
CM Live!

Configuration and Change Management: Taming Change and Complexity
with Telelogic Synergy

Release 6.6a

Before using this information, be sure to read the general information under Appendix C:, “Notices” on
page 83.

This edition applies to VERSION 6.6a, Telelogic Synergy (product number 5724V66) and to all
subsequent releases and modifications until otherwise indicated in new editions.
© Copyright IBM Corporation 1992, 2008
US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Table of Contents

Chapter 1: Introduction 1
Scope . 1
Implementation success. 1
Terms and concepts. 2
User interfaces . 3
Adoption road map . 4

Planning. 4
Deployment. 4
Usage . 5

Conventions . 5
Command line interface . 6

Prompt. 6
Option delimiter . 6
Standards . 6

Chapter 2: Planning 7
The need for planning . 7
Manage the scope. 7
Product knowledge . 8
Gather information . 8
Time the cut-over . 8
Implementation strategy . 9

The role of management support: the sponsor . 10
The role of the CM implementation team. 10
The role of the build manager: the configuration authority . 10
The role of developers: the end-users . 10
The role of system administration . 11

Select a database topology . 11
CM Live! iii

Team organization structure . 12
Team and database size . 13
Team location . 14
Sharing requirements . 14
Number of objects . 15
Component-based software architecture. 15
Process and workflow requirements . 15
Security and access control requirements . 16

Allocate system resources . 17
Telelogic Synergy process architecture . 17
The Telelogic Synergy data architecture . 19
Standard hardware configurations . 20
Multi-vendor platform support . 20
Memory and swap space requirements . 20
Distributed builds . 20
Assessing hardware and network capacity. 21

Chapter 3: Deployment 23
Set up the database servers . 23

Raw versus cooked database servers . 23
Number of databases per database server . 23
Location for running engine processes . 24

Install the license server. 24
About license data. 24

Install Telelogic Synergy . 25
Heterogeneous installations . 25
Install updates . 25

Configurations . 25
Database servers . 25
Client workstations . 26
Build servers . 26
DCM and DCS . 26

Establish the project topology . 26
iv CM Live!

Applications . 27
Projects . 27
Work areas. 28
Factors influencing project topology . 28
Reusable components . 30
Representing applications as projects . 30
Project topology example . 41

External and installation projects . 44
External projects . 45
Using external projects . 46
Installation projects. 48

Configure Telelogic Synergy . 48
Add users and set roles . 49
Define releases . 49
Configure the workflow . 49
Create and configure types . 50
Forms of configuration. 51
Strategies for configuration . 54
Customization . 55

Migrate the application software . 55
Prepare for the migration . 56
Migration strategy . 57
The migrate dialog . 58
Manage and evolve the project structure . 59
Migrate vendor code . 62
Migrate products . 62

Build products . 63
Verify and test the application. 63

System validation . 64
Create an initial baseline . 65

Set up releases . 65
CM Live! v

Support different platforms . 66
Create parallel release projects . 66
Create system test build management projects . 66
Automate build management . 67
Integration testing. 67
System testing . 68
Automated systems administration . 69

Perform load testing . 70
System resources. 70
Individual workstation test . 71

Chapter 4: Usage 73
Interfaces installed in Telelogic Synergy 6.6a . 73
Timing the training . 73

Training data . 73
Developer training strategies . 74
Developer training essentials . 75

Go live! . 76
Migrate incremental changes . 76
Activate users . 76
Create personal projects . 77
The CM process evolution . 77

Appendix A: Implementation questionnaire 79
Source code . 79
Build environment . 80
Project environment . 80

Appendix B: Technical support 81
Contacting IBM Rational Software Support . 81

Product support . 81
Other information . 81

Appendix C: Notices 83
vi CM Live!

Trademarks. 86

Index 87
CM Live! vii

viii CM Live!

1 Introduction
This document guides you through the steps necessary to get your project teams
up and running on Telelogic® Synergy™ as fast as possible.
Telelogic Synergy is used by hundreds of project teams around the world to
implement configuration management (CM). Experience has shown that when
new sites follow specific key steps, the time to adopt Telelogic Synergy is short
and well spent.
This document contains the critical information necessary for you to perform the
implementation yourself, but it is not intended to be comprehensive.

Scope
The primary focus of this document is the implementation of configuration
management with Telelogic Synergy. Telelogic® Change™, our change tracking
product, is referenced where relevant because change requests can be stored in
the same database as Telelogic Synergy data.
In addition to Telelogic Synergy for configuration management, the following
suite of development tools is offered:

• Telelogic Change for change request management

• Telelogic® DOORS® for requirements management

• Telelogic® Rhapsody for embedded systems and software engineering

• Telelogic® TAU for analyzing, specifying, modeling, and testing advanced
systems

• Telelogic® Focal Point™ for product decision making

• Telelogic® System Architect® for tools necessary for development of
successful enterprise systems

• Telelogic® Logiscope™ for ensuring quality assurance in software
development projects

• Telelogic® DocExpress® for organizing data in numerous formats that can
be tailored for your specific archival and reporting requirements

Implementation success
CM Live! tells you and your CM implementation team how to successfully adopt
and use the Telelogic Synergy solution.
CM Live! 1

Chapter 1: Introduction
Use a staged approach to implementing Telelogic Synergy; that is, start with the
fundamentals and work towards the application’s more sophisticated capabilities
through iterative extension.
Wherever possible, CM Live! describes the simplest approach to ensure clarity
and enable CM implementation teams to benefit from the basic capabilities of
Telelogic Synergy.
CM Live! lays out a comprehensive process for implementing Telelogic Synergy
and follows principles relevant to any technology adoption effort. The content
represents the collective experience of consultants, application engineers, and
support team, and it includes the feedback of our customers and partners.
Therefore, the process represents the best practices developed over years of
implementing CM solutions.

Terms and concepts
Before proceeding, learn the following Telelogic Synergy terms and concepts so
that you understand the information in this document.

Term Definition

Application An application is the software to be loaded into Telelogic
Synergy. An application typically consists of a collection
of source code files, graphic images, executables,
libraries, test cases, help files, and other files included in
the software system that you deliver.

Baseline A baseline is a snapshot of a set of projects usually created
at a milestone.
A set of projects for a particular release and purpose
bases its members on a baseline. This means that each
project looks at the baseline to find its own baseline
project. If a project uses update templates, the update
template identifies which baseline will be used.
A baseline must include the full set of projects to
represent the full product (at least within one database).

Database A Telelogic Synergy database is a repository for the
objects that make up an application. An application may
be stored in multiple Telelogic Synergy databases or a
single Telelogic Synergy database. A single Telelogic
Synergy database may contain multiple applications.
2 CM Live!

User interfaces
User interfaces
Telelogic Synergy provides the following user interfaces:

• Telelogic Synergy—a graphical interface that provides more advanced CM
capabilities for developers. Build management capabilities are also included
in this interface. This interface is available on Windows and UNIX.

• Telelogic Synergy Classic— is an advanced interface for build managers and
CM administrators. This interface is available on Windows and UNIX.

Telelogic Synergy Classic is no longer being enhanced. In a future release,
when Telelogic Synergy has sufficient functionality to replace Telelogic
Synergy Classic features, Telelogic Synergy Classic will not be provided.

Database topology Database topology refers to the mapping of applications to
Telelogic Synergy databases.

Migration Migration is the process you use to load existing
directories and files from your file system (or another
source control product, such as subversion) into
Telelogic Synergy for the first time.

Product A product is a file produced by a build process; for
example, .class file, .jar file, or .exe file. Products
are sometimes known as derived objects in other CM
tools.

Project A project is an arbitrary file and directory hierarchy that
represents some piece of the application. An application
can be stored in a single project or in many projects. A
project often contains a component, such as the code
for a single library or executable. Project topology refers to
the mapping of an application to a Telelogic Synergy
project.

Release A release is a specific version of a software application or
a particular branch of code development. For example,
your organization just delivered version 1.0 of your
application. Now, development is progressing in parallel
for both releases 1.1 and 2.0 simultaneously. In this
situation, there are two parallel releases under
development.

Term Definition
CM Live! 3

Chapter 1: Introduction
• A Telelogic Synergy terminal-based command line interface (CLI) is available
on Windows and UNIX. The CLI is an option for any user who prefers the
command line or wants to automate Telelogic Synergy operations.

Developers normally use Telelogic Synergy. Team leads and build managers use
Telelogic Synergy. Users responsible for administration, migration, or distributed
change management (DCM), use Telelogic Synergy Classic for these operations.
This document contains references to specific dialog boxes and commands. As
some features required by the implementation process are available only in the
Telelogic Synergy Classic interface, this document mainly references Telelogic
Synergy Classic dialog box names. Some terminology changes were implemented
in the Telelogic Synergy interface, so these differences are noted as necessary.

Adoption road map
The following items link to the different operations you will need to prepare for
and implement the CM methodology for your team.

Planning
• “Implementation strategy” on page 9

• “Select a database topology” on page 11

• “Allocate system resources” on page 17

Deployment

• “Set up the database servers” on page 23

• “Install Telelogic Synergy” on page 25

• “About license data” on page 24

• “Configurations” on page 25

• “Establish the project topology” on page 26

• “External and installation projects” on page 44

• “Configure Telelogic Synergy” on page 48

• “Migrate the application software” on page 55

• “Build products” on page 63

• “Verify and test the application” on page 63

• “Set up releases” on page 65

• “Perform load testing” on page 70
4 CM Live!

Conventions
Usage

• “Timing the training” on page 73

• “Go live!” on page 76

Conventions
The following describes the conventions used in this document.

This document also uses the following conventions:

Note A note contains important information that should not be
overlooked.

Caution A caution indicates potential danger to the database, the
database server, or some other integral piece of the
Telelogic Synergy software or your system.

Typeface Description

Italic Used for book titles and terminology. Also designates
names of roles (developer), states (working), groups
(ccm_root), and users (mary).

Bold Used for items that you can select, such as buttons,
icons, etc., and menu paths. Also used for the names of
dialog boxes, dialog box options, toolbars, folders,
baselines, databases, releases, properties, and types.
Also used for emphasis.

Courier Used for commands, filenames, and directory paths.
Represents command syntax to be entered verbatim.
Signifies computer output that displays on-screen.

Courier Italic Represents values in a command string that you
supply. For example,
(drive:\username\commands).
CM Live! 5

Chapter 1: Introduction
Command line interface

Prompt
This document uses the $ (dollar) character as the shell prompt for UNIX
examples.

Option delimiter
Both UNIX and WIndows clients support the dash (-) option delimiter. This
document shows UNIX client examples.

Standards
Instructions for editing text files are given using Notepad (Windows clients) or
vi (UNIX clients) commands. Notepad (Windows clients) and vi (UNIX
clients) are the Telelogic Synergy default text editors. If you use a different text
editor, substitute the appropriate commands.
6 CM Live!

2 Planning
This section provides information to help you plan for a successful Telelogic
Synergy implementation. If you carefully plan the implementation, you will be
able to install and configure Telelogic Synergy quickly and make it ready for
successful production use by your team.
The remainder of this document describes the specific planning tasks that are
essential for preparing a project team for production use. Review the full set of
steps, using the “Adoption road map” on page 4, and schedule an appropriate
amount of time for your team to complete each step.

The need for planning
Sometimes an organization purchases a product such as Telelogic Synergy and is
tempted to rush through installation to use it immediately. Planning can make a
tremendous difference in your satisfaction with the end result. While it’s true that
after you have implemented the product, you can change your database or project
topology, or reallocate which processes run on which hardware, sound planning
from the beginning usually obviates the need for later changes. Everyone benefits
when a tool performs optimally from the start.
To plan an effective roll-out, key stakeholders must understand the technology
they are about to adopt. If stakeholders have not been a part of product demos or
training, it might be difficult for them to commit their time and effort to
implementation planning. Be sure to include all key stakeholders in training
courses so they see what they’re committing to, have the opportunity to ask
questions, and are ready to help with the planning. Similarly, the implementation
effort depends upon your environment, which has to be well understood before
beginning implementation.

Manage the scope
The planning effort required for implementing Telelogic Synergy is proportionate
to the scope of the anticipated roll-out. Depending upon whether the roll-out is a
single project or an entire enterprise, different management structures need to be
followed.
CM Live! addresses the issues that every CM implementation team must consider
as it adopts Telelogic Synergy. Larger teams or enterprise roll-outs might need to
create an implementation program consisting of different projects that each
follow the guidelines in this document.
CM Live! 7

Chapter 2: Planning
Customers may want to start with a modest implementation that adapts Telelogic
Synergy’s out-of-the-box capabilities. The customer can develop an
understanding of the product, and identify and fix problems in their early stages.
Telelogic Synergy then can be extended through the organization by the iterative
application of the implementation process.

Product knowledge
The people responsible for planning and executing the implementation project
must be familiar with the aspects of Telelogic Synergy that influence the plan.
The CM implementation team that is responsible for the roll-out needs to be
trained in the basic concepts of Telelogic Synergy, its use, and its administration.
The training is an integral part of the planning process.
Planners do not need to become experts in using the product to successfully
implement it. This document provides sufficient information to enable you to
recognize the issues to address during the implementation.

Gather information
Customers use different programming languages, development tools, processes
and architectures; they use their own unique environments. Local conditions
affect the implementation of Telelogic Synergy, so you must understand your
local environment and its effects in the planning process.
The “Implementation questionnaire” on page 79 identifies the information
needed from each project team that will use Telelogic Synergy. You can use the
questionnaire as a tool to help gather the necessary information that can help
determine the resources and effort required for adopting Telelogic Synergy. The
questionnaire also helps in making decisions about the appropriate configuration
of the requirements for each team.
For example, when planning the implementation for a team, decide which
Telelogic Synergy user interface is most appropriate for each team member to
use. This decision helps you plan the team’s training requirements, and because
different clients have different memory requirements, the decision might affect
your hardware requirements as well.

Time the cut-over
Pay particular attention to the cut-over point. This is when you train your end
users, especially developers and testers, and switch into the production
environment. The timing is important to how developers perceive the transition
8 CM Live!

Implementation strategy
to Telelogic Synergy. If the transition occurs during a product release, where
developers suddenly need to use a new tool with a different methodology to
complete work under pressure of deadlines, they will likely be resentful of this
intrusion. Ideally, the conversion should happen at the start of a new project
cycle. If this is not possible, try converting immediately after a project milestone.

Implementation strategy
The following guidelines contribute to the successful implementation when
rolling out Telelogic Synergy across a large organization, or even across several
product teams.

• Phase the implementation across teams and products.

Do not try to roll out a new technology to all teams at once, or even in a
short time frame. The most effective technique is to start with a single team
and schedule other teams at intervals after that. As a team goes live, many
day-to-day questions will arise that will require your attention. By scheduling
implementations at intervals, you’re not overloaded with questions from
multiple teams. In addition, as you roll out Telelogic Synergy to the first
team, you learn valuable lessons that help subsequent implementations be
more efficient and effective.

• Start with a team that has a high probability of success. For example, start
with a team that has some of the following characteristics.

• The team recognizes the benefits of CM. For example, the team should
not be at CMM Level 1 maturity.

• The team has simple requirements, such as a simple product or process.
For example, work with a small team, a team working on a product with
limited platforms, or a team working on a product with limited
dependencies on other teams.

• Team members understand how their software application is configured
and built, and they are willing to provide information and assistance.

This strategy might appear to delay resolving key issues your organization had
for choosing an advanced CM solution. However, a successful first
implementation benefits the organization in many ways, both tangible and
intangible. The implementation and roll-out team gains valuable experience that
helps to make other teams successful, even if they have more complex issues.
The organization gains confidence that the decision was good and the solution
works for them.
CM Live! 9

Chapter 2: Planning
The role of management support: the sponsor

Management support is critical to the successful implementation of any CM
system. The fact that management approved the purchase of a configuration
management system is already a strong indicator of management support for
improved tools and processes. Nevertheless, the purchase of the product is only
a part of the investment required. Additionally, there may be a need to invest in
server hardware, time to set up the system and load legacy software, train users,
and perform ongoing administration.

The role of the CM implementation team
The personnel assigned to manage and perform the implementation are the CM
implementation team. They should include representatives such as managers,
developers, and CM experts who have a firm grasp of the company’s software,
current CM procedures, development environment, and CM improvement goals.
Often this knowledge is found in software project leaders or senior developers.
When these people are not the ones doing the implementation, it can be very
important that access to them is available.

The role of the build manager: the configuration authority

Every project team needs someone to play the role of configuration authority,
known as the build manager. The CM health of the project team can be measured
by the number of successful builds conducted per agreed unit of time. A healthy
team is able to have frequent, successful, repeatable builds. If the build frequency
is the “pulse” of the team, then the build manager is the “heart” of the team.
Successful software teams nearly always have build managers who are highly
technical.
The build manager need not be a person dedicated only to that task; it is often a
role that one or more of the project team members play. Whether or not the role
is full-time, ensure that the person is trained in this role and has sufficient time
allocated to perform the daily build management tasks that are so critical to an
effectively functioning project team.

The role of developers: the end-users

Most software teams include people in many roles, although the majority of the
team members are usually software developers. All potential end-users need to
have some awareness and training on the importance of sound CM practices, so
that they understand the decision to adopt a sophisticated team solution.
Software developers enjoy the benefits of many features of a configuration
management system. However, developers might need to use only a small subset
10 CM Live!

Select a database topology
of the product’s features to do their jobs. While developers will recognize the full
richness of the commands and operations available to them, they might
mistakenly believe that they must learn all of these operations, when actually
most of the operations are for release management and advanced use. Training
helps developers focus on the Telelogic Synergy set of operations they’ll need to
complete their work.

The role of system administration

As part of the Telelogic Synergy installation and set-up, the CM implementation
team provides access to a variety of machines, through a variety of networks.
Security considerations and firewalls might need to be accommodated. Remote
developers might need to access the system through a Virtual Private Network
(VPN).
All of these issues involve your System Administrators in planning for the
installation, configuration, and maintenance of the product. They also need to be
present or provide the necessary access to undertake key aspects of the
implementation.

Select a database topology
A database topology is the mapping of each application to its controlled objects
in the database. The database topology that you choose for an application
impacts performance and usability, especially for large teams.
Perhaps the most important decision you must make regarding implementation
is what database topology to use. However, defining a database topology is not a
precise science; a number of key factors have to be weighed to determine the
most appropriate topology for a site.
Usually, a team has several valid and viable topologies available, and the preferred
topology is a function of the team size, the organization, and distribution, the
processes it uses, and the size and structure of the application. Strict compliance
with the information in this section is critical because a poorly chosen topology
eventually leads to problems.
A Telelogic Synergy database stores project data, such as source files, products,
tests, documentation, change requests, tasks, and so on. A Telelogic Synergy
database includes archive and delta information for the project files under
control, a file cache that contains files currently being accessed, and a relational
database containing metadata, such as owner and creation time. The physical
layout of a Telelogic Synergy database is described later; this section discusses
how many Telelogic Synergy databases you’ll need to create, and what should go
into each database.
CM Live! 11

Chapter 2: Planning
The factors in the following sections are important to consider in determining an
appropriate database topology. The topics are presented in no particular order of
importance; your team will establish which are the most important to consider.

Team organization structure

Many topology designs start naturally, as a mirror of the current project team
structures. Teams commonly organize around the project data. For example, the
supplier of a client-server financial system may have a GUI team, a DBMS-server
team, a business rules team, and a team responsible for shared and reusable code.
Each team is probably responsible for a different area of the code, and often
some code and people overlap a little. Each team would have a project in the
database, and the build manager would integrate and build those projects into
one application.
Therefore, one way to select a database topology is based on the natural
structuring that is present in a team’s organization or an application’s
organization. Keep in mind, however, that even if the team structure is a clear
and obvious match for the database topology, there are several other factors that
may cause this structure to be modified.
12 CM Live!

Select a database topology
Team and database size

Hardware configurations have practical limits to the number of people who can
access a repository. These limits are usually more of a concern with lower-end
hardware, because higher-end hardware can support hundreds of users
simultaneously on a single Telelogic Synergy database. Except for very large
teams, the number of simultaneous users on a Telelogic Synergy database is
usually not a determining factor in the database topology. For specific hardware
requirements, see the Telelogic Synergy Installation Guide for the platform you are
using.
If you use a single large database with several hundred developers working on it,
the database size becomes a factor when it reaches 5 GB or larger; consider
topologies that allow the data and users to be spread over multiple repositories.
The primary issue with very large databases is backup and administration.
Telelogic Synergy’s default backup utility creates a portable archive file that
contains all data in the database, but large databases will reach a point where it is
no longer practical to back them up in this manner; you can use alternative
backup strategies. For example, you can use the underlying RDBMS’s backup in
combination with a file system backup.
Additionally, with so many users in one database, the actions of one user or team
can adversely affect another team. For example, if one team accidentally deleted
some data and wanted to restore it from the previous night’s backup, all data in
the database would need to be restored, causing other teams’ data to be rolled
back as well. Splitting data into multiple databases results in databases that are
more manageable, in terms of administration.
You may want to divide databases according to work group and product
architecture. In most cases, development groups are organized into teams with
specific responsibilities for different parts of an application. One way to organize
the data is for each development team to have its own components developed by
that team. Teams may need components produced by other teams within their
development group. If so, they can use DCM to transfer components from one
team to another.
One example of an application that requires a large development effort is an
operating system. Some system vendors have several hundred developers
working on a single release of an operating system. In such cases, it is important
to devise a topology that allows the database size to be manageable and the
number of simultaneous users to be within bounds of the available hardware
resources.

Note Worksheets for determining the maximum number of
simultaneous users for a specific hardware configuration and
CM Live! 13

Chapter 2: Planning
the optimal hardware configuration for a specific number of
simultaneous users are available in the Telelogic Synergy
Installation Guide for the platform you are using.

Team location

Many development teams include developers, testers, and writers who are
geographically dispersed. For most geographically dispersed teams, each physical
site normally works on different areas of the software. A database topology may
fall out naturally based on the different groups at the different sites.
Increasingly, teams are dispersed geographically where people in different
countries are working on the same data. In this case, there are 3 ways to ensure
productivity.

• Remote developers can use a remote desktop product such as Citrix®
software to access a centrally located database.

• Remote developers can work in a VPN with a common Telelogic Synergy
database. This technique provides the least administration overhead;
however, its effectiveness varies depending on distance and network latency.

• Remote sites can have their own local Telelogic Synergy database and use
distributed configuration management (DCM) to transfer the changes
between physical locations.

When distributed teams have to be accommodated, you must consider
performance issues and the affect of network topology, bandwidth, and latency.
Telelogic Synergy needs low latency between its user-interface and Telelogic
Synergy server or engine and prefers having the engine on the same machine as
the database server.
Security concerns are another factor. If one of the remote groups is an
outsourcing firm, you might want to restrict its access to some or all of the
application code.

Sharing requirements

The CM implementation team must determine the degree of sharing required
between the various databases in the database topology. You can run a number
of sessions on a number of databases. However, within a single session, you have
access to the data in that database. If a user must work closely on the source for a
library and an executable that links with that library, for example, the source for
both should be in the same database.
There is almost always some sharing between databases. It’s common to have
one database that holds reusable libraries, and different databases that contain the
14 CM Live!

Select a database topology
source to the applications that link with the reusable libraries. In this case, the
database with the reusable libraries exports the libraries and associated header
files to the various consumer databases. The developer of the executable in the
consumer database has everything he needs from the reuse database, without
having the actual source to the library in the same database. The key is that
although data can be shared between databases, the degree of sharing required is
often an important factor in deciding on an optimal database topology.

Number of objects

A Telelogic Synergy database normally holds a large number of objects. The
constraining factor is usually the hardware available for the database server.
However, even low- to mid-range hardware can usually support over 50,000
objects. The number of simultaneous users is usually a factor before the number
of objects is. In applications with a large number of objects relative to the size of
the team, you may want to break down the application into a database topology
that distributes the total number of objects, which is commonly called
restructuring.
See “Allocate system resources” on page 17 for a more detailed description of
performance and space considerations.

Component-based software architecture

Component-based development is the creation of applications from reusable
parts.
Telelogic Synergy works well with component-based application architectures
and supports component development and integration that are required to
manage product architectures and families. This is achieved using the flexibility
Telelogic Synergy offers in database topologies. It relies on projects and
subprojects as the organizing mechanisms. Mapping component-based
applications to team responsibilities enables Telelogic Synergy to support
separate component and product releases.

Process and workflow requirements

The following information can be configured in a Telelogic Synergy database:

• Data types and behaviors

• Releases

• One or more development processes spanning development, integration,
and system testing
CM Live! 15

Chapter 2: Planning
This data is stored on each Telelogic Synergy database. Therefore, if it is
important for different parts of the project team to have a behavior model, be
sure to design it into the database topology.

Security and access control requirements

Group security enables users within a single database to control who can modify
what kind of data. Additionally, group security provides a means to assign
different privileges to different projects or objects on an individual or group
basis. You can also use group security to control the read access of source files.

Recovery

The design of the Telelogic Synergy database allows files to be accessed even
when the database server machine goes down. If the file server machine crashes,
or if there is a media failure on one of the disks that store the data files, the files
are inaccessible until the system is repaired. RAID disks minimize this risk.
Project teams with a large amount of data may choose to distribute the data
across databases to minimize the risk.

Administration

Administering the Telelogic Synergy databases is another factor to consider when
designing a database topology. Typical database administration activities include
adding users, performing backups, checking the data for consistency, deleting
unneeded data, maintaining types and releases, and upgrading to a new Telelogic
Synergy release.
More administration activities are required when more databases are used.
Conversely, smaller databases are faster to backup and contain room for growth.
In general, the administration of a Telelogic Synergy database is simple enough
that the cost of administration is rarely a determining factor in the topology
design.

Selection

Finally, the process of selecting a database topology involves considering each of
the factors described above and balancing their various aspects to arrive at an
initial topology. As a starting guide, consider giving each application its own
Telelogic Synergy database. Then, you can combine one or more applications
into a single database if, for example, particularly heavy code sharing is required
among applications. Conversely, you can split an application into multiple
databases if you have compelling reasons to do so, such as very large numbers of
16 CM Live!

Allocate system resources
users or very different security needs for different teams working on the
application.
There is no single solution that applies to all situations, and you can have several
viable database topologies.

Allocate system resources
This section describes how to allocate system resources to support Telelogic
Synergy. It provides the background information necessary for selecting
appropriate hardware configurations to run the Telelogic Synergy product.
Telelogic Synergy is implemented in a three-tiered, client-server architecture
designed to use the resources available on the network in today’s distributed
computing environments.

Telelogic Synergy process architecture

A Telelogic Synergy session comprises two or more processes: the client (or
interface) processes and the server (or engine) process. The client processes
manage user interaction and work areas. The server handles database interaction
and access. A database server also processes service requests from all of the
server processes.

• Telelogic Synergy clients

Telelogic Synergy has several interface clients. “User interfaces” on page 3
describes them. When the user starts an interface, Telelogic Synergy
automatically starts one or more server processes to service the client
interface.

• Telelogic Synergy server

Each user session has one or more server or engine processes. As described
below, the engine process connects to the database server.

The engine can run on either the database server system or the user’s
desktop system, or it can be distributed to a different system on the network.
Running the engine on the database server system usually results in the
fastest performance for users — unless the resources of the database server
system are insufficient for hosting engine processes for all users.

• Database server

The database server process is the commercial Relational Database
Management System (RDBMS). For each remote session that is started, a
small RDBMS process runs on the machine (the database server system)
where the database resides.
CM Live! 17

Chapter 2: Planning
• Daemons or services

Certain processes must be running before users can start sessions. On
UNIX, the processes are called daemons, and on Windows they are called
services. On the UNIX network, the ccm_start_daemons command
starts the ccm_router, ccm_objreg, and ccm_esd daemons. On
Windows, the services are configured to start automatically when you start
the system.

Router (ccm_router): The router process sends all communication traffic
to the correct recipients. This process can run on any supported system on
the network.

Object Registrar (ccm_objreg): The object registrar provides the data-
driven trigger capability that keeps users’ views synchronized. By default, the
process must run on each computer that is running a database server.

Engine Startup Daemon (esd): The UNIX engine startup daemon enables
users to start Telelogic Synergy engines on a remote server without using the
rsh (remote shell) or rexec (remote execution) utilities.

OR

Engine Startup Service (ccm_ess): The Windows engine startup service
enables users to have local login permission so that it can use engine
processes. You must run one ccm_ess service process per engine machine.
The ccm_ess service starts automatically at installation and startup. It
registers with the router. When you start a Telelogic Synergy session, the
interface process requests that ccm_ess start the engine.

Help Server (ccm_helpsrv): Telelogic Synergy uses a help service to serve
help requests from users’ sessions. The help service runs on the same system
as the router. The ccm_start_daemons command also starts the help
service.

Inter-process communications: For Telelogic Synergy’s different
processes to communicate with each other, several services and conditions at
the operating system (OS) level must be available on the customer’s network.

The site system administrator must ensure that the general trust requirements
required between systems running clients and engines are set up. Also, on
UNIX, the user-owned client process needs to start as the ccm_root-owned
engine process, requiring setgid and setuid permissions on the engine
executables.
18 CM Live!

Allocate system resources
These environmental requirements need to be understood, agreed upon, and
set up early to keep the implementation moving. For further details refer to
the Telelogic Synergy Administration Guide.

The Telelogic Synergy data architecture

The following describes how data is distributed in Telelogic Synergy.

• RDBMS and project files

A Telelogic Synergy database consists of two parts: the RDBMS that stores
the metadata, which is information about the project files, and the file
system storage, which is the file archive and the file cache.

The metadata is approximately 10 to 15 percent of the size of the file system
storage. If your application takes 100 MB for the source and binary, the
RDBMS requires between 10 and 15 MB. The ratio can vary according to
usage and development model customizations, but the ration is a useful
guideline for planning disk space. If your database also contains Telelogic
Synergy data, it usually contains a higher percentage of metadata.

• Spreading data across the network

The RDBMS must be physically located on the database server. However,
on UNIX, the file system storage can be anywhere on the network file
system. By default, the UNIX file system storage is on the same system as
the RDBMS, but you can use symbolic links to move all or part of the file
system storage to a different location on the network.

Telelogic Synergy’s architecture is more sensitive to network latency than
bandwidth between interface and engine, so performance is better when the
engine is on the same machine as the database server.

UNIX machines running Telelogic Synergy engine processes must have the
Telelogic Synergy database's file system area visible. Therefore, the files
either must be local or be mounted across the network. The next section,
"Standard hardware configurations", describes the possible UNIX hardware
configurations.

You can either hard-mount or use the automounter, as long as the data files
are visible from each system that runs an engine. However, the database's
RDBMS does not need to be visible to the engine process.

The files must be visible through the same logical path on all engine
machines. For machines running Telelogic Synergy clients, the Telelogic
Synergy file system area does not need to be visible.
CM Live! 19

Chapter 2: Planning
Standard hardware configurations

You can run each database in a UNIX-only, Windows-only, or heterogeneous
system environment.
The process configuration that performs best for UNIX teams is where each
user’s client runs on a personal workstation, and all the server processes run on a
single dedicated machine. This configuration requires a database server with
adequate resources.
An alternative configuration occurs when each user runs the Telelogic Synergy
client and server on a personal workstation. The process requirements for the
database server in this configuration are very low. A mid-range workstation or
server normally handles the load of most teams. However, the performance is
not as good as the previous technique of running engines on the database server.

Multi-vendor platform support
Telelogic Synergy supports heterogeneous combinations of hardware running
processes on the same Telelogic Synergy database.
Telelogic Synergy engines, interfaces, and database servers can run on different
hardware platforms. The only requirement is that support and technical
assistance must be available for each different hardware platform.

Memory and swap space requirements

The efficiency of virtual memory varies in machines from different vendors.
Therefore, RAM requirements sometimes depend on the machine.
Consider the virtual memory efficiency and vendors when you calculate RAM
requirements. For example, Sun machines page well and require less than average
RAM per session, while Hewlett Packard machines require a higher than average
real-to-virtual memory ratio.
Refer to the Telelogic Synergy Installation Guide for memory and swap-space
requirements.

Distributed builds

By default, Telelogic Synergy performs compilations on the computer the client
process is running on. However, by editing the configuration file, you can cause
the build tool to use a set of machines available on the network.
Many sites dedicate extra or seldom-used workstations as compile servers; other
sites send compiles to the central server systems with excess capacity.
20 CM Live!

Allocate system resources
Assessing hardware and network capacity

The following common indicators show that available system resources are
potentially insufficient:

• All developers are running on a single server using either an X11 server
emulation package or low-end PCs, and the server is low on memory or
already heavily loaded.

• Developers have their own workstations but they complain about network
performance or that they have low-end workstations or PCs.

• The server is low on available disk space.

• Developers report slow remote or shared file access times.

If one of more of these symptoms are present at your site, determine whether
sufficient hardware and network capacity is available.
CM Live! 21

Chapter 2: Planning
22 CM Live!

3 Deployment
The previous chapter on system resource planning described the factors involved
in deciding where to run which processes and where to locate data. Now you are
ready to install the product on the various systems.
Telelogic Synergy might already be installed on one or more of your computers
for either demonstration or evaluation purposes. However, now that you are
preparing to use Telelogic Synergy in production, you will need to reinstall it, or
install it on additional systems.
Consider running a full load on the system so that you can test the performance,
identify any bottlenecks, and adjust the configuration accordingly.

Set up the database servers
The database topology largely determines the number and location of the
database servers. Consider the following additional factors to prepare your
installation for production use.

Raw versus cooked database servers
Informix, which is the default underlying RDBMS for Telelogic Synergy, supports
two forms of installation on UNIX. The database server on Windows supports
only cooked chunk files. A simple Informix installation of cooked files is easy for
demonstrations and for small project teams. However, for most production use,
you may want to run with a raw file system. Raw file system Informix servers
provide the highest performance and outstanding recoverability in the event of
media or power failures.
The Telelogic Synergy Administration Guide for UNIX describes how to set up
Informix for use with raw file system partitions. If you’re using an Oracle
database, see Telelogic Synergy Administration Guide for UNIX (on Oracle).

Number of databases per database server
Informix allows many Telelogic Synergy databases for each Informix database
server. However, for large production databases, each Telelogic Synergy database
may be stored in its own Informix server because online backup and recovery is
provided by Informix on a database server basis. Therefore, if you need to
restore, as in the event of a disk failure, you have to restore all databases in the
server, which is probably more than is necessary. Consider online backup and
transaction logging for medium and large project teams.
CM Live! 23

Chapter 3: Deployment
You can create additional database servers easily. Instructions are provided in the
Telelogic Synergy Installation Guide using Telelogic Synergy tools for UNIX. Only
one database server can be created per database host.

Location for running engine processes

When you run the Telelogic Synergy engine process on the same machine as the
Informix server, they communicate through shared memory. When you run the
engine process on a separate machine, they communicate through TCP/IP.
Shared memory is much faster; many queries run up to ten times faster when the
engine is on the database server machine.
However, if you run too many engine processes on a machine without enough
CPU power or memory, system performance is degraded.
Consider running your engines on the database server, and purchasing a server
with enough memory and CPU to accommodate the expected number of
simultaneous sessions. If this is not possible, for example, when the expected
number of simultaneous sessions is more than you can run efficiently on the
server that you can afford, consider setting up one or more separate Telelogic
Synergy engine server machines.
When running UNIX engines on machines other than the database server, ensure
that ccm_root can log in from the engine machine to the database server
without providing a password.

Install the license server
Before installing Telelogic Synergy, you must obtain and install a new license
server. The license server is a FLEXnet-based license server that you use to
provide licenses to products. The installation of the license server is a separate
procedure from the installation of the Telelogic Synergy product. For complete
information about license information, read the Telelogic Lifecycle Solutions Licensing
Agreement.

About license data

During your evaluation, you might have received a license valid for a limited time
to run the application on your evaluation machine. For your production
environment, ensure that you have obtained a full production license data file
that is valid for the machine on which you intend to run your Telelogic Synergy
license manager.
24 CM Live!

Install Telelogic Synergy
Install Telelogic Synergy
Before installing Telelogic Synergy, read the Telelogic Synergy Readme and the
Telelogic Synergy Installation Guide for the platform you are using.
Telelogic Synergy must be installed on the Telelogic Synergy server and client
machines, or on a shared file system that other systems can use. On Windows,
you can install just the required components on the various machines.
On UNIX, you need root access to install Telelogic Synergy. On Windows, you
need domain administrator privileges to create the users ccm_root and csuser, and
then you need local administrator privileges to install Telelogic Synergy on each
machine.

Heterogeneous installations

If you have a variety of hardware platforms that can run Telelogic Synergy, you
probably want to set up a heterogeneous installation. In this configuration,
Telelogic Synergy users can have a mix of workstations and servers covering a
range of hardware and operating systems. Although arbitrary mixes of hardware
are supported, the installation must be set up so that the various installations
reference common configuration information. The Installation Guide for UNIX
describes installing for heterogeneous environments.

Install updates
If you have updates or patches, for example, to enable Telelogic Synergy to run
on a new operating system upgrade, install these updates now.
On Windows platforms, a feature is available to automatically notify users if they
need to update their client installations. Telelogic Synergy checks to see if all
users are running on the same release as the server installation, and if they are
not, notifies them that they need to update their client installations. Users can
then launch the installation and complete the update. For more information on
this feature, see the Installation Guide for Windows.

Configurations
The following section describes what to create and configure for your
deployment effort.

Database servers

Create and configure a database server for each Telelogic Synergy database. The
Telelogic Synergy Installation Guide describes how to create database servers.
CM Live! 25

Chapter 3: Deployment
Client workstations

Each machine assigned to run either a Windows-based or UNIX-based Telelogic
Synergy client must have the Telelogic Synergy software installed locally that is
capable of accessing a network installation. UNIX workstations can share the
server installation. Although the database cache does not have to be visible from
the client workstation, visibility improves performance. This visibility is
mandatory in UNIX link-based work areas and is normally provided through
NFS. Windows-based clients use either a local installation or a shared installation
from a PC file server. The Telelogic Synergy Installation Guide describes the different
client installations.

Build servers

If you perform remote or distributed builds, configure the build servers so that
they also have Telelogic Synergy installed properly. For UNIX link-based work
areas, the Telelogic Synergy database file cache must be mounted and visible
from each build server.
Also, ensure that build managers can log in from the client systems to the build
servers without providing their passwords. Refer to the Telelogic Synergy Installation
Guide for details. You can distribute builds to platforms that do not support
Telelogic Synergy, and in those cases Telelogic Synergy does not need to be
installed on those platforms.

DCM and DCS

If you intend to use distributed configuration management features, you should
read Telelogic Synergy Distributed. This book provides a methodological description
of the various ways geographically-dispersed sites can use DCM and Distributed
Telelogic Change (DCS) to distribute code and change requests. Additionally, the
book gives step-by-step instructions for configuring installations to use DCM
and DCS.

Establish the project topology
This section describes how to establish the optimal project structure before
migrating your software applications into Telelogic Synergy.
Project topology refers to the organization and structure of projects that
represents an application and its associated files and directories. A good project
structure is especially important when you migrate very large applications.
Planning your Telelogic Synergy project structure in advance of performing the
migration has both short- and long-term benefits.
26 CM Live!

Establish the project topology
Note Large applications comprise over 5,000 files or one million
lines of code.

This section assumes that you have read Introduction to Telelogic Synergy.

Applications

Many large software systems stored under Telelogic Synergy do not, strictly
speaking, fit the term “application.” For example, operating systems and other
systems-level software, large quantities of documentation, or test data are not
generally thought of as applications. However, you can migrate these types of
applications into Telelogic Synergy successfully. For example, all Telelogic
Synergy documentation is controlled in Telelogic Synergy databases.

Projects

An application is represented by one or more Telelogic Synergy projects.
A project is a user-defined group of related files and directories. A project can
also contain other projects, known as subprojects. A project normally represents
a logical grouping of files, such as a library or an executable. For example, the
software that implements an editor application can be stored in a project named
editor.
Projects are versioned like any other object in Telelogic Synergy. Different
versions of the same project can contain different versions of the members, and
even different members, as the software changes over time. For example,
different versions of the editor project may be represented as editor-1.0, and
follow-on versions of editor-1.1, editor-1.2, and editor-2.0. The editor project
for editor-2.0 can contain new files that did not exist in editor-1.0, as well as
newer versions of many of the same files. Some files in editor-1.0 might not be
part of the editor-2.0.
A single file or object version can be a member of multiple projects. Although
the same object version appears in different projects, it exists only once in the
Telelogic Synergy database.
Many versions can exist for a single project. The following are some examples:

• Each developer who is developing the project has his own version, used to
develop and unit test his own changes. These are called development
projects.

• Build managers have versions for preparing the software for integration
testing, system testing, and release. These are called build management
projects.
CM Live! 27

Chapter 3: Deployment
• Released projects are versions of the software that have been released or
have reached a milestone.

• A baseline is a set of projects at a point in time.

• A baseline project is a project that is a member of a base line.

Work areas
A work area is a location in the file system where Telelogic Synergy writes the
project data for a specific project version. A project’s directory tree structure is
identical to the project’s tree structure in the Telelogic Synergy database. The
work area is a location where users can work directly with the files using
Integrated Development Environments (IDE) and build tools, such as make.
The actual files reside in the Telelogic Synergy database, but Telelogic Synergy
keeps the work area synchronized with the database. On UNIX systems, the files
in a work area often are linked to the database files. On Windows systems, the
files in the work area are copies of the database files.
When you create or change a project, Telelogic Synergy updates your work area
automatically and transparently. When you add members to a project, Telelogic
Synergy updates the work area with the new files; when you remove members
from a project, Telelogic Synergy removes the corresponding files from your
work area.
You can set up a subproject's work area to be either dependent on the parent
project's work area (relative) or in a separate location (absolute). If you have tools
or processes that rely on a certain directory structure, keep this in mind when
setting up your project work areas.

Factors influencing project topology

There are several viable project topologies for any application. Coming up with a
good project topology involves considering several factors and prioritizing them
based on the needs of the particular project team.
The primary goal is to create a project topology that meets the following
objectives.

• Provide developers with an efficient and compact work area for development
and unit testing.

• Match the natural composition of an application into smaller components.

• Delineate team responsibilities.

• Match the way the application and its components are released.
28 CM Live!

Establish the project topology
• Provide satisfactory performance.

Another important factor is the build dependencies within the application.
Before designing a project topology, you must analyze the application’s directory
structure, build dependencies, and build process. If you are not an expert on the
application, consider enlisting the aid of team members who are expert in the
application to help design the project topology.

Project size

How large can a Telelogic Synergy project be? It can be much larger than you
probably want it to be. A single project can hold thousands of files and millions
of lines of code. You also can have hundreds or even thousands of projects in a
Telelogic Synergy database, multiple Telelogic Synergy databases in an Informix
server, and even multiple Informix servers on a single system or spread over a
network of systems. But working with and manipulating projects this large can
be cumbersome and cause your project to lose flexibility.
For these and other reasons described below, an ideal number of objects to
include in individual subprojects is several hundred objects or less.
When you preview a large migration, the Migrate dialog issues a warning if the
project you asked to load contains more than 2,500 objects. For reasonable
performance, Each project should have no more than 2,000 members and each
directory no more than 500 members. Smaller projects of approximately 500
members and directories of between 100 and 200 members are even faster.
If your application contains over 1,000 files, consider representing the
application as a collection of projects for better performance.

Building projects

When designing the project topology, consider the units of software required for
building the main product deliverables.
To build with any other make tool, the necessary files first must exist in a work
area. (Recall that each project has a work area in the file system.)
If many developers are working on a large application, and the files are separated
so that a developer doesn’t need everyone else’s files to build his part of the
application, the application can be structured into multiple Telelogic Synergy
subprojects to reduce the number of objects that each developer must manage.
Such elegant design of the code structure is the consequence of using
component-based development architecture. Dividing the application into
subprojects that reflect different components minimizes the time and space
required to build the application.
CM Live! 29

Chapter 3: Deployment
Variant projects

Normally, one version of the Telelogic Synergy project is defined for each
platform to which the application must be ported. The project object is the
primary location for platform-specific build macros and environment properties.
Large sections of the application, such as documentation, test data, designs, and
scripts, are often platform-independent. If these areas are separated into their
own Telelogic Synergy subprojects, variant projects can all share the same,
common subprojects. For Windows-based users, the project must have an
absolute work area path that can be shared.

Reusable components
Configuration and change management can play important roles in enabling you
to reuse software objects. The Telelogic Synergy project object provides a self-
contained, relocatable unit of software. The project object is a flexible
mechanism for managing collections of multiple numbers or types of other
objects, including other projects. Thus, a hierarchy of project objects can allow
any application architecture to be represented as a structure of its constituent
subsystems and components.
Mechanisms are provided so that if you structure your application into smaller
subsystem or component projects, Telelogic Synergy facilitates sharing and
reusing these projects as appropriate. Windows-based users must ensure that
each low-level project has an absolute work area path that is visible to the high-
level projects that will reference it.

Representing applications as projects

When selecting an initial project topology, consider the factors previously
described and weigh them against the requirements of your application and your
project team. This section describes several approaches to a project topology, and
explains the applicability of each.
On UNIX systems, where the clients run on the same network as the database,
projects usually have absolute work areas, which means any project can contain any
other project as a subproject. On Windows systems and remote UNIX clients, a
subproject’s work area can be either absolute or relative. A writable project with a
relative work area can only be used as a subproject within a single parent project.
The following examples show that an application’s build process is affected by
whether a project’s work areas are absolute or relative. Relative work areas usually
require minimal changes to the application’s build process, but absolute work
areas result in a much higher degree of componentization and reusability.
30 CM Live!

Establish the project topology

Single-project representation

One way to structure an application’s source code in Telelogic Synergy is to load
it all into a single project, as shown below.

This approach has the advantage of being quick and easy to set up and maintain.
However, it also has some limitations that prevent it from being scaled to large
applications.
First, because the entire application is located within a single project and
developers operate in Telelogic Synergy at the granularity of projects, each

This shows a single
project, toolkit-la,
as you would see it
in the Windows file
system

This shows the same
single project,
toolkit-la, as you
would see it in
Telelogic Synergy
Classic.

This shows the same
single project,
toolkit-la, as you
would see it in
Telelogic Synergy.
CM Live! 31

Chapter 3: Deployment
developer must view the entire application rather than one or more logical
components of the application. On very large applications, performance is
negatively impacted and requires a larger amount of disk space for each
developer.
Second, because developers have a view of the entire application, they are
responsible for building all parts of the application, even those they are not
currently modifying. Other structuring techniques provide ways for developers to
work with and build only the parts of the source tree in which they are interested.
These structuring techniques are described later in this chapter.
Size is only one of the factors to consider in determining a good project
topology. Other factors are addressed later.

Multiple-project representation

Representing all but small applications as hierarchies of projects has several
advantages:

• You can organize your files into logical groupings. Product teams can have
projects specifically for the areas for which they are responsible.

• You can distribute the work areas for different projects to different locations
instead of having one very big work area in the same location.

• Developers need working versions of only the projects containing the files
they change, which speeds up operations such as update.

• It allows you to have parallel versions of only the projects that must be built
for parallel platforms, instead of duplicating the entire project for every
platform on which you build, as shown below.

When individual projects are assembled together in this manner, the lower-level
project is a subproject. The higher-level project is the parent project. Calling a project
32 CM Live!

Establish the project topology
a subproject or a parent project only indicates its position in the relationship
between the two projects. It does not mean that either project is somehow better
than the other. In reality, each is treated as an independent entity within Telelogic
Synergy.
The ability to combine projects in this manner can be understood if you
remember that a project represents a version of a source tree. By selecting a
particular version of a project to put within another project, you are selecting the
entire source tree currently associated with that project. In the example above, if
the prog1 project is owned by a developer, the developer can choose whether he
wants to view his own version of the util_lib source including the correct
version of the util_lib project.

Relative versus absolute work areas

When you combine projects into a hierarchy, the look of the resulting work area
depends on whether the subproject has an absolute or relative work area. Every
project has a work area, which is the place in the file system that reflects the
contents of the project. When a project is used as a subproject, a property of the
project’s work area (set through the Work Area Options dialog), defines the
location of the work area relative to that of its parent.

Under UNIX, this is a
symbolic link to the work area
of the subproject.There is no
equivalent under Windows, so
util_lib would appear from the
command line as an empty
directory.

Under UNIX, this is a symbolic
link to the subproject’s work
area. Under Windows, there is
no equivalent.
CM Live! 33

Chapter 3: Deployment
The figure above shows that a relative work area is contained within the work
area of its parent project, which creates a seamless directory tree. That is, the
location of the relative work area is relative the work area of the parent project.
On the other hand, an absolute work area is located at an absolute file system
location. This location, the work area path, is specified on the project and can be
set through the Work Area Options dialog. On UNIX, a symbolic link is placed
at the location of the subproject in the parent project’s work area. This link points
to the location of the subproject’s work area. Because the Windows environment
has no equivalent to UNIX symbolic links, the link is only present on UNIX.
However, the subprojects appear in the GUI on both Windows and UNIX as
members of the parent project.
The different representations afforded by absolute versus relative work areas
have the following implications:

• Because each writable project can have only a single work area, and a relative
work area is contained within the parent project’s work area, a writable
project with a relative work area can be a subproject to exactly one project.

On the other hand, projects with absolute work areas have their own
absolute location and can be shared with multiple parent projects. An
example of sharing is a library that is used by multiple applications and
modified in each one.

• If you want the work area location to be visible to others, set the work area
location for your absolute work areas to a shared file system.

• Because absolute work areas are not represented as true directory trees
within their parent projects’ work areas, a makefile or script in an absolute
work area cannot use relative paths to access objects in its parent project’s
work area.

For example, a makefile contained in the util_lib project (shown in the
figure above) cannot use an include path directive set to -I../../
include to access includes in the prog1 project because traversing up
from the project’s directory tree does not take you into the parent’s work
area.

• If you need a true directory tree structure, you might need to give up the
ability to share absolute work areas and use relative work areas instead.
Makefiles, development tools, and scripts that depend heavily on a true
directory tree structure must use relative work areas.

Note The decision between using absolute or relative work areas is
primarily one that impacts Windows users. On UNIX,
absolute work areas are usually the better choice.
34 CM Live!

Establish the project topology
Ultimately, understanding the differences between absolute and relative projects
and choosing the correct work area type for the situation is necessary for
establishing a good project topology for your application.

Multiple-project representation using relative work areas

For all but very small applications, the ideal representation of your application is
usually a segmented set of subtrees, each with its own project. The figure below
shows a source tree for a medium-sized application.

The ACME source tree contains a subdirectory tree for each executable and
library created by the application. Because development work is often targeted
towards specific executables or libraries, these natural divisions form a
reasonable place to subdivide the source tree into projects.
Subdividing the application into multiple projects has not affected its build
characteristics because the subprojects have relative work areas; that is,
executables and libraries can still reference the global includes through relative
CM Live! 35

Chapter 3: Deployment
paths, and several benefits have been obtained. The figure below shows an
application structured using subprojects with relative work areas.

Dividing the application into multiple projects is beneficial because operations
that can simultaneously work on all objects within a project, such as check in,
update, and query, now can be limited in scope to just the desired executables or
libraries. If all objects are contained in a single project, this is not possible. Other
benefits include reusability and improved performance.

Project sharing

Another technique relies on projects with absolute work areas to create a self-
contained development environment for each executable in the application. Each
project contains only the objects necessary to build that executable. The
following is an example of how the development environment might look for
36 CM Live!

Establish the project topology
exe1. This is a self-contained environment created using projects with absolute
work areas.

Both lib1 and exe1 share the glob_inc project. The project contains the include
files found in the application’s global include directory. Because lib1 and exe1
have absolute work areas, a makefile within them cannot access those includes at a
higher level in the tree. However, by putting the includes into their own project
and including that project in the areas where those includes are needed, they can
be accessed relatively through the link pointing to the glob_inc project (UNIX).

Note Because both the exe1 and lib1 projects share the
glob_inc project, and the glob_inc project is still changing,
it must have an absolute work area.
CM Live! 37

Chapter 3: Deployment
The figure below shows a similar environment for exe2. Although exe1 uses only
lib1, exe2 relies on both lib1 and lib2. This is a self-contained environment
created using projects with absolute work areas (exe2).

The figure below shows an example with projects for two executables that share
the same libraries and include files. By using absolute work areas for the
subprojects, the project hierarchy will contain the minimum set of files in its work
areas.

38 CM Live!

Establish the project topology
The following figure shows how the entire application hierarchy looks.

Product sharing

When you use the techniques just described, the resulting hierarchies may still be
larger than you want, even if the application tree is separated into multiple
projects. Additionally, each developer is responsible for building all the libraries
needed to link his executables, including those that he is not changing.
These issues can be addressed using a technique where developers share prebuilt
versions of the libraries that they are not modifying. The advantage of this
technique is that developers no longer require the source for these libraries in
their development environment, provided they are not making any changes to
those libraries.
Access to the prebuilt versions of the libraries is accomplished through logical
projects created by the build manager.

Projects like the one shown above are called external projects because they
contain built versions of the libraries and the headers needed to access them, but
CM Live! 39

Chapter 3: Deployment
not the libraries’ sources. External projects are created on a periodic basis, usually
nightly, from a build of the integration area, which enables developers to share
current versions of the libraries.

The figure below shows the external project inserted into a self-contained
environment created using absolute projects.

The example shows that the makefile for exe1 must be modified to pick up
includes and libraries from the external project. Use the $(CCMSUBPROJ) macro
to modify the makefile file.
When a developer needs to modify the library, the include and library paths must
reference the library source projects before the external project so that the
40 CM Live!

Establish the project topology
developer’s modifications take precedence over those contained in the external
project.

Project topology example

This example shows how you might select the topology for the payroll project
shown below.

Note Although the following is a Windows example, the selection
process applies to a UNIX project, too.

Large applications usually comprise a suite of modules, each similar to the
hierarchy shown above. For example, a full financial management system might
have payroll, budgeting, payables, and receivables modules.
Another example of a large application is an operating system comprising 10
million lines of code, including a kernel, commands, networking, and device
driver modules. Each of these modules normally has its own substructure.
These application structures can be migrated into Telelogic Synergy in several
ways. At one extreme, the entire structure can migrate as a single project, and at
the other extreme, each subdirectory can be its own subproject. An optimal

C:\apps\payroll\ src\
Makefile
checks.c
display.c
main.c
taxes.c
payup.exe

incl\
payroll.h
taxcode.h

lib\
Makefile
compute.c
print.c
util.c
util.h
libutil.dll

doc\
payroll.doc
payroll.ps

test\
suite1.data
suite1.out
suite2.data
suite2.out
CM Live! 41

Chapter 3: Deployment
structure is probably somewhere in between. In the payroll example above, the
src and incl directories can be member directories in one subproject, and
individual subprojects can be created for the lib, doc, and test directories.
The determining factors for the payroll project were the following:

• Project Size

The payroll example is small enough that all files can be included in a single
project. However, to allow for additional code that significantly increases the
size of the application, consider creating subprojects for related files.

• Building Projects

All files in the example are used for building, documenting, or testing the
application. Whether or not you use subprojects in your configuration,
include all of the files in your hierarchy so they are available in your work
area.

In a scenario where the application development, library utilities
development, documentation, and testing teams are working on an
application, you can create subprojects for each of these teams, so the teams
can modify and build their portions of the application separately. Example
subproject names are paycode, util, paydoc, and paytest.

• Variant Projects

If your libraries and some of your code are platform-dependent, you can
have variants for multiple platforms such as Windows XP and Solaris. You
can have one version of each platform-specific project for each platform you
build. You can assign meaningful versions to indicate the platform for which
the code and library subprojects are built. For example, the Windows
projects can be named paycode-win32 and util-win32, respectively. You can
then version the parent project with the platform-dependent version and add
the variant subprojects to it.

If you use your variant configuration for release 1 of your application, you
can add this information to the version for each subproject in your project.
In the current example, your parent project is payroll-win32_rel1 and the
subprojects are paycode-win32_rel1, util-win32_rel1, paydoc-rel1, and
paytest-rel1.

Refer to the Build Manager’s Guide for more information on creating and
controlling variant configurations.
42 CM Live!

Establish the project topology
For these descriptions of the four subprojects, the top-level project version
for the payroll application is shown below.

In Windows-based file systems, if the subprojects are not relative the file
systems do not contain an entry for the individual subproject’s root
directories, but the project displays as shown above.

An example of a Solaris version of the payroll application is shown below:

• Reusable Objects

Converting your file system directories into subprojects enables you to add
the entire subproject to another project. For example, the util-win32_rel1
subproject can be added to another WIN32-dependent project that needs
those libraries.

For Windows-based users: the util-win32_rel1 has an absolute work area so
that it can be shared.

The paydoc and paytest platform-independent subprojects were reused,
Only the platform-specific subprojects needed to be labeled with a variant
version.

• Updating Makefiles

To simplify your makefiles, create project macros for the paths to the files in
your subprojects. In the current example, you can define the following
platform-dependent macros on your project and reference them in your
generic makefile:

payroll-win32_rel1\
payroll\

paycode (> paycode-win32_rel1)
util (> util-win32_rel1)
paydoc (> paydoc-rel1)
paytest (> paytest-rel1)

payroll-sol_rel1/
payroll/

paycode (> paycode)
util (> util)
paydoc (> paydoc)
paytest (> paytest)

PROJ_ROOT = C:\apps\payroll\payroll-sun_rel1\payroll

OBJ_PATH = ${PROJ_ROOT}\paycode\src

INCL_PATH = ${PROJ_ROOT}\paycode\incl

LIB_PATH = ${PROJ_ROOT}\util

TEST_PATH = ${PROJ_ROOT}\paytest

DOCS_PATH = ${PROJ_ROOT}\paydoc
CM Live! 43

Chapter 3: Deployment
You can reuse the makefile in another project because the platform- and
release-dependent information is associated with the project instead of being
defined in the makefile itself.

The complete project hierarchy for the first release of the WIN32 variant of
the payroll application is shown below. The commands used to create the
hierarchy are at the end of this chapter.

The above hierarchy assumes relative subprojects. If the subprojects are not
relative, the subproject root directories are just pointers to the subproject.

External and installation projects
The Telelogic Synergy database is made up of a versioned object pool that
contains all of the versions of all of the objects, including source files, directories,

payroll-win32_rel1
payroll

paycode\
payroll-win32_rel1

src\
Makefile
checks.c
display.c
main.c
taxes.c
payup
Makefile
checks.c

incl\
payroll.h
taxcode.h

util\ util-
win32_rel1
Makefile
compute.c
print.c
util.c
util.h
util.dll

paydoc\ paydoc-rel1
payroll.doc
payroll.ps
paytest\ paytest-rel1
suite1.data
suite1.out
suite2.data
suite2.out
44 CM Live!

External and installation projects
documents, libraries, and executables. Project objects represent collections of
these objects. Most of the projects that have been described so far represent
collections of the objects required to build the application.
An object version exists only once in the Telelogic Synergy database, yet many
projects can use that object version. For example, an include file can be in the
project used to build a library and in every project that calls a function in that
library.
With a versioned object pool, a project in Telelogic Synergy is not limited to
representing the physical configurations used to build a product; you can also
create arbitrary logical configurations that group related objects.

External projects

External projects are logical projects that contain the products of builds that
were performed in other build projects; they are used for product sharing. An
external project makes a component available to consumers without the
overhead of the source files.
In this example, the build manager might create versioned external projects for
the util project. You then have access to different versions of external projects,
such as util-ext_int08, util-ext_int09, and util-ext_int10 for shared products
from successful integration builds.
Developers have access to shared products by adding a version of the external
project to their project and can obtain updates to the products by using a later
version of the external project.
Because the external project contains no source objects, adding it as a subproject
to your project reduces the time required for creating and updating your project.
You also can reduce the time to build your own products because the shared
products satisfy many of your dependencies. Finally, disk space is conserved by
not creating intermediate object files in your work area. An example of an
external project is shown below.

payroll.h
taxcode.h

util\ util-win32_rel1
Makefile
compute.c

util-ext_int08
CM Live! 45

Chapter 3: Deployment
Using external projects

Supplementing a build project with products from other projects is often useful.
For example, developer John might want to have all of the source for the projects
that he is using, but he might want to use previously built libraries from several
other projects. A possible configuration for John’s project is shown below.

In the example above, the billing application links with the utility library from
the original payroll project. Only the library and header files for the util library
are included, and not the source objects from which the library and header files
were built.
If John had included the entire util project, he would have received all of the util
source, which is not what he wants to see or build; he wants to use only the
products generated from the util project.
Another approach to this problem is useful for larger projects: the util build
manager can create a shared, run-time version of the util project, similar to the
one shown below.

util
lib\

util.dll
incl\

util.h

billing-rel3\
billing\

Makefile
src\

main.c
billproc.c

includes\
billing.h
util.h (from util project)

lib\
util.dll (from util
project)

util_ext-int\
util_ext\

util.dll
util.h
46 CM Live!

External and installation projects
This external project comprises the related objects required to use the util
library. Using the util_ext-int subproject shown above, John’s project can
be configured as shown below.

John is reusing the build manager’s integration testing project in this example.
When a developer shares a build manager’s prep project, there are two concerns:

• The objects contained in the shared product could change without warning
when the build manager updates them, so John is not insulated from
ongoing changes.

• If John has the build_mgr role, he could accidentally modify the prep project.

In this case, John should copy his own version of this project so that it is
updated only when he updates his own project. Alternatively, the build
manager can baseline the external project on a regular basis.

When projected into the file system, John’s modified project appears as
shown below.

billing-rel3\
billing\

Makefile
src\

main.c
billproc.c

includes\
billing.h

util_ext (> util_ext-int)

billing-rel3\
billing\

Makefile
src\

main.c
bill_proc.c
CM Live! 47

Chapter 3: Deployment
Product sharing techniques are very important. Use them to share and use
libraries without using the full source to those libraries.

By default, developers receive the latest checked in versions of the libraries
and header files or the external project version. If a developer wants a
different version, he invokes the use command to select a specific version.
For more information, refer to “Product Sharing” in the Build Manager’s
Guide.

Installation projects

When your products are ready to release, create the media for your customers. An
installation project is structured like your product’s installation image; its work
area can be used to create delivery or installation areas for the executables,
libraries, scripts, and other files from which you create an archive or self-
extracting executable, or save the image to CD or DVD. Below is an example of
an installation project for the payroll application:

Configure Telelogic Synergy
This section describes how to configure Telelogic Synergy’s behavior to meet
your team’s needs. It provides information on commonly configured settings,
such as adding users and setting their roles, creating types, creating releases, and
configuring a team’s workflow and development process.
Information also includes strategies for configuring Telelogic Synergy that allow
you to save and reuse your configuration. It also describes the upgrade
implications of configuring Telelogic Synergy.

includes
\

billing.h
util_ext
\

util.dll
util.h

C:\releases\payroll-rel5.0\payroll

bin\
payup.exe

lib\
util.dll

help\
payroll.ps
48 CM Live!

Configure Telelogic Synergy
You can configure Telelogic Synergy in advance, or you can adjust the behavior
while a project is underway. Most companies do a combination of both.

Add users and set roles

Use the ccm users command to add new users and define the roles for each
user. This user list is your most basic security mechanism in Telelogic Synergy,
and the easiest way to control what operations are available to each user. Only a
user in the ccm_admin role can add users and roles.
See Telelogic Synergy Help for more information.

Define releases

A release is a stream of development. For example, one team can be working on
the quickedit/2.0 release of the QuickEdit program while a separate team
works on a quickedit/1.1 bug fix release of the same program. Releases are the
basis for the development process in Telelogic Synergy; when you start using
Telelogic Synergy, you should define all the releases your teams are currently
working on, as well as those that were completed recently. A user in the build_mgr
role adds and maintains releases.
Use the Create Release dialog or ccm release command to add new releases
or define the properties of a release. See Telelogic Synergy Help for more
information.

Configure the workflow

Telelogic Synergy’s default workflow and methodology supports many best
practices for software development and is useful for many teams. However,
Telelogic Synergy enables each team to configure the workflow to fit its own
needs. You can configure the development and testing process in the following
ways:

• Easily add or remove test stages. By default, Telelogic Synergy provides
integration and system test stages. You can easily add stages to support test
cycles, such as performance testing, regression testing, and other types of
testing.

• Configure the level of insulation for developers. On some teams, developers
want to be insulated from other developers’ changes until the tasks have
passed testing, but on other teams, developers may want to get other
developers’ completed tasks, or even get each others’ changes before the
tasks are completed.
CM Live! 49

Chapter 3: Deployment
• Use a different process for each release. For example, a team working on a
new-feature release may want to have only one test phase, integration testing,
and the developers on this team may want to share each others’ changes as
soon as they are complete. Meanwhile, another team that is working on a
maintenance release of the same software application may want a very
insulated environment where developers do not see each others’ changes
until the changes have passed several test cycles.

• Automatically change the team’s process during the course of a release. The
build manager can add or remove test phases and configure the level of
insulation for developers during a release and automatically apply these
process changes to the entire team.

Some workflow settings can be configured by the build manager, but others
require assistance from the CM administrator.
For an overview of how to configure the workflow, refer to the Introduction to
Telelogic Synergy. Refer to Telelogic Synergy Classic Help and the Build Manager’s
Guide for information on purposes and update templates.

Create and configure types

Every object has a type, which dictates the class of data contained in the object
and the object’s behavior. Telelogic Synergy is shipped with the definitions of
many different types of objects; however, you can extend the set of types so that
Telelogic Synergy can understand and track objects for types not originally
supplied.
You can create new types by using the Type Definition dialogs in Telelogic
Synergy Classic. You can also configure many aspects of a type’s behavior.
Types inherit their behaviors from their “super types.” You can configure the
behavior of an entire tree of types by changing the super type. The root of the
source type tree is misc; the primary subtypes of misc are binary and ASCII.
Configure the ASCII or binary type so that your changes apply to all of its
subtypes.
Some of the type behaviors you can configure include the following:

• Require a task

You can indicate whether a task is required to check in or create objects of
this type. To indicate that objects must be associated with a task for check in
to occur, set the Require Task At field to integrate; to indicate that a task
must be selected before an object will be created, set the Require Task At
field to working.

• Require a comment
50 CM Live!

Configure Telelogic Synergy
You can indicate whether a comment is required before objects of this type
are checked in.

• Add properties

You can specify which properties are created automatically to new objects of
this type. For example, you might add a property named
reviewer_comments to new objects.

• Parallel development

You can control whether or not users are allowed to check out or check in
parallel versions by type. For example, because bitmap files cannot be
merged, you can disallow checking them out in parallel.

• Source file initialization

You can define the initial value for different types of source files.

Users must be in the type_developer role to create types. For detailed information
regarding type configuration, read Telelogic Synergy Classic Help available from
the Type Definition dialog. (You can read about the ccm typedef command
as well.)

Forms of configuration

So far, we have primarily described settings you can configure using a point-and-
click interface or a command. But, Telelogic Synergy has many other options that
can be configured in other ways:

• Database options that are set by editing database properties

• User options that are set in a configuration file

• Data file configuration

A description of each of these forms of configuration follows.

Database options

Some options are configured by setting parameters in the Telelogic Synergy
database. These options affect all users of that database.
Configuring database options usually involves editing a property, either on the
model or on a type. Each database contains objects that represent a model and
types. In some cases, you can use the ccm attr -modify command to edit
the property’s value. In other cases you must first use the ccm attr -create
command to create the property before setting its value.
To change database options, you must be in the ccm_admin role.
CM Live! 51

Chapter 3: Deployment
Examples of database options you may want to configure include the following.

• The parallel_exclude_rules setting defines whether parallel notifications
are received for different types of objects. For example, rejected objects are
excluded from parallel notification by default.

• The conflict_parameters setting defines which conflicts users will see when
they show conflicts for a project. For example, if your team typically
associates a file with several tasks, you might want to turn off the multiple
tasks conflict so it does not distract you from more important conflicts.

The allow_prep setting enables developers to include prep subprojects when
updating their project. This setting is not normally used for CM best practices;
however, some customers have a methodology that requires the sharing of build
management projects.
For a complete list of database options, refer to “Default Settings” in Telelogic
Synergy Classic Help.

User options

Some options can be configured in files such as the ccm.ini or
ccm.properties file. The ccm.ini file contains options for configuring
Telelogic Synergy Classic and business logic, and the ccm.properties file
contains options for configuring Telelogic Synergy.
To set options for each individual user, edit his personal copy of the ccm.ini or
ccm.properties file. You can set the default for all users by configuring the
initialization or properties file in the installation directory; if a user does not set
the option in his personal file, he inherits the default from the installation
directory. A user who wants to override any of these settings can set the option in
his own file.
The following are examples of some user options that you can set:

• save_to_wastebasket
This option moves any uncontrolled file in your work area that needs to be
removed to a wastebasket directory.

• migrate_default_state
When you migrate data, the files are checked into the integrate state by default.
You can choose to set the state to working if you want to modify or delete the
files after migration.

• reconfigure_parallel_check
52 CM Live!

Configure Telelogic Synergy
When this option is on, Telelogic Synergy displays parallel messages in the
log file for parallel versions found during update (reconfigure). Although not
all team members need this option turned on, build managers should
consider turning this option on.

• range_for_keyword_expand
By default, Telelogic Synergy expands keywords in the first 2048 characters
of your file. You can change the value, according to the normal size of the
section of your source file header that contains key words.

For a complete list of user options, see “Default Settings” in Telelogic Synergy
Classic Help. For options specific to Telelogic Synergy, see “Using the Options
Dialog Box” in Telelogic Synergy Help.

Environment variables

Some user options can be configured using environment variables. Users can set
their own environment variables.
A commonly used environment variable includes setting the CCM_ENGLOG and
CCM_UILOG environment variables to the path where you want the Telelogic
Synergy session logs written. Use this technique to store your logs in a common
location so the CM administrator has access to them.
For more information about environment variables, see “Default Settings” in
Telelogic Synergy Classic Help.

Data file configuration

Some options are configured by editing data files. Here are some examples:

• A host file specifies the list of platforms that appear in the Properties
dialog. Refer to Telelogic Synergy Classic Help for more information.

• The attrange.dft file in the pt directory under the database path
defines the lists of priorities and subsystems available in the Create Task
dialog and other task dialogs. See Telelogic Synergy Classic Help for more
information.

• To change the layout of many of the Telelogic Synergy Classic dialogs, edit
the Graphical User Interface Language Definition (GUILD) files. GUILD
files are stored in the guild directory under the database path. You can edit
GUILD files to change field layout and length, but you cannot add or
remove fields without modifying the source code.
CM Live! 53

Chapter 3: Deployment
Strategies for configuration

You can apply most configuration settings directly to a production database (a
Telelogic Synergy database that is being used for development).
However, if you have many production databases, configuring each database
separately can be time-consuming and error-prone. Several techniques enable you
to ensure that your configuration is saved and consistently propagated, and if
necessary you can roll back a database to a previous configuration.

Save an empty pack file

Telelogic Synergy provides a set of pack files, which are database archives that
you unpack to create a new database. The base.cpk pack file is an archive for
an empty database with Telelogic Synergy’s generic development model. When
you start using Telelogic Synergy, identify the configuration that applies to all of
your databases and create your own version of the base.cpk file with that
configuration. The following is an example:

1. Unpack the base.cpk pack file to a database named acme (or your
company name).

2. Configure the acme database with all changes that apply to all databases. For
example, add users, add types, configure the workflow, and set the work area
path template.

3. Pack the acme database to a new pack file called acme.cpk. Save it in the
packfiles directory of your Telelogic Synergy installation area.

4. When you are ready to create a new production database, unpack from the
acme.cpk pack file.

5. Retain a list of the changes you have made so that if you decide to upgrade to
a new version of Telelogic Synergy, you can create a new pack file using the
updated base.cpk.

See the Telelogic Synergy Administration Guide for detailed instructions on each
procedure above.

Save changes in the model database

The model database is a special Telelogic Synergy database that stores the
development model, including the types, data files, and property settings. From
this database, new versions of the development model can be installed into
production databases.
You can use the model database to version your changes and roll back to an
earlier version if necessary. The model database is useful when you upgrade to a
54 CM Live!

Migrate the application software
new version of Telelogic Synergy because you can use it to merge your custom
changes with the changes in the new version. The model database is not required
for basic configuration of Telelogic Synergy; however, it is required for source
code customization.

Customization

The standard out-of-the-box development model is very flexible, and you can
configure it in several ways. However, if the available configuration options do
not meet your requirements, you can customize the Telelogic Synergy model
source code.
Although model source code customizations are infinitely flexible, the user-
training costs increase with the modified features and when you upgrade to a
new version of Telelogic Synergy because you must merge and test your source
code changes internally before upgrading. For customers with extensive
customizations, the merge and upgrade process takes significant effort.
The types of customizations customers request and are monitored and often
incorporated as modifications in future releases of the standard Telelogic
Synergy product. Over time, many customers discard their customizations when
they determine that the standard product fulfills their needs.

Migrate the application software
At this point, Telelogic Synergy is properly installed and configured, and the
project topology has been identified, so you are ready to load your data into the
database.
The key to an easy migration is the project topology. If the project topology has
been identified in advance, and you know how you want to represent your
application in the Telelogic Synergy database, the Migrate dialog can help you
load your application into Telelogic Synergy.
This section guides you through some of the issues to consider when migrating
your application and outlines some best practices that might be overlooked in the
rush to go live.
If your team is starting an application from scratch, you can bypass the migration
step because you have no software or history to load. However, if you have any
source for your new application, such as a prototype, you may want to migrate
the source for historical reasons.
However, most project teams have large amounts of existing code to load, and
the remainder of this section describes how to do this.
CM Live! 55

Chapter 3: Deployment
Prepare for the migration

Migrating an existing code base into Telelogic Synergy is one of the first steps in
realizing the benefits of a comprehensive CM solution. However, the apparent
simplicity of this first step highlights some key principles and tests them against
the reality of what your team has been performing to date.

Work the plan

The implementation plan identifies the number and type of applications to be
migrated into Telelogic Synergy. The various application stakeholders are
engaged at this point in preparing for and assisting in the migration and test
activities.

Lessons learned from the past

During the migration process, teams often discover issues with the quality of
their code base and the repeatability of past releases.
These issues come as no surprise because the decision to adopt Telelogic Synergy
was probably based on the recognition that the existing CM practices were
inadequate. Do not be concerned if this part of the Telelogic Synergy
implementation forces your team to confront past problems.
Teams are forced to address a number of issues and recognize deficiencies to
ensure that the application is migrated. Teams and their members must not be
made to feel inadequate and defensive because of their past omissions. Instead
they should be supported and motivated to adopt Telelogic Synergy’s
sophisticated CM support so they can apply industry best practices.
The ultimate goal is to ensure that the code is loaded into Telelogic Synergy so
that these kinds of issues become a thing of the past.

Engage the application’s stakeholders

For each application to be migrated into Telelogic Synergy, the implementation’s
CM implementation team must ensure that the build manager or configuration
authority is identified and consulted. This person must be able to answer the
following questions about the application:

• What are the characteristics of the application?

• Where is the application source? Is the application team using a rudimentary
version control system that is the repository for all the information or is it in
the file system? What are the identifiers used to distinguish the different
releases?
56 CM Live!

Migrate the application software
• When is the migration best performed? Is a current release being completed
that is a good candidate, or must an incremental migration be performed
later to get the latest changes?

• How is the application built? How are the releases identified? Which releases
are still supported?

This information is collected as a part of the implementation planning, so there
should be no surprises and ideally, the configuration authority is well informed of
the planned migration.
The cooperation and assistance of the configuration authority and potential key
development personnel are necessary to ensure that the right configuration is
migrated with the correct identification.

Identify the correct configuration

Before migration commences in earnest, the application development team
prepares by identifying the elements of the releases to be migrated and ideally
includes design specifications, user manuals, and other documentation.
The easy solution might seem to be to migrate everything into Telelogic Synergy.
However, migrating all version histories into Telelogic Synergy might not
provide an accurate historical record. For example, identifying past releases or
using Telelogic Synergy to reproduce them might be difficult unless that’s the
requirement and additional work is done to ensure it.
The best approach is to view the migration into Telelogic Synergy as a fresh start
and an opportunity to clean up the configuration and consolidate efforts around
the releases that are critical to the business.

Migration strategy
Determining the approach, order, and scope of migration is a part of the
planning activities discussion. The time and effort required for the migration
depends upon the adopted migration strategy.
Typically, the migration should be kept separate from the related but
independent agendas identified below. Benefits to undertaking these activities
must be made visible and become a part of the plan. They are not simply to be
undertaken opportunistically because unexpected issues often arise when
preparation is inadequate.
CM Live! 57

Chapter 3: Deployment
Restructure the code base

Some teams decide to totally restructure the code base prior to migration. This
can cause the migration to be confusing because it will throw another unknown
element into a team’s use of Telelogic Synergy.
Avoid extreme measures. With a monolithic existing code base, you can obtain
greater performance results by carefully restructuring. When the application can
be represented as a component-based structure, you’ll gain significant advantages
in maintaining the projects. This can be important for applications that will
evolve and grow over time.
A compromise position is to delay code restructuring until after the initial
migration. This opens the possibility of using Telelogic Synergy to assist in code
restructuring in parallel with mainstream development activities.
Regardless of the decision on restructuring the code base, the configuration
authority must be a key part of the decision-making team and must be prepared
to provide the resources to ensure that application integrity is retained.

Focus on business supported releases

Instead of migrating all history or every release, consider focusing the migration
strategy only on the current releases that the customer’s business supports.
Telelogic Synergy is then the starting point from which teams develop the
application with no baggage from older releases. Experience shows that when the
migration effort includes the history, teams are delayed in adopting Telelogic
Synergy and don’t reap the benefits of CM best practices.
By initially migrating an application’s supported releases, you can begin
development by using Telelogic Synergy against the supported baselines. Avoid
migrating recent releases that might impact existing schedule commitments.
The migration of past releases can be done in the background, so that it catches
up with current development activities. This ensures that the migration of less
critical and less volatile historical information does not delay the team’s use of
Telelogic Synergy.

The migrate dialog

The Migrate dialog in Telelogic Synergy Classic supports the migration of
medium size applications. The facility allows the user to mark directories in the
target source as Telelogic Synergy projects and migrate the whole structure as a
single action. In other words, the Migrate dialog sees each source tree as a single
project, but you can mark a directory to be created as a subproject.
58 CM Live!

Migrate the application software
Consider migrating all applications into Telelogic Synergy in the working state, so
the configuration can be tested and validated before it is marked as released.

Manage and evolve the project structure

The following information sources describe how to migrate, set up, and
manage the project structures. Because your application grows and changes,
your project structure grows and changes to meet your evolving
requirements.

• For general product usage information, refer to Telelogic Synergy Classic
Help. The following bullets show where to find specific information about
Telelogic Synergy functionality.

• Migrating data

Read Telelogic Synergy Classic Help available from the Migrate dialog.
(You can read about the ccm migrate command as well.)

• Create a project

Read Telelogic Synergy Classic Help available from the Create Project
dialog. (You can read about the ccm create command with the -p
option as well.)

• Add an existing project to another project

Read Telelogic Synergy Classic Help available from the Add Object
dialog. (You can read about the ccm use command as well.)

• Set work area properties

Read Telelogic Synergy Classic Help available from the Work Area
Properties dialog. (You can read about the ccm work_area
command as well.)

• Convert an existing directory to a subproject

Read Telelogic Synergy Classic Help available from the Create dialog.
(You can read about the ccm create command as well.)

• Copy a property to subprojects

Read Telelogic Synergy Classic Help available from the Attribute Copy
dialog. (You can read about the ccm attr -copy command as well.)

• Create platform-specific variants

Read Telelogic Synergy Classic Help available from the Create Project
dialog. (You can read about the ccm create command as well.)
CM Live! 59

Chapter 3: Deployment
Additionally, refer to the Build Manager’s Guide for information about
managing multiplatform project hierarchies.

• Set up external projects, installation projects, and platform-specific
variants

Refer to the Build Manager’s Guide.

About larger migrations

For larger applications, the time taken to register the numerous objects and
structures in Telelogic Synergy can significantly slow the migration. Memory
usage can be high, which increases the risk of failure due to inadequate computer
resources. In this case you should split the migration into multiple sessions. For
example, migrate a project but ignore one of its large directories that will be
brought in as a subproject. In a separate session, migrate the large directory as a
project, and then either add it from the GUI or use it from the CLI as a
subproject of the first project.
When you migrate a large code base, plan your project layout so you can specify
which projects are subprojects. (This is called a "bottom up" way of migrating.) If
needed, split the migration into several sessions. Consider migrating the
individual subprojects first, then assembling the higher-level projects by
combining these subprojects.

Preview the migration

The Migrate dialog works either in a batch or interactive mode. The interactive
mode allows you to preview the migration and ensure that all of the necessary
types are present, the directory structure is the way you want it, and files that you
want to ignore are identified. Use the interactive mode be used and study the
preview carefully. The extra time needed to ensure that the data is migrated
correctly is much less than the time required to rearrange the data after it is
migrated.
Review the information carefully before the migration because correcting some
information after the migration can be difficult, and making corrections after
new versions have been checked out can be even more complicated.

Migrate applications and version histories

When you migrate applications that already have controlled versions created by
another CM product, you must decide whether to migrate each object’s entire
history or only selected versions in each object’s history.
60 CM Live!

Migrate the application software
If your project team already has version history data stored in either SCCS, RCS,
or PVCS, you must decide how much of the version history to load into Telelogic
Synergy.
There are advantages to exporting or extracting the files from the version control
tool into the file system and performing the migration from these files. This
technique allows the team to identify the precise configuration they want to
migrate into Telelogic Synergy and use the same build tools that were used to
create the release originally.
The three common approaches to loading in an existing version history are
described below.

• Load latest version only

The fastest migration is to load only the latest version. The disadvantage is
that you do not have the history data in Telelogic Synergy. You are not able
to perform operations, such as comparing new versions with old versions of
the same object. From Telelogic Synergy’s perspective, the project is starting
with all new file versions.

• Load all or selected versions

By default, the migration rules are defined to load all version history. The
advantages of this method are its simplicity and ability to import the full
history. The disadvantage is that it might import more versions than you
want it to.

Most basic version control systems do not distinguish between intermediate
work-in-progress versions and versions that represent significant milestones.
Therefore, migrating entire histories does not automatically generate
previous releases. The set of object versions in a release might still need to be
assembled.

Because version control tools do not keep track of directory versions, a full
migrate of the entire version history results in a directory structure that is a
superset of all files that ever existed in the project. File deletions, moves, and
renames are not reflected in the resulting Telelogic Synergy database.

The duration of the migration is proportional to the amount of history that
is loaded. Migration can be excessively time consuming when loading a large
history.

• Load only versions that were for particular release milestones

This option loads only versions corresponding to particular releases. To load
release-specific versions, point the Migrate dialog to the first milestone
CM Live! 61

Chapter 3: Deployment
release. After the first milestone release is loaded, point the Migrate dialog
to each milestone release in succession and run an incremental migration.

An incremental migration allows the current build tools to set up a previous
release baseline that is ready for migration into Telelogic Synergy. Using your
current build tools ensures that the extraction of specific versions for a
particular release is validated against your company’s current best practice.

If the scripts correctly retrieved and reconstructed each milestone release,
which contained only the files in that release, you will not experience the
directory version problem described above.

Convert keywords

If your current source code uses SCCS, RCS, or PVCS keywords, consider
running a script that converts those keywords to Telelogic Synergy keywords.
Keywords can be expanded when a check-out or check-in is performed, and they
let you embed properties in the source automatically; therefore, you can easily
propagate the properties to products such as libraries and executables.

Migrate vendor code

Many project teams build on code obtained from outside vendors. Vendor-
supplied code can be either in the form of source code that gets built locally or
libraries and header files that are linked with your code at build time.
Consider managing vendor code along with the local code, especially if the
vendor code changes frequently and new versions are used. Updates from the
vendor should be handled using an incremental migrate approach from the
previous vendor release.
Code management might need to be a scripted process repeated at frequent
intervals. Consider the potential advantages of holding your supplier responsible
for the migration where you accept the code in a controlled environment,
possibly with DCM.

Note This is more suitable for customized code rather than
standard packages.

Migrate products

Marking controlled products is one of the keys to the task-based methodology.
Decide which products to migrate and which to ignore. Typically, teams ignore
intermediate products, such as .o or .obj files, and migrate libraries, DLLs, and
executables. Implementers mark items as products with the is_product property.
62 CM Live!

Build products
Must mark the migrated versions as controlled products. To mark them, right-
click over the product objects and open the Properties dialog. Select the Is
Product option. (If you did not migrate the existing version of the products, you
must do this the first time you build the products.)
The following is an example of marking an item as a product from the CLI:
$ ccm query -t executable "is_member_of(`top-toolkit/1.0’)"
$ ccm attr -c is_product -type boolean -value TRUE @

Build products
One of the key decisions project teams must make is whether to use a third-party
build tool approach to build their applications or continue to use the method
they were using before converting to Telelogic Synergy.

Build with a third-party build tool

If you choose the third-party build tool approach, you must manage your existing
makefiles, insert steps into your build scripts to ensure that the products are
checked out and can be modified before the build, and ensure that the products
are checked in after they are updated.
Problems reported by your make tool are probably due to the new location of the
files. Search for absolute paths in your makefiles to determine whether you must
add include search directories so that header files can be found.
For copy-based work areas, set the work area options Use New Timestamps
and Make Copies Modifiable when using third-party build tools. Also,
reconcile the project or directory after the build if you are controlling any
products.

Verify and test the application
The verification and test step ensures that the products built from within the
Telelogic Synergy environment are the same as the ones that were built
previously. They may not be built identically, but the end product must be
identical.
There are several reasons for this step:

• The development team must have confidence that they are building from a
solid foundation. Developers want to know that problems introduced during
the construction of release toolkit/2.0 result from work on the toolkit/2.0
release, and not because the toolkit/1.0 baseline was partially or incorrectly
migrated.
CM Live! 63

Chapter 3: Deployment
• The quality assurance team wants to ensure that the baseline from which
future patches are made has been validated; then they can focus on
identifying regressions and testing a specific patch instead of testing the full
application each time.

• Project management wants assurance that the full application is building
correctly before making it available to the users.

System validation
To ensure that you have a good baseline for your application, validate both your
project structure and your build products.

Validate project structure

In this stage, members of both the development team and quality team review
the project structure, the build process, and the resulting products. It is an
excellent time to begin educating key members of the team about the CM system
and incorporate their feedback. Developers especially live in the project structure,
so they must understand the structure and believe that it is a usable and effective
representation of their applications.

Validate build products

Validation is necessary for confirming that the Telelogic Synergy implementation
is behaving as expected. Validation and test tasks often identify some missing
files, determine that an executable was linked with incorrect options, or find a
library that was not migrated. Sometimes the problems are quite subtle. For
example, you might discover that you had been building in your previous system
with different versions than you thought, or that developers were building with
personal versions of makefiles rather than with the controlled versions.
If mistakes in the original file system structure or build process are discovered,
you must echo these errors in the initial version of the product in Telelogic
Synergy so that you can reproduce the same results as in your original baseline.
Correct these errors in a new version of the product.
The situation might require you to go through a full software validation cycle. If
you are loading legacy applications that are still undergoing maintenance, you
probably want a full validation cycle.
The time required for validation is a function of the stage the project is in when
Telelogic Synergy is deployed. Ideally, the team validates that products built with
Telelogic Synergy compare to a previously built version of the product. However,
when software is migrated into Telelogic Synergy after a code freeze, but before a
release milestone, there is no release to compare and validate against.
64 CM Live!

Set up releases
Rebuild and retest after any changes to the structure, project data, or build
process/makefiles. Iteration during this phase is very common. The next step is
to turn your project into a frozen baseline upon which to build future work. By
the end of this phase, ensure that the application represents and builds the way it
was designed.

Create an initial baseline

After the application structure is finalized, the project data has been verified as
successfully migrated, and the products are building properly, you are ready to
baseline the initial application project hierarchy.
The Build Manager’s Guide describes the steps for creating a baseline. You must
release, or check in to the released state, your full project hierarchy of source
objects, products, and projects.

Note Now is an ideal time to take a snapshot of Telelogic Synergy
databases that contain the baseline and to validate your
backup strategy. Refer to the description of backup strategies
and commands in the Telelogic Synergy Administration Guide.
Test your backup procedures and ensure you can revert to
this version of your database.

Set up releases
When a working baseline is available in Telelogic Synergy, set up the release
preparation areas for the various releases that the project team will produce. Set
this up beforehand so everything is ready and running smoothly when you go
live.
The amount of work depends on how many variants you produce for each
release. For example, the number of platforms you support and how many
releases your team is producing in parallel will impact how many release areas
you’ll need to create. A team producing Windows software for a new product
release might have a single variant and a single release, but a team building ten
different platforms with three simultaneous releases has a prep project or prep
project hierarchy for each combination.
Create the release preparation projects in the order described in this section.
Although you do not have create them in this order, it makes the process easier.
Normally, the integration build management projects store the latest checked in
software, which has the latest completed tasks.
Refer to the Build Manager’s Guide for detailed, step-by-step instructions.
CM Live! 65

Chapter 3: Deployment
Support different platforms

For each platform you support, create a version of the project hierarchy for that
variant, for example, Windows or Solaris. Only projects that are variant-specific
need their own project version. That is, projects that contain platform-independent
data, and have absolute subprojects can be shared. You do not need different
versions for each platform.
The exception occurs when you have work areas for both Windows and UNIX;
platform-independent projects can usually share a single work area for all UNIX
platforms across NFS, but you usually need a separate Windows version of the
platform-independent projects just to get a Windows work area.
Use the Check Out Project dialog in Telelogic Synergy Classic, Copy Project
dialog in Telelogic Synergy, or ccm copy_project command to copy the
variant project hierarchy in one step. Set the release and platform values, and set
the version to a meaningful value. For more information on checking out
integration testing projects, refer to the Build Manager’s Guide.

Create parallel release projects
For each project variant, create a version of the project hierarchy for each parallel
release. You defined the release earlier, when you configured the development
workflow. For each release, create a version of the project hierarchy. For the
Windows platform variant, you might have releases billing/2.1 and billing/3.0
under construction for the billing project. If so, you’ll have two projects: billing-
int_win_2.1 and billing-int_win_3.0.
Use the Check Out Project dialog in Telelogic Synergy Classic, Copy Project
dialog in Telelogic Synergy, or ccm copy_project command to copy the
variant project hierarchy in one step. Set the release property on the project
version and the project purpose to integration testing.
For information on creating the build management projects for each parallel
release, refer to the Build Manager’s Guide.

Create system test build management projects

System test build management projects are used for system testing. They are
created much the same way as integration build management projects. In the
Check Out Project dialog in Telelogic Synergy Classic or Copy Project dialog
in Telelogic Synergy, select System Testing as the purpose and set the release,
platform, and version. As with integration build management projects, create one
system testing project hierarchy for each platform and release. System test build
management projects contain tasks that are ready for system testing. Start from a
66 CM Live!

Set up releases
baseline created from an integration testing hierarchy, the set of tasks that passed
integration testing, or from a specific list of tasks.

Automate build management

Much of the work for which the build manager is responsible can be fully or
partially automated. You may want to automate activities to be completed during
the night when computing resources are more available. The results are then
available to the development team first thing in the morning.
One of the build manager’s main responsibilities is producing the integration test
area and the system test area.

Note Your development process may call for more, fewer, or
different test areas, but the concept remains the same.

Quality assurance engineers normally use the integration and system test areas
for testing, but developers can also use one or both test areas for unit testing.
Automation means writing scripts or batch files that call Telelogic Synergy
commands and other commands, such as file system commands, to search log
files for error messages.

Note If you use both Windows and UNIX development platforms,
consider using a multi-platform language, such as Perl, for
your scripts.

The following list contains just a few of automation’s many advantages:

• The process is reproducible.

• The process is not subject to manual errors.

• You can schedule the process to run at convenient times, such as at night.
You can use cron on UNIX or at on Windows to run the process at a
scheduled time, such as every night at midnight.

• In the absence of the build manager, others can run the process.

Integration testing
The integration test area is usually built nightly. The goal of the integration
testing cycle is to find problems as early as possible. The normal integration
testing process involves the following actions:

1. Update your project to get the latest completed tasks from the development
team.

2. Build the controlled products.
CM Live! 67

Chapter 3: Deployment
This might include packaging; for example, creating a CD image. If you
created an installation project, update it after building the products, and then
use it to package the products.

• If the build is successful, run a base level of tests.
• Review the results of the build and tests, and if they are good, proceed to

the next steps.

3. Make the tasks that passed testing available for use by the development team.

• Create a baseline from an integration testing hierarchy. Refer to the Build
Manager’s Guide for more information.

• As an option, create an installation with the latest integration test
software that is available for the team’s use. Developers and testers can
run on the previous night’s build, and developers can update their
personal work areas to include the submissions from their team
members.

Refer to the Build Manager’s Guide for detailed information about the integration
test process.

System testing

The goal of the system testing cycle is to obtain a version of the software that
meets specific quality criteria, which is often used to prepare for a release or some
other milestone. Unlike the integration test area, the system test area is normally
built on demand. Also, rather than including everything developers submit, as the
integration build does, the system test area is more selectively updated. The build
manager needs to specify which tasks to include, thereby providing the critical
level of insulation for fixing defects without risking the introduction of changes
beyond those required to solve specific problems.
The normal process for the system test area includes the following actions:

1. Identify which tasks to test and prepare the system test area with those tasks.
Set the baseline to a particular integration testing baseline. Refer to the Build
Manager’s Guide for more information.

2. Update the test area to include specified tasks.

3. Build the controlled products and create an installation image if needed.

• If the build is successful, test the resulting product to determine the
quality level of the software and to verify that the functionality expected
for this version of the software is included.

• If the tests identify critical problems, create and assign tasks or change
requests, and identify which are required for the release or milestone.
68 CM Live!

Set up releases
When the required tasks are completed, add them to the system test task
folder and repeat the update, build, and test process.

After the system test area has all the features and fixes needed for the release, and
it has passed testing, the release is ready and the system test build management
projects can be released or baselined.
Refer to the Build Manager’s Guide for detailed information about the system test
process.

Automated systems administration

Only a few systems administration activities are required for the ongoing
maintenance of Telelogic Synergy. These activities are normally automated using
nightly scripts or batch files that run by cron jobs or another job scheduler. The
Telelogic Synergy Administration Guide describes all of the necessary systems
administration processes, but the following are the two most important jobs.

Nightly backup

All production Telelogic Synergy databases must be backed up regularly.
Excellent recovery capabilities are available, but successful recovery requires
consistent backups. At some point, most development organizations experience
a media failure, such as a hard disk crash. With the backup capabilities in
Telelogic Synergy, you can recover from a media failure, including the last
transaction made before the failure.
Routinely monitor for database integrity. Use the ccmdb check command as
part of the nightly backup and the ccm fscheck command at least once a
month.
Refer to the Telelogic Synergy Administration Guide for a description of backup
strategies and tools. Ensure that these procedures are in place and validated by
this point in the Telelogic Synergy implementation.

Database cleanup

Although the Telelogic Synergy product has powerful capabilities for sharing
products, single-instance source pools, and delta and compression mechanisms,
Telelogic Synergy databases can grow very quickly under some circumstances. In
particular, when many developers work on multiple parallel releases and the rate
of change is fast, many new versions, especially of controlled products, are
created each day. Decide on a strategy for identifying obsolete products and
source, and then purge older versions to reduce database sizes.
Telelogic Synergy provides administration commands to “garbage collect”
unused versions. This function is normally performed at night. Several options
CM Live! 69

Chapter 3: Deployment
enable you to control which objects to remove based on their age. For more
information, see the Save Offline and Delete dialog’s All unused products for
a specified release scope in Telelogic Synergy Classic Help.
For example, the following commands query for and remove controlled product
versions that are not members of any project in the database:
$ ccm query "is_product=TRUE and not is_bound()"

$ ccm collapse @

Perform load testing
By now, most project teams can see that they are almost ready to go live, and
users are ready to learn how to use the system and move into production.
Consider taking some preparatory actions to ensure that the roll-out goes
smoothly.
Only a few users have probably been on the system, and unless computing
resources are extremely scarce, the users have performed well. However, during
the next stage, the number of users and overall system activity will probably
increase dramatically, so the system load must be tested before end-user training
or live use.
Insufficient planning and preparation can result in a Telelogic Synergy
implementation that does not scale. The failure to scale can easily give end users a
negative first impression if they encounter trivial problems caused by a poor or
inappropriate setup.

System resources

Sometimes a site discovers resource issues, such as insufficient memory or swap
space on some machines or servers not configured for enough processes. Ideally,
these problems are predicted and corrected early in the system resource planning
stage; however, the system is not subjected to a typical load until sometime in this
stage in the implementation.
Sometime before end-user training and going live, the CM implementation team
should stage a test in which the maximum expected number of Telelogic Synergy
sessions are started on the actual systems that are running a typical load. For
example, if your project team includes 120 developers and testers, and you expect
that 75 is the maximum number of simultaneous sessions, the test team should
start 75 sessions on the same network with the same servers to be used when
running live and conducting training.
70 CM Live!

Perform load testing
Individual workstation test

Verify that each end-user system is tested before the user starts training or goes
live. If the system is a PC with a Windows operating system, the client is installed
on that system. Network access is possible, but for performance reasons, install
Telelogic Synergy locally when required.
Ensure that the test includes starting the user’s common development tools, such
as ™, Visual Studio®, or JBuilder for developers and WinRunner or TestDirector
for testers. If the user normally runs desktop applications such as e-mail,
MS Word, or an editor, confirm that these programs are also running.
Any number of potential problems can exist: specific system components, such
as networking, have not been installed; the system is not configured for the
appropriate domains; or not enough RAM or disk space is available for the
system load the user has on the machine.
The key is to ensure that each user’s systems perform acceptably during peak
load periods before you proceed to the next step.
CM Live! 71

Chapter 3: Deployment
72 CM Live!

4 Usage
At this stage, your CM implementation team, and especially the build and release
manager, should be fairly comfortable using the product and explaining its use to
other personnel. All the project data is loaded, and you are now ready to train the
developers and other users.
Average developers need to know only a few Telelogic Synergy commands to
perform their daily development tasks. However, developer training is still
important because the developer is operating in the context of an overall team,
and a primary focus is team support and overall team productivity. Developers
must understand the workflow of software through the team members, and how
their changes eventually get to the quality team, then to the release manager, and
finally to the customer.

Interfaces installed in Telelogic Synergy 6.6a
Telelogic Synergy offers several different graphical user interfaces, as well as a
command line interface. The following graphical user interfaces are included in
the Telelogic Synergy 6.6a release:

• Telelogic Synergy

This interface is for users in the developer or build_manager role. It contains
functionality for daily development and build management activities.

• Telelogic Synergy Classic

This interface contains functionality for build managers and CM
administrators. This interface is no longer being enhanced.

Timing the training
The CM implementation team receives its training before the deployment stage.
Timing the developer training is equally important. Developers should learn the
system immediately before going live. If developers are trained too early, they
might forget much of what they learned by the time they are ready to use the
system with their projects.

Training data
Ideally, the development team is trained on site with actual project data that
replicates the production environment. This training is usually done with a copy
CM Live! 73

Chapter 4: Usage
of the production database so that student developers feel free to try anything
without fear of doing permanent damage. In fact, making mistakes benefits
student developers because they can see the consequences and how changes can
be undone.
However, customers often find it convenient to use the training material
provided as part of the formal courses offered.

Developer training strategies

Customers must recognize the risk associated with the inadequate or delayed
adoption of Telelogic Synergy and determine the appropriate training strategy.
This section describes three schools of thought on developer training:

• Provide a thorough, formalized, developer training course.

• Provide a three-hour, localized, training course followed by hands-on use.

• Give the developers a manual and point them to the Tutorial.

The following sections describe each of these approaches. The approach that is
best for your project team is a function of several factors, including the
experience level of the developers, the culture of your organization, the level of
awareness of CM concepts and benefits, and the time available for training.
Consider providing a combination of the three training types. After receiving the
formal training, users often benefit from individual study using the tutorial to
cover any areas they might need to revisit. Finally, a follow-up “chalk talk”
discussion, based on the local configuration and usage of Telelogic Synergy at the
customer site, prepares them to work effectively.

Note Users should train on the types of interface they will use. For
example, most developers are trained using Telelogic Synergy,
and build managers are trained using Telelogic Synergy and
Telelogic Synergy Classic.

Localized developer training

For many teams, the ideal level of training consists of a morning session with
approximately three hours of presentations, demonstrations, and white-board
discussions using actual project data. This is followed by an afternoon session
when developers use the system at their desks, while an experienced user roves
from office to office answering questions and providing tips and shortcuts.
This activity is a part of user-mentoring and can be conducted by a skilled
member of the CM implementation team or by a consultant.
74 CM Live!

Timing the training
Self-guided developer training

The Telelogic Synergy Tutorial provides a self-guided introduction to the most
common developer and build manager activities. The guide includes modules of
typical operations that developers use most in Telelogic Synergy. Important
terms and concepts are described in the Introduction to Telelogic Synergy.
Although tool-savvy developers can usually get by with just the guide, most
organizations use the guide with either formal or localized developer training.
Check the Support site for the most current version of the Telelogic Synergy
Tutorial.

Developer training essentials

Regardless of the form of training you choose, cover the following important
topics. Consider supplementing these topics with additional topics that are
important to your project teams.

Terms and concepts

During training, ensure that you define the following terms and concepts:

• Object types

• Projects and work areas

• Personal and release prep work areas

• The task-based workflow

• Roles and security — that is, who can do what

Tool operation

Discuss the following tool operations during your training session:

• The graphical user interface to be used

• The command line interface, if needed

Developer actions

During your training session, discuss the following developer actions:

• Creating and completing tasks

• Making a change

• Adding a new file

• Incorporating teammates’ changes

• Managing work areas
CM Live! 75

Chapter 4: Usage
• Building and testing

Go live!
The team is now ready to go live and begin using Telelogic Synergy in a
production environment. This last step is often carried out in parallel with the
user training.
The following sections take you from implementation to live usage.

Migrate incremental changes

The development team has probably made additional changes after the baseline
was migrated into Telelogic Synergy. Before Telelogic Synergy is put into
production, changes must be loaded into Telelogic Synergy so that the
developers go live on the most current data.
The Migrate dialog has an incremental migrate option designed for this purpose.
The option examines your code base and applies only those versions that are
newer. This is useful when you do not have an easy way to know what files have
been changed. If Telelogic Synergy is replacing an older generation tool, the
easiest approach is to extract the source and perform an incremental migration
from the file system. You can perform an incremental migration by using the
Reconcile Work Area dialog in Telelogic Synergy Classic, Sync Work Area
dialog in Telelogic Synergy, or the ccm reconcile command, if the version
history is not needed.
If you already know the set of changes that were made during this period, you can
develop a simple script to load the new versions.
Alternatively, some teams have developers reapply their changes as part of the
training process. Because they already know the changes they made, they can
concentrate on the CM process involved in creating work areas, checking out
files, applying the changes, and checking in the modified files. If you take this
approach, verify that all the changes were applied.

Activate users

You are now ready to open the gates to the production database. To do this, edit
the users list to add developers, testers, writers, project managers, and other users.
If the database is protected, you must unprotect it.
Even new users who have undergone training will need some support when they
first start using Telelogic Synergy. The more competent members of the CM
implementation team should be on hand to help with the transition to Telelogic
Synergy.
76 CM Live!

Go live!
Create personal projects

Developers need at least one dedicated area in which to work. A developer
creates this area by copying the desired project from the integration testing
project for the desired release and variant. For example, when user Ann wants to
work on the WIN32 version of the billing/3.0 release of the billing project, she
copies out the project billing-ann_win_3.0 from the billing-int_win_3.0
project.
Creating personal projects is often the first action in the developer training.
Personal projects can be created in advance by the build manager, but he must
ensure that the projects are created in a session that is running as the user so that
the project and work area permissions are correct, so this is normally done either
with the user or by the user.

The CM process evolution

Continuous process improvement is important. Your CM needs will change over
time as your company grows, you expand your platform coverage, you support
more releases, your code base grows, your team spreads to multiple locations,
you out source, and myriad other reasons.
Telelogic Synergy was designed to grow and evolve along with you. Be sure to
review your CM process after each major release milestone and ask yourself if
your CM process needs adjusting to reflect changes in the way you produce or
want to produce software. Adjusting Telelogic Synergy to reflect these changes is
usually easy. The improved level of automation that results from continuous
improvement is significant.
CM Live! 77

Chapter 4: Usage
78 CM Live!

Appendix A: Implementation questionnaire
This section contains a list of information needed from each project team to
perform the implementation tasks described in the preceding chapters. You can
use the questionnaire to help gather the necessary information.

Source code
These questions pertain to the source code you anticipate bringing into Telelogic
Synergy. The answers help determine the amount and type of code to migrate into
a Telelogic Synergy database.

1. Approximately how many source files make up a release of your application?

This number should include test files, documentation files, and other files
except object files, executables, libraries, or other generated files.

2. Approximately how many lines of code in total make up a release of your
application?

3. How many executables are built for a release?

4. How many libraries are built for a release?

5. How much space, in kilobytes, does one release of your application use?
Include all files of all types used to create the software application, such as
source, objects, documents, tests, and others.

6. List the types of files you use in your application, for example, Java or C++
source, C++ headers, graphic images, XML, Perl scripts, database SQL, and
UML tool data.

7. How many different languages are used in the application, such as C, C++,
Java, and others?

8. List any third-party code you use in your application that you may want under
Telelogic Synergy control, for example, third-party libraries.

9. Do you currently use any version control technology, for example, PVCS,
SourceSafe, SCCS, RCS, CVS, or custom? If so, what?

10. If you currently use a version control system, what are your current releases?
Which past releases are currently supported?
CM Live! 79

Appendix A: Implementation questionnaire
Build environment
The following questions pertain to the way you currently build your application.

1. What is your current build mechanism, for example, ANT, Make or shell
scripts?

2. If you use make, what version, for example, Native platform, Sun make, or
GNU make?

3. Do you use any source code generators or special compilers, such as UML
tools or a GUI builder? If so, which ones?

4. Do you deploy your code to an application or web server? If so, which ones?

Project environment
The following questions pertain to some additional factors in your development
environment.

1. How many developers are on your project?

2. How is the project team organized?

3. Where do developers work? One or more locations? Across campus, town,
country, international? How do they currently share their work? What is the
frequency with which they need to synchronize?

4. How many releases are you developing in parallel?

5. What development platforms do you use?

6. What platforms do you use for builds?

7. What delivery platforms do you use?

8. What other projects does your project depend upon, for example, do you use
source or libraries from other project teams?

9. Is a development team responsible for one or more component? How many
components are there? How is the system organized?
80 CM Live!

Appendix B: Technical support

Contacting IBM Rational Software Support
Support and information for Telelogic products is currently being transitioned
from the Telelogic Support site to the IBM Rational Software Support site.
During this transition phase, your product support location depends on your
customer history.

Product support

• If you are a heritage customer, meaning you were a Telelogic customer prior
to November 1, 2008, please visit the Synergy Support Web site.

Telelogic customers will be redirected automatically to the IBM Rational
Software Support site after the product information has been migrated.

• If you are a new Rational customer, meaning you did not have Telelogic-
licensed products prior to November 1, 2008, please visit the IBM Rational
Software Support site.

Before you contact Support, gather the background information that you will
need to describe your problem. When describing a problem to an IBM software
support specialist, be as specific as possible and include all relevant background
information so that the specialist can help you solve the problem efficiently. To
save time, know the answers to these questions:

• What software versions were you running when the problem occurred?

• Do you have logs, traces, or messages that are related to the problem?

• Can you reproduce the problem? If so, what steps do you take to reproduce
it?

• Is there a workaround for the problem? If so, be prepared to describe the
workaround.

Other information

For Rational software product news, events, and other information, visit the IBM
Rational Software Web site.
CM Live! 81

https://support.telelogic.com/synergy
http://www.ibm.com/software/rational/support/
http://www.ibm.com/software/rational/support/
http://www.ibm.com/software/rational/
http://www.ibm.com/software/rational/

Appendix B: Technical support
82 CM Live!

Appendix C: Notices
This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.
IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send written license inquiries to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
written inquiries to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Some states do not allow disclaimer of express or implied warranties in certain
transactions. Therefore, this statement may not apply to you.
CM Live! 83

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.
Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.
IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
1 Rogers Street
Cambridge, Massachusetts 02142
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.
The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement or any equivalent
agreement between us.
Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.
Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy of
84 CM Live!

performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.
This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.
If you are viewing this information softcopy, the photographs and color
illustrations may not appear.
CM Live! 85

Trademarks

IBM, the IBM logo, ibm.com, Telelogic, Telelogic Synergy, Telelogic Change,
Telelogic DOORS, Telelogic Tau, Telelogic DocExpress, Telelogic Rhapsody,
and Telelogic System Architect are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other
countries, or both. These and other IBM trademarked terms are marked on their
first occurrence in this information with the appropriate symbol (® or ™),
indicating US registered or common law trademarks owned by IBM at the time
this information was published. Such trademarks may also be registered or
common law trademarks in other countries. A current list of IBM trademarks is
available on the Web at www.ibm.com/legal/copytrade.html.
Citrix and other Citrix product names referenced herein are trademarks of Citrix
Systems, Inc. and/or one of its subsidiaries, and may be registered in the United
States Patent and Trademark Office and in other countries.
 is a trademark or registered trademark of the Foundation.
Informix is a trademark or registered trademark of International Business
Machines Corporation in the United States, other countries, or both.
Java and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.
FLEXnet is a registered trademark or trademark of Macrovision Corporation.
Microsoft, Windows, Windows XP, Visual Studio, and/or other Microsoft
products referenced herein are either trademarks or registered trademarks of
Microsoft Corporation.
Sun, Sun Microsystems, Solaris, and Java are trademarks or registered trademarks
of Sun Microsystems, Inc. in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and
other countries.
Other company, product or service names may be trademarks or service marks of
others.
86 CM Live!

Index
Index

A
allow_prep, database option, 52
architecture, client/server (discussed), 17
automounter and data distribution, 19

B
backups, nightly, 69
baseline

baseline projects, 28
creating, 65
defined, 28

build management, automate, 67

C
ccm users command, discussed, 49
ccm.ini, user option, 52
ccm.properties, user option, 52
ccm_helpsrv (See help server request), 18
ccm_objreg, discussed, 18
ccm_router, discussed, 18
ccm_start_daemons, discussed, 18
chunk files, cooked (discussed), 23
cleanup, database, 69
CLI prompt, 6
client/server architecture, discussed, 17
code, model source (customize), 55
collapse, product versions, 69
configurations

build servers, 26
client workstations, 26
data file, 53
database options, 51
database servers, 25
DCM, 26
DCS, 26
environment variables, 53
host file, 53
user options, 52

conflict_parameters, database option, 52

D
daemons

engine startup for UNIX, discussed,
18

object registrar, discussed, 18
router, discussed, 18
start, discussed, 18

data distribution
automounter, 19
hard-mount, 19
project files, 19
RDBMS, 19
spread across network, 19

data file configuration, 53
database

cleanup, 69
model, save changes in, 54

database options
allow_prep, 52
configure, 51
conflict_parameters, 52
parallel_exclude_rules, 52

database server
configurations, 25
cooked chunk files, 23
daemons and services, 18
engine startup daemon for UNIX, 18
engine startup service for Windows,

18
help server, 18
number of databases, discussed, 23
object registrar, 18
raw file system partition, 23
RDBMS, 17
router, 18
CM Live! 87

Index
database topology selection
administration, 16
component-based applications, 15
group security, 16
number of objects, 15
process, 16
process requirements, 15
recovery, 16
sharing needs, 14
team and database size, 13
team location, 14
team organization, 12
workflow requirements, 15

default text editor used in this document, 6
definitions

application, 2
baseline, 2
database, 2
database topology, 3
migration, 3
product, 3
project, 3
release, 3
user interfaces, 3

delimiter, 6
dialogs, where to change layout, 53

E
editor, text (used in this document), 6
engine processes, location for running, 24
engine startup daemon (UNIX), discussed,

18
engine startup service (Windows),

discussed, 18
environment variables, configure, 53
esd (See engine startup daemon), 18
ess (See engine startup service), 18
external project

discussed, 45
example (detailed), 46
example (short), 45

F
files, pack (save empty), 54

H
hardware configurations

distributed builds, 20
hardware capacity, 21
heterogeneous, 20
memory requirements, 20
multi-vendor platform support, 20
network capacity, 21
swap space requirements, 20
UNIX only, 20
Windows only, 20

help server request, discussed, 18
heterogeneous environment

hardware configurations, 20
installation, 25

host
file configuration, 53

I
IBM Customer Support, 81
installation

heterogeneous set up, 25
project, discussed, 48
project, example, 48

interfaces, described, 73

M
makefiles

update, example, 43
migrate_default_state, user option, 52
88 CM Live!

Index
migration
code base structure, 58
detailed information sources, 59
existing version history, 61
history, 58
large applications, 60
prepare for, 56
preview, 60
strategy, 57
vendor code, 62

model
database, save changes in, 54
source code, customize, 55

O
object registrar, discussed, 18
objects, reusable (example), 43
option delimiter, 6
options

database, configure, 51
user, configure, 52

P
pack file, save empty, 54
parallel_exclude_rules, database option, 52
permissions

setgid, 18
setuid, 18

planning projects
absolute work areas, 33
multiple-project representation, 32
multiple-project representation using

relative work areas, 35
product sharing, 39
project sharing, 36
project topology example, 41
relative work areas, 33
single-project representation, 31

processes, engine (location for running),
24

products, build (validate), 64

project topology
applications, 27
building projects, 29
example, 41
factors influencing, 28
project size, 29
projects, 27
variant projects, 30
work areas, 28

projects
external, detailed example, 46
external, discussed, 45
external, short example, 45
installation, discussed, 48
installation, example, 48
structure, validate, 64
system test prep, create, 66
variant, example, 42

prompt, CLI, 6

R
range_for_keyword_expand, user option,

53
raw file system partition, discussed, 23
RDBMS

data distribution, 19
database server, 17

reconfigure_parallel_check, user option,
52

releases
and integration test area, 67
and system testing area, 68
different platforms, support, 66
how to define, 49
parallel projects, create, 66
system test prep projects, create, 66

reusable objects, example, 43
road map, 4
roles, set, 49
router, discussed, 18
CM Live! 89

Index
S
services, engine startup for Windows

(discussed), 18
setgid, discussed, 18
setuid discussed, 18
strategies, developer training, 74
super types, defined, 50

T
terms

application, 2
baseline, 2
database, 2
database topology, 3
migration, 3
product, 3
project, 3
release, 3
user interfaces, 3

text editor used in this document, 6
third-party build tool

work area options to set, 63
types

configure, 50
configure behaviors, 50
create, 50
super, defined, 50

U
UNIX engine startup daemon, discussed,

18
updating makefiles, example, 43
user options

ccm.ini, 52
ccm.properties, 52
configure, 52
migrate_default_state, 52
range_for_keyword_expand, 53
reconfigure_parallel_check, 52

users, add, 49

V
validate

build products, 64
project structure, 64

variant projects, example, 42

W
Windows engine startup service, discussed,

18
work areas, multiple-project

representation, 35
workflow, configure, 49
90 CM Live!

	Introduction
	Scope
	Implementation success
	Terms and concepts
	User interfaces
	Adoption road map
	Conventions
	Command line interface

	Planning
	The need for planning
	Manage the scope
	Product knowledge
	Gather information
	Time the cut-over
	Implementation strategy
	Select a database topology
	Allocate system resources

	Deployment
	Set up the database servers
	Install the license server
	Install Telelogic Synergy
	Configurations
	Establish the project topology
	External and installation projects
	Configure Telelogic Synergy
	Migrate the application software
	Build products
	Verify and test the application
	Set up releases
	Perform load testing

	Usage
	Interfaces installed in Telelogic Synergy 6.6a
	Timing the training
	Go live!

	Appendix A: Implementation questionnaire
	Source code
	Build environment
	Project environment

	Appendix B: Technical support
	Contacting IBM Rational Software Support

	Appendix C: Notices
	Trademarks

	Index

