1ELD] RN Statemate

Simulation Reference Manual

Rational Statemate
Simulation Reference Manual

Before using the information in this manual, be sure to read the “Notices” section of the Help or
the PDF file available from Help > List of Books.

This edition appliesto IBM® Rational® Statemate® 4.6 and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Contents

Getting Started with the Simulation Tool 1
Simulation Tool OVerVIEW. e 1
Opening a Project and Workarea. 2
Creating a Statechart to Simulate 3
Opening the Simulation Tool 4
Opening a Monitor WINAOW.ot e e e e e e e 5
Advancing Through A Simulation e e e 7
Simulation Stage 1 — The GOStEPo o e e e 7
Simulation Stage 2 — GORepeat 12
Simulation Stage 3 — GoExtended e 13
Simulation Stage 4 — GOAAVANCEot 15
Simulation Stage 5 — Condition CONNECIOISt ti eeeeieae 16
EXiting SImuUlation 17
Model Execution: Concepts and Terms i 19
The TOoO0l . .. e 19
SIMUIALION SCOPE . . .t e 19
Determining a SImulation SCOPE.ottt e 20
Adding Testbenches to the Simulation Scope 20
EXternal Elements e 22
Status Of The SYStem e 24
SIMUIALION St . . o .o 24

NoOtes 0N SIMUIALION StEPS ottt e 25

B NS . o 26

Y] {011 (=T o 27

SUP IS P . . ottt 27
Nondeterminism ANd RACING.ot e 28
Transition Priority RUIE 28
NON-AEetermMINISIM o e e e e e 29
Non-determinism — EXample 2 30

RACING . . . o 31

User-Case DiagnostiCso 31

Rational Statemate

Table of Contents

Time In The Simulation EXecution e e 32
Relationship Between Step and Timeot 32
Step-INdepeNdent 32
Step-Dependent e 32
Synchronous and Asynchronous Time Scheme i 33

Time in Asynchronous Simulation. e 33

Phase Limit e e e 33

Time in Synchronous SIMUIation. 34
Statechart CIOCKSo 34

Steps in Synchronous Time Scheme 34

EMPlY S DS . . oo 34

Buffering EVents 34

Scheduling TIMEOULS. ot 34

TOgglNg EVENES. . . o 34

GO COMMANAS . e e e e e e e 35
AULORUN MOde. . .o 36
Asynchronous Time Model e e 36
Synchronous Time Model 36
Simulation Support of Flowcharts. 37
Flowchart SemantiCs. 37

Code Compatibility SEttings oo 38
Flowchart in Simulation e e 39
Flowchart in Simulation - LImitations. 39
Interactive Mode Simulation 41
The Three Phases Of Interactive Simulation i 41
Starting the Simulation Tool. 42
Starting the Simulation Tool from the Statemate MainMenu 42
Starting Simulation from the Graphic Editor 43

The Profile Editor. 43
Profile Scope Definition. 44
Creating a New Simulation Profile. 45
Adding Components to the Profile e 46
Saving the Profile 48
Starting Simulation from the Simulation Profile Editor. 48
Entering Commands To The Simulator. i 48
MENUSITOOIDAIS . . .o e 48
Command LiNeo 48

iv Simulation Reference Manual

Table of Contents

INPUL CRaNges . . o 49
DO ACtON COMMANGS ottt e e e e e e e e e e e e e e e 49

USING DO ACHON . . .o e e 49

Valid INput TO DO ACHIONot e e e 50
Invalid INput to DO ACLIONo e 51
Response to Invalid Do ACHION e 51

GO COMMANAS . . o ottt e 52
The GO MENU . ..o e e 53
Pausing EXECULION.o 53

Observing The System’s Behavior e 54
Graphic Animation Display e 54
Show ComMmMaNd e 55
SNOW Changes 55

SNOW FULUIE . . o 56

SNOW RaACING . . . o o 56

ShOW ClOCKo 57
EXaMINE . .o e 58
NON-AetermMINISM oo e e e e 59
Panels in Simulation e 60
Defining and Editing Panel Profiles 61
Adding a Panelto the Profile. 61

Editing a Panel inthe Profile. 61

Deleting a Panel from the Profile. 62

Font Appearances in Simulation Panels 62
Waveforms in Simulation 63
On-Line Mode of Waveforms 63
Setting Waveforms to be Displayed in Simulation. 63
Activating Waveforms During a Simulation Session 64
Checking Waveform Elements 64
Unresolved Data-ltems in the SCOpe. 65
Displaying Values in Waveform. 65
Off-Line Mode of Waveforms 66

Trace Files MenU. 66

No Waveform inthe Workarea 66

Waveform Profiles in the Workarea. 68

Waveform Profiles as Configuration Items 69
Use-Case Diagrams in Simulation e 69
Animation of SEqUENCE DESIGN.ot 69
Recording a Sequence Diagramttt e 70

Rational Statemate \Y

Table of Contents

Monitors in Simulation 71
Adding Monitors to the Profile. 71
Simulation Monitor Fields 74
Shared MONIOr 75
File MeNU . . 75
Edit MeNU . .. 76
VIBW MBNU . o 76

The Microdebugger TOOol. e e e 77
Defining a Breakpoint in a Subroutine. 77
Debugging a Textual and Graphical Procedure i 78
AddiNg Elements e 80
Simulating a Textual Procedure 80
Simulating a Graphical Procedure. 81

Interactive Simulation EXample e e 83
The Traffic Light SyStem e 83
Description Of The Traffic Light System. e 83
Simulating the Traffic Light in the Asynchronous Time Model 84
Initiating the Simulation TOOl. 84
Setting Some Time Parameters 85
SO L . . oo e 85
StAgE 2 . o e 87
StAgE B . o 88
S AGE 4 . o oo e 89
1 2= T T 90
S O B . . . oo 91
S g 7 . o oo e 92
StAgE B . . 94
Some Variations to CONSIAEYot 94
Simulating the Traffic Light in the Synchronous Time Model 94

Recording a Simulation Session e 97

Setting the Simulation Parameters e 97

Saving and Restoring Status i 100
Record > Snapshot Status — Savingthe Status i e 100
Actions > Restore Status — Restoringthe Status i 101
The Status File 101
Status File Management 102

Tracing a SimuUIatioN e 103
Automatically Recordinga New Trace File e 104
Record > Start Trace — Creatinga Trace File e 104
Trace File Management e 104

Vi Simulation Reference Manual

Table of Contents

Creating ReP OISo e e 106
Formatted RePOIto 107
Spread Changesot e 108
Spread Full . ..o 109
Spread CoOmMPreSSEottt e 110
Interpreting Raw Dataot e 111

Record and Playback of Simulation 113
Record For Playback.o 113

Batch Mode Simulation 115

The Simulation Control Program i e e e e e 116
The Structure Of The Simulation Control Program e 117

The Program Header. 117
Constant Program SECHONt 117
Variable Program SeCtion 118
Initialization Program Section 118
Breakpoint Program SecCtion 119
Main Program SeCtioN. 119
BasiC Syntax RUIES 120
SCL StatemMENTSo 120
Semicolons As Delimiters 121
Statemate Expressions In the Simulation Control Program 122
Predefined Variables. e 123
List of Predefined Variables 123
Random FUNCHIONS e e e e e 124
Listof Random FUNCLIONS e 124
Random Functions In Simulation Control Program Statements 125
SCL Session Control Statementst 126

File Operation Statements 126
OPEN Statement. e 126
READ Statement. e 126
WRITE Statement oo e e e e e e e e e 127
CLOSE Statement. . . . 127

Structured SCL Statements e 127
IF/THEN/ELSE Statement.ottt e e e e e e 128
WHEN/THEN/ELSE Statement. e e e e 129
WHILE/LOOP and FOR/LOOP Statementttt e e 130
GO StalEMENTS . . o 131

BreaKpOints 132
Breakpoint Definition 132
EVEry NUMEIIC _EXPIrESSION ottt e e e e e e e e e e e 133
Cancelling Breakpointso e e 134

Rational Statemate Vii

Table of Contents

Setting Breakpoints 134
Other Set/Cancel CoOmMmMaNdSo e e e e e 135
Miscellaneous COMMANASottt e e e 135
Manipulating Breakpoints With MENUS. e e e e 135
Breakpoint > Add — Adding a Breakpoint 136
Breakpoint > Edit — Editing a Breakpoint. e 136
Breakpoint > Deleting — Removing a Breakpoint 137
Simulating a Truth Table. e 137
Setting Breakpoints in a Procedural Truth Table. 141
Adding a Breakpoint to a SUBIOULINEo e 142
Subroutine Debug Tool e 143
Stepping through a Truth Table Simulation. 143
Simulating an Action Truth Table 145
Simulation of an Activity implemented by a Truth Table 147
Simultaneous SCP EXECULIONttt 150
ASSIgN FIlES . . e e 150
The Order of SCL Statements EXeCUtiON e 151
SECHON EXECULIONo 151
Breakpoint ProCESSINGottt et e e e 151
Working with a Simulation Control Program (SCP) e 152
Actions > Run SCP —Runningan SCP File i e e e 153
Switching Modes of Model EXeCULION 153
Switching from Interactive to BatCh. 154
Actions > Monitor SCP - Monitoring the SCP e 154
Actions > Stop SCP — Stopping an SCP 155
Actions > Continue SCP - Restarting an Interrupted SCP i e 156
A Sample Simulation Control Program 156
What the Traffic Light Simulation Control Program Accomplishes 156
THE PrOgram . . .o 157
Explaining the Program. e 158
Simulation Command Reference 163
Interactive ComMmaNndsttt e e 163
The Simulation Profile Eitor. e 163
Simulation EXeCUtion MENU.o 166
Save Profile. . .. 167
Save Profile As . . 167
Restart SIMUIALION. 168
Rebuild SIMUulationo 168
Simulation File Management. e 169
Analysis Profile Management e 169

Viii Simulation Reference Manual

Table of Contents

SCP File Management 170
Trace File Management e 171
Status File Managemento 171
ST ST= Vo = 172
TOOl Bar. . .. e e e 173
CommaNnd Line e e 174
EXAMING . . e 175
GOBaACK e 176
PaUSE . .. e 176
AUIOGIO . .ot e 176
LT 1] (=T o 176
AUIORUN . o 177
GO EPN . . o 177
GOREPEALo 178
GON X . o e e 178
GOATVANCE . . . oottt e 178
GO EXtENdEd e e 179
Simulation EXecution OpLioN. 179
PaNElS . . . e e 180
WaVE OIS . . . 180
MONE O S . e e 182
Animate All Charts e 183
Animate Selected Charts e e 184
DOA CH ON e 185
BreakpointS e 186
RUN SC P . . e 187
QUIt SCP . . . e 187
CONINUE SCP . . ot 187
MONItOr SC P . . . e e e 188
RESIOre StatUSo 189
Generate INterface e 190
StAM TrACE . ..ottt e e 190
SHOP THaACE. . . oottt 191
RECONd SCP . .o 191
SNAPShOL STAtUS 192
ShOW Changes 193
ShOW ClOCK . . . oo s e e e 194
ShOW FULUNE . . oo e 195
ShOW RaACING . . . o e 196
NeW Profile . 197
OpeN Profile . . 198
ClOSE . . o e e 199
Print Profile Report e 199
Add With DESCENANTSo e e e 200

Rational Statemate iX

Table of Contents

Add TestbenCh e 200
Add/Edit Panel e 200
Add/Create Wavelorm. e 200
MONIOrS .ttt 201
ReEMOVE From SCOPE 201
EXClUdE From SCOPE. . . . oo e 201
SlECt . o 201
ShOW SCOPE 8S TrEE. . . oottt e e e 202
ShOW SCOPE S LiSt. . . . oo 202
SHOW BOXES . . ottt 202
HIde BOXES . . ottt 203
Execute SIMUIation e 203
Simulation EXecution OPLioNSot 204
TIME SO tNGS . . o ottt 204
LOgIC SBINGS - . . oot 206
Preference Management.o 206
Auto Batch Commands. e 207
ASSIGN. L 207
CANGCEL . ..o e 207
CHOOSE. . . ot e e 207
CLOSE . . 208
COMMENT . L 208
CON ST ANT e 209
DO . e 210
ELSE . o o 210
EN D . .o 210
EVE RY . 211
EXEC .t 211
STATEMATE ACTIONS . . oo e e e e e e e e e 212
AUTOGO. .« .ot e 212
GO ADVANCE . . .ot e 212
GO BACK .o 213
GO EXTENDED . . .ottt e e e e e e e e 213
GO NEXT ottt ittt e 213
GO REPE AT . o 213
GO STEP . 213
GO STEPN 214
I e 214
INIT e 215
LOOP . 215
MAIN SECTION . . e e e e e 216
OPEN o 216
PROG RAM . . 217

X Simulation Reference Manual

Table of Contents

RANDOM SOLUTION. . o oottt ettt e e e e e e e e e e e e 217
READ .t 218
RESTORE STATUS .o 218
SAVE ST ATUS . 218
SET BREAKPOINT S, . .ot e e e e e e e e 219
SET DISP LAY . oot 219
SET GO BACK . ottt 220
SETINFINITE GO. . . oottt e e e e e e e e e e 220
SETINFINITE LOOP . . .t e e e 221
SET INTERACTIVE . .o e e e e e 221
SET TRACE . . .ot 221
SKIP 222
ST OP SCP . .t 222
THEN o 222
VARIABLE. . . . 223
WHEN .« L 224
WHILE . oo 225
W RITE. .« o e e 226
Supplementing the Statemate Model with Handwritten Code 227
Supplementing the Model with Subroutines. 228
Entering Handwritten Code. e 229
USING SUDIOULINES. . . . o e e 229
Disabling SUBroUtiNES o e 229
Supplementing the Model with a Procedure. i e 230
USINg Globalso 232
Producing a Template for a Procedure 233
Filling in the Procedure’s Template. e e e e e e 234
Subroutine Bindingo 235
Supplementing the Model with a Task e 236
Using Globals 238
Using the Template for a Tasko e e 239
Filling in the Task’'s Template e 241
SYNChronizing TasKS. . . .o oo 242
TaSKS. .o 242
SYNCHIONIZALION.o e 242
Scheduler Package 244
Status of @ Tasko 244
Scheduling PoliCy 244
RESIIICHONS . . . oo 245

Rational Statemate Xi

Table of Contents

Binding Callbacks 245
Callback BINAiNgo 245
Callback Statement. 245
Disabling Callbacks. e 246
Callback EXample 246

Referencing Model Elements e 249
Referencing EVENtS.o e 249
Where Elements are Defined 250
Accessing an Element Value 250

Mapping Statemate Types into C. e 251
RECOIUS. . . 251
UNIONS . . e 251
AT Y S . o e 252
Enumerated TYPeS . . .ottt e 252
CoNStaNt OPEIatOrS. ottt et e 252
GeNEral OPEIAtOrSttt ittt et e e 253
Bt AT A S, . v it e 253
Bit Array FUNCLIONS e 254
Rules for Mapping into C.ot e 257

BNF Syntax, Structure and Conventionsuiinnnn. 259

BNF Structure And ConVeNntioNS 259

SYMBDOl Ty PES . e 260
BNF NOtatiONS.ot et e e e 260

BNF for SCL Statements Syntax, 261

SCL Reserved WOrds 265

N X . .o 267

Xii Simulation Reference Manual

Getting Started with the Simulation Tool

This section introduces you to the Rational Statemate Simulation tool. It describes how to start
simulation and takes you through the different stages of simulation by using a smple example.

Before you begin, it is assumed that you have Rational Statemate installed on your system and you
can access a project and aworkarea. If you are not familiar with window and mouse operations,
you may want to refer the Rational Satemate User Guide.

The section explains how to:

+ Start the Simulation tool.
+ Setup aMonitor window to examine and change values of different system elements.
+ Use various commands to advance through simulation.

Simulation Tool Overview

The Simulation tool allows you to execute a graphical model. You are able to verify the behavior
of your design by examining the animation of the graphical elementsin your design. You can also
modify and examine the values of the textual element in your design. Using the Simulation tool,
you are able to experiment with “What if?’ scenarios and observe the effect on your design. This
aids you in detecting faults.

Simulation capabilitiesinclude:

¢ The ahility to simulate in batch mode or in interactive mode.

¢ Batch mode allows for the automation of simulations with little or no user involvement.

¢ Global simulations can be started from the main Rational Statemate menu or local
simulations can be started from an Activity-chart or Statechart.
Interactive mode simulation allows you to have complete control over the simulation and
is very useful when debugging the model.

¢ With global simulations you can setup a Simulation Profile. This profile allows you to set
the scope of your simulation and define simul ation settings. The Simulation Profile can be
saved and run later.

Rational Statemate 1

Getting Started with the Simulation Tool

Playback scripts can be recorded to automate repested execution of the model in the same
scenario.

Tracefiles can be recorded so that simulation data can be examined following a
simulation.

Monitor windows can be used to examine and change the current value of elements of the
system.

Waveforms can be used for graphical representation of the execution history; they display
the current and past values of element of the system.

Graphical panels representing a realistic mock-up of the system’s user interface can be
used to change inputs and examine outputs of the system.

Opening a Project and Workarea

To open a project and workarea:

1

Select File > Open Project from the top menu bar of the Rational Statemate main menu.
The Open Project dialog box opens.
Select the project name to open. The screen displays al the available workareas.

Select aworkarea to open.

After you make your selection, the workarea path name appears in the Workarea:
selection box.

Select OK. The Rational Statemate main menu appears with the tool icons available for
use.

Simulation Reference Manual

Creating a Statechart to Simulate

Creating a Statechart to Simulate

The example used in this section is of asingle Statechart. Enter the statechart shown below into
your workarea using the Rational Statemate Graphic Editor. Refer to the Rational Satemate User
Guide for details on creation of Statecharts. After creating the statechart, save it and return to the
Rational Statemate main window.

COMP_H \

E1/E2

" tn(SYND.2

Rational Statemate 3

Getting Started with the Simulation Tool

Opening the Simulation Tool

Simulation can be started from either the Rational Statemate Main window, an Activity-chart, or a
Statechart. In this exercise, we are starting simulation from a Statechart.

Select Tools> Simulation from the Graphic Editor menu bar. The Simulation Execution window
opens. From this window, you are able to control simulation and define simulation parameters.

K3 simulation Execution for: SIMULATION -10] x|
File Yiew Go Record Analyze Actions Displays Options Help

O

Hezzages
Building internal data structure

o I

4 Simulation Reference Manual

Opening the Simulation Tool

Opening a Monitor Window

Monitors allow you to examine and change the status of elements within your model.

1. Select Displays> Monitors. The Simulation Monitor opens

=10/

File Edit Yiew Help

" Mame || Tupe || Yalue || Status :| Hode ||

2. Select Edit > Add from the Simulation Monitor window. The Element Selection for
Monitor browser opens on your screen.

3. Under Type, the default is Data-1tem. Change this setting to All. This specifiesthat all the
textual elements within the chart are added to the Statechart list.

4. Select Filter.
C1, C2,EL, E2, SYNC and VARL1 are listed.
5. Click Select All.

Rational Statemate 5

Getting Started with the Simulation Tool

Element Selection for Monitor

6. Click OK. All selected elements are added to the Monitor window and their types; values
and status are displayed.

6 Simulation Reference Manual

Advancing Through A Simulation

EEE

File Edit Wiew Help
_" Hame " Type " Yalue " Status :|m"
COMDL Co FALSE
H II]
Note

You can resize the Simulation Monitor dialog box so only the elements your are
monitoring are displayed.

Advancing Through A Simulation

When simulating a Rational Statemate model, you advance through the simulation based on steps
and time. Thisis accomplished by using various Go commands.

Simulation Stage 1 — The GoStep

The most basic Go command isthe GoStep. The GoStep causes the simulation to attempt to
advance one step

Rational Statemate 7

Getting Started with the Simulation Tool

[SYSTER |
/‘ , COMP_S , CoP \
1 E1/E2
E1l i
tmlen(S2), 5} i
V= ~ [cil
521 SYHE : "
: [CZ2 and not C1]
¢ tm{SYNC,2) E1/5YNC
tm {E2,¥ARL ™— 522 : i
. o

\ /

1. Fromthe Simulation Execution menu, select Go > GoStep or click |

The result is entrance of the statechart into its default states of S1 and X 1.

2. Fromthe Simulation Monitor generate E1 by selecting the value cell with the left mouse
button.

An X appearsin the value column indicating that the event is generated and isan input for
the next step.

3. Select another GoStep.

The transition from state S1 to state S2 is taken because the trigger E1 was present during
this step. The default transition into state S21 is a so taken. The transition from state X1 to
state X2 is taken because the trigger E1 was present during this step. The action of
generating event E2 also occurred as aresult of the transition from X1 to X2.

8 Simulation Reference Manual

Advancing Through A Simulation

I SYSTEMI

/ -\ COMP_S — COMP_H \

Hi

51 '

:

tmien{S2 .5 H
1

1

1

1

E1
= ' ™

E1/E2

tm (SYNC.23

tm (E2.VARL?}

.

o 5 /

4. Seect Analyze > Show. The Show Change dialog box opens on your screen. The Show
Change dialog box lists all the changes that occurred in the model during the last step.

Rational Statemate 9

Getting Started with the Simulation Tool

(B x]
Changes Future | Racing | Clock |

Changes for step 23

Statechart: SIMULATION

State K1 waz exited

State K2 waz entered

State 51 waz exited

State LSTATE#S,STATE#L2 . STATE#4 waz entered
State 521 waz entered

=l

{ fAutomatic Update % Freeze

Dizmizs I Help |

5. Select Future. The Show Future dialog box opens. The Show Future dialog box
displays all events and actions scheduled to occur in the future.

PETTTTE— il
Changes Future Racing | Clock |

Future for step 2:

Time Type Name/Definition
1 Event tn{E2,VAR1}
2 Event tn{en(S2),5}

10 Simulation Reference Manual

Advancing Through A Simulation

Thetransition from state X1 to X2 is made when E1 is generated, that, in turn,
generates the event E2. The timeout event, tm(E2, VAR1), shown in the Show
Future dialog box, was scheduled based on the generation of E2. E2 is till pending
and requires another GoSep to allow the model to react to it. Also the timeout event,
tm(en(s2), 5) was scheduled based on the fact that the system entered the state S2.

6. Select Automatic Update.
Thisallowsyou to observe all changes related to schedul ed timeouts as the changes occur.
7. Fromthe Simulation Execution menu, select Go > GoStep or click GoStep.

E2 has occurred but no transition is directly depending on it so the system remainsin
states S21 and X2.

I SYSTEHI

(/"

COMP_X \
1

E1/E2

T km{SYMC,2)

Rational Statemate 11

Getting Started with the Simulation Tool

Simulation Stage 2 — GoRepeat

The GoRepeat advances simulation steps until the system reaches a stable configuration (thisis
referred to as a superstep). A stable condition occurs when no further steps can be taken without
changing a system input value or incrementing time.

1. Fromthe Simulation M onitor, generate E1 by selecting the Value cell with the left mouse
button.

2. Select Go > GoRepeat. The transition is made from X2 to X3 and the event SYNC is
generated. The SYNC event causes the transition from S21 to S22 to be taken.

3. Thetimeout eventstm(en(s2), 5) and tm(E2,VAR1) have previously been scheduled.
During the GoRepeat command, the timeout event tm(SY NC,2) was scheduled when the
event SYNC was generated. Observe that the timeout is added in the Show Future dialog
box.

I SYSTEH'

COMP_¥ \
1

E1/E2

o tmESYHC, 2 E1/SYNC

tm (E2 VARLY

.

12 Simulation Reference Manual

Advancing Through A Simulation

Simulation Stage 3 — GoExtended

The GoExtended either executes a GoRepeat or if no steps can be taken, it advancestime to the
nearest timeout or scheduled action. It then runs a GoRepeat.

1. Select Go > GoExtended from the Simulation Execution menu. This advances the time
to 1.

Note

Observe the time stamp in the status line of the Simulation Execution window. It shows the
current time as 00:00:01. The timeout tm(E2,VAR1) occurs and atransition is made from
S22 to S21.

I SYSTEHI

COMP_X \

E1/E2

tm{SYMHC .20 E1/SYNC

o 5 /

2. Observe that the timeout tm(E2,VARL) no appearsin the Show Future dialog box.

3. Sdect Go > GoExtended From the Simulation Execution window.

Thetimeisnow 2 and the transition from X3 to X1 is made because the timeout
tm(SYNC,2) occurred.

Rational Statemate 13

Getting Started with the Simulation Tool

I SYSTEHI

COMP_K \

tm (SYNC.2)

tm{E2.YARL}

\.

. i J

4. Observethat the timeout tm(SYNC,2) is no longer in the list of scheduled timeoutsin the
Show Futuresdiaog.

14 Simulation Reference Manual

Advancing Through A Simulation

Simulation Stage 4 — GoAdvance

The GoAdvance advances the simulation time by a specified number (n) of units, then perform a
superstep.

1. Select Go> GoAdvance from the Simulation Execution menu.

The Go Advance dialog box appears on your screen.

x

Advatce
[(:'Relatiue { fbsolute

Value:l

0K I Cancel ‘Help I

2. Enter 3into the Valuefield. Click OK.

This advances the time by three units causing atransition between S2 and S1 becauseitis
due in five time units since S2 was entered. Thisis the meaning of the timeout
tm(en(S2),5).

[S7STEN |
/_ COPS COMP_ \

E1/E2

T tm{SYNC,2}

L i /

Rational Statemate 15

Getting Started with the Simulation Tool

Simulation Stage 5 — Condition Connectors

1. Toggle condition C2 by selecting the value cell with the left mouse button in the
Simulation Monitor dialog box.

The value C2 should be true.
2. Select Go> GoSep.

The transitions to state X3 from X1 is taken via the condition connector because the
trigger [E1] evauated the true during the step.

[SVSTm

coMP_S GO \

' Hl

E1/E2

tmien{52.5)

[C2 and not C11

| tm(SYMC.2}

16 Simulation Reference Manual

Exiting Simulation

Exiting Simulation

1. Sdect File> Exit.

A message appears asking if you want to save in profile your simulation environment (in
this case the definition of the scope and of the monitor).

2. Click Yes.

The Simulation tool is terminated for this session and simulation setup is saved for reuse.

Rational Statemate 17

Getting Started with the Simulation Tool

18

Simulation Reference Manual

Model Execution: Concepts and Terms

This section details the terminology and underlying concepts that make up the Rational Statemate
Simulation Tool. Prior to reading this section, it is advised that you become familiar with the
principles discussed in the Rational Satemate User Guide.

The Tool

The Rational Statemate Simulation Tool is used to examine the behavior of the specification
modeled using the Statechart and Activity-chart graphic languages. During simulation, you can
interactively simulate the model and view the results or you can write a program that runsin batch
and portrays atest scenario. When simulating, you can examine the state of your system using
graphical animation. Monitors and waveforms can be used to examine the value of elements
during simulation. After the simulation is executed, you can analyze atrace report of that
simulation. Refer to Interactive Mode Simulation for details on interactively smulating and Batch
Mode Simulation for details about writing and executing a program in batch.

Simulation Scope

The Simulation Scope contains the set of components that are included in the simulation session.
During the development of your specification, you may want to validate the behavior of only a
portion of the model rather than study it in its entirety. Your choice of which aspect to examineis
the simulation scope.

Rational Statemate 19

Model Execution: Concepts and Terms

Determining a Simulation Scope

A simulation scope can combine any number of Statecharts and Activity-charts or portions of
these. A portion achart isabox (Activity and State) with its descendents. The simulation scope

may include:

Single Statechart

This scope is used when analyzing a component of the system or
when the behavior of the entire system is described by a single
Statechart. The single Statechart need not be connected to a control
activity.

Multiple Statecharts

This scope illustrates the interaction between components that are
described by the different Statecharts. This technique is also useful
when a Statechart represents the system and another represents the
external environment.

Portion of a Statechart

This scope is useful when the specification is incomplete but you want
to analyze the completed portion. For example, simulate one
orthogonal component of a vast Statechart.

Activity-chart

This scope is used to analyze the interaction of various parts of the
system each described in a different Statechart or mini-spec
corresponding to the control activities.

Adding Testbenches to the Simulation Scope

To help analyze your model, it is often beneficial to add an auxiliary Statechart that monitors or
drives your model during analysis. These Statecharts are called Testbenches. Testbenches have the
unique ahility to relate to al the dementsin the Smulation scope.

Syntactically, Testbench charts are no different than other Statecharts. Semantically, however, all
elementsin the scope are visible to the Testbench. Testbench charts can be used in the following

ways:

Observers Statecharts that help monitor, debug or check the performance of parts of the
system. These charts do not influence the behavior of the system.

Drivers Statecharts which represent the environment and feed the system with the
needed input.

Components Statecharts which are currently not part of the system but may be integrated
later as part of the entire specification.

Note

Testbenches cannot be used to relate to elements in generic instances.

20

Simulation Reference Manual

Simulation Scope

The following figure represents a simple Statechart where the event E is detected and causesa
trangtion from state A1 to A2 during thistransition the value of X isincremented. This Statechart isthe
specification of asystem, where the event E is defined as coming from the environment and the system

reactstoit.
/" SPEC e /%0 N
|
Al
A
E/ X: =X=1
Y
A2
o /

Assume that the specification also states that if event E occurs, it must wait 5 time-units before
reoccurring. Thisis expressed in the Testbench Statechart as shown in the following figure. Also assume
that once X isequd to 10, event E isno longer generated.

Rational Statemate 21

Model Execution: Concepts and Terms

WATCHDOG
.”7"'\v \
| DLE
I E tm(en(WAIT), 5) .
DONE
VAI T : /

N /

When the Testbench chart is simulated with chart SPEC, thereferenceto E in the Testbench is

resolved to event E defined in SPEC. Therefore, SPEC receives E every 5 time-units until X getsthe

valueof 10.

Note

The elements X and E is defined to a chart in the model, but must be left unresolved in the
testbench Statechart.

External Elements

Externa elements are inputs and outputs to the system. Some of the elements in the simulated
scope are marked as externd. These are the elements that according to the specification may change
outside of the smulated scope. Elements that flow from activities outside the smulated scope into
activitiesingde the smulated scope are externd.

It is recommended that you modify only the external elements, since these appear to be
environment-driven. Modifying non-external elementsis allowed to provide corrections to the
behavior of the model, or to complete under-specified portions of the model.

Thefollowing figureillustrates a portion of the Activity-chart for a garage door opener. Activities
DOOR and REMOTE_CONTROL correspond to the two system components.

22

Simulation Reference Manual

Simulation Scope

‘ DRI VER |
OPENI NG SYSTEM | OPEN_BUTTON
/ \
CLOSE_BUTTON / ‘ DOOR
! | | OPEN_DOOR
! | »
REMOTE_CONTROL : o @_CONTROL
< ! oL
. S o
@zc_OONTRﬂ g . " CLOSE_DOOR
OPEN_ACT CLOSE_ACT
DR
OPENI NG CLOSI NG

.

Assume that the primary interest isin the garage door subsystem. The scope is set to the activity
DOOR and containsthe Statechart D CONTROL . With DOOR asthe scope, the
REMOTE_CONTROL becomes part of the environment and, therefore, event OPEN_DOOR and event
CLOSE_DOOR areexternal in thissmulation execution. You must generate the events OPEN_DOOR
and CLOSE_DOOR.

If you later want to execute the model on the entire system, the scope is defined as the
OPENING_SY STEM activity. Inthiscase, theevents OPEN_DOOR and CLOSE_DOOR arenolonger
external, but the events OPEN_ BUTTON and CLOSE_ BUTTON are now externdl.

Rational Statemate 23

Model Execution: Concepts and Terms

Status Of The System

Throughout the remainder of this section, the term status of the system is defined to include:

*

*

*

*

*

Status of activities in the scope (active, hanging ornactive)

The set of states the system isin (configuration)

Values of al conditions and data-items in the scope

Events generated in the previous simulation step

Time delays until each scheduled action and timeout event occur
History of the states

Context variables (their name beginswith adollar ($) sign), are not part of the status of the system.
They do not retain their value from one step to another.

Simulation Step

A simulation step is a change in the system statusin response to external stimuli or internal
changes. A step can betriggered by an action (internd or external) or thetrigger can be atimeout event
occurring asaresult of incrementing time.

A simulation step is atwo stage process; it occurs as follows:

*

*

Stimulus to the system occurs via actions or timeout events
The system reacts by processing transitions, static reactions and mini-specs.

When the simulation execution begins, and before thefirst step is performed, the default initial status
of thesystemis:

*

When using software style activities, the activitiesin the top level hierarchy in the scope
are active.

When using hardware style activities, al activitiesin the scope are active.
The system is not in any of its states.

All primitive conditions are false. All primitive numeric data-items are zero and string
data-items are blank.

No events are generated.
No timeout events or actions are scheduled.
States have no history.

24

Simulation Reference Manual

Simulation Scope

After the first simulation step istaken, the system statusis:

¢ The state configuration includes the default states of the Statecharts connected to any
active control activity, or defined to be a Testbench.

¢ All other elements of the system status are modified in accordance with actions performed
on default connectors or by static reactions on entrances into these states.

Notes on Simulation Steps

A state cannot be entered and exited in the same step. Consider the following figure (a). Assume
the system isin state S1 and the condition c istrue. When event eis generated, atransition from S1
to S2 istaken. Thetransition from S2 to S3 is taken only in the next step.

In the following figure, assume the system isin state S1 and condition Cistrue. When event E is
generated, atransition from S1 to S2 istaken. Thisrepresents one simulation step. Thetrangtion from S2
to S3istaken only in the next smulation step.

S — — S3
(@)

e

(b)

Thereisaspecia case in which a state may be exited and then entered in the same step. This
happens when the target state and the source state are the same —asin (b) above.

Rational Statemate 25

Model Execution: Concepts and Terms

Events

An event is alivefrom the end of the step that generated it until the end of the following step. The
following examplesillugtrate how events work.

o

E/F

v

=

In Chart A, make the following assumptions.

¢ Thecurrent active states are S1 and S3.
¢ Event E isgenerated, and the step is performed. When this happens, the following occurs:

¢ Thetransition from S1 and S2 istaken. This causes the action of generating event
F (which is present during the next step).

¢ Thetransition from S3 to $4 occurs.
¢ Perform another Sep triggered by F (event E is no longer present).
¢ Thetransition from $4 to S5 occurs.

26 Simulation Reference Manual

Simulation Scope

N

E/F

h 4

N

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
v

In Chart B, make the following assumptions:

¢ Thecurrent active states are S1 and S3.
+ Event E isgenerated and the step is performed. When this happens, the following occurs:

¢ Thetransition from S1 and S2 istaken. This causes the action of generating event
F (which is present during the next step).

¢ Thetransition from S3 to S4 does not occur because only event E is present during
this step.

¢ Perform another Sep.

Thetransition from S3 to $4 is not taken because only event F is present during the step.

Microstep
The execution of a single subroutine statement istermed a‘ microstep’.

Superstep

Sometimes, as areaction to external changes, the system is able to perform more than one step
without additional external stimuli. Each step in such a series of steps, except for theinitial one, is
triggered by changes the system itself produced in the previous step. This chain of steps continues
until the system reaches a status from which it cannot advance without further external input and/
or without advancing the clock. Such a statusis called a stable status. The progression from one
stable status to another is called a Super step.

Rational Statemate 27

Model Execution: Concepts and Terms

¢ States S1 and A define a gtable status since no change in the system status occurs without an
externd stimuli being introduced.

¢ Event Eisgenerated.
¢ When the step is performed, the new configuration becomes S2 and Sb.

¢ Event F isgenerated internally. Thisalows the smulation to take the transition from S5 to S6
without additional external stimuli.

¢ Theresulting configuration, S2 and S6, isthe next stable status. Without generating event G or
advancing the clock at least 5 units, no transition takes place. Therefore the sequence of steps
from states S1 to S2 and S6 is a supergep.

Nondeterminism And Racing

Thusfar all the Statechart examples have had unambiguous reactions. For each given system status
only one set of reactions was enabled and the next status was clearly determined. Simulation
progresses smoothly along the one legal path.

Transition Priority Rule

Conflict may occur when there are two or more enabled transitions which cause an exit from the
same state. Some of these situations are resolved in the semantics of Statecharts by the transition
priority rule.

28 Simulation Reference Manual

Simulation Scope

When event E isgenerated, both the S3 to $4 transition and the S1 to S2 trangition are enabled.

In such cases, priority is given to the transition for which the parent state common to both target
statesis of ahigher hierarchical level.

In the above figure, the parent state of S2is S3. The parent State of 4 is 5. Since b isahigher level
date than S3, the S3 to $4 trangition istaken.

Another conflict situation in which the Transition Priority Rule appliesis when some state in the
current system’s status contains an enabled static reaction simultaneously with an enabled
transition exiting the state. The priority is given to the transition and the static reaction is not
performed.

The analsim/base library, shared by Simulation and Code Generators, create “dummy” states to
wrap the source and target states of transitions with a priority setting. If there are two transitions
with the same source and target, but different priority settings, the analysis tools behave asif there
isno priority setting. These “dummy” states are referenced in the code generated by C, Ada, and
MicroC generators but are not displayed in Simulation monitors, the Shoe utility, or C CodeGen
debugger.

Non-determinism

Conflict situations can occur where the system’s reaction is not deterministic and thus the next
status can be defined in several different ways. These situations are known as non-determinism and
racing.

Rational Statemate 29

Model Execution: Concepts and Terms

[Ci]

S2

S1

[C2]

In the above figure, if both conditions are true when event E occurs, there are two lega Statechart
reactions. Thisis an example of non-determinism. During Smulation execution, you must tell the tool

which solution is appropriate.

S5
7»52

Non-determinism — Example 2

When event E is generated, both the S1 to S2 trangition and the S3 to 4 trangition are enabled. Sincein
both cases the parent sate of thetarget state isidentical, no trangition priority rule can determine the

correct trangtion. A nondeterminism has been found.

30

Simulation Reference Manual

Simulation Scope

Racing

Another type of conflict, racing, occurs when (at the same point in time) a condition or dataritem is
modified more than once.

~ ; ~
- =3
N . J

If E occurs when the systemisin S1 and S3, X may be assigned two different values. Thisisaracing
condition. In this example, racing occurs when a condition is modified more than once in the same step.
See show Racing for information how to resolve aracing condition.

User-Case Diagnostics

The ability to record a sequence diagram during a simulation run is enhanced to allow the creation
of multiple lifelines, following the selection of activitiesin the model.To record a sequence
diagram:

1. Select Simulation profile > Options > Sequence Diagram Gener ation.
2. Select Generate Sequence Diagram.
This dialog box has an additional field named Activities Lifeline Selection.

Two recording modes are how supported:

¢ Record Only Toplevel - Thetool generates a sequence diagram with two lifelines: onefor
the system and one for the user.

+ Lifeline Entitiesto Record - A dialog box opensto enable you to select the activitiesin
the model that the tool should generate alifeline for. In this mode, the tool generates an
external lifeline for each external activity that interacts with the defined lifelines
(activities).

Rational Statemate 31

Model Execution: Concepts and Terms

Note

Thelist of (internal) activities is based on semantic entities, those activities that have a
separate internal clock, like a control-activity with a statechart, or a reactive mini-spec.

Click Add to open an easy to use tree-view of the model hierarchy. When an activity is selected
and added to the list, a check is made so that only a single activity in the hierarchy is recorded at
any time. For example, if both the activity and its descendant are listed in the Lifeline Entities list,
only one of them has the flag that controls recording set ‘yes'. The top-most element is the default.

Time In The Simulation Execution

Until now, simulation execution has dealt with its progression in terms of steps. This section
discusses time in the simulation execution.

Relationship Between Step and Time

The question is, “How does the progression of the simulation (steps) relate to the progression of
time?’ The Simulation Tool provides two time schemes. In both, transitions between states and
static reactions within states take place in zero time, that is, no time passes during the step.

Step-Independent

In this scheme (called asynchronous time scheme), there is no relationship between the simulation
step and incrementing time.

Severa steps can be performed at the same time without advancing the time and time may be
advanced without any steps occurring.

Therefore, the Simulation Tool differentiates between the role of step and time during the
simulation. In the normal flow of simulation, time is advanced when the system isin astable
status.

In the step-independent time scheme, timeis advanced after each superstep and not after each step as
in the step-dependent scheme.

Step-Dependent

In this scheme (called synchronoustime scheme), steps and time are related. Time is advanced one
clock unit with each simulation step. Therefore, the Simulation Tool does not differentiate between
the role of step and time during the ssimulation. In the normal flow of simulation, time is advanced
based on stepping through the model regardless of external stimuli.

32 Simulation Reference Manual

Time In The Simulation Execution

Synchronous and Asynchronous Time Scheme

The division between synchronous and asynchronous time has been performed in the Simulation
Tool.

The two schemes, synchronous and asynchronous are strictly separated. They cannot be mixed in
the same simulation session. You must choose the scheme before the model execution starts.

Time in Asynchronous Simulation

Phase Limit

Since in the step-independent scheme more than one step may be taken at atime, there may be a
situation in which the specified system is able to perform an infinite number of reactions without
incrementing time. Thisis called an infiniteloop.

F/ E

If the system isin state S1 and event E isgenerated or if in State S2 and event F is generated, the
simulation togglesinfinitely between S1 and 2.

To avoid infinite loops, a phase limit is defined which restricts the number of steps that can be
taken without advancing time. Phase limit restricts the length of al supersteps, even those that
would not result in an infinite loop. The phase limit is set using the Seps per Go parameter.

Rational Statemate 33

Model Execution: Concepts and Terms

Time in Synchronous Simulation

Statechart Clocks

For each of the Statecharts in a simulation scope, the time increment per step (duration of the step
in the chart) can be defined individually. A clock increment of a chart defines the point in time
when the chart gets control for step execution. If a simulation session includes Statecharts which
have different clocks, the following interactions occur:

Steps in Synchronous Time Scheme

At the very first step of the smulation, all top level Statecharts in the scope execute their default
transitions; this step finishes at time 0.

At any other step, the clock is advanced to the nearest time when some chart can obtain control for
step execution.

Empty Steps

If the execution of a step by a chart does not cause any changes in the model, then the step counter
is not advanced. Note that the clock is always advanced as described above.

Buffering Events

Whenever an event is generated, either internally or externally, it is buffered by all charts waiting
for their turn to execute a step.

A buffered event remains active for a chart until the chart gains control (i.e., until the chart senses
the event and reacts to it). After the chart accomplishesits steps, the event becomes non-active in
reference to that chart.

Scheduling Timeouts

When the same timeout TMO (defined astm(E,T)) is used in Statecharts with different clock
increments, it is scheduled differently for each of the charts. In chart S, TMO is scheduled to occur
at TO +T, where TO is the first moment of time after the event E was generated that chart S gets
control. Sreactsto TMO in thefirst step it runs after TO+T.

Toggling Events

When an event is generated, its status with respect to each of the chartsistoggled. If the event is
active for some charts that are waiting for their turn to step, it becomes non-active for these charts.
For charts that the event is not active, it becomes active.

34 Simulation Reference Manual

Go Commands

Go Commands

Go commands are used to advance the model execution. This section provides an initial definition
of each Go command. The following table supplies a description of each step in asynchronous and
synchronous simulation mode.

Asynchronous Simulation Synchronous Simulation
GoStep Runs one step and consumes no time. Runs one step and consumes one time
unit.
GoStepN Runs a specified number (N) of steps. Runs a specified number (N) of steps.
GoRepeat Performs a superstep and consumes no | Performs a superstep and consumes the
time. amount of time units equal to the number
of steps taken during the superstep.
GoNext Advances time to the next scheduled Advances time to the next scheduled
action or timeout event. Then performs a | action or timeout event. The number of
GoRepeat. steps taken are equal to the number of
time units.
GoExtend Performs a GoRepeat. If a superstep Performs a GoRepeat. If a superstep
can'’t be taken, then it performs a GoNext | can’t be taken, then it performs a
then a GoRepeat. GoNext then a GoRepeat.
GoAdvance Allows you to advance the time by Allows you to advance the time by
specifying the increment of time. A specifying the increment of time. The
GoRepeat is taken. number of steps are equal to the number
of time units advanced.
AutoGo The AutoGo command is used to The Aut 0Go command is used to
perform a GoStep in an unstable status | perform a GoStep in an unstable status
otherwise it performs a GoNext. otherwise it performs a GoNext .
GoBack Undo last Go command Undo last Go command

Rational Statemate

35

Model Execution: Concepts and Terms

AutoRun Mode

In Autorun mode, simulation runs continuously with the entire interaction being performed
through panels and monitors. Simulation behaves asiif it was a real-time execution of the model.
Thisis achieved by the following:

¢ Each time the simulation clock isadvanced by T time units, areal-time delay isincluded
with a duration proportional to T.

+ By default, one unit of simulation timeis represented by 1 second of real-time. When
needed, a different mapping can be defined. Thisis done using the field Autorun Time
Factor of the Time Setting dialog box inthe Andysis profile.

AutoRun can be interrupted and the simulation clock advanced busing the Go Advance and Go
Next commands. This does not involve any red-time delay.

Asynchronous Time Model

When there are external inputs, AutoRun performs a GoRepeat command and the clock is not
advanced.

In a stationary situation, AutoRun continues to advance the simulation clock by 1 time unit.

When distance to the nearest scheduled item is less than 1 time unit, the simulation clock is
advanced to the time of this scheduled item, and not by 1 unit.

Synchronous Time Model

AutoRun performs an ongoing execution of the Go Sep command. Correspondingly, the simulation
clock is advanced between successive control points, in which at least one of the charts takes control
according to the definitions of local clock.

36 Simulation Reference Manual

Simulation Support of Flowcharts

Simulation Support of Flowcharts

The Rational Statemate Simulation was enhanced to support Flowchart as a control activity
implementation. That means that a control activity may be now an instance of a Flowchart, in
addition to a Statechart.

The controlling Flowchart may be the top-level of a hierarchy of flowcharts descending from it,
through offpage and generic instances.

Flowchart Semantics

Thereisamajor difference between Statechart and Flowchart behavior in the model: whereas the
execution of a Statechart is time-consuming, with each transition in a Statechart is considered a
simulation “step”, aflowchart is executed in “ zero time” and single simulation step. Whenever the
Flowchart is entered, it is executed from start to end in one simulation step (much like a
Procedural-Statechart).

Since the Flowchart is executed in a single ssmulation step, the elements used in the flowchart are
single-buffered during the Flowchart execution, except for events and event expressions. Events
and event expressions are sensed in the next step. Timeout and Delay expressions are not allowed
at all.

A Flowchart connected to a control-activity are executed (start to end) once in every simulation
step, for aslong as the controlled activity is active.

Examples:

+ Example A: When setting avalue in one action box of the Flowchart, that (new) valueis
sensed in the next action box, e.g.: The condition “[num==5]" evaluated immediately
after the action box “num=5" is always “true’.

+ Example B: When the action in the action-box is “st!(A1)”, with A1 being asibling
activity of the control activity, the event “st(A1)” is“true” only in the next step, i.e., the
expression “st(A1)” isevaluated to “false” immediately after the action box, and to “true”
in the next step, i.e., the next run of the Flowchart.

Rational Statemate 37

Model Execution: Concepts and Terms

Code Compatibility Settings

Simulation behavior can be customized to be compatible with the Code Generator. The options are
combined into Code Compatibility Settings dialog box.

To access the Code Compatibility Settings dialog box, from the Simulation menu, click
Options, click Code Compatibility, and then click Code Compatibility settings. The Code
Compatibility Settings dialog box displays.

Code Compatibility Settings 1 x|

Execution 'Elpticuns |

Truth Table Execution: |L|p-:|n Change j

Trigger Ewaluation: IUp-:un Change j

0K | Cancel I Help |

This dialog box controls the options for the Simulation profile and are saved with it.

¢ Truth Table Execution—A Truth-Table is executed:
— Upon Change—Only if one of the Truth-Table's inputs is changed.
— Every Step—Every Simulation step.

¢ Trigger Evaluation—A Trigger is evaluated:

— Upon Change—Only if one of the elementsin the Trigger expression is
changed.

— Every Step—Every Simulation step.

38 Simulation Reference Manual

Simulation Support of Flowcharts

Flowchart in Simulation

The Simulation Micro-Debugger was enhanced to allow debugging of Flowcharts. Thisis done by
setting a breakpoint on a special subroutine, created by the Simulation Micro-Debugger for each
Flowchart, through the “ Simulation Breakpoint Editor”.

The special subroutine is named as follow:

“FLOW <f | onchart _nanme>_PROC’
with the “<flowchart_nanme>" being replaced with the actual Flowchart name.
When a Flowchart with a breakpoint set on it is executed, the Micro-Debugger pop-ups and
highlights the executed Flowchart. The Micro-Debugger allows micro-stepping through the

Flowchart while seeing it being animated as well as watching element changes in the Micro-
Debugger monitor.

Flowchart in Simulation - Limitations

Queue operationsin Flowcharts are not supported. A warning is generated for expressions
including queue references that the operation is ignored.

Rational Statemate 39

Model Execution: Concepts and Terms

40

Simulation Reference Manual

Interactive Mode Simulation

The brief example in Getting Started with the Simulation Tool illustrated some of the techniquesand
concepts handled by the interactive smulation. This section detail s the menus, options and forms you
need to properly andyze your design model. A comprehensive interactive example completesthe section
and ties together some of the i ssues discussed.

This section assumes an understanding of the Statechart and Activity-chart principlesaswell asthe
command input techniques discussed in the Rational Satemate User Guide.

The Three Phases Of Interactive Simulation

Performing an interactive simulation involves the following three primary phases:

¢ Sarting the Interactive Simulation Tool — This phase involves starting the tool from

either the Rational Statemate Main Menu or from the Statechart or Activity-Chart Graphic
Editor.

¢ Simulation setup — This phase involves defining the simulation scope, naming the files

for storing the recorded inputs and outputs to the simulation and setting simulation
parameters.

¢ Executing Commands and Observing the Results — This phase involves using the
various interactive command menus and describes how to interpret the graphical and
textual results of the simulation.

Rational Statemate 41

Interactive Mode Simulation

Starting the Simulation Tool

The Simulation Tool gives you the capability to interactively analyze your design. It usesthe
power of graphical animation and interactive batch stimuli in combination with monitor windows,
graphic panels and waveforms.

The Simulation Tool graphically depicts the behavior of your design by animating the statecharts
and activity-charts. Thistool can be started from either the Rational Statemate Main Menu or from
one of the Statechart or Activity-chart Graphic Editors. The following discussion outlines how to
start the tool from these sources and how to connect the charts to the Simulation Tool.

Starting the Simulation Tool from the Rational Statemate Main Menu

This section shows how to start the Simulation tool from the Main Menu. (Starting Simulation from
the Graphic Editor, provides information on how to start simulation from the Graphic Editors.)

1. Select Simulation from the Rational Statemate main window. = %

The Simulation Profile editor appears along with another window that allows you to
open an existing Simulation profile or if oneis not available create one.

=10l x|

Optiohs Window Help

MNew Simulation Profil |

Profiles

Profile Mame

1

0K | Eancell Help |

42 Simulation Reference Manual

The Profile Editor

2. Select aProfile from the Profileslist and select OK or create a new profile and click
OK. All the menu options and icon functionality are enabled.

Note

+ Profiles can aso be selected by double clicking on the profile name.

+ |If there are no profiles on your list, use the File > New Profile command to create a new
one.

Starting Simulation from the Graphic Editor

Starting simulation from the Graphic Editor tool can be useful for debugging one or several
Statecharts or Activity-charts. With this option, the Simulation Scope is automatically set to the
needed chart(s). Environment elements such as monitor windows, waveforms and panels must be
set within the simulation.

1. With the Graphic Editor open, activate a Statechart or Activity-chart.

2. Select Tools > Simulation from the Graphic Editor menu. The Simulation Execution
menu displays.

The Profile Editor

The purpose of the Profile Editor isto provide the user the ability to build a robust, reusable,
simulation environment. The Profile Editor allows you to identify the scope of the simulation
including design components (charts), recording mechanisms for input and output, and system
parameters such as clock rates to be used throughout the simulation run. The Profile Editor allows
you to build the framework for interactive or batch simulation.

This section introduces you to the Rational Statemate Simulation Profile Editor. A set of procedures
for cresting and customizing a profileisincluded in this section. This section assumes an
understanding of the Statechart and Activity-chart principles as well as the command input
techniques discussed in the Rational Satemate User Guide.

Rational Statemate 43

Interactive Mode Simulation

RN = Ol i Simulation : REAR_DEFDG_SIM (Modified -0l x|
Menu Bar —— File Edit WYiew Execute Options MWindow Help |
Tool Bar ’.ﬂ,ﬁ & & 2@ ‘
= REAR_DEFOG S8
[B REAR_DEFOG_FEATURES
(] 4Bl cALC_REAR_DEFOG_STATE
8 CALC_REAR DEFOG _STATE_BH¥R
(] 4Bl REAR_DEFOG_RELAY_MGMT
@ REAR_DEFOG_RELAY MGMT BH¥E
Scope Definition ||Tgpe "_
Scope REAR_DEFDG_PHL Panel
Definition RO_MONITOR Honitor
Area
r—
Heszages
A
Messages —— J
i

Profile Scope Definition

The Profile Editor alows you to specify the scope of the ssimulation as well as select the
parameters that control the simulation. Use the Profile Editor to define a simulation’s scope by
identifying the components to be simulated such as charts, panels, and waveforms.

Once created, the profile isarecord of what was included in its definition scope. Profiles also
provide a convenient way to store settings that are used repeatedly in different simulation sessions.

You can store the profile in your workarea where it can be retrieved, edited, and used over and
over again for subsequent simulations.

The following procedures show you how to create a new Simulation Profile using the Simulation
Profile Editor and how to customize it.

44 Simulation Reference Manual

The Profile Editor

Creating a New Simulation Profile

This section shows you how to create a new Simulation Profile.

1. Select File> New Profile. The New/Open Simulation Profile dialog box opens.

New,/Open Simulation ProfilesE.

Profiles

CALC_REAR_DEFOG_STATE

Profile Mame

0k | Cancel | Help |

2. Enter the new profile name in the Profile Name text box and click OK. The Profile
Editor appears now with al the options enabled and the name of the profilein thetitle
bar.

Rational Statemate 45

Interactive Mode Simulation

Adding Components to the Profile

This section describes how to add components (i.e., Statecharts, Activity-charts, Panels, etc.) from
the Chart Tree to the Scope Definition of the Simulation Profile.

1. Click Add Chart(s) with Descendantsto Profile ﬂ or select Edit > Add with
Descendantsto bring up the Charts Tree and select charts to add to the profile.

Charts Tree i x|

! REAR DEFOG GDS
[E ACTIVITY CHART REAR _DEFOG
[El ACTIVITY CHART TEST
[E CALC_REAR_DEFOG_STATE
DATAEANE TEST
[MODULE_CHART_TEST
9t REAR_DEFOG_EFHZ
[E] REAR_DEFOG_RELAY MGMT
[E] REAR DEFOG 28
[E REAR_DEFOG_FEATURES
E‘ﬁ EEAR_DEFOG _UCD
[L| REAR DEFOG LO_SFEED HO_LOAD
& SIMULATION
[& rop
¢ <> FLOWCHART TEST
< [E] GENERIC_CHART
< (= STATECHART TEST
[L| REAR DEFOG IHI SPEED 3LOAD1
[L| REAR DEFOS LO_SFEED HO _LOAD
[L| sEQUENCE_TEST

[k I Apply Cancel

46 Simulation Reference Manual

The Profile Editor

2. Click Add Panel to Profile ‘ or select Edit > Add/Edit Panel to bring up the Add
Panels to Profile dialog box and select a panel(s) to add to the profile.

Add Panels to Profile x|

Panels List:
PAMEL_TEST
STATECHART _TEST

Panels Mamefzh:

0K | Eancell Help |

3. Click Define New or Edit Existing M onitor Definition @ or select Edit > Monitorsto
add or create a monitor to add to the profile.

New/Open Monitor x|

Shared Monitors:

Monitor Name:

I3 | Eancell Help |

Note

You can view the scope definitionin either Tree (graphical display) or List (textual display)
format by selecting View > Show Scope as Tree or View > Show ScopeasList.

Rational Statemate 47

Interactive Mode Simulation

Saving the Profile

To save the profile, select File > Save.

Starting Simulation from the Simulation Profile Editor
Starting simulation from the Simulation Profile Editor allows you to predetermine the

environment for your simulation. Monitors, waveforms, and panels can be included in a profile.
When aprofile is executed, all components included in the profile participate in the simulation.

To start a simulation from the Simulation Profile Editor, click | nvoke Simulation % or select
Execute > Execute Smulation. The Simulation Execution window for the selected profile opens.

Entering Commands To The Simulator

Menus/Toolbars

Commands to the Simulator can be entered by the use of a number of menus that are pulled down
from the menu bar or activated viathe toolbar. A description of each command can be found in
Supplementing the Model with Handwritten Code.

Command Line

One method of entering commands to the Simulator is by using the command line in the
Simulation Execution dialog box.

To utilize the command line options, from the View menu, click Command L ine. The command
line appears below the toolbar.

&3 simulation Execution: REAR_DEFOG_SIM -10] x|
File WYiew Go Record Analyze Actions Displays Options Help

Tool Bar —ln n

Command —— Command: Istawa'..'e reardefod
Line [Time: 00;00:00 = 0 clock units (13 Stepy 1

Menu Bar

i
o
L& £

48 Simulation Reference Manual

Input Changes

Input Changes

Do Action Commands

One method of entering information about the design’senvironment isthebo Act i on command. Do
Act i on isdirected for those users who know exactly the names of the actions to be taken.

Note

It is also possible to use the Monitor Window or the Panel to generate events, conditions,
and actions.

Using DO Action

1. Inthe Simulation Execution dialog box, select Actions> Do Action. The Do Action
dialog box opens.

_ioix

History:

J I

Expresziong

Rezsults:

L~

Ty

Apply | Cancel | Help |

2. Enter any valid Do Action expression into the Expression text box.

Note

You can select elementsfor your Do Act i on by clicking the ellipsis button j This starts
the Select Element browser.

Rational Statemate 49

Interactive Mode Simulation

3. Click Apply. The entered action is executed and echoed in the History field.
Note: Clicking Cancel before Apply does not execute the Do Action. Clicking

Cancel after Apply runsthe Do Action and dismisses the Do Action dialog
box.

Valid Input To Do Action

Input into the Expr essi on: areamay be any vaid Rationd Statemate action. Thefollowing are
some examples.

¢ cl ear_buf

wherecl ear _buf isadefined action.
¢ i = i+l;ax:j :=5; day:: SUNDAY;
wherei andj aredataritems. Inthisexample, i isuniqueinthe WorkAreawhilej isnot,

therefore, is specified as belonging to aspecific chart AX. The day isthe dataitem of an
enumerated type and SUNDAY ison of itsvalues.

¢ stl(A

where A isan activity

¢ scl(e,delta_t)

wheree isanevent and del t a_t isadata-itemn

¢ scr:e

where e isan event belonging to the chart SCR

50 Simulation Reference Manual

Input Changes

Invalid Input to Do Action
The input to Do Action cannot be any of the following:
+ A syntactically invalid action expression.
For example, the expression “i=5" and*“ s(A)” . These are a condition and an event,

respectively.

+ Anaction which is semantically incorrect since it uses an element contrary to its type.
Forexample,if d then A end if,whered isdefined asadata-item and not asa
condition.

+ Anaction that refers to an item defined in your WorkArea but not uniquely identified.
For example, theinput j : =5 wherej isdefined asadataritem in anumber of different charts.
You must specify which chart is being referenced.

+ Anaction that refers to an element not belonging to your WorkArea,

For example, theinput i : =5 wherei isneither defined nor referenced in the chartsin your
WorkArea.

+ Anaction that changes the value of a compound item (an item defined in terms of other
items).

Response to Invalid Do Action

The Do Action command responds to your command input in one of the following ways.

¢ If theinputisin error, amessage isissued and the input is discarded.

+ If theactionis syntactically correct but the action affects elements which are not within
the simulation scope, then the element isincluded in the scope, a message is issued, and
the action is performed.

For example, consider the action i : =5 wherei isadata-item defined in the WorkArea but not used
anywherein the simulation chart or in any textual element associated with it. The following messageis
issued:

Data-item | inserted into the Simulation scope

Rational Statemate 51

Interactive Mode Simulation

Go Commands

Go commands are used to advance the model execution. This section provides an initial definition
of each Go command. The following table supplies a description of each step in asynchronous and
synchronous simulation mode.

Asynchronous Simulation

Synchronous Simulation

GoStep

Runs one step and consumes no time.

Runs one step and consumes one time
unit.

GoStepN

Runs a specified number (N) of steps.

Runs a specified number (N) of steps.

GoRepeat

Performs a superstep and consumes no
time.

Performs a superstep and consumes the
amount of time equal to the number of
steps taken during the superstep.

GoNext

Advances time to the next scheduled
action or timeout event. Then performs a
GoRepeat.

Advances time to the next scheduled
action or timeout event. The number of
steps taken are equal to the number of
time units.

GoExtend

Performs a GoRepeat. If a superstep
can’t be taken, then it performs a GoNext
then a GoRepeat.

Performs a GoRepeat. If a superstep
cannot be taken, then it performs a
GoNext then a GoRepeat.

GoAdvance

Allows you to advance the time by
specifying the increment of time. A
GoRepeat is taken.

Allows you to advance the time by
specifying the increment of time. The
number of steps are equal to the number
of time units advanced.

AutoGo

The AutoGo command is used to
perform a GoStep in an unstable status
otherwise it performs a GoNext.

The AutoGo command is used to
perform a GoStep in an unstable status
otherwise it performs a GoNext.

GoBack

Undo last Go command

Undo last Go command

A Go command may be entered whenever the simulation is waiting for input. There are three

exceptions:

* When the simulation isin the Autorun or in the Batch mode;

¢ When the simulation isin an unresolved nondeterministic situation. In this case, the user
must choose a solution before proceeding with simulation.

* When the simulation has reached a termination connector. In this case, the only relevant
commands are Quit and Restart.

52

Simulation Reference Manual

Go Commands

The Go Menu

Thefollowing figureillustrates the Go M enu. Some important notes about using the Go
commands are listed below.

GoBack <Ctrl> 1
Pause <Ctrl> 2
Autolo <Ctrl> 2
GoStep <Ctrl> 4
AutoRun <Ctrl> 5
GoStepM, .. <Ctrl> B
GoRepeat <Ltrl> 7
GoMext: <Ctrl: B
GoRdvance, ., <Ctrl> 3
GoExtend Ctrls 0

¢ The commands GoRepeat, GoExtend, GoNext and GoAdvance may causethesmulation
to enter an infinite loop. The smulation, of course, does not loop indefinitely. Instead it loops
until it reaches the Steps per Go limit. When this maximum number of stepsallowed per Gois
reached, the Simulation Tool issues the message:

Reached MAX NUMBER OF STEPS PER GO limt (see paraneter under OPTI ONS)

Note: The Steps Per Go parameter is set by selecting Options > Execution Options
from the Simulation Execution menu or the Profile Editor.

¢ The simulation then continues as if the Go command had finished normaly.

¢ GoAdvancereguiresatime parameter. This parameter is entered in the GoAdvance diaog
box that is displayed when the command is sel ected from the Go menu.

+ GoNext isonly relevant when timeout events and/or scheduled actions are due to occur. When
no items are scheduled or when an item isduein zero time, GoNext has no effect on the
smulation.

+ AutoGo runsaGoSep in an unstable status otherwise it performs a GoNext.
Pausing Execution

To pause arunning simulation, select Go > Pause or click l['

Rational Statemate 53

Interactive Mode Simulation

Observing The System’s Behavior

When a simulation step is taken, the system status may change. This section discusses how to
display the ssimulation output which illustrates the new status and recent changes made. Changein
status is shown graphically through chart animation and textually through the Show commands.

Graphic Animation Display

When the simulation is connected to a graphic editor, the status information is displayed
graphically on the workstation. The state configuration and recent transitions are highlighted in the
Statechart Graphic Editor and the active activities are highlighted in the Activity-chart Graphic
Editor. The following table summarizes the graphical changes made in the charts.

Color Assigned to Color
Purple (default) Transition taken in the last step. Basic states | Purple (default)
the system is in or has entered in the last
step.
Violet (default) Basic states left in the last step. Violet (default)
Orange (default) Transitions other than those listed above. Orange (default)
Green (default) States other than those listed above. Green (default)

The Simulation Tool changes the color of the lowest level state visible. Also, viewing commands
such as dive and surface have no effect on the smulation results.

For information on setting preferences, refer to the Rational Satemate User Guide.

54 Simulation Reference Manual

Show Command

Show Command

The Analyze > Show command displays the Show dialog box that allows you to view Changes,
Future, Racing and Clock. The Show commandsare used to display atextual description of changesin
the model. They display changes for both graphica and non-graphical eements.

Show, . . <Ctrl> h
Examine, .. <«Ctrl> f

Show Changes

The Show Changes command isused to display the system changes sincethelast smulation step. This
includesdl changesin the system status and manual changesthat occurred during the last Go command.
¢ Automatic Update changes in the model are automatically updated and can be viewed.
¢ Freeze keepsthe current information in the display. Changes in the model are not
automatically updated.
[showchanges =1
Changes Future | Racing | Clock |

Changes for step 2%

Statechart: SIHULATION

State #1 waz exited

State #2 waz entered

State 51 was exited

State LSTATE#Z, STATE#12,STATE#S was entered
State 521 was entered

<

(" fAutonatic Update 1+ Freeze

Dismizs | Help |

Rational Statemate 55

Interactive Mode Simulation

Show Future

The Show Future command displaysall scheduled actions and timeout events due to occur. Also,
Simulation Control Program breakpoints triggered by the EVERY clause arelisted.

+ Timeisthe amount of time (global clock units) until the scheduling of the item (event,

action, EVERY clause). If the valueis zero, theitem is activated just prior to the next step.
+ Typeisthetype of scheduled item (event, action, EVERY clause)

Name/Definition isthe name of the scheduled item or, for a nameless item, an expression
that definesit.

) ShowFuture =10l x|

Changes Future Racing | Clock |

Future for step 2:

Time Type Name/Definition
1 Event tn{E2,VAR1}
2 Event tn{en(S2),5}

Show Racing

The Show Racing dialog box displays racing problems. The Simulation Tool notifies about two
types of racing situations:

¢ Read/Write Racing
¢ Write/Write Racing

Theracing analysisis performed only when the appropriate options are set in the
Execution Parameter dialog box. When aracing situation occurs, the tool resolvesit by
randomly choosing one of the possible outcomes. Thefollowing message is displayed:

Racing problems encountered

56 Simulation Reference Manual

Show Command

5 showracng S R=F
Changes | Future | Racing Clock
{12060 Check for racing iz not set A

|

(" Automatic Update (+ Freeze

DNizmizs | Help |

Show Clock

The Show Clock command displays information on:

¢ Global Clocksthat show the passage of time for the entire system.

¢ Clocksfor each of the system’s components, i.e., for each activity or for each Statechart
that is not connected to the activity’s control.

For Global Clocks, the following is displayed:

¢ Current Time shown in the standard format HH:MM:SS.
¢ Step Number shows the total number of steps taken from the start of the simulation.
¢ Phase Number isthe number of stepstaken at the current time.

¢ Clock Unit isthe unit of global clock specified in Time Settings dialog box of the Profile
Editor.

For each of the system components, these are shown:
¢ Clock Unit isrelevant to synchronous time model only; different units can be specified
for different components.

¢ Timeout/Schedule Unit is used to measure duration of timeouts and scheduled actions;
relevant to both time models.

Rational Statemate 57

Interactive Mode Simulation

% IShnw Clock

Global clock

Current time; 00300300

Step number: 0 Fhase number:
Clock unity 1 Seconds

Statechart: SIMULATION

Timeouts/schedule unit: 1 Seconds

Examine

The Examine command (Analyze > Examine) allows you to examine Element Values, Queues
and Expressions.

58 Simulation Reference Manual

Show Command

+ Examine displays the value of an object.
+ Evaluate displaysthe value of an expression.

+ Examine Queue displays the content of the queue. This includes the queue's length and
contents.

+ History field saves arecord of elements that were examined and evaluated. This can be
used to retrieve el ementsfor re-examination by selecting them using the left mouse button
and Apply.

+ Ellipse button starts the Select Element browser. +++1

+ Expression displays the expression or name of the element that is being evaluated or
examined.

+ Results displays the results of Examine, Evaluate and Examine Queue.

Non-determinism

When the Simulation Tool encounters a nondeterministic situation, a Non-determinism dialog box
opens.

Hon-determinizm

The Non-determinism dialog box displays the name of the chart that the non-determinism occurred
in along with anumber of possible solutions. You are able to toggle all possible continuations by
using the up and down arrow keys. Thereis also afield showing the name of a Statechart in which
the non-determinism occurred. This helps the you to know which chart should be examined in
order to select a desired continuation. Once an acceptable solution is chosen, the OK button
confirms this choice and you can proceed with simulation.

Note

If the non-determinism is an undesirable behavior, you can choose to modify the chart(s)
and rebuild simulation.

Rational Statemate 59

Interactive Mode Simulation

Panels in Simulation

Mock-up panels provide a clear and visual interface to the simulated mode and alow you to easily
control the system’s behavior. Panels can be built of

¢ Input and out interactors

¢ Graphical shapes drawn by you

Each of these graphical objects can be bound to an element in the model, for example, an event or
state. These bindings allow you to drive the simulation by entering input values and to monitor the
execution by observing the outputs.

Multiple panels can be attached to the same simulation, each presenting either:

¢ A group of logicaly related elementsin the interface of the simulated system
¢ [tsinternal elements

You can display panels on different terminals and each single panel can be simultaneously
displayed on several terminals. This provides aredistic effect and allows you to work with a
system that includes multiple components.

You can combine panels with any other mechanisms supporting simulation input and output such
as.

¢+ Monitors

¢ Graphic editors for charts

¢ Do Actions and Examine commands

¢ Simulation Control Language programs
All these facilities provide a consistent picture of the current status of the model at any time during
simulation.

The Panelstool alowsyou to attach panelsto your smulation. The various characteristics of the panel
can be saved in aPand Profile. The saved profile can then be re-used in other smulation sessions.

Panels allow you to rapidly create a mock-up of the man-machine interface. This interface can be
connected to ssimulation for testing purposes. Panels also can be used to aid in automating the
simulation environment.

60 Simulation Reference Manual

Panels in Simulation

Defining and Editing Panel Profiles
This section describes how to add, edit or delete a panel profile from the Simulation Profile.

Adding a Panel to the Profile
1. Inthe Workarea Browser select a panel.

2. Select Edit > Add/Edit Panel or select the Add Selected Panel icon from the Profile

Editor. The panel is added to the profile and its name is displayed in the Profile’'s Scope
Definition.

Editing a Panel in the Profile

For each panel in the profile, it is possible to specify on which display terminal it should be shown
when simulating with this profile. By default, a panel is displayed on the same terminal on which

al Rational Statemate windows appear. You may change this and cause the panel to be displayed

an another terminal (or several terminals simultaneously).

To edit a panel in the Profile:

1. Select Edit > Add/Edit Panelsfrom the Profile Editor. The Panelsin Profile dialog box
opens.

Panels in DEMO

2. Specify names of terminals in which you want the panel to be displayed. Leave the field
blank to display the panel on the default terminal.

3. Click OK.

Rational Statemate 61

Interactive Mode Simulation

Deleting a Panel from the Profile
1. Select apanel name in the Scope Definition area of the Profile Editor.

2. Select Edit > Remove from Scope or click the Remove from Scopeicon.The selected
panel is removed from the scope.

Font Appearances in Simulation Panels

Use the following procedure to correct erroneous behavior in the text-to-graphicsratio. Thisratio
is not kept when the same chart or panel is moved across different screen resolutions.

Set the environment variable;

STMM_ENABLE_FONTSI ZE_CORRECTI ON
For example, on Windows systems, include the following linein ther un_st nm bat file:

SET STMM ENABLE_FONTS| ZE_CORRECTI ON- ON

Note

Exceed users see some differenced in the text-to-graphics ratio due to this change. However,
XVision users may not notice any differences.

To move various charts and panels across various screen resolutions using X Vision:
1. Select Properties > Devices > Video in the Monitor Resolution window of XVision.

2. Set the DPI to the appropriate number. The default value is 96. However, thisis correct
only for avery specific screen resolution.

62 Simulation Reference Manual

Waveforms in Simulation

Waveforms in Simulation

The Waveform tool has two modes; one that allows you to communicate with smulation and display
changes as they occur and one that can be used for post-run analysis of traces produced by smulation.

The various characteristics of the Waveform window can be saved in a\Waveform Profile during
simulation or after smulation. The saved profile can then be re-used in other simulation sessions, or in
the off-line mode.

On-Line Mode of Waveforms

In the on-line mode, the Waveform tool runs as a process that communicates with smulation and
displays the changes as they occur.

Setting Waveforms to be Displayed in Simulation

A waveform can be added to the Simulation Profile as follows:

1. Click & | or select Edit > Add/Create Waveform. The New Wavefor m dialog box
opens.

Add/Create Waveforms x|

Waveforms List:

Waveforms Nameish:

I

0K | Eancell Help |

2. Enter the name of your waveform into the Wavefor m Nametext box, select OK. The new
Waveform is added to your Scope Definition in the Profile Editor.

Rational Statemate 63

Interactive Mode Simulation

Activating Waveforms During a Simulation Session

A Waveform can also be activated directly during a simulation session by selecting Displays >
Wavefor ms. This opens the Wavefor msin Wor karea dialog box. Select the needed names and
click OK for activation. To start anew form, click OK; you are prompted to enter a new Waveform
name. In this case, an empty Waveform window is creeted. Use the Wavefor m tool facilitiesto select
the d ementsto be displayed.

5 10 15 20 25 30 35 40 45 50 55

5 OFF out
s HAITING ouT

S |TAINING_MEH_PAGE ouT

S | REVIEHINHG_PAGE ouT

5 UPDATING_PAGE ouT
i I SHITCH_POS 1]

.

Checking Waveform Elements

When a Waveform Profile is activated, the tool checks for the correctness of e ements referenced in
the profile. After performing this check, thetool displays asummary of the errors. Following are some of
the recognized errors:

¢+ Theelement is not unique in the scope

¢ Thereisamismatch of element types

+ Anelement does not exist in the scope

+ Theindex of an array component is outside of the bounds of the array
Erroneous elementsin the Waveform Profile are ignored and therefore are not displayed.

64

Simulation Reference Manual

Waveforms in Simulation

Unresolved Data-ltems in the Scope

Unresolved data-itemsin the scope are treated by the Waveform tool as an integer. An appropriate
message is provided when this Situation is encountered.

If the data-item is actually used in the scope in a different way (for example, as a string) then the
Simulation tool issues an error message the first time the contradiction is discovered during run-time.

Displaying Values in Waveform

When activated, the Waveform displays the current values of sdected e ements, the current time and
current step number. When anew element is added to the Waveform, its current value isimmediately

displayed.

As simulation continues to run, the waveform displays afull history of element changes. To view
the value of the elements, click at the desired point of the Step/Time scale. The elements at that
point are displayed in the Value area of the waveform

File Have VYiew

WaveForm: Windowl displaying WaveGroupl

Options

Warve Form

ype Hane

Step #

[|| [
Tine

[[
10 |

15 20 25

Rational Statemate

65

Interactive Mode Simulation

Off-Line Mode of Waveforms

In off-line mode the tool isused for post-run analysis of traces produced by simulation.

Trace Files Menu

Select File > Simulation File Management > Trace File M anagement to name atraceto be
anayzed.

No Waveform in the Workarea

1. Select Files> Simulation File Management > Trace Files. The Trace File
Management dialog box opens.

Trace File Management =10l x|

Files
Dizplay |
Lelete |
Copy... |
Export... |
Print |
Reportz, .. |
NaveForm...l

Dizmizz | Help |

2. Select Wavefor ms. The Select Waveform Profiles dialog box opens.

66 Simulation Reference Manual

Waveforms in Simulation

Select MaveForm Profiles

3. Select OK. The Add to Waveform dialog and a Waveform window appears.

Add to Windowl

Rational Statemate 67

Interactive Mode Simulation

PUUU U i bbb b e et
| 5 10 15 20 25 30 35 40 45 50 65

S OFF ouT
S HATTING ouT
S | IAINING_NEM_PAGE out
S | REVIEWING_PAGE ouT
S| UPDATING_PAGE ouT
1 SHITCH_POS|| 2 | 1 0

4. Select the elementsto be viewed from the Show only selection. The elements appear in as
awaveform in the Waveform window.

Waveform Profiles in the Workarea

1. Select Files> Simulation File M anagement > Trace Files. The Trace TFile Management
dialog box opens.

2. Select Waveforms. The Select Waveform Profiles dialog box opens.

3. Highlight atrace file name for the Fileslist.

4. Select Waveform. The Select Waveform Profiles dialog box opens.
At this point you have two choices:

+ Highlight awaveform profile from the Profileslist and click OK. The waveform from the
selected waveform appears.

¢ Or, do not highlight awaveform profile and select OK. A new waveform window opens.

68 Simulation Reference Manual

Use-Case Diagrams in Simulation

Waveform Profiles as Configuration Iltems

Waveform profiles can be saved as configuration items. These files are ASCI| files with an
extension.wpf that arestoredin:
¢ WorkArea: work_area_directory/ana

¢ DataBank: proj ect _bank_directory/ana

Use-Case Diagrams in Simulation

The Simulation supports a Use-Case Diagram (UCD) to the Simulation scope:
+ WhenaUCD isadded, al linked Sequence Diagrams (SDs) and statecharts are added with
it.
+ All the SDsand SD partition lines (scenarios) are listed in the Scenario Animation Control
dialog box. The dialog box contains a table with the following fields:

+ Animate (Yes/No) - controls the painting of the specific SD partition lines and
messages.
¢ Name

+ Activation Expression - When you select Yesin the Animate field and the
activation expression is not empty, the painting of the specific SD partition line
and messages starts only after the expression defined in thisfield evaluates to
TRUE.

Animation of Sequence Design

The Simulation animates the scenarios defined in the Scenario Animation Control table to show
the scenarios propagation trace, as well as the statecharts.

Note

¢ Only asingleinstance of tan SD and an SD partition line can be animated simultaneously.

¢ Thetiming constraint, referenced SD, and SD scope constructs are ignored by the
animation.

Rational Statemate 69

Interactive Mode Simulation

Recording a Sequence Diagram

To record a sequence diagram that includes the series of events that occurs during a simulation
session:

1. Select Options > Sequence Diagram Generation.
2. Select the Generated Sequence Diagram check box.

The generated sequence diagram includes two lifelines, User and System, and the messages drawn
between them. Internal message are displayed as messages-to-self.

70

Simulation Reference Manual

Monitors in Simulation

Monitors in Simulation

The Monitor Tool isasimulation debugging aid. It provides the user with atabular display of
textual and/or graphical element status during simulation. The Monitor can be used as an output
deviceto display element status and /or an input device that accepts input stimuli during
simulation. The various characteristics of a Monitor window can be saved in a Simulation Profile.
Thisalowsfor re-usability of the Monitor in other smulation sessions.

Adding Monitors to the Profile

This section describes how to add a monitor to your Simulation Scope.

1. Click onthe New/Edit Monitorsicon @ or select Edit > Monitors..The New Monitor
dialog box opens.

2. Enter aname for your monitor and select OK. The Simulation Monitor browser opens.

3. Select Edit > Add. The Element Selection dialog box opens.

Rational Statemate 71

Interactive Mode Simulation

on for Monitor

The Element Selection for Monitor browser is used to select elementsto show in the
Monitor Window. Thisis done by:

Creating alist of elements of the needed type and subtype.

Selecting from the list the elements you want to view in the Monitor.
A description of each selection on this dialog box follows:

Primary Selection Area — Select one of two element typesin the top two buttons on this
dialog box (the default is Textual).

Type — Select the type of elements to be included in your Monitor. Textual types are All,
Data-item, Condition, and Event. Graphical types are All, State, and Activity.

72

Simulation Reference Manual

Monitors in Simulation

¢ Sub-Type-—Used to further define atype. For example, a data-item can be defined as a
real, integer, bit, etc.

¢ Sructure—Allowsyou to select a structure type for textual elements (Single, Array,
Queue or All).

¢ Usage— Allowsyou to select textual elements based on how they are used (All, Variable,
Compound, Alias, Constant).

¢ Used in Chart — Used to select elements based on the charts in which they are used.
¢ Instance — Used to select elements based on the generic instances in which they are used.

¢+ Name— Used to select elements based on their name. The asterisk (*) can be used as a
wildcard character for part of the name or to select all element names.

+ Filter Button —Used to generate alist of elements based on selected type, structure and
usage.

Note: The namesthat are being compared are the unique names of the elements that
may be prefixed with Chart Names, Instance Names and Long Format
Graphical Element Names. It is advisable to prefix any name search with the
asterisk (*) wildcard character.

+ Incremental Filter — Allows you to do an incremental search by entering a character
string in the name text box.

¢ Sdect All — Selects all the elementsin the pending list.

+ Expand — Allows you to view structured type elements (arrays, records, unions) in more
detail and to add to the Monitor only desired components

4. Make your selections within the Type listing. Appropriate selections are displayed for
Sub-Type, Structure and Usage listings.

Make your selections within the Sub-Type, Sructure and Usage listings (if necessary).
Specify achart namein Used in Chart, if needed.
Provide a pattern for the name of elementsto be filtered.

Select the Filter button. A list of elements appears.

© o N o O

Select the elements you want added to your monitor. Select OK. All elements selected
from the Element Selection Monitor dialog box are added to the Monitor window. Click
Apply to add elements to the Monitor list and retain the browser. Click OK to add the
elements and dismisses the browser.

Rational Statemate 73

Interactive Mode Simulation

Simulation Monitor: TEST1

Simulation Monitor Fields

* Name- Thisfield shows the element’s name.
+ Type- Thisfield shows the element type:

¢ DI - Dataitem

¢ CO -—_Condition

¢ EV -Event

¢ ST -—Sate

¢ AC —Adctivity

+ Value-Thisfield refersto the current value of the element. You can apply stimulusto the
model by modifying the Value field. For primitive textual elements and for activities, a
new value of element can also be entered into thisfield. Any error in the entered value
(wrong type, etc.) causes an appropriate message and the current value remains intact.

Note: For string Dataritems, the value must be enclosed in quotes. Generation of an
Event or changing a Condition can be done by clicking in the field Value with
the left mouse button.

74 Simulation Reference Manual

Monitors in Simulation

¢ SatusField

* For textual elements:; thisfield indicates if an element is read, written, or
changed (rd, wr, ch).

¢ For Sates: indicates whether a state is entered or exited (en, ex)
— For Activities: indicatesif an activity is started or stopped (st, sp).

¢ ModeField - Thisfield displays the mode for textual data-elements (data-items,
conditions, events). The mode of adata-element is based on the graphic flow-linesin the
top level Activity chart of the simulation scope. Therefore, the values in this column do
not change throughout the execution of the Simulation.

¢+ Todisplay thisfield, select View > Show Maode.
¢ Vauesare: In, Out, In-Out, Local, Constant

Shared Monitor

A Simulation monitor can be tagged as a shared monitor. As aresult, the monitor is saved
separately from the Simulation profile. A shared Monitor can be shared between different
Simulation profiles and workareas, and can be checked into and out from the Databank.

To turn amonitor (internal monitor) to a shared monitor, right-click on the monitor name in the
Simulation main window and select M ake Shared Monitor.

File Menu

Use the selections in this menu to manage the monitor files.

¢ Save-— Savesthe current monitor in your workarea for this project.

¢ Exit —Exitsthe Simulation Monitor and closes any associated windows that you may have
left open.

Rational Statemate 75

Interactive Mode Simulation

Edit Menu

Use the sdlections in this menu to build a monitor.

¢ Add starts the Element Selection browser. The browser is used to select elements to show
in the Monitor Window.

¢ Removeisused to remove unwanted € ements from the Monitor window. Elements are
removed by highlighting them in the Monitor window then selecting the Remove
command.

¢ Moveisused to move the position of an element in the Simulation Monitor. To move an
element:

a. Highlight the element to be moved.
b. Select the M ove command.

c. Click onthelocation you want the element moved. The element is moved to the new
location.

Note: You can move either asingle element or a group of selected elements.

View Menu

Use the selections in this menu to change how a monitor is displayed. The val ue For mat
command alows you to change the format in the integer and bit-array data-items displayed in the
Monitor. An element’s value format can be changed as follows:

Select an element from the Simulation Monitor window.
Select View > Value Format. The Formatted Value dialog box opens.

Select the appropriate | nteger and Bit-Array format.

A 0w NP

Click OK. The vaue of the element is reflected in the Monitor window in the new format.

+ Full Name displaysthe full name of the selected element. Thisoptionis useful for
elements with long names, for example elements in generic instances.

+ Sort by Name sortsall the elementsin the current Monitor window al phabetically
by name.

+ Sort by Type sorts al the elements in the current Monitor window by type, and
within each type, in alphabetical order.

+ Sort by Relevant sorts al elements according their relevancy for the next
simulation step to be taken. An element isrelevant if it affects atrigger of a
transition, static reaction or a mini-spec in the current model status.

5. Sdect File> Save. The Smulation Monitor is saved and added to the Profile.

76 Simulation Reference Manual

The Microdebugger Tool

The Microdebugger Tool

To run the microdebugger tool, you must first set breakpoints within the graphical and textual
procedures on your model. Breakpoints can be set to occur upon entering a procedure. When the
simulation tool reaches a breakpoint the microdebugger tool is executed. The Simulation
microstep debugger alows microstepping through the implementation of activity mini-steps, state
static-reactions, and action language actions, in addition to subroutine. The microstep debugger
monitor is not available with these items because values are updated on a step boundary, not
micro-step boundary. It is recommended that you use regular simulation monitors.

The Simulation microstep debugger also supports the inspection of context variables during
debugging.

In the following steps, the process of setting breakpoints and debugging graphical/textual
procedures is described.

Defining a Breakpoint in a Subroutine

To add a breakpoint to a subroutine within a Rational Statemate model.

1. Select Actions > Breakpoints from the Profile Editor. The Breakpoint Editor appears.

| Simulation Breakpoint Editor

Sub_—y
rout

2. Click Add from the Subroutine list. The Add Breakpoint dialog box opens.

Rational Statemate 77

Interactive Mode Simulation

Active: Yes |
Hane: II][::

- List Button
Subroutine Hame: I ADD_FIYE

3. Enter the name for the breakpoint in the name field.

Note: In models containing multiple breakpoints, each name must be unique.

4. Click the List button. A selection menu listing al defined subroutines appears.

5. Highlight the subroutine that contains the breakpoint, then click Apply. A breakpoint is set
to the selected subroutine.

Debugging a Textual and Graphical Procedure

This section provides information to setup a debugging session for atextual or graphical
procedure. The microdebugger tool is start whenever a breakpoint is reached during the execution
of asubroutine.

The debugger tool allows you to select elements within your model and monitor the execution of
microsteps as you simulate. When monitoring textual procedures, code is viewable within the
microdebugger tool. For graphical procedures, a read-only Graphic Editor opens, allowing you to
view the execution of microsteps graphically.

78 Simulation Reference Manual

The Microdebugger Tool

Procedure ADD_FIME Tiebug

Step nStep I nStepH I Continuel Run—TD—EndI
Stack J
Code ‘
Window Data:
Hane Type Yalue L/P/G
= |Add...
Monitor Delete
Display
il
Ei?]r:mand Conmand: E AI ﬂ
Results:
3
Resul ts
[Iisnissl Help |

¢ mSep starts one microstep.

+ mS3epN runs a specified number of microsteps.

+ Continueruns until the next breakpoint is reached or to the end of the current context.
¢ Runto End runs until the end of the current procedure.

¢ Dismiss closes the window.

¢ Sack showsthe levels of procedures being executed. Procedure names are listed in
tabular format. Double-clicking on any procedure namein the stack performs an up/down
action.

+ Codewindow displaysthe code within the current execution. The current execution lineis
highlighted.

+ Monitor Display displays the status of selected elements.

¢ Command Lineallows you to enter commands to examine data (or Do Actions). The
results are displayed in the Results area.

+ Resultsdisplays results for each action.
¢ Dismissturns off the dialog.

Rational Statemate 79

Interactive Mode Simulation

Adding Elements

To aid you in debugging your model, you can add elements from your model to the Microdebugger

Monitor. The Monitor provides atabular display of elements status during simulation. You add
elements by:

1. Click Add. The Select Element dialog box appears.

e ————
Select Element of ADD_FIVE

Locals Paraneters Globals

Hane: I?

Filterl | Increnental Filter Select Hlll Expandl

Hane Type
.]
ri

I Data-iten
Help |

2. Select the Parameters > Filters. A list of elements appear in the Name and Type field.
3. Select the element you want to add to the monitor display of the Procedure dialog box.

4. Select Apply > OK. The selected elements are added to the monitor display of the
Procedure dialog box.

Simulating a Textual Procedure

After you have added elements to the Procedure dialog box, the procedure can be simulated. Each
time a step istaken, changing values can be observed in the monitor. After the subroutineis
completed, execution of the step continues.

Textual procedures started from subroutines that have been defined using code (i.e., C, Ada)
cannot be simulated. Thisisonly true for this instance. Textual procedures started from anywhere
else can be simulated. The correct code is generated for Textual procedures started from anywhere.

80 Simulation Reference Manual

The Microdebugger Tool

Simulating a Graphical Procedure

After adding elements to the Graphical Procedure dialog box, you can simulate it. After the
subroutine execution is completed, the execution of the step in the model continues. The
simulation can be viewed via the Graphic Editor.

Procedure ADD_FIVE Debug

nStep | nS5tepH | Continue | Run-To-Endl

Stack: [N A

|

Fi

Type VYalue
DI 6

Connand:E

Results:

Disnissl

The step semantics for a Graphica Procedure are the same for a Textual procedure. The execution
of the procedure appears atomic from the view of the model. From the view of the procedure being
called, the execution acts like a GoRepeat.

When a procedure is called, it runs to completion before the model advances. At each occurrence
of a procedure calling another procedure, the “caller” does not advance until the procedure being
called returns.

If more than one procedure is called in the same compound action, they are treated concurrently.
IN and INOUT parameters are read from the value at the beginning of the step. INOUT and OUT
parameters should be written at the end of the step. Context variables can be passed as parameters
in order to create sequentially.

Rational Statemate 81

Interactive Mode Simulation

For example, the following resultsin racing:

linit (MY_ARRAY);
sort _i ncr (MY_ARRAY);
sort_decr (MY_ARRAY)

In the next example, the final value of MY_ARRAY is sorted in decreasing order.

linit ($MY_ARRAY)
sort_incr ($MY_ARRAY)
sort_dcre ($MY_ARRAY)
MY_ARRAY: =$MY_ARRAY

In the next example, the final value of | isincremented a single time from the value at the
beginning of the step.

/my_incre(l);
my_incre(l):
nmy_incre(l)

In the next example, the final value of | isincremented three times from the value at the beginning
of the step.

[$l:=I;
my_incre($l);
ny_incre($l);
rry_gsncr e($l);
1: =8Il

Multiple procedures started from the same compound action are debugged sequentially.

Graphical procedures must always run to completion when started, if the procedure reaches a
stable situation (no more micro-steps can be taken with the current parameter, local, global
values), aruntime error should be generated by the simulation. When this error condition is
encountered, within simulation, the procedure immediately returns with the current global and
parameter values and the simulation step is interrupted. At this point, you are prompted with an
error message and is given the ability to continue the step and simulation.

82

Simulation Reference Manual

Interactive Simulation Example

Interactive Simulation Example

The Traffic Light System

To illustrate some of the principles and commands discussed in this section and in Model
Execution: Concepts and Terms, thefollowing smple Traffic Light example has been devised. Enter the
Satechart shown in the Traffic Light Exampleinto your Rationa Statemate system. After the Statechart
isentered, you areingtructed on how to interactively execute the commands shown in the scenarios. This
provides you with both the smulation basics and command mechanics.

Description Of The Traffic Light System

+ A traffic light system controls the intersection of two streets, one going north-south (N_S)
and the other going east-west (E_W).

+ Thetraffic lights remain green (in their respective directions) for a specified amount of
time. The time east-west remains green may not be the same as that of north-south.

+ Thetimethelights remain green can change according to traffic conditions.

+ Thelights can be disabled. In the event of electrical malfunction, the lights blink yellow in
al four directions.

Rational Statemate 83

Interactive Mode Simulation

*-\ [NORMAL_OF |

GREEM_LIGHT

/. s
.\H‘\¥ tm{eniM_5,GREEM_LIGHT » -MS_GREEN_TIME »

YELLOW_LIGHT

e (E_W.RED_LIGHT }

p RED_LIGHT

tm {en(E_W,GREEN_LIGHT » .EW_GREEHM_TIME}

tm ten{N_S . YELLOW_LIGHT » .2}

o TELLOW_LIGHT

~

RED_LIGHT

tm Cen(E_W.YELLOW_LIGHT ¥.23

S/

FLASHIMNG

MALFUNCTIOM

Simulating the Traffic Light in the Asynchronous Time Model

With the Statechart entered into your system, it’s now time to observe the model’s behavior using
the Simulation Tool’s interactive mode. Please execute each step on your workstation and observe

the behavioral results.

Initiating the Simulation Tool

From the Statechart graphic editor, initiate the Simulation Execution tool by choosing Tools >
Simulation. The Simulation Execution window appears.

84

Simulation Reference Manual

Interactive Simulation Example

Setting Some Time Parameters

As previoudly stated, the time each traffic light remains green is a variable. During this step, you
set the east-west time for 15 seconds and the north-south time for 20.

1. Select Action > Do Action.

2. Enter the following In the Expression field:

ew_green_time: =15; ns_green_ti me: =20
3. Click OK.
Stage 1
This stage begins the simulation of the Traffic Light statechart.
Select Go > GoRepeat.
Thetraffic light begins to operate. The north-south lights are green and the east-west lights are red.
Simulation Time: (see the status line of the Simulation Execution window) 0 seconds

The statechart entersits default states. GoRepeat advancesthe smulation to the next stable status, in
this case the default entrances.

Rational Statemate 85

Interactive Mode Simulation

" [NORML P |

f’fr- tm {ern(M_5 ,GREEM_LTGHT » .MS_GREEM_TIME?

GREEM_LIGHT
RED_LIGHT

eni{E_W.RED_LIGHT } tm{entH_S,YELLOW_LIGHT 3,23

N_S \

o VELLOW_LIGHT

tm {en(E_W,GREEN_LIGHT » .EW_GREEM_TIME}

GREEM_LIGHT o TELLOH_LIGHT

RED_LIGHT
er(M_5 ,RED_LIGHT } T iem W, YELLOW_LIGHT .2}
MALFUNCTION
RESE& FLASHING ,,J

Interactive Simulation Stage 1

86

Simulation Reference Manual

Interactive Simulation Example

Stage 2

At this stage, you display the scheduled events and move to the point where the traffic lights first
change.

1. Select Analyze > Show.
2. Click Futurein the Display dialog box.

Changes Future Racing

Covtivimm M el o T aas

The north-south traffic lights turn yellow after 20 seconds. This indicates the effect
of setting the ns_green_time parameter.

3. Select Go > GoExtend.
Simulation Time: 20 seconds.

GoExtend advances the simulation and increments the clock until the next change
occurs in the system status - when the north-south lights turn yellow.

Observe that the system isnow in statesN_S.YELLOW _LIGHT and
E W.RED_LIGHT.

Rational Statemate 87

Interactive Mode Simulation

¥\ [NORMAL_OF |
/. s
tm {en {N_S . GREEN_LIGHT ¥, NS_GREEN_TIME}

GREEM_LIGHT N YELLOW_LIGH
p RED_LIGHT

en{E_H,RED_LIGHT » tm{entH_S YELLOW_LIGHT ¥ .23

tmien (E_W, GREEN_LIGHT ¥ . EW_GREEM_TIME

GREEM_LIGHT o TELLOW_LIGHT

RED_LIGHT
en(MN_S ,RED_LIGHT tm ten (E_W, YELLOW_LIGHT 3,2}
MALFUNCTION
RESEK FLASHING ,,/

Interactive Simulation Stage 2

Stage 3

At this stage, GoAdvance isused to advance thetime.
1. Select Go> GoAdvance.
2. Enter thevalue 2 and click OK.
Thesystemisnow instatesN_S.RED LIGHT and E W.GREEN_LIGHT.

Observe that the simulation time is now 22 seconds.

88 Simulation Reference Manual

Interactive Simulation Example

k‘\ [NORMAL_OF |
/' s)
£ (er (N_S , GREEN_LTGHT 3 .NS_GREEN_TIME

GREEM_LIGHT o TELLOW_LTGHT

RED_LTIGHT
entE_W.RED_LIGHT tm CentM_S, YELLOW_LIGHT ¥ .23

tmten (E_W, GREEM_LIGHT » .EW_GREEM_TIME?

GREEM_LIGHT o TELLOW_LTGHT

RED_LIGHT
en(M_5.RED_LIGHT » tmfendE_W, YELLOW_LIGHT ¥ .23

MALFUNCTIOM
RESEK FLASHING ,.,/

Interactive Simulation Stage 3

Stage 4
At this stage GoAdvance is used to increment time.
1. Select Go> GoAdvance.
2. Enter thevaue 16 and click OK.
Simulation time: 38 seconds.

Our design calls for the east-west light to remain green for 15 seconds. Since the
clock has been advanced 16 seconds, the simulation informs you that there are
reactions completed before the specified time. The east-west lights change from green
to yelow and the clock isincremented the full 16 seconds.

Rational Statemate 89

Interactive Mode Simulation

k-\' |NIZIRr-1|’-‘|L_DF' |
/_ N_S \
tm ten¢H_S . GREEM_LIGHT 7, MS_GREEN_TIME

GREEM_LIGHT o TELLOW_LTGHT

RFED_LTIGHT
entE_HW.RED_LIGHT tm CentM_S,YELLOW_LIGHT ¥ .23

tm e (E_W, GREEN_LIGHT » .EW_GREEM_TIME?

GREEM_LIGHT YELLOW_LIGH
— RED_LIGHT

erntH_S,RED_LIGHT } tm {en{E_W, YELLOW_LIGHT » .2}

MALFLNCT TON
RESE& FLASHIMG ,.,-/

Interactive Simulation Stage 4

Stage 5

At this stage, the next change in the traffic light is reflected.
Select Go > GoExtend.
Simulation time: 39 seconds.

The traffic light system has completed one full cycle. The cycle takes 39 seconds (north-south
stays green for 20 seconds, east-west stays green for 15 seconds and each yellow light stays for 2
seconds). The system appears to behave as expected,

a0 Simulation Reference Manual

Interactive Simulation Example

k-\ [NORMAL 0P |

/_ tm{en{M_5,GREEN_LIGHT » .MS_GREEM_TIME

GREEM_LTGHT
RED_LIGHT

en{E_H.RED_LIGHT * tm e (H_S, YELLOH_LIGHT » .23

N_S \

YELLOW_LIGHT

tm {en {E_W,GREEM_LIGHT } .EW_GREEM_TIME?

GREEM_LIGHT o TELLOH_LIGHT

RED_LIGHT
en{N_5 RED_LIGHT 3 tm {en(E_W,YELLOW_LIGHT 3.2}
MALFUMCT TON
F\'ESEK FLASHING ,./

Interactive Simulation Stage 5

Stage 6
At this stage, an electrical malfunction is detected.
1. Select Action > Do Action. The Do Action dialog box opens.
2. Enter mal f uncti on into the Expression Field and click OK.
3. Select Go Sep from the Simulation window.

Simulation time: 39 seconds.

The traffic light stopsits normal operation and movesto the FLASHING sate. Note
that no time has been incremented. When amafunction occurs, the traffic light begins to

flashing immediately.

Rational Statemate

91

Interactive Mode Simulation

—, [|

GREEM_LIGHT

’/ P \\
'\ tm {en (N_S ,GREEN_LTEHT) NS_GREEN_TTME)

YELLOKW_LIGHT

en{E_W,RED_LIGHT }

RED_LIGHT

tm{en(E_W,GREEN_LIGHT » . EW_GREEM_TIME

tmten(H_S,¥ELLOW_LIGHT ¥ .22

YELLOW_LIGHT

GREEM_LTIGHT

0
entH_5,.RED_LIGHT

S

RED_LIGHT

i,

tmten (E_W, YELLOW_LIGHT » . 2}

RESET

Stage 7

HMALFUNCTION
FLASHIMG

Interactive Simulation Stage 6

At this stage, the electrical malfunction is corrected.

1. Select Action > Do Action. The Do Action dialog box opens.

2. Enter Reset into the Expression field and click OK.

3. Select Go> GoSep.

Simulation time: 39 seconds.

Again, no time has elapsed. Note that generating a reset event returns our system to
itsoriginal default states.

92

Simulation Reference Manual

Interactive Simulation Example

7 RN

tm e (N_S,GREEN_LIGHT » .MS5_GREEM_TIHE

GREEM_LIGHT o TELLOW_LTGHT

RED_LIGHT
entE_W,RED_LIGHT tmfen{M_S,YELLOW_LIGHT » .23

tm{en(E_W,GREEM_LIGHT » .EW_GREEM_TIME:

GREEN_LIGHT o TELLOW_LIGHT

RED_LIGHT
eni{N_5 . RED_LIGHT » Tt lem(E_K, YELLOW_LIGHT },2)
MALFUNCTION
RESET FLASHING *F,—ﬂ’fj

Interactive Simulation Stage 7

Rational Statemate 93

Interactive Mode Simulation

Stage 8

When the simulation scenario completes, exit Simulation Tool.
1. From the File menu, click Exit.

2. Click OK to confirm.

Some Variations to Consider

The example presented is quite simple and works properly. At thistime, you may want to consider
altering the model and its parameters to study the effects. The following suggestions are made:

+ Add the capability for a policeman to manually change the traffic lightsin time of heavy
traffic or an accident. This may be accomplished by changing the label on the
N S. GREEN LI GHT to N_S. YELLOW LI GHT transition to:

t m{en(N_S. GREEN LI GHT), N_S_GREEN_TI ME) or SW TCH

where SwW TCH is an event generated by the policeman.

¢ Notethat during the malfunction, all lights begin flashing immediately. During this period,
no time advances. And when the lights are repaired, the lights return to their default
configuration. You may want to change the model to reflect more redlistic traffic
situations.

¢ Thesetraffic lights perform the same cycle 24 hours aday. At night, it might be unrealistic
to have the same light delays as appear during daylight hours.

Simulating the Traffic Light in the Synchronous Time Model

Using the same time setting as in the asynchronous example, follow the commandsin the
following table to execute the model with the synchronous time model. Please observe the time
increments and stable and unstable configurations.

94 Simulation Reference Manual

Interactive Simulation Example

INITIAL FINAL
COMMAND CONFIGURATION CONFIGURATION TIME COMMENTS
GoRepeat n_s.green_light, 1 A stable configuration
e_w.red.light is reached. Show
- Future displays next
timeout in 20 clock
units.
GoNext n_s.green_light, n_s.green_light, 20 Show Future indicates
e_w.red_light e_w.red_light one unit until next
timeout.
Go StepN(2) n_s.green_light, n_s.yellow_light 22 First Go Step makes
e_w.red_light e_w.red.light transition. Second
- goes to stable
configuration.
GoAdvance(3) n_s.yellow_light n_s.red_light, 25 Clock advanced 3 units
e_w.red.light e_w.green_light and transitions are
- made based on
timeout.
Go Step n_s.red_light, n_s.red_light, 26 Move to stable

e_w.green_light

e_w.green_light

configuration.

Rational Statemate

95

Interactive Mode Simulation

96

Simulation Reference Manual

Recording a Simulation Session

Setting the Simulation Parameters

The Simulation tool is controlled by a number of user-specified parameters. These parameters are

set from the Execution Parameter s dialog box. Thisdiaog box is accessed asfollows.

Select Options > Execution Options from the Simulation Profile window menu bar.. The

Execution Parameter s dialog box opens.

Execution Parameters EI

Style
[F' Software i Harduware

Stepz per Go:

Infinite Loop: H 00
Goback Limits

WEE

_Racing
I Read/lirite [Writedlrite

_Automatically Record Hew

I Trace VYersion | SCP Wersion

I fccess Component Elements

I+ Leave Truth Table on Screen

0K | Cancel Help

Rational Statemate

97

Recording a Simulation Session

A description of each selection on the Execution Parameter s dialog box follows.

*

*

*

*

Stepsper Go — Sets the maximum number of steps that can be performed when executing
aGo command.

When the phase limit is reached, the Simulation tool assumes an infinite loop and
interrupts the execution of the Go command. At thispoint the sI M> prompt is displayed.

If the Go was performed by a batch program (SCP), the predefined SCL variable
i nfinite_l oopissattotrueand Set Interactiveisautomaticaly started if thereisno defined
breakpoint triggered by i nf i ni te_I oop.

Default val ue: 100

SCL conmmand: Set Infinite | oop nunber

Infinite L oop — For any WHI LE loop executed in the simulation, Infinite Loop forcesit to
completion when the number of repetitions exceeds this parameter.Graphic procedures
can have an infinite loop or aloop on atransition. This stops when the preset parameter is
reached.

Goback Limit — Determines the maximum number in succession the GoBack command may
be used.

Default value: 5

SCL conmand: SET GO BACK nunber

Racing Read/Write — Enables/disables the reporting of read/write racing conditions within/
between Statecharts. M essages appear on the workstation terminal.

Default val ue: OFF

SCL conmand: none

In the following example, although aracing condition is reported, the language semantics
would causey to be updated before x.

98

Simulation Reference Manual

Setting the Simulation Parameters

N /

/ / x: =0 | N
|
|
I SA
|
|
|
[x:=5 : /y =X

|
|
|

A 4 : A 4
|
|
|
|

+ Racing Write/Write — Enables/disables the reporting of write/write racing conditions
within/between Statecharts. The following messages appear on the workstation terminal.

Default val ue: OFF

SCL command: NONE

The value of x is unknown because we cannot determine if x gets 1 before or after x gets
2.

/x:=1

/x:=2

U %

¢+ Automatically Record New Trace Version — This feature causes atrace file to be
recorded every time the Simulation profile is executed. For more information, refer to
Tracing a Simulation later in this section.

¢+ Automatically Record New SCP Version — This feature causes an SCP file to be
recorded every time the Simulation profile is executed.

Rational Statemate 99

Recording a Simulation Session

Saving and Restoring Status

The Simulation tool alows you to save the current system status for future reference. Thisis often
useful when trying to backtrack to a certain point in the Simulation (e.g., nondeterministic
solutions), to continue your work later or to use the current status in another Simulation scope.

Record > Snapshot Status — Saving the Status

The Snapshot Status command is used to save the current simulation statusin areloadable file.

1. Select Record > Snapshot Status from the Simulation Execution menu. The Snapshot
Satus dialog box opens. It displays alist of existing Status files.

Snapshot Status. x|

Status Files
REAR_DEFOG

Selection:

L

0K | Eancell Help |

2. Select the status file you want to over write from the Status Fileslist or enter a new name
in the Selection text box.

3. Sdect OK. The current simulation status is save in areloadablefile.

100 Simulation Reference Manual

Saving and Restoring Status

Actions > Restore Status — Restoring the Status

Select Actions > Restore Status. The Restore Status dialog box opens.

Select the status file you want to restore from the Status Files list and select OK.
The Simulation Status saved in the selected file is restored.

When restoring a status, the Simulation tool checks the consistency between the current
Simulation scope and the one in which the status was saved. When the two scopes are
coincident, all saved values are restored. Attention must be paid to compound elements
(their values are not saved, see below). Also, since you may wish to use different global/
local clocks during the restoration, the show Fut ure command may show different times
than when the status was saved.

To effectively use the restore status facility when the stored status is a subset of the
restored status or vice versa, the following points apply:

Changes in the hierarchies of activities and/or states cause the saved status to become
unrestoreable. Thisincludes cases when a state/activity is added, removed or when it
changesits place in the hierarchy.

When atextual element is deleted, its saved valueisignored at the time of restoration.
When a new textual element is added, its current value remains unchanged after the
restoration.

The Status File

The status file isanon-ASCI| file containing the following information:

*

Timing information (starting time and the current time)
Status of activities

Basic states configuration

Values of primitive conditions

Values of primitive data-items

Generated primitive events, aswell as generated events associated with other elements,
such as en(S), st(A), tr(C), etc.

Scheduled timeouts and actions with their respective timesleft till expiration.

Rational Statemate 101

Recording a Simulation Session

Status File Management

The Status File Management command allows you to display, delete, copy, export and print
selected Status files. This command is available in the Profile Editor and the Simulation
Execution window.

1. Select File> Simulation File Management > Status File Management. The Satus File
Management dialog box opens.

2. Select thefile from the Fileslist that you want to manipulate using the left mouse button.
A description of each command contained in the Status File M anagement dialog box is
provided in the following list.

x

Files

REAR_TEFOG Ehtn |
Delete |
Copy . |
Export,.+|
Print |

Dizmiss | Help |

+ Show — Shows the selected Status file in ASCII format. In the viewer select your
preferences.

+ Dedete— Ddetes the selected Status file from the workarea.

¢ Copy — Copies the selected file after you re-name it. (Works the same way as
Saveas.).

¢ Export —Worksthe same way as Copy except you can saveit to another workarea
or any directory you want.

¢ Print —Used to print the selected file.
¢ Dismiss— Dismisses the Status File Management dialog box.

102 Simulation Reference Manual

Tracing a Simulation

Tracing a Simulation

When executing amodel, you may record all external changes and the system's reactions to these
changes. This captured raw datais used as the basis for the creation of various spreadsheet trace
reports, as well as graphical viewing of the simulation results using waveforms.

There are three ways to interactively enable the creation of the trace file;

¢ From the Execution Parameters dialog box.
¢ From the Record command.
¢ From the Test Settings.

Simulation can record all States Transitions and Truth-Table's lines that were visited during a
simulation run. The recording is now atrace file with alist of Rational Statemate Ids for the States
and Transitions, and I1ds & row number for the Truth-Table lines.

To get the “Execution” file, from the Options menu, click Test Settings and then select Create
Execution L og.

The tracing continues into the same file until *Quit’ or ‘Rebuild’ operation. ‘Rebuild’ operations
create anew tracefile.

Theformat of Tracefilesisalist of State's, Transition lds, and alist of the Truth-Table element ID
& the row number. The separator "' is used for States of generic instances.

For Example:

2533300560199681

2533300560199682
2566330066024568172533300560199684
2566300660245681"2533300560199685
2566300660245681"2533300560199686
256630066024568172533300560199687
2533300560199677

2533300560199678

2251825583489024 4

2533300560199680 2
2533300560199681"13940679738720256 1
253330056019968112251825583488024 6

Rational Statemate 103

Recording a Simulation Session

Automatically Recording a New Trace File

1. Select Options > Execution Parameters from the Simulation Profile Editor menu. The
Execution Parameter s dialog box opens.

2. Select Automatically Record New Trace Version.

3. Select OK. The Simulation Trace is automatically saved.

Record > Start Trace — Creating a Trace File

A Trace can be also be started and stopped from the Record command from the Simulation
Execution dialog box.

1. Select Record > Sart Trace from the Simulation Profile Editor menu. The Sart Trace
dialog box opens. It displays alist of aready existing tracefiles.

2. Select aTracefile name from the Fileslist to over write and existing trace or anew name
in the Selection text box.

3. Select OK. All external changes and the system’s reactions to these changes are recorded.

In the batch mode, the Simulation uses the commandsset trace andcancel trace totogglethe
tracing facility. The trace file is closed when one of the following commands is entered: Exit,
Restart Simulation or Rebuild Simulation.

Trace File Management

Trace files can be displayed, deleted, copied, exported and printed using the Trace File
Managerment command. It can be accessed from the Simulation Profile window and Simulation
Execution menu.

1. Select File> Simulation File Management > Trace File Management. The Trace File
M anagement dialog box opens.

2. Select the Tracefile from the Fileslist that you want to manipulate using your left mouse
button. The Trace File Management dialog box opens.

104 Simulation Reference Manual

Tracing a Simulation

Trace File Management

+ Display — Shows the selected Tracefile.
¢ Delete — Deletes the selected Trace file from the workarea.

+ Copy — Copies the selected Trace file after you re-name it. (Works the same way as Save
as.).

+ Export —Worksthe same way as Copy except you can save it to another workarea or any
directory you want.

¢ Print —Used to print the selected Trace file.

+ Reports— The Reports button is use to create reports. See Creating Reports later in this
section.

+ Waveforms— The Waveform button is used for analysis of traces produced during
simulation. Refer to Waveforms in Simulation for addition information on Waveforms.

¢ Dismiss— Dismissesthe Trace File Management dialog box.

Rational Statemate 105

Recording a Simulation Session

Creating Reports

Reports can be generated, manipul ated and printed through the Tr ace Fil e Managenent
command.

1. Select File>Simulation File Management > Trace File Management from the
Simulation Execution dialog box. The Trace File M anagement dialog box opens.

2. Select the Reports button. The Report dialog box opens.

¢ Formatted Report

+ Spread Changes

¢ Spread Full

¢ Spread Compressed
Additional information on each report follows.

106 Simulation Reference Manual

Creating Reports

Formatted Report
This report groups information on a stepwise basis:
+ Thest ep number (from the beginning of the Simulation), the time (in Global Clock Units)

and, in the case of a superstep, the phase number (step number within that time).

+ The changes caused by the environment: changes caused by the external actions that you
enter prior to performing the step, either interactively or from the SCP (includes generated
events, changes in conditions data-items, etc.).

¢ Changes caused by the system. These are the outcome of internal actions. A change can
trigger a chain reaction producing other actions.

+ Thenew configuration of states reached at the end of the step.

Generated events: ALARN

Botivated activities: MANIPULATE PAGE

States exited: OFF
States entered: ALERT MODE, 0N, OPERATE, VIERATION MODE, WAITING

Basic states configuration

IDLE, WIBRATION MODE, WAITTIHNG

Rational Statemate 107

Recording a Simulation Session

Spread Changes

To show, for each element in the Simulation scope, when and how its values/statuses changed
during the Simulation.

¢ Thefirst and last lines show the initial and final values/statuses of the elementsin the
session.
¢ The delta column showsthe current step number.

+ A row in which the ddlta valueis marked by the | etter E represents the external changes
occurred in the step. In such cases, the next row correspondsto the same vaue of thedel t a and
summarizes the system reaction.

Simulation name: PAGER
Time vnit: 1 SECONDS

VIER
Time Delta LIGHT ATION ALARM
0 0 False False
i 1 . .
i 2
] 3E
] 4 X
] L . .
] f True True
0 T True True

~L
Simulation name: PAGER
Time wnit: 1 SECONDS

ALE
RT_C0O ALERT
Time Delta NTROL _MODE IDLE OFF 0N

0 0 out out out out out
0 1 . .. In

0 2 In . In .

i 3E .

0 4 In .. out In
0 L out

1] £
] T In In 0Out Dut In

108 Simulation Reference Manual

Creating Reports

Spread Full

The values/statuses of elements in the scope are shown at all moments, not only when changed.

Simulation name:

PAGER Page: 1 -1

Time unit: 1 SECONDS

Time Delta

“L

Simulation name:

CR
R ITICA
B EMOVE WIEBR ACE L PWR HNEW GSAVE

BEEP EEPEE LIGHT _CELL ATION _PAGE ALARM LOSS PAGE PAGE

Time unit: 1 SECOWDS

Time Delta

PAGER Page: 1 - 2
u

SER_R ALE M&THT

ESPON ALE RT_C0O B ATHNIN

SE_TI RT C0 ALERT NTROL EEPER LOW G_MNEW

MEQOUT WTROL _MODE :BEEP MODE TIDLE CELL _PAGE OFF 0N

Rational Statemate

109

Recording a Simulation Session

Spread Compressed

This report contains three parts:

¢ Dictionary-List of al elementsin the scope, with the short names by which elements are
referenced in the report. Elements of each type are enumerated and a short nameisa
combination of aletter indicating the element’s type and a number.

+ Legend — Shows correspondence between values of elements (except data-items) and
numeric values representing these values in the report.

+ Spreadsheet — Table summarizes the evolution of the elements’ valuesin the Simulation.

Simulation name: PAGER
Time uwnit: 1 SECONDS

Dictionary:

3 Condition LIGHT

C5 Condition VIBRATION
EZ Ewent ALARN

51 State ALERT CONTEOL
52 State ALERT MODE

55 State IDLE

38 State OFF

59 State 0N

510 State OPERATE

512 State PAGER_CONTROL
515 State VIEBRATE

516 State WIBRATION MODE
517 State WAITING

al Activity ALERT USER
A4 Actiwvity LIGHT

a5 Hctivit? MAWNTFULATE PAGE
aT Hctivit? VIERATION
D32 Data-item SWITCH _POS

Legend
State 0 - out
Condition : 0 - False
Event 0 - Mot Occuring
Botivity 0 - Nonactive

String data items:
1 - 7

g S

In

True
Occuring
Hanging

2 - Active

110

Simulation Reference Manual

Creating Reports

1. Select the Output Control.

¢ Send to Screen — To copy the contents of the report to the terminal screen.
¢ Send to Printer — To send the report to the printer.

¢ Number of Copies— To specify the number of copies printed. The number of
copies must be specified in the text box.

* Writeto File—Towritethereport to afile. The file name must be specified in the
text box. You can select afile name by selecting the ellipse[...] button. This opens
aFiledialog box on your screen. From this dialog box, you can select afile name
and directory.

2. Select Apply or OK. The selected options are started.

Interpreting Raw Data

The Simulation raw data may be interpreted as follows:
For Activities:

Activity SET_UP A Int
Activity SET_UP N Ext

where A and N are active and nonactive, whilel nt and Ext point to the source of the change
(internal, externd).

For Sates:

State OFF | Int
State ON O Ext

where| and oareinand out of thestateand | nt and Ext arerelevant to externa states only.
For Conditions:

Condi tion I N_CONNECTED T I nt
Condi tion | N CONNECTED F Ext

where T and F aretrue and false.

Rational Statemate 111

Recording a Simulation Session

For Data-items:

Data-item FACT | 5 Ext

Data-item DELTA R 3.2 Ext

where| and Rareinteger and red.
For Events:

Event SET_UP X Int

where X indicates the occurrence of the event

Trace messages describing changes which occurred in a particular step are grouped together and
preceded by aline showing the step and the phase number (step number within that time) and the
current time.

Also, the moment the trace is enabled, the current values and statuses of all elementsin the
Simulation scope are placed into the trace file.

A tracefileisarecord of all the different statuses that occurred during the simulation. Whenever
time changed or the state (value) of an element within the scope of the simulation changed, it was
recorded. A trace file is often used to examine how a system behaved during a simulation session
once the session is completed.

112

Simulation Reference Manual

Record and Playback of Simulation

Record and Playback of Simulation

During the simulation execution, you may enable and disable the recording of commandsto a
Simulation Playback file.

The recording may be enabled and disabled as many times as necessary during asingle
Simulation. Theresult isasingle playback file which contains the various scenarios. This playback
file has the form of a Simulation Control Language program (refer to Simulation Command
Reference) and can berun like anorma SCP.

Record For Playback

In general, the Simulation tool storesin an SCL playback file only information which affects the
behavior of the simulated system, such as Simulation parameters, changes of specification
elements, and Go commands. It does not record parameters which affect the various report
facilities, information concerning only the viewing of changes and changes of internal variables of
the running SCPs.

The detail is described below:

+ Each time you enable the recording:

* Thecurrent system statusis saved (as a starting point of the recorded session
fragment) and a corresponding r est or e_st at us Statement is put into the SCL
playback file.

* The current setting of Simulation parametersis recorded. Thisincludes for
example, Set Infinite Loop and Set Go Back.

+ During the session, the following information is recorded:

+ Each externa change of a specification element is recorded as appropriate action
on the element. These changes may come from a Do Action, from a panel or
monitor or from the SCP.

¢ Each entered Go command is recorded by its full name.
¢ Each change of the simulation parameters.

Rational Statemate 113

Recording a Simulation Session

The playback files are treated like SCP files and can be manipulated as such.

1. Select Options> Execution Parameter s from the Simulation Profile Editor. The
Execution Parameter s dialog box opens.

Execution Parameters:

Steps per Goi

Infinite Loop: 1000

HEl,

Goback Limit:

Racing
[Read/lrite [Write/drite |

0K I Cancel I Help |

2. Select the Automatically Record New SCP Version option.
3. Select OK.

Once Simulation execution is started, the recording is started. From the Simulation Execution

window, you can start or stop the playback recording by selecting options: Record > Record SCP
or Record > Sop SCP Recording.

114 Simulation Reference Manual

Batch Mode Simulation

Asyour models grow in complexity, use of the interactive mode of Simulation, can become
inefficient. To ease the entry of large amounts of data and to better describe a scenario-based execution,
the Rational Statemate Simulation tool provides abatch mode of operation.

Simulation batch mode operates from a formatted text file of commands linked as a program
language - Smulation Control Language. Batch Mode smulation is controlled by programswritten in
the Smulation Control Language. Executing a Smulation Control Program animates the Statecharts and
activity-chartsin the Simulation Scope in the same manner as Interactive Simulation.

This section details the use of Batch Mode Simulation and the SCL constructs.

Rational Statemate 115

Batch Mode Simulation

The Simulation Control Program

The Simulation Control Program isatext file containing Simulation Control Language commands
which drivethe simulation of the Rational Statemate model. The Simulation Control Program hasavery
specific structure and execution order. A sample Simulation Control Program template is shown in the
following diagram.

Progr am - PROGRAM ny_scp_nane;
Header

CONSTANT
. Congtant Declarations

VARl ABLE
. Variable Declarations

INIT
. Initialization
. Initiation Section:statements performed
. a the start of each execution of the SCP.

END INIT;

Progr am . Breakpoint Definitions.
Secti onsEnabled breakpoints are performed

. following each step if their
. correponding triggers are true.

BEGA N
. Main Section. If absent, an implied
. go extended is executed in aloop.

(an implied set interactive is performed at the end of the

Mai n Secti on)

End END ;
St at enent

- END.

116 Simulation Reference Manual

The Simulation Control Program

The Structure Of The Simulation Control Program

The Simulation Control Program has a specific structure. It contains the following Sections:
program header, program sections, and end statement. There are five program sections:

+ Constant section

¢ Variable section

+ |nitialization section
+ Breakpoint section

¢ Main section

A valid Simulation Control Program may include any, all, or none of the program sections. All
sections included in a Simulation Control Program must appear in the order described below.

The Program Header

The Program Header consists of the PROGRAMKeyword followed by an identifier naming the program.
The header has no impact on the execution of the program.

PROGRAM i denti fier;

Constant Program Section

This program section consists of the CONSTANT keyword followed by the constant declarations for the
Simulation Control Program. Congtants are alwaysloca to the Smulation Control Program.

A constant declaration contains a type (integer, string, float, etc.) followed by assgnment statements.
Multiple assgnments are separated by commas and the last assignment within the typeisfollowed by a
semicolon.

CONSTANT
I NTEGER x: =5, y:=200, z:=1, z2:=10;
STRI NG al pha: =" unexpected | oop’,
beta: =" enter action for yy';
FLOAT A:=2.5, B:=700.234;
BI T B: =0;
Bl TARRAY (1..16)A2: =0xab37;
ARRAY (1..2) of STRING str:={'Undefined action’,
‘ Nonexi stent’ };
ARRAY (1..6) of INTEGER int:={10,2,3,4,12,-72};

Rational Statemate 117

Batch Mode Simulation

Variable Program Section

This section is used to declare the local and global variables used by the SCP. Variablesmay beloca
to the Simulation Control Program or declared globaly for usein multiple Simulation Control Programs.
Global variables must be declared in each Simulation Control Program where they are referenced.

Each variable declaration has atype (integer, string, floa, file, bit, array, Boolean or bit array) followed
by variable names. Multiple variable names are separated by commas with the last name followed by a
semicolon. Variables can beinitiaized.

VARI ABLE
I NTEGER xx, yy, u5:=5, za2;
STRI NG ganmms,;
GLOBAL STRI NG del t a;
FLOAT aa, bb, cc, dd:=10.1879;
FILE f1, f2, f3;
BOOLEAN val id, invalid;
G_OBAL BOCLEAN correction;
Bl TARRAY (1..10) BAI;
Bl TARRAY (1..20) BA2;
Bl TARRAY (1..31) BA3;

Initialization Program Section

This program section contains the statements (except Go commands) to be executed upon running the
Simulation Control Program. All statements are contained within the keywords| NI Tand END | NI T.

INIT
cc: = 23.6;
yy: = 4000;
ganma: = ‘|ight standard’;
SET I NFI NI TE LOOP 50;
END I NI T;

118 Simulation Reference Manual

The Simulation Control Program

Breakpoint Program Section

This program section contains the breakpoint definitions. Breakpoint definitions are contained
within the keywords SET BREAKPO NT and END BREAKPO NT. Once defined, abreakpoint is
automatically enabled.

Breakpoints are checked at the beginning of each Go command, and at the end of each execution
step. Enabled breakpoints whose triggering expression is true have their corresponding statements
(no Go commands permitted) executed. Below is an example of a Breakpoint.

SET BREAKPO NT [valid] DO
WRITE (*VALID is True.’);

END BREAKPQO NT;

The breakpoint section may contain several breakpoint definitions, each delimited by the SET
BREAKPO NT and END BREAKPOI NT commands.

Main Program Section

This program section can contain the SCL statements that make up the main body of the program.
These statements are contained within the keywords Begi n and End and are executed sequentialy.

The Main Section is only executed if the Simulation Control Program is started by the Run
command. If started by Exec, this section isignored and awarning message isissued.

After finishing the execution of the Main Section, execution is automatically switched to the
interactive mode where a Cont i nue command may be used to execute the default main (see below).

If the Main Section is omitted, the default main is executed. ThisdefaultisaGo Ext ended ina
continuous loop (until interrupted by the user):

BEG N

VWH LE TRUE LOCP
GO EXTENDED;
END LOCOP;

END;

Rational Statemate 119

Batch Mode Simulation

Basic Syntax Rules

The basic syntax of the Simulation Control Language is presented as follows:

*

*

SCL isnot case sensitive, except for text strings inside apostrophes.

Anidentifier may be any string, beginning with aletter and consisting of any of the
following characters: az, 0-9, _. Identifiers have amaximum length of 16 characters.

When a Rationa Statemate element name coincides with an SCL reserved word or an
SCL variable/constant identifier, an underscoreis added as a prefix to the Rationd Statemate
element name. For example, your specification contains astate SET. However, setisalso a
reserved word in the SCL. To reference this name in the Simulation Control Program,
precede it with an underscore (i.e., _SET).

Itisillegal for aRational Statemate element name to be the same as areserved word in the
Rational Statemate action language (i.e., WHILE).Multiple SCL statements are permitted
on the same line if they are separated by semicolons (;).

A single SCL statement may span severa lines.

SCL has a set of reserved words and syntactical elements. Each of these has a special
meaning and context. The SCL reserved words are listed in SCL Reserved Words.

Comments are preceded by a double backslash (//). This symbol can appear at any pointin
theline, except within aliteral string. The end of the line concludes the comment.

SCL Statements

SCL statements are made up of keywords, syntactical elements and identifiers. Statements are
either smple or structured.

Simple statements consists of one or two keywords followed by identifiers and may span more
than oneline.

Structured statements contain other statements. They usually span several lines and use keywords
to begin and end their structure and delimit their components. IF, THEN, EL SE are examples of a

structured statement:
IFa>hb
THEN
X 1=y,
ELSE
X :=x +1
END | F;

120

Simulation Reference Manual

The Simulation Control Program

Semicolons As Delimiters

Semicolons are used to separate Simulation Control Program statements. A semicolon optionally
follows the last in a sequence of statements. This example uses semicolons only where required:
PROGRAM sanpl e
VAR ABLE FI LE f1;
INIT
OPEN (f 1, ‘ny_file.doc’, QUTPUT)
END INIT
SET BREAKPO NT anal ysis => [STEP] DO
WRITE (‘a will be greater than b \n")
al pha : = 200 ;
IF a<= b
THEN

al pha : = 400 ;
st!(transfer) ;
a:=1+b// optional seni-colon ontted
ELSE
sp! (counter)
END | F;
WRI TE (f1,a,“\n")
END BREAKPO NT
END.

Rational Statemate 121

Batch Mode Simulation

Rational Statemate Expressions In the Simulation Control Program

In order to interact with the simulated system model, the Simulation Control Program must be able
to detect the system status. It must also be able to change the system status by performing actions
on the specification elements. Rational Statemate expressions are used in the SCL for this purpose.

When used in a Simulation Control Program, Rational Statemate expressions can reference both
specification elements and SCL variables and constants.

Two types of Rational Statemate expressions are used in the SCL.:

¢ Rational Satemate Actions: These are equivalent to the interactive mode input commands
used to generate externa changes. For example;

if ¢c then st!(A) else st!(B) end if

al ; a2 ; a3

where cisacondition, A and B are activities and al, a2 and a3 are actions.

¢ Rational Statemate Triggers: In most executions, it is useful to trigger the execution of
some actions either conditionally or as the direct result of some event. Such triggers are
written as Rational Statemate expressions and are used as part of an SCL structured
statement.
Some examples:

¢ if c then .

when condition c istrue, then take actions. . .

¢ when tr(c) then .

if the condition ¢ becomes true during the last execution step, then . . .

¢ set breakpoint ch(i) do .

sets a breakpoint when a data-item i has changed value during the last execution
step

¢ while c loop .

when condition c is true, trigger actionsin aloop
When writing a Rational Statemate expression, remember to follow the rules outlined in the
Rational Satemate User Guide. Some exceptions apply:
+ Actionswrite(v) and read(v), where visan SCL varigble
¢ Eventswritten(v), read(v) and changed(v), where visan SCL variable
¢ Eventstrue(v) and false(v), where visan SCL Boolean variable

122 Simulation Reference Manual

The Simulation Control Program

Your workareamust contain the specification elements referenced in expressions in the Simulation
Control Program. Although these elements need not be in the current scope, the references must be

unique.

Predefined Variables

The Simulation tool provides a set of predefined variables which are available to every Simulation
Control Program without being explicitly declared. Some of these variables are numeric and
contain data such as the step number and the current value of the execution clock. Others are
Boolean and represent conditions which relate to the execution status.

The predefined variables are only alterable by the Simulation tool. You cannot directly
manipulated their values. They are displayed by the Monitor SCP command together with variables
explicitly declared in the running Simulation Control Programs.

List of Predefined Variables

*

STEP_NUMBER - an integer variable whose value is equal to the number of the current
execution step

CUR_CLOCK —afloat variable whose value is equal to the current execution time
measured in global Clock Units. Thisis used to manage the timing of the specification.

NON-DETERMINISM —aBoolean variable that becomes true when a step execution
leads to a non-deterministic situation. It it usually used to trigger a breakpoint. Any
meaningful sequence of SCL statements associated with the non-determinism breakpoint
must include one of the statements below to resolve the situation:

CHOOSE - resolves the situation by selecting a specific solution number.

RANDOM_SOLUTION - randomly selects one of the possible solutions and continues
the execution.

If al breakpoints are processed and the non-determinism is still unresolved, the
Simulation tool issues a message and automatically moves to interactive mode. The
execution can only continue if the situation is resolved with either aRest art or Rebui | d
command.

When used as a breakpoint trigger, the Non-determinism variable must be used by itsdlf:

set breakpoint [nondeterninisn do
random sol ution ;
end breakpoint;

TERMINATION —aBoolean variabl e that becomes true when an execution step leads to
a Termination Connector. If al breakpoints are processed and the termination situation is
not handled, the Simulation tool automatically moves to interactive mode.

Rational Statemate 123

Batch Mode Simulation

INFINITE_GO —aBoolean variable that becomes true when the tool exceeds the
maximum number of steps allowed without advancing the clock. If all breakpoints are
processed and the infinite loop is not handled, the Simulation tool automatically movesto
interactive mode to prevent an infinite loop.

When used as a breakpoint trigger, the variable I nfi ni t e_Go must be used by itsdlf:

set breakpoint al pha =>[infinite_go] do

i =1

end breakpoi nt

STATIONARY - aBoolean variable that becomes true if no changes occur in the system
status during an execution step. This condition is always true after ago REPEAT.

STEP - aBoolean variable that becomes true when an execution step ends. It isusualy
used to trigger an operation to be done at every step.

Random Functions

The Simulation tool provides anumber of random functionsfor usein your specification. They are
useful for specifying a system that accepts input from an external system that is only described
statistically.

List of Random Functions

*

*

*

RANDOM - accepts an integer argument i and returns random real value distributed
uniformly between 0 and 1. If the passed argument is not zero, then a new sequence of
random values, whose seed is the parameter i , isinitialized.

Syntax: random(i)

Since the Simulation tool aways initiates a session with the same seed for random
functions, two consecutive executions behave identically. The advantage is that you can
reconstruct a particular execution scenario. New scenarios are produced by providing
different seeds.

RAND_EXPONENTIAL - accepts areal argument and returns random real values
distributed exponentially by the valuet . Using the syntax x: =r and_exponenti al (t)
make x equal to arandomly generated number. The syntax x: =r andom exponent i al (t)
is accepted, but it makes x=the first valuein an array called r andom exponenti al .

Function: X ~exp(t)

Syntax: random_exponential (t)

RAND_BINOMIAL - accepts two arguments n and p, where n>0 and 0<p<1. The returned
random values are real number distributed according to a binomial distribution.

Function: X ~B(n,p)
Syntax: rand_binomial(n,p)

124

Simulation Reference Manual

The Simulation Control Program

¢ RAND_POISSON - accepts areal argument r. The returned random values are integers
distributed according to a poisson distribution.

Function: X ~P(r)
Syntax: rand_poisson(r)

¢ RAND_UNIFORM - acceptstwo real argumentsa and b. The returned random values are
real values distributed according to a uniform distribution in theinterval [a, b].
Function: X ~U[ab]
Syntax: rand_uniform(ab)

¢ RAND_IUNIFORM - same asrand_uniform except that a and b are integers and the value
returned is an integer in the interval [a,b].
Function: X ~U[ab]
Syntax: rand_iuniform(a,b)

¢ RAND_NORMAL - acceptstwo real argumentsa and b. The returned random values are
real values distributed according to a normal distribution.

Function: X ~N[ab]
Syntax: rand_normal(a,b)

Random Functions In Simulation Control Program Statements

The random functions described, when used in the Simulation Control Program, are treated like
any other numeric function in Rational Statemate - where the value returned may be used in the
expression. For example, the random function output may be assigned to a variable:

i 1= rand_uniforn(a,b)

A condition’s value can be distributed equally:

random (0) < 0.5

Or an event can be randomly generated:

sc! (e, rand_uniform(x,y))

Rational Statemate 125

Batch Mode Simulation

SCL Session Control Statements

Statements which facilitate program execution are detailed in Simulation Command Reference.

File Operation Statements

This section contains the following information:

¢ OPEN Statement
¢ READ Statement

¢ WRITE Statement

¢ CLOSE Statement

OPEN Statement

The oPEN statement opens afile for input or output.

OPEN (file_variable, 'file_name’, INPUT | QOUTPUT)
wherethefile_variableis assigned afile_name for purposes of input or output. For example:

OPEN (filel, '/csw source/sanple.data’, |NPUT);

Thefile being opened for input must already exist. If afileis opened for output, it cannot be
opened again beforeit is closed. The interactive command Moni t or SCP lists the currently opened
files. The same file may not be opened for both input and output.

READ Statement

The READ statement takes input from the keyboard or afile. The information read is assigned to any of
the variable types except FILE.

READ ([file_variable, 1 x2 [, x2. . .]);

Thefirst parameter is optionally afile identifier, indicating the source of the read is afile. If not
provided, the read is done from standard input (keyboard).

126

Simulation Reference Manual

Structured SCL Statements

WRITE Statement

The vRI TE statement outputs datato either afile or the display. The output may be any combination of
printable characters and numeric values.

WRITE ([file_variable,] expl [, exp2 . . .]
["\n"]);

Thefirst parameter isoptionally afileidentifier indicating that the target of the wrl TE isafile. If not

provided, the dataiis written to standard output (display). The optional argument ‘\n' outputs a carriage
return between lines. For example:

WRI TE (‘ The data value is ', dl, '\n’);

To display or print integersin hexadecimal format:

1. Definealoca variable of type bit array whose length is that of a standard integer. For
example:

Vari abl es
Bl TARRAY hexa_int (0..31);
2. hexa int: =int;

3. Write (' Print int in hexadecimal format, hexa_int, ’/n’);

CLOSE Statement

The d ose statement closes afile that was previoudy opened. If your system environment limitsthe

number of open files, this command is used. The Simulation tool automatically closesfileswhen the
Simulation Control Program is stopped.

CLCSE (file_variable);

Structured SCL Statements

Asin most programming languages, the user has the ability to control the program flow and to
perform repetitive actions or to make decisions. The Simulation Control Program provides loop
constructs and decision statements for these purposes.

Rational Statemate 127

Batch Mode Simulation

IF/THEN/ELSE Statement
The| F/ THEN ELSE statement isused for conditiona execution of SCL statements.

| F Bool ean_expressi on
THEN statement [; statement . . .]
ELSE statenent [; statenment . . .]

END | F

Note
The ELSE statement is optional.

In this structured statement, the statements following the THEN and before ELSE are executed if the
Bool ean_expr essi on istrue. If fase, the statements following the ELSE are executed. The
Bool ean_expr essi on may include referencesto Rational Statemate elements aswell as SCL variables

and constants.

For example:
IF in(scanning) and |l evel > 200 THEN
X :=5
WRITE ('reset variable x \n');

ELSE
IF level <= 20 THEN
WRITE (' no variable reset \n');
END | F;
END | F;
Note

The ELSE statement is optional.

128 Simulation Reference Manual

Structured SCL Statements

WHEN/THEN/ELSE Statement

The WHEN/THEN/EL SE Statement is used for execution of SCL statements upon the occurrence of an
event.

WHEN event _expressi on

THEN statenment [; statement . . .]
ELSE statenent [; statenment . . .]
END WHEN

In this structured statement, the statements following the THEN and before the ELSE are executed if
theevent _expr essi on istrue. If false, the satements following the ELSE are executed. The

event _expr essi on may include referencesto Rational Statemate elements aswell as SCL variables
and congants.

For example:

VWHEN ent ered(A) [I|evel >20] THEN
WRITE ('too high level when A entered \n')

ELSE
WHEN ent er ed(A)
WRITE (' running nornally \n")
END WHEN;
END WHEN,

Rational Statemate 129

Batch Mode Simulation

WHILE/LOOP and FOR/LOOP Statement

The WHI LE/LOOP statement is used to execute SCL statementsin aloop.

VWH LE Bool ean_expressi on
LOOP

statenent [; statenent . . .]
END LOCP

The statements in the LooP clause are performed repeatedly while the Bool ean_expr essi on is
true. TheBool ean_expr essi on is checked prior to each execution of the LooP. The

Bool ean_expr essi on may include Rational Statemate elements as well as SCL variables and
constants. Thereis no limit to the depth of nested structured statements. For example, where cax,

cb and cq are conditionsand a1, a2 and a3 are actions.

WH LE cax

LOOP
al ;
a2 ;
IF x = 3 THEN tr! (cax);
ELSE
WRI TE(’ not tripped \n');
VWHI LE cb or cq LOOP
Go Step a3;
END LOOP;
END | F;

END LQOOP,

FOR/LOOP example:

FORi inintl to init2 LOOP
array(i): =0;
END LOOP;

where i, Int 1 and int2 are intergers

130

Simulation Reference Manual

Structured SCL Statements

Go Statements

The co statements available in the interactive mode are also available in the batch mode. Note that
GoAdvance and GoSt epN are special cases since they require a parameter.

¢ (Co Step

Runs asingle step. Time is advanced in Synchronous simulation.
¢ (Go Repeat

Runs several GoSteps, until a stable statusis reached.
¢ Go Next

Advances the time to the next scheduled action or timeout event.
¢ (o Extend

Runs GoRepeat or GoNext and GoRepeat . (Available only in asynchronous simulation.)

¢ Go StepN num steps

Execute num st eps GoSt eps.

¢ (Go Advance numtinme_units
Runs all reactions until, and including, the specified moment of time (relative and
absolute time).

¢ (Go Back

Undoes the previous GO command.
¢ Auto Go

Attemptsto executeaGo Step. If aGo Step cannot betakenthenaGo Next is
performed.

Rational Statemate 131

Batch Mode Simulation

Breakpoints

Breakpoints are useful when dealing with specia situations arising during Simulation, such as
non-determinism and infinite loops. Breakpoints are also useful when debugging your Simulation
Control Program.

For each breakpoint, there are associated name (optional), event trigger and sequence of
statements. You can enable or disable breakpoints in the course of the execution. At the end of
each execution step, triggers of all enabled breakpoints are evaluated. When a breakpoint’s trigger
is true, the associated statements are executed.

Note

Go commands are alowed only in the main section, not in the breakpoint definitions. Also
the square brackets around condition expression cond_expr are required.

Breakpoint Definition

Breakpoints are defined using the set breakpoint statement:

SET BREAKPO NT [breakpoi nt_nanme =>] trigger
DO
st at enent

[; statenent]

END BREAKPO NT ;

where:

br eakpoi nt _nane isany valid SCL identifier; tri gger isan event expression or the keyword
every followed by anumeric expression; st at ement isany legal SCL statement except Go
statements.

Definition of a breakpoint automatically enablesit. If a Simulation Control Program is assigned to
an activity in your system, suspension of this activity disables al breakpoints in this Simulation
Control Program. Resumption of the activity re-enables the breakpoints.

Breakpoints are checked at the beginning of each Go command, and after each execution step. The
statements associated with this breakpoint are executed whenever the breakpoint is enabled and
the trigger istrue. The trigger evaluates to true if the event expression istrue, or if the amount of
time specified by the numeric expression following every has passed.

132 Simulation Reference Manual

Breakpoints

Every numeric_expression

The numeric expression isfirst evaluated at the end of the breakpoint definition and then, each
time at the end of the breakpoint execution. The obtained value defines when the breakpoint is
triggered the next time.

If the matching time has not passed, then the breakpoint’s statements are executed according to the
trigger’s original evaluation. If the matching time has passed when the Simulation Control
Program was suspended, then the numeric expression is re-evaluated at the time of resumption and
the breakpoint triggering is scheduled relative to thistime.

For example, if the breakpoint trigger is every Goand the execution clock unitsare in seconds, then
the breakpoint statements are executed at one minute intervals. Assume the breakpoint isin aSimulation
Control Program assigned to an activity which was suspended from time 01:30 to 01.55. Since the
execution clock has not passed beyond the next breakpoint (02:00), this breskpoint’s scheduled execution
remains at the origina interval. Assume the activity islater suspended from time 05:36 to 10:08. When
resumed, the breakpoint trigger is re-evaluated because the current time has passed the next scheduled
intervd (06:00). The breakpoint is executed thereafter at new one minuteintervals of 11:08, 12:08, etc.

Examples:

1. Theassociated SCL statements keep track of the execution time in minutes and display the
minutes elapsed every minute. The assumed Global Clock Unit is seconds.
SET BREAKPO NT check => EVERY 60
DO
X 1= x +1
WRI TE(x, " Si nul ati on m nutes passed \n')
END BREAKPOI NT

2. Theassociated SCL statements automatically solve a nondeterministic situation and
display a message.
SET BREAKPO NT [NONDETERM NI SM]

DO
RANDOM SOLUTI ON ;
WRI TE(’ Nondet er mi ni sm situation
solved randomy. \n’)

END BREAKPQO NT

Rational Statemate 133

Batch Mode Simulation

3. The WHEN statements and assignment statement for error is associated with the
breakpoint name devi ce_ful | .
SET BREAKPO NT devi ce_full =>
[max_buf > 7]
DO
WRI TE(’ Devi ce ful
taki ng recovery action \n')
WHEN tr (aux_buf _enpty) THEN switch_bufs
ELSE
VWHEN tr (aux_buf _ful) THEN st!(A)
ELSE
WRI TE(’ Somet hi ng mi ssi ng
in recovery procedure \n')
END WHEN
END WHEN
error := error +1
END BREAKPO NT

Cancelling Breakpoints

A breakpoint may be disabled using the cancel br eakpoi nt Statement. When at the end of an
execution step, breakpoint triggers are eval uated, a cancelled breakpoint is simply ignored. Only named
breakpoints can be disabled.

cancel breakpoint breakpoi nt_nane

Setting Breakpoints

Breakpoints are enabled when defined. If a breakpoint has been disabled (cancel br eakpoi nt), it
may be re-enabled withset br eakpoi nt . When re-enabling breakpoints, set br eakpoi nt iswritten
without any subsequent definition. Only named breakpoints can be re-enabled.

set breakpoi nt breakpoi nt _name

134 Simulation Reference Manual

Breakpoints

Other Set/Cancel Commands

SET DI SPLAY ;
CANCEL DI SPLAY ;
SET GO BACK nunber ;

SET I NFI NI TE LOOP nunber ;
SET | NTERACTI VE ;
SET TRACE ;

CANCEL TRACE ;
SET REPORT RW RACI

NG
SET REPORT WV RACI NG ;
CANCEL REPORT RW RACI NG
CANCEL REPORT WV RACI NG

)
’
’

Miscellaneous Commands

SAVE_STATUS ' st at us_nane’
RESTORE_STATUS '’ st at us_nane’

CHOGCSE nunber
RANDOM_SOLUTI ON ;

Manipulating Breakpoints with Menus

The Breakpoints command allows you to add, edit and del ete breakpoints through the use of
menus. In the following procedure we add, edit, and del ete a breakpaint.

Select Actions > Breakpoints from the Simulation Execution menu. The Simulation
Breakpoint Editor dialog box opens.

Note

See Defining a Breakpoint in a Subroutine for more information.

Rational Statemate 135

Batch Mode Simulation

Breakpoint > Add — Adding a Breakpoint

1. Click Add. The Add Breakpoint dialog box opens.

Add Breakpoint

2. Enter the Breakpoint Name and Trigger into the appropriate text box areas and click
OK.

Breakpoint > Edit — Editing a Breakpoint

1. Highlight the Breakpoint from the Simulation Breakpoint Editor dialog box.

2. Select Edit. The Breakpoint Text Editor dialog box opens. From the Text Editor, you
can edit the Breakpoint Expression.

Text Editor

3. Click Apply or OK . The changes made from the Text Editor appear on the Breakpoint
Text Editor.

136 Simulation Reference Manual

Simulating a Truth Table

Breakpoint > Deleting — Removing a Breakpoint

1. Highlight the Breakpoint to be deleted.
2. Select Delete.

Simulating a Truth Table

When the model is simulated and active breakpoints are inserted into the truth table, a read-only
matrix of the truth table is started. From this table you can view the execution of each element in
the table. When a step or microstep is started, depending on the truth table implementation, the
“fired” row in the truth table is highlighted for one step.

Input and output logic from atruth tableisincluded in the simulation when the model includes a
truth table in its scope. Truth table inputs and outputs are Rational Statemate el ements, therefore
input values can be set and output values examined using Simulation debugging tools such as
Monitors, the Examine command and the DoAction command.

The following sections describe how to insert a breakpoint into a truth table and simulate it.

Note
For additional information on Truth Tables, refer to the Rational Satemate User Guide.

For the purpose of this discussion, we use the Statechart shown below as an example.This
Statechart operates as follows:
¢ Whenc2istrueand c5, C10 arefalse, VAL_OUT isassigned to two times VAL _I N.
¢ Whencsistrueand c2, cC10 arefalse, VAL_OUT isassigned to five times VAL_QUT.
¢ Whencloistrueandc2, cs arefalse, VAL_oUT isassigned to 10 times VAL_I N.

The actual logic that implements this functionality is contained in the truth table which implements
the function CALC1.

Rational Statemate 137

Batch Mode Simulation

2 SGE_1:5YSTEM [Update]

_,.

STATE_1

E1/CALC1¢VAL_TH,YAL_DUT,C2,C5,C10%

2| |ele]-|~|=

=
B
B
—
»
—
—
5

STATE_2

The elements for this Statechart need to be defined in the Data Dictionary as follows:
1. Definecio, 2, C5asacondition
2. DefinecALCl asasubroutine
3. DefineE1l asan event
4

Define VAL_I Nand VAL_QUT as data-items

138 Simulation Reference Manual

Simulating a Truth Table

2 Data Dictionary Editor

After defining the elementsin the Data Dictionary for the sample Statechart, execute the Data
Dictionary page for CALC1.

2 Data Dictionary Editor

Select Implementation
set to Truth Table

Parameter Table

Rational Statemate 139

Batch Mode Simulation

You can see in the Data Dictionary page above for the function CALC1, how the parameter tableis
filled. Note that the order of the parameters in the Statechart matches those in the parameter list.
When these actual model parameters match with the formal parametersin the parameter list,
VAL_I Nispassedto X DATA, VAL_OUT ispassed toY_DATA and the condition C2 is passed to
multiply-by-two, C5 is passed to multiply-by-5, etc.

Note
The Select Implementation is set to Truth Table

2 Truth Table of CALC1

X DATA*2
X _DATA*S
X DATA*1I0

4

To complete this exercise, construct the Truth Table shown above. For additional information on
Truth Tables, refer to the Rational Satemate User Guide,

140 Simulation Reference Manual

Simulating a Truth Table

Setting Breakpoints in a Procedural Truth Table

A breakpoint must be set in order to view the animation of atruth table during smulation. If a
Procedural Truth Tableis used, the breakpoint must be set in the corresponding subroutine. If an
Action Truth Table is used, the breakpoint must be set in the activity which isimplemented by the
truth table.

The following procedure details how to set a breakpoint in a Truth Table.
1. Start Smulation Execution from either the Profile Editor or the Graphical Editor.

Note: Open amonitor so you can view the variables.

2. Select Actions > Breakpoints from the Simulation Execution window.

I=TEY
fictive || Mame || 5el || Trigger =
|Hdd”. I
Edit,..
Delete |
i
Active " MName " Element Mame " Type ||;
Add. .. |
Delete |
o
Active ||Name ||Truth Table Name ||Tupe ||;
Add. ..
Delete |
=i
Dismissl Help |

The Simulation Breakpoint Editor dialog box opens.

Note: A breakpoint can now be added in the subroutine CALCL.

Rational Statemate 141

Batch Mode Simulation

Adding a Breakpoint to a Subroutine

If a Procedural Truth Tableis used, a breakpoint must be set in a subroutine in order to start the
debugger tool. When the breakpoint is reached during simulation, the debugger tool is started with
the “Code” section empty. An additional form containing a read-only truth table is also opened.

In the following example, we set a breakpoint in the subroutine CALCL. This automatically sets a
breakpoint in the truth table, because caLc1 isimplemented by the truth table.

1. Click Add from the Simulation Breakpoint Editor. The Add Breakpoint dialog box
opens.

JRT=

Active: Yes _||

Hame 3 ﬁ

Trigger:

ks | Apply | Eancell Help |

2. Enter the name of the breakpoint in the Name: field. In this example, the breakpoint name
iS CALCL.

3. Enter the name of the subroutine in which you wish to set a breakpoint in the Subroutine
Name: field,. You can also use the pull-down menu to select the name.

The Simulation Breakpoint Editor displays the subroutine breakpoint. Clicking Apply
> OK if you want to close this window.

Note

In models containing multiple breakpoints, each name must be unique.

142 Simulation Reference Manual

Simulating a Truth Table

Subroutine Debug Tool

The Subroutine Debug tool is used to step through the truth table execution and monitor the
execution of each step as the table is simulated. The behavior of the buttons located on the
Subroutine Debug dialog box is described below.

*

*

*

*

m3tep starts one mStep (microstep). When an mStep is started, the evaluated rows are
highlighted. As each mStep is started, the evaluated rows in the truth table is highlighted
one by one until arow isfired. After arow isfired, the next mStep runs the output section
(cell by cell). If an action section exists, the fired action is mapped into the code area and
is debugged as an action language procedure. If an action is not specified, the next mStep
dismisses the debugger. You can change or examine values of elementsin the truth table.
Changes take place immediately.

m3tepN runs a specified number of mSteps using the same rules as describe above.

Continue highlight the fired row, runs the outputs and action section (if it exists), dismiss
the debugger and continue to run.

Run to End highlights the fired row, runs the outputs and action section (if it exists) and
staysin the debugger.

Stepping through a Truth Table Simulation

In this section we complete a step-by-step simulation of the truth table.

1
2.

Execute a Go Sep. A default transition is fired and we enter STATE_1.

Go to the Monitor and generate an event E1. Initialize VAL_I Nto 1 and set the condition
C10 to TRUE.

Execute a GO Sep.
Note: The Subroutine CAL C1 Debug window appears.
Note: Thefirst row of the truth table is now highlighted.

Clicking mStep to execute a microstep.

The second row of the truth table is highlighted. The execution advanced to the second
row of the truth table because the conditions ¢2, ¢5, c10 in the model did not match the
pattern in row 1 of the truth table. Remember, condition c2 maps to the parameter
multiplied-by-2, C5 mapsto the parameter multiplied-by-5, etc.

Execute another mStep.

The simulation advances and row 3 is highlighted.

Rational Statemate 143

Batch Mode Simulation

n Execulion for: SYSTEM Subroutine CALC1 Debug 1 [=1]

Subroutine CALC1
Debug dialog
is opened

range elenent in Simualtion montor while sub
is opened

The third row of
the truth table is

highlighted.

Event El is
is generated in the
Monitor window

Note: Inthe output column of row 3, the output contains X_DATA* 10. The pattern of
row 3 matches the current pattern of the model. Since X_DATA corresponds to
VAL_I Nand Y_DATA corresponds to VAL_OUT, VAL_OUT is assigned to
X_DATA* 10 (or, ten times one).

6. Execute the Run-To-End from the Subroutine CALC1 Debug window. In the Monitor
window, VAL_ouT should change to 10.

7. Execute aGo Step. You are returned to State 1. At this point you can experiment with
different values for 2, ¢5 and C10 and observe their effect on the model.

144 Simulation Reference Manual

Simulating a Truth Table

Simulating an Action Truth Table

Breakpoints are used to specify truth tables associated with activities and actions that are to be
debugged. Truth tables are defined by a unigue name (a unique instance name in the case of a
generic) of the activity/action that they describe.

When atruth table is bound to an activity or action, then the assignments are made following the
Rational Statemate step semantics. New values are only sensed at the next step. Writing to the
same data-item twice flag awrite/write racing condition. In the following example, DATA 2
receives the previous value of DATA 2. If the truth table implements a subroutine such asin our
previous example, then as soon as an assignment is made it is available to be used for this case.
DATA 2 and DATA 3 receivesthevalue of 5 when therow isfired regardiess of the previous value
of DATA_2.

2 Truth Table of TRANSFORM_DATA

PR R R
R R B B B D

PR R R

z
2
3

P
3

5
7
&
9

PR R R

B R

To illustrate the simulation of an Action truth table, we use the following Activity Chart and the
above Truth Table.

Rational Statemate 145

Batch Mode Simulation

C10

YAL_TH

Note

TRANSFORH_DATAZ-

YAL_OUT i

Before beginning you must first select implementation as Truth Table in the Data

Dictionary.

Selected Implementation
set to Truth Table

Click Edit. Thisallows you to edit the truth table.

146

Simulation Reference Manual

Simulating a Truth Table

Note

Thisisan Action truth table so there are no parameters as in the previous example. The
column headings for the truth table should match the actual parameter namesin the model.
The behavior implemented in the following example is the same as in the previous example.

; xxxxxxxxxxxxxx
R

R R
: gl g e gl

Gandnananan e nnn e na)
anasn AL Ga G R e G

aaadnitaadedn doaddn R na daed)
BRI

S
S

g G R Ao na g o
B bR

7
2
2
[2
5
[s
7
[
9

Simulation of an Activity implemented by a Truth Table

1. Execute asimulation from either the Graphic Editor or the Simulation Profile Editor. The
Simulation Execution window appears.

Note: Open aMonitor window and select all textual elements for display in the
M onitor window.

Note: Asinthe previous example, a breakpoint must be set to view the animation of a
truth table.

2. Select Actions > Breakpoints from the Simulation Execution window. The Simulation
Breakpoint editor appears.

3. Click Add located next to the Truth Table Name list. The Add Breakpoint dialog box
opens.

Rational Statemate 147

Batch Mode Simulation

i iald i 3¢ Add Breakpoint
Active Field is reakpoin

Set to Yes I_'_

ITRANSFORN_DATA

I =t ITRANSFORH_DATA F

Note: TheActivefieldis set to Yes alowing the simulation to pause when it reaches
this breakpoint. If it is set to No, the breakpoint remains on the list but becomes
inactive. Simulation does not pause at inactive breakpoints. |nactive
breakpoints can be reactivated at anytime if the debugging tool for the
subroutineis reinitiated.

Enter the Breakpoint Name in the Name: field.
Select Activity from the selection box.
Select Transform_Data from the pull-down list in the Name: field.

Select OK.

© N o 0 &

Click Apply > OK to close the Simulation Breakpoint Editor dialog box.

Note: Before executingaGo St ep, Set C10 to True and VAL_I Nto 1 in the Monitor
window.

9. Execute aGo Sep. The animated truth table appears with row 3 highlighted. This
corresponds to the status of c2, ¢s and 10 in the model.

148 Simulation Reference Manual

Simulating a Truth Table

2 Truth Table of Activity TRANSFORM_DATA M=] B3
Input output Action
[c2 3 c10 VAL OUT
P false false 2*VAL_IN
2 | false true false S*VAL IN
3 |
4
5
6
7
8
9
7 2 3 4 5

Note: Do not dismiss this truth table.
10. Go tothe Monitor window and make c5 trueand c2, c10 false.

11. ExecuteaGo Step.

Row 2 isnow highlighted corresponding to the new status of C5, C2 and C10.
VAL_QUT isnow 5whichis5timesVAL_I N.

You can experiment with other values of C5, C2 and C10.

Rational Statemate 149

Batch Mode Simulation

Simultaneous SCP Execution

Multiple SCPs may be executed at the same time. Individual SCPs may be started and stopped
during execution. The EXEC and STOP_SCP statements provide this function.

EXEC ’ scp_nane’
STOP_SCP [scp_nane]
If the STOP_SCP statement is used without ascp_nane, al SCPs are stopped.

Note that while the interactive RUN command stops any previoudy executing SCPs, the EXEC statement
does not affect the execution of other SCPs. If an SCP was activated using RUN, itsMain Section is
executed, while that of any EXECed SCPisignored.

Assign Files

The Simulation tool allows you to use programs to simulate the activities in your system. These
programs may be written in SCL or a more conventional programming language (e.g., C). The
SCL programs are ASSI GNed to ether internal primitive activities or externa activities.

External activities are part of the system environment and for purpose of the execution are
considered permanently active.

Internal activities are part of the system. When an internal activity is started, the program
ASSI G\ed to the activity is tarted. Correspondingly, stopping, suspending or resuming of these activities
causes appropriate changesin the satus of the program.

The syntax to assign an activity is:

ASSI OGN activity_nane ' scp_nane’

150

Simulation Reference Manual

The Order of SCL Statements Execution

The Order of SCL Statements Execution

The structure of the SCP is fixed and determines the program’s execution order. Below are some
details.

Section Execution

If the Simulation Control Program does not contain breakpoints, the execution is sequential:
1. SCP constants and variables are defined.
2. Initialization Section’s statementsare executed.
3. Statementsin the default Main Section or user-defined Main Section are executed.
4

When the end of the Main Section is reached, the Simulation tool switchesto interactive

mode. At this point, the command STOP terminates al SCPs and CONTI NUE runs the default
Main Section.

Breakpoint Processing

The execution of an SCP is altered by the breakpoints in effect.

+ Breakpoints are defined after the Initialization Section.

+ At thebeginning and at the end of each execution step, the enabled breakpoints are
checked and their associated statements executed.

Breakpoint processing is handled as:

+ All the breakpoint triggers for al running SCPs are eval uated.
+ Thetriggered breakpoints are executed.

* Repeat above until there are no triggered breakpoints.
Breakpoint processing is interrupted:

+ When the ski P statement is encountered (interactively or batch), the currently executing
breakpoint is halted and any other breskpoints are skipped. That is, they are not processed for
the current step.

¢ When acoisissued interactively, aski P isimplied. Thelast Goisterminated, any breakpoints

are skipped and the interactive go is executed.

¢ The sToP_scp statement can terminate a specific SCP or al SCPs, if no specific oneis
identified.

Rational Statemate 151

Batch Mode Simulation

Working with a Simulation Control Program (SCP)

This section discusses the mechanics of using the Simulation tool to manipulate and run your
Simulation Control Program. One way to create an SCP is to record the Simulation session for
playback.

SCL files are manipulated through the use of the SCL Files M anagement dialog box. Thisdialog
box can be accessed through the Simulation Profile Editor and the Simulation Execution menu.

To manipulate an SLP file, perform the following steps:

1. Select File> Simulation File Management > SCP File Management. The SCL File
Management dialog box opens.

|

Files
e, . .
Edit |
Compile |
Delete |
Copy. .. |
Expor‘t,ﬂl
Print |

152

Simulation Reference Manual

Working with a Simulation Control Program (SCP)

2. Select an SCP file from the Fileslist. The selected SCP file can be Edited, Compiled,
Copied, Deleted, Exported, and Printed. Each command is described in detail below:

¢+ New —Used to create a new SCP file. You can create a new file from thisdialog
box.

+ Edit — Starts an editor so the selected SCP file can be edited.

¢ Compile—Used to compile the SCP file and display any errors/warningsto the
Simulation window.

¢ Copy —Copies the selected profile after you re-name it. (Works the same way as
Sveas.).

¢ Export —Worksthe sameway as Copy except you can save it to another workarea
or directory.

¢ Print —Used to print the selected SCL file.

¢ Dismissbutton — The Dismiss button is used to dismiss the SCL Management
dialog box.

Actions > Run SCP — Running an SCP File

Simulation Control Programs are run from the Simulation Execution menu.
1. Select Actions> Run SCP. The Run SCP file dialog box opens.
2. Select the SCP file you want to run from the SCP Fileslist using the left mouse button.

3. Select OK. The SCP file begins executing (running).

Switching Modes of Model Execution

Simulation control can be either Interactive or Batch, never amix of baoth. Interactive mode means
that Simulation control (Go commands, element value changes etc.) is done manually, either by
typing commands at the command line or by selecting commands from the Simulation menus.
Batch mode means that Simulation is controlled by the main section of an SCP program. When an
SCPis started, its init section and breakpoint definitions are executed. If thisis the only SCP
running, its main section (if present) is aso executed. The started SCP is now considered “active’,
even if the execution of its main section is temporarily paused while interactive commands are
performed.

Several SCPs can be active at the same time. Breakpoint definitions in active SCPs remain active
during Interactive Simulation, until the SCP is stopped. Initially, when Simulation is started, you
arein Interactive mode. When an SCP is started, you switch to Batch mode and the simulation is
controlled by the main section in the SCP. If the SCP does not include a main section, the
Simulator runs adef aul t mai n, consisting of indefinitely repeated GoExt end command.

Rational Statemate 153

Batch Mode Simulation

A running SCP can be temporarily paused while some interactive commands are performed, and
then continued where it left off. During Batch mode (some SCP main section is executing) there
are severa ways to switch back to Interactive mode. The following automatically causes areturn
to Interactive mode:

¢ TheSCL command SET | NTERACTI VE isexecuted in the SCP. Thiscommand is often included
as part of the command section for breakpoints.

¢ You select the Pause command from the Simulation Execution window to interrupt SCP
execution.

¢ Themain section of the SCP has executed to its end.

+ Themodel hasreached a stationary condition where no more changes are possi ble without
intervention.

¢ A nondeterministic condition is encountered, that the SCP cannot resolve.

¢ Theinfiniteloop limit is reached.

Switching from Interactive to Batch

From Interactive mode, Batch mode can be resumed by giving the Continue command, either
typed at the Command line or by selecting Continue SCP from the Actions menu on the
Simulations Execution menu. This continues execution of the SCP main section that was
executing before entering Interactive mode.

Actions > Monitor SCP - Monitoring the SCP

Thiscommand is used for displaying and changing information about active (running or temporarily
paused) SCPs. TheMoni t or SCP command is used to start adialog box containing al current:
¢ User defined SCP variables

+ Rationa Statemate defined SCP constants/variables defined in playback files: NONDET_NO,
NOTI FY_MODE, RANDOM SEED, STEP_MODE.

¢ Predefined variables: CUR_CLOCK, | NFI NI TE GO, NON- DETERM NI SM STATI ONARY,
STEP, STEP NUMBER, TERM NATI ON.

To start this command:
Select Actions> Monitor SCP.

An SCP Monitor dialog box opens with the current values of elements with the SCP.

154

Simulation Reference Manual

Working with a Simulation Control Program (SCP)

Actions > Stop SCP — Stopping an SCP
There are three ways to stop an executing SCP:

¢ Run another SCP. When an SCP is Running, all executing SCPs are halted.
¢ Halt al currently running SCPs by selecting Actions > Stop SCP.
+ Halt aspecific SCP with the sToP_scp statement within the SCP.

To control simultaneous execution of several SCPs, the SCL commands EXEC scp_nane and
STOP_SCP scp_nane are used. This means that multiple SCPs cannot be handled interactively, it
must be done programmatically in another SCP.

Note

The main section of an SCP is not executed if the SCP is started with the EXEC command.
The main section contains the GO commands. There can only be one main section
controlling the Simulation. In this case the main section of the SCP containing the EXEC
command.

The Auto-Run feature cannot be used with SCPs. If Auto-Runisactive, it is stopped if you attempt
to start an SCP. You are not allowed to start Auto-Run until all SCPs are stopped.

A special caseiswhen an SCPis assigned to abasic activity. This connection is set up by the SCL
command ASSI GN. This cannot be done interactively, only in an SCP. The assigned SCPis started,
suspended, restarted and stopped along with the assigned activity.

Rational Statemate 155

Batch Mode Simulation

Actions > Continue SCP - Restarting an Interrupted SCP

This command is used to resume the running of an interrupted SCP from the point of interruption.
Select Actions > Continue SCP.

Theinterrupted SCP resumes running.

A Sample Simulation Control Program

To illustrate some of the principles discussed in this section, a Simulation Control Program has
been written against the Traffic Light system. Refer to The Traffic Light System. Theremainder of
this section discusses the Simulation Control Program in detail.

What the Traffic Light Simulation Control Program Accomplishes

Recall that the Statechart for the traffic light system has a state NORM AL _OP whichisinfluenced
by the values of two data-items which control the amount of time the traffic flows either in east-west or
north-south directions. In thisexample, the ns_green_time isassigned randomly, while the
ew_green_timeisassigned from an externd filetrial.dat.

The externad filetrial.dat hasthe following records:

12
40
14
8

18
20
46
7

37
23
19

After initializing the two control values, ns_green_timeand ew_green_time, the execution begins.
Breakpoints are defined and the execution is driven by the go step operation. Since we use the
Synchronous Time Model, go step increments the clock on each step.

156 Simulation Reference Manual

A Sample Simulation Control Program

Each time a malfunction occursin the system, the Simulation Control Program resets the control
values. The Smulation Control Program filtersthetrial.dat against amaximum alowed vaue of 20.
Thefiletrial.out containsatime-stamp of each malfunction.

The Program

PROGRAM t i ght;

VARI ABLE
FILE fin, fout;
I NTEGER del ay;
BOOLEAN r un;
INIT
OPEN (fin,‘/mckey/hone/dos/tnp/trial.dat’, |NPUT);
OPEN (fout, ‘/mckey/hone/dos/tnp/trial.out’, OUTPUT);
ns_green_time: =15 ;
ew_green_time: =20 ;
CANCEL BREAKPO NT gen_reset
END I NI T;

SET BREAKPO NT

[in(normal _op)] DO

WRI TE(‘ current time = ', cur_clock,‘'\n") ;
IF rand_iuniforn(1,100) =1
THEN

mal f unction ;

wite(fout, malfunction occurred
at ', cur_clock,‘\n")

END | F

END BREAKPQO NT;
SET BREAKPO NT gen_reset=> EVERY del ay DO

reset ;

CANCEL BREAKPO NT gen_reset;

ns_green_tinme: =rand_i uni f or m(30, 50)

READ(fin, ew green_tine) ;

VWH LE ew green_time > 20

LOoP

WRI TE(‘ Data for ew green_time exceeds limt.") ;

WRI TE(* Enter a value for ew green_time |ess than

Rational Statemate

157

Batch Mode Simulation

20: \n")
READ(ew_gr een_ti ne)
END LOOP
END BREAKPO NT ;
SET BREAKPO NT
en(fl ashi ng) DO
del ay: =RAND_| UNI FORM 1, 10) ;
SET BREAKPO NT gen_reset
END BREAKPO NT;

BEG N
tr!(run)
VWHI LE run LOOP
GO STEP
end | oop
END,
END.

Explaining the Program

In this portion, each line of the program is explained.

Programtli ght
Thisline names the program. Thislineis for documentation purposes only.

vari abl e

Begins the Variable declaration Section. Note that each type of declaration concludes with a
semicolon.

file fin, fout ;

Definestwo file variables, fi n and f out that are used for I/O purposes.
i nteger del ay;
Bool ean run ;

Defines an integer used to delay the reset event and a Boolean variable that is used as a condition
to create a continuous loop in the Main Section.

init

158

Simulation Reference Manual

A Sample Simulation Control Program

Begins the Initialization Section which contains statements executed once - each time the
Simulation Control Program is started.

open (fin, “trial.dat’, input) ;

Opens an input datafile and attachesit to the variable name fin. Thisdatafile containsthe test vaues
for the east-west traffic flow.

open (fout, ‘trial.out’, output) ;

Opensthefile, trial.out, for output and attachesit to the variable fout. Thisfile recordsal the
malfunctions of the system.

ns_green_time := 15 ;
ew green_time := 20 ;

Initializes the value of the data-item used to determine the duration of the green lights in both east-
west and north-south directions. The Global Clock Unit is assumed to be seconds.

cancel breakpoint gen_reset ;

Initializes the gen_reset breakpoint so that it does not execute.

end init

End of Initialization Section

- breakpoi nt Section
set breakpoi nt
Beginning of the Breakpoint Definition Section. The defined breakpoint is simultaneously
enabled. The name of this breakpoint is not defined. Unnamed breakpoints cannot be cancelled

and reset in batch mode. They are continuously enabled during the execution of the Simulation
Control Program.

[in(normal _op)] do
Definesthe breakpoint trigger as “being in the state of NORM AL _OP”. The breakpoint statements
following the keyword do are executed when the trigger evaluatesto true. That is, the statements are
executed at each step while the system is operating normally.

wite(‘current tinme =, cur_clock, ‘\n") ;
Displays the current execution timein the Simulation Window after each go - inthiscase, after each
step is concluded. The Simulation tool automatically updates the value of the predefined variable
cur_clock at the end of each go.

if rand_iuniform(1,100) =1
Randomly selects an integer uniformly distributed between 1 and 100 and tests this value to see if
itisequal to 1. This simulates situations that arise 1% of the time during normal operation.

t hen

Rational Statemate 159

Batch Mode Simulation

When the test is true, the statements following the keyword t hen are executed.

mal function ;
Generates the event mal f unct i on. Thissimulates an eectrica malfunction of the system. When the
malfunction event occurs, the traffic lights flash.

wite(fout, mal function occurred at ‘, cur_clock, ‘\n")

The time of the malfunction is recorded in the output file.

end if

Ends the | F structured statement.

end breakpoi nt
Ends the definition of the breakpoint.

set breakpoint gen_reset => every delay do
Beginning of the Breakpoint Definition Section. The defined breakpoint is simultaneously
enabled. The breakpoint isnamed gen_r eset andrunsevery del ay amount of time. The
integer del ay isseatinthe next breakpoint.

reset ;

Generate the event reset. This resets the malfunction of the traffic lights.

cancel breakpoint gen_reset ;

Cancels any further execution of the gen_reset breakpoint until needed after the next malfunction.

ns_green_time := rand_iuniforn30,50) ;
Generates a new random value for the north-south traffic flow. It generates a val ue between 30 and
50 seconds.

read(fin, ew green_tine) ;
Reads a new value from the data file for the east-west traffic flow.

while ew green_time > 20

Tests that the value from the data file does not exceed a maximum value.

| oop
Thetest isdonein awH LE/ LOOP statement. This insures that the new input (from the user) cannot
exceed the maximum value.

wite(‘'Data for ew green_tine exceeds limt. \n')

wite('Enter a value for ew green_tinme less than 20: \n') ;

160

Simulation Reference Manual

A Sample Simulation Control Program

When the input value fails the test, the user is prompted for a new value.

read(ew_green_tine)

Note
A new value for the east-west traffic flow is read from the keyboard.

end | oop

Note
Ends the WHILE/L OOP statement.

end if
Ends the | F structured statement.

end breakpoi nt

Ends this breakpoint definition.

set breakpoi nt

en(flashing) do

Starts a new breakpoint executed when thef | ashi ng dateisentered.

del ay: =rand_i uni f or m(1, 10)
Setsthedel ay for the resat event to anumber between 1 and 10.

set breakpoi nt gen_reset;

Enables the execution of the gen_reset breakpoint.
end breakpoi nt;

Note
Ends this breakpoint definition.

- Define Main Section to use required Go Type
begi n
Begins the Simulation Control Program Main Section whose statements are executed sequentially.
tr!(run)

Sets the Boolean variable run to true.

while run

Rational Statemate 161

Batch Mode Simulation

Evaluates the trigger run and, if true, runs the WHILE/L OOP statements. Since this variable has
just been set true, the loop runs continuously.

| oop
Begins the WHILE loop.

go step

Note
Thego st ep inthe Synchronous Time Modd advances the clock with each execution.

The Main Section is supplied here instead of using the default Main Section. The default
main Section always advances the execution using go ext ended.

end | oop

Ends the w4 LE loop.

end
Ends the Main Section.

end.

Ends the Simulation Control Program.

162 Simulation Reference Manual

Simulation Command Reference

In Simulation Execution, commands can be selected by pull down menus, hot keys, by typing the
command into the command line, or by execution in batch mode. This section details the operation
of each simulation command; both interactive and batch.

The commands are listed in two sections, Interactive mode and Batch mode, and are arranged in
the order they appear on the interface. Each command contains a brief command description
followed by an operation section that describes how to access that command.

Interactive Commands

The following commands can be found in the menus of the Simulation Profile Editor and
Simulation Execution menu.

The Simulation Profile Editor

The following graphic of the Simulation Profile Editor illustrates the tool’s five pull-down
menus. Each menu selection is described in detail in this section.

Rational Statemate 163

Simulation Command Reference

[simulation: CALC_REAR_DEFDG_STATE
Eﬁle Edit Yiew Execute Options @}ndou Help

z

@ r

%]] A

[E CALC_REAR_DEFOG_STATE
[REAR DEFOG £

Scope Definition || Tupe T
PAMEL_TEST Panel

STATECHART_TEST Panel

STATECHART_TEST Panel

REAR_DEFOG Waveforn

Mezzages

164

Simulation Reference Manual

Interactive Commands

File Tear—-off Edit Tear-off

-

Wiew Tear—off

ste Tear—of f
Fi
Fi

Options Tear-off

Rational Statemate 165

Simulation Command Reference

Simulation Execution Menu

The following graphic of the Simulation Execution menu illustrates the tool’s various pull-down
menus. Each menu selection is described in detail in this section.

Simulatior

[e o 2 |

(I2950} Actiwvating HaveForn profile BILL ... ﬂ

File Tear-off

Wi Tear=ar
l;
Analuze Tear-off

Record Tear-off

| Dizplays Tear-off

166 Simulation Reference Manual

Interactive Commands

Save Profile

The Save Profile command is used to save changes to an existing Simulation Profile.

Select

Rational Statemate 167

Simulation Command Reference

Restart Simulation

The Restart Simulation command is used to restart the simulation at time zero.
Select File > Restart Simulation from the Simulation Execution window.

Simulation time and number of steps resetsto zero

Note

If changes are made to a chart in this simulation scope, then the Rebuild Simulation

command should be used. Restart Simulation does not load modifications of charts into
the ssmulation.

Rebuild Simulation

The Rebuild Simulation command is used to reread any changes in the model and restart the
simulation.

1. Select File> Rebuild Simulation from the Simulation Execution window. The
following message displays:

“Do You Want to Save the Sinmulation Environment for the Current
Sessi on?”

2. Select Yesto read in changes to the scope:

Note: A yesor no response saves the changes to the scope. A yes response readsin
modifications to the scope saving the simulation environment. A no response
reads in the modifications to the scope and restores the original simulation

environment losing any changes. The operation can be cancelled using the
Cancel selection.

168

Simulation Reference Manual

Interactive Commands

Simulation File Management

The Simulation File Management command is used to manage SCP, Trace, and Status Files.
1. Select File> Simulation File Management from the Simulation Profile menu.
Note: The Simulation File Management command can also be accessed through the
Simulation Execution dialog box by selecting File > Simulation File
M anagement.

The Simulation File Management dialog box opens.

Analysis Profile Management

The Analysis Profile Management command is used to display, delete, copy, export and print an
Analysis Profile.

1. Select File> Simulation File Management > Simulation Profile M anagement from the
Simulation Profile Editor or the Simulation Execution menu. The Analysis Profile
M anagement dialog box displays.

Analyzis Profile Management

Profiles
BILL |Show |

PAGER

TEST

Copy... |

IPrint |

Disniss

Rational Statemate 169

Simulation Command Reference

+ Show — Displays the selected profile.
+ Delete— Removes the selected profile.

+ Copy — Copiesthe selected profile after you re-nameit. It works the same way as
Save as.

+ Export —Works the same way as Copy except you can save it to another
workarea or directory.

¢ Print —Used to print the selected profile.
¢ Dismiss button — The Dismiss button is used to close the dialog box.

SCP File Management

The SCP File Management command is used to display, delete, copy, export, and print an SCP
File.

1. Select File> Simulation File Management > SCP File Management from the
Simulation Profile Editor or the Simulation Execution menu. The SCL File
M anagement dialog box appears.

SCL File Management

170 Simulation Reference Manual

Interactive Commands

Trace File Management

The Trace File Management command is used to display, delete, copy, export, and print a Trace
File. It also can be used to print reports and view waveforms of a Trace File.

Select File > Simulation File Management > Trace File Management from the Simulation
Profile Editor or the Simulation Execution menu. The Trace File Management dialog box

displays.

Trace File Management

Status File Management

The Status File Management command is used to display, delete, copy, export, and print your
Status File.

1. Select Execute > Simulation File Management from the Simulation Profile Editor of
the Simulation Execution menu. The Simulation Execution dialog opens.

2. Select File> Simulation File Management > Status File Management. Another dialog
box opens with the following commands:

¢ Simulation Profile Management
¢ SCP File Management
¢ Trace File Management
¢ Status File Management

Rational Statemate 171

Simulation Command Reference

Status File Management

Messages

The M essages command is used to open and close an area that displays messages about the status
of the simulation.

Select View > M essages from the Simulation Profile Editor or Simulation Execution menu.

The Message window opens on the Simulation Profile menu if not present. Otherwise, it
disappears.

Simulation: BILL

Message
Window

172 Simulation Reference Manual

Interactive Commands

Simulation E: iohy BILL

[I 2

Message {I2950) Activating HaveForn profile BILL ...
- —
Window

Tool Bar

The Tool Bar command is used to open and close atool bar containing icons that give you quick
access to the most frequently used commands.

Select View > Tool Bar from the Simulation Profile menu. The Tool Bar displays on the
Simulation Profile menu.

Note

The Tool Bar command can also be accessed through the Simulation Execution dialog box
by selecting View > Tool Bar.

Simulation: BILL

Tool
Bar

Rational Statemate 173

Simulation Command Reference

Tool
Bar

{I2950} Activating HaveForn profile BILL ... ﬂ

Command Line

The Command Line command is used to open and close the command line where the simulation
commands can be typed.

Sdlect View > Command Line from the Simulation Execution menu.

The Command Line appears in the Simulation Execution dialog box. This command toggles the
Command Line between view and hide mode.

Command ——p

Line

inel00:00:00 (0} Step: 0

174 Simulation Reference Manual

Interactive Commands

Examine

The Examine command is used to display the status or value of a specified specification element
or queue in the Simulation scope. It can also be used to evaluate a valid expression formed from
elements in the Simulation Scope.

1. Select Analyze > Examine from the Simulation Execution menu. The Examine dialog
box opens.

Examine

SHITCH_POS

2. Select one of the following three operations: Examine, Evaluate or Examine Queue.
+ |f Examineisselected, an element name can be entered it the Expression text box.
The elipse button can be used to browse valid elements (i.e., count).

+ |f Evaluateis selected, then an expression can be entered consisting of elements
in the Simulation Scope. (i.e., count, carry).

+ |f Examine Queue is selected, then the length and the contents of each queue
element is displayed.

+ Click Apply.

Rational Statemate 175

Simulation Command Reference

GoBack

The GoBack command is used to undo the previous Go command.

Select Go > GoBack from the Simulation Execution menu.

The status of all specification elementsisreturned to the value immediately before the most recent
Go command. It does not effect the elements of arunning SCP.

Note

¢ Thiscommand can be used repeatedly up to the default GoBack limit (the default valueis
5). This can be change using the Simulation Execution Options command.

Setting this option at too high alevel may slow down your simulation since more
simulation history must be saved.

Pause

The Pause command is used to temporarily stop a running simulation.
Select Go > Pause from the Simulation Execution menu.

The running SCP or AutoRun isinterrupted.

AutoGo

The AutoGo command is used to perform a GoStep in an unstable status otherwise it performs a
GoNext.

Select Go > AutoGo from the Simulation Execution menu.

A GoStep isperformed if it causes a change; otherwise, a GoNext is performed.

GoStep

The GoStep command is used to perform a single simulation step. In the Asynchronous Time

Model, the time is not advanced. In the Synchronous Time Model, the time is advanced one clock
unit.

Select Go > GoSep from the Simulation Execution menu. The next simulation step is
executed.

176

Simulation Reference Manual

Interactive Commands

AutoRun

The AutoRun command is used to start a mode of operating in which simulation runs
continuously with the entire interaction being performed through panels and monitors.

-
e
Select Go > AutoRun from the Simulation Execution menu.

In the autorun mode, simulation infinitely runs the GoExtend command. When a stationary
situation occurs, simulation pauses. After entering the appropriate input from the panel, the
simulation activates and it continues execution of the model.

Note
The Pause command can be used to stop the AutoRun command.

GoStepN

The GoStepN command is used to perform N (specified number) of Simulation steps. Theclock is
advanced for each step in the Synchronous Time Model,.

1. Select Go> GoStepN from the Simulation Execution menu. The GoStepN dialog box
opens.

2. Enter the Number of Stepsyou want to perform.

Note

GoSeps are performed until a stable configuration or the specified number of steps are
reached.

Rational Statemate 177

Simulation Command Reference

GoRepeat

The GoRepeat command is used to execute a superstep.
Select Go > GoRepeat from the Simulation Execution menu.

All steps possible are executed until a stable statusis reached. All steps are taken until an external
event must be generated or a scheduled action or timeout event are sensed.

GoNext

The GoNext command is used to advance the clock to the time of the next scheduled action or
timeout event and runs all reactions the system can perform before this time.

Select Go > GoNext from the Simulation Execution menu.

The clock is advanced to the time of the next scheduled action or timeout event.

GoAdvance

The GoAdvance command is used to advance the clock to the time of the next scheduled action or
timeout event and runs all reactions the system can perform before this time. It advances the time
to the time specified. Relative or Absolute time can be used.

Select Go > GoAdvance from the Simulation Execution menu.

The GoAdvance dialog box opens.

¢+ Advance Absolute — Advances to the time unit specified.
¢ Advance Relative — Advances N time units from the current time.

+ Value-Thisisthe positive number representing the number of clock units
advanced.

178

Simulation Reference Manual

Interactive Commands

Go Extended

The GoExtended command is used to reach the next stable status without entering any external
changes. It is available only in the asynchronous mode.

From the Simulation Execution menu, select Go > GoExtended.

Note

Attempts to execute a GoRepeat. If no steps are taken, the current time is advanced to the next
scheduled action or timeout event and a GoRepeat is executed.

Simulation Execution Option

The Simulation Execution Optionsis used to set a number of user-specified parameters
including: Number of Steps per Go, Infinite Loop Limit, GoBack Limit and Racing Options.

From the Simulation Execution menu, select Options > Simulation Execution Options.

The Execution Parameter s dialog box opens.

Execution Parameters

Rational Statemate 179

Simulation Command Reference

Panels
The Panels command is used to select panels to be included in the scope of simulation.
From the Simulation Execution menu, select Display > Panels.

The Panelsin Scope dialog box opens.

Panels in Workarea

From this dialog box, you can select the panels used in simulation and the terminal the panel is
displayed on.

Waveforms

The Waveform command is used to connect a waveform to the current simulation session.
Operation
From the Simulation Execution menu, select Display > Waveforms.

The Wavefor msin Scope dialog box opens.

180 Simulation Reference Manual

Interactive Commands

Waveforms in BILL

o]
Setse|
sl

PAGER __|

Note
For additional information on Waveforms, see Recording a Simulation Session.

Rational Statemate 181

Simulation Command Reference

Monitors

The M onitor s command is used to define the monitors for the current simulation session.

From the Simulation Execution menu, select Display > Monitors. The Simulation M onitor
dialog box opens.

Simulation Monitor: TESTL

Thisdialog box alows you to display a simulation monitor.

182 Simulation Reference Manual

Interactive Commands

Animate All Charts

The Animate All Charts command is used to enable and disable all chart animation.

1. Fromthe Simulation Execution menu, select Display > Animate All Charts. The Chart
Animation dialog box opens.

Note: The animation of achart can be turned on or off by clicking on the Animation
column of the chart.

2. Chartsinthe Simulation Scope can be opened by selecting Open Chart from within the
Chart Animation dialog box. The Open Chart Editor dialog box opens.

Rational Statemate 183

Simulation Command Reference

Animate Selected Charts

The Animate Selected Charts command is used to enable and disable individual chart animation.
From the Simulation Execution menu, select Display > Animate Selected Charts.

The Chart Animation dialog box opens.

¢ Process— The Graphic Editor that isin the Simulation Scope and is being
animated.

¢ Chart Name — The name of the animated Statechart.
¢ Animate— Select Yesor No.

¢ |nstance Name— Animation can be turned off for each instance of ageneric. To
select different instances, use the Next Instances or Previous Instances selection.
You can aso hold the left mouse button in the Instance field of the generic chart
to display a popup of the instance names.

184 Simulation Reference Manual

Interactive Commands

DoAction

The DoAction command is used to change the value of simulation elements(s) using actions
expression(s).

From the Simulation Execution menu, select Actions > DoAction.

The DoAction dialog box opens.

Elipse Button

This dialog box alows you to change the value of an element based on an expression.
¢ History — Displays a history of previous expressions used in the DoAction command
allowing you to select one.

+ Expression — You can change the value of an element by entering a single action in the
text box. After entering the action, apply it to perform the action.

+ Result — The value of the element affected by the action with change.
¢ Elipse Button — Displays a browser used for selecting an element for the expression.

Rational Statemate 185

Simulation Command Reference

Breakpoints

The Breakpoints command is used to create, enable and disable breakpoints. For information on
defining a breakpoint in a subroutine, see Defining a Breakpoint in a Subroutine.

From the Simulation Execution menu, select Actions > Breakpoints.

The Simulation Breakpoints Editor dialog box opens. This dialog box allows you to insert
breakpoints.

¢ Active enables and disables breakpoints.
¢ Nameisthe name of the breakpoint.

¢ SCP breakpoint is valid when specified SCP isrunning. A breakpoint associated with an
interactive simulation has USER in the SCP field.

¢ Trigger mechanism that causes the break.

¢ Breakpoints can be added, edited or deleted.

¢ Add isused to add breakpoints. When selected, the Add dialog box opens.
+ Edit startsatext editor so you can edit the trigger of selected breakpoints.
¢ Deleteisused to remove a breakpoint.

186 Simulation Reference Manual

Interactive Commands

Run SCP

The Run SCP command is used to start the execution of a selected SCP file(s).

1. From the Simulation Execution menu, select Actions> Run SCP. The Run SCP File
dialog box opens.

2. Fromthe SCP File list, select the SCP file you want to run.
3. Select OK. The select SCPfileis executed.

Quit SCP

The Quit SCP command is used to stop the execution of selected executing SCP file(s).

From the Simulation Execution menu, select Actions > Quit SCP. The executed SCP Fileis
stopped.

Continue SCP
The Continue SCP command is used to resume execution of an interrupted SCP fileg(s).
From the Simulation Execution menu, select Actions > Continue SCP.

The SCP Fileis resumed.

Rational Statemate 187

Simulation Command Reference

Monitor SCP

The Monitor SCP command is used to start adialog box containing all current:

¢ User defined SCP variables

+ Rational Statemate defined SCP constant/variables: NODET_NO, NOTIFY_MODE,
RANDOM_SEED, STEP_MODE.

Rational Statemate defined Simulation constant/variables: CUR_CLOCK, INFINITE GO,
NONDETERMINISM, STATIONARY, STEP, STEP NUMBER, TERMINATION.

All the user defined SCP variables and Rational Statemate defined SCP constants/variables may be
changed from the SCP Monitor dialog box. This dialog box gets its values from the SCP. It is not

in continuous communication with the SCP and therefore cannot show updated values
continuously.

*

From the Simulation Execution menu, select Actions> M onitor SCP. The SCP Monitor dialog
box opens.

Note

The SCP Monitor dialog box is modal and must be closed before continuing.

188 Simulation Reference Manual

Interactive Commands

Restore Status

The Restore Satus command is used to load the saved Simulation Statusfile.

1. From the Simulation Execution menu, select Actions > Restore Satus. The Restore
Satusdialog box opens.

Festore Status

2. Sdect astatus file from the Status Files list.
3. Select OK. The selected status file is loaded.

Rational Statemate 189

Simulation Command Reference

Generate Interface

The Gener ate Interface command is used to generate the .c and .h files that are needed for user
added code.

From the Simulation Profile menu, select Execute > Generate I nterface.

Creates the header file for the C code. Thisis added to the prt directory of the workarea.

Note

The the Gener ate | nter face command can also be accessed from the Simulation

Execution dialog box by selecting Actions > External Code > Generate I nterface from
the Simulation Profile menu.

Start Trace

The Sart Trace command is used to initialize the trace file and begin recording.

1. From the Simulation Execution menu, select Record > Start Trace. The Sart Trace
dialog box opens.

2. Select the desired file from the Trace Files list.

3. Click OK. Therecording for the selected tracefile is started.

190 Simulation Reference Manual

Interactive Commands

Stop Trace
The Stop Trace command is used to close the current trace file.
From the Simulation Execution menu, select Record > Stop Trace.

The executed tracefileis closed.

Record SCP

The Record SCP command is used to initialize an SCP file and begin recording.

1. From the Simulation Execution menu, select Record > Record SCP. The Record SCP
dialog box opens.

2. Select the SCPfile you want to over write from the Playback Fileslist or enter anew name
in the Selection text box.

3. Click OK. The SCPfileisinitiaized and recorded.

Rational Statemate 191

Simulation Command Reference

Snapshot Status

The Snapshot Status command is used to save the current simulation statusin areloadable file.

1. Fromthe Simulation Execution menu, select Record > Snapshot Satus. The Save
Satusdialog box opens.

Shapshot Status

2. Select the statusfile you want to save from the Status Fileslist or enter anew namein the
Selection text box.

3. Click OK. The current ssmulation status is save in areloadablefile.

192 Simulation Reference Manual

Interactive Commands

Show Changes

The Show Changes command is used to displays the changesin the system since the last Go
command.

1. Fromthe Simulation Execution menu, select Analyze > Show. The Show Changes

dialog box opens. You can display Changes, Future, Racing and Clock. You can also
choose between Automatic Update, or the Freeze option.

2. Select the Change button. The Show dialog box opens.

Changes for step 0:

Activity HA_PAGER:ACTIVITY#0) started
Activity PAGER started

Rational Statemate 193

Simulation Command Reference

General Changes - Lists the changes in textual elements that occurred during the
last go. Lists the changes that occurred in states (entered, exited) and activities
(active, nonactive, hanging) during the last go.

Note: The changes are listed according to the order in which the modifications took
place:

* Conditions: “ became true” or “became false

* Data-items: “changed”, “Changed from x to y”, “was read” or “was written”
* Events: included in list if they were generated

* Activity: “started”, “stopped”, “ suspended”, “resumed”

* State: “entered,” “exited”.

If automatic update is selected, the dialog box updates as changes occur. Freeze retains the current
output in the dialog box.

Show Clock

The Show Clocks command is used to display the time information for the global and local clocks.

1. From the Simulation Execution menu, select Analyze > Show. The Show Changes
dialog box opens. You can display Changes, Future, Racing and Clock. You can also
choose between Automatic Update, or the Freeze option.

2. Click Clock. The Show Clock dialog box opens.
¢ Clock Unit Name and Value - Summary of information supplied during
Simulation setup
¢ Elapsed Time- Number of clock units passed since start of Simulation
¢ Absolute Time - Starting time plus elapsed time
¢ Sep Number - Total number of steps taken from start of Simulation
¢ Phase Number - Number of stepstaken at the current time

If automatic update is selected, the dialog box updates as changes occur. Freeze retains the current
output in the dialog box.

194 Simulation Reference Manual

Interactive Commands

Tineout/schedule unit: 1 Seconds

#x%x%x%% The following charts are currently
inactive:

Actiwity: LIGHT

Tineout/schedule unit: 1 Seconds

Activity: YIBRATION

Tineout/schedule unit: 1 Seconds

Activity: A_PAGER:BEEP

Tineout/schedule unit: 1 Seconds

Show Future

The Show Future command is used to display alist of scheduled actions, timeout events and the
SCL every clausss.

1. Fromthe Simulation Execution menu, select Analyze > Show. The Show Changes
dialog box opens. You can display Changes, Future, Racing, and Clock. You can also
choose between Automatic Update or the Freeze option.

2. Select the Future button. The Show Future dialog box opens.

¢ Time- The amount of time (global clock units) until the scheduling of theitem
(event, action, EVERY clause). If the valueis zero, theitem is activated just prior
to the next step.

+ Type- Thetype of scheduled item (event, action, EVERY clause)
+ Name/Definition - The name of the scheduled item.

If automatic update is selected, the dialog box updates as changes occur. Freeze retains the current
output in the dialog box.

Rational Statemate 195

Simulation Command Reference

Changes Future Racing Clock

I |
] e~ Tohunn Fom e P ___-rGL_-“
— =

e —— =

Show Racing

The Show Racing command is used to report on racing problems detected during the last Go
command.

1. Fromthe Simulation Execution menu, select Analyze > Show. The Show Changes
dialog box opens. You can display Changes, Future, Racing, and Clock. You can also
choose between Automatic Update or the Freeze option.

2. Click Racing. The Show Racing dialog box opens.

Note
Thereport isonly available if the Report Racing parameter is set in Set Parameters.

If automatic update is selected, the dialog box updates as changes occur. Freeze retains the current
output in the dialog box.

196 Simulation Reference Manual

Interactive Commands

Show Racing

New Profile

The New Profile command is used to create a new Simulation Profile.

1. Select File> New Profile from the Simulation Profile Editor. The New Simulation
dialog box opens.

2. Typethe name of the new profile into the Profile Name text box or select a profile from
the Profileslist.

3. Select OK. A new profileis created.

Rational Statemate 197

Simulation Command Reference

Mew Simulation Profile

Open Profile
The Open Profile command is used to open an existing Simulation Profile.

1. Fromthe Simulation Profile Editor, select File > Open Profile. The Open Simulation
Profile dialog box opens.

2. Select aprofile from the Profileslist.
3. Select OK. The selected profile is opened.

198 Simulation Reference Manual

Interactive Commands

Open Simulation Profile

Close

The Close command is used to close the current Simulation Profile.
From the Simulation Profile menu, select File > Close Profile.

The opened profileis closed.

Print Profile Report

The Print Profile Report command is used to print the current Simulation Profile.
From the Simulation Profile Editor, select File > Print Profile Report.

A report of the profileis printed.

Rational Statemate 199

Simulation Command Reference

Add With Descendants

The Add With Descendants command is used to add the selected chart from the Wor karea
Browser with decendents to the Simulation Profile.

From the Simulation Profile menu, select Edit > Add With Decendants or click Add with

Decendants. ﬁl

The decendants of the selected chart in the Workarea Browser are added to the profile.

Add Testbench

The Add Testbench command is used to add the sel ected Statechart from the Wor kar ea Browser
to the Simulation Profile as a Testbench.

From the Simulation Profile menu, select Edit > Add Testbench or click Add Testbench . g

The selected Statechart is added to the profile as a Testbench.

Add/Edit Panel

The Add/Edit Panel command is used to add the selected Panel from the Wor karea Browser to
the Simulation Profile.

From the Simulation Profile menu, select Edit > Add/Edit Panel or click Add/Edit Panedl..

The selected Panel is added to the profile.

Add/Create Waveform

The Add/Create Waveform command is used to add selected Waveform Profiles to the
Simulation Profile.

-ﬁ | From the Simulation Profile menu, select Edit > Add/Create Waveform or click Add/Create
Waveform.

If aWaveform Profile is selected in the connected Workarea Browser then it is added to the
Simulation Scope. If awaveform is not selected, a dialog box opens that allows you to create a
new waveform profile that is added to the scope.

200 Simulation Reference Manual

Interactive Commands

Monitors

The Monitors command is used to define a new or edit an existing Monitor definition.

Select Edit > Monitorsfrom the Simulation Profile menu, or click Monitors @I

The Monitors dialog box opens.
The Monitorsdialog box is used for:

¢ Creating a new Monitor
+ Editing aMonitor
¢ Deleting aMonitor

Remove From Scope

The Remove From Scope command is used to remove the select elements from the scope.

From the Simulation Profile menu, select Edit > Remove From Scope or click Remove From
i‘i | Scope The selected component is removed from the scope.

Exclude From Scope

The Exclude From Scope command is used to exclude the selected Activity from the Simulation
Scope.

*-'&)| From the Simulation Profile menu, select Edit > Exclude From Scope or click Exclude From
Scope. The selected component is removed from the scope.

Select

The Select command is used to select or deselect all elementsin the current profile.

From the Simulation Profile Editor, select Edit > Select. The Select All and Deselect All
commands appear.

Rational Statemate 201

Simulation Command Reference

Show Scope as Tree

The Show Scope as Treeis used to display the scope definition as atree.

From the Simulation Profile menu, select View > Show Scope as Tree. It displays the selected
chart asatree.

= Jma pacER
s conmon

s conmmo]

Show Scope as List

The Show Scope as List command is used to display the scope definition asalist.

From the Simulation Profile menu, select View > Show Scope as List. It displays the selected
chart asalist.

Show Boxes

The Show Boxes command is used to show the hierarchy of charts and boxesin the tree view.

From the Simulation Profile menu, select View > Show Boxes. It displaysthe hierarchy of charts
and boxes in the tree view.

202 Simulation Reference Manual

Interactive Commands

Hide Boxes

The Hide Boxes command is used to remove boxes and charts from the hierarchy in the tree view.
From the Simulation Profile menu, select View > Hide Boxes. Selected charts and boxes in the
tree view are removed from view.

Execute Simulation

The Execution Simulation command is used to start a simulation based on the current profile.

From the Simulation Profile menu, select Execution > Execution Simulation. The Execution
Simulation menu displays.

Simulation ion: BILL

[I v) 2

{I2950) Activating HaveForm profile BILL ... ﬁ

-
I:,-; Note
The Execution Simulation menu can be executed by clicking Execution Simulation.

Rational Statemate 203

Simulation Command Reference

Simulation Execution Options

The Simulation Execution Optionsis used to define Activity Styles, Step Limits and Racing
Notification.

From the Simulation Profile menu, select Options> Simulation Execution Options. The
Execution Parameter s dialog box opens.

Execution Parameters

Time Settings

The Time Settings command is used to select Time Settings and to define Clock Units.

From the Simulation Profile menu, select Options > Time Settings. The Time Settings dialog
box opens.

204 Simulation Reference Manual

Interactive Commands

Rational Statemate 205

Simulation Command Reference

Logic Settings

The L ogic Settings command is used to select Multi-Value Logic, Resolution and Weak Values.

From the Simulation Profile menu, select Options > Logic Settings. The L ogic Settings dialog
box opens.

Logic Settings

Preference Management

The Preference Management command is used to change the Simulation Profile Editor
preferences.

From the Simulation Profile Editor, select Options > Preference M anagement. The Simulation
Preferences dialog box opens.

Simulation Pref

206 Simulation Reference Manual

Auto Batch Commands

Auto Batch Commands

Many of these commands have interactive equivalents of the same syntax. Additional details on
how to use these commands can be found in Batch Mode Simulation.

ASSIGN

The ASSIGN statement is used to assign SCP files to represent primitive activities or external
activities. The ASSIGN statement connects an SCP to an activity to represent the activity’s behavior in
the smulation moddl. When an internd activity is Sarted, the program assigned to the activity is started.
Correspondingly, stopping, suspending or resuming of these activities causes appropriate changesin the
datus of the program.

Syntax:

Assign activity_name “scp_name” where act i vi t y_nane isthe primitive or external activity
name and scp_narre isthe SCP file name.

CANCEL

The CANCEL statement is used to cancel the setting of a simulation parameter or breakpoint.

Syntax:

Used in conjunction with set br eakpoi nt, set display, set trace. Seethesecommands.

CHOOSE

The CHOOSE statement is used in nondeterministic situations to choose a solution.
Syntax:

The CHOOSE statement is used to choose the integer where integer isthe assigned number of
the desired nondeterminism sol ution.

When nondeterminism is encountered and interactive mode enabled, the Simulation tool
displaysthefirst possible solution. Use next to inspect other solutions. Use choose to select the
displayed solution. A go resume is performed after choose.

Example:

choose 3

Rational Statemate 207

Simulation Command Reference

CLOSE

The CLOSE statement is used to close an opened file.
Syntax:
cLoskE (file variable) wherefil e_vari abl e isthe variable of the opened file.

This statement closes an already opened file for the duration of the smulation run. Itis
primarily used to compensate for system limitations pertaining to the number of files open
simultaneously.

Example:

cl ose(file2)

COMMENT

The COMMENT statement specifies acomment linein an SCP.
Syntax:

/1 text
where text isany text string. Any text following “//” to the end of thelineisacomment.

Note

Comments may be embedded within statements or on lines to themselves or you can use
I *<text >*/. With thisusage, text can be any string and can include new lines.

Example:

read(v,z) ; // This is a valid coment

// This is another valid coment |ine

208 Simulation Reference Manual

Auto Batch Commands

CONSTANT

The CONSTANT statement is used to declare the program constants in the SCP file section.

Syntax:

constant

[INTEGER id :=integer_val [, id :=integer_val . . .] ;]

where id is the nanme of the integer constant and integer_val is its value
[stTRNG id := “text” [, id:="ext” . . . 1 ;1]

where id is the name of the string constant and “text” is its val ue
[FLoaT id :=real _val [, id:=real _val . . .] ;1]

where id is the name of the real constant and real _val is its value
[BITid:=bit_val]

where id is the nane of the bit constant and bit_val is 0 or 1

[ARRAY i d(boundl. . bound2): =array_val]

where id is the name of the bit-array, bound represents the bit boundaries and array_val isthe
value of the bit array.

The Constant Section if one of the five optional program sections of the SCP. The Section
contains the keyword constant followed by the declarations of constants. One declaration may
define several constants (separated by commas). Each declaration is concluded with a

semicolon.
Example:
Const ant
integer x:=5, y:=200, z:=1, z2:=10 ;
string al pha := "unexpected | oop”

beta:= “enter an action for yy” ;
float a:= 2.5, b:=700.234 ;
array a(1..16): =0xAEQ7 ;

Rational Statemate 209

Simulation Command Reference

DO

The DO statement is a component of Set Breakpoint which defines a sequence of statements executed
when the breakpoint istriggered.

Syntax:

See SET BREAKPOINTS.

ELSE

The EL SE statement is a component of the | F/ THEN ELSE statement used for the conditional
execution of SCL statements.

Syntax:

See the |E statement.

END

The END statement is use to end a SCP section, structured statements and the SCP itself.
Syntax:

END BREAKPQ NT
END | F

END INIT

END LOOP

END VHEN

END

END.

The end keyword concludes various SCP structured statements: Set Breakpoint, INIT, BEGIN,
WHILE/LOOP, WHEN/THEN/EL SE and IF/THEN/EL SE.

The End statement concluding the entire SCP isfollowed by a period.

210 Simulation Reference Manual

Auto Batch Commands

EVERY

The EVERY statement is the component of the Set Breakpoint statement used for setting a
breskpoint at specific timeintervals.

Syntax:

See SET BREAKPOINTS.

EXEC

The EXEC statement runs a specified SCP.
Syntax:

exec “nane”

where nane isthe name of the SCP file to be executed.

Multiple SCPs may be executed simultaneously. An SCP may be executed and stopped from any
other SCP. When an SCPis started by an exec statement, its Main Section isignored.

Note

You should not exec SCPs that are assigned. exec does not affect the execution of already
running SCPs.

Rational Statemate 211

Simulation Command Reference

Rational Statemate Actions

The STATEMATE ACTIONS statement performs Rational Statemate actions.
Syntax:

exv_action

where exv_act i on isany legd Rational Statemate action
Actions may refer to both Rational Statemate eements and SCL objects.

Note

If the scope contains several €l ements with an identical name, precede its name with the
name of the chart.

Example:

card_id := 12345 ; start(verification) ;
if a>b then tr!(c) end if

AUTOGO

The AUTOGO command is used to perform aGoSt ep in an unstable status otherwiseit performsa
GoNext .

Syntax:

Auto Go

GO ADVANCE

The GO ADVANCE statement advances the clock to a specified moment and runs all reactions
the system can perform before this moment.

Syntax:

go advance num

where numis a positive number representing the number of clock units.

212 Simulation Reference Manual

Rational Statemate Actions

GO BACK

The GO BACK statement undoes the previous Go command.
Syntax:

go back

GO EXTENDED

The GO EXTENDED statement attempts to execute ago r epeat . If no steps are taken, the current
timeis advanced to the next scheduled action or timeout event and ago repeat isexecuted. Available
only inthe Asynchronous Time Moddl.

Syntax:

go extended

GO NEXT

The GO NEXT statement advances the clock to the time of the next scheduled action or timeout
event and runs all reactions the system can perform before this time.

Syntax:

go next

GO REPEAT

The GO REPEAT statement runs all steps possible to the next stable status. It performs a
superstep.

Syntax:

go repeat

GO STEP

The GO STEP statement is used to performs asingle step. Time is advanced in the Synchronous
Time Model.

Syntax:

go step

Rational Statemate 213

Simulation Command Reference

GO STEPnN

The GO STEPN statement is used to perform a specified number of steps to advances the clock.
Available only in the Synchronous Time Model.

Syntax:

go stepn [n]

The | F statement is used to perform a conditional execution of SCL statements.
Syntax:

if condition then

statement [; statenent . . .]
[el se

statenent [; statenent . . .]

]

end if

where condi t i on isany expression returning a Boolean value and st at enent isany SCL
Statement

Thel F/ THEN ELSE structured statement is used to execute SCL statements conditiondly. The
satements following THEN and before ELSE are executed if condi t i on istrue. If condi ti on is
fase, the statements between ELSE and END are executed.

Example:

IF a >b THEN

err :=err + 1,
ELSE

WRITE (‘ais less than b")
END | F

214 Simulation Reference Manual

Rational Statemate Actions

INIT

The INIT statement is used to define statements that are executed at the beginning of each
execution of the SCP.

Syntax:
init

st at enent

[; statenment]
end init

Contains any SCL statements except GO statements.
Example:

INIT
zb := 23.6 ;
gen : = 4000 ;
rname := “light standard” ;
SET I NFI NI TE LOOP 50 ;
END INIT

LOOP

The L OOP statement is a component of the WHI L E statement used to execute SCL statementsin a
loop.

Syntax:

See WHILE statement.

Rational Statemate 215

Simulation Command Reference

MAIN SECTION

The MAIN SECTION isused as a Sequence of SCL statements used to define the smulation

scenario.
Syntax:
begi n
st at enent
[; statenment]
end

The Main Section contains any SCL statements which are executed sequentially. When more
than one SCP is running, only one Main Section is executed - the one belonging to the SCP
activated with the interactive RUN command.

If the primary SCP has no explicit Main Section, a default main section is assumed: a Go
Ext ended isperformed in aninfiniteloop.

OPEN

The OPEN statement is used to open afile for input or output.
Syntax:

open (file_variable, “file_nane”, INPUT | QUTPUT)
wherefil e_variabl e isassignedtoafil e_nanme for | NPUT Or QUTPUT.

The following rules apply:
¢ Thefile being opened must already exist

+ If afileisopened for output, it cannot be reopened beforeit is closed
¢ The samefile cannot be opened for both input and output

Example:

open (filel, “/csw source/sanple.data”, |NPUT)

216 Simulation Reference Manual

Rational Statemate Actions

PROGRAM

The PROGRAM statement is used to name the SCP.

Syntax:

program pr ogr am nane Where pr ogr am narre is the name assigned to the SCP.
This statement is required as the first statement in the SCP.
Example:

PROGRAM ATM contr ol

RANDOM SOLUTION

The RANDOM SOLUTION statement is used to select arandom solution when nondeterminism
OCCurs.

Syntax:

random sol ution

This statement is used in conjunction with the nondeterminism breakpoint. It allows the model
simulation to continue without user intervention when a nondeterministic situation is

encountered. One of the solutions is chosen randomly and the simulation proceeds without the
need for aGo statement.

Example:

set breakpoint [nondeterm nism]
do

random sol ution ;

wite (“nondetermnistic situation solved randomy. \n")
end breakpoi nt

Rational Statemate 217

Simulation Command Reference

READ

The READ statement is used to read input from an external file or from standard input (keyboard)
and assign it to specified variables and data-items.

Syntax:
read ([file_variable, 1] x2 [, x2 . . . 1)

wherefile_vari abl e, if present, isthe name of the externa file; if absent, input isread from the
keyboardto x1.

The information read is assigned to SCP variables of al types (except file) and primitive data-
items.

Note: Thefilefrom which the read is performed must be opened before this statement
is used. When multiple variables are read from the keyboard or afile, the
values must be separated by areturn.

Example:

read (file_nane, a,b,c) ;

read (v, z) ;

RESTORE STATUS

The RESTORE STATUS statement is used to restore the status information saved in a save status
operation.

Syntax:

restore_status “status_nane”

where status_nameisthe name of the status to be restored.

SAVE STATUS

The SAVE STATUS statement is used to save the current status of the system at a requested point
in the simulation.

Syntax:

save_status “status_nane”

where gatus_name isthe name under which the statusis saved.

218 Simulation Reference Manual

Rational Statemate Actions

SET BREAKPOINTS

The SET BREAKPOINTS statement is used to define and enable a specified breakpoint.
Syntax:

set breakpoint [breakpoint =>1] trigger do
st at ement

[; statenment]

end breakpoi nt

where trigger isdefined as. event_expression | every num_expression; and statement is any
SCL gtatement except go

set breakpoi nt breakpoi nt _name

cancel breakpoi nt breakpoi nt_nane

See Breakpoints for additiona information on breskpoints.

SET DISPLAY

The SET DISPLAY statement is used to enable or disable the display of changesin graphic
editors.

Syntax:

set display
cancel display

Enables or disables the animation of graphic charts which are connected to the Simulation
tool.

Rational Statemate 219

Simulation Command Reference

SET GO BACK

The SET GO BACK statement is used to determine the maximum number of times a go back can
be executed in succession.

Syntax:

set go back nunber

where number isapodtive integer
Example:

set go back 5

SET INFINITE GO

The SET INFINITE GO isused to set alimit to the number of steps taken during along Go
command (i.e., GoExt ended, GoRepeat). After apreset number of stepsisreached (if not finished
before), simulation stops and control is returned to the user. This parameter is also used to limit the
number of iterations within a step used to cal culate the combinational element value. For example,
in the conditional expression X:=X+1, astable valuefor X can never be reached because each time
X changesthe CE isrecalculated resulting in anew value for X. When cal culating a combinational
element, if astable state is not reached after 100 mini-steps (default), the cal culating stops and the
value remains at 100 mini-steps.

Syntax:

set infinite GO 100

where nisapodtiveinteger

This statement permits the resetting of the maximum number of steps which can be executed
during along Go command.

Example:

set infinite go 5

220

Simulation Reference Manual

Rational Statemate Actions

SET INFINITE LOOP

The SET INFINITE LOOP isused to set alimit for the number of interactions of FOR loops or
WHILE loopsin the simulation. After reaching the preset limit, the simulation is terminated and
reported.

Syntax:

set infinite |oop phase |imt

where phase_| i mi t isapogtiveinteger

This statement permits the resetting of the maximum number of iterations that can be executed
in aloop before the infinite loop condition becomes true.

Example:

set infinite | oop 1000

SET INTERACTIVE

The SET INTERACTIVE statement is used to switch from batch to interactive mode.
Syntax:

set interactive

All running SCPs are suspended. To resume the SCPs and return to batch mode, enter the Cont i nue
Scp command.

SET TRACE

The SET TRACE statement is used to enable or disable the recording of the simulation results
into atracefile.

Syntax:

set trace
cancel trace

This statement determines whether the results of the subsequent simulation steps are recorded
in atracefile. If the smulation session is given a name, that name is given to the tracefile,
otherwise, the trace file name is nameless.

Rational Statemate 221

Simulation Command Reference

SKIP

The SK1P statement is used to skip the remainder of breakpoint processing stage in the current
step.

Syntax:

SKI P

STOP SCP

The STOP SCP statement is used to stop the execution of selected executing SCPs.
Syntax:

stop_scp [“name”]

where nameisthe name of the SCP to be stopped.

If nameif provided, this SCPis stopped. This statement without an SCP nhame stops all
running SCPs.

Example:

stop_scp “autolight”

THEN

The THEN statement is a component of the IF/THEN/ELSE and WHEN/THEN/EL SE statements

used for conditional execution of statements depending, respectively, on acondition value or an event
occurrence.

Syntax:

see | F and WHEN

222 Simulation Reference Manual

Rational Statemate Actions

VARIABLE

The VARIABLE statement is the SCP file section used to define variables.

Syntax:
vari abl e
[[global] integer id [:=integer_val] [, id :=integer_val . . .] ;]
wherei d isthe name of theinteger constant andi nt eger _val isitsinitia vaue
[[global] string id [:= “ext” [, id :="“text”. . .] ;1]
wherei d isthe name of the string congtant and “ text” isitsinitia vaue

[[global] float id [:=real _val] [, id:=real_val . . .] ;]

wherei d isthe name of thered congtant and r eal _val isitsinitial vaue

[[global] fileid [,id. . . 11
wherei d isthe name of thefilevariable

[[global] BOOLEAN id [, id . . .] ;]
wherei d isthe name of the Boolean variable

Rational Statemate 223

Simulation Command Reference

WHEN

The WHEN statement is used for conditional execution of SCL statements depending on event
occurrence.

Syntax:

when trigger then

statenent [; statenent . . .]
[el se

statement [; statenent . . .]
]
end when

wheretri gger isany event expression and st at enent isany SCL statement

The WHEN THEN/ ELSE structured statement is used to execute SCL statements when a particular event
occurs. The statementsfollowing THEN and before ELSE are executed if thetrigger istrue. If thetrigger is
false, the statements between ELSE and END are executed.

Example:

WHEN tr(c) THEN

err :=err + 1;
ELSE

WRI TE (“Error Encountered”)
END WHEN

224 Simulation Reference Manual

Rational Statemate Actions

WHILE

The WHILE statement is used to execute SCL statementsin aloop.
Syntax:

whil e condition
| oop
statenent [; statenent . . .]

end | oop

where condi t i on isany Boolean expression and Statement isany SCL statement.

ThewH LE/ LOOP dtatement is used to execute SCL statementsin aloop. The condition isany
Boolean expression. Whilethe condition istrue, the statementsin the loop are performed repestedly.
The condition is rechecked prior to each execution of the loap.

Thereisno limit to the depth of structured statements within the loop.
Example:

WH LE cax
LOooP
al; a2
if x =3, then fs!(cax)
el se
wite(“not tripped’);
while Cb or cq
| oop
a3
end | oop
end if

end | oop

Rational Statemate 225

Simulation Command Reference

WRITE

The WRITE statement is used to output the simulation data to either the display or afile.
Syntax:
wite ([file_variable], expl [, exp2 . . .])
wherefile_vari abl e, if present, isthe name of the output file. If absent, output of exp1 issent to
the display.
The output may be a combination of printable strings and numeric values.

Example:

wite (‘The data value is’, di,'\n")

wite (file2, ax, by, ‘\n’)

226 Simulation Reference Manual

Supplementing the Model with
Handwritten Code

This section explains how to supplement Rational Statemate simulation with handwritten code.
Not only does this code become part of the simulation, but it is aso included as part of generated
code.

Rational Statemate enables you to extend the Rational Statemate model by supplementing the
model with handwritten code. This means that you can implement those elements and aspects of
the system’s behavior that have not been explicitly defined by the controlling Statecharts and mini-
Specs.

You may want to use this feature to:

¢ Describe aparticular function programmatically.
+ Interface to your own or athird party’slibrary.
¢ Use codethat already exists.
There are several ways to supplement the generated code:
+ Attach existing code to the model through the Data Dictionary Editor and select one or
more languages in which to implement it (K&R C, ANSI C, or Ada).

+ Write new code directly in Rational Statemate using the Rational Statemate Action
Language.

+ Useagraphic to define afunction or procedure in a Procedural Statechart.

¢ Create a Truth Table to implement a subroutine, define a* named action,” or describe an
activity’s behavior.

These methods enable you to add code that is used by both the Simulator and the Code Generator.
Rational Statemate stores the code in the model’s database and automatically includesit when you
run simulation or code generation.

Rational Statemate 227

Supplementing the Model with Handwritten Code

Supplementing the Model with Subroutines

The following subsections explain how to add handwritten subroutines (functions, procedures, or
tasks) to your Rational Statemate model.

The method for adding all three subroutines in the Data Dictionary Editor (DDE) is similar. The
major differenceis that functions require a Return Type.

Note

In addition to storing subroutines in the Data Dictionary Editor, you can also store their
formal parameters.

228 Simulation Reference Manual

Supplementing the Model with Subroutines

Entering Handwritten Code

Rational Statemate does not check your handwritten code. It is your responsibility to ensure that
the code islegal and compilable. You can use with, use, include statements or any other
mechanism supported by the language to reference packages or include files. Rational Statemate
makes no attempt to interpret the code; it merely passes it on to the appropriate compiler.

To add your handwritten code to the template correctly, make sure you abide by therulesin the
following sections:

1
2.

Referencing model elementsin the code.

Mapping Rational Statemate types (primitive or user-defined) into C types for variables
and subroutine parameters.

Using synchronization services in tasks.

Using Subroutines

After you define a subroutine in the Data Dictionary, it becomes part of Rational Statemate and is
stored as part of the model. Then you can use the subroutine in the following ways:

*

*

*

*

Called in Rational Statemate actions and expressions.
Bound to a primitive activity of the modeled system, thus providing their implementation.
Bound to an external activity to describe behavior of the environment.

Bound as a callback to atextual or graphica element in the model, and called when the
element changes its value or status.

Disabling Subroutines

To disable a subroutine, open the Data Dictionary Editor and under Select | mplementation, select

None.

Rational Statemate does not implement the subroutine, and only generates atemplate (empty stub).

Rational Statemate 229

Supplementing the Model with Handwritten Code

Supplementing the Model with a Procedure

This section explains how to add a handwritten procedure to your Rational Statemate model by
showing the

+ Diaog boxes and how to complete them

+ Template that Rational Statemate produces

+ Template filled in with an example of handwritten code
Note

Rational Statemate also provides templates for functions and tasks. The subroutine’s
template is aresult of mapping the declarations into its C representation. Thisincludes
mapping the parameter types and, in the case of functions, the returned value.

To add a handwritten procedure:

1. Select File> New in the Data Dictionary Editor.
2. Namethe new element (in thisexample ADD_JOB_TO_RQ), then select its Chart Name.

3. Select Subroutine as the Element Type. The Data Dictionary Editor dialog box opens
with the name of the new subroutine.

ADD_JOB_TO_RG
READY_CONTROL F

 subrautine |

4. Define the subroutine Type as a Procedure

230 Simulation Reference Manual

Supplementing the Model with a Procedure

5. Enter the procedure’s parametersif you want to store them in the DDE. Select a parameter
and click Data Dict to display the following dialog box:

Rational Statemate 231

Supplementing the Model with Handwritten Code

Using Globals

If you use the same parameters for multiple activities, you may want to define them as globals. If
S0, use the Implementation menu (shown below) to select Globals Usage.

T T T T

—>

For example, the ADD_J0OB_TO RQ procedure uses the globals shown in the following dialog box.

Note

Globals are elements that are external to the subroutine, but are not listed as parameters. The
reading or writing of global datais called a side effect.

Writing more than once to aglobal element is considered racing. However, thisracing differsfrom
general racing where you have no way of determining which value will be assigned. In this case,
thefinal value will be the resulting value of the global element. Therefore, it isyour responsibility
to ensure that the subroutine writes to global elements only a single time during its execution.

232 Simulation Reference Manual

Supplementing the Model with a Procedure

Note

It is strongly recommended that you do not write global datain afunction called in atrigger
expression. Side effects written as part of atrigger will behave differently between
simulation and code.

Producing a Template for a Procedure

Tto produce atemplate for a procedure, open the | mplementation menu to select alanguage for
the code. This example usesK&R C.

—

A sy e e

Rationa Statemate opens an editor and provides atemplate for you to attach your handwritten
code

Rational Statemate 233

Supplementing the Model with Handwritten Code

Filling in the Procedure’s Template

The following example shows the template filled in with handwritten code for a complete
procedure.

! 1.
~| xedit | 5 |J|
Quit|Save|Load¢ftmpffBﬁAaO9134

Use Control-5 and Control-R to Search.

._
File /tmp/fBARa09134 opened read - write.
._
Jtmp/fBARA09134 Read - Write -
7*
* Procedure: ADD_JOE_TO_RO
¥*
* project:ALPHA_12
+*
* author{s) :mikeh
* Creation date:May 5, 1997 13:53
k3
*/
I*
* Global variables that are used by this Procedure:
* READY_Q In/fOut
* RQ_TAIL In/fOut
*
*/

wvoid ADD_JOB_TO_RQ({BUF_JOE)
PROCESS_CONTROL_BLOCK * BUF_JOB; /* Input Parameter *[

{
} /* End of ADD_JOB_TO_RQ. */

234 Simulation Reference Manual

Supplementing the Model with a Procedure

Subroutine Binding

Open the Data Dictionary Editor for an activity and select Subroutine Binding to connect
subroutines.

Rational Statemate 235

Supplementing the Model with Handwritten Code

The User-Added Code Binding dialog appears where you enter the name of the subroutine, which
isto be bound to the activity.

Supplementing the Model with a Task

This subsection explains how to add a handwritten task to your Rational Statemate model by
showing the

+ Diaog boxes and how to complete them

+ Template that the Code Generator produces

+ Templatefilled in with an example of handwritten code

Rational Statemate also provides templates for functions and procedures. The subroutine’s
template is aresult of mapping the declarations into its C representation. This includes mapping
the parameter types and, in the case of functions, the returned value.

To add a handwritten task:
1. Select File> New in the Data Dictionary Editor. The New Element dialog box opens.

236 Simulation Reference Manual

Supplementing the Model with a Procedure

Enter the name of the new element (in this example | O_RECEI VER).
Select its Chart Name.
Select Subroutine as the Element Type.

o~ w N

Click OK. The Data Dictionary Editor appears with the name of the new subroutine.

6. Definethe subroutine Type asa Task.
7. Enter the task’s parameters if you want to store them in the DDE.
8. Select aparameter and click Data Dict. The Parameter dialog box opens.

Rational Statemate 237

Supplementing the Model with Handwritten Code

HAIT_CONTROL
REQ_.JOB

I —
I =t PROCESS_CONTROL _BLOCK I:

Using Globals

If you use the same parameters for multiple activities, you may want to define them as globals. If
S0, use the Implementation menu (shown in the following dialog box) to select Globals Usage.

T T T T T T T

#

For example, thel 0 RECEI VER task uses the globals shown in the following dialog box.

Note

Globals are elements that are external to the subroutine, but are not listed as parameters. The
reading or writing of global datais called a side effect.

238 Simulation Reference Manual

Supplementing the Model with a Procedure

Writing more than once to aglobal element is considered racing. However, thisracing differsfrom
general racing where you have no way of determining which value will be assigned. In this case,
thefinal value will be the resulting value of the global element. Therefore, it isyour responsibility
to ensure that the subroutine writes to global elements only a single time during its execution.

Note

It is strongly recommended that you do not write global datain afunction called in atrigger
expression. Side effects written as part of atrigger will behave differently between
simulation and code.

Using the Template for a Task

To produce atemplate for atask, open the | mplementation menu to select alanguage for the code.
Thisexample usessK&R C.

—

T T T

Rational Statemate opens an editor and provides atemplate for you to attach your handwritten
code.

Rational Statemate 239

Supplementing the Model with Handwritten Code

—| xedit I
Quit|Save|LoadethffCAﬂ309332
Use Control-% and Control-R to Search. -
File /tmp/fCAAa09382 opened read - write.
»
Jtmp/fCARaDI362 Read - Write
T “
* Task : I0O_RECEIVER
*
* Project : OS_SCHEDULER
-
* Author(s}) : mark
* Creation date : May 5, 1997 11:54
*
*/

k3
* Global wvariables that are used by this Task:

* T0_WAIT_OQ In/Out

* TO_WQ_TAIL In/Out

*f

/=

* Parameters that are used by this Task

* PROCESS_CONTROL_BLOCK REQ_JOB; Input Parameter
* event I0_REQUEST; Input Parameter
* event REQ_JOB_IN _TO Q; Qutput Parameter
*

void IO_RECEIVER()
L
Y /* I0_RECEIVER */

240 Simulation Reference Manual

Supplementing the Model with a Procedure

Filling in the Task’s Template
The following example shows the template filled in with handwritten code for a complete task.

—| xedit AN
QuitlSave|LoadL/tmpffBﬂﬂaO9332
Use Control-5 and Control-R to Search. -
File ftmp/fBAAad9382 opened read — write.
-
Jtmp/fBAAA09382 Read - Write
7*]
* Task : IO_RECEIVER
k3
* Project : 0O5_SCHEDULER
*
* Author({s) : mark
* Creation date : May b5, 1997 11:54
k3
*/

*
* Global variables that are used by this Task:

* TO_WAIT_Q In/Out

* TO_WQ_TAIL In/fOut

*/
/*

* Parameters that are used by this Task :

* PROCESS_CONTROL_BLOCK REQ_JOB; Input Parameter
* ewvent I0O_REQUEST; Input Parameter
* ewvent REQ_JOB_TIN_IO_0Q; Output Parameter
*/

void IO_RECEIVER()
{
while {1)
{

wait_for_ewvent {IO_REQUEST);

/** got request for an I/0 service;

move the requesting job inte If0 waiting queue:
IO_WQ_TAIL = IO_WO_TATL+1;
I0_WAIT_Q{TO_WQ_TAIL).IO_WAITING_JOB = REQ_JOB;
TIO_WATIT_Q(IO_WQ_TAIL).TIO_REQUEST_SATISFIED = false;

**/

/** after a short delay,

generate the confirmation event: **/
task_delay {0.5});
REQ_JOB_IN_T0 O = 1;

}
} /* I0_RECEIVER */

Rational Statemate 241

Supplementing the Model with Handwritten Code

Synchronizing Tasks

User-written procedures are called when the system starts the corresponding activity (i.e.,
st! (<activity>)).Ingenerd, the user code and the smulation share the CPU time. That is, when the
user codeis executed, the Rationa Statemate smulation (or other user activities) are suspended.

Tasks

The task mechanism alows you to integrate continuous or synchronized code into the primitive
activity. For this purpose, Rational Statemate provides aspecial library that extends the C language
to support tasking or multi-threading. (See the Scheduler section below, for details). Tasks can also
be bound to either a primitive or an externa activity.

The scheduler package allows you to define C functions as concurrent routines or co-routines. An
activity that you choose to implement as atask is started by the control code as a co-routine, which
is executed concurrently with the rest of the prototype. Since we are dealing with serial machines,
concurrency means that the control is switched between these co-routines without interrupting
their thread of control. That is, when the co-routine gets the control back, it resumes executing
with the exact context it was before.

This mechanism allows the activity to use delay statements, wait for events, and perform
continuous cal culations without blocking the rest of the code from continuing execution. When a
task is executed, however, the rest of the code is frozen. Thus, synchronization points are
introduced. They allow the rescheduling of other tasks (or the control code) to proceed and actions
(stop, suspend) to take effect.

Synchronization

There are three types of synchronization calls:

¢ wait_for_event(event)
¢ task_del ay(delay_tine)
¢ schedul er ()

Each of these calls will suspend the calling task and reschedule another task or the mai n_t ask
(statechart) on around-robin basis.

Thewai t _f or _event cal suspendsthe activity until the specified event is generated. Itisaway to
synchronize the activity with other activities either user-implemented or statechart-controlled. When the
event is generated, the code resumes execution after the wait call.

242

Simulation Reference Manual

Synchronizing Tasks

Example:

voi d sense_start()
{
while (1) {
wai t _for_event (SENSE) ;
/* here you are supposed to check status.*/
printf(“Tine generated\n”);

} /'* end sense_start */

Thet ask_del ay statement delaysthe activity for thetime specified in the call. It isuseful to implement
polling processes that periodicaly perform checks on atime basis.

Example:

voi d pol | _input()

while (1) {
nmouse_i nput = read_i nput _from nouse()
if (mouse_input) {
Do Sormet hi ng

}
task_del ay(0.1); /* delay 0.1 seconds */
}
The schedul er () cdl isused when you have a caculation which istoo long to be executed non-

preemptively. For example, if you have to multiply two 10000x10000 meatrices, you do not want the rest
of the system to be blocked al that time.

Theschedul er () call will allow other activities to proceed and the calling activity will resume
execution in the next available time slot unless a stop or suspend command was issued. The call
should be placed in aloop in which one cycle can be executed without preemption, but an outer
loop may take too long.

Note
No synchronization call should be used by a procedure-implemented activity.

Example:

void multiply()

for (i = 1; i<=10000; i++) {
j = 1; j<=10000; j++) {

/* internal loop is short

enough to conplete */

}
schedul er ();

Rational Statemate 243

Supplementing the Model with Handwritten Code

Scheduler Package

The user can specify that some of the primitive activities are to be implemented astasksin the
Profile Editor. The tasks are actually C functions started as co-routines. The Rational Statemate
simulation itself is atask, which runs concurrently with the other started tasks.

Controlling all those tasksis the responsibility of statecharts, which issue different actions to the
different activities (i.e., start, stop, suspend, resume). All thisis handled by a scheduler package,
which is supplied with the smulator and is available on Rational Statemate platforms only. This
package supports multi-tasking programming within the context of a single process.

Below we describe how the user may add his own tasks, apart from those created for each task-like
primitive activity, and how to use the scheduler for controlling them.

Status of a Task

Each task may be in one of four states:

*

*

*

*

Current - Thetask is executing

Ready - Thetask isready for execution

Delayed - Thetask iswaiting for some event to occur
Sopped - Thetask isnot active

The calls that change the status of atask are described bel ow.

Scheduling Policy

The context switch between tasks is done only in the following synchronization points:

*

When atask explicitly calls the scheduler. Thisis done by calling the following routine:

schedul er ()

If there are other ready tasks - one of them (chosen in a round-robin manner) becomes
current, while the calling task becomes ready. If there is no other task ready, the calling
task continues its execution.

When atask issues a delay request by calling t ask_del ay. The calling task then becomes
delayed.

When atask callsawai t _f or _event service. The calling task then becomes delayed.

wai t _f or _event (EVENT)
event *EVENT;

After the task function performs areturn, it stops.

244

Simulation Reference Manual

Binding Callbacks

Restrictions

Any call to process blocking functions (e.g., leep, scanf) of the operating system from atask will
hibernate not only the calling task, but the whole process. Using f or k() and sgnasisalso not
alowed, sinceit might confuse the scheduler.

Binding Callbacks

Callbacks are a powerful mechanism that enable you to connect user-actions or proceduresto any
changein aRational Statemate element during execution. This mechanismisvery useful when you
wish to tie your external environment to the behavior represented by the simulation.

Callback Binding

To connect elements such as events, conditions, data items, and user-defined types, select the
element in the Data Dictionary Editor and then | mplementation > Callback Binding.

q

Callback Statement

The connection and binding statement for callbacks consists of:

proc_nane(<“el ement _identifier”> param 1, param 2)

The <el ement _i dent i fi er > isrequired when and only when the callback is connected to an
aggregate element. An aggregate element is an array, record, union, user-defined type, or any
element referenced in a generic or instance. The <el enent _i dent i fi er > specifies what part of
the aggregate element the callback isto be connected.

Rational Statemate 245

Supplementing the Model with Handwritten Code

Disabling Callbacks

To disable a callback, change the Enable option in the Callback Binding dialog to Disable. This
causes the simulator to generate code, but it “breaks’ the code’s connection with the element.

Callback Example

The following exampleillustrates the Rational Statemate callback utility by showing two
subroutines that are bound to the callback DAR. Every time the DAR element changes, Rational
Statemate runs both of these subroutines.

To create a subroutine, refer to the steps documented in Supplementing the Model with Subroutines

CALLBACKS

PRINT1INT

{I0286} Saved KE&R C code of PRINT_HTH_INHT

The next two figures show the code for the subroutines. The first oneisthe PRI NT1I NT procedure;
the second one isthe PRI NT_NTH_I NT procedure.

246 Simulation Reference Manual

Binding Callbacks

! |
~| xedit | . |J|
Quit|Save|LoadlftmpffnﬁﬁaﬁﬂlJ2

Use Control-5% and Control-R to Search.

»—
File /tmp/fDAAaO01J2 opened read - write.
-
ftmp/ fDAARa001T2 Read - Write
7 -
* Procedure:PRINT1TINT
k3
* project:ALPHA_12
k3
* author({s):stango
* Creation date:Mar 27, 1997 18§:43
k3
*/
i*
* Global wvariables that are used by this Procedure:
* Hone
k3
*/

void PRINTI1IHNT({IDENT, VALUE}
char * IDENT; /* Input Parameter */f
int VALUE; f* Input Parameter */

péintf(" The new value of %s is %d \n", IDENT, VALUE);

} /* End of PRINTLINT. */

Rational Statemate 247

Supplementing the Model with Handwritten Code

—| xedit -
Quit|SavelLoadLftmpffBﬁﬁaUUUDX

Use Control-5 and Control-R to Search. -
File ftmp/fBAAa000DY opened read - write.

._
ftmp/fBAAAOQODX Read - Write

7*]
* Procedure:PRINT_NTH_TIHNT
k3
* project:ALPHA_12
*
* author (s) : stango
* Creation date:Mar 27, 1997 1§:43
*
*/

k3

* Global variables that are used by this Procedure:
* None
k3

*/
void PRINT_NTH_INT(IDENT,N,VALUE)
char * IDENT; /* Input Parameter */

int H;
int VALUE; /* Input Parameter */

pfintf(" The %dth element of DAR changed to %d \n", N, VALUE);

} /* End of PRINT_NTH_INT. */

248 Simulation Reference Manual

Referencing Model Elements

Referencing Model Elements

Communication between the handwritten code and the generated code is accomplished through the
semantics of the following information elements:

¢ Events

¢ Conditions

¢ Dataitems

¢ User-defined types
It isimportant to understand how to access the values of these elements and how to modify them.
Each element has the following representation in the C target language:

¢ Conditions are represented as bytes

¢+ Dataitems are represented as integers, reas, strings or unsigned

¢ User-defined types are derived from primitive data-types
When you wish to pass structured elements (such as records and unions) from Rational Statemate
to your handwritten code, you must define these elements as user-defined types.

When you write code in the templ ate, refer to all elements by the names you assigned in the model.
This applies to parameters of the subroutine, itslocal and global variables, to names of types,
constants, and any other subroutines that you may use for the implementation.
Note
Write all element names in uppercase.

Referencing Events

Events are primitive elements and are special in the sense that software languages do not support

them directly.
Note
Events are not allowed in subroutines as inputs, outputs, local variables, or accessible as
global elements.

Events, in relation to handwritten code, are used in the following manner:

¢+ Callbacks—You can associate a callback with a Rational Statemate event.

¢ Tasks—Youcan usethewait _for_event command to react to a Rational Statemate
event.

Rational Statemate 249

Supplementing the Model with Handwritten Code

Where Elements are Defined

An element can be local to amodule or global to aprofile. The element is globally defined when it
is referenced by more than one module, i.e., defined in the top-level module. Each module
‘exports’ al itslocal elements as externalsin its header file. This allows other user modules to
access them. If you want to reference an element you must refer to its scope by including the
appropriate header file. An example is shown below.

Example:

If you want to reference an element BAUD_RATE in module display, you should include the header
file “display.h” to make the element visible.

/* nmy nodule */
#i ncl ude “di splay.h”

br = BAUD RATE :

Accessing an Element Value

Since the element is a simple language element, it can be easily accessed by referring to its name.

Example:

ny_data = XXX + YYY ;

250 Simulation Reference Manual

Mapping Rational Statemate Types into C

Mapping Rational Statemate Types into C

The table below shows how Rational Statemate maps primitive typesinto corresponding C types:

Rational Statemate C Type
Types

Conditions char (byte O-false, 1-true)

Integer int

Real double

Bit bit_array[1]

Bit array unsigned int

User Type struct

Record struct

Union struct

Enumerated Types typedef

Note
All Rational Statemate elements of type string are trandated into allocated C elements.

Records

Records become C constructs. For example, arecord | N\vOl CE_TYPE might become a structure
defined as:

t ypedef struct | NVO CE_TYPE {
char NAME[80+1];
char | TEM 80+1];
real AMOUNT;
} I NVO CE_TYPE;
Note that the name | NvaO CE_TYPE is normally named the same as the User-Defined Type name. If,
however, the Rational Statemate model contains multiple textual elementswith the same name, the
C code names will be modified to make al the names unique. This name mapping information is

listed in the .info file.

Unions

Unions become C unions with a declaration that is similar to the construct definition for records.

Rational Statemate 251

Supplementing the Model with Handwritten Code

Arrays

Elements of al arraysin C are enumerated starting from O. In Rational Statemate, there is no such
restriction.

Enumerated Types

An Enumerated Type is a user-defined type with a finite number of values. The Simulation
monitor allows you to select an enumerated-value from alist of possible values. Enumerated types
with alarge number of possible values are supported.

Enumerated values and other textual items cannot have the same name within the same scope. For
example, data-item SUN cannot be declared in the same chart where an enumerated value SUNis
declared.

Note

Enumerated range and indices of arrays are not supported in C. The C code generator shall
approximate this capability in the generated code.

There are two constant operators and five general operators for enumerated types:

Constant Operators

en_first(T) First enumerated value of T
en_last(T) Last enumerated value of T

Parameters to these constant operators are user-defined types that were defined as enumerated
types.

252 Simulation Reference Manual

Mapping Rational Statemate Types into C

General Operators

en_succ([T'] VAL) Successor enumerated value of T
en_pred([T] VAL) Predecessor enumerated value of T
en_ordinal ([T]VAL) Ordinal position of VAL in T

en_val ue(T,1) Value of the i'th elementin T

en_i mage([T'] VAL) String representation of VAL in T

Parameters to these operators are either enumerated values (literals) or variables. The T' VAL

notation is used for non-unique literals.

Bit Arrays

Bit-arrays are stored in unsigned ints. Since unsigned ints can hold a maximum of 32 bits, bit-

arrays larger than 32 bits are stored in arrays of unsigned ints. Arrays of bit-arrays are stored in
two dimensional arrays of unsigned ints. Notice that multiple bit-arrays smaller than 32 bits are

NOT packed into the unsigned int.

Data-ltems

Results in these structures

BAlis array 1 to 10 of Bit-array 31to O

bit_array BA1[10][1]

BA2 is array 1 to 10 of Bit-array 48 to 0

bit_array BA2[10][2]

BA3is array 1 to 10 of Bit-array 3to O

bit_array BA3[10][1]

Note

INn $STM ROOT/ et ¢/ prt/ c/ types. h you will find the statement: t ypedef unsi gned

int bit_array.

Rational Statemate

253

Supplementing the Model with Handwritten Code

Bit Array Functions

bit_array *AND(bal, | _bal, froml, tol, ba2,
from2, to2)

bit_array *bal;
int | _bal;

int froni;

int tol;
bit_array *ba2;
int | _ba2;

int frong;

int to2;

bit_array *NOT (bal, |_bal, fronl, tol)
bit_array *bail;
int | _bal;
int froni;
int tol;

bit_array *OR(bal, |_bal, froml, tol, ba2,
from2, to2)

bit_array *bail;
int | _bal;

int froni;

int tol;
bit_array *ba2;
int | _ba2;

int frong;

int to2;

bit_array *XOR(bal, | _bal, froml, tol, ba2,
from2, to2)

bit_array *bail;
int | _bal;

int fronmi;

int tol;
bit_array *ba2;
int | _ba2;

int frong;

int to2;

| _ba2,

| _ba2,

| _ba2,

254

Simulation Reference Manual

Mapping Rational Statemate Types into C

The following bit array function names are mapped through macros to their internal names,
because these names are used by Adaruntime libraries, therefore they cannot be defined as
functionsin the intrinsics. (These same intrinsics are used by C and Ada environment.) It is
important to include the types.h header containing these macros.

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ASHR ashr

LSHL | sh

LSHR | shr

BITS OF bits_of
CONCAT_BA concat _ba
EXPAND BI T expand_bit
SI GNED si gned_b

M NUS minus_b

NAND nand_b

NOR nor_b

NXOR nxor

The functions are:

bit_array *concat_ba
(bal, | _bal, fronil, tol, ba2, |_ba2, fron2,to2)
bit_array *bal,

i
i
i
b
i
|
i

nt | _bal;
nt froni;
nt tol;
it_array *ba2;
nt | _ba2;

nt frong;

nt to2;

bit_array *Ishr(ba, len_ba, from to, shift)
bit_array *ba;

int |en_ba;

int from

int to;
int shift;

bit_array *Ishl(ba, len_ba, from to, shift)
bit_array *ba;

int |en_ba;

int from

int to;

int shift;

int signed_b(ba_val, len, from to)
bit_array *ba_val;

int |len;

int from

int to;

Rational Statemate

255

Supplementing the Model with Handwritten Code

bit_array *ashr(ba, len_ba, from to, shift)
bit_array *ba;
int |en_ba;
int from
int to;
int shift;

bit_array *nand_b(bal, |_bal, froml, tol, ba2, |_ba2,
from2, to2)

bit_array *bal,

int | _bal;

int fromi;

int tol;

bit_array *ba2,

int | _ba2;

int frong;

int to2;

bit_array *nor_b(bal, |_bal, froml, tol, ba2, |_ba2,
from2, to2)

bit_array *bal,

int | _bal;

int fromi;

int tol;

bit_array *ba2;

int | _ba2;

int frong;

int to2;

bit_array *nxor(bal, | _bal, froml, tol, ba2, |_ba2,
from2, to2)

bit_array *bal;

int |_bal;

int front;

int tol;

bit_array *ba2;

int |_ba2;
int frong;
int to2;

256 Simulation Reference Manual

Mapping Rational Statemate Types into C

Use the following functions to convert between integer and bit-array types:
bit_array *int2ba(int_val)

int int_val;

int ba2int(ba, len, from to)
bit_array *ba;
int |len;
int from
int to;

Rules for Mapping into C
The following table summarizes the rules of mapping into C for:

* Types of parameters for procedures and functions
¢ Returned type of functions

Note

+ Thefirst level of all arrays should be defined as User-defined type in order to restrict the
‘second’ dimension.

+ Unrestricted strings and bit-arrays are not allowed as returned type of afunction.

+ Numeric Input parameters can be mixed upi.e., integer, real and bit-arrays can be mixed
when used as actual and formal parameters.

Rational Statemate 257

Supplementing the Model with Handwritten Code

Type Function Type In Param Out/InOut Param
Primitive (*) int f(); int P; int *P;
UDT defined as Primitive | UDT f(); uDT P; UDT *P;
Record/Union rec *f(); REC *P; REC *P;
String char *f(); char *P; char *P;
UDT defined as String char *f(); UDT P; UDT P;
Bit BIT_ARRAY *f(); BIT_ARRAY *P; BIT_ARRAY *P;
Bit-array BIT_ARRAY *{(); BIT_ARRAY *P; BIT_ARRAY *P;
UDT defined as Bit-array | BIT_ARRAY *f(); BIT_ARRAY *P; UDT *P;
UDT Array of Primitive int *f(); UDT P; UDT P;
UDT Array of String -- lllegal -- uDT P; UDT P;
UDT Array of Bit-array -- lllegal -- uDT P; UDT P;
UDT array of direct R/U -- lllegal -- UDT P; UDT P;
UDT array of UDT2 UDT2 *(); UuDT P; UDT P;
Array of Primitive -- lllegal -- int *P; int *P;
Array of Record/Union -- lllegal -- -- lllegal -- -- lllegal --
Array of String -- lllegal -- char *P; char *P;
Array of Bit-array -- lllegal -- BIT_ARRAY *P; BIT_ARRAY *P;
(*) Primitive type is one of: integer, real, condition, or enumerated type.
In the above matrix, integers are taken as example.

258 Simulation Reference Manual

BNF Syntax, Structure and Conventions

Described in this section are the conventions for BNF (Bakus-Naur Form), awidely used
notational scheme for formal languages. BNF was introduced in 1963 as a technique for defining
programming languages.

BNF Structure And Conventions

BNF grammar follows the following general structure:

nont erm nal _synbol => term nal _and or_nont erm nal _synbol s

Example:

action =>acti on_nane
| primtive_event_nane
| start (activity_name)

| stop (activity_nane)

Symbols are delimited by spaces and thus the underscore is frequently used for longer names.

Rational Statemate 259

BNF Syntax, Structure and Conventions

Symbol Types

Terminal symbols are basic symbols which are not parsed further to derive their meaning. Non-
terminal symbols are those which may be further broken down by parsing. Examples of terminal
symbols may be integer numbers which are intrinsically recognized as a numeric value, or
language keywaords recognized by the system as representing some particular operation or
function.

In BNE Syntax, Structure and Conventions terminal symbolsthat arewritten exactly asthey appesr (i.e.,
keywords of the SCL) are show in capital letters. Non-alphabetic characters not belonging to the BNF
notation below, are so part of the syntax (e.g., ;). Non-termina symbols are written in lowercase or
mixed case letters. Non-terminal symbolswhich are salf evident are not further broken down.

BNF Notations

The | indicates a mutually exclusive choice between symbolsin anon-terminal symbol definition.
Example:

vari abl e_nane | nuneric_constant

| integer | function_name

The => separates the non-terminal symbols on the |eft from its definition on theright. Can beread
asis“defined as...”

Example:

relational _operator=>=| / =| < | <=| >=

Square brackets [] indicate that the symbols within the brackets are optional. ThisisaBNF
convention. Recall that square brackets themselves may appear in the SCP as part of the Rational
Statemate expression.

Example:

ti meout (event[condition], 3)

Curled brackets { } indicate that the symbols which they enclose are optional and can be repeated.
Example:

depend_on (state_nane{, state_nane})

260 Simulation Reference Manual

BNF for SCL Statements Syntax

This section presents the Simulation Control Language statements expressed formally in the BNF
syntax.

Syntax of actions, events, conditions, expressions is the same as in the specification itself. One
may use SCL variables defined in the SCP in any Rational Statemate expression except for event
expressions. For example, while make_true(c), where cisalocal boolean variable, islegal,
TRUE(C) isnot.

scp_progr an=>PROGRAM pr ogr am nane ;
[decl aration_secti on]
[init_part]
[breakpoi nt _part]
[mai n_part]
END.

init_part=>INT
sequence_of _statements];]
END I NIT[;]

br eakpoi nt _part =>br eakpoi nt _definition
{br eakpoi nt _definition}

br eakpoi nt _defi ni ti on=>SET BREAKPO NT
[br _name=>] br_trigger DO

sequence of statements[;]
END BREAKPOI NT ;]
br_trigger=>event
| EVERY expression
mai n_part =>BEG N
sequence_of _statements];]
END ; |
decl arati on_secti on=>] CONSTANT const _decl _|i st]
[VARI ABLE var _decl _list]

const _decl _| i st=>const _decl; {const_decl;}

Rational Statemate 261

BNF for SCL Statements Syntax

const _decl =>const _type id_val _|ist
const _t ype=>| NTECER

| FLOAT

| STRING

| BIT

| ARRAY
id_val _list=>id := expression {,id
var _decl _| i st=>var_dec; {var_dec}

var _dec=>[GLOBAL] type id_opt_val _I|ist
si npl e_t ype=>1 NTEGER

| FLOAT
| STRING
| FILE

| BOOLEAN
| BIT

I = expression}

id_opt_val _|ist=>id [:= expression] {,id [:= expression]}

=>si mpl e_t ype
| array_type

type

array_type=>(constant..constant) of sinple_type

bit_arrau type=>bit-array nane (1..6)

sequence_of _st at ement s=>scl _statenent {;

scl _st at enent =>si npl e_st at enent
| structured_statenent
| io_statenent
si npl e_st at enent =>assi gn_st at enent
set _st at enent
go_st at ement
random sol uti on_st at enent
ski p_st at ement

undo_st at errent

I

I

I

I

I

| restore_statenent
| save_statement

| choose_st at ement
| exec_statenent

| stop_statemnment

I

si npl e_acti on_st at enent

scl _statenent}

262

Simulation Reference Manual

structured_statenent =>i f _st at ement
| for_loop
| when_st at enent
| while_loop
i 0_stat enment =>r ead_st at enent
| write_statenment
| open_statenment
| cl ose_statenent
assi gn_statement =>ASSI GN activity_id scp_nane
scp_nanme=>stri ng_const ant
set _stat enent =>set _operati on BREAKPO NT br _nane
| set_operation TRACE
| set_operation DI SPLAY

| SET INFINITE LOOP
expressi on

| SET | NTERACTI VE

| SET GO BACK expression
| set_operati on REPORT RACI NG

set _operati on=>SET
| CANCEL
si npl e_acti on_st at enent =>acti on
go_st at ement =>G0 [go_t ype]
go_t ype=>STEP
| REPEAT
| NEXT
| ADVANCE
| EXTENDED
| STEPN
random sol uti on_st at enent =>RANDOM _SOLUTI ON
ski p_st at enent =>SKI P
undo_st at enent =>G0 BACK

restore_stat enent =>RESTORE_STATUS
st at us_nane

save_st at ement =>SAVE_STATUS st at us_nane
choose_st at enent =>CHOOSE expr essi on
exec_st at enment =>EXEC scp_nane

st op_st at ement =>STOP_SCP [scp_nane]

Rational Statemate

263

BNF for SCL Statements Syntax

scp_nanme=>string_const ant
st at us_nane=>stri ng_const ant
file_nane=>string_constant
if_statement=>IF condition THEN
sequence_of _statements[;]
[ELSE
sequence_of _statenments[;]]
END | F;
when_st at emrent =>WHEN event THEN
sequence_of _statements[;]
[ELSE
sequence_of _statenents[;]]
END WHEN;
whi | e_| oop=>WHI LE conditi on LOOP
sequence_of _statements][;]
END WH LE;
for_l oop=>FOR condi ti on LOOP
sequence_of _statements];]
END FOR;
read_statenent=>READ([file_var,] id_list)

wite_statenent=>WRI TE([file_var,]
wite_expression_list)

open_statenent =>0OPEN(fil e_var, file_naneg,
I NPUT)

| OPEN(file_var, file_nanme, OUTPUT)
cl ose_st at ement =>CLOSE(fi | e_var)
file_var=>id
id_ list=>id {,id}

write_expression_|ist=>wite_expression
{,write_expression}

W ite_expressi on=>expression [, expression]
| event [; expression]

| condition [;expression]

264 Simulation Reference Manual

SCL Reserved Words

Simulation Control Language (SCL) statements are built using the various keywords. These
keywords are considered as reserved words - their unintended use will cause, in most cases, syntax
errorsin your SCP. This section presents these reserved words.

You should avoid using the keywords as names of SCL variables. There are three groups of
keywordsin SCL:

+ Keywordsand predefined function names used in Rational Statemate expressions. They all
can be used in SCL statements.

+ Names of predefined SCL variables:

CUR_CLOCK INFINITE_LOOP
NONDETERMINISM STATIONARY
STEP STEP_NUMBER
TERMINATION

+ Keywordsof SCL statements:

ADVANCE ASSIGN
BACK BEGIN
BOOLEAN BREAKPOINT
CANCEL CHOOSE
CLOCK CLOSE
CONSTANT DISPLAY

DO END

EVERY EXEC
EXTENDED FILE

FLOAT GLOBAL

GO INFINITE

INIT INPUT
INTEGER INTERACTIVE

Rational Statemate

265

SCL Reserved Words

LOOP
OPEN
PROGRAM
REPEAT
SET
STEP
STRING
VARIABLE
WRITE

NEXT

OUTPUT
RANDOM_SOLUTION
RESTORE_STATUS
SKIP

STOP_SCP

TRACE

WHILE

READ
SAVE_STATUS

266

Simulation Reference Manual

A

Add to Waveform dialog 67

Add With Descendants command 200
Add With Descendants to profile 200
Add/Create Waveform command 200
Add/Edit Panel command 200

Analysis Profile Management dialog 169
Animate All Charts command 183
Animate Selected Charts command 184
ASSIGN command 207

asynchronous time model

simulating example of 84
Auto Batch commands

ASSIGN 207
AUTOGO 212
CANCEL 207
CHOOSE 207
CLOSE 208
COMMENT 208
CONSTANT 209
DO 210

ELSE 210

END 210

EVERY 211

EXEC 211

GO ADVANCE 212
GO BACK 213

GO EXTENDED 213
GO NEXT 213

GO REPEAT 213
GO STEP 213

GO STEPn 214

IF 214

INIT 215

LOOP 215

MAIN SECTION 216
OPEN 216
PROGRAM 217

RANDOM SOLUTION 217

READ 218

RESTORE STATUS 218

SAVE STATUS 218

SET BREAKPOINTS 219

SET DISPLAY 219
SET GO BACK 220

SET INFINITE GO 220

Index

SET INTERACTIVE 221

SKIP 222

STATEMATE ACTIONS 212

STOP SCP 222
THEN 222
VARIABLE 223
WHEN 224
WHILE 225
WRITE 226

AutoGo command 176

AutoRun command 36, 177

B

batch mode 162

assigning files 150

batch program (SCP) 98
bit-array functions 254

BNF for SCL Statements Syntax 261
BNF syntax description 259

notations 260
symbol types 260

boxes

SHOW command 202

breakpoints 132

Breakpoints command 186
Breakpoints Editor dialog 186
breakpoints Editor dialog 141

cancelling 134
definition 132

in aprocedura truth table 141

in asubroutine 77, 142
processing 151
program section 117
setting 134

skipping 133, 135

C

C

code

accessing an element value 250

bit arrays 253
defining elements 250

referencing events 249
referencing model elements 249

restrictions 245

Rational Statemate

267

Index

scheduler package 244

scheduling policy 244

synchronizing calls 242

task status 244

tasks 242

value elements 250
callbacks

binding 245

disabling 246

example 246

in generated code 245
CANCEL command 207
Chart Animation dialog 183, 184
CHOOSE command 123, 207
CLOSE command 199, 208
Code Compatibility Settings 38
Command Line

command 174

entering commands 48
commands

simulation batch 207
COMMENT command 208
CONSTANT command 209
constant program section 117
context switch between tasks 244
Continue SCP command 187

D

Diagnostics
user-case 31
Do Action
dialog 185
statement 185
Do Action command 49
DO command 210

E

Element Selection for Monitor 5
browser 72
Element Selection Monitor dialog 73
elements
externa 22
EL SE command 210
Empty Steps command 34
END BREAKPOINT keyword 119
END command 210
Enumerated types 252
events 26, 249
buffering 34
toggling 34
EVERY command 211
Examine command dialog 175
Examine dialog 58
Exclude From Scope 201
EXEC command 211

Execution Parameters dialog 97, 114, 179, 204

Execution Simulation
command 203
menu 203

F

file operation statements 126
CLOSE 127
OPEN 126
READ 126
WRITE 127
Flowcharts 37
in simulation 39
Limitations 39
semantics 37
FOR/LOOP 130

G

Generate Interface command 190
GO ADVANCE command 212
GO BACK command 213
Go commands 35
GO EXTENDED command 213
GO NEXT command 213
GO REPEAT command 213
GO STEP command 213
GO STEPN command 214
GoAdvance
command 178
dialog 178
example 15
GoBack
command 176
Goback Limit 98
GoExtended
command 179
example 13
GoNext
command 178
GoRepeat
command 178
example 12
GoStep
command 176
example 7
GoStepN
command 177
dialog 177
Graphic Animation Display 54
graphical procedure
debugging 78

IF command 214

268

Simulation Reference Manual

Index

IF/THEN/EL SE command 128
infinite loop 98

example 33
INIT command 215
initiation program section 118
interactive commands 163

L

Logic Settings
command 206
dialog 206

LOOP command 215

M

main program section 119
MAIN SECTION command 216
mapping typesinto C 251
messages
command 172
Microdebugger tool 77
model elements, modifying values 249
Monitor SCP 188
Monitor tool 71
Monitor window 5
opening 5
Monitors 201
adding to profile 71
command 182
fields 74

N

New Profile command 197
New Simulation dialog 197
New Simulation Profile dialog 45
New Waveform dialog 63
Non-determinism 28, 59, 123
dialog 59
example 29
non-terminal symbols 260

O

OPEN command 216

Open Profile command 198

Open Simulation Profile dialog 198
OPEN statement 126

P

panels

in simulation 61
Panels command 180
Panelsin Scope dialog 61, 180

Pause command 176
Phase Limit command 33
playback files 113
predefined variables 123
cur_clock 123
list of 123
step_number 123
Preference Management
command 206
Print Profile Report 199
procedures
adding to model 230
producing atemplate 233
PROGRAM command 217

Q

Quit SCP command 187

R

racing 28, 31

Read/Write 98

Write/Write 99
random functions 124

list of 124

SCP statements 125
RANDOM SOLUTION command 217
Rational Statemate

referencing model elements 249
READ command 218
READ statement 126
Rebuild Simulation command 168
Record SCP 191
records 251
Remove From Scope 201
Report dialog 106
Restart Simulation command 168
Restore Status 189
RESTORE STATUS command 218
Run SCP 187

S

Save Profile As

command 167

diaog 167
Save Profile command 167
SAVE STATUS command 218
Save Status dialog 192
scheduler

package 244
scheduler synchronization call 242
SCL File Management

dialog 152, 170
SCL keywords 120, 265
SCL statements

Rational Statemate

269

Index

file operation statements 126 scope 44
program flow, controlling 127 starting 48
skipping breakpoints 133 starting from Graphic Editor 43
types 120 starting from Main menu 42
SCPfile step 24
automatically recording 99 superstep 27
SCP File Management switching from Interactive to Batch 154
command 170 synchronous time model 94
SCP Monitor dialog 154, 188 textual procedure 80
Select command 201 time parameters
Select Waveform Profiles dialog 66 setting 85
SET BREAKPOINT keyword 119 truth table 143
SET BREAKPOINTS command 219 variable program section 118
SET DISPLAY command 219 variations of 94
SET GO BACK command 220 simulation commands
SET INFINITE LOOP command 220 batch 207
SET INTERACTIVE command 221 Simulation Control Language
SET TRACE command 221 predefined functions 265
Show Boxes 202 syntax rules 120
Show Changes Simulation Control Program 116, 152
command 55, 193 basic syntax rules 120
dialog 55 example 158, 162
Show Clock manipulating files 152
command 57, 194 monitoring 154
diadog 57,194 predefined variables 123
Show Clock command 57 program sections 117
Show command 55 restarting 156
Show dialog 55, 193 stopping execution 155, 156
Show Future structure 117
command 56, 195 template 116
dialog 10, 56, 195 traffic light example 156
Show Racing Simulation Execution dialog 48
command 196 Simulation Execution menu 4
dialog 56, 196 opening 4
Show Scope pull-down menus 166
asList 202 Simulation Execution Options 179, 204
as Tree 202 Simulation File Management
simulation command 169
action truth table 145 dialog 169
activity implemented by atruth table 147 Simulation Monitor dialog 182
asynchronous time model example 84 Simulation Parameters
batch commands 207 setting 97
breakpoint program section 119 Simulation Profile
breakpoints 132 adding components 46
changing modes 153 creating 45
constant program section 117 Simulation Profile Editor 43
entering environment information 49 pull-down menus 163
example, traffic light 83 Simulation Scope 19
execution 32 determining 20
exiting 17 Statecharts 20
graphical procedure 81 unresolved data-items 65
initiating simulation 84 Simulation Tool
initiation program section 118 starting from main menu 42
main program section 119 terms and concepts 19
Preferences dialog 206 SKIP command 222
program header 117 Snapshot Status command 192
record and playback 113 Start Trace

270 Simulation Reference Manual

Index

command 190
dialog 190
Statechart clocks 34
STATEMATE ACTIONS command 212
status
of system 24
restoring 101
saving 100
status file 101
Status File Management
command 171
dialog 102
step_number 123
Steps per Go command 98
STOP SCP command 222
Stop Trace command 191
structured SCL statements
FOR/LOOP 130
IF/THEN/ELSE 128
WHILE/LOOP 130
subroutines
adding a breakpoint 142
debugger tool 143
disabling 229
rules and restrictions 258
supplementing model 228
using 229
using globals 232, 238
Superstep command 27
synchronization calls 242
synchronous time model 94

T

task_delay 242
tasks
scheduling 244
synchronizing 242
terminal symbols 260
testbenches
adding to the Similation Scope 20
textual procedure, debugging 78
THEN command 222
time
asynchronous 33
in simulation execution 32
relation to step 32
step-dependent 32
step-independent 32
synchronous 33, 34
time model
asynchronous 36
synchronous 36, 94
time parameters 85
Time Settings

command 204

dialog 204
Timeout scheduling 34
Trace File Management

command 171

dialog 66, 104, 171
tracefiles

automatically recording 99, 104

manipulating 104
transitions

priority rule 28

priority rule example 29
triggers

infinite_loop 124
truth tables

simulating 137

U

unions 251
User-case diagnostics 31

Vv

VARIABLE command 223
variable program section 118

W

wait_for_event 242
Waveform Profile

configuration items 69
Waveform tool 63

activating 64

displaying current values 65

off-line mode 66

on-line mode 63

setting waveforms 63
Waveforms

activating 64

command 180

displaying 63

elements 64

off-line mode 66

profiles as configuration items 69

profilesin workarea 67
Waveforms in Scope dialog 180
WHEN command 224
WHEN/THEN/EL SE statement 129
WHILE command 225
WHILE/LOOP command 130
WRITE command 226
WRITE statement 127

Rational Statemate

271

Index

272 Simulation Reference Manual

	Contents
	Getting Started with the Simulation Tool
	Simulation Tool Overview
	Opening a Project and Workarea
	Creating a Statechart to Simulate
	Opening the Simulation Tool
	Opening a Monitor Window

	Advancing Through A Simulation
	Simulation Stage 1 - The GoStep
	Simulation Stage 2 - GoRepeat
	Simulation Stage 3 - GoExtended
	Simulation Stage 4 - GoAdvance
	Simulation Stage 5 - Condition Connectors

	Exiting Simulation

	Model Execution: Concepts and Terms
	The Tool
	Simulation Scope
	Determining a Simulation Scope
	Adding Testbenches to the Simulation Scope
	External Elements
	Status Of The System
	Simulation Step
	Notes on Simulation Steps
	Events
	Microstep
	Superstep

	Nondeterminism And Racing
	Transition Priority Rule
	Non-determinism
	Non-determinism - Example 2
	Racing
	User-Case Diagnostics

	Time In The Simulation Execution
	Relationship Between Step and Time
	Step-Independent
	Step-Dependent
	Synchronous and Asynchronous Time Scheme

	Time in Asynchronous Simulation
	Phase Limit

	Time in Synchronous Simulation
	Statechart Clocks
	Steps in Synchronous Time Scheme
	Empty Steps
	Buffering Events
	Scheduling Timeouts
	Toggling Events

	Go Commands
	AutoRun Mode
	Asynchronous Time Model
	Synchronous Time Model

	Simulation Support of Flowcharts
	Flowchart Semantics
	Code Compatibility Settings
	Flowchart in Simulation
	Flowchart in Simulation - Limitations

	Interactive Mode Simulation
	The Three Phases Of Interactive Simulation
	Starting the Simulation Tool
	Starting the Simulation Tool from the Rational Statemate Main Menu
	Starting Simulation from the Graphic Editor

	The Profile Editor
	Profile Scope Definition
	Creating a New Simulation Profile
	Adding Components to the Profile
	Saving the Profile
	Starting Simulation from the Simulation Profile Editor

	Entering Commands To The Simulator
	Menus/Toolbars
	Command Line

	Input Changes
	Do Action Commands
	Using DO Action
	Valid Input To Do Action
	Invalid Input to Do Action
	Response to Invalid Do Action

	Go Commands
	The Go Menu
	Pausing Execution

	Observing The System’s Behavior
	Graphic Animation Display

	Show Command
	Show Changes
	Show Future
	Show Racing
	Show Clock
	Examine
	Non-determinism

	Panels in Simulation
	Defining and Editing Panel Profiles
	Adding a Panel to the Profile
	Editing a Panel in the Profile
	Deleting a Panel from the Profile
	Font Appearances in Simulation Panels

	Waveforms in Simulation
	On-Line Mode of Waveforms
	Setting Waveforms to be Displayed in Simulation
	Activating Waveforms During a Simulation Session
	Checking Waveform Elements
	Unresolved Data-Items in the Scope
	Displaying Values in Waveform
	Off-Line Mode of Waveforms
	Trace Files Menu
	No Waveform in the Workarea
	Waveform Profiles in the Workarea

	Waveform Profiles as Configuration Items

	Use-Case Diagrams in Simulation
	Animation of Sequence Design
	Recording a Sequence Diagram

	Monitors in Simulation
	Adding Monitors to the Profile
	Simulation Monitor Fields
	Shared Monitor
	File Menu
	Edit Menu
	View Menu

	The Microdebugger Tool
	Defining a Breakpoint in a Subroutine
	Debugging a Textual and Graphical Procedure
	Adding Elements
	Simulating a Textual Procedure
	Simulating a Graphical Procedure

	Interactive Simulation Example
	The Traffic Light System
	Description Of The Traffic Light System
	Simulating the Traffic Light in the Asynchronous Time Model
	Initiating the Simulation Tool
	Setting Some Time Parameters
	Stage 1
	Stage 2
	Stage 3
	Stage 4
	Stage 5
	Stage 6
	Stage 7
	Stage 8
	Some Variations to Consider
	Simulating the Traffic Light in the Synchronous Time Model

	Recording a Simulation Session
	Setting the Simulation Parameters
	Saving and Restoring Status
	Record > Snapshot Status - Saving the Status
	Actions > Restore Status - Restoring the Status
	The Status File
	Status File Management

	Tracing a Simulation
	Automatically Recording a New Trace File
	Record > Start Trace - Creating a Trace File
	Trace File Management

	Creating Reports
	Formatted Report
	Spread Changes
	Spread Full
	Spread Compressed
	Interpreting Raw Data

	Record and Playback of Simulation
	Record For Playback

	Batch Mode Simulation
	The Simulation Control Program
	The Structure Of The Simulation Control Program
	The Program Header
	Constant Program Section
	Variable Program Section
	Initialization Program Section
	Breakpoint Program Section
	Main Program Section

	Basic Syntax Rules
	SCL Statements
	Semicolons As Delimiters
	Rational Statemate Expressions In the Simulation Control Program

	Predefined Variables
	List of Predefined Variables

	Random Functions
	List of Random Functions
	Random Functions In Simulation Control Program Statements

	SCL Session Control Statements

	File Operation Statements
	OPEN Statement
	READ Statement
	WRITE Statement
	CLOSE Statement

	Structured SCL Statements
	IF/THEN/ELSE Statement
	WHEN/THEN/ELSE Statement
	WHILE/LOOP and FOR/LOOP Statement
	Go Statements

	Breakpoints
	Breakpoint Definition
	Every numeric_expression
	Cancelling Breakpoints
	Setting Breakpoints
	Other Set/Cancel Commands
	Miscellaneous Commands
	Manipulating Breakpoints with Menus
	Breakpoint > Add - Adding a Breakpoint
	Breakpoint > Edit - Editing a Breakpoint
	Breakpoint > Deleting - Removing a Breakpoint

	Simulating a Truth Table
	Setting Breakpoints in a Procedural Truth Table
	Adding a Breakpoint to a Subroutine
	Subroutine Debug Tool
	Stepping through a Truth Table Simulation
	Simulating an Action Truth Table
	Simulation of an Activity implemented by a Truth Table

	Simultaneous SCP Execution
	Assign Files
	The Order of SCL Statements Execution
	Section Execution
	Breakpoint Processing

	Working with a Simulation Control Program (SCP)
	Actions > Run SCP - Running an SCP File
	Switching Modes of Model Execution
	Switching from Interactive to Batch
	Actions > Monitor SCP - Monitoring the SCP
	Actions > Stop SCP - Stopping an SCP
	Actions > Continue SCP - Restarting an Interrupted SCP

	A Sample Simulation Control Program
	What the Traffic Light Simulation Control Program Accomplishes
	The Program
	Explaining the Program

	Simulation Command Reference
	Interactive Commands
	The Simulation Profile Editor
	Simulation Execution Menu
	Save Profile
	Save Profile As
	Restart Simulation
	Rebuild Simulation
	Simulation File Management
	Analysis Profile Management
	SCP File Management
	Trace File Management
	Status File Management
	Messages
	Tool Bar
	Command Line
	Examine
	GoBack
	Pause
	AutoGo
	GoStep
	AutoRun
	GoStepN
	GoRepeat
	GoNext
	GoAdvance
	Go Extended
	Simulation Execution Option
	Panels
	Waveforms
	Monitors
	Animate All Charts
	Animate Selected Charts
	DoAction
	Breakpoints
	Run SCP
	Quit SCP
	Continue SCP
	Monitor SCP
	Restore Status
	Generate Interface
	Start Trace
	Stop Trace
	Record SCP
	Snapshot Status
	Show Changes
	Show Clock
	Show Future
	Show Racing
	New Profile
	Open Profile
	Close
	Print Profile Report
	Add With Descendants
	Add Testbench
	Add/Edit Panel
	Add/Create Waveform
	Monitors
	Remove From Scope
	Exclude From Scope
	Select
	Show Scope as Tree
	Show Scope as List
	Show Boxes
	Hide Boxes
	Execute Simulation
	Simulation Execution Options
	Time Settings
	Logic Settings
	Preference Management

	Auto Batch Commands
	ASSIGN
	CANCEL
	CHOOSE
	CLOSE
	COMMENT
	CONSTANT
	DO
	ELSE
	END
	EVERY
	EXEC

	Rational Statemate Actions
	AUTOGO
	GO ADVANCE
	GO BACK
	GO EXTENDED
	GO NEXT
	GO REPEAT
	GO STEP
	GO STEPn
	IF
	INIT
	LOOP
	MAIN SECTION
	OPEN
	PROGRAM
	RANDOM SOLUTION
	READ
	RESTORE STATUS
	SAVE STATUS
	SET BREAKPOINTS
	SET DISPLAY
	SET GO BACK
	SET INFINITE GO
	SET INFINITE LOOP
	SET INTERACTIVE
	SET TRACE
	SKIP
	STOP SCP
	THEN
	VARIABLE
	WHEN
	WHILE
	WRITE

	Supplementing the Model with Handwritten Code
	Supplementing the Model with Subroutines
	Entering Handwritten Code
	Using Subroutines
	Disabling Subroutines

	Supplementing the Model with a Procedure
	Using Globals
	Producing a Template for a Procedure
	Filling in the Procedure’s Template
	Subroutine Binding
	Supplementing the Model with a Task
	Using Globals
	Using the Template for a Task
	Filling in the Task’s Template

	Synchronizing Tasks
	Tasks
	Synchronization

	Scheduler Package
	Status of a Task
	Scheduling Policy
	Restrictions

	Binding Callbacks
	Callback Binding
	Callback Statement
	Disabling Callbacks
	Callback Example

	Referencing Model Elements
	Referencing Events
	Where Elements are Defined
	Accessing an Element Value

	Mapping Rational Statemate Types into C
	Records
	Unions
	Arrays
	Enumerated Types
	Constant Operators
	General Operators
	Bit Arrays
	Bit Array Functions
	Rules for Mapping into C

	BNF Syntax, Structure and Conventions
	BNF Structure And Conventions
	Symbol Types
	BNF Notations

	BNF for SCL Statements Syntax
	SCL Reserved Words
	Index

