Example B: When the action in the action-box is “st!(A1)”, with A1 being a sibling
activity of the control activity, the event “st(A1)” is “true” only in the next step, i.e., the
expression “st(A1)” is evaluated to “false” immediately after the action box, and to “true”
in the next step, i.e., the next run of the Flowchart.
Rational Statemate 37

Model Execution: Concepts and Terms
Code Compatibility Settings

Simulation behavior can be customized to be compatible with the Code Generator. The options are
combined into Code Compatibility Settings dialog box.

To access the Code Compatibility Settings dialog box, from the Simulation menu, click
Options, click Code Compatibility, and then click Code Compatibility settings. The Code
Compatibility Settings dialog box displays.

This dialog box controls the options for the Simulation profile and are saved with it.

� Truth Table Execution—A Truth-Table is executed:
– Upon Change—Only if one of the Truth-Table's inputs is changed.
– Every Step—Every Simulation step.

� Trigger Evaluation—A Trigger is evaluated:
– Upon Change—Only if one of the elements in the Trigger expression is

changed.
– Every Step—Every Simulation step.
38 Simulation Reference Manual

Simulation Support of Flowcharts
Flowchart in Simulation

The Simulation Micro-Debugger was enhanced to allow debugging of Flowcharts. This is done by
setting a breakpoint on a special subroutine, created by the Simulation Micro-Debugger for each
Flowchart, through the “Simulation Breakpoint Editor”.

The special subroutine is named as follow:

“FLOW_<flowchart_name>_PROC”

with the “<flowchart_name>” being replaced with the actual Flowchart name.

When a Flowchart with a breakpoint set on it is executed, the Micro-Debugger pop-ups and
highlights the executed Flowchart. The Micro-Debugger allows micro-stepping through the
Flowchart while seeing it being animated as well as watching element changes in the Micro-
Debugger monitor.

Flowchart in Simulation - Limitations

Queue operations in Flowcharts are not supported. A warning is generated for expressions
including queue references that the operation is ignored.
Rational Statemate 39

Model Execution: Concepts and Terms
40 Simulation Reference Manual

Interactive Mode Simulation
The brief example in Getting Started with the Simulation Tool illustrated some of the techniques and
concepts handled by the interactive simulation. This section details the menus, options and forms you
need to properly analyze your design model. A comprehensive interactive example completes the section
and ties together some of the issues discussed.

This section assumes an understanding of the Statechart and Activity-chart principles as well as the
command input techniques discussed in the Rational Statemate User Guide.

The Three Phases Of Interactive Simulation
Performing an interactive simulation involves the following three primary phases:

� Starting the Interactive Simulation Tool – This phase involves starting the tool from
either the Rational Statemate Main Menu or from the Statechart or Activity-Chart Graphic
Editor.

� Simulation setup – This phase involves defining the simulation scope, naming the files
for storing the recorded inputs and outputs to the simulation and setting simulation
parameters.

� Executing Commands and Observing the Results – This phase involves using the
various interactive command menus and describes how to interpret the graphical and
textual results of the simulation.
Rational Statemate 41

Interactive Mode Simulation
Starting the Simulation Tool
The Simulation Tool gives you the capability to interactively analyze your design. It uses the
power of graphical animation and interactive batch stimuli in combination with monitor windows,
graphic panels and waveforms.

The Simulation Tool graphically depicts the behavior of your design by animating the statecharts
and activity-charts. This tool can be started from either the Rational Statemate Main Menu or from
one of the Statechart or Activity-chart Graphic Editors. The following discussion outlines how to
start the tool from these sources and how to connect the charts to the Simulation Tool.

Starting the Simulation Tool from the Rational Statemate Main Menu

This section shows how to start the Simulation tool from the Main Menu. (Starting Simulation from
the Graphic Editor, provides information on how to start simulation from the Graphic Editors.)

1. Select Simulation from the Rational Statemate main window.

The Simulation Profile editor appears along with another window that allows you to
open an existing Simulation profile or if one is not available create one.
42 Simulation Reference Manual

The Profile Editor
2. Select a Profile from the Profiles list and select OK or create a new profile and click
OK. All the menu options and icon functionality are enabled.

Note

� Profiles can also be selected by double clicking on the profile name.
� If there are no profiles on your list, use the File > New Profile command to create a new

one.

Starting Simulation from the Graphic Editor

Starting simulation from the Graphic Editor tool can be useful for debugging one or several
Statecharts or Activity-charts. With this option, the Simulation Scope is automatically set to the
needed chart(s). Environment elements such as monitor windows, waveforms and panels must be
set within the simulation.

1. With the Graphic Editor open, activate a Statechart or Activity-chart.

2. Select Tools > Simulation from the Graphic Editor menu. The Simulation Execution
menu displays.

The Profile Editor
The purpose of the Profile Editor is to provide the user the ability to build a robust, reusable,
simulation environment. The Profile Editor allows you to identify the scope of the simulation
including design components (charts), recording mechanisms for input and output, and system
parameters such as clock rates to be used throughout the simulation run. The Profile Editor allows
you to build the framework for interactive or batch simulation.

This section introduces you to the Rational Statemate Simulation Profile Editor. A set of procedures
for creating and customizing a profile is included in this section. This section assumes an
understanding of the Statechart and Activity-chart principles as well as the command input
techniques discussed in the Rational Statemate User Guide.
Rational Statemate 43

Interactive Mode Simulation
Profile Scope Definition

The Profile Editor allows you to specify the scope of the simulation as well as select the
parameters that control the simulation. Use the Profile Editor to define a simulation’s scope by
identifying the components to be simulated such as charts, panels, and waveforms.

Once created, the profile is a record of what was included in its definition scope. Profiles also
provide a convenient way to store settings that are used repeatedly in different simulation sessions.

You can store the profile in your workarea where it can be retrieved, edited, and used over and
over again for subsequent simulations.

The following procedures show you how to create a new Simulation Profile using the Simulation
Profile Editor and how to customize it.

Title Bar
Menu Bar

Scope
Definition
Area

Messages

Tool Bar
44 Simulation Reference Manual

The Profile Editor
Creating a New Simulation Profile

This section shows you how to create a new Simulation Profile.

1. Select File > New Profile. The New/Open Simulation Profile dialog box opens.

2. Enter the new profile name in the Profile Name text box and click OK. The Profile
Editor appears now with all the options enabled and the name of the profile in the title
bar.
Rational Statemate 45

Interactive Mode Simulation
Adding Components to the Profile

This section describes how to add components (i.e., Statecharts, Activity-charts, Panels, etc.) from
the Chart Tree to the Scope Definition of the Simulation Profile.

1. Click Add Chart(s) with Descendants to Profile or select Edit > Add with
Descendants to bring up the Charts Tree and select charts to add to the profile.
46 Simulation Reference Manual

The Profile Editor
2. Click Add Panel to Profile or select Edit > Add/Edit Panel to bring up the Add
Panels to Profile dialog box and select a panel(s) to add to the profile.

3. Click Define New or Edit Existing Monitor Definition or select Edit > Monitors to
add or create a monitor to add to the profile.

Note
You can view the scope definition in either Tree (graphical display) or List (textual display)
format by selecting View > Show Scope as Tree or View > Show Scope as List.
Rational Statemate 47

Interactive Mode Simulation
Saving the Profile

To save the profile, select File > Save.

Starting Simulation from the Simulation Profile Editor

Starting simulation from the Simulation Profile Editor allows you to predetermine the
environment for your simulation. Monitors, waveforms, and panels can be included in a profile.
When a profile is executed, all components included in the profile participate in the simulation.

To start a simulation from the Simulation Profile Editor, click Invoke Simulation or select
Execute > Execute Simulation. The Simulation Execution window for the selected profile opens.

Entering Commands To The Simulator

Menus/Toolbars

Commands to the Simulator can be entered by the use of a number of menus that are pulled down
from the menu bar or activated via the toolbar. A description of each command can be found in
Supplementing the Model with Handwritten Code.

Command Line

One method of entering commands to the Simulator is by using the command line in the
Simulation Execution dialog box.

To utilize the command line options, from the View menu, click Command Line. The command
line appears below the toolbar.

Command
Line

Menu Bar

Tool Bar
48 Simulation Reference Manual

Input Changes
Input Changes

Do Action Commands

One method of entering information about the design’s environment is the Do Action command. Do
Action is directed for those users who know exactly the names of the actions to be taken.

Note
It is also possible to use the Monitor Window or the Panel to generate events, conditions,
and actions.

Using DO Action

1. In the Simulation Execution dialog box, select Actions > Do Action. The Do Action
dialog box opens.

2. Enter any valid Do Action expression into the Expression text box.

Note

You can select elements for your Do Action by clicking the ellipsis button . This starts
the Select Element browser.
Rational Statemate 49

Interactive Mode Simulation
3. Click Apply. The entered action is executed and echoed in the History field.

Note: Clicking Cancel before Apply does not execute the Do Action. Clicking
Cancel after Apply runs the Do Action and dismisses the Do Action dialog
box.

Valid Input To Do Action

Input into the Expression: area may be any valid Rational Statemate action. The following are
some examples:

� clear_buf

where clear_buf is a defined action.
� i := i+1;ax:j :=5; day::SUNDAY;

where i and j are data-items. In this example, i is unique in the WorkArea while j is not,
therefore, is specified as belonging to a specific chart AX. The day is the data item of an
enumerated type and SUNDAY is on of its values.

� st!(A)

where A is an activity
� sc!(e,delta_t)

where e is an event and delta_t is a data-item
� scr:e

where e is an event belonging to the chart SCR
50 Simulation Reference Manual

Input Changes
Invalid Input to Do Action

The input to Do Action cannot be any of the following:

� A syntactically invalid action expression.

For example, the expression “i=5” and “st(A)”. These are a condition and an event,
respectively.

� An action which is semantically incorrect since it uses an element contrary to its type.

For example, if d then A end if, where d is defined as a data-item and not as a
condition.

� An action that refers to an item defined in your WorkArea but not uniquely identified.

For example, the input j:=5 where j is defined as a data-item in a number of different charts.
You must specify which chart is being referenced.

� An action that refers to an element not belonging to your WorkArea.

For example, the input i:=5 where i is neither defined nor referenced in the charts in your
WorkArea.

� An action that changes the value of a compound item (an item defined in terms of other
items).

Response to Invalid Do Action

The Do Action command responds to your command input in one of the following ways:

� If the input is in error, a message is issued and the input is discarded.
� If the action is syntactically correct but the action affects elements which are not within

the simulation scope, then the element is included in the scope, a message is issued, and
the action is performed.

For example, consider the action i:=5 where i is a data-item defined in the WorkArea but not used
anywhere in the simulation chart or in any textual element associated with it. The following message is
issued:

Data-item I inserted into the Simulation scope
Rational Statemate 51

Interactive Mode Simulation
Go Commands
Go commands are used to advance the model execution. This section provides an initial definition
of each Go command. The following table supplies a description of each step in asynchronous and
synchronous simulation mode.

A Go command may be entered whenever the simulation is waiting for input. There are three
exceptions:

� When the simulation is in the Autorun or in the Batch mode;
� When the simulation is in an unresolved nondeterministic situation. In this case, the user

must choose a solution before proceeding with simulation.
� When the simulation has reached a termination connector. In this case, the only relevant

commands are Quit and Restart.

Asynchronous Simulation Synchronous Simulation

GoStep Runs one step and consumes no time. Runs one step and consumes one time
unit.

GoStepN Runs a specified number (N) of steps. Runs a specified number (N) of steps.

GoRepeat Performs a superstep and consumes no
time.

Performs a superstep and consumes the
amount of time equal to the number of
steps taken during the superstep.

GoNext Advances time to the next scheduled
action or timeout event. Then performs a
GoRepeat.

Advances time to the next scheduled
action or timeout event. The number of
steps taken are equal to the number of
time units.

GoExtend Performs a GoRepeat. If a superstep
can’t be taken, then it performs a GoNext
then a GoRepeat.

Performs a GoRepeat. If a superstep
cannot be taken, then it performs a
GoNext then a GoRepeat.

GoAdvance Allows you to advance the time by
specifying the increment of time. A
GoRepeat is taken.

Allows you to advance the time by
specifying the increment of time. The
number of steps are equal to the number
of time units advanced.

AutoGo The AutoGo command is used to
perform a GoStep in an unstable status
otherwise it performs a GoNext.

The AutoGo command is used to
perform a GoStep in an unstable status
otherwise it performs a GoNext.

GoBack Undo last Go command Undo last Go command
52 Simulation Reference Manual

Go Commands
The Go Menu

The following figure illustrates the Go Menu. Some important notes about using the Go
commands are listed below.

� The commands GoRepeat, GoExtend, GoNext and GoAdvance may cause the simulation
to enter an infinite loop. The simulation, of course, does not loop indefinitely. Instead it loops
until it reaches the Steps per Go limit. When this maximum number of steps allowed per Go is
reached, the Simulation Tool issues the message:

Reached MAX NUMBER OF STEPS PER GO limit (see parameter under OPTIONS).

Note: The Steps Per Go parameter is set by selecting Options > Execution Options
from the Simulation Execution menu or the Profile Editor.

� The simulation then continues as if the Go command had finished normally.
� GoAdvance requires a time parameter. This parameter is entered in the GoAdvance dialog

box that is displayed when the command is selected from the Go menu.
� GoNext is only relevant when timeout events and/or scheduled actions are due to occur. When

no items are scheduled or when an item is due in zero time, GoNext has no effect on the
simulation.

� AutoGo runs a GoStep in an unstable status otherwise it performs a GoNext.

Pausing Execution

To pause a running simulation, select Go > Pause or click .
Rational Statemate 53

Interactive Mode Simulation
Observing The System’s Behavior
When a simulation step is taken, the system status may change. This section discusses how to
display the simulation output which illustrates the new status and recent changes made. Change in
status is shown graphically through chart animation and textually through the Show commands.

Graphic Animation Display

When the simulation is connected to a graphic editor, the status information is displayed
graphically on the workstation. The state configuration and recent transitions are highlighted in the
Statechart Graphic Editor and the active activities are highlighted in the Activity-chart Graphic
Editor. The following table summarizes the graphical changes made in the charts.

The Simulation Tool changes the color of the lowest level state visible. Also, viewing commands
such as dive and surface have no effect on the simulation results.

For information on setting preferences, refer to the Rational Statemate User Guide.

Color Assigned to Color

Purple (default) Transition taken in the last step. Basic states
the system is in or has entered in the last
step.

Purple (default)

Violet (default) Basic states left in the last step. Violet (default)

Orange (default) Transitions other than those listed above. Orange (default)

Green (default) States other than those listed above. Green (default)
54 Simulation Reference Manual

Show Command
Show Command
The Analyze > Show command displays the Show dialog box that allows you to view Changes,
Future, Racing and Clock. The Show commands are used to display a textual description of changes in
the model. They display changes for both graphical and non-graphical elements.

Show Changes

The Show Changes command is used to display the system changes since the last simulation step. This
includes all changes in the system status and manual changes that occurred during the last Go command.

� Automatic Update changes in the model are automatically updated and can be viewed.
� Freeze keeps the current information in the display. Changes in the model are not

automatically updated.
Rational Statemate 55

Interactive Mode Simulation
Show Future

The Show Future command displays all scheduled actions and timeout events due to occur. Also,
Simulation Control Program breakpoints triggered by the EVERY clause are listed.

� Time is the amount of time (global clock units) until the scheduling of the item (event,
action, EVERY clause). If the value is zero, the item is activated just prior to the next step.

� Type is the type of scheduled item (event, action, EVERY clause)
� Name/Definition is the name of the scheduled item or, for a nameless item, an expression

that defines it.

Show Racing

The Show Racing dialog box displays racing problems. The Simulation Tool notifies about two
types of racing situations:

� Read/Write Racing
� Write/Write Racing

The racing analysis is performed only when the appropriate options are set in the
Execution Parameter dialog box. When a racing situation occurs, the tool resolves it by
randomly choosing one of the possible outcomes. The following message is displayed:

Racing problems encountered

Future for step 2:

Time Type Name/Definition

1 Event tn{E2,VAR1}
2 Event tn{en(S2),5}

56 Simulation Reference Manual

Show Command
Show Clock

The Show Clock command displays information on:

� Global Clocks that show the passage of time for the entire system.
� Clocks for each of the system’s components, i.e., for each activity or for each Statechart

that is not connected to the activity’s control.
For Global Clocks, the following is displayed:

� Current Time shown in the standard format HH:MM:SS.
� Step Number shows the total number of steps taken from the start of the simulation.
� Phase Number is the number of steps taken at the current time.
� Clock Unit is the unit of global clock specified in Time Settings dialog box of the Profile

Editor.
For each of the system components, these are shown:

� Clock Unit is relevant to synchronous time model only; different units can be specified
for different components.

� Timeout/Schedule Unit is used to measure duration of timeouts and scheduled actions;
relevant to both time models.
Rational Statemate 57

Interactive Mode Simulation
Examine

The Examine command (Analyze > Examine) allows you to examine Element Values, Queues
and Expressions.
58 Simulation Reference Manual

Show Command
� Examine displays the value of an object.
� Evaluate displays the value of an expression.
� Examine Queue displays the content of the queue. This includes the queue’s length and

contents.
� History field saves a record of elements that were examined and evaluated. This can be

used to retrieve elements for re-examination by selecting them using the left mouse button
and Apply.

� Ellipse button starts the Select Element browser.
� Expression displays the expression or name of the element that is being evaluated or

examined.
� Results displays the results of Examine, Evaluate and Examine Queue.

Non-determinism

When the Simulation Tool encounters a nondeterministic situation, a Non-determinism dialog box
opens.

The Non-determinism dialog box displays the name of the chart that the non-determinism occurred
in along with a number of possible solutions. You are able to toggle all possible continuations by
using the up and down arrow keys. There is also a field showing the name of a Statechart in which
the non-determinism occurred. This helps the you to know which chart should be examined in
order to select a desired continuation. Once an acceptable solution is chosen, the OK button
confirms this choice and you can proceed with simulation.

Note
If the non-determinism is an undesirable behavior, you can choose to modify the chart(s)
and rebuild simulation.
Rational Statemate 59

Interactive Mode Simulation
Panels in Simulation
Mock-up panels provide a clear and visual interface to the simulated mode and allow you to easily
control the system’s behavior. Panels can be built of

� Input and out interactors
� Graphical shapes drawn by you

Each of these graphical objects can be bound to an element in the model, for example, an event or
state. These bindings allow you to drive the simulation by entering input values and to monitor the
execution by observing the outputs.

Multiple panels can be attached to the same simulation, each presenting either:

� A group of logically related elements in the interface of the simulated system
� Its internal elements

You can display panels on different terminals and each single panel can be simultaneously
displayed on several terminals. This provides a realistic effect and allows you to work with a
system that includes multiple components.

You can combine panels with any other mechanisms supporting simulation input and output such
as:

� Monitors
� Graphic editors for charts
� Do Actions and Examine commands
� Simulation Control Language programs

All these facilities provide a consistent picture of the current status of the model at any time during
simulation.

The Panels tool allows you to attach panels to your simulation. The various characteristics of the panel
can be saved in a Panel Profile. The saved profile can then be re-used in other simulation sessions.

Panels allow you to rapidly create a mock-up of the man-machine interface. This interface can be
connected to simulation for testing purposes. Panels also can be used to aid in automating the
simulation environment.
60 Simulation Reference Manual

Panels in Simulation
 Defining and Editing Panel Profiles

This section describes how to add, edit or delete a panel profile from the Simulation Profile.

Adding a Panel to the Profile
1. In the Workarea Browser select a panel.

2. Select Edit > Add/Edit Panel or select the Add Selected Panel icon from the Profile
Editor. The panel is added to the profile and its name is displayed in the Profile’s Scope
Definition.

Editing a Panel in the Profile
For each panel in the profile, it is possible to specify on which display terminal it should be shown
when simulating with this profile. By default, a panel is displayed on the same terminal on which
all Rational Statemate windows appear. You may change this and cause the panel to be displayed
an another terminal (or several terminals simultaneously).

To edit a panel in the Profile:

1. Select Edit > Add/Edit Panels from the Profile Editor. The Panels in Profile dialog box
opens.

2. Specify names of terminals in which you want the panel to be displayed. Leave the field
blank to display the panel on the default terminal.

3. Click OK.
Rational Statemate 61

Interactive Mode Simulation
Deleting a Panel from the Profile
1. Select a panel name in the Scope Definition area of the Profile Editor.

2. Select Edit > Remove from Scope or click the Remove from Scope icon.The selected
panel is removed from the scope.

Font Appearances in Simulation Panels
Use the following procedure to correct erroneous behavior in the text-to-graphics ratio. This ratio
is not kept when the same chart or panel is moved across different screen resolutions.

Set the environment variable:

STMM_ENABLE_FONTSIZE_CORRECTION

For example, on Windows systems, include the following line in the run_stmm.bat file:

SET STMM_ENABLE_FONTSIZE_CORRECTION-ON

Note
Exceed users see some differenced in the text-to-graphics ratio due to this change. However,
XVision users may not notice any differences.

To move various charts and panels across various screen resolutions using XVision:

1. Select Properties > Devices > Video in the Monitor Resolution window of XVision.

2. Set the DPI to the appropriate number. The default value is 96. However, this is correct
only for a very specific screen resolution.
62 Simulation Reference Manual

Waveforms in Simulation
Waveforms in Simulation
The Waveform tool has two modes; one that allows you to communicate with simulation and display
changes as they occur and one that can be used for post-run analysis of traces produced by simulation.

The various characteristics of the Waveform window can be saved in a Waveform Profile during
simulation or after simulation. The saved profile can then be re-used in other simulation sessions, or in
the off-line mode.

On-Line Mode of Waveforms

In the on-line mode, the Waveform tool runs as a process that communicates with simulation and
displays the changes as they occur.

Setting Waveforms to be Displayed in Simulation

A waveform can be added to the Simulation Profile as follows:

1. Click or select Edit > Add/Create Waveform. The New Waveform dialog box
opens.

2. Enter the name of your waveform into the Waveform Name text box, select OK. The new
Waveform is added to your Scope Definition in the Profile Editor.
Rational Statemate 63

Interactive Mode Simulation
Activating Waveforms During a Simulation Session

A Waveform can also be activated directly during a simulation session by selecting Displays >
Waveforms. This opens the Waveforms in Workarea dialog box. Select the needed names and
click OK for activation. To start a new form, click OK; you are prompted to enter a new Waveform
name. In this case, an empty Waveform window is created. Use the Waveform tool facilities to select
the elements to be displayed.

Checking Waveform Elements

When a Waveform Profile is activated, the tool checks for the correctness of elements referenced in
the profile. After performing this check, the tool displays a summary of the errors. Following are some of
the recognized errors:

� The element is not unique in the scope
� There is a mismatch of element types
� An element does not exist in the scope
� The index of an array component is outside of the bounds of the array

Erroneous elements in the Waveform Profile are ignored and therefore are not displayed.
64 Simulation Reference Manual

Waveforms in Simulation
Unresolved Data-Items in the Scope

Unresolved data-items in the scope are treated by the Waveform tool as an integer. An appropriate
message is provided when this situation is encountered.

If the data-item is actually used in the scope in a different way (for example, as a string) then the
Simulation tool issues an error message the first time the contradiction is discovered during run-time.

Displaying Values in Waveform

When activated, the Waveform displays the current values of selected elements, the current time and
current step number. When a new element is added to the Waveform, its current value is immediately
displayed.

As simulation continues to run, the waveform displays a full history of element changes. To view
the value of the elements, click at the desired point of the Step/Time scale. The elements at that
point are displayed in the Value area of the waveform
Rational Statemate 65

Interactive Mode Simulation
Off-Line Mode of Waveforms

In off-line mode the tool is used for post-run analysis of traces produced by simulation.

Trace Files Menu
Select File > Simulation File Management > Trace File Management to name a trace to be
analyzed.

No Waveform in the Workarea
1. Select Files > Simulation File Management > Trace Files. The Trace File

Management dialog box opens.

2. Select Waveforms. The Select Waveform Profiles dialog box opens.
66 Simulation Reference Manual

Waveforms in Simulation
3. Select OK. The Add to Waveform dialog and a Waveform window appears.
Rational Statemate 67

Interactive Mode Simulation
4. Select the elements to be viewed from the Show only selection. The elements appear in as
a waveform in the Waveform window.

Waveform Profiles in the Workarea
1. Select Files > Simulation File Management > Trace Files. The Trace TFile Management

dialog box opens.

2. Select Waveforms. The Select Waveform Profiles dialog box opens.

3. Highlight a trace file name for the Files list.

4. Select Waveform. The Select Waveform Profiles dialog box opens.

At this point you have two choices:

� Highlight a waveform profile from the Profiles list and click OK. The waveform from the
selected waveform appears.

� Or, do not highlight a waveform profile and select OK. A new waveform window opens.
68 Simulation Reference Manual

Use-Case Diagrams in Simulation
Waveform Profiles as Configuration Items

Waveform profiles can be saved as configuration items. These files are ASCII files with an
extension.wpf that are stored in:

� WorkArea: work_area_directory/ana
� DataBank: project_bank_directory/ana

Use-Case Diagrams in Simulation
The Simulation supports a Use-Case Diagram (UCD) to the Simulation scope:

� When a UCD is added, all linked Sequence Diagrams (SDs) and statecharts are added with
it.

� All the SDs and SD partition lines (scenarios) are listed in the Scenario Animation Control
dialog box. The dialog box contains a table with the following fields:
� Animate (Yes/No) - controls the painting of the specific SD partition lines and

messages.
� Name
� Activation Expression - When you select Yes in the Animate field and the

activation expression is not empty, the painting of the specific SD partition line
and messages starts only after the expression defined in this field evaluates to
TRUE.

Animation of Sequence Design

The Simulation animates the scenarios defined in the Scenario Animation Control table to show
the scenarios propagation trace, as well as the statecharts.

Note

� Only a single instance of tan SD and an SD partition line can be animated simultaneously.
� The timing constraint, referenced SD, and SD scope constructs are ignored by the

animation.
Rational Statemate 69

Interactive Mode Simulation
Recording a Sequence Diagram

To record a sequence diagram that includes the series of events that occurs during a simulation
session:

1. Select Options > Sequence Diagram Generation.

2. Select the Generated Sequence Diagram check box.

The generated sequence diagram includes two lifelines, User and System, and the messages drawn
between them. Internal message are displayed as messages-to-self.
70 Simulation Reference Manual

Monitors in Simulation
Monitors in Simulation
The Monitor Tool is a simulation debugging aid. It provides the user with a tabular display of
textual and/or graphical element status during simulation. The Monitor can be used as an output
device to display element status and /or an input device that accepts input stimuli during
simulation. The various characteristics of a Monitor window can be saved in a Simulation Profile.
This allows for re-usability of the Monitor in other simulation sessions.

Adding Monitors to the Profile

This section describes how to add a monitor to your Simulation Scope.

1. Click on the New/Edit Monitors icon or select Edit > Monitors..The New Monitor
dialog box opens.

2. Enter a name for your monitor and select OK. The Simulation Monitor browser opens.

3. Select Edit > Add. The Element Selection dialog box opens.
Rational Statemate 71

Interactive Mode Simulation
The Element Selection for Monitor browser is used to select elements to show in the
Monitor Window. This is done by:

� Creating a list of elements of the needed type and subtype.
� Selecting from the list the elements you want to view in the Monitor.

A description of each selection on this dialog box follows:

� Primary Selection Area – Select one of two element types in the top two buttons on this
dialog box (the default is Textual).

� Type – Select the type of elements to be included in your Monitor. Textual types are All,
Data-item, Condition, and Event. Graphical types are All, State, and Activity.
72 Simulation Reference Manual

Monitors in Simulation
� Sub-Type – Used to further define a type. For example, a data-item can be defined as a
real, integer, bit, etc.

� Structure – Allows you to select a structure type for textual elements (Single, Array,
Queue or All).

� Usage – Allows you to select textual elements based on how they are used (All, Variable,
Compound, Alias, Constant).

� Used in Chart – Used to select elements based on the charts in which they are used.
� Instance – Used to select elements based on the generic instances in which they are used.
� Name – Used to select elements based on their name. The asterisk (*) can be used as a

wildcard character for part of the name or to select all element names.
� Filter Button – Used to generate a list of elements based on selected type, structure and

usage.
Note: The names that are being compared are the unique names of the elements that

may be prefixed with Chart Names, Instance Names and Long Format
Graphical Element Names. It is advisable to prefix any name search with the
asterisk (*) wildcard character.

� Incremental Filter – Allows you to do an incremental search by entering a character
string in the name text box.

� Select All – Selects all the elements in the pending list.
� Expand – Allows you to view structured type elements (arrays, records, unions) in more

detail and to add to the Monitor only desired components
4. Make your selections within the Type listing. Appropriate selections are displayed for

Sub-Type, Structure and Usage listings.

5. Make your selections within the Sub-Type, Structure and Usage listings (if necessary).

6. Specify a chart name in Used in Chart, if needed.

7. Provide a pattern for the name of elements to be filtered.

8. Select the Filter button. A list of elements appears.

9. Select the elements you want added to your monitor. Select OK. All elements selected
from the Element Selection Monitor dialog box are added to the Monitor window. Click
Apply to add elements to the Monitor list and retain the browser. Click OK to add the
elements and dismisses the browser.
Rational Statemate 73

Interactive Mode Simulation
Simulation Monitor Fields

� Name – This field shows the element’s name.
� Type – This field shows the element type:

� DI – Data-item
� CO – Condition
� EV – Event
� ST – State
� AC – Activity

� Value – This field refers to the current value of the element. You can apply stimulus to the
model by modifying the Value field. For primitive textual elements and for activities, a
new value of element can also be entered into this field. Any error in the entered value
(wrong type, etc.) causes an appropriate message and the current value remains intact.

Note: For string Data-items, the value must be enclosed in quotes. Generation of an
Event or changing a Condition can be done by clicking in the field Value with
the left mouse button.
74 Simulation Reference Manual

Monitors in Simulation
� Status Field
� For textual elements: this field indicates if an element is read, written, or

changed (rd, wr, ch).
� For States: indicates whether a state is entered or exited (en, ex)

– For Activities: indicates if an activity is started or stopped (st, sp).
� Mode Field - This field displays the mode for textual data-elements (data-items,

conditions, events). The mode of a data-element is based on the graphic flow-lines in the
top level Activity chart of the simulation scope. Therefore, the values in this column do
not change throughout the execution of the Simulation.
� To display this field, select View > Show Mode.
� Values are: In, Out, In-Out, Local, Constant

Shared Monitor

A Simulation monitor can be tagged as a shared monitor. As a result, the monitor is saved
separately from the Simulation profile. A shared Monitor can be shared between different
Simulation profiles and workareas, and can be checked into and out from the Databank.

To turn a monitor (internal monitor) to a shared monitor, right-click on the monitor name in the
Simulation main window and select Make Shared Monitor.

File Menu

Use the selections in this menu to manage the monitor files.

� Save – Saves the current monitor in your workarea for this project.
� Exit – Exits the Simulation Monitor and closes any associated windows that you may have

left open.
Rational Statemate 75

Interactive Mode Simulation
Edit Menu

Use the selections in this menu to build a monitor.

� Add starts the Element Selection browser. The browser is used to select elements to show
in the Monitor Window.

� Remove is used to remove unwanted elements from the Monitor window. Elements are
removed by highlighting them in the Monitor window then selecting the Remove
command.

� Move is used to move the position of an element in the Simulation Monitor. To move an
element:
a. Highlight the element to be moved.

b. Select the Move command.

c. Click on the location you want the element moved. The element is moved to the new
location.

Note: You can move either a single element or a group of selected elements.

View Menu

Use the selections in this menu to change how a monitor is displayed. The Value Format
command allows you to change the format in the integer and bit-array data-items displayed in the
Monitor. An element’s value format can be changed as follows:

1. Select an element from the Simulation Monitor window.

2. Select View > Value Format. The Formatted Value dialog box opens.

3. Select the appropriate Integer and Bit-Array format.

4. Click OK. The value of the element is reflected in the Monitor window in the new format.

� Full Name displays the full name of the selected element. This option is useful for
elements with long names, for example elements in generic instances.

� Sort by Name sorts all the elements in the current Monitor window alphabetically
by name.

� Sort by Type sorts all the elements in the current Monitor window by type, and
within each type, in alphabetical order.

� Sort by Relevant sorts all elements according their relevancy for the next
simulation step to be taken. An element is relevant if it affects a trigger of a
transition, static reaction or a mini-spec in the current model status.

5. Select File > Save. The Simulation Monitor is saved and added to the Profile.
76 Simulation Reference Manual

The Microdebugger Tool
The Microdebugger Tool
To run the microdebugger tool, you must first set breakpoints within the graphical and textual
procedures on your model. Breakpoints can be set to occur upon entering a procedure. When the
simulation tool reaches a breakpoint the microdebugger tool is executed. The Simulation
microstep debugger allows microstepping through the implementation of activity mini-steps, state
static-reactions, and action language actions, in addition to subroutine. The microstep debugger
monitor is not available with these items because values are updated on a step boundary, not
micro-step boundary. It is recommended that you use regular simulation monitors.

The Simulation microstep debugger also supports the inspection of context variables during
debugging.

In the following steps, the process of setting breakpoints and debugging graphical/textual
procedures is described.

Defining a Breakpoint in a Subroutine

To add a breakpoint to a subroutine within a Rational Statemate model.

1. Select Actions > Breakpoints from the Profile Editor. The Breakpoint Editor appears.

2. Click Add from the Subroutine list. The Add Breakpoint dialog box opens.

Sub
rout
Rational Statemate 77

Interactive Mode Simulation
3. Enter the name for the breakpoint in the name field.

Note: In models containing multiple breakpoints, each name must be unique.

4. Click the List button. A selection menu listing all defined subroutines appears.

5. Highlight the subroutine that contains the breakpoint, then click Apply. A breakpoint is set
to the selected subroutine.

Debugging a Textual and Graphical Procedure

This section provides information to setup a debugging session for a textual or graphical
procedure. The microdebugger tool is start whenever a breakpoint is reached during the execution
of a subroutine.

The debugger tool allows you to select elements within your model and monitor the execution of
microsteps as you simulate. When monitoring textual procedures, code is viewable within the
microdebugger tool. For graphical procedures, a read-only Graphic Editor opens, allowing you to
view the execution of microsteps graphically.

List Button
78 Simulation Reference Manual

The Microdebugger Tool
� mStep starts one microstep.
� mStepN runs a specified number of microsteps.
� Continue runs until the next breakpoint is reached or to the end of the current context.
� Run to End runs until the end of the current procedure.
� Dismiss closes the window.
� Stack shows the levels of procedures being executed. Procedure names are listed in

tabular format. Double-clicking on any procedure name in the stack performs an up/down
action.

� Code window displays the code within the current execution. The current execution line is
highlighted.

� Monitor Display displays the status of selected elements.
� Command Line allows you to enter commands to examine data (or Do Actions). The

results are displayed in the Results area.
� Results displays results for each action.

� Dismiss turns off the dialog.

Stack

Code

Monitor
Display

Command
Line

Results

Window

Step
Rational Statemate 79

Interactive Mode Simulation
Adding Elements

To aid you in debugging your model, you can add elements from your model to the Microdebugger
Monitor. The Monitor provides a tabular display of elements status during simulation. You add
elements by:

1. Click Add. The Select Element dialog box appears.

2. Select the Parameters > Filters. A list of elements appear in the Name and Type field.

3. Select the element you want to add to the monitor display of the Procedure dialog box.

4. Select Apply > OK. The selected elements are added to the monitor display of the
Procedure dialog box.

Simulating a Textual Procedure

After you have added elements to the Procedure dialog box, the procedure can be simulated. Each
time a step is taken, changing values can be observed in the monitor. After the subroutine is
completed, execution of the step continues.

Textual procedures started from subroutines that have been defined using code (i.e., C, Ada)
cannot be simulated. This is only true for this instance. Textual procedures started from anywhere
else can be simulated. The correct code is generated for Textual procedures started from anywhere.
80 Simulation Reference Manual

The Microdebugger Tool
Simulating a Graphical Procedure

After adding elements to the Graphical Procedure dialog box, you can simulate it. After the
subroutine execution is completed, the execution of the step in the model continues. The
simulation can be viewed via the Graphic Editor.

The step semantics for a Graphical Procedure are the same for a Textual procedure. The execution
of the procedure appears atomic from the view of the model. From the view of the procedure being
called, the execution acts like a GoRepeat.

When a procedure is called, it runs to completion before the model advances. At each occurrence
of a procedure calling another procedure, the “caller” does not advance until the procedure being
called returns.

If more than one procedure is called in the same compound action, they are treated concurrently.
IN and INOUT parameters are read from the value at the beginning of the step. INOUT and OUT
parameters should be written at the end of the step. Context variables can be passed as parameters
in order to create sequentially.
Rational Statemate 81

Interactive Mode Simulation
For example, the following results in racing:

/init (MY_ARRAY);
 sort_incr (MY_ARRAY);
 sort_decr (MY_ARRAY)

In the next example, the final value of MY_ARRAY is sorted in decreasing order.

/init ($MY_ARRAY)
 sort_incr ($MY_ARRAY)
 sort_dcre ($MY_ARRAY)
 MY_ARRAY:=$MY_ARRAY

In the next example, the final value of I is incremented a single time from the value at the
beginning of the step.

/my_incre(I);
 my_incre(I):
 my_incre(I)

In the next example, the final value of I is incremented three times from the value at the beginning
of the step.

/$I:=I;
my_incre($I);
my_incre($I);
my_incre($I);
I:=$I

Multiple procedures started from the same compound action are debugged sequentially.

Graphical procedures must always run to completion when started, if the procedure reaches a
stable situation (no more micro-steps can be taken with the current parameter, local, global
values), a runtime error should be generated by the simulation. When this error condition is
encountered, within simulation, the procedure immediately returns with the current global and
parameter values and the simulation step is interrupted. At this point, you are prompted with an
error message and is given the ability to continue the step and simulation.
82 Simulation Reference Manual

Interactive Simulation Example
Interactive Simulation Example

The Traffic Light System

To illustrate some of the principles and commands discussed in this section and in Model
Execution: Concepts and Terms, the following simple Traffic Light example has been devised. Enter the
Statechart shown in the Traffic Light Example into your Rational Statemate system. After the Statechart
is entered, you are instructed on how to interactively execute the commands shown in the scenarios. This
provides you with both the simulation basics and command mechanics.

 Description Of The Traffic Light System

� A traffic light system controls the intersection of two streets, one going north-south (N_S)
and the other going east-west (E_W).

� The traffic lights remain green (in their respective directions) for a specified amount of
time. The time east-west remains green may not be the same as that of north-south.

� The time the lights remain green can change according to traffic conditions.
� The lights can be disabled. In the event of electrical malfunction, the lights blink yellow in

all four directions.
Rational Statemate 83

Interactive Mode Simulation
Simulating the Traffic Light in the Asynchronous Time Model

With the Statechart entered into your system, it’s now time to observe the model’s behavior using
the Simulation Tool’s interactive mode. Please execute each step on your workstation and observe
the behavioral results.

Initiating the Simulation Tool

From the Statechart graphic editor, initiate the Simulation Execution tool by choosing Tools >
Simulation. The Simulation Execution window appears.
84 Simulation Reference Manual

Interactive Simulation Example
Setting Some Time Parameters

As previously stated, the time each traffic light remains green is a variable. During this step, you
set the east-west time for 15 seconds and the north-south time for 20.

1. Select Action > Do Action.

2. Enter the following In the Expression field:

ew_green_time:=15;ns_green_time:=20

3. Click OK.

Stage 1

This stage begins the simulation of the Traffic Light statechart.

Select Go > GoRepeat.

The traffic light begins to operate. The north-south lights are green and the east-west lights are red.

Simulation Time: (see the status line of the Simulation Execution window) 0 seconds

The statechart enters its default states. GoRepeat advances the simulation to the next stable status, in
this case the default entrances.
Rational Statemate 85

Interactive Mode Simulation
Interactive Simulation Stage 1
86 Simulation Reference Manual

Interactive Simulation Example
Stage 2

At this stage, you display the scheduled events and move to the point where the traffic lights first
change.

1. Select Analyze > Show.

2. Click Future in the Display dialog box.

The north-south traffic lights turn yellow after 20 seconds. This indicates the effect
of setting the ns_green_time parameter.

3. Select Go > GoExtend.

Simulation Time: 20 seconds.

GoExtend advances the simulation and increments the clock until the next change
occurs in the system status - when the north-south lights turn yellow.

Observe that the system is now in states N_S.YELLOW_LIGHT and
E_W.RED_LIGHT.
Rational Statemate 87

Interactive Mode Simulation
Stage 3

At this stage, GoAdvance is used to advance the time.

1. Select Go > GoAdvance.

2. Enter the value 2 and click OK.

The system is now in states N_S.RED_LIGHT and E_W.GREEN_LIGHT.

Observe that the simulation time is now 22 seconds.

Interactive Simulation Stage 2
88 Simulation Reference Manual

Interactive Simulation Example
Stage 4

At this stage GoAdvance is used to increment time.

1. Select Go > GoAdvance.

2. Enter the value 16 and click OK.

Simulation time: 38 seconds.

Our design calls for the east-west light to remain green for 15 seconds. Since the
clock has been advanced 16 seconds, the simulation informs you that there are
reactions completed before the specified time. The east-west lights change from green
to yellow and the clock is incremented the full 16 seconds.

Interactive Simulation Stage 3
Rational Statemate 89

Interactive Mode Simulation
Stage 5

At this stage, the next change in the traffic light is reflected.

Select Go > GoExtend.

Simulation time: 39 seconds.

The traffic light system has completed one full cycle. The cycle takes 39 seconds (north-south
stays green for 20 seconds, east-west stays green for 15 seconds and each yellow light stays for 2
seconds). The system appears to behave as expected,

Interactive Simulation Stage 4
90 Simulation Reference Manual

Interactive Simulation Example
Stage 6

At this stage, an electrical malfunction is detected.

1. Select Action > Do Action. The Do Action dialog box opens.

2. Enter malfunction into the Expression Field and click OK.

3. Select Go Step from the Simulation window.

Simulation time: 39 seconds.

The traffic light stops its normal operation and moves to the FLASHING state. Note
that no time has been incremented. When a malfunction occurs, the traffic light begins to
flashing immediately.

Interactive Simulation Stage 5
Rational Statemate 91

Interactive Mode Simulation
Stage 7

At this stage, the electrical malfunction is corrected.

1. Select Action > Do Action. The Do Action dialog box opens.

2. Enter Reset into the Expression field and click OK.

3. Select Go > GoStep.

Simulation time: 39 seconds.

Again, no time has elapsed. Note that generating a reset event returns our system to
its original default states.

Interactive Simulation Stage 6
92 Simulation Reference Manual

Interactive Simulation Example
Interactive Simulation Stage 7
Rational Statemate 93

Interactive Mode Simulation
Stage 8

When the simulation scenario completes, exit Simulation Tool.

1. From the File menu, click Exit.

2. Click OK to confirm.

Some Variations to Consider

The example presented is quite simple and works properly. At this time, you may want to consider
altering the model and its parameters to study the effects. The following suggestions are made:

� Add the capability for a policeman to manually change the traffic lights in time of heavy
traffic or an accident. This may be accomplished by changing the label on the
N_S.GREEN_LIGHT to N_S.YELLOW_LIGHT transition to:

tm(en(N_S.GREEN_LIGHT),N_S_GREEN_TIME) or SWITCH

where SWITCH is an event generated by the policeman.
� Note that during the malfunction, all lights begin flashing immediately. During this period,

no time advances. And when the lights are repaired, the lights return to their default
configuration. You may want to change the model to reflect more realistic traffic
situations.

� These traffic lights perform the same cycle 24 hours a day. At night, it might be unrealistic
to have the same light delays as appear during daylight hours.

Simulating the Traffic Light in the Synchronous Time Model

Using the same time setting as in the asynchronous example, follow the commands in the
following table to execute the model with the synchronous time model. Please observe the time
increments and stable and unstable configurations.
94 Simulation Reference Manual

Interactive Simulation Example
COMMAND INITIAL
CONFIGURATION

FINAL
CONFIGURATION TIME COMMENTS

GoRepeat n_s.green_light,
e_w.red.light

1 A stable configuration
is reached. Show
Future displays next
timeout in 20 clock
units.

GoNext n_s.green_light,
e_w.red_light

n_s.green_light,
e_w.red_light

20 Show Future indicates
one unit until next
timeout.

Go StepN(2) n_s.green_light,
e_w.red_light

n_s.yellow_light
e_w.red.light

22 First Go Step makes
transition. Second
goes to stable
configuration.

GoAdvance(3) n_s.yellow_light
e_w.red.light

n_s.red_light,
e_w.green_light

25 Clock advanced 3 units
and transitions are
made based on
timeout.

Go Step n_s.red_light,
e_w.green_light

n_s.red_light,
e_w.green_light

26 Move to stable
configuration.
Rational Statemate 95

Interactive Mode Simulation
96 Simulation Reference Manual

Recording a Simulation Session
Setting the Simulation Parameters
The Simulation tool is controlled by a number of user-specified parameters. These parameters are
set from the Execution Parameters dialog box. This dialog box is accessed as follows:

Select Options > Execution Options from the Simulation Profile window menu bar.. The
Execution Parameters dialog box opens.
Rational Statemate 97

Recording a Simulation Session
A description of each selection on the Execution Parameters dialog box follows.

� Steps per Go – Sets the maximum number of steps that can be performed when executing
a Go command.

When the phase limit is reached, the Simulation tool assumes an infinite loop and
interrupts the execution of the Go command. At this point the SIM> prompt is displayed.

If the Go was performed by a batch program (SCP), the predefined SCL variable
infinite_loop is set to true and Set Interactive is automatically started if there is no defined
breakpoint triggered by infinite_loop.

Default value: 100

SCL command: Set Infinite loop number

� Infinite Loop – For any WHILE loop executed in the simulation, Infinite Loop forces it to
completion when the number of repetitions exceeds this parameter.Graphic procedures
can have an infinite loop or a loop on a transition. This stops when the preset parameter is
reached.

� Goback Limit – Determines the maximum number in succession the GoBack command may
be used.

Default value: 5

SCL command: SET GO BACK number

� Racing Read/Write – Enables/disables the reporting of read/write racing conditions within/
between Statecharts. Messages appear on the workstation terminal.

Default value: OFF

SCL command: none

In the following example, although a racing condition is reported, the language semantics
would cause y to be updated before x.
98 Simulation Reference Manual

Setting the Simulation Parameters
� Racing Write/Write – Enables/disables the reporting of write/write racing conditions
within/between Statecharts. The following messages appear on the workstation terminal.

Default value: OFF

SCL command: NONE

The value of x is unknown because we cannot determine if x gets 1 before or after x gets
2.

� Automatically Record New Trace Version – This feature causes a trace file to be
recorded every time the Simulation profile is executed. For more information, refer to
Tracing a Simulation later in this section.

� Automatically Record New SCP Version – This feature causes an SCP file to be
recorded every time the Simulation profile is executed.

/x:=0

S0

S1

SA

SB

/x:=5 /y:=x

/x:=0

S0

S1

SA

SB

/x:=1 /x:=2
Rational Statemate 99

Recording a Simulation Session
Saving and Restoring Status
The Simulation tool allows you to save the current system status for future reference. This is often
useful when trying to backtrack to a certain point in the Simulation (e.g., nondeterministic
solutions), to continue your work later or to use the current status in another Simulation scope.

Record > Snapshot Status – Saving the Status

The Snapshot Status command is used to save the current simulation status in a reloadable file.

1. Select Record > Snapshot Status from the Simulation Execution menu. The Snapshot
Status dialog box opens. It displays a list of existing Status files.

2. Select the status file you want to over write from the Status Files list or enter a new name
in the Selection text box.

3. Select OK. The current simulation status is save in a reloadable file.
100 Simulation Reference Manual

Saving and Restoring Status
Actions > Restore Status – Restoring the Status

1. Select Actions > Restore Status. The Restore Status dialog box opens.

2. Select the status file you want to restore from the Status Files list and select OK.

The Simulation Status saved in the selected file is restored.

When restoring a status, the Simulation tool checks the consistency between the current
Simulation scope and the one in which the status was saved. When the two scopes are
coincident, all saved values are restored. Attention must be paid to compound elements
(their values are not saved, see below). Also, since you may wish to use different global/
local clocks during the restoration, the Show Future command may show different times
than when the status was saved.

To effectively use the restore status facility when the stored status is a subset of the
restored status or vice versa, the following points apply:

� Changes in the hierarchies of activities and/or states cause the saved status to become
unrestoreable. This includes cases when a state/activity is added, removed or when it
changes its place in the hierarchy.

� When a textual element is deleted, its saved value is ignored at the time of restoration.
When a new textual element is added, its current value remains unchanged after the
restoration.

The Status File

The status file is a non-ASCII file containing the following information:

� Timing information (starting time and the current time)
� Status of activities
� Basic states configuration
� Values of primitive conditions
� Values of primitive data-items
� Generated primitive events, as well as generated events associated with other elements,

such as en(S), st(A), tr(C), etc.
� Scheduled timeouts and actions with their respective times left till expiration.
Rational Statemate 101

Recording a Simulation Session
Status File Management

The Status File Management command allows you to display, delete, copy, export and print
selected Status files. This command is available in the Profile Editor and the Simulation
Execution window.

1. Select File > Simulation File Management > Status File Management. The Status File
Management dialog box opens.

2. Select the file from the Files list that you want to manipulate using the left mouse button.
A description of each command contained in the Status File Management dialog box is
provided in the following list.

� Show – Shows the selected Status file in ASCII format. In the viewer select your
preferences.

� Delete – Deletes the selected Status file from the workarea.
� Copy – Copies the selected file after you re-name it. (Works the same way as

Save as.).
� Export – Works the same way as Copy except you can save it to another workarea

or any directory you want.
� Print – Used to print the selected file.
� Dismiss – Dismisses the Status File Management dialog box.
102 Simulation Reference Manual

Tracing a Simulation
Tracing a Simulation
When executing a model, you may record all external changes and the system's reactions to these
changes. This captured raw data is used as the basis for the creation of various spreadsheet trace
reports, as well as graphical viewing of the simulation results using waveforms.

There are three ways to interactively enable the creation of the trace file:

� From the Execution Parameters dialog box.
� From the Record command.
� From the Test Settings.

Simulation can record all States Transitions and Truth-Table's lines that were visited during a
simulation run. The recording is now a trace file with a list of Rational Statemate Ids for the States
and Transitions, and Ids & row number for the Truth-Table lines.

To get the “Execution” file, from the Options menu, click Test Settings and then select Create
Execution Log.

The tracing continues into the same file until ‘Quit’ or ‘Rebuild’ operation. ‘Rebuild’ operations
create a new trace file.

The format of Trace files is a list of State's, Transition Ids, and a list of the Truth-Table element ID
& the row number. The separator '^' is used for States of generic instances.

For Example:

2533300560199681

2533300560199682

25663300660245681^2533300560199684

2566300660245681^2533300560199685

2566300660245681^2533300560199686

2566300660245681^2533300560199687

2533300560199677

2533300560199678

2251825583489024 4

2533300560199680 2

2533300560199681^3940679738720256 1

2533300560199681^2251825583488024 6
Rational Statemate 103

Recording a Simulation Session
Automatically Recording a New Trace File

1. Select Options > Execution Parameters from the Simulation Profile Editor menu. The
Execution Parameters dialog box opens.

2. Select Automatically Record New Trace Version.

3. Select OK. The Simulation Trace is automatically saved.

Record > Start Trace – Creating a Trace File

A Trace can be also be started and stopped from the Record command from the Simulation
Execution dialog box.

1. Select Record > Start Trace from the Simulation Profile Editor menu. The Start Trace
dialog box opens. It displays a list of already existing trace files.

2. Select a Trace file name from the Files list to over write and existing trace or a new name
in the Selection text box.

3. Select OK. All external changes and the system’s reactions to these changes are recorded.

In the batch mode, the Simulation uses the commands set trace and cancel trace to toggle the
tracing facility. The trace file is closed when one of the following commands is entered: Exit,
Restart Simulation or Rebuild Simulation.

Trace File Management

Trace files can be displayed, deleted, copied, exported and printed using the Trace File
Management command. It can be accessed from the Simulation Profile window and Simulation
Execution menu.

1. Select File > Simulation File Management > Trace File Management. The Trace File
Management dialog box opens.

2. Select the Trace file from the Files list that you want to manipulate using your left mouse
button. The Trace File Management dialog box opens.
104 Simulation Reference Manual

Tracing a Simulation
� Display – Shows the selected Trace file.
� Delete – Deletes the selected Trace file from the workarea.
� Copy – Copies the selected Trace file after you re-name it. (Works the same way as Save

as.).
� Export – Works the same way as Copy except you can save it to another workarea or any

directory you want.
� Print – Used to print the selected Trace file.
� Reports – The Reports button is use to create reports. See Creating Reports later in this

section.
� Waveforms – The Waveform button is used for analysis of traces produced during

simulation. Refer to Waveforms in Simulation for addition information on Waveforms.
� Dismiss – Dismisses the Trace File Management dialog box.
Rational Statemate 105

Recording a Simulation Session
Creating Reports
Reports can be generated, manipulated and printed through the Trace File Management
command.

1. Select File >Simulation File Management > Trace File Management from the
Simulation Execution dialog box. The Trace File Management dialog box opens.

2. Select the Reports button. The Report dialog box opens.

3. Select:

� Formatted Report
� Spread Changes
� Spread Full
� Spread Compressed

Additional information on each report follows.
106 Simulation Reference Manual

Creating Reports
Formatted Report

This report groups information on a stepwise basis:

� The st ep number (from the beginning of the Simulation), the time (in Global Clock Units)
and, in the case of a superstep, the phase number (step number within that time).

� The changes caused by the environment: changes caused by the external actions that you
enter prior to performing the step, either interactively or from the SCP (includes generated
events, changes in conditions data-items, etc.).

� Changes caused by the system. These are the outcome of internal actions. A change can
trigger a chain reaction producing other actions.

� The new configuration of states reached at the end of the step.
Rational Statemate 107

Recording a Simulation Session
Spread Changes

To show, for each element in the Simulation scope, when and how its values/statuses changed
during the Simulation.

� The first and last lines show the initial and final values/statuses of the elements in the
session.

� The delta column shows the current step number.
� A row in which the delta value is marked by the letter E represents the external changes

occurred in the step. In such cases, the next row corresponds to the same value of the delta and
summarizes the system reaction.
108 Simulation Reference Manual

Creating Reports
Spread Full

The values/statuses of elements in the scope are shown at all moments, not only when changed.
Rational Statemate 109

Recording a Simulation Session
Spread Compressed

This report contains three parts:

� Dictionary– List of all elements in the scope, with the short names by which elements are
referenced in the report. Elements of each type are enumerated and a short name is a
combination of a letter indicating the element’s type and a number.

� Legend – Shows correspondence between values of elements (except data-items) and
numeric values representing these values in the report.

� Spreadsheet – Table summarizes the evolution of the elements’ values in the Simulation.
110 Simulation Reference Manual

Creating Reports
1. Select the Output Control.

� Send to Screen – To copy the contents of the report to the terminal screen.
� Send to Printer – To send the report to the printer.
� Number of Copies – To specify the number of copies printed. The number of

copies must be specified in the text box.
� Write to File – To write the report to a file. The file name must be specified in the

text box. You can select a file name by selecting the ellipse [...] button. This opens
a File dialog box on your screen. From this dialog box, you can select a file name
and directory.

2. Select Apply or OK. The selected options are started.

Interpreting Raw Data

The Simulation raw data may be interpreted as follows:

For Activities:

Activity SET_UP A Int

Activity SET_UP N Ext

where A and N are active and nonactive, while Int and Ext point to the source of the change
(internal, external).

For States:

State OFF I Int

State ON O Ext

where I and O are in and out of the state and Int and Ext are relevant to external states only.

For Conditions:

Condition IN_CONNECTED T Int

Condition IN_CONNECTED F Ext

where T and F are true and false.
Rational Statemate 111

Recording a Simulation Session
For Data-items:

Data-item FACT I 5 Ext

Data-item DELTA R 3.2 Ext

where I and R are integer and real.

For Events:

Event SET_UP X Int

where X indicates the occurrence of the event

Trace messages describing changes which occurred in a particular step are grouped together and
preceded by a line showing the step and the phase number (step number within that time) and the
current time.

Also, the moment the trace is enabled, the current values and statuses of all elements in the
Simulation scope are placed into the trace file.

A trace file is a record of all the different statuses that occurred during the simulation. Whenever
time changed or the state (value) of an element within the scope of the simulation changed, it was
recorded. A trace file is often used to examine how a system behaved during a simulation session
once the session is completed.
112 Simulation Reference Manual

Record and Playback of Simulation
Record and Playback of Simulation
During the simulation execution, you may enable and disable the recording of commands to a
Simulation Playback file.

The recording may be enabled and disabled as many times as necessary during a single
Simulation. The result is a single playback file which contains the various scenarios. This playback
file has the form of a Simulation Control Language program (refer to Simulation Command
Reference) and can be run like a normal SCP.

Record For Playback

In general, the Simulation tool stores in an SCL playback file only information which affects the
behavior of the simulated system, such as Simulation parameters, changes of specification
elements, and Go commands. It does not record parameters which affect the various report
facilities, information concerning only the viewing of changes and changes of internal variables of
the running SCPs.

The detail is described below:

� Each time you enable the recording:
� The current system status is saved (as a starting point of the recorded session

fragment) and a corresponding restore_status statement is put into the SCL
playback file.

� The current setting of Simulation parameters is recorded. This includes for
example, Set Infinite Loop and Set Go Back.

� During the session, the following information is recorded:
� Each external change of a specification element is recorded as appropriate action

on the element. These changes may come from a Do Action, from a panel or
monitor or from the SCP.

� Each entered Go command is recorded by its full name.
� Each change of the simulation parameters.
Rational Statemate 113

Recording a Simulation Session
The playback files are treated like SCP files and can be manipulated as such.

1. Select Options > Execution Parameters from the Simulation Profile Editor. The
Execution Parameters dialog box opens.

2. Select the Automatically Record New SCP Version option.

3. Select OK.

Once Simulation execution is started, the recording is started. From the Simulation Execution
window, you can start or stop the playback recording by selecting options: Record > Record SCP
or Record > Stop SCP Recording.
114 Simulation Reference Manual

Batch Mode Simulation
As your models grow in complexity, use of the interactive mode of Simulation, can become
inefficient. To ease the entry of large amounts of data and to better describe a scenario-based execution,
the Rational Statemate Simulation tool provides a batch mode of operation.

Simulation batch mode operates from a formatted text file of commands linked as a program
language - Simulation Control Language. Batch Mode simulation is controlled by programs written in
the Simulation Control Language. Executing a Simulation Control Program animates the Statecharts and
activity-charts in the Simulation Scope in the same manner as Interactive Simulation.

This section details the use of Batch Mode Simulation and the SCL constructs.
Rational Statemate 115

Batch Mode Simulation
The Simulation Control Program
The Simulation Control Program is a text file containing Simulation Control Language commands
which drive the simulation of the Rational Statemate model. The Simulation Control Program has a very
specific structure and execution order. A sample Simulation Control Program template is shown in the
following diagram.

PROGRAM my_scp_name;

CONSTANT

.

.Constant Declarations

.

VARIABLE

.

.Variable Declarations

.

INIT

.Initialization

.Initiation Section:statements performed

.at the start of each execution of the SCP.

END INIT;

.

.Breakpoint Definitions.

.Enabled breakpoints are performed

.following each step if their

.corresponding triggers are true.

.

BEGIN

.

.Main Section. If absent, an implied

.go extended is executed in a loop.

.

(an implied set interactive is performed at the end of the

Main Section)

END ;

END.

Program
Header

Program
Sections

End
Statement
116 Simulation Reference Manual

The Simulation Control Program
The Structure Of The Simulation Control Program

The Simulation Control Program has a specific structure. It contains the following Sections:
program header, program sections, and end statement. There are five program sections:

� Constant section
� Variable section
� Initialization section
� Breakpoint section
� Main section

A valid Simulation Control Program may include any, all, or none of the program sections. All
sections included in a Simulation Control Program must appear in the order described below.

The Program Header
The Program Header consists of the PROGRAM keyword followed by an identifier naming the program.
The header has no impact on the execution of the program.

PROGRAM identifier;

Constant Program Section
This program section consists of the CONSTANT keyword followed by the constant declarations for the
Simulation Control Program. Constants are always local to the Simulation Control Program.

A constant declaration contains a type (integer, string, float, etc.) followed by assignment statements.
Multiple assignments are separated by commas and the last assignment within the type is followed by a
semicolon.

CONSTANT

INTEGER x:=5, y:=200, z:=1, z2:=10;

STRING alpha:=‘unexpected loop’,

beta:=‘enter action for yy’;

FLOAT A:=2.5, B:=700.234;

BIT B:=0;

BITARRAY (1..16)A2:=0xab37;

ARRAY (1..2) of STRING str:={‘Undefined action’,

‘Nonexistent’};

ARRAY (1..6) of INTEGER int:={10,2,3,4,12,-72};
Rational Statemate 117

Batch Mode Simulation
Variable Program Section
This section is used to declare the local and global variables used by the SCP. Variables may be local
to the Simulation Control Program or declared globally for use in multiple Simulation Control Programs.
Global variables must be declared in each Simulation Control Program where they are referenced.

Each variable declaration has a type (integer, string, float, file, bit, array, Boolean or bit array) followed
by variable names. Multiple variable names are separated by commas with the last name followed by a
semicolon. Variables can be initialized.

VARIABLE

INTEGER xx, yy, u5:=5, za2;

STRING gamma;

GLOBAL STRING delta;

FLOAT aa, bb, cc, dd:=10.1879;

FILE f1, f2, f3;

BOOLEAN valid, invalid;

GLOBAL BOOLEAN correction;

BITARRAY (1..10) BA1;

BITARRAY (1..20) BA2;

BITARRAY (1..31) BA3;

Initialization Program Section
This program section contains the statements (except Go commands) to be executed upon running the
Simulation Control Program. All statements are contained within the keywords INIT and END INIT.

INIT

cc:= 23.6;

yy:= 4000;

gamma:= ‘light standard’;

SET INFINITE LOOP 50;

END INIT;
118 Simulation Reference Manual

The Simulation Control Program
Breakpoint Program Section
This program section contains the breakpoint definitions. Breakpoint definitions are contained
within the keywords SET BREAKPOINT and END BREAKPOINT. Once defined, a breakpoint is
automatically enabled.

Breakpoints are checked at the beginning of each Go command, and at the end of each execution
step. Enabled breakpoints whose triggering expression is true have their corresponding statements
(no GO commands permitted) executed. Below is an example of a Breakpoint.

SET BREAKPOINT [valid] DO
WRITE (‘VALID is True.’);

END BREAKPOINT;

The breakpoint section may contain several breakpoint definitions, each delimited by the SET
BREAKPOINT and END BREAKPOINT commands.

Main Program Section
This program section can contain the SCL statements that make up the main body of the program.
These statements are contained within the keywords Begin and End and are executed sequentially.

The Main Section is only executed if the Simulation Control Program is started by the Run
command. If started by Exec, this section is ignored and a warning message is issued.

After finishing the execution of the Main Section, execution is automatically switched to the
interactive mode where a Continue command may be used to execute the default main (see below).

If the Main Section is omitted, the default main is executed. This default is a Go Extended in a
continuous loop (until interrupted by the user):

BEGIN

WHILE TRUE LOOP

GO EXTENDED;

END LOOP;

END;
Rational Statemate 119

Batch Mode Simulation
Basic Syntax Rules

The basic syntax of the Simulation Control Language is presented as follows:

� SCL is not case sensitive, except for text strings inside apostrophes.
� An identifier may be any string, beginning with a letter and consisting of any of the

following characters: a-z, 0 -9, _. Identifiers have a maximum length of 16 characters.

When a Rational Statemate element name coincides with an SCL reserved word or an
SCL variable/constant identifier, an underscore is added as a prefix to the Rational Statemate
element name. For example, your specification contains a state SET. However, set is also a
reserved word in the SCL. To reference this name in the Simulation Control Program,
precede it with an underscore (i.e., _SET).

� It is illegal for a Rational Statemate element name to be the same as a reserved word in the
Rational Statemate action language (i.e., WHILE).Multiple SCL statements are permitted
on the same line if they are separated by semicolons (;).

� A single SCL statement may span several lines.
� SCL has a set of reserved words and syntactical elements. Each of these has a special

meaning and context. The SCL reserved words are listed in SCL Reserved Words.
� Comments are preceded by a double backslash (//). This symbol can appear at any point in

the line, except within a literal string. The end of the line concludes the comment.

SCL Statements
SCL statements are made up of keywords, syntactical elements and identifiers. Statements are
either simple or structured.

Simple statements consists of one or two keywords followed by identifiers and may span more
than one line.

Structured statements contain other statements. They usually span several lines and use keywords
to begin and end their structure and delimit their components. IF, THEN, ELSE are examples of a
structured statement:

IF a > b

THEN

x := y;

ELSE

x := x + 1;

END IF;
120 Simulation Reference Manual

The Simulation Control Program
Semicolons As Delimiters
Semicolons are used to separate Simulation Control Program statements. A semicolon optionally
follows the last in a sequence of statements. This example uses semicolons only where required:

PROGRAM sample

VARIABLE FILE f1;

INIT

OPEN (f1,‘my_file.doc’,OUTPUT)

END INIT

SET BREAKPOINT analysis => [STEP] DO

WRITE (‘a will be greater than b \n’) ;

alpha := 200 ;

IF a<= b

THEN

alpha := 400 ;

st!(transfer) ;

a := 1 + b // optional semi-colon omitted

ELSE

sp!(counter)

END IF;

WRITE (f1,a,“\n”)

END BREAKPOINT

END.
Rational Statemate 121

Batch Mode Simulation
Rational Statemate Expressions In the Simulation Control Program
In order to interact with the simulated system model, the Simulation Control Program must be able
to detect the system status. It must also be able to change the system status by performing actions
on the specification elements. Rational Statemate expressions are used in the SCL for this purpose.

When used in a Simulation Control Program, Rational Statemate expressions can reference both
specification elements and SCL variables and constants.

Two types of Rational Statemate expressions are used in the SCL:

� Rational Statemate Actions: These are equivalent to the interactive mode input commands
used to generate external changes. For example:

if c then st!(A) else st!(B) end if

a1 ; a2 ; a3

where c is a condition, A and B are activities and a1, a2 and a3 are actions.
� Rational Statemate Triggers: In most executions, it is useful to trigger the execution of

some actions either conditionally or as the direct result of some event. Such triggers are
written as Rational Statemate expressions and are used as part of an SCL structured
statement.

Some examples:
� if c then . . .

when condition c is true, then take actions . . .
� when tr(c) then . . .

if the condition c becomes true during the last execution step, then . . .
� set breakpoint ch(i) do . . .

sets a breakpoint when a data-item i has changed value during the last execution
step

� while c loop . . .

when condition c is true, trigger actions in a loop
When writing a Rational Statemate expression, remember to follow the rules outlined in the
Rational Statemate User Guide. Some exceptions apply:

� Actions write(v) and read(v), where v is an SCL variable
� Events written(v), read(v) and changed(v), where v is an SCL variable
� Events true(v) and false(v), where v is an SCL Boolean variable
122 Simulation Reference Manual

The Simulation Control Program
Your workarea must contain the specification elements referenced in expressions in the Simulation
Control Program. Although these elements need not be in the current scope, the references must be
unique.

Predefined Variables

The Simulation tool provides a set of predefined variables which are available to every Simulation
Control Program without being explicitly declared. Some of these variables are numeric and
contain data such as the step number and the current value of the execution clock. Others are
Boolean and represent conditions which relate to the execution status.

The predefined variables are only alterable by the Simulation tool. You cannot directly
manipulated their values. They are displayed by the Monitor SCP command together with variables
explicitly declared in the running Simulation Control Programs.

List of Predefined Variables
� STEP_NUMBER - an integer variable whose value is equal to the number of the current

execution step
� CUR_CLOCK – a float variable whose value is equal to the current execution time

measured in global Clock Units. This is used to manage the timing of the specification.
� NON-DETERMINISM – a Boolean variable that becomes true when a step execution

leads to a non-deterministic situation. It it usually used to trigger a breakpoint. Any
meaningful sequence of SCL statements associated with the non-determinism breakpoint
must include one of the statements below to resolve the situation:

� CHOOSE - resolves the situation by selecting a specific solution number.
� RANDOM_SOLUTION - randomly selects one of the possible solutions and continues

the execution.

If all breakpoints are processed and the non-determinism is still unresolved, the
Simulation tool issues a message and automatically moves to interactive mode. The
execution can only continue if the situation is resolved with either a Restart or Rebuild
command.

When used as a breakpoint trigger, the Non-determinism variable must be used by itself:

set breakpoint [nondeterminism] do
random_solution ;
end breakpoint;

� TERMINATION – a Boolean variable that becomes true when an execution step leads to
a Termination Connector. If all breakpoints are processed and the termination situation is
not handled, the Simulation tool automatically moves to interactive mode.
Rational Statemate 123

Batch Mode Simulation
� INFINITE_GO – a Boolean variable that becomes true when the tool exceeds the
maximum number of steps allowed without advancing the clock. If all breakpoints are
processed and the infinite loop is not handled, the Simulation tool automatically moves to
interactive mode to prevent an infinite loop.

When used as a breakpoint trigger, the variable Infinite_Go must be used by itself:

set breakpoint alpha =>[infinite_go] do
i := 1
end breakpoint

� STATIONARY - a Boolean variable that becomes true if no changes occur in the system
status during an execution step. This condition is always true after a go REPEAT.

� STEP - a Boolean variable that becomes true when an execution step ends. It is usually
used to trigger an operation to be done at every step.

Random Functions

The Simulation tool provides a number of random functions for use in your specification. They are
useful for specifying a system that accepts input from an external system that is only described
statistically.

List of Random Functions
� RANDOM - accepts an integer argument i and returns random real value distributed

uniformly between 0 and 1. If the passed argument is not zero, then a new sequence of
random values, whose seed is the parameter i, is initialized.

Syntax: random(i)

Since the Simulation tool always initiates a session with the same seed for random
functions, two consecutive executions behave identically. The advantage is that you can
reconstruct a particular execution scenario. New scenarios are produced by providing
different seeds.

� RAND_EXPONENTIAL - accepts a real argument and returns random real values
distributed exponentially by the value t. Using the syntax x:=rand_exponential(t)
make x equal to a randomly generated number. The syntax x:=random_exponential(t)
is accepted, but it makes x=the first value in an array called random_exponential.

Function: X ~ exp(t)
Syntax: random_exponential(t)

� RAND_BINOMIAL - accepts two arguments n and p, where n>0 and 0<p<1. The returned
random values are real number distributed according to a binomial distribution.

Function: X ~ B(n,p)
Syntax: rand_binomial(n,p)
124 Simulation Reference Manual

The Simulation Control Program
� RAND_POISSON - accepts a real argument r. The returned random values are integers
distributed according to a poisson distribution.

Function: X ~ P(r)
Syntax: rand_poisson(r)

� RAND_UNIFORM - accepts two real arguments a and b. The returned random values are
real values distributed according to a uniform distribution in the interval [a,b].

Function: X ~ U[a,b]
Syntax: rand_uniform(a,b)

� RAND_IUNIFORM - same as rand_uniform except that a and b are integers and the value
returned is an integer in the interval [a,b].

Function: X ~ U[a,b]
Syntax: rand_iuniform(a,b)

� RAND_NORMAL - accepts two real arguments a and b. The returned random values are
real values distributed according to a normal distribution.

Function: X ~ N[a,b]
Syntax: rand_normal(a,b)

Random Functions In Simulation Control Program Statements
The random functions described, when used in the Simulation Control Program, are treated like
any other numeric function in Rational Statemate - where the value returned may be used in the
expression. For example, the random function output may be assigned to a variable:

i := rand_uniform(a,b)

A condition’s value can be distributed equally:

random (0) < 0.5

Or an event can be randomly generated:

sc!(e, rand_uniform(x,y))
Rational Statemate 125

Batch Mode Simulation
SCL Session Control Statements

Statements which facilitate program execution are detailed in Simulation Command Reference.

File Operation Statements
This section contains the following information:

� OPEN Statement

� READ Statement

� WRITE Statement

� CLOSE Statement

OPEN Statement

The OPEN statement opens a file for input or output.

 OPEN (file_variable, ’file_name’, INPUT | OUTPUT)

where the file_variable is assigned a file_name for purposes of input or output. For example:

OPEN (file1, ’/csw/source/sample.data’, INPUT);

The file being opened for input must already exist. If a file is opened for output, it cannot be
opened again before it is closed. The interactive command Monitor SCP lists the currently opened
files. The same file may not be opened for both input and output.

READ Statement

The READ Statement takes input from the keyboard or a file. The information read is assigned to any of
the variable types except FILE.

READ ([file_variable,] x1 [, x2 . . .]);

The first parameter is optionally a file identifier, indicating the source of the read is a file. If not
provided, the read is done from standard input (keyboard).
126 Simulation Reference Manual

Structured SCL Statements
WRITE Statement

The WRITE statement outputs data to either a file or the display. The output may be any combination of
printable characters and numeric values.

WRITE ([file_variable,] exp1 [, exp2 . . .]
 [’\n’]);

The first parameter is optionally a file identifier indicating that the target of the WRITE is a file. If not
provided, the data is written to standard output (display). The optional argument ‘\n’ outputs a carriage
return between lines. For example:

WRITE (‘The data value is ’, d1, ’\n’);

To display or print integers in hexadecimal format:

1. Define a local variable of type bit array whose length is that of a standard integer. For
example:

Variables

BITARRAY hexa_int(0..31);

2. hexa_int: = int;

3. Write (’Print int in hexadecimal format, hexa_int, ’/n’);

CLOSE Statement

The Close statement closes a file that was previously opened. If your system environment limits the
number of open files, this command is used. The Simulation tool automatically closes files when the
Simulation Control Program is stopped.

CLOSE (file_variable);

Structured SCL Statements
As in most programming languages, the user has the ability to control the program flow and to
perform repetitive actions or to make decisions. The Simulation Control Program provides loop
constructs and decision statements for these purposes.
Rational Statemate 127

Batch Mode Simulation
IF/THEN/ELSE Statement

The IF/THEN/ELSE statement is used for conditional execution of SCL statements.

IF Boolean_expression

THEN statement [; statement . . .]

ELSE statement [; statement . . .]

END IF

Note
The ELSE statement is optional.

In this structured statement, the statements following the THEN and before ELSE are executed if the
Boolean_expression is true. If false, the statements following the ELSE are executed. The
Boolean_expression may include references to Rational Statemate elements as well as SCL variables
and constants.

For example:

IF in(scanning) and level > 200 THEN

x := 5 ;

WRITE (’reset variable x \n’);

ELSE

IF level <= 20 THEN

WRITE (’no variable reset \n’);

END IF;

END IF;

Note
The ELSE statement is optional.
128 Simulation Reference Manual

Structured SCL Statements
WHEN/THEN/ELSE Statement

The WHEN/THEN/ELSE Statement is used for execution of SCL statements upon the occurrence of an
event.

WHEN event_expression

THEN statement [; statement . . .]

ELSE statement [; statement . . .]

END WHEN

In this structured statement, the statements following the THEN and before the ELSE are executed if
the event_expression is true. If false, the statements following the ELSE are executed. The
event_expression may include references to Rational Statemate elements as well as SCL variables
and constants.

For example:

WHEN entered(A) [level>20] THEN

WRITE (’too high level when A entered \n’)

ELSE

WHEN entered(A)

WRITE (’running normally \n’)

END WHEN;

END WHEN;
Rational Statemate 129

Batch Mode Simulation
WHILE/LOOP and FOR/LOOP Statement

The WHILE/LOOP statement is used to execute SCL statements in a loop.

WHILE Boolean_expression

LOOP

statement [; statement . . .]

END LOOP

The statements in the LOOP clause are performed repeatedly while the Boolean_expression is
true. The Boolean_expression is checked prior to each execution of the LOOP. The
Boolean_expression may include Rational Statemate elements as well as SCL variables and
constants. There is no limit to the depth of nested structured statements. For example, where cax,
cb and cq are conditions and a1, a2 and a3 are actions:

WHILE cax

LOOP

a1 ;

a2 ;

IF x = 3 THEN tr!(cax);

ELSE

WRITE(’not tripped \n’);

WHILE cb or cq LOOP

Go Step a3;

END LOOP;

END IF;

END LOOP;

FOR/LOOP example:

FOR i in int1 to init2 LOOP

array(i):=0;

END LOOP;

where i, Int 1 and int2 are intergers
130 Simulation Reference Manual

Structured SCL Statements
Go Statements

The Go statements available in the interactive mode are also available in the batch mode. Note that
GoAdvance and GoStepN are special cases since they require a parameter.

� Go Step

Runs a single step. Time is advanced in Synchronous simulation.
� Go Repeat

Runs several GoSteps, until a stable status is reached.
� Go Next

Advances the time to the next scheduled action or timeout event.
� Go Extend

Runs GoRepeat or GoNext and GoRepeat. (Available only in asynchronous simulation.)
� Go StepN num_steps

Execute num_steps GoSteps.
� Go Advance num_time_units

Runs all reactions until, and including, the specified moment of time (relative and
absolute time).

� Go Back

Undoes the previous GO command.
� Auto Go

Attempts to execute a Go Step. If a Go Step cannot be taken then a Go Next is
performed.
Rational Statemate 131

Batch Mode Simulation
Breakpoints
Breakpoints are useful when dealing with special situations arising during Simulation, such as
non-determinism and infinite loops. Breakpoints are also useful when debugging your Simulation
Control Program.

For each breakpoint, there are associated name (optional), event trigger and sequence of
statements. You can enable or disable breakpoints in the course of the execution. At the end of
each execution step, triggers of all enabled breakpoints are evaluated. When a breakpoint’s trigger
is true, the associated statements are executed.

Note
Go commands are allowed only in the main section, not in the breakpoint definitions. Also
the square brackets around condition expression cond_expr are required.

Breakpoint Definition

Breakpoints are defined using the set breakpoint statement:

SET BREAKPOINT [breakpoint_name =>] trigger

DO

statement

[; statement]

. . .

END BREAKPOINT ;

where:

breakpoint_name is any valid SCL identifier; trigger is an event expression or the keyword
every followed by a numeric expression; statement is any legal SCL statement except GO
statements.

Definition of a breakpoint automatically enables it. If a Simulation Control Program is assigned to
an activity in your system, suspension of this activity disables all breakpoints in this Simulation
Control Program. Resumption of the activity re-enables the breakpoints.

Breakpoints are checked at the beginning of each Go command, and after each execution step. The
statements associated with this breakpoint are executed whenever the breakpoint is enabled and
the trigger is true. The trigger evaluates to true if the event expression is true, or if the amount of
time specified by the numeric expression following every has passed.
132 Simulation Reference Manual

Breakpoints
Every numeric_expression

The numeric expression is first evaluated at the end of the breakpoint definition and then, each
time at the end of the breakpoint execution. The obtained value defines when the breakpoint is
triggered the next time.

If the matching time has not passed, then the breakpoint’s statements are executed according to the
trigger’s original evaluation. If the matching time has passed when the Simulation Control
Program was suspended, then the numeric expression is re-evaluated at the time of resumption and
the breakpoint triggering is scheduled relative to this time.

For example, if the breakpoint trigger is every GO and the execution clock units are in seconds, then
the breakpoint statements are executed at one minute intervals. Assume the breakpoint is in a Simulation
Control Program assigned to an activity which was suspended from time 01:30 to 01:55. Since the
execution clock has not passed beyond the next breakpoint (02:00), this breakpoint’s scheduled execution
remains at the original interval. Assume the activity is later suspended from time 05:36 to 10:08. When
resumed, the breakpoint trigger is re-evaluated because the current time has passed the next scheduled
interval (06:00). The breakpoint is executed thereafter at new one minute intervals of 11:08, 12:08, etc.

Examples:

1. The associated SCL statements keep track of the execution time in minutes and display the
minutes elapsed every minute. The assumed Global Clock Unit is seconds.

SET BREAKPOINT check => EVERY 60

DO

x := x +1

WRITE(x,’Simulation minutes passed \n’)

END BREAKPOINT

2. The associated SCL statements automatically solve a nondeterministic situation and
display a message.

SET BREAKPOINT [NONDETERMINISM]

DO

RANDOM_SOLUTION ;

WRITE(’Nondeterminism situation

 solved randomly. \n’)

END BREAKPOINT
Rational Statemate 133

Batch Mode Simulation
3. The WHEN statements and assignment statement for error is associated with the
breakpoint name device_full.

SET BREAKPOINT device_full =>

[max_buf > 7]

DO

WRITE(’Device full -

 taking recovery action \n’)

WHEN tr(aux_buf_empty) THEN switch_bufs

ELSE

WHEN tr(aux_buf_ful) THEN st!(A)

ELSE

WRITE(’Something missing

 in recovery procedure \n’)

END WHEN

END WHEN

error := error +1

END BREAKPOINT

Cancelling Breakpoints

A breakpoint may be disabled using the cancel breakpoint statement. When at the end of an
execution step, breakpoint triggers are evaluated, a cancelled breakpoint is simply ignored. Only named
breakpoints can be disabled.

cancel breakpoint breakpoint_name

Setting Breakpoints

Breakpoints are enabled when defined. If a breakpoint has been disabled (cancel breakpoint), it
may be re-enabled with set breakpoint. When re-enabling breakpoints, set breakpoint is written
without any subsequent definition. Only named breakpoints can be re-enabled.

set breakpoint breakpoint_name
134 Simulation Reference Manual

Breakpoints
Other Set/Cancel Commands
SET DISPLAY ;
CANCEL DISPLAY ;

SET GO BACK number ;

SET INFINITE LOOP number ;
SET INTERACTIVE ;
SET TRACE ;

CANCEL TRACE ;
SET REPORT RW_RACING ;

SET REPORT WW_RACING ;
CANCEL REPORT RW_RACING ;
CANCEL REPORT WW_RACING ;

Miscellaneous Commands
SAVE_STATUS ’status_name’ ;
RESTORE_STATUS ’status_name’ ;

CHOOSE number ;
RANDOM_SOLUTION ;

Manipulating Breakpoints with Menus

The Breakpoints command allows you to add, edit and delete breakpoints through the use of
menus. In the following procedure we add, edit, and delete a breakpoint.

Select Actions > Breakpoints from the Simulation Execution menu. The Simulation
Breakpoint Editor dialog box opens.

Note
See Defining a Breakpoint in a Subroutine for more information.
Rational Statemate 135

Batch Mode Simulation
Breakpoint > Add – Adding a Breakpoint

1. Click Add. The Add Breakpoint dialog box opens.

2. Enter the Breakpoint Name and Trigger into the appropriate text box areas and click
OK.

Breakpoint > Edit – Editing a Breakpoint

1. Highlight the Breakpoint from the Simulation Breakpoint Editor dialog box.

2. Select Edit. The Breakpoint Text Editor dialog box opens. From the Text Editor, you
can edit the Breakpoint Expression.

3. Click Apply or OK . The changes made from the Text Editor appear on the Breakpoint
Text Editor.
136 Simulation Reference Manual

Simulating a Truth Table
Breakpoint > Deleting – Removing a Breakpoint

1. Highlight the Breakpoint to be deleted.

2. Select Delete.

Simulating a Truth Table
When the model is simulated and active breakpoints are inserted into the truth table, a read-only
matrix of the truth table is started. From this table you can view the execution of each element in
the table. When a step or microstep is started, depending on the truth table implementation, the
“fired” row in the truth table is highlighted for one step.

Input and output logic from a truth table is included in the simulation when the model includes a
truth table in its scope. Truth table inputs and outputs are Rational Statemate elements, therefore
input values can be set and output values examined using Simulation debugging tools such as
Monitors, the Examine command and the DoAction command.

The following sections describe how to insert a breakpoint into a truth table and simulate it.

Note
For additional information on Truth Tables, refer to the Rational Statemate User Guide.

For the purpose of this discussion, we use the Statechart shown below as an example.This
Statechart operates as follows:

� When C2 is true and C5, C10 are false, VAL_OUT is assigned to two times VAL_IN.
� When C5 is true and C2, C10 are false, VAL_OUT is assigned to five times VAL_OUT.
� When C10 is true and C2, C5 are false, VAL_OUT is assigned to 10 times VAL_IN.

The actual logic that implements this functionality is contained in the truth table which implements
the function CALC1.
Rational Statemate 137

Batch Mode Simulation
The elements for this Statechart need to be defined in the Data Dictionary as follows:

1. Define C10, C2, C5 as a condition

2. Define CALC1 as a subroutine

3. Define E1 as an event

4. Define VAL_IN and VAL_OUT as data-items
138 Simulation Reference Manual

Simulating a Truth Table
After defining the elements in the Data Dictionary for the sample Statechart, execute the Data
Dictionary page for CALC1.

Select Implementation
set to Truth Table

Parameter Table
Rational Statemate 139

Batch Mode Simulation
You can see in the Data Dictionary page above for the function CALC1, how the parameter table is
filled. Note that the order of the parameters in the Statechart matches those in the parameter list.
When these actual model parameters match with the formal parameters in the parameter list,
VAL_IN is passed to X_DATA, VAL_OUT is passed to Y_DATA and the condition C2 is passed to
multiply-by-two, C5 is passed to multiply-by-5, etc.

Note
The Select Implementation is set to Truth Table

.

To complete this exercise, construct the Truth Table shown above. For additional information on
Truth Tables, refer to the Rational Statemate User Guide.
140 Simulation Reference Manual

Simulating a Truth Table
Setting Breakpoints in a Procedural Truth Table

A breakpoint must be set in order to view the animation of a truth table during simulation. If a
Procedural Truth Table is used, the breakpoint must be set in the corresponding subroutine. If an
Action Truth Table is used, the breakpoint must be set in the activity which is implemented by the
truth table.

The following procedure details how to set a breakpoint in a Truth Table.

1. Start Simulation Execution from either the Profile Editor or the Graphical Editor.

Note: Open a monitor so you can view the variables.

2. Select Actions > Breakpoints from the Simulation Execution window.

The Simulation Breakpoint Editor dialog box opens.

Note: A breakpoint can now be added in the subroutine CALC1.
Rational Statemate 141

Batch Mode Simulation
Adding a Breakpoint to a Subroutine

If a Procedural Truth Table is used, a breakpoint must be set in a subroutine in order to start the
debugger tool. When the breakpoint is reached during simulation, the debugger tool is started with
the “Code” section empty. An additional form containing a read-only truth table is also opened.

In the following example, we set a breakpoint in the subroutine CALC1. This automatically sets a
breakpoint in the truth table, because CALC1 is implemented by the truth table.

1. Click Add from the Simulation Breakpoint Editor. The Add Breakpoint dialog box
opens.

.

2. Enter the name of the breakpoint in the Name: field. In this example, the breakpoint name
is CALC1.

3. Enter the name of the subroutine in which you wish to set a breakpoint in the Subroutine
Name: field,. You can also use the pull-down menu to select the name.

The Simulation Breakpoint Editor displays the subroutine breakpoint. Clicking Apply
> OK if you want to close this window.

Note
In models containing multiple breakpoints, each name must be unique.
142 Simulation Reference Manual

Simulating a Truth Table
Subroutine Debug Tool

The Subroutine Debug tool is used to step through the truth table execution and monitor the
execution of each step as the table is simulated. The behavior of the buttons located on the
Subroutine Debug dialog box is described below.

� mStep starts one mStep (microstep). When an mStep is started, the evaluated rows are
highlighted. As each mStep is started, the evaluated rows in the truth table is highlighted
one by one until a row is fired. After a row is fired, the next mStep runs the output section
(cell by cell). If an action section exists, the fired action is mapped into the code area and
is debugged as an action language procedure. If an action is not specified, the next mStep
dismisses the debugger. You can change or examine values of elements in the truth table.
Changes take place immediately.

� mStepN runs a specified number of mSteps using the same rules as describe above.
� Continue highlight the fired row, runs the outputs and action section (if it exists), dismiss

the debugger and continue to run.
� Run to End highlights the fired row, runs the outputs and action section (if it exists) and

stays in the debugger.

Stepping through a Truth Table Simulation

In this section we complete a step-by-step simulation of the truth table.

1. Execute a Go Step. A default transition is fired and we enter STATE_1.

2. Go to the Monitor and generate an event E1. Initialize VAL_IN to 1 and set the condition
C10 to TRUE.

3. Execute a GO Step.

Note: The Subroutine CALC1 Debug window appears.

Note: The first row of the truth table is now highlighted.

4. Clicking mStep to execute a microstep.

The second row of the truth table is highlighted. The execution advanced to the second
row of the truth table because the conditions C2,C5,C10 in the model did not match the
pattern in row 1 of the truth table. Remember, condition C2 maps to the parameter
multiplied-by-2, C5 maps to the parameter multiplied-by-5, etc.

5. Execute another mStep.

The simulation advances and row 3 is highlighted.
Rational Statemate 143

Batch Mode Simulation
Note: In the output column of row 3, the output contains X_DATA*10. The pattern of
row 3 matches the current pattern of the model. Since X_DATA corresponds to
VAL_IN and Y_DATA corresponds to VAL_OUT, VAL_OUT is assigned to
X_DATA*10 (or, ten times one).

6. Execute the Run-To-End from the Subroutine CALC1 Debug window. In the Monitor
window, VAL_OUT should change to 10.

7. Execute a Go Step. You are returned to State 1. At this point you can experiment with
different values for C2,C5 and C10 and observe their effect on the model.

Subroutine CALC1
Debug dialog

The third row of
the truth table is
highlighted.

Event E1 is
is generated in the
Monitor window
144 Simulation Reference Manual

Simulating a Truth Table
Simulating an Action Truth Table

Breakpoints are used to specify truth tables associated with activities and actions that are to be
debugged. Truth tables are defined by a unique name (a unique instance name in the case of a
generic) of the activity/action that they describe.

When a truth table is bound to an activity or action, then the assignments are made following the
Rational Statemate step semantics. New values are only sensed at the next step. Writing to the
same data-item twice flag a write/write racing condition. In the following example, DATA_2
receives the previous value of DATA_2. If the truth table implements a subroutine such as in our
previous example, then as soon as an assignment is made it is available to be used for this case.
DATA_2 and DATA_3 receives the value of 5 when the row is fired regardless of the previous value
of DATA_2.

To illustrate the simulation of an Action truth table, we use the following Activity Chart and the
above Truth Table.
Rational Statemate 145

Batch Mode Simulation
Note
Before beginning you must first select implementation as Truth Table in the Data
Dictionary.

Click Edit. This allows you to edit the truth table.

Selected Implementation
set to Truth Table
146 Simulation Reference Manual

Simulating a Truth Table
Note
This is an Action truth table so there are no parameters as in the previous example. The
column headings for the truth table should match the actual parameter names in the model.
The behavior implemented in the following example is the same as in the previous example.

Simulation of an Activity implemented by a Truth Table

1. Execute a simulation from either the Graphic Editor or the Simulation Profile Editor. The
Simulation Execution window appears.

Note: Open a Monitor window and select all textual elements for display in the
Monitor window.

Note: As in the previous example, a breakpoint must be set to view the animation of a
truth table.

2. Select Actions > Breakpoints from the Simulation Execution window. The Simulation
Breakpoint editor appears.

3. Click Add located next to the Truth Table Name list. The Add Breakpoint dialog box
opens.
Rational Statemate 147

Batch Mode Simulation
.

Note: The Active field is set to Yes allowing the simulation to pause when it reaches
this breakpoint. If it is set to No, the breakpoint remains on the list but becomes
inactive. Simulation does not pause at inactive breakpoints. Inactive
breakpoints can be reactivated at anytime if the debugging tool for the
subroutine is reinitiated.

4. Enter the Breakpoint Name in the Name: field.

5. Select Activity from the selection box.

6. Select Transform_Data from the pull-down list in the Name: field.

7. Select OK.

8. Click Apply > OK to close the Simulation Breakpoint Editor dialog box.

Note: Before executing a Go Step, set C10 to True and VAL_IN to 1 in the Monitor
window.

9. Execute a Go Step. The animated truth table appears with row 3 highlighted. This
corresponds to the status of C2,C5 and C10 in the model.

Active Field is
Set to Yes
148 Simulation Reference Manual

Simulating a Truth Table
Note: Do not dismiss this truth table.

10. Go to the Monitor window and make C5 true and C2, C10 false.

11. Execute a Go Step.

Row 2 is now highlighted corresponding to the new status of C5, C2 and C10.
VAL_OUT is now 5 which is 5 times VAL_IN.

You can experiment with other values of C5,C2 and C10.
Rational Statemate 149

Batch Mode Simulation
Simultaneous SCP Execution
Multiple SCPs may be executed at the same time. Individual SCPs may be started and stopped
during execution. The EXEC and STOP_SCP statements provide this function.

EXEC ’scp_name’

STOP_SCP [scp_name]

If the STOP_SCP statement is used without a scp_name, all SCPs are stopped.

Note that while the interactive RUN command stops any previously executing SCPs, the EXEC statement
does not affect the execution of other SCPs. If an SCP was activated using RUN, its Main Section is
executed, while that of any EXECed SCP is ignored.

Assign Files
The Simulation tool allows you to use programs to simulate the activities in your system. These
programs may be written in SCL or a more conventional programming language (e.g., C). The
SCL programs are ASSIGNed to either internal primitive activities or external activities.

External activities are part of the system environment and for purpose of the execution are
considered permanently active.

Internal activities are part of the system. When an internal activity is started, the program
ASSIGNed to the activity is started. Correspondingly, stopping, suspending or resuming of these activities
causes appropriate changes in the status of the program.

The syntax to assign an activity is:

ASSIGN activity_name ’scp_name’
150 Simulation Reference Manual

The Order of SCL Statements Execution
The Order of SCL Statements Execution
The structure of the SCP is fixed and determines the program’s execution order. Below are some
details.

Section Execution

If the Simulation Control Program does not contain breakpoints, the execution is sequential:

1. SCP constants and variables are defined.

2. Initialization Section’s statements are executed.

3. Statements in the default Main Section or user-defined Main Section are executed.

4. When the end of the Main Section is reached, the Simulation tool switches to interactive
mode. At this point, the command STOP terminates all SCPs and CONTINUE runs the default
Main Section.

Breakpoint Processing

The execution of an SCP is altered by the breakpoints in effect.

� Breakpoints are defined after the Initialization Section.
� At the beginning and at the end of each execution step, the enabled breakpoints are

checked and their associated statements executed.
Breakpoint processing is handled as:

� All the breakpoint triggers for all running SCPs are evaluated.
� The triggered breakpoints are executed.
� Repeat above until there are no triggered breakpoints.

Breakpoint processing is interrupted:

� When the SKIP statement is encountered (interactively or batch), the currently executing
breakpoint is halted and any other breakpoints are skipped. That is, they are not processed for
the current step.

� When a GO is issued interactively, a SKIP is implied. The last GO is terminated, any breakpoints
are skipped and the interactive go is executed.

� The STOP_SCP statement can terminate a specific SCP or all SCPs, if no specific one is
identified.
Rational Statemate 151

Batch Mode Simulation
Working with a Simulation Control Program (SCP)
This section discusses the mechanics of using the Simulation tool to manipulate and run your
Simulation Control Program. One way to create an SCP is to record the Simulation session for
playback.

SCL files are manipulated through the use of the SCL Files Management dialog box. This dialog
box can be accessed through the Simulation Profile Editor and the Simulation Execution menu.

To manipulate an SLP file, perform the following steps:

1. Select File > Simulation File Management > SCP File Management. The SCL File
Management dialog box opens.
152 Simulation Reference Manual

Working with a Simulation Control Program (SCP)
2. Select an SCP file from the Files list. The selected SCP file can be Edited, Compiled,
Copied, Deleted, Exported, and Printed. Each command is described in detail below:

� New – Used to create a new SCP file. You can create a new file from this dialog
box.

� Edit – Starts an editor so the selected SCP file can be edited.
� Compile – Used to compile the SCP file and display any errors/warnings to the

Simulation window.
� Copy –Copies the selected profile after you re-name it. (Works the same way as

Save as.).
� Export – Works the same way as Copy except you can save it to another workarea

or directory.
� Print – Used to print the selected SCL file.
� Dismiss button – The Dismiss button is used to dismiss the SCL Management

dialog box.

Actions > Run SCP – Running an SCP File

Simulation Control Programs are run from the Simulation Execution menu.

1. Select Actions > Run SCP. The Run SCP file dialog box opens.

2. Select the SCP file you want to run from the SCP Files list using the left mouse button.

3. Select OK. The SCP file begins executing (running).

Switching Modes of Model Execution

Simulation control can be either Interactive or Batch, never a mix of both. Interactive mode means
that Simulation control (GO commands, element value changes etc.) is done manually, either by
typing commands at the command line or by selecting commands from the Simulation menus.
Batch mode means that Simulation is controlled by the main section of an SCP program. When an
SCP is started, its init section and breakpoint definitions are executed. If this is the only SCP
running, its main section (if present) is also executed. The started SCP is now considered “active”,
even if the execution of its main section is temporarily paused while interactive commands are
performed.

Several SCPs can be active at the same time. Breakpoint definitions in active SCPs remain active
during Interactive Simulation, until the SCP is stopped. Initially, when Simulation is started, you
are in Interactive mode. When an SCP is started, you switch to Batch mode and the simulation is
controlled by the main section in the SCP. If the SCP does not include a main section, the
Simulator runs a default main, consisting of indefinitely repeated GoExtend command.
Rational Statemate 153

Batch Mode Simulation
A running SCP can be temporarily paused while some interactive commands are performed, and
then continued where it left off. During Batch mode (some SCP main section is executing) there
are several ways to switch back to Interactive mode. The following automatically causes a return
to Interactive mode:

� The SCL command SET INTERACTIVE is executed in the SCP. This command is often included
as part of the command section for breakpoints.

� You select the Pause command from the Simulation Execution window to interrupt SCP
execution.

� The main section of the SCP has executed to its end.
� The model has reached a stationary condition where no more changes are possible without

intervention.
� A nondeterministic condition is encountered, that the SCP cannot resolve.
� The infinite loop limit is reached.

Switching from Interactive to Batch

From Interactive mode, Batch mode can be resumed by giving the Continue command, either
typed at the Command line or by selecting Continue SCP from the Actions menu on the
Simulations Execution menu. This continues execution of the SCP main section that was
executing before entering Interactive mode.

Actions > Monitor SCP - Monitoring the SCP

This command is used for displaying and changing information about active (running or temporarily
paused) SCPs. The Monitor SCP command is used to start a dialog box containing all current:

� User defined SCP variables
� Rational Statemate defined SCP constants/variables defined in playback files: NONDET_NO,

NOTIFY_MODE, RANDOM_SEED, STEP_MODE.
� Predefined variables: CUR_CLOCK, INFINITE GO, NON-DETERMINISM, STATIONARY,

STEP, STEP NUMBER, TERMINATION.
To start this command:

Select Actions > Monitor SCP.

An SCP Monitor dialog box opens with the current values of elements with the SCP.
154 Simulation Reference Manual

Working with a Simulation Control Program (SCP)
Actions > Stop SCP – Stopping an SCP

There are three ways to stop an executing SCP:

� Run another SCP. When an SCP is Running, all executing SCPs are halted.
� Halt all currently running SCPs by selecting Actions > Stop SCP.
� Halt a specific SCP with the STOP_SCP statement within the SCP.

To control simultaneous execution of several SCPs, the SCL commands EXEC scp_name and
STOP_SCP scp_name are used. This means that multiple SCPs cannot be handled interactively, it
must be done programmatically in another SCP.

Note
The main section of an SCP is not executed if the SCP is started with the EXEC command.
The main section contains the GO commands. There can only be one main section
controlling the Simulation. In this case the main section of the SCP containing the EXEC
command.

The Auto-Run feature cannot be used with SCPs. If Auto-Run is active, it is stopped if you attempt
to start an SCP. You are not allowed to start Auto-Run until all SCPs are stopped.

A special case is when an SCP is assigned to a basic activity. This connection is set up by the SCL
command ASSIGN. This cannot be done interactively, only in an SCP. The assigned SCP is started,
suspended, restarted and stopped along with the assigned activity.
Rational Statemate 155

Batch Mode Simulation
Actions > Continue SCP - Restarting an Interrupted SCP

This command is used to resume the running of an interrupted SCP from the point of interruption.

Select Actions > Continue SCP.

The interrupted SCP resumes running.

A Sample Simulation Control Program
To illustrate some of the principles discussed in this section, a Simulation Control Program has
been written against the Traffic Light system. Refer to The Traffic Light System. The remainder of
this section discusses the Simulation Control Program in detail.

What the Traffic Light Simulation Control Program Accomplishes

Recall that the Statechart for the traffic light system has a state NORMAL_OP which is influenced
by the values of two data-items which control the amount of time the traffic flows either in east-west or
north-south directions. In this example, the ns_green_time is assigned randomly, while the
ew_green_time is assigned from an external file trial.dat.

The external file trial.dat has the following records:

12

40

14

8

18

20

46

7

37

23

19

After initializing the two control values, ns_green_time and ew_green_time, the execution begins.
Breakpoints are defined and the execution is driven by the go step operation. Since we use the
Synchronous Time Model, go step increments the clock on each step.
156 Simulation Reference Manual

A Sample Simulation Control Program
Each time a malfunction occurs in the system, the Simulation Control Program resets the control
values. The Simulation Control Program filters the trial.dat against a maximum allowed value of 20.
The file trial.out contains a time-stamp of each malfunction.

The Program
PROGRAM tlight;

VARIABLE

FILE fin, fout;

INTEGER delay;

BOOLEAN run;

INIT

OPEN (fin,‘/mickey/home/dos/tmp/trial.dat’, INPUT);

OPEN (fout, ‘/mickey/home/dos/tmp/trial.out’, OUTPUT);

ns_green_time:=15 ;

ew_green_time:=20 ;

CANCEL BREAKPOINT gen_reset ;

END INIT;

SET BREAKPOINT

[in(normal_op)] DO

WRITE(‘current time = ’, cur_clock,‘\n’) ;

IF rand_iuniform(1,100) = 1

THEN

malfunction ;

write(fout,‘malfunction occurred

at ’,cur_clock,‘\n’)

END IF

END BREAKPOINT;

SET BREAKPOINT gen_reset=> EVERY delay DO

reset ;

CANCEL BREAKPOINT gen_reset;

ns_green_time:=rand_iuniform(30,50) ;

READ(fin, ew_green_time) ;

WHILE ew_green_time > 20

LOOP

WRITE(‘Data for ew_green_time exceeds limit.’) ;

WRITE(‘Enter a value for ew_green_time less than
Rational Statemate 157

Batch Mode Simulation
20: \n’) ;

READ(ew_green_time)

END LOOP

END BREAKPOINT ;

SET BREAKPOINT

en(flashing) DO

delay:=RAND_IUNIFORM(1,10);

 SET BREAKPOINT gen_reset ;

END BREAKPOINT;

BEGIN

tr!(run) ;

WHILE run LOOP

GO STEP

end loop

END;

END.

Explaining the Program

In this portion, each line of the program is explained.

Program tlight

This line names the program. This line is for documentation purposes only.

variable

Begins the Variable declaration Section. Note that each type of declaration concludes with a
semicolon.

file fin, fout ;

Defines two file variables, fin and fout that are used for I/O purposes.

integer delay;

Boolean run ;

Defines an integer used to delay the reset event and a Boolean variable that is used as a condition
to create a continuous loop in the Main Section.

init
158 Simulation Reference Manual

A Sample Simulation Control Program
Begins the Initialization Section which contains statements executed once - each time the
Simulation Control Program is started.

open (fin, ‘trial.dat’, input) ;

Opens an input data file and attaches it to the variable name fin. This data file contains the test values
for the east-west traffic flow.

open (fout, ‘trial.out’, output) ;

Opens the file, trial.out, for output and attaches it to the variable fout. This file records all the
malfunctions of the system.

ns_green_time := 15 ;

ew_green_time := 20 ;

Initializes the value of the data-item used to determine the duration of the green lights in both east-
west and north-south directions. The Global Clock Unit is assumed to be seconds.

cancel breakpoint gen_reset ;

Initializes the gen_reset breakpoint so that it does not execute.

end init

End of Initialization Section

- - breakpoint Section

set breakpoint

Beginning of the Breakpoint Definition Section. The defined breakpoint is simultaneously
enabled. The name of this breakpoint is not defined. Unnamed breakpoints cannot be cancelled
and reset in batch mode. They are continuously enabled during the execution of the Simulation
Control Program.

[in(normal_op)] do

Defines the breakpoint trigger as “being in the state of NORMAL_OP”. The breakpoint statements
following the keyword do are executed when the trigger evaluates to true. That is, the statements are
executed at each step while the system is operating normally.

write(‘current time = ‘, cur_clock, ‘\n’) ;

Displays the current execution time in the Simulation Window after each go - in this case, after each
step is concluded. The Simulation tool automatically updates the value of the predefined variable
cur_clock at the end of each go.

if rand_iuniform(1,100) = 1

Randomly selects an integer uniformly distributed between 1 and 100 and tests this value to see if
it is equal to 1. This simulates situations that arise 1% of the time during normal operation.

then
Rational Statemate 159

Batch Mode Simulation
When the test is true, the statements following the keyword then are executed.

malfunction ;

Generates the event malfunction. This simulates an electrical malfunction of the system. When the
malfunction event occurs, the traffic lights flash.

write(fout,‘malfunction occurred at ‘, cur_clock, ‘\n’)

The time of the malfunction is recorded in the output file.

end if

Ends the IF structured statement.

end breakpoint

Ends the definition of the breakpoint.

set breakpoint gen_reset => every delay do

Beginning of the Breakpoint Definition Section. The defined breakpoint is simultaneously
enabled. The breakpoint is named gen_reset and runs every delay amount of time. The
integer delay is set in the next breakpoint.

reset ;

Generate the event reset. This resets the malfunction of the traffic lights.

cancel breakpoint gen_reset ;

Cancels any further execution of the gen_reset breakpoint until needed after the next malfunction.

ns_green_time := rand_iuniform(30,50) ;

Generates a new random value for the north-south traffic flow. It generates a value between 30 and
50 seconds.

read(fin, ew_green_time) ;

Reads a new value from the data file for the east-west traffic flow.

while ew_green_time > 20

Tests that the value from the data file does not exceed a maximum value.

loop

The test is done in a WHILE/LOOP statement. This insures that the new input (from the user) cannot
exceed the maximum value.

write(‘Data for ew_green_time exceeds limit. \n’) ;

write(‘Enter a value for ew_green_time less than 20: \n’) ;
160 Simulation Reference Manual

A Sample Simulation Control Program
When the input value fails the test, the user is prompted for a new value.

read(ew_green_time)

Note
A new value for the east-west traffic flow is read from the keyboard.

end loop

Note
Ends the WHILE/LOOP statement.

end if

Ends the IF structured statement.

end breakpoint

Ends this breakpoint definition.

set breakpoint

en(flashing) do

Starts a new breakpoint executed when the flashing state is entered.

delay:=rand_iuniform(1,10)

Sets the delay for the reset event to a number between 1 and 10.

set breakpoint gen_reset;

Enables the execution of the gen_reset breakpoint.

end breakpoint;

Note
Ends this breakpoint definition.

- - Define Main Section to use required Go Type

begin

Begins the Simulation Control Program Main Section whose statements are executed sequentially.

tr!(run) ;

Sets the Boolean variable run to true.

while run
Rational Statemate 161

Batch Mode Simulation
Evaluates the trigger run and, if true, runs the WHILE/LOOP statements. Since this variable has
just been set true, the loop runs continuously.

loop

Begins the WHILE loop.

go step

Note
The go step in the Synchronous Time Model advances the clock with each execution.

The Main Section is supplied here instead of using the default Main Section. The default
main Section always advances the execution using go extended.

end loop

Ends the WHILE loop.

end

Ends the Main Section.

end.

Ends the Simulation Control Program.
162 Simulation Reference Manual

Simulation Command Reference
In Simulation Execution, commands can be selected by pull down menus, hot keys, by typing the
command into the command line, or by execution in batch mode. This section details the operation
of each simulation command; both interactive and batch.

The commands are listed in two sections, Interactive mode and Batch mode, and are arranged in
the order they appear on the interface. Each command contains a brief command description
followed by an operation section that describes how to access that command.

Interactive Commands
The following commands can be found in the menus of the Simulation Profile Editor and
Simulation Execution menu.

The Simulation Profile Editor

The following graphic of the Simulation Profile Editor illustrates the tool’s five pull-down
menus. Each menu selection is described in detail in this section.
Rational Statemate 163

Simulation Command Reference
164 Simulation Reference Manual

Interactive Commands
Rational Statemate 165

Simulation Command Reference
Simulation Execution Menu

The following graphic of the Simulation Execution menu illustrates the tool’s various pull-down
menus. Each menu selection is described in detail in this section.
166 Simulation Reference Manual

Interactive Commands
Save Profile

The Save Profile command is used to save changes to an existing Simulation Profile.

Select
Rational Statemate 167

Simulation Command Reference
Restart Simulation

The Restart Simulation command is used to restart the simulation at time zero.

Select File > Restart Simulation from the Simulation Execution window.

Simulation time and number of steps resets to zero

Note
If changes are made to a chart in this simulation scope, then the Rebuild Simulation
command should be used. Restart Simulation does not load modifications of charts into
the simulation.

Rebuild Simulation

The Rebuild Simulation command is used to reread any changes in the model and restart the
simulation.

1. Select File > Rebuild Simulation from the Simulation Execution window. The
following message displays:

“Do You Want to Save the Simulation Environment for the Current
Session?”

2. Select Yes to read in changes to the scope:

Note: A yes or no response saves the changes to the scope. A yes response reads in
modifications to the scope saving the simulation environment. A no response
reads in the modifications to the scope and restores the original simulation
environment losing any changes. The operation can be cancelled using the
Cancel selection.
168 Simulation Reference Manual

Interactive Commands
Simulation File Management

The Simulation File Management command is used to manage SCP, Trace, and Status Files.

1. Select File > Simulation File Management from the Simulation Profile menu.

Note: The Simulation File Management command can also be accessed through the
Simulation Execution dialog box by selecting File > Simulation File
Management.

The Simulation File Management dialog box opens.

Analysis Profile Management

The Analysis Profile Management command is used to display, delete, copy, export and print an
Analysis Profile.

1. Select File > Simulation File Management > Simulation Profile Management from the
Simulation Profile Editor or the Simulation Execution menu. The Analysis Profile
Management dialog box displays.
Rational Statemate 169

Simulation Command Reference
� Show – Displays the selected profile.
� Delete – Removes the selected profile.
� Copy – Copies the selected profile after you re-name it. It works the same way as

Save as.
� Export – Works the same way as Copy except you can save it to another

workarea or directory.
� Print – Used to print the selected profile.
� Dismiss button – The Dismiss button is used to close the dialog box.

SCP File Management

The SCP File Management command is used to display, delete, copy, export, and print an SCP
File.

1. Select File > Simulation File Management > SCP File Management from the
Simulation Profile Editor or the Simulation Execution menu. The SCL File
Management dialog box appears.
170 Simulation Reference Manual

Interactive Commands
Trace File Management

The Trace File Management command is used to display, delete, copy, export, and print a Trace
File. It also can be used to print reports and view waveforms of a Trace File.

Select File > Simulation File Management > Trace File Management from the Simulation
Profile Editor or the Simulation Execution menu. The Trace File Management dialog box
displays.

Status File Management

The Status File Management command is used to display, delete, copy, export, and print your
Status File.

1. Select Execute > Simulation File Management from the Simulation Profile Editor of
the Simulation Execution menu. The Simulation Execution dialog opens.

2. Select File > Simulation File Management > Status File Management. Another dialog
box opens with the following commands:

� Simulation Profile Management
� SCP File Management
� Trace File Management

� Status File Management
Rational Statemate 171

Simulation Command Reference
Messages

The Messages command is used to open and close an area that displays messages about the status
of the simulation.

Select View > Messages from the Simulation Profile Editor or Simulation Execution menu.
The Message window opens on the Simulation Profile menu if not present. Otherwise, it
disappears.

Message
Window
172 Simulation Reference Manual

Interactive Commands
Tool Bar

The Tool Bar command is used to open and close a tool bar containing icons that give you quick
access to the most frequently used commands.

Select View > Tool Bar from the Simulation Profile menu. The Tool Bar displays on the
Simulation Profile menu.

Note
The Tool Bar command can also be accessed through the Simulation Execution dialog box
by selecting View > Tool Bar.

Message
Window

Tool
Bar
Rational Statemate 173

Simulation Command Reference
Command Line

The Command Line command is used to open and close the command line where the simulation
commands can be typed.

Select View > Command Line from the Simulation Execution menu.

The Command Line appears in the Simulation Execution dialog box. This command toggles the
Command Line between view and hide mode.

Tool
Bar

Command
Line
174 Simulation Reference Manual

Interactive Commands
Examine

The Examine command is used to display the status or value of a specified specification element
or queue in the Simulation scope. It can also be used to evaluate a valid expression formed from
elements in the Simulation Scope.

1. Select Analyze > Examine from the Simulation Execution menu. The Examine dialog
box opens.

2. Select one of the following three operations: Examine, Evaluate or Examine Queue.

� If Examine is selected, an element name can be entered it the Expression text box.
The ellipse button can be used to browse valid elements (i.e., count).

� If Evaluate is selected, then an expression can be entered consisting of elements
in the Simulation Scope. (i.e., count, carry).

� If Examine Queue is selected, then the length and the contents of each queue
element is displayed.

� Click Apply.
Rational Statemate 175

Simulation Command Reference
GoBack

The GoBack command is used to undo the previous Go command.

Select Go > GoBack from the Simulation Execution menu.

The status of all specification elements is returned to the value immediately before the most recent
Go command. It does not effect the elements of a running SCP.

Note

� This command can be used repeatedly up to the default GoBack limit (the default value is
5). This can be change using the Simulation Execution Options command.

� Setting this option at too high a level may slow down your simulation since more
simulation history must be saved.

Pause

The Pause command is used to temporarily stop a running simulation.

Select Go > Pause from the Simulation Execution menu.

The running SCP or AutoRun is interrupted.

AutoGo

The AutoGo command is used to perform a GoStep in an unstable status otherwise it performs a
GoNext.

Select Go > AutoGo from the Simulation Execution menu.

A GoStep is performed if it causes a change; otherwise, a GoNext is performed.

GoStep

The GoStep command is used to perform a single simulation step. In the Asynchronous Time
Model, the time is not advanced. In the Synchronous Time Model, the time is advanced one clock
unit.

Select Go > GoStep from the Simulation Execution menu. The next simulation step is
executed.
176 Simulation Reference Manual

Interactive Commands
AutoRun

The AutoRun command is used to start a mode of operating in which simulation runs
continuously with the entire interaction being performed through panels and monitors.

Select Go > AutoRun from the Simulation Execution menu.

In the autorun mode, simulation infinitely runs the GoExtend command. When a stationary
situation occurs, simulation pauses. After entering the appropriate input from the panel, the
simulation activates and it continues execution of the model.

Note
The Pause command can be used to stop the AutoRun command.

GoStepN

The GoStepN command is used to perform N (specified number) of Simulation steps. The clock is
advanced for each step in the Synchronous Time Model,.

1. Select Go > GoStepN from the Simulation Execution menu. The GoStepN dialog box
opens.

2. Enter the Number of Steps you want to perform.

Note
GoSteps are performed until a stable configuration or the specified number of steps are
reached.
Rational Statemate 177

Simulation Command Reference
GoRepeat

The GoRepeat command is used to execute a superstep.

Select Go > GoRepeat from the Simulation Execution menu.

All steps possible are executed until a stable status is reached. All steps are taken until an external
event must be generated or a scheduled action or timeout event are sensed.

GoNext

The GoNext command is used to advance the clock to the time of the next scheduled action or
timeout event and runs all reactions the system can perform before this time.

Select Go > GoNext from the Simulation Execution menu.

The clock is advanced to the time of the next scheduled action or timeout event.

GoAdvance

The GoAdvance command is used to advance the clock to the time of the next scheduled action or
timeout event and runs all reactions the system can perform before this time. It advances the time
to the time specified. Relative or Absolute time can be used.

Select Go > GoAdvance from the Simulation Execution menu.

The GoAdvance dialog box opens.

� Advance Absolute – Advances to the time unit specified.
� Advance Relative – Advances N time units from the current time.
� Value – This is the positive number representing the number of clock units

advanced.
178 Simulation Reference Manual

Interactive Commands
Go Extended

The GoExtended command is used to reach the next stable status without entering any external
changes. It is available only in the asynchronous mode.

From the Simulation Execution menu, select Go > GoExtended.

Note
Attempts to execute a GoRepeat. If no steps are taken, the current time is advanced to the next
scheduled action or timeout event and a GoRepeat is executed.

Simulation Execution Option

The Simulation Execution Options is used to set a number of user-specified parameters
including: Number of Steps per Go, Infinite Loop Limit, GoBack Limit and Racing Options.

From the Simulation Execution menu, select Options > Simulation Execution Options.

The Execution Parameters dialog box opens.
Rational Statemate 179

Simulation Command Reference
Panels

The Panels command is used to select panels to be included in the scope of simulation.

From the Simulation Execution menu, select Display > Panels.

The Panels in Scope dialog box opens.

From this dialog box, you can select the panels used in simulation and the terminal the panel is
displayed on.

Waveforms

The Waveform command is used to connect a waveform to the current simulation session.

Operation

From the Simulation Execution menu, select Display > Waveforms.

The Waveforms in Scope dialog box opens.
180 Simulation Reference Manual

Interactive Commands
Note
For additional information on Waveforms, see Recording a Simulation Session.
Rational Statemate 181

Simulation Command Reference
Monitors

The Monitors command is used to define the monitors for the current simulation session.

From the Simulation Execution menu, select Display > Monitors. The Simulation Monitor
dialog box opens.

This dialog box allows you to display a simulation monitor.
182 Simulation Reference Manual

Interactive Commands
Animate All Charts

The Animate All Charts command is used to enable and disable all chart animation.

1. From the Simulation Execution menu, select Display > Animate All Charts. The Chart
Animation dialog box opens.

Note: The animation of a chart can be turned on or off by clicking on the Animation
column of the chart.

2. Charts in the Simulation Scope can be opened by selecting Open Chart from within the
Chart Animation dialog box. The Open Chart Editor dialog box opens.
Rational Statemate 183

Simulation Command Reference
 Animate Selected Charts

The Animate Selected Charts command is used to enable and disable individual chart animation.

From the Simulation Execution menu, select Display > Animate Selected Charts.

The Chart Animation dialog box opens.

� Process – The Graphic Editor that is in the Simulation Scope and is being
animated.

� Chart Name – The name of the animated Statechart.
� Animate – Select Yes or No.
� Instance Name – Animation can be turned off for each instance of a generic. To

select different instances, use the Next Instances or Previous Instances selection.
You can also hold the left mouse button in the Instance field of the generic chart
to display a popup of the instance names.
184 Simulation Reference Manual

Interactive Commands
DoAction

The DoAction command is used to change the value of simulation elements(s) using actions
expression(s).

From the Simulation Execution menu, select Actions > DoAction.

The DoAction dialog box opens.

This dialog box allows you to change the value of an element based on an expression.

� History – Displays a history of previous expressions used in the DoAction command
allowing you to select one.

� Expression – You can change the value of an element by entering a single action in the
text box. After entering the action, apply it to perform the action.

� Result – The value of the element affected by the action with change.
� Elipse Button – Displays a browser used for selecting an element for the expression.

Elipse Button
Rational Statemate 185

Simulation Command Reference
Breakpoints

The Breakpoints command is used to create, enable and disable breakpoints. For information on
defining a breakpoint in a subroutine, see Defining a Breakpoint in a Subroutine.

From the Simulation Execution menu, select Actions > Breakpoints.

The Simulation Breakpoints Editor dialog box opens. This dialog box allows you to insert
breakpoints.

� Active enables and disables breakpoints.
� Name is the name of the breakpoint.
� SCP breakpoint is valid when specified SCP is running. A breakpoint associated with an

interactive simulation has USER in the SCP field.
� Trigger mechanism that causes the break.
� Breakpoints can be added, edited or deleted.
� Add is used to add breakpoints. When selected, the Add dialog box opens.
� Edit starts a text editor so you can edit the trigger of selected breakpoints.
� Delete is used to remove a breakpoint.
186 Simulation Reference Manual

Interactive Commands
Run SCP

The Run SCP command is used to start the execution of a selected SCP file(s).

1. From the Simulation Execution menu, select Actions > Run SCP. The Run SCP File
dialog box opens.

2. From the SCP File list, select the SCP file you want to run.

3. Select OK. The select SCP file is executed.

Quit SCP

The Quit SCP command is used to stop the execution of selected executing SCP file(s).

From the Simulation Execution menu, select Actions > Quit SCP. The executed SCP File is
stopped.

Continue SCP

The Continue SCP command is used to resume execution of an interrupted SCP file(s).

From the Simulation Execution menu, select Actions > Continue SCP.

The SCP File is resumed.
Rational Statemate 187

Simulation Command Reference
Monitor SCP

The Monitor SCP command is used to start a dialog box containing all current:

� User defined SCP variables
� Rational Statemate defined SCP constant/variables: NODET_NO, NOTIFY_MODE,

RANDOM_SEED, STEP_MODE.
� Rational Statemate defined Simulation constant/variables: CUR_CLOCK, INFINITE GO,

NONDETERMINISM, STATIONARY, STEP, STEP NUMBER, TERMINATION.
All the user defined SCP variables and Rational Statemate defined SCP constants/variables may be
changed from the SCP Monitor dialog box. This dialog box gets its values from the SCP. It is not
in continuous communication with the SCP and therefore cannot show updated values
continuously.

From the Simulation Execution menu, select Actions > Monitor SCP. The SCP Monitor dialog
box opens.

Note
The SCP Monitor dialog box is modal and must be closed before continuing.
188 Simulation Reference Manual

Interactive Commands
Restore Status

The Restore Status command is used to load the saved Simulation Status file.

1. From the Simulation Execution menu, select Actions > Restore Status. The Restore
Status dialog box opens.

2. Select a status file from the Status Files list.

3. Select OK. The selected status file is loaded.
Rational Statemate 189

Simulation Command Reference
Generate Interface

The Generate Interface command is used to generate the .c and .h files that are needed for user
added code.

From the Simulation Profile menu, select Execute > Generate Interface.

Creates the header file for the C code. This is added to the prt directory of the workarea.

Note
The the Generate Interface command can also be accessed from the Simulation
Execution dialog box by selecting Actions > External Code > Generate Interface from
the Simulation Profile menu.

Start Trace

The Start Trace command is used to initialize the trace file and begin recording.

1. From the Simulation Execution menu, select Record > Start Trace. The Start Trace
dialog box opens.

2. Select the desired file from the Trace Files list.

3. Click OK. The recording for the selected trace file is started.
190 Simulation Reference Manual

Interactive Commands
Stop Trace

The Stop Trace command is used to close the current trace file.

From the Simulation Execution menu, select Record > Stop Trace.

The executed trace file is closed.

Record SCP

The Record SCP command is used to initialize an SCP file and begin recording.

1. From the Simulation Execution menu, select Record > Record SCP. The Record SCP
dialog box opens.

2. Select the SCP file you want to over write from the Playback Files list or enter a new name
in the Selection text box.

3. Click OK. The SCP file is initialized and recorded.
Rational Statemate 191

Simulation Command Reference
Snapshot Status

The Snapshot Status command is used to save the current simulation status in a reloadable file.

1. From the Simulation Execution menu, select Record > Snapshot Status. The Save
Status dialog box opens.

2. Select the status file you want to save from the Status Files list or enter a new name in the
Selection text box.

3. Click OK. The current simulation status is save in a reloadable file.
192 Simulation Reference Manual

Interactive Commands
Show Changes

The Show Changes command is used to displays the changes in the system since the last GO
command.

1. From the Simulation Execution menu, select Analyze > Show. The Show Changes
dialog box opens. You can display Changes, Future, Racing and Clock. You can also
choose between Automatic Update, or the Freeze option.

2. Select the Change button. The Show dialog box opens.
Rational Statemate 193

Simulation Command Reference
General Changes - Lists the changes in textual elements that occurred during the
last go. Lists the changes that occurred in states (entered, exited) and activities
(active, nonactive, hanging) during the last go.

Note: The changes are listed according to the order in which the modifications took
place:

* Conditions: “became true” or “became false

* Data-items: “changed”, “Changed from x to y”, “was read” or “was written”

* Events: included in list if they were generated

* Activity: “started”, “stopped”, “suspended”, “resumed”

* State: “entered,” “exited”.

If automatic update is selected, the dialog box updates as changes occur. Freeze retains the current
output in the dialog box.

Show Clock

The Show Clocks command is used to display the time information for the global and local clocks.

1. From the Simulation Execution menu, select Analyze > Show. The Show Changes
dialog box opens. You can display Changes, Future, Racing and Clock. You can also
choose between Automatic Update, or the Freeze option.

2. Click Clock. The Show Clock dialog box opens.

� Clock Unit Name and Value - Summary of information supplied during
Simulation setup

� Elapsed Time - Number of clock units passed since start of Simulation
� Absolute Time - Starting time plus elapsed time
� Step Number - Total number of steps taken from start of Simulation
� Phase Number - Number of steps taken at the current time

If automatic update is selected, the dialog box updates as changes occur. Freeze retains the current
output in the dialog box.
194 Simulation Reference Manual

Interactive Commands
Show Future

The Show Future command is used to display a list of scheduled actions, timeout events and the
SCL every clauses.

1. From the Simulation Execution menu, select Analyze > Show. The Show Changes
dialog box opens. You can display Changes, Future, Racing, and Clock. You can also
choose between Automatic Update or the Freeze option.

2. Select the Future button. The Show Future dialog box opens.

� Time - The amount of time (global clock units) until the scheduling of the item
(event, action, EVERY clause). If the value is zero, the item is activated just prior
to the next step.

� Type - The type of scheduled item (event, action, EVERY clause)
� Name/Definition - The name of the scheduled item.

If automatic update is selected, the dialog box updates as changes occur. Freeze retains the current
output in the dialog box.
Rational Statemate 195

Simulation Command Reference
Show Racing

The Show Racing command is used to report on racing problems detected during the last Go
command.

1. From the Simulation Execution menu, select Analyze > Show. The Show Changes
dialog box opens. You can display Changes, Future, Racing, and Clock. You can also
choose between Automatic Update or the Freeze option.

2. Click Racing. The Show Racing dialog box opens.

Note
The report is only available if the Report Racing parameter is set in Set Parameters.

If automatic update is selected, the dialog box updates as changes occur. Freeze retains the current
output in the dialog box.
196 Simulation Reference Manual

Interactive Commands
New Profile

The New Profile command is used to create a new Simulation Profile.

1. Select File > New Profile from the Simulation Profile Editor. The New Simulation
dialog box opens.

2. Type the name of the new profile into the Profile Name text box or select a profile from
the Profiles list.

3. Select OK. A new profile is created.
Rational Statemate 197

Simulation Command Reference
Open Profile

The Open Profile command is used to open an existing Simulation Profile.

1. From the Simulation Profile Editor, select File > Open Profile. The Open Simulation
Profile dialog box opens.

2. Select a profile from the Profiles list.

3. Select OK. The selected profile is opened.
198 Simulation Reference Manual

Interactive Commands
Close

The Close command is used to close the current Simulation Profile.

From the Simulation Profile menu, select File > Close Profile.

The opened profile is closed.

Print Profile Report

The Print Profile Report command is used to print the current Simulation Profile.

From the Simulation Profile Editor, select File > Print Profile Report.

A report of the profile is printed.
Rational Statemate 199

Simulation Command Reference
Add With Descendants

The Add With Descendants command is used to add the selected chart from the Workarea
Browser with decendents to the Simulation Profile.

From the Simulation Profile menu, select Edit > Add With Decendants or click Add with

Decendants .

The decendants of the selected chart in the Workarea Browser are added to the profile.

Add Testbench

The Add Testbench command is used to add the selected Statechart from the Workarea Browser
to the Simulation Profile as a Testbench.

From the Simulation Profile menu, select Edit > Add Testbench or click Add Testbench .

The selected Statechart is added to the profile as a Testbench.

Add/Edit Panel

The Add/Edit Panel command is used to add the selected Panel from the Workarea Browser to
the Simulation Profile.

From the Simulation Profile menu, select Edit > Add/Edit Panel or click Add/Edit Panel..

The selected Panel is added to the profile.

Add/Create Waveform

The Add/Create Waveform command is used to add selected Waveform Profiles to the
Simulation Profile.

From the Simulation Profile menu, select Edit > Add/Create Waveform or click Add/Create
Waveform.

If a Waveform Profile is selected in the connected Workarea Browser then it is added to the
Simulation Scope. If a waveform is not selected, a dialog box opens that allows you to create a
new waveform profile that is added to the scope.
200 Simulation Reference Manual

Interactive Commands
Monitors

The Monitors command is used to define a new or edit an existing Monitor definition.

Select Edit > Monitors from the Simulation Profile menu, or click Monitors .

The Monitors dialog box opens.

The Monitors dialog box is used for:

� Creating a new Monitor
� Editing a Monitor
� Deleting a Monitor

Remove From Scope

The Remove From Scope command is used to remove the select elements from the scope.

From the Simulation Profile menu, select Edit > Remove From Scope or click Remove From
Scope The selected component is removed from the scope.

Exclude From Scope

The Exclude From Scope command is used to exclude the selected Activity from the Simulation
Scope.

From the Simulation Profile menu, select Edit > Exclude From Scope or click Exclude From
Scope. The selected component is removed from the scope.

Select

The Select command is used to select or deselect all elements in the current profile.

From the Simulation Profile Editor, select Edit > Select. The Select All and Deselect All
commands appear.
Rational Statemate 201

Simulation Command Reference
Show Scope as Tree

The Show Scope as Tree is used to display the scope definition as a tree.

From the Simulation Profile menu, select View > Show Scope as Tree. It displays the selected
chart as a tree.

Show Scope as List

The Show Scope as List command is used to display the scope definition as a list.

From the Simulation Profile menu, select View > Show Scope as List. It displays the selected
chart as a list.

Show Boxes

The Show Boxes command is used to show the hierarchy of charts and boxes in the tree view.

From the Simulation Profile menu, select View > Show Boxes. It displays the hierarchy of charts
and boxes in the tree view.
202 Simulation Reference Manual

Interactive Commands
Hide Boxes

The Hide Boxes command is used to remove boxes and charts from the hierarchy in the tree view.

From the Simulation Profile menu, select View > Hide Boxes. Selected charts and boxes in the
tree view are removed from view.

Execute Simulation

The Execution Simulation command is used to start a simulation based on the current profile.

From the Simulation Profile menu, select Execution > Execution Simulation. The Execution
Simulation menu displays.

Note
The Execution Simulation menu can be executed by clicking Execution Simulation.
Rational Statemate 203

Simulation Command Reference
Simulation Execution Options

The Simulation Execution Options is used to define Activity Styles, Step Limits and Racing
Notification.

From the Simulation Profile menu, select Options > Simulation Execution Options. The
Execution Parameters dialog box opens.

Time Settings

The Time Settings command is used to select Time Settings and to define Clock Units.

From the Simulation Profile menu, select Options > Time Settings. The Time Settings dialog
box opens.
204 Simulation Reference Manual

Interactive Commands
Rational Statemate 205

Simulation Command Reference
Logic Settings

The Logic Settings command is used to select Multi-Value Logic, Resolution and Weak Values.

From the Simulation Profile menu, select Options > Logic Settings. The Logic Settings dialog
box opens.

Preference Management

The Preference Management command is used to change the Simulation Profile Editor
preferences.

From the Simulation Profile Editor, select Options > Preference Management. The Simulation
Preferences dialog box opens.
206 Simulation Reference Manual

Auto Batch Commands
Auto Batch Commands
Many of these commands have interactive equivalents of the same syntax. Additional details on
how to use these commands can be found in Batch Mode Simulation.

ASSIGN

The ASSIGN statement is used to assign SCP files to represent primitive activities or external
activities. The ASSIGN statement connects an SCP to an activity to represent the activity’s behavior in
the simulation model. When an internal activity is started, the program assigned to the activity is started.
Correspondingly, stopping, suspending or resuming of these activities causes appropriate changes in the
status of the program.

Syntax:

Assign activity_name “scp_name” where activity_name is the primitive or external activity
name and scp_name is the SCP file name.

CANCEL

The CANCEL statement is used to cancel the setting of a simulation parameter or breakpoint.

Syntax:

Used in conjunction with set breakpoint, set display, set trace. See these commands.

CHOOSE

The CHOOSE statement is used in nondeterministic situations to choose a solution.

Syntax:

The CHOOSE statement is used to choose the integer where integer is the assigned number of
the desired nondeterminism solution.

When nondeterminism is encountered and interactive mode enabled, the Simulation tool
displays the first possible solution. Use next to inspect other solutions. Use choose to select the
displayed solution. A go resume is performed after choose.

Example:

choose 3
Rational Statemate 207

Simulation Command Reference
CLOSE

The CLOSE statement is used to close an opened file.

Syntax:

CLOSE (file_variable) where file_variable is the variable of the opened file.

This statement closes an already opened file for the duration of the simulation run. It is
primarily used to compensate for system limitations pertaining to the number of files open
simultaneously.

Example:

close(file2)

COMMENT

The COMMENT statement specifies a comment line in an SCP.

Syntax:

// text

where text is any text string. Any text following “//” to the end of the line is a comment.

Note
Comments may be embedded within statements or on lines to themselves or you can use
/*<text>*/. With this usage, text can be any string and can include new lines.

Example:

read(v,z) ; // This is a valid comment

// This is another valid comment line
208 Simulation Reference Manual

Auto Batch Commands
CONSTANT

The CONSTANT statement is used to declare the program constants in the SCP file section.

Syntax:

constant

[INTEGER id :=integer_val [, id := integer_val . . .] ;]

where id is the name of the integer constant and integer_val is its value

[STRING id := “text” [, id := “ext” . . .] ;]

where id is the name of the string constant and “text” is its value

[FLOAT id := real_val [, id:=real_val . . .] ;]

where id is the name of the real constant and real_val is its value

[BIT id:=bit_val]

where id is the name of the bit constant and bit_val is 0 or 1

[ARRAY id(bound1..bound2):=array_val]

where id is the name of the bit-array, bound represents the bit boundaries and array_val is the
value of the bit array.

The Constant Section if one of the five optional program sections of the SCP. The Section
contains the keyword constant followed by the declarations of constants. One declaration may
define several constants (separated by commas). Each declaration is concluded with a
semicolon.

Example:

Constant

integer x:=5, y:=200, z:=1, z2:=10 ;

string alpha := “unexpected loop”

beta:= “enter an action for yy” ;

float a:= 2.5, b:=700.234 ;

array a(1..16):=0xAE07 ;
Rational Statemate 209

Simulation Command Reference
DO

The DO statement is a component of Set Breakpoint which defines a sequence of statements executed
when the breakpoint is triggered.

Syntax:

See SET BREAKPOINTS.

ELSE

The ELSE statement is a component of the IF/THEN/ELSE statement used for the conditional
execution of SCL statements.

Syntax:

See the IF statement.

END

The END statement is use to end a SCP section, structured statements and the SCP itself.

Syntax:

END BREAKPOINT

END IF

END INIT

END LOOP

END WHEN

END

END.

The end keyword concludes various SCP structured statements: Set Breakpoint, INIT, BEGIN,
WHILE/LOOP, WHEN/THEN/ELSE and IF/THEN/ELSE.

The End statement concluding the entire SCP is followed by a period.
210 Simulation Reference Manual

Auto Batch Commands
EVERY

The EVERY statement is the component of the Set Breakpoint statement used for setting a
breakpoint at specific time intervals.

Syntax:

See SET BREAKPOINTS.

EXEC

The EXEC statement runs a specified SCP.

Syntax:

exec “name”

where name is the name of the SCP file to be executed.

Multiple SCPs may be executed simultaneously. An SCP may be executed and stopped from any
other SCP. When an SCP is started by an exec statement, its Main Section is ignored.

Note
 You should not exec SCPs that are assigned. exec does not affect the execution of already
running SCPs.
Rational Statemate 211

Simulation Command Reference
Rational Statemate Actions
The STATEMATE ACTIONS statement performs Rational Statemate actions.

Syntax:

exv_action

where exv_action is any legal Rational Statemate action

Actions may refer to both Rational Statemate elements and SCL objects.

Note
 If the scope contains several elements with an identical name, precede its name with the
name of the chart.

Example:

card_id := 12345 ; start(verification) ;

if a>b then tr!(c) end if

AUTOGO

The AUTOGO command is used to perform a GoStep in an unstable status otherwise it performs a
GoNext.

Syntax:

Auto Go

GO ADVANCE

The GO ADVANCE statement advances the clock to a specified moment and runs all reactions
the system can perform before this moment.

Syntax:

go advance num

where num is a positive number representing the number of clock units.
212 Simulation Reference Manual

Rational Statemate Actions
GO BACK

The GO BACK statement undoes the previous GO command.

Syntax:

go back

GO EXTENDED

The GO EXTENDED statement attempts to execute a go repeat. If no steps are taken, the current
time is advanced to the next scheduled action or timeout event and a go repeat is executed. Available
only in the Asynchronous Time Model.

Syntax:

go extended

GO NEXT

The GO NEXT statement advances the clock to the time of the next scheduled action or timeout
event and runs all reactions the system can perform before this time.

Syntax:

go next

GO REPEAT

The GO REPEAT statement runs all steps possible to the next stable status. It performs a
superstep.

Syntax:

go repeat

GO STEP

The GO STEP statement is used to performs a single step. Time is advanced in the Synchronous
Time Model.

Syntax:

go step
Rational Statemate 213

Simulation Command Reference
GO STEPn

The GO STEPn statement is used to perform a specified number of steps to advances the clock.
Available only in the Synchronous Time Model.

Syntax:

go stepn [n]

IF

The IF statement is used to perform a conditional execution of SCL statements.

Syntax:

if condition then

statement [; statement . . .]

[else

statement [; statement . . .]

]

end if

where condition is any expression returning a Boolean value and statement is any SCL
statement

The IF/THEN/ELSE structured statement is used to execute SCL statements conditionally. The
statements following THEN and before ELSE are executed if condition is true. If condition is
false, the statements between ELSE and END are executed.

Example:

IF a > b THEN

err := err + 1 ;

ELSE

WRITE (‘a is less than b’)

END IF
214 Simulation Reference Manual

Rational Statemate Actions
INIT

The INIT statement is used to define statements that are executed at the beginning of each
execution of the SCP.

Syntax:

init

statement

. . .

[; statement]

end init

Contains any SCL statements except GO statements.

Example:

INIT

zb := 23.6 ;

gen := 4000 ;

rname := “light standard” ;

SET INFINITE LOOP 50 ;

END INIT

LOOP

The LOOP statement is a component of the WHILE statement used to execute SCL statements in a
loop.

Syntax:

See WHILE statement.
Rational Statemate 215

Simulation Command Reference
MAIN SECTION

The MAIN SECTION is used as a Sequence of SCL statements used to define the simulation
scenario.

Syntax:

begin

statement

[; statement]

. . .

end

The Main Section contains any SCL statements which are executed sequentially. When more
than one SCP is running, only one Main Section is executed - the one belonging to the SCP
activated with the interactive RUN command.

If the primary SCP has no explicit Main Section, a default main section is assumed: a Go
Extended is performed in an infinite loop.

OPEN

The OPEN statement is used to open a file for input or output.

Syntax:

open (file_variable, “file_name”, INPUT | OUTPUT)

where file_variable is assigned to a file_name for INPUT or OUTPUT.

The following rules apply:

� The file being opened must already exist
� If a file is opened for output, it cannot be reopened before it is closed
� The same file cannot be opened for both input and output

Example:

open (file1, “/csw/source/sample.data”, INPUT)
216 Simulation Reference Manual

Rational Statemate Actions
PROGRAM

The PROGRAM statement is used to name the SCP.

Syntax:

program program_name where program_name is the name assigned to the SCP.

This statement is required as the first statement in the SCP.

Example:

PROGRAM ATM_control

RANDOM SOLUTION

The RANDOM SOLUTION statement is used to select a random solution when nondeterminism
occurs.

Syntax:

random_solution

This statement is used in conjunction with the nondeterminism breakpoint. It allows the model
simulation to continue without user intervention when a nondeterministic situation is
encountered. One of the solutions is chosen randomly and the simulation proceeds without the
need for a Go statement.

Example:

set breakpoint [nondeterminism]

do

random_solution ;

write (“nondeterministic situation solved randomly. \n”)

end breakpoint
Rational Statemate 217

Simulation Command Reference
READ

The READ statement is used to read input from an external file or from standard input (keyboard)
and assign it to specified variables and data-items.

Syntax:

read ([file_variable,] x1 [, x2 . . .])

where file_variable, if present, is the name of the external file; if absent, input is read from the
keyboard to x1.

The information read is assigned to SCP variables of all types (except file) and primitive data-
items.

Note: The file from which the read is performed must be opened before this statement
is used. When multiple variables are read from the keyboard or a file, the
values must be separated by a return.

Example:

read (file_name, a,b,c) ;

read (v,z) ;

RESTORE STATUS

The RESTORE STATUS statement is used to restore the status information saved in a save status
operation.

Syntax:

restore_status “status_name”

where status_name is the name of the status to be restored.

SAVE STATUS

The SAVE STATUS statement is used to save the current status of the system at a requested point
in the simulation.

Syntax:

save_status “status_name”

where status_name is the name under which the status is saved.
218 Simulation Reference Manual

Rational Statemate Actions
SET BREAKPOINTS

The SET BREAKPOINTS statement is used to define and enable a specified breakpoint.

Syntax:

set breakpoint [breakpoint =>] trigger do

statement

[; statement]

. . .

end breakpoint

where trigger is defined as: event_expression | every num_expression; and statement is any
SCL statement except go

set breakpoint breakpoint_name

cancel breakpoint breakpoint_name

See Breakpoints for additional information on breakpoints.

SET DISPLAY

The SET DISPLAY statement is used to enable or disable the display of changes in graphic
editors.

Syntax:

set display
cancel display

Enables or disables the animation of graphic charts which are connected to the Simulation
tool.
Rational Statemate 219

Simulation Command Reference
SET GO BACK

The SET GO BACK statement is used to determine the maximum number of times a go back can
be executed in succession.

Syntax:

set go back number

where number is a positive integer

Example:

set go back 5

SET INFINITE GO

The SET INFINITE GO is used to set a limit to the number of steps taken during a long Go
command (i.e., GoExtended, GoRepeat). After a preset number of steps is reached (if not finished
before), simulation stops and control is returned to the user. This parameter is also used to limit the
number of iterations within a step used to calculate the combinational element value. For example,
in the conditional expression X:=X+1, a stable value for X can never be reached because each time
X changes the CE is recalculated resulting in a new value for X. When calculating a combinational
element, if a stable state is not reached after 100 mini-steps (default), the calculating stops and the
value remains at 100 mini-steps.

Syntax:

set infinite GO 100

where n is a positive integer

This statement permits the resetting of the maximum number of steps which can be executed
during a long Go command.

Example:

set infinite go 5
220 Simulation Reference Manual

Rational Statemate Actions
SET INFINITE LOOP

The SET INFINITE LOOP is used to set a limit for the number of interactions of FOR loops or
WHILE loops in the simulation. After reaching the preset limit, the simulation is terminated and
reported.

Syntax:

set infinite loop phase_limit

where phase_limit is a positive integer

This statement permits the resetting of the maximum number of iterations that can be executed
in a loop before the infinite loop condition becomes true.

Example:

set infinite loop 1000

SET INTERACTIVE

The SET INTERACTIVE statement is used to switch from batch to interactive mode.

Syntax:

set interactive

All running SCPs are suspended. To resume the SCPs and return to batch mode, enter the Continue
SCP command.

SET TRACE

The SET TRACE statement is used to enable or disable the recording of the simulation results
into a trace file.

Syntax:

set trace
cancel trace

This statement determines whether the results of the subsequent simulation steps are recorded
in a trace file. If the simulation session is given a name, that name is given to the trace file,
otherwise, the trace file name is nameless.
Rational Statemate 221

Simulation Command Reference
SKIP

The SKIP statement is used to skip the remainder of breakpoint processing stage in the current
step.

Syntax:

SKIP

STOP SCP

The STOP SCP statement is used to stop the execution of selected executing SCPs.

Syntax:

stop_scp [“name”]

where name is the name of the SCP to be stopped.

If name if provided, this SCP is stopped. This statement without an SCP name stops all
running SCPs.

Example:

stop_scp “autolight”

THEN

The THEN statement is a component of the IF/THEN/ELSE and WHEN/THEN/ELSE statements
used for conditional execution of statements depending, respectively, on a condition value or an event
occurrence.

Syntax:

see IF and WHEN
222 Simulation Reference Manual

Rational Statemate Actions
VARIABLE

The VARIABLE statement is the SCP file section used to define variables.

Syntax:

variable

[[global] integer id [:=integer_val] [, id := integer_val . . .] ;]

where id is the name of the integer constant and integer_val is its initial value

[[global] string id [:= “ext” [, id := “text”. . .] ;]

where id is the name of the string constant and “text” is its initial value

[[global] float id [:= real_val] [, id:=real_val . . .] ;]

where id is the name of the real constant and real_val is its initial value

[[global] file id [,id . . .] ;]

where id is the name of the file variable

[[global] BOOLEAN id [, id . . .] ;]

where id is the name of the Boolean variable
Rational Statemate 223

Simulation Command Reference
WHEN

The WHEN statement is used for conditional execution of SCL statements depending on event
occurrence.

Syntax:

when trigger then

statement [; statement . . .]

[else

statement [; statement . . .]

]

end when

where trigger is any event expression and statement is any SCL statement

The WHEN/THEN/ELSE structured statement is used to execute SCL statements when a particular event
occurs. The statements following THEN and before ELSE are executed if the trigger is true. If the trigger is
false, the statements between ELSE and END are executed.

Example:

WHEN tr(c) THEN

err := err + 1;

ELSE

WRITE (“Error Encountered”)

END WHEN
224 Simulation Reference Manual

Rational Statemate Actions
WHILE

The WHILE statement is used to execute SCL statements in a loop.

Syntax:

while condition

loop

statement [; statement . . .]

end loop

where condition is any Boolean expression and Statement is any SCL statement.

The WHILE/LOOP statement is used to execute SCL statements in a loop. The condition is any
Boolean expression. While the condition is true, the statements in the loop are performed repeatedly.
The condition is rechecked prior to each execution of the loop.

There is no limit to the depth of structured statements within the loop.

Example:

WHILE cax

LOOP

a1; a2

if x = 3, then fs!(cax)

else

write(“not tripped”);

while Cb or cq

loop

a3

end loop

end if

end loop
Rational Statemate 225

Simulation Command Reference
WRITE

The WRITE statement is used to output the simulation data to either the display or a file.

Syntax:

write ([file_variable], exp1 [, exp2 . . .])

where file_variable, if present, is the name of the output file. If absent, output of exp1 is sent to
the display.

The output may be a combination of printable strings and numeric values.

Example:

write (‘The data value is’, d1,‘\n’)

write (file2, ax, by, ‘\n’)
226 Simulation Reference Manual

Supplementing the Model with
Handwritten Code
This section explains how to supplement Rational Statemate simulation with handwritten code.
Not only does this code become part of the simulation, but it is also included as part of generated
code.

Rational Statemate enables you to extend the Rational Statemate model by supplementing the
model with handwritten code. This means that you can implement those elements and aspects of
the system’s behavior that have not been explicitly defined by the controlling Statecharts and mini-
specs.

You may want to use this feature to:

� Describe a particular function programmatically.
� Interface to your own or a third party’s library.
� Use code that already exists.

There are several ways to supplement the generated code:

� Attach existing code to the model through the Data Dictionary Editor and select one or
more languages in which to implement it (K&R C, ANSI C, or Ada).

� Write new code directly in Rational Statemate using the Rational Statemate Action
Language.

� Use a graphic to define a function or procedure in a Procedural Statechart.
� Create a Truth Table to implement a subroutine, define a “named action,” or describe an

activity’s behavior.
These methods enable you to add code that is used by both the Simulator and the Code Generator.
Rational Statemate stores the code in the model’s database and automatically includes it when you
run simulation or code generation.
Rational Statemate 227

Supplementing the Model with Handwritten Code
Supplementing the Model with Subroutines
The following subsections explain how to add handwritten subroutines (functions, procedures, or
tasks) to your Rational Statemate model.

The method for adding all three subroutines in the Data Dictionary Editor (DDE) is similar. The
major difference is that functions require a Return Type.

Note
In addition to storing subroutines in the Data Dictionary Editor, you can also store their
formal parameters.
228 Simulation Reference Manual

Supplementing the Model with Subroutines
Entering Handwritten Code

Rational Statemate does not check your handwritten code. It is your responsibility to ensure that
the code is legal and compilable. You can use with, use, include statements or any other
mechanism supported by the language to reference packages or include files. Rational Statemate
makes no attempt to interpret the code; it merely passes it on to the appropriate compiler.

To add your handwritten code to the template correctly, make sure you abide by the rules in the
following sections:

1. Referencing model elements in the code.

2. Mapping Rational Statemate types (primitive or user-defined) into C types for variables
and subroutine parameters.

3. Using synchronization services in tasks.

Using Subroutines

After you define a subroutine in the Data Dictionary, it becomes part of Rational Statemate and is
stored as part of the model. Then you can use the subroutine in the following ways:

� Called in Rational Statemate actions and expressions.
� Bound to a primitive activity of the modeled system, thus providing their implementation.
� Bound to an external activity to describe behavior of the environment.
� Bound as a callback to a textual or graphical element in the model, and called when the

element changes its value or status.

Disabling Subroutines

To disable a subroutine, open the Data Dictionary Editor and under Select Implementation, select
None.

Rational Statemate does not implement the subroutine, and only generates a template (empty stub).
Rational Statemate 229

Supplementing the Model with Handwritten Code
Supplementing the Model with a Procedure
This section explains how to add a handwritten procedure to your Rational Statemate model by
showing the

� Dialog boxes and how to complete them
� Template that Rational Statemate produces
� Template filled in with an example of handwritten code

Note
Rational Statemate also provides templates for functions and tasks. The subroutine’s
template is a result of mapping the declarations into its C representation. This includes
mapping the parameter types and, in the case of functions, the returned value.

To add a handwritten procedure:

1. Select File > New in the Data Dictionary Editor.

2. Name the new element (in this example ADD_JOB_TO_RQ), then select its Chart Name.

3. Select Subroutine as the Element Type. The Data Dictionary Editor dialog box opens
with the name of the new subroutine.

4. Define the subroutine Type as a Procedure
230 Simulation Reference Manual

Supplementing the Model with a Procedure
.

5. Enter the procedure’s parameters if you want to store them in the DDE. Select a parameter
and click Data Dict to display the following dialog box:
Rational Statemate 231

Supplementing the Model with Handwritten Code
Using Globals

If you use the same parameters for multiple activities, you may want to define them as globals. If
so, use the Implementation menu (shown below) to select Globals Usage.

For example, the ADD_JOB_TO_RQ procedure uses the globals shown in the following dialog box.

Note
Globals are elements that are external to the subroutine, but are not listed as parameters. The
reading or writing of global data is called a side effect.

.

Writing more than once to a global element is considered racing. However, this racing differs from
general racing where you have no way of determining which value will be assigned. In this case,
the final value will be the resulting value of the global element. Therefore, it is your responsibility
to ensure that the subroutine writes to global elements only a single time during its execution.
232 Simulation Reference Manual

Supplementing the Model with a Procedure
Note
It is strongly recommended that you do not write global data in a function called in a trigger
expression. Side effects written as part of a trigger will behave differently between
simulation and code.

Producing a Template for a Procedure

Tto produce a template for a procedure, open the Implementation menu to select a language for
the code. This example uses K&R C.

Rational Statemate opens an editor and provides a template for you to attach your handwritten
code
Rational Statemate 233

Supplementing the Model with Handwritten Code
Filling in the Procedure’s Template

The following example shows the template filled in with handwritten code for a complete
procedure.
234 Simulation Reference Manual

Supplementing the Model with a Procedure
Subroutine Binding

Open the Data Dictionary Editor for an activity and select Subroutine Binding to connect
subroutines.
Rational Statemate 235

Supplementing the Model with Handwritten Code
The User-Added Code Binding dialog appears where you enter the name of the subroutine, which
is to be bound to the activity.

Supplementing the Model with a Task

This subsection explains how to add a handwritten task to your Rational Statemate model by
showing the

� Dialog boxes and how to complete them
� Template that the Code Generator produces
� Template filled in with an example of handwritten code

Rational Statemate also provides templates for functions and procedures. The subroutine’s
template is a result of mapping the declarations into its C representation. This includes mapping
the parameter types and, in the case of functions, the returned value.

To add a handwritten task:

1. Select File > New in the Data Dictionary Editor. The New Element dialog box opens.
236 Simulation Reference Manual

Supplementing the Model with a Procedure
2. Enter the name of the new element (in this example IO_RECEIVER).

3. Select its Chart Name.

4. Select Subroutine as the Element Type.

5. Click OK. The Data Dictionary Editor appears with the name of the new subroutine.

6. Define the subroutine Type as a Task.

7. Enter the task’s parameters if you want to store them in the DDE.

8. Select a parameter and click Data Dict. The Parameter dialog box opens.
Rational Statemate 237

Supplementing the Model with Handwritten Code
Using Globals

If you use the same parameters for multiple activities, you may want to define them as globals. If
so, use the Implementation menu (shown in the following dialog box) to select Globals Usage.

For example, the IO_RECEIVER task uses the globals shown in the following dialog box.

Note
Globals are elements that are external to the subroutine, but are not listed as parameters. The
reading or writing of global data is called a side effect.
238 Simulation Reference Manual

Supplementing the Model with a Procedure
Writing more than once to a global element is considered racing. However, this racing differs from
general racing where you have no way of determining which value will be assigned. In this case,
the final value will be the resulting value of the global element. Therefore, it is your responsibility
to ensure that the subroutine writes to global elements only a single time during its execution.

Note
It is strongly recommended that you do not write global data in a function called in a trigger
expression. Side effects written as part of a trigger will behave differently between
simulation and code.

Using the Template for a Task

To produce a template for a task, open the Implementation menu to select a language for the code.
This example uses K&R C.

Rational Statemate opens an editor and provides a template for you to attach your handwritten
code.
Rational Statemate 239

Supplementing the Model with Handwritten Code
240 Simulation Reference Manual

Supplementing the Model with a Procedure
Filling in the Task’s Template

The following example shows the template filled in with handwritten code for a complete task.
Rational Statemate 241

Supplementing the Model with Handwritten Code
Synchronizing Tasks
User-written procedures are called when the system starts the corresponding activity (i.e.,
st!(<activity>)). In general, the user code and the simulation share the CPU time. That is, when the
user code is executed, the Rational Statemate simulation (or other user activities) are suspended.

Tasks

The task mechanism allows you to integrate continuous or synchronized code into the primitive
activity. For this purpose, Rational Statemate provides a special library that extends the C language
to support tasking or multi-threading. (See the Scheduler section below, for details). Tasks can also
be bound to either a primitive or an external activity.

The scheduler package allows you to define C functions as concurrent routines or co-routines. An
activity that you choose to implement as a task is started by the control code as a co-routine, which
is executed concurrently with the rest of the prototype. Since we are dealing with serial machines,
concurrency means that the control is switched between these co-routines without interrupting
their thread of control. That is, when the co-routine gets the control back, it resumes executing
with the exact context it was before.

This mechanism allows the activity to use delay statements, wait for events, and perform
continuous calculations without blocking the rest of the code from continuing execution. When a
task is executed, however, the rest of the code is frozen. Thus, synchronization points are
introduced. They allow the rescheduling of other tasks (or the control code) to proceed and actions
(stop, suspend) to take effect.

Synchronization

There are three types of synchronization calls:

� wait_for_event(event)

� task_delay(delay_time)

� scheduler()

Each of these calls will suspend the calling task and reschedule another task or the main_task
(statechart) on a round-robin basis.

The wait_for_event call suspends the activity until the specified event is generated. It is a way to
synchronize the activity with other activities either user-implemented or statechart-controlled. When the
event is generated, the code resumes execution after the wait call.
242 Simulation Reference Manual

Synchronizing Tasks
Example:

 void sense_start()
 {
 while (1) {

wait_for_event(SENSE);
 /* here you are supposed to check status.*/
 printf(“Time generated\n”);
 }
 } /* end sense_start */

The task_delay statement delays the activity for the time specified in the call. It is useful to implement
polling processes that periodically perform checks on a time basis.

Example:

void poll_input()
{

 while (1) {
 mouse_input = read_input_from_mouse();
 if (mouse_input) {
 . . Do Something . . .
 }
 task_delay(0.1); /* delay 0.1 seconds */
 }

}

The scheduler() call is used when you have a calculation which is too long to be executed non-
preemptively. For example, if you have to multiply two 10000x10000 matrices, you do not want the rest
of the system to be blocked all that time.

The scheduler() call will allow other activities to proceed and the calling activity will resume
execution in the next available time slot unless a stop or suspend command was issued. The call
should be placed in a loop in which one cycle can be executed without preemption, but an outer
loop may take too long.

Note
No synchronization call should be used by a procedure-implemented activity.

Example:

 void multiply()
 {
 for (i = 1; i<=10000; i++) {
 for (j = 1; j<=10000; j++) {
 /* internal loop is short
 enough to complete */
 }
 scheduler();
 }
 }
Rational Statemate 243

Supplementing the Model with Handwritten Code
Scheduler Package
The user can specify that some of the primitive activities are to be implemented as tasks in the
Profile Editor. The tasks are actually C functions started as co-routines. The Rational Statemate
simulation itself is a task, which runs concurrently with the other started tasks.

Controlling all those tasks is the responsibility of statecharts, which issue different actions to the
different activities (i.e., start, stop, suspend, resume). All this is handled by a scheduler package,
which is supplied with the simulator and is available on Rational Statemate platforms only. This
package supports multi-tasking programming within the context of a single process.

Below we describe how the user may add his own tasks, apart from those created for each task-like
primitive activity, and how to use the scheduler for controlling them.

Status of a Task

Each task may be in one of four states:

� Current - The task is executing
� Ready - The task is ready for execution
� Delayed - The task is waiting for some event to occur
� Stopped - The task is not active

The calls that change the status of a task are described below.

Scheduling Policy

The context switch between tasks is done only in the following synchronization points:

� When a task explicitly calls the scheduler. This is done by calling the following routine:

scheduler()

If there are other ready tasks - one of them (chosen in a round-robin manner) becomes
current, while the calling task becomes ready. If there is no other task ready, the calling
task continues its execution.

� When a task issues a delay request by calling task_delay. The calling task then becomes
delayed.

� When a task calls a wait_for_event service. The calling task then becomes delayed.

wait_for_event(EVENT)
event *EVENT;

� After the task function performs a return, it stops.
244 Simulation Reference Manual

Binding Callbacks
Restrictions

Any call to process blocking functions (e.g., sleep, scanf) of the operating system from a task will
hibernate not only the calling task, but the whole process. Using fork() and signals is also not
allowed, since it might confuse the scheduler.

Binding Callbacks
Callbacks are a powerful mechanism that enable you to connect user-actions or procedures to any
change in a Rational Statemate element during execution. This mechanism is very useful when you
wish to tie your external environment to the behavior represented by the simulation.

Callback Binding

To connect elements such as events, conditions, data items, and user-defined types, select the
element in the Data Dictionary Editor and then Implementation > Callback Binding.

Callback Statement

The connection and binding statement for callbacks consists of:

proc_name(<“element_identifier”>,param_1,param_2)

The <element_identifier> is required when and only when the callback is connected to an
aggregate element. An aggregate element is an array, record, union, user-defined type, or any
element referenced in a generic or instance. The <element_identifier> specifies what part of
the aggregate element the callback is to be connected.
Rational Statemate 245

Supplementing the Model with Handwritten Code
Disabling Callbacks

To disable a callback, change the Enable option in the Callback Binding dialog to Disable. This
causes the simulator to generate code, but it “breaks” the code’s connection with the element.

Callback Example

The following example illustrates the Rational Statemate callback utility by showing two
subroutines that are bound to the callback DAR. Every time the DAR element changes, Rational
Statemate runs both of these subroutines.

To create a subroutine, refer to the steps documented in Supplementing the Model with Subroutines

The next two figures show the code for the subroutines. The first one is the PRINT1INT procedure;
the second one is the PRINT_NTH_INT procedure.
246 Simulation Reference Manual

Binding Callbacks
Rational Statemate 247

Supplementing the Model with Handwritten Code
248 Simulation Reference Manual

Referencing Model Elements
Referencing Model Elements
Communication between the handwritten code and the generated code is accomplished through the
semantics of the following information elements:

� Events
� Conditions
� Data-items
� User-defined types

It is important to understand how to access the values of these elements and how to modify them.
Each element has the following representation in the C target language:

� Conditions are represented as bytes
� Data-items are represented as integers, reals, strings or unsigned
� User-defined types are derived from primitive data-types

When you wish to pass structured elements (such as records and unions) from Rational Statemate
to your handwritten code, you must define these elements as user-defined types.

When you write code in the template, refer to all elements by the names you assigned in the model.
This applies to parameters of the subroutine, its local and global variables, to names of types,
constants, and any other subroutines that you may use for the implementation.

Note
Write all element names in uppercase.

Referencing Events

Events are primitive elements and are special in the sense that software languages do not support
them directly.

Note
Events are not allowed in subroutines as inputs, outputs, local variables, or accessible as
global elements.

Events, in relation to handwritten code, are used in the following manner:

� Callbacks—You can associate a callback with a Rational Statemate event.
� Tasks—You can use the wait_for_event command to react to a Rational Statemate

event.
Rational Statemate 249

Supplementing the Model with Handwritten Code
Where Elements are Defined

An element can be local to a module or global to a profile. The element is globally defined when it
is referenced by more than one module, i.e., defined in the top-level module. Each module
‘exports’ all its local elements as externals in its header file. This allows other user modules to
access them. If you want to reference an element you must refer to its scope by including the
appropriate header file. An example is shown below.

Example:

If you want to reference an element BAUD_RATE in module display, you should include the header
file “display.h” to make the element visible.

/* my module */
#include “display.h”
.
.
br = BAUD_RATE ;
.
.

Accessing an Element Value

Since the element is a simple language element, it can be easily accessed by referring to its name.

Example:

my_data = XXX + YYY ;
250 Simulation Reference Manual

Mapping Rational Statemate Types into C
Mapping Rational Statemate Types into C
The table below shows how Rational Statemate maps primitive types into corresponding C types:

Note
All Rational Statemate elements of type string are translated into allocated C elements.

Records

Records become C constructs. For example, a record INVOICE_TYPE might become a structure
defined as:

typedef struct INVOICE_TYPE {
char NAME[80+1];
char ITEM[80+1];
real AMOUNT;

 } INVOICE_TYPE;

Note that the name INVOICE_TYPE is normally named the same as the User-Defined Type name. If,
however, the Rational Statemate model contains multiple textual elements with the same name, the
C code names will be modified to make all the names unique. This name mapping information is
listed in the .info file.

Unions

Unions become C unions with a declaration that is similar to the construct definition for records.

Rational Statemate
Types C Type

Conditions char (byte 0-false, 1-true)

Integer int

Real double

Bit bit_array[1]

Bit array unsigned int

User Type struct

Record struct

Union struct

Enumerated Types typedef
Rational Statemate 251

Supplementing the Model with Handwritten Code
Arrays

Elements of all arrays in C are enumerated starting from 0. In Rational Statemate, there is no such
restriction.

Enumerated Types

An Enumerated Type is a user-defined type with a finite number of values. The Simulation
monitor allows you to select an enumerated-value from a list of possible values. Enumerated types
with a large number of possible values are supported.

Enumerated values and other textual items cannot have the same name within the same scope. For
example, data-item SUN cannot be declared in the same chart where an enumerated value SUN is
declared.

Note
Enumerated range and indices of arrays are not supported in C. The C code generator shall
approximate this capability in the generated code.

There are two constant operators and five general operators for enumerated types:

Constant Operators

Parameters to these constant operators are user-defined types that were defined as enumerated
types.

en_first(T) First enumerated value of T

en_last(T) Last enumerated value of T
252 Simulation Reference Manual

Mapping Rational Statemate Types into C
General Operators

Parameters to these operators are either enumerated values (literals) or variables. The T’VAL
notation is used for non-unique literals.

Bit Arrays

Bit-arrays are stored in unsigned ints. Since unsigned ints can hold a maximum of 32 bits, bit-
arrays larger than 32 bits are stored in arrays of unsigned ints. Arrays of bit-arrays are stored in
two dimensional arrays of unsigned ints. Notice that multiple bit-arrays smaller than 32 bits are
NOT packed into the unsigned int.

Note
In $STM_ROOT/etc/prt/c/types.h you will find the statement: typedef unsigned
int bit_array.

en_succ([T’]VAL) Successor enumerated value of T

en_pred([T’]VAL) Predecessor enumerated value of T

en_ordinal([T’]VAL) Ordinal position of VAL in T

en_value(T,I) Value of the i’th element in T

en_image([T’]VAL) String representation of VAL in T

Data-Items Results in these structures

BA1 is array 1 to 10 of Bit-array 31 to 0 bit_array BA1[10][1]

BA2 is array 1 to 10 of Bit-array 48 to 0 bit_array BA2[10][2]

BA3 is array 1 to 10 of Bit-array 3 to 0 bit_array BA3[10][1]
Rational Statemate 253

Supplementing the Model with Handwritten Code
Bit Array Functions
bit_array *AND(ba1, l_ba1, from1, to1, ba2, l_ba2,
from2, to2)

 bit_array *ba1;
 int l_ba1;
 int from1;
 int to1;
 bit_array *ba2;
 int l_ba2;
 int from2;
 int to2;

 bit_array *NOT (ba1, l_ba1, from1, to1)
 bit_array *ba1;
 int l_ba1;
 int from1;
 int to1;

bit_array *OR(ba1, l_ba1, from1, to1, ba2, l_ba2,
from2, to2)

 bit_array *ba1;
 int l_ba1;
 int from1;
 int to1;
 bit_array *ba2;
 int l_ba2;
 int from2;
 int to2;

bit_array *XOR(ba1, l_ba1, from1, to1, ba2, l_ba2,
from2, to2)

 bit_array *ba1;
 int l_ba1;
 int from1;
 int to1;
 bit_array *ba2;
 int l_ba2;
 int from2;
 int to2;
254 Simulation Reference Manual

Mapping Rational Statemate Types into C
The following bit array function names are mapped through macros to their internal names,
because these names are used by Ada runtime libraries, therefore they cannot be defined as
functions in the intrinsics. (These same intrinsics are used by C and Ada environment.) It is
important to include the types.h header containing these macros.

#define ASHR ashr
#define LSHL lshl
#define LSHR lshr
#define BITS_OF bits_of
#define CONCAT_BA concat_ba
#define EXPAND_BIT expand_bit
#define SIGNED signed_b
#define MINUS minus_b
#define NAND nand_b
#define NOR nor_b
#define NXOR nxor

The functions are:

bit_array *concat_ba
(ba1,l_ba1, from1, to1, ba2, l_ba2, from2,to2)

bit_array *ba1;

int l_ba1;
 int from1;
 int to1;

bit_array *ba2;
int l_ba2;
int from2;
int to2;

bit_array *lshr(ba, len_ba, from, to, shift)

bit_array *ba;
int len_ba;
int from;

int to;
int shift;

bit_array *lshl(ba, len_ba, from, to, shift)
bit_array *ba;
int len_ba;
int from;
int to;
int shift;

int signed_b(ba_val, len, from, to)
bit_array *ba_val;
int len;
int from;
int to;
Rational Statemate 255

Supplementing the Model with Handwritten Code
bit_array *ashr(ba, len_ba, from, to, shift)
bit_array *ba;
int len_ba;
int from;
int to;
int shift;

bit_array *nand_b(ba1, l_ba1, from1, to1, ba2, l_ba2,
from2, to2)

bit_array *ba1;
int l_ba1;
int from1;
int to1;
bit_array *ba2;
int l_ba2;
int from2;
int to2;

bit_array *nor_b(ba1, l_ba1, from1, to1, ba2, l_ba2,
from2, to2)

bit_array *ba1;
int l_ba1;
int from1;
int to1;
bit_array *ba2;
int l_ba2;
int from2;
int to2;

bit_array *nxor(ba1, l_ba1, from1, to1, ba2, l_ba2,
from2, to2)

bit_array *ba1;
int l_ba1;
int from1;
int to1;
bit_array *ba2;

int l_ba2;
int from2;
int to2;
256 Simulation Reference Manual

Mapping Rational Statemate Types into C
Use the following functions to convert between integer and bit-array types:

bit_array *int2ba(int_val)
int int_val;

int ba2int(ba, len, from, to)
bit_array *ba;
int len;
int from;
int to;

Rules for Mapping into C

The following table summarizes the rules of mapping into C for:

� Types of parameters for procedures and functions
� Returned type of functions

Note

� The first level of all arrays should be defined as User-defined type in order to restrict the
‘second’ dimension.

� Unrestricted strings and bit-arrays are not allowed as returned type of a function.
� Numeric Input parameters can be mixed up i.e., integer, real and bit-arrays can be mixed

when used as actual and formal parameters.
Rational Statemate 257

Supplementing the Model with Handwritten Code
Type Function Type In Param Out/InOut Param

Primitive (*) int f(); int P; int *P;

UDT defined as Primitive UDT f(); UDT P; UDT *P;

Record/Union rec *f(); REC *P; REC *P;

String char *f(); char *P; char *P;

UDT defined as String char *f(); UDT P; UDT P;

Bit BIT_ARRAY *f(); BIT_ARRAY *P; BIT_ARRAY *P;

Bit-array BIT_ARRAY *f(); BIT_ARRAY *P; BIT_ARRAY *P;

UDT defined as Bit-array BIT_ARRAY *f(); BIT_ARRAY *P; UDT *P;

UDT Array of Primitive int *f(); UDT P; UDT P;

UDT Array of String -- Illegal -- UDT P; UDT P;

UDT Array of Bit-array -- Illegal -- UDT P; UDT P;

UDT array of direct R/U -- Illegal -- UDT P; UDT P;

UDT array of UDT2 UDT2 *f(); UDT P; UDT P;

Array of Primitive -- Illegal -- int *P; int *P;

Array of Record/Union -- Illegal -- -- Illegal -- -- Illegal --

Array of String -- Illegal -- char *P; char *P;

Array of Bit-array -- Illegal -- BIT_ARRAY *P; BIT_ARRAY *P;

(*) Primitive type is one of: integer, real, condition, or enumerated type.
In the above matrix, integers are taken as example.
258 Simulation Reference Manual

BNF Syntax, Structure and Conventions
Described in this section are the conventions for BNF (Bakus-Naur Form), a widely used
notational scheme for formal languages. BNF was introduced in 1963 as a technique for defining
programming languages.

BNF Structure And Conventions
BNF grammar follows the following general structure:

nonterminal_symbol => terminal_and or_nonterminal_symbols

Example:

action =>action_name

| primitive_event_name

| start (activity_name)

| stop (activity_name)

Symbols are delimited by spaces and thus the underscore is frequently used for longer names.
Rational Statemate 259

BNF Syntax, Structure and Conventions
Symbol Types
Terminal symbols are basic symbols which are not parsed further to derive their meaning. Non-
terminal symbols are those which may be further broken down by parsing. Examples of terminal
symbols may be integer numbers which are intrinsically recognized as a numeric value, or
language keywords recognized by the system as representing some particular operation or
function.

In BNF Syntax, Structure and Conventions terminal symbols that are written exactly as they appear (i.e.,
keywords of the SCL) are show in capital letters. Non-alphabetic characters not belonging to the BNF
notation below, are also part of the syntax (e.g., ;). Non-terminal symbols are written in lowercase or
mixed case letters. Non-terminal symbols which are self evident are not further broken down.

BNF Notations

The | indicates a mutually exclusive choice between symbols in a non-terminal symbol definition.

Example:

variable_name | numeric_constant

| integer | function_name

The => separates the non-terminal symbols on the left from its definition on the right. Can be read
as is “defined as ...”

Example:

relational_operator=>= | / = | < | <= | >=

Square brackets [] indicate that the symbols within the brackets are optional. This is a BNF
convention. Recall that square brackets themselves may appear in the SCP as part of the Rational
Statemate expression.

Example:

timeout (event[condition],3)

Curled brackets { } indicate that the symbols which they enclose are optional and can be repeated.

Example:

depend_on (state_name{, state_name})
260 Simulation Reference Manual

BNF for SCL Statements Syntax
This section presents the Simulation Control Language statements expressed formally in the BNF
syntax.

Syntax of actions, events, conditions, expressions is the same as in the specification itself. One
may use SCL variables defined in the SCP in any Rational Statemate expression except for event
expressions. For example, while make_true(c), where c is a local boolean variable, is legal,
TRUE(C) is not.

scp_program=>PROGRAM program_name ;

[declaration_section]

[init_part]

[breakpoint_part]

[main_part]

END.

init_part=>INIT

sequence_of_statements[;]

END INIT[;]

breakpoint_part=>breakpoint_definition

{breakpoint_definition}

breakpoint_definition=>SET BREAKPOINT
[br_name=>] br_trigger DO

sequence of statements[;]

END BREAKPOINT[;]

br_trigger=>event

| EVERY expression

main_part=>BEGIN

sequence_of_statements[;]

END[;]

declaration_section=>[CONSTANT const_decl_list]

[VARIABLE var_decl_list]

const_decl_list=>const_decl; {const_decl;}
Rational Statemate 261

BNF for SCL Statements Syntax
const_decl=>const_type id_val_list

const_type=>INTEGER

| FLOAT

| STRING

| BIT

| ARRAY

id_val_list=>id := expression {,id := expression}

var_decl_list=>var_dec; {var_dec}

var_dec=>[GLOBAL] type id_opt_val_list

simple_type=>INTEGER

| FLOAT

| STRING

| FILE

| BOOLEAN

| BIT

id_opt_val_list=>id [:= expression] {,id [:= expression]}

type =>simple_type

| array_type

array_type=>(constant..constant) of simple_type

bit_arrau type=>bit-array name (1..6)

sequence_of_statements=>scl_statement {; scl_statement}

scl_statement=>simple_statement

| structured_statement

| io_statement

simple_statement=>assign_statement

| set_statement

| go_statement

| random_solution_statement

| skip_statement

| undo_statement

| restore_statement

| save_statement

| choose_statement

| exec_statement

| stop_statement

| simple_action_statement
262 Simulation Reference Manual

structured_statement=>if_statement

| for_loop

| when_statement

| while_loop

io_statement=>read_statement

| write_statement

| open_statement

| close_statement

assign_statement=>ASSIGN activity_id scp_name

scp_name=>string_constant

set_statement=>set_operation BREAKPOINT br_name

| set_operation TRACE

| set_operation DISPLAY

| SET INFINITE LOOP
 expression

|SET INTERACTIVE

| SET GO BACK expression
| set_operation REPORT RACING

set_operation=>SET

| CANCEL

simple_action_statement=>action

go_statement=>GO [go_type]

go_type=>STEP

| REPEAT

| NEXT

| ADVANCE

| EXTENDED

| STEPN

random_solution_statement=>RANDOM_SOLUTION

skip_statement=>SKIP

undo_statement=>GO BACK

restore_statement=>RESTORE_STATUS
status_name

save_statement=>SAVE_STATUS status_name

choose_statement=>CHOOSE expression

exec_statement=>EXEC scp_name

stop_statement=>STOP_SCP [scp_name]
Rational Statemate 263

BNF for SCL Statements Syntax
scp_name=>string_constant

status_name=>string_constant

file_name=>string_constant

if_statement=>IF condition THEN

sequence_of_statements[;]

[ELSE

sequence_of_statements[;]]

END IF;

when_statement=>WHEN event THEN

sequence_of_statements[;]

[ELSE

sequence_of_statements[;]]

END WHEN;

while_loop=>WHILE condition LOOP

sequence_of_statements[;]

END WHILE;

for_loop=>FOR condition LOOP

sequence_of_statements[;]

END FOR;

read_statement=>READ([file_var,] id_list)

write_statement=>WRITE([file_var,]
write_expression_list)

open_statement=>OPEN(file_var, file_name,
INPUT)

| OPEN(file_var, file_name, OUTPUT)

close_statement=>CLOSE(file_var)

file_var=>id

id_list=>id {,id}

write_expression_list=>write_expression
{,write_expression}

write_expression=>expression [, expression]

| event [; expression]

| condition [;expression]
264 Simulation Reference Manual

SCL Reserved Words
Simulation Control Language (SCL) statements are built using the various keywords. These
keywords are considered as reserved words - their unintended use will cause, in most cases, syntax
errors in your SCP. This section presents these reserved words.

You should avoid using the keywords as names of SCL variables. There are three groups of
keywords in SCL:

� Keywords and predefined function names used in Rational Statemate expressions. They all
can be used in SCL statements.

� Names of predefined SCL variables:

� Keywords of SCL statements:

CUR_CLOCK INFINITE_LOOP

NONDETERMINISM STATIONARY

STEP STEP_NUMBER

TERMINATION

ADVANCE ASSIGN

BACK BEGIN

BOOLEAN BREAKPOINT

CANCEL CHOOSE

CLOCK CLOSE

CONSTANT DISPLAY

DO END

EVERY EXEC

EXTENDED FILE

FLOAT GLOBAL

GO INFINITE

INIT INPUT

INTEGER INTERACTIVE
Rational Statemate 265

SCL Reserved Words
LOOP NEXT

OPEN OUTPUT

PROGRAM RANDOM_SOLUTION READ

REPEAT RESTORE_STATUS SAVE_STATUS

SET SKIP

STEP STOP_SCP

STRING TRACE

VARIABLE WHILE

WRITE
266 Simulation Reference Manual

Index
A
Add to Waveform dialog 67
Add With Descendants command 200
Add With Descendants to profile 200
Add/Create Waveform command 200
Add/Edit Panel command 200
Analysis Profile Management dialog 169
Animate All Charts command 183
Animate Selected Charts command 184
ASSIGN command 207
asynchronous time model

simulating example of 84
Auto Batch commands

ASSIGN 207
AUTOGO 212
CANCEL 207
CHOOSE 207
CLOSE 208
COMMENT 208
CONSTANT 209
DO 210
ELSE 210
END 210
EVERY 211
EXEC 211
GO ADVANCE 212
GO BACK 213
GO EXTENDED 213
GO NEXT 213
GO REPEAT 213
GO STEP 213
GO STEPn 214
IF 214
INIT 215
LOOP 215
MAIN SECTION 216
OPEN 216
PROGRAM 217
RANDOM SOLUTION 217
READ 218
RESTORE STATUS 218
SAVE STATUS 218
SET BREAKPOINTS 219
SET DISPLAY 219
SET GO BACK 220
SET INFINITE GO 220

SET INTERACTIVE 221
SKIP 222
STATEMATE ACTIONS 212
STOP SCP 222
THEN 222
VARIABLE 223
WHEN 224
WHILE 225
WRITE 226

AutoGo command 176
AutoRun command 36, 177

B
batch mode 162

assigning files 150
batch program (SCP) 98
bit-array functions 254
BNF for SCL Statements Syntax 261
BNF syntax description 259

notations 260
symbol types 260

boxes
SHOW command 202

breakpoints 132
cancelling 134
definition 132
in a procedural truth table 141
in a subroutine 77, 142
processing 151
program section 117
setting 134
skipping 133, 135

Breakpoints command 186
Breakpoints Editor dialog 186
breakpoints Editor dialog 141

C
C code

accessing an element value 250
bit arrays 253
defining elements 250
referencing events 249
referencing model elements 249
restrictions 245
Rational Statemate 267

Index
scheduler package 244
scheduling policy 244
synchronizing calls 242
task status 244
tasks 242
value elements 250

callbacks
binding 245
disabling 246
example 246
in generated code 245

CANCEL command 207
Chart Animation dialog 183, 184
CHOOSE command 123, 207
CLOSE command 199, 208
Code Compatibility Settings 38
Command Line

command 174
entering commands 48

commands
simulation batch 207

COMMENT command 208
CONSTANT command 209
constant program section 117
context switch between tasks 244
Continue SCP command 187

D
Diagnostics

user-case 31
Do Action

dialog 185
statement 185

Do Action command 49
DO command 210

E
Element Selection for Monitor 5

browser 72
Element Selection Monitor dialog 73
elements

external 22
ELSE command 210
Empty Steps command 34
END BREAKPOINT keyword 119
END command 210
Enumerated types 252
events 26, 249

buffering 34
toggling 34

EVERY command 211
Examine command dialog 175
Examine dialog 58
Exclude From Scope 201
EXEC command 211

Execution Parameters dialog 97, 114, 179, 204
Execution Simulation

command 203
menu 203

F
file operation statements 126

CLOSE 127
OPEN 126
READ 126
WRITE 127

Flowcharts 37
in simulation 39
Limitations 39
semantics 37

FOR/LOOP 130

G
Generate Interface command 190
GO ADVANCE command 212
GO BACK command 213
Go commands 35
GO EXTENDED command 213
GO NEXT command 213
GO REPEAT command 213
GO STEP command 213
GO STEPN command 214
GoAdvance

command 178
dialog 178
example 15

GoBack
command 176

Goback Limit 98
GoExtended

command 179
example 13

GoNext
command 178

GoRepeat
command 178
example 12

GoStep
command 176
example 7

GoStepN
command 177
dialog 177

Graphic Animation Display 54
graphical procedure

debugging 78

I
IF command 214
268 Simulation Reference Manual

Index
IF/THEN/ELSE command 128
infinite loop 98

example 33
INIT command 215
initiation program section 118
interactive commands 163

L
Logic Settings

command 206
dialog 206

LOOP command 215

M
main program section 119
MAIN SECTION command 216
mapping types into C 251
messages

command 172
Microdebugger tool 77
model elements, modifying values 249
Monitor SCP 188
Monitor tool 71
Monitor window 5

opening 5
Monitors 201

adding to profile 71
command 182
fields 74

N
New Profile command 197
New Simulation dialog 197
New Simulation Profile dialog 45
New Waveform dialog 63
Non-determinism 28, 59, 123

dialog 59
example 29

non-terminal symbols 260

O
OPEN command 216
Open Profile command 198
Open Simulation Profile dialog 198
OPEN statement 126

P
panels

in simulation 61
Panels command 180
Panels in Scope dialog 61, 180

Pause command 176
Phase Limit command 33
playback files 113
predefined variables 123

cur_clock 123
list of 123
step_number 123

Preference Management
command 206

Print Profile Report 199
procedures

adding to model 230
producing a template 233

PROGRAM command 217

Q
Quit SCP command 187

R
racing 28, 31

Read/Write 98
Write/Write 99

random functions 124
list of 124
SCP statements 125

RANDOM SOLUTION command 217
Rational Statemate

referencing model elements 249
READ command 218
READ statement 126
Rebuild Simulation command 168
Record SCP 191
records 251
Remove From Scope 201
Report dialog 106
Restart Simulation command 168
Restore Status 189
RESTORE STATUS command 218
Run SCP 187

S
Save Profile As

command 167
dialog 167

Save Profile command 167
SAVE STATUS command 218
Save Status dialog 192
scheduler

package 244
scheduler synchronization call 242
SCL File Management

dialog 152, 170
SCL keywords 120, 265
SCL statements
Rational Statemate 269

Index
file operation statements 126
program flow, controlling 127
skipping breakpoints 133
types 120

SCP file
automatically recording 99

SCP File Management
command 170

SCP Monitor dialog 154, 188
Select command 201
Select Waveform Profiles dialog 66
SET BREAKPOINT keyword 119
SET BREAKPOINTS command 219
SET DISPLAY command 219
SET GO BACK command 220
SET INFINITE LOOP command 220
SET INTERACTIVE command 221
SET TRACE command 221
Show Boxes 202
Show Changes

command 55, 193
dialog 55

Show Clock
command 57, 194
dialog 57, 194

Show Clock command 57
Show command 55
Show dialog 55, 193
Show Future

command 56, 195
dialog 10, 56, 195

Show Racing
command 196
dialog 56, 196

Show Scope
as List 202
as Tree 202

simulation
action truth table 145
activity implemented by a truth table 147
asynchronous time model example 84
batch commands 207
breakpoint program section 119
breakpoints 132
changing modes 153
constant program section 117
entering environment information 49
example, traffic light 83
execution 32
exiting 17
graphical procedure 81
initiating simulation 84
initiation program section 118
main program section 119
Preferences dialog 206
program header 117
record and playback 113

scope 44
starting 48
starting from Graphic Editor 43
starting from Main menu 42
step 24
superstep 27
switching from Interactive to Batch 154
synchronous time model 94
textual procedure 80
time parameters

setting 85
truth table 143
variable program section 118
variations of 94

simulation commands
batch 207

Simulation Control Language
predefined functions 265
syntax rules 120

Simulation Control Program 116, 152
basic syntax rules 120
example 158, 162
manipulating files 152
monitoring 154
predefined variables 123
program sections 117
restarting 156
stopping execution 155, 156
structure 117
template 116
traffic light example 156

Simulation Execution dialog 48
Simulation Execution menu 4

opening 4
pull-down menus 166

Simulation Execution Options 179, 204
Simulation File Management

command 169
dialog 169

Simulation Monitor dialog 182
Simulation Parameters

setting 97
Simulation Profile

adding components 46
creating 45

Simulation Profile Editor 43
pull-down menus 163

Simulation Scope 19
determining 20
Statecharts 20
unresolved data-items 65

Simulation Tool
starting from main menu 42
terms and concepts 19

SKIP command 222
Snapshot Status command 192
Start Trace
270 Simulation Reference Manual

Index
command 190
dialog 190

Statechart clocks 34
STATEMATE ACTIONS command 212
status

of system 24
restoring 101
saving 100

status file 101
Status File Management

command 171
dialog 102

step_number 123
Steps per Go command 98
STOP SCP command 222
Stop Trace command 191
structured SCL statements

FOR/LOOP 130
IF/THEN/ELSE 128
WHILE/LOOP 130

subroutines
adding a breakpoint 142
debugger tool 143
disabling 229
rules and restrictions 258
supplementing model 228
using 229
using globals 232, 238

Superstep command 27
synchronization calls 242
synchronous time model 94

T
task_delay 242
tasks

scheduling 244
synchronizing 242

terminal symbols 260
testbenches

adding to the Similation Scope 20
textual procedure, debugging 78
THEN command 222
time

asynchronous 33
in simulation execution 32
relation to step 32
step-dependent 32
step-independent 32
synchronous 33, 34

time model
asynchronous 36
synchronous 36, 94

time parameters 85
Time Settings

command 204
dialog 204

Timeout scheduling 34
Trace File Management

command 171
dialog 66, 104, 171

trace files
automatically recording 99, 104
manipulating 104

transitions
priority rule 28
priority rule example 29

triggers
infinite_loop 124

truth tables
simulating 137

U
unions 251
User-case diagnostics 31

V
VARIABLE command 223
variable program section 118

W
wait_for_event 242
Waveform Profile

configuration items 69
Waveform tool 63

activating 64
displaying current values 65
off-line mode 66
on-line mode 63
setting waveforms 63

Waveforms
activating 64
command 180
displaying 63
elements 64
off-line mode 66
profiles as configuration items 69
profiles in workarea 67

Waveforms in Scope dialog 180
WHEN command 224
WHEN/THEN/ELSE statement 129
WHILE command 225
WHILE/LOOP command 130
WRITE command 226
WRITE statement 127
Rational Statemate 271

Index
272 Simulation Reference Manual

	Contents
	Getting Started with the Simulation Tool
	Simulation Tool Overview
	Opening a Project and Workarea
	Creating a Statechart to Simulate
	Opening the Simulation Tool
	Opening a Monitor Window

	Advancing Through A Simulation
	Simulation Stage 1 - The GoStep
	Simulation Stage 2 - GoRepeat
	Simulation Stage 3 - GoExtended
	Simulation Stage 4 - GoAdvance
	Simulation Stage 5 - Condition Connectors

	Exiting Simulation

	Model Execution: Concepts and Terms
	The Tool
	Simulation Scope
	Determining a Simulation Scope
	Adding Testbenches to the Simulation Scope
	External Elements
	Status Of The System
	Simulation Step
	Notes on Simulation Steps
	Events
	Microstep
	Superstep

	Nondeterminism And Racing
	Transition Priority Rule
	Non-determinism
	Non-determinism - Example 2
	Racing
	User-Case Diagnostics

	Time In The Simulation Execution
	Relationship Between Step and Time
	Step-Independent
	Step-Dependent
	Synchronous and Asynchronous Time Scheme

	Time in Asynchronous Simulation
	Phase Limit

	Time in Synchronous Simulation
	Statechart Clocks
	Steps in Synchronous Time Scheme
	Empty Steps
	Buffering Events
	Scheduling Timeouts
	Toggling Events

	Go Commands
	AutoRun Mode
	Asynchronous Time Model
	Synchronous Time Model

	Simulation Support of Flowcharts
	Flowchart Semantics
	Code Compatibility Settings
	Flowchart in Simulation
	Flowchart in Simulation - Limitations

	Interactive Mode Simulation
	The Three Phases Of Interactive Simulation
	Starting the Simulation Tool
	Starting the Simulation Tool from the Rational Statemate Main Menu
	Starting Simulation from the Graphic Editor

	The Profile Editor
	Profile Scope Definition
	Creating a New Simulation Profile
	Adding Components to the Profile
	Saving the Profile
	Starting Simulation from the Simulation Profile Editor

	Entering Commands To The Simulator
	Menus/Toolbars
	Command Line

	Input Changes
	Do Action Commands
	Using DO Action
	Valid Input To Do Action
	Invalid Input to Do Action
	Response to Invalid Do Action

	Go Commands
	The Go Menu
	Pausing Execution

	Observing The System’s Behavior
	Graphic Animation Display

	Show Command
	Show Changes
	Show Future
	Show Racing
	Show Clock
	Examine
	Non-determinism

	Panels in Simulation
	Defining and Editing Panel Profiles
	Adding a Panel to the Profile
	Editing a Panel in the Profile
	Deleting a Panel from the Profile
	Font Appearances in Simulation Panels

	Waveforms in Simulation
	On-Line Mode of Waveforms
	Setting Waveforms to be Displayed in Simulation
	Activating Waveforms During a Simulation Session
	Checking Waveform Elements
	Unresolved Data-Items in the Scope
	Displaying Values in Waveform
	Off-Line Mode of Waveforms
	Trace Files Menu
	No Waveform in the Workarea
	Waveform Profiles in the Workarea

	Waveform Profiles as Configuration Items

	Use-Case Diagrams in Simulation
	Animation of Sequence Design
	Recording a Sequence Diagram

	Monitors in Simulation
	Adding Monitors to the Profile
	Simulation Monitor Fields
	Shared Monitor
	File Menu
	Edit Menu
	View Menu

	The Microdebugger Tool
	Defining a Breakpoint in a Subroutine
	Debugging a Textual and Graphical Procedure
	Adding Elements
	Simulating a Textual Procedure
	Simulating a Graphical Procedure

	Interactive Simulation Example
	The Traffic Light System
	Description Of The Traffic Light System
	Simulating the Traffic Light in the Asynchronous Time Model
	Initiating the Simulation Tool
	Setting Some Time Parameters
	Stage 1
	Stage 2
	Stage 3
	Stage 4
	Stage 5
	Stage 6
	Stage 7
	Stage 8
	Some Variations to Consider
	Simulating the Traffic Light in the Synchronous Time Model

	Recording a Simulation Session
	Setting the Simulation Parameters
	Saving and Restoring Status
	Record > Snapshot Status - Saving the Status
	Actions > Restore Status - Restoring the Status
	The Status File
	Status File Management

	Tracing a Simulation
	Automatically Recording a New Trace File
	Record > Start Trace - Creating a Trace File
	Trace File Management

	Creating Reports
	Formatted Report
	Spread Changes
	Spread Full
	Spread Compressed
	Interpreting Raw Data

	Record and Playback of Simulation
	Record For Playback

	Batch Mode Simulation
	The Simulation Control Program
	The Structure Of The Simulation Control Program
	The Program Header
	Constant Program Section
	Variable Program Section
	Initialization Program Section
	Breakpoint Program Section
	Main Program Section

	Basic Syntax Rules
	SCL Statements
	Semicolons As Delimiters
	Rational Statemate Expressions In the Simulation Control Program

	Predefined Variables
	List of Predefined Variables

	Random Functions
	List of Random Functions
	Random Functions In Simulation Control Program Statements

	SCL Session Control Statements

	File Operation Statements
	OPEN Statement
	READ Statement
	WRITE Statement
	CLOSE Statement

	Structured SCL Statements
	IF/THEN/ELSE Statement
	WHEN/THEN/ELSE Statement
	WHILE/LOOP and FOR/LOOP Statement
	Go Statements

	Breakpoints
	Breakpoint Definition
	Every numeric_expression
	Cancelling Breakpoints
	Setting Breakpoints
	Other Set/Cancel Commands
	Miscellaneous Commands
	Manipulating Breakpoints with Menus
	Breakpoint > Add - Adding a Breakpoint
	Breakpoint > Edit - Editing a Breakpoint
	Breakpoint > Deleting - Removing a Breakpoint

	Simulating a Truth Table
	Setting Breakpoints in a Procedural Truth Table
	Adding a Breakpoint to a Subroutine
	Subroutine Debug Tool
	Stepping through a Truth Table Simulation
	Simulating an Action Truth Table
	Simulation of an Activity implemented by a Truth Table

	Simultaneous SCP Execution
	Assign Files
	The Order of SCL Statements Execution
	Section Execution
	Breakpoint Processing

	Working with a Simulation Control Program (SCP)
	Actions > Run SCP - Running an SCP File
	Switching Modes of Model Execution
	Switching from Interactive to Batch
	Actions > Monitor SCP - Monitoring the SCP
	Actions > Stop SCP - Stopping an SCP
	Actions > Continue SCP - Restarting an Interrupted SCP

	A Sample Simulation Control Program
	What the Traffic Light Simulation Control Program Accomplishes
	The Program
	Explaining the Program

	Simulation Command Reference
	Interactive Commands
	The Simulation Profile Editor
	Simulation Execution Menu
	Save Profile
	Save Profile As
	Restart Simulation
	Rebuild Simulation
	Simulation File Management
	Analysis Profile Management
	SCP File Management
	Trace File Management
	Status File Management
	Messages
	Tool Bar
	Command Line
	Examine
	GoBack
	Pause
	AutoGo
	GoStep
	AutoRun
	GoStepN
	GoRepeat
	GoNext
	GoAdvance
	Go Extended
	Simulation Execution Option
	Panels
	Waveforms
	Monitors
	Animate All Charts
	Animate Selected Charts
	DoAction
	Breakpoints
	Run SCP
	Quit SCP
	Continue SCP
	Monitor SCP
	Restore Status
	Generate Interface
	Start Trace
	Stop Trace
	Record SCP
	Snapshot Status
	Show Changes
	Show Clock
	Show Future
	Show Racing
	New Profile
	Open Profile
	Close
	Print Profile Report
	Add With Descendants
	Add Testbench
	Add/Edit Panel
	Add/Create Waveform
	Monitors
	Remove From Scope
	Exclude From Scope
	Select
	Show Scope as Tree
	Show Scope as List
	Show Boxes
	Hide Boxes
	Execute Simulation
	Simulation Execution Options
	Time Settings
	Logic Settings
	Preference Management

	Auto Batch Commands
	ASSIGN
	CANCEL
	CHOOSE
	CLOSE
	COMMENT
	CONSTANT
	DO
	ELSE
	END
	EVERY
	EXEC

	Rational Statemate Actions
	AUTOGO
	GO ADVANCE
	GO BACK
	GO EXTENDED
	GO NEXT
	GO REPEAT
	GO STEP
	GO STEPn
	IF
	INIT
	LOOP
	MAIN SECTION
	OPEN
	PROGRAM
	RANDOM SOLUTION
	READ
	RESTORE STATUS
	SAVE STATUS
	SET BREAKPOINTS
	SET DISPLAY
	SET GO BACK
	SET INFINITE GO
	SET INFINITE LOOP
	SET INTERACTIVE
	SET TRACE
	SKIP
	STOP SCP
	THEN
	VARIABLE
	WHEN
	WHILE
	WRITE

	Supplementing the Model with Handwritten Code
	Supplementing the Model with Subroutines
	Entering Handwritten Code
	Using Subroutines
	Disabling Subroutines

	Supplementing the Model with a Procedure
	Using Globals
	Producing a Template for a Procedure
	Filling in the Procedure’s Template
	Subroutine Binding
	Supplementing the Model with a Task
	Using Globals
	Using the Template for a Task
	Filling in the Task’s Template

	Synchronizing Tasks
	Tasks
	Synchronization

	Scheduler Package
	Status of a Task
	Scheduling Policy
	Restrictions

	Binding Callbacks
	Callback Binding
	Callback Statement
	Disabling Callbacks
	Callback Example

	Referencing Model Elements
	Referencing Events
	Where Elements are Defined
	Accessing an Element Value

	Mapping Rational Statemate Types into C
	Records
	Unions
	Arrays
	Enumerated Types
	Constant Operators
	General Operators
	Bit Arrays
	Bit Array Functions
	Rules for Mapping into C

	BNF Syntax, Structure and Conventions
	BNF Structure And Conventions
	Symbol Types
	BNF Notations

	BNF for SCL Statements Syntax
	SCL Reserved Words
	Index

