
Introduction to Telelogic Synergy

Release 6.6a

ii Introduction to Telelogic Synergy

Before using this information, be sure to read the general information under Appendix, “Notices” on page
53.

This edition applies to VERSION 6.6a, Telelogic Synergy (product number 5724V66) and to all
subsequent releases and modifications until otherwise indicated in new editions.
© Copyright IBM Corporation 1992, 2008
US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Table of Contents

Chapter 1: Introduction 1
Transitioning from other tools . 1
Conventions . 2

Telelogic Synergy graphical user interfaces. 2
Telelogic Synergy command line interface . 2
Typefaces and symbols . 3

Contacting IBM Rational Software Support . 4

Chapter 2: Benefits of using Telelogic Synergy 5
Goals of a configuration management tool . 5
Telelogic Synergy’s benefits . 6

Easy to use, right out of the box . 6
Fast start-up . 6
Rapid productivity for new users . 7
Flexible, automated workflow . 7
Secure team engineering environment . 8
World-wide control and transfer of information . 8
Seamless integrations for Windows development . 10

Chapter 3: Telelogic Synergy terminology 11
The Telelogic Synergy database . 11
Tasks and objects . 11
More about objects . 14
Check out and check in. 14
History . 16
Properties. 16
Current task . 16
Users, lifecycles, and states . 17
Projects and project groupings . 18
Directories and candidates . 20
Introduction to Telelogic Synergy iii

The work area . 20
Synchronize . 21
Use, create, add, delete, or remove objects . 21
Update, baseline, tasks, and process rules . 22
Folder . 23
Build, products, and makefiles . 24

Chapter 4: Telelogic Synergy methodology 25
Task-based methodology. 25
Users. 26
Projects and workflow. 26

Release. 28
Project purpose . 30
Update properties . 31

Telelogic Synergy’s default workflow . 32
The use of tasks . 32
The development process . 33
The integration test cycle . 33
The system test cycle . 35
Release the system test baseline . 36
Prepare for the next release . 36
Summary . 37

Parallel development . 39
Parallel concurrent development . 40
Parallel platform development . 40
Parallel release development . 41

Component-based development. 41
Managing components . 42
Publishing components . 42
Referencing components . 43
Process patterns . 43
iv Introduction to Telelogic Synergy

Chapter 5: Terms and concepts 45

Appendix: Notices 53
Trademarks . 56

Index 57
Introduction to Telelogic Synergy v

vi Introduction to Telelogic Synergy

1 Introduction
Telelogic® Synergy™ is a comprehensive, feature-rich configuration-
management system that gives software development teams control over
software, document development, and maintenance activities. Telelogic Synergy
supports medium-to-large development teams working in heterogeneous,
distributed computing environments.
This manual is designed to help users gain a basic understanding of Telelogic
Synergy’s terms, concepts, and methodology. Telelogic Synergy products have
several interfaces, but Telelogic Synergy is the main interface discussed in this
document.
It is assumed that you understand the fundamentals of your Windows® or
UNIX® operating system and its associated directory file structure.

Transitioning from other tools
Telelogic Synergy manages the process of maintaining multiple versions of the
same file in an archive, plus much more. As a new Telelogic Synergy user, you may
have previously used a version control tool, such as PVCS® (Windows) or RCS
or SCCS (UNIX). These tools maintain control of file versions, but without many
of Telelogic Synergy’s benefits, such as workflow management, product
reproducibility, and rule-based configuration update, to name a few.
Although Telelogic Synergy differs greatly in process from other version control
tools, users familiar with other tools should transition easily to one of the
Telelogic Synergy interfaces.
Introduction to Telelogic Synergy 1

Chapter 1: Introduction
Conventions
This section describes conventions used in this manual.

Telelogic Synergy graphical user interfaces
Telelogic Synergy has the following variety of graphical user interfaces. Note that
when this document discusses the Telelogic Synergy products (Telelogic Synergy
and Telelogic Synergy Classic), it uses the general name “Telelogic Synergy
products.” When discussing a specific interface, it uses one of the following
names:

• Telelogic Synergy

This interface is for users who work as developers and/or build managers.

• Telelogic Synergy Classic

This interface provides CM capabilities for administrators.

Telelogic Synergy command line interface
The command line interface (CLI) examples shown in this guide apply to both
Windows and UNIX platforms.
2 Introduction to Telelogic Synergy

Conventions
Typefaces and symbols

The table below describes the typeface and symbol conventions used in this
guide.

Typeface Description

Italic Used for book titles and terminology. Also designates names
of roles (developer), states (working), groups (ccm_root), and users
(laura).

Bold Used for items that you can select, such as buttons, icons,
etc., and menu paths. Also used for the names of dialog
boxes, dialog box options, toolbars, folders, baselines,
databases, releases, properties, and types. Also used for
emphasis.

Courier Used for commands, filenames, and directory paths.
Represents command syntax to be entered verbatim. Signifies
computer output that displays on-screen.

Courier Italic Represents values in a command string that you supply. For
example, (drive:\username\commands).
Introduction to Telelogic Synergy 3

Chapter 1: Introduction
Contacting IBM Rational Software Support
Support and information for Telelogic products is currently being transitioned
from the Telelogic Support site to the IBM Rational Software Support site.
During this transition phase, your product support location depends on your
customer history.

Product support
• If you are a heritage customer, meaning you were a Telelogic customer prior

to November 1, 2008, please visit the Synergy Support Web site.

Telelogic customers will be redirected automatically to the IBM Rational
Software Support site after the product information has been migrated.

• If you are a new Rational customer, meaning you did not have Telelogic-
licensed products prior to November 1, 2008, please visit the IBM Rational
Software Support site.

Before you contact IBM Rational Software Support, gather the background
information that you will need to describe your problem. When describing a
problem to an IBM software support specialist, be as specific as possible and
include all relevant background information so that the specialist can help you
solve the problem efficiently. To save time, know the answers to these questions:

• What software versions were you running when the problem occurred?

• Do you have logs, traces, or messages that are related to the problem?

• Can you reproduce the problem? If so, what steps do you take to reproduce
it?

• Is there a workaround for the problem? If so, be prepared to describe the
workaround.
4 Introduction to Telelogic Synergy

https://support.telelogic.com/synergy
http://www.ibm.com/software/rational/support/
http://www.ibm.com/software/rational/support/

2 Benefits of using Telelogic Synergy

Goals of a configuration management tool
The purpose of a configuration management system is to help development
teams control the process of modifying source code, developing documentation,
and managing products. The following discussion focuses on some of the major
issues that confront development teams, and how a configuration management
tool can help reduce or eliminate the challenges of coordinating myriad changes
to multiple files by multiple developers.
A configuration management tool must be able to bring in existing projects from
flat and spread-out directory structures, as well as from deeply nested directory
structures. Once project data is migrated, the tool must provide an easy way to
create a baseline, a project version from which all subsequent development effort
is based.
Ideally, a configuration management tool should be transparent, allowing
developers to work on source code files as usual, insulated from disruptions
caused by changes from other developers. At a certain point, however, that
insulation must relax so the developers can incorporate other developers’ changes
into their own projects. Therefore, a configuration management system should
provide developers with insulated areas in which to work, yet also provide an
efficient way in which they can work as a team, sharing modifications to their
source code.
A configuration management tool should enable a team to reach build plateaus,
where a greater degree of stability is attained with each higher build level.
Additionally, the tool should implement a process by which development can
continue as these higher-level builds take place. Such a process ensures that the
team is on the correct path to product release and enables them to fix any code
that breaks a higher-level build.
A configuration management tool must excel in the ability to reproduce various
versions of your software application. Often, development teams work on a
defect correction release and a new features release in parallel. These releases may
have different build requirements. After the defect correction release is finished,
the new features release team normally incorporates those changes into their
work. An important goal of a configuration management tool should be to allow
several types of projects to take place simultaneously and provide a way for
developers to reuse the code, no matter what directory it was created in. Once
parallel products are released, technical support personnel must be able to
Introduction to Telelogic Synergy 5

Chapter 2: Benefits of using Telelogic Synergy
reproduce past milestone releases for customer support. As the number of
parallel releases completed by a development team increases, so increases the
need for product version reproducibility.

Telelogic Synergy’s benefits
Telelogic Synergy provides a complete configuration management environment
in which development teams can work easily, quickly, and securely. This section
describes the features and benefits that Telelogic Synergy provides to software
development organizations.

Easy to use, right out of the box
Most development teams run on tight schedules with small windows for down
time. Because it is important that development teams to establish a comfort level
with a new tool right away., Telelogic Synergy provides the following standard
features:

• Intuitive, easy-to-use graphical user interfaces (GUIs) and comprehensive
CLI

• Simple task-based approach to tracking changes

• Integrations with many popular tools and development environments

• Flexible process support, driven by templates

• No customization required to use the tool productively

• Ready-to-use defined privileges and object lifecycles, security, and access
rules

• Help from the GUI and the CLI

Fast start-up

Development teams can start using Telelogic Synergy soon after it is installed—
usually the same day. This is possible because of the following Telelogic Synergy
features:

• It is a fast and automated migration tool that allows you bring existing
projects in your file system under Telelogic Synergy control.

• Telelogic Synergy is compatible with existing build and make procedures, so
you can build products using existing makefiles.
6 Introduction to Telelogic Synergy

Telelogic Synergy’s benefits
Rapid productivity for new users

Once Telelogic Synergy is up and running, it is relatively easy for new users to
come onboard. If you are a new user, you can start using Telelogic Synergy right
away. Once the CM administrator adds you as a Telelogic Synergy user, you can
copy a project to create your personal work area, then make changes as follows:

• Select the task you will be working on.

• Copy the project and change files.

• Complete the task, thereby checking in all of your changes.

These steps represent the most fundamental use of the Telelogic Synergy tool.
There are a multitude of features you will want to learn about so you can take full
advantage of Telelogic Synergy. You may want to attend a training session to gain
a thorough understanding of the product. However, you can immediately start to
work in Telelogic Synergy to help your team meet a critical deadline or
commitment.

Flexible, automated workflow

Telelogic Synergy’s task-based methodology provides a straightforward way to
build and test your software so you can find problems as quickly as possible and
attain the quality level you require. The task-based workflow enables you to:

• Easily review the reason for a change and identify all the files modified to
implement the change

• Develop changes in an insulated environment and see others’ changes when
ready

• Carefully control the changes that are built into test areas and software
releases

• Detect configuration conflicts, such as parallel versions or missing changes

• Preserve and reproduce the software that you ship

• Automate build-management operations

• Manage parallel development

• Easily set up different workflows for different teams
Introduction to Telelogic Synergy 7

Chapter 2: Benefits of using Telelogic Synergy
Secure team engineering environment

The following features ensure that your development team can develop software
projects with a minimum of attention to the Telelogic Synergy tool:

• The data repository is a dependable, commercial, off-the-shelf relational
database management system (RDBMS).

• Telelogic Synergy uses developers’ existing directory structures and tools.

• Telelogic Synergy provides developers with private, insulated work areas that
give them full access to their own checked-out versions of files to prototype,
edit, build, and debug, before making their changes available to other
developers.

• Telelogic Synergy provides project reproducibility by accurately creating
baseline configurations.

• Telelogic Synergy allows you to trace files and projects through task
association and check-in and check-out capabilities.

• Developers can use tested and checked-in files on demand by updating their
projects with Telelogic Synergy’s update process.

• Telelogic Synergy manages concurrent development changes through
automated parallel development support and built-in security.

• Developers never need to stop development while integration or release
areas are being tested, because those areas are insulated from developers’
ongoing changes.

• The default lifecycle ensures that only authorized changes are released.

• Telelogic Synergy controls data and file access operations with security that
you can set for each user of the database.

World-wide control and transfer of information

The Telelogic Synergy Distributed product allows you to share software changes
among any number of Telelogic Synergy databases, anywhere in the world. You
can:

• Permit developers to work in the same user interface to which they are
accustomed

• Select the appropriate methodology to define the nature and direction of
data transfer between databases

• Send source objects, projects, folders, and tasks to any distributed database,
with no restrictions on how you group your objects
8 Introduction to Telelogic Synergy

Telelogic Synergy’s benefits
• Transfer an entire database or a subset of a database, either automatically or
manually

• Preview the transfer list before finalizing the transfer

• Continue parallel development in databases in different physical locations,
then resolve conflicts using the Compare and Merge features
Introduction to Telelogic Synergy 9

Chapter 2: Benefits of using Telelogic Synergy
Seamless integrations for Windows development

The Telelogic Synergy configuration management tool has been integrated with
some of the industry’s leading development environments. These integrations
enable you to have source control and configuration management from your
native development environment. The integrations include an easy-to-run
installation and setup program. Many integrations are available, including:

• Eclipse™

• IBM® Rational® Application Developer

• Microsoft® Visual Studio®

• Microsoft Visual C++ ®

• Microsoft Visual Basic®

For a complete list of available integrations, see the IBM Rational Software
Support site at http://www.ibm.com/software/rational/support/.
10 Introduction to Telelogic Synergy

http://www.ibm.com/software/rational/support/

3 Telelogic Synergy terminology
This chapter introduces Telelogic Synergy’s basic concepts and terms. The
concepts are introduced in a sequential order so they build upon one another, so
you should read this chapter in sequence and in its entirety.
For quick reference, there is a glossary of terms at the end of this manual.
Note that this manual discusses all of the Synergy interfaces. When possible, this
manual uses generic terms that apply to all interfaces; when discussing how a
specific interface works, for example the Telelogic Synergy interface, the terms
specific to that interface are used.
The concepts and methodology are the same across all interfaces. For example, all
interfaces support the task-based methodology, and all interfaces recommend that
developers update their projects when working on a new project to bring in the
latest members.

The Telelogic Synergy database
The Telelogic Synergy database is a data repository that stores all of your
controlled data, including source and data files, their properties, and their
relationships to one another. You can have one or many Telelogic Synergy
databases, depending on how much data you want to control and how you want
to organize it.

Tasks and objects
A task represents a logical change that needs to be made in your software
application. A task groups all the software modifications that need to be made to
complete the change and includes a description of the change and the name of the
person responsible for completing it.
An object is a collection of data, such as a file or directory. Examples of objects are
source files, makefiles, test results, directories, and documents. For tracking
purposes, every revision of an object is referred to as an object version. Each object
version has a set of properties (e.g., name, owner, create time) to further define it.
For example, a user reports a bug in your application’s GUI. The GUI group
leader assigns the bug to a developer named Jane. She is assigned a task called Fix
scrolling in Snap dialog box. Each time she uses Telelogic Synergy to check out
an object that fixes the scrolling problem in the Snap dialog box, the object
becomes associated with the task.
Introduction to Telelogic Synergy 11

Chapter 3: Telelogic Synergy terminology
For an illustration of these concepts, see the figure below.

The task and objects have a relationship. Objects that are grouped by a task are
said to be associated with the task. All objects required to fix a specific problem
stay together in a logical grouping, described by the task name. The object
versions on the right side of the figure above are associated with the task Fix
scrolling in Snap dialog box, because they contain the code changes necessary
to complete this task. The number at the top of each object represents the
object’s version.
The task's name, in this case, Fix scrolling in Snap dialog box, is referred to as
its synopsis. Additionally, when you create a new task, Telelogic Synergy assigns it a

4
gui.c

6
lines.c

9
lines.h

3
ui_defs.ui

These are the objects that
Jane will change to fix the
scrolling bug.

Fix scrolling in
Snap dialog box.

This is the task on
which Jane is
currently working.

The objects are associated
with the task. Think of the
task as a chest that keeps the
nuts and bolts of your
changes together.
12 Introduction to Telelogic Synergy

Tasks and objects
number. Besides the number and synopsis, a task contains other information
about the change, for example, the name of the resolver. When a task is assigned
to a developer, the resolver is automatically set to that developer’s name. You can
also set the following properties when you create a task:

• Release

Is a label that indicates the version of your software application. The
possible values consist of releases that are significant to your software
application, such as editor/2.0 or Telelogic Synergy/6.6. The build
manager sets up release values specific to your software.

• Platform

Specifies the hardware platform applicable to the logical change. The
possible values are platform names significant to your software application,
such as AIX or WIN2K. The build manager sets up platform values specific
to your software. You do not need to set a task’s platform; this value is for
your convenience only.

• Subsystem

Specifies the software subsystem for the task. For example, if you develop a
client-server software application, your subsystems might be client, server,
and communication. If you develop an accounting software application,
your subsystems might be AR, AP, and GL. The CM administrator sets up
subsystem values specific to your software. You do not need to set a task’s
subsystem; this value is for your convenience only.

The tasks and the source objects you will modify reside in the Telelogic
Synergy database. Tasks do not have versions, but they follow a lifecycle
(described on page 18). Tasks do not contain other tasks.
Introduction to Telelogic Synergy 13

Chapter 3: Telelogic Synergy terminology
More about objects
Any object managed in a Telelogic Synergy database is uniquely identified by the
following properties: name, version, type, and instance.
By default, the four-part name (also called the object spec or full name) is written like
this:
name-version:type:instance

The following are some examples of four-part names: main.c-3:csrc:2
and draw.c-beta:csrc:7
An object name can be any combination of characters, except for restricted
characters (refer to Telelogic Synergy CLI Help for a list of illegal characters for
both). The type can be any of the default types (for example, csrc, ascii, and so
on.), or any type you’ve created. You can designate the name, version, and type,
but Telelogic Synergy calculates the instance.
The instance is used to distinguish between multiple objects with the same name
and type, but that are not versions of each other. For example, a project could
contain twenty different makefiles, each named makefile, each in different
directories, and each with many versions. If you want to use makefile-4, a
query of that object might yield six objects called makefile-4. In this case,
the instance property distinguishes which makefile object you want to use. The
value of the instance is normally numeric, but may be alphanumeric in some
cases, such as in a database that uses DCM.
You can use a specific object version in multiple directories. You can reference an
object version through its path name. However, while the file’s location might
change, the four-part name unique ID always remains the same.

Check out and check in
To modify an existing object, you must create a modifiable version of that object.
You can create a modifiable object using the check out operation, which creates a
new version of an object from an existing version. The new version includes
copies of all properties from the existing version.
The check out operation is similar to the PVCS get -l command (Windows)
or RCS co -l and SCCS get -e commands (UNIX). However, in Telelogic
Synergy, you need to check out an object only if you plan to modify it. If you
want to view or use it, you do not need to check it out. You can check out any
type of object (files, directories, symbolic links, executables, etc.).
The check in operation normally preserves the object version by making it non-
writable. Once checked in, an object is available to other users. Checking in an
14 Introduction to Telelogic Synergy

Check out and check in
object changes the state (or status) property, which defines who can modify and
use it. The check in operation is similar to the PVCS put -u command
(Windows) or the RCS ci -u and SCCS delget commands (UNIX).
With Telelogic Synergy, rather than checking in a file once, you can check in the
same version multiple times. For example, you can check in a file when you’re
ready for testing and check it in to a different state when you’re ready to release
it.
Using the example of our developer Jane, we know that she is going to modify
files to fix the scrolling bug. She checks out files, such as gui.c and lines.c, that
she needs to modify to complete the task assigned to her. After modifying the
files and fixing the bug, she will complete the task so that these files can be used
in the next product build.
The check out and check in processes are an important part of change control
during the development cycle. When a developer checks out an object (for
example, a file) to modify it, the developer becomes the owner of a personal
copy of that file for his use. By default, Telelogic Synergy allows another
developer to check out his own version of the same file for modification. This is
known as parallel development, and the different versions of the same file are called
parallel versions. The work process is not delayed because one version of the file is
already in use.
At some point, parallel versions need to be merged. Telelogic Synergy’s merge
feature enables you to blend information from two parallel versions of a file.
When you merge two object versions, a third version is created. Telelogic
Synergy uses the most recent common ancestor to recommend which changes
the new version should contain. If there are no conflicts in the files, the new
version is ready to use. If conflicts exist, you must choose which lines of the
conflicting code to use in the merged version.
Introduction to Telelogic Synergy 15

Chapter 3: Telelogic Synergy terminology
History
The history of an object shows all the object’s existing versions and the
relationships between the versions. The term history refers to all of the object
versions created before the current object version (called predecessors) and all of
the object versions created after the current object version (called successors).
The figure below shows the history of the file save.c. The arrows indicate
which version was checked out from which; for example, version 2 was checked
out from version 1. Version 1 is a predecessor of version 2, while versions 3 and
2.1.1 are successors of version 2. Versions 3 and 2.1.1 are parallel versions.

Properties
An object’s properties differentiate it from other objects. The basic properties of an
object are those items identified by its four-part name (name, type, instance,
version) and also include owner, status, platform, and release. You can view
properties in Telelogic Synergy’s Properties dialog box.
The platform and release properties are important when gathering versions
of the software for building and testing. Telelogic Synergy gathers versions whose
platform and release values match the configuration you want to build and test.

Current task
The current task is the task you are currently working on. When you designate a
task as the current task, you tell Telelogic Synergy that each time you check out
an object, you want the object to be associated with that task automatically. When
you finish making all the software changes for a task, you can complete the task.
Completing a task checks in all object versions associated with the task.
Using tasks enables you to move each logical change as a unit through the
Telelogic Synergy lifecycle. Using a task’s information, you can gather versions of
software for building and testing by specifying which logical changes you want.

save.c-3

save.c-2.1.1

save.c-1 save.c-2
16 Introduction to Telelogic Synergy

Users, lifecycles, and states
Also, when you use tasks to represent your software changes, you indicate that
the object versions associated with a task should be used together, and that using
some of the versions in a project without the others probably will not work. With
this information, Telelogic Synergy can help you detect configuration problems
early in the software lifecycle.

Users, lifecycles, and states
In a Telelogic Synergy session, each user can work as a developer or build
manager. If a user has been set up to work as a developer and build manager,
Telelogic Synergy allows the user to perform the appropriate operations without
any interference. Typically, developers perform operations for developing and
testing software. Build managers perform operations for integrating software,
and configuring and building areas where developers can access the integrated
software, as well as configuring and building test areas and preparing software
for release.
All objects follow a lifecycle. The lifecycle refers to the possible states of an object,
and to which states an object can move based on its current state. An object’s
state defines the object’s stage in its lifecycle and the actions that can be
performed, such as who can modify it.
By default, the three states that objects use in Telelogic Synergy’s task-based
methodology are working, integrate, and released. The figure below illustrates the
lifecycle sequence of an object’s default states.

Use these states as follows:

• The working state is used for all new object versions, either when they are
created or checked out from another version. An object in the working state is
modifiable by the owner.

• The integrate state is used for build-management integration testing. An
object in the integrate state is non-modifiable.

• The released state is used for objects that have been released or have reached a
milestone. An object in the released state is non-modifiable.

working releasedintegrate
Introduction to Telelogic Synergy 17

Chapter 3: Telelogic Synergy terminology
Your organization may use other lifecycle schemes. Several optional states, such
as rejected, shared, and visible, are included with Telelogic Synergy.
The lifecycle for an object associated with a task is closely linked to its task’s state.
It is the task’s lifecycle that moves the object through the process. For example,
you can check in an object at any time, but it is not picked up for integration
testing until you complete its associated task.
By default, a task can have the following states: registered, task_assigned, and
completed. The figure below illustrates the lifecycle sequence of a task’s default
states.

The task_assigned state is used for tasks that have been assigned to a developer.
When a task is in the task_assigned state, it is modifiable and can be used by the
resolver (the person the task is assigned to). By default, build managers can assign
tasks. Developers can assign tasks to themselves only.
The completed state is used for tasks that are finished. When a task is in the
completed state, it is checked in and can be modified only by the CM administrator.
All object versions associated with a task must be checked in before the task can
be completed. Only the task’s resolver can complete a task; the resolver can be a
developer or build manager.

Projects and project groupings
A project is a user-defined group of related files, directories, and other projects
(called subprojects). A project normally represents a logical grouping of software,
such as a library or an executable, and it contains the directory structure of the
files. For example, the software that implements an editor application might be
stored in a project named editor.
Projects are versioned like any other object. Different versions of the same
project can contain different versions of the member objects, and even different
members. For example, different versions of the editor project might represent
the first release, editor/1.0, and follow-up releases, editor/1.1,
editor/1.2, and editor/2.0. The editor project for release editor/2.0 may
contain new objects that did not exist in version 1.0, as well as newer versions of

completedtask_assigned
18 Introduction to Telelogic Synergy

Projects and project groupings
many of the same objects. There may also be files that were in version 1.0 that
are not part of the version 2.0 project.
A single object version can be a member of multiple projects. Even though the
same object version appears in different projects, the object version exists only
once in the Telelogic Synergy database.
A project can contain other projects. A project contained within another project
is called a subproject. You can organize your software by grouping it into different
projects. For example, you can set up a project for each executable, and include
them all as subprojects under a project that represents the entire application.
For any given project, several different versions can exist:

• development projects are the projects developers use to develop and test
their changes.

• build management projects are the projects build managers use to prepare
software for testing and release.

• released projects are versions of the software that have been released or have
reached a milestone.

A project grouping groups working and build management projects by release and
purpose. It is created and maintained automatically to provide a convenient
reference point for a set of projects. For example, My 1.0 Insulated
Development Projects groups all of a developer’s projects for the 1.0 release
for the purpose of insulated development. A project grouping also contains the
tasks and baseline used when a project is updated. This keeps the members
selected to be in a project consistent for all projects in the grouping.
Think of a project grouping as a container into which you add different
ingredients (properties), such as tasks, baseline, release, and project purpose, to
create a group of projects with the right mix of members (files). Once you’ve
created this project grouping, you can easily add, remove, or change the
properties, specify that you don’t want tasks to be updated during a project
update, refresh the baseline and tasks in the project grouping to get the latest set,
and move a project from one project grouping to another. This enables you to
keep your projects grouped securely, yet gives you the flexibility to make changes
when you need to.
Introduction to Telelogic Synergy 19

Chapter 3: Telelogic Synergy terminology
Directories and candidates
Telelogic Synergy controls directories as well as files. Unlike a directory in the file
system, a directory created in Telelogic Synergy keeps track of which files belong in
it. For each file that belongs in a directory, the directory has a place holder, called
a directory entry. The directory entry describes the name of the file that belongs
there, but not the version. For example, the directory entry for delete.c
knows that it needs a file named delete.c, but does not expect a particular
version of the file. All the file versions that are eligible to be used in a directory
entry are called candidates.
For you to add or delete an object from a directory, the directory object must be
writable. If you try to modify a directory (by adding or deleting members) that is
in a non-modifiable state, Telelogic Synergy automatically checks out a new
version of that directory for you. If your current task is set, the new directory is
automatically associated with the current task, and is checked in with the rest of
your changes when you complete the task.
Like source objects, parallel versions of directories can occur. Telelogic Synergy
enables you to merge parallel directories. When you merge directories, you
compare the differences between directory entries, and select which directory
entries should be included in the merged version. For example, if one user
checked out the sources directory and added an object named open.c, and
another user checked out a parallel version and added an object named select.c,
the merge operation would show both new directory entries and you could
include them both in the merged version.

The work area

A work area is a location in your file system into which Telelogic Synergy writes a
project when you check it out. A work area can reside anywhere in the network
file system. A project's directory tree structure in the work area is identical to the
project's tree structure in the Telelogic Synergy Classic database.
Telelogic Synergy keeps the work area synchronized with the database. On UNIX
systems, the files in a work area are linked to the database files. On Windows
systems, the files in the work area are copies of the database files.
When you create or change a project, Telelogic Synergy updates your work area
automatically and transparently—when you add members to a project, Telelogic
Synergy updates the work area with the new files; when you remove members
from a project, Telelogic Synergy removes the corresponding files from your
work area. You also can update the work area manually by working on files
directly in the network file system, outside of Telelogic Synergy's control.
20 Introduction to Telelogic Synergy

Synchronize
Synchronize
When you use Telelogic Synergy operations to update your project data, your
work area and the Telelogic Synergy database are both updated with your
changes and kept in sync. But if you work directly in the work area, updating your
files without using Telelogic Synergy operations, the work area can become
different than your project in Telelogic Synergy database. You can use Telelogic
Synergy’s synchronize operation to compare your work area with the database and
update them selectively. Telelogic Synergy informs you when database and work
area files are different, so you can compare the differences and choose which to
update. You can also choose to merge the files; if you do so, the merge tool
shows you the changes side by side and lets you select between the individual
lines that differ.
If you need to work outside the Telelogic Synergy database, you can modify a file
in your work area, regardless of whether the database object version is checked
out. When you reconnect to the database and synchronize your project, Telelogic
Synergy automatically checks out a new version of the object from the database
and adds to it the changes you made to the object in the work area.
The synchronize operation is important for data integrity. If you do not save the
work area file changes to the Telelogic Synergy database, the work area files are
subject to the reliability of the system. When you synchronize, your files become
part of the Telelogic Synergy database and are backed up whenever the database
is backed up.

Use, create, add, delete, or remove objects
Earlier in this chapter we discussed the check out operation, which creates a new
version of an object from an existing version. Remember that an object can be a
file, directory, document, or other collection of data. There are several other ways
to modify the contents of your project:

• Use a different version of an object – If you want to select a different
version of an object in your project, for example, go back to an earlier
version, you can use the version of the object you want. The use operation is
especially helpful during the debugging process. If your testing fails, you can
replace an object with an earlier version to troubleshoot the problem. You
can use any version of an object except those checked out to other users (i.e.,
objects in the working state).
Introduction to Telelogic Synergy 21

Chapter 3: Telelogic Synergy terminology
• Create an object
When you want to create a completely new object, instead of checking out a
new version of an existing object, you create the object. This operation is
similar to the PVCS vcs -I command (Windows) or SCCS create
command (UNIX). An object version must be created explicitly (i.e., it must
be under Telelogic Synergy control) before you can check it in. When you
create an object, you create it in a directory within a project, and it appears in
the project’s work area.

You can also create projects and directories. When you create a project, its
work area is created immediately. When you create a directory, it is empty
until you create to or paste in it.

• Add an object
You can add an existing file, directory, or project to a directory in your
project by copying and pasting or dragging and dropping it. You don’t need
to check out an object to add it to your project.

• Remove an object
You can remove objects by performing a delete or cut operation. When you
delete an object, it is removed permanently from the database; you cannot
delete an object if it is used by another project in the database. When you cut
an object, you remove it from your project, but it remains in the database. If
you need it later, you can add it back to your project.

Update, baseline, tasks, and process rules
Update is the process of updating the object versions in a project or directory.
Each object version in the project or directory is evaluated, and the appropriate
version is selected from the available candidates in the Telelogic Synergy
database. Developers normally update their projects whenever they start working
on a new task. They do this to bring in the latest members of a project.
A set of projects for a particular release and purpose bases its members on a
baseline. A baseline is a grouping of static projects and tasks. Think of it as a
snapshot in time of one or more projects and the tasks they contain. It might
represent a particular build, a milestone, or a release.
Note that if a project uses process rules, the process rules identify which baseline
will be used. The projects that reference the process rules use the baseline to
identify which baseline project to use when updated. (A baseline project is a
starting point for the project; each project looks at the baseline to find its starting
point—called a baseline project.) For example, if the Insulated Development
22 Introduction to Telelogic Synergy

Folder
process rule for the current release specifies that the Integration Build
20020913 baseline should be used, and it contains static projects toolkit-
int_20020913 and calculator-int_20020913, a developer’s calculator-bob
project would select calculator-int_20020913 as its baseline project.
Therefore, process rules are patterns that define how projects are updated. They
specify rules for selecting a baseline plus a set of tasks to be used when you
update a project. Your team will use process rules to tailor and coordinate their
software development and testing process.
The update operation also uses the tasks in the baseline. This streamlines the
tasks that are evaluated, which improves the performance of the update
operation. An update that uses baselines only analyzes the tasks that were added
since the last baseline, rather than all tasks for the entire release.
The build manager typically creates the baseline and sets up the process rules,
then makes them available to developers for a particular milestone or release.

Folder
A folder is a named grouping of tasks set up by the build manager. A folder is used
to gather all tasks that should be grouped logically, for example, according to the
task’s state, release, owner, or any combination of these properties. Examples of
folders are All Tasks Assigned to Jane or All Completed Tasks for Release
editor/2.0.
You can add tasks to a folder in two ways:

• Manually select each task you want to add. Once you use this method, the
folder contains only that set of tasks until you manually modify the folder
again.

• Specify a database query. For example, you can set up a query that selects all
of your tasks for release editor/2.0. Whenever you access that folder,
Telelogic Synergy queries the database and gathers the tasks that match the
query criteria. The advantage of using a query is that you do not need to
manually update the folder every time you create a new task; if a task
matches your query’s criteria, Telelogic Synergy automatically adds the new
task to the folder.

Another useful aspect of folders is they allow multiple users to share a set of
tasks. For example, after a software configuration passes integration testing, the
tasks that passed testing can be made available to developers in a folder.
Introduction to Telelogic Synergy 23

Chapter 3: Telelogic Synergy terminology
Build, products, and makefiles
Build is the process of generating a file from existing source files, using a tool or
compiler or code generator. The documentation uses the terms build and make
interchangeably.
Files that are built by processing other files are called products. Any object type is a
potential product; the most common products are executables, libraries, and
relocatable object (.obj) files.
Projects can contain any number of makefiles, which are files that contain the
instructions for building products. You can use a third-party make tool of your
choice
Products can be uncontrolled or controlled. Uncontrolled products exist in your
work area, but not in the Telelogic Synergy database. Controlled products are
product files that are controlled as object versions within Telelogic Synergy.
Because controlled products exist in the Telelogic Synergy database, users can
share them.
An object becomes a product by manually marking the object version as product.

Note All types of controlled objects can be products except for
projects, symbolic links, and directories (because they are not
used as targets in makefiles).
24 Introduction to Telelogic Synergy

4 Telelogic Synergy methodology
Because the information presented in this chapter is sequential, so you should
read it in the order presented.

Task-based methodology
Methodology is the process and strategy used to manage software. Within Telelogic
Synergy, the methodology controls the flow of software throughout the
development cycle, from original development, through testing, release, and
maintenance.
Telelogic Synergy supports the task-based methodology, which enables you to track
changes to your software application using tasks as the basic unit of work. A task
represents a single logical change. The following discusses some of the benefits of
task-based CM.

• Task-based CM is intuitive.

Developers naturally think in terms of logical changes, and mentally map each
change to the specific files that need to change. With most configuration
management systems, developers must remember to check in each file they
change. The task-based CM methodology helps developers work the way they
think, by automatically keeping track of all related changes and checking them
in together as one step.

• Task-based CM takes the guess work out of creating a release.

With task-based CM, you can configure your application as a baseline plus a
set of tasks. It makes sense to create a release of your application by starting
from the last milestone or release and adding a specific list of fixes or
enhancements.

• Task-based CM warns you of potential conflicts between files.

Because it knows more about the relationships between files than non-task-
based systems, task-based CM can detect conflicts in your software
configuration before testing occurs. Telelogic Synergy can detect missing or
partially missing tasks when you update your configuration.

• Task-based CM provides more information about your release.

You can list the contents of a release in a meaningful way using the task
descriptions, rather than just a list of source files.

• Task-based CM integrates change requests with the tasks that fix them.
Introduction to Telelogic Synergy 25

Chapter 4: Telelogic Synergy methodology
Tasks can be related to the defect and enhancement reports your customers
submit, providing a tight integration between your change request system
and actual software changes.

Users
A Telelogic Synergy user can perform those operations applicable to a developer
or build manager. The CM administrator sets this for each user at the database
level. These settings determine what operations you are allowed to perform in a
database, and may be different for each database in which you work. For
example, user Jane may be able to perform developer and build manager
operations in the main_product database, but only perform developer
operations in the integrations database. During a Telelogic Synergy session, if
the CM administrator has set you up to be able to perform developer and build
manager operations, you can perform the appropriate operations without ever
having to change settings or restart a session.
Since this chapter discusses the development methodology, the discussions
concentrate mainly on operations that developers and build managers can
perform.

Projects and workflow
A project contains a specific set of member objects and provides an insulated
working environment (for basic information on projects, see “Projects and
project groupings” on page 18). Different versions of the same project can be
used for different purposes. For example:

• Developers each have a working version for developing and testing their
ongoing changes.

• A separate version of the project can be used to collect the latest completed
tasks for integration testing.

• A version of the project can be used to build a specific set of changes for
system testing.

• Another version of the project can be used to save a specific configuration as
a release or milestone.

All these projects for different purposes enable a team to work together on the
same application. The projects and the way they are set up to select changes
define your team’s workflow.
Telelogic Synergy provides a default workflow consisting of the following stages:
26 Introduction to Telelogic Synergy

Projects and workflow
• Developers develop and test their changes in their development projects.
When they complete a task, it is available for inclusion in the integration
testing projects. When developers update their projects, they keep their own
checked-out versions, and they get the latest versions that have passed
integration testing.

• The integration testing projects gather all the tasks that have been completed
to date. These projects are often used to implement a “daily build and smoke
test,” a best practice for software development. The goal of integration
testing is to find problems as soon as possible after they are introduced. The
build manager manages the integration testing projects.

• The build manager creates a baseline when the build passes integration
testing.

• The system testing projects are used to build a specific set of changes for in-
depth testing. The build manager defines and updates the list of changes to
ensure that projects are insulated from developers’ ongoing changes.
Individual fixes can be added, built, and retested until the project meets the
team’s quality standard. System testing projects are often used to prepare for
a release or milestone.

• After the software is released or reaches a milestone, the build manager can
baseline or release projects to preserve the configuration. Released projects
can be used as baselines for new releases.
Introduction to Telelogic Synergy 27

Chapter 4: Telelogic Synergy methodology
The figure below shows an example of how projects are used to implement
Telelogic Synergy’s default workflow. The arrows indicate the flow of tasks
through the projects.

Telelogic Synergy is set up so that you can use this methodology out of the box.
However, Telelogic Synergy’s process model is flexible, enabling you to
customize the default methodology to suit your team’s process.

Release
In Telelogic Synergy, you always work on a particular release. The release is a label
that indicates the version of your software application. For example, the first
release of your software might be editor/1.0, and the second release could be
editor/2.0 or editor/1.1.
When you check out a project, you specify the release that will be used. Likewise,
when you create a task, you specify the release in which the task will be included.
The release is important because Telelogic Synergy uses it to organize your tasks
and projects and to ensure that tasks are used in the projects with matching
release values.
Telelogic Synergy stores releases for your software application. A release enables
you to mark projects, tasks, and folders for particular releases. It also helps you to
keep track of which object versions were developed for each release.

Integration testing
project managed by
the build manager

Project for release
editor/2.0, released
by the build manager

Development project
for developer jane

Development project
for developer bob

PROJECT-
jane

PROJECT-
bob

PROJECT-
sam

PROJECT-
int2.0

PROJECT-
sys2.0

PROJECT-
2.0

Development project
for developer sam

System testing
project managed by
the build manager
28 Introduction to Telelogic Synergy

Projects and workflow
Only a build manager can create or alter releases. Build managers can view them
in the Releases explorer or with the ccm release command. Each Telelogic
Synergy database has its own set of releases, although you can transfer them
between databases by using distributed change management (DCM).
A typical release can be any of the following. The examples in the following table
show the release, which is created by the build manager. It’s made up of the
component name and the component release. The release is what you see.

A release consists of an optional component name and release delimiter, and a
component release. The component name might represent the name of an
application or component, such as Telelogic Synergy or editor. The
component release identifies the specific release of that application or
component.
Note that the component name is not a mandatory part of the release. In the first
row in the table above, the 1.0 component name doesn’t have a component, and
Telelogic Synergy leaves it blank
Whenever you check out an object, Telelogic Synergy automatically copies the
release from the current task to the new object.

Release Component name Component release

1.0 1.0

2.0 2.0

2.0_patch 2.0_patch

Telelogic Synergy/6.6 Telelogic Synergy 6.6

editor/2.0 editor 2.0

editor/2.1 editor 2.1
Introduction to Telelogic Synergy 29

Chapter 4: Telelogic Synergy methodology
Project purpose

A project purpose is a setting that specifies a project’s use and ties it to a set of
rules for an update process. Telelogic Synergy provides the following predefined
project purposes:

The Insulated Development, Integration Testing, and System Testing purposes
are used for the default methodology as described in the preceding section. The
Shared, Visible, and Collaborative Development purposes are for teams that use
variations of the standard methodology that enable them to work together more
closely. The Custom purpose enables developers to specify the baseline and tasks
for their custom projects.
The purposes used most by developers are Insulated Development, Collaborative
Development, and Custom. The Insulated Development purpose is the default
purpose used when a developer creates a new project. When the developer
updates his project, he’ll get all of his own assigned and completed tasks for the
current release, in addition to the latest Integration Testing baseline for the
current release.
The Collaborative Development purpose is available as an alternative to Insulated
Development. Typically, smaller teams use this purpose when the chance of other
developers’ changes breaking the build is less likely. When a developer uses the
Collaborative Development purpose and updates his project, he’ll get all of his
own assigned and completed tasks for the current release, and all completed tasks
from other developers for the current release, in addition to the latest Integration
Testing baseline for the current release.

Purpose State

Insulated Development working

Collaborative Development working

Custom working

Integration Testing prep

System Testing prep

Shared shared

Visible visible
30 Introduction to Telelogic Synergy

Projects and workflow
The purposes used most by build managers are Integration Testing and System
Testing. The Shared and Visible purposes are used by teams requiring an
alternative to the default, task-based methodology.
When you create or copy a project, you specify its purpose, and Telelogic
Synergy automatically sets up your new project for that purpose by setting the
project’s update properties.
Additionally, the State column shows the state in which the project is created by
default for the purpose. For example, a project is created in the visible state only if
its purpose is Visible. A project is created in the working state if any of the
following purposes are chosen: Insulated Development, Collaborative
Development, or Custom. The state also ensures that the project selects the
correct members when you update.

Update properties

When you update a project, the project uses a set of properties, called update
properties, to automatically determine which object versions to select and bring
into your work area. Update properties are stored with a project grouping, and
consist of a baseline plus a list of tasks and/or folders.
All project groupings have update properties. When you check out a project, the
purpose you select (i.e., Insulated Development, Integration Testing, etc.) and
the project’s release value determine how the project’s update properties are set
up. Alternatively, you can manually set your update properties.
When you perform an update, Telelogic Synergy updates your project as follows:

1. Telelogic Synergy determines which tasks to use. It evaluates each folder
listed in the update properties and adds its list of tasks, plus any tasks you
specified directly in the update properties.

2. Telelogic Synergy calculates a list of object versions by looking at each task
in the list that is not already in the baseline. This list of objects, plus the
members from the baseline project, becomes the candidate list for your
update. Only the object versions in this list are considered as candidates.

3. Telelogic Synergy evaluates each candidate using a simple set of rules that
compare the candidate’s properties with the project's properties to select the
best match.
Introduction to Telelogic Synergy 31

Chapter 4: Telelogic Synergy methodology
Telelogic Synergy’s default workflow
This section describes Telelogic Synergy’s default workflow.

The use of tasks
A task represents a problem in or enhancement to your software application.
Because a task groups all the objects you are modifying for a specific problem or
enhancement, you only need to complete the task that groups those objects,
rather than check in the objects individually. In this way, tasks do a lot of the work
for users.
By default, any Telelogic Synergy user (developers, build managers, and so on)
can create a task. Tasks can also be generated and assigned based on change
requests submitted by customers or technical support engineers.
When someone creates a task, he can assign it immediately, if he knows who will
resolve the problem. A build manager can assign a task to himself or another
user; the user who creates a task can assign it to himself. When a user assigns a
task, he should set its release value to indicate the version of the software
application in which it will be included.
After tasks are assigned, developers use the following process:

1. Select a task to be the current task.

You can select any of your assigned tasks to be the current task.

2. Make all changes necessary to complete the task.

Because Telelogic Synergy automatically associates all object versions you
change with the current task, any object on which you perform an action (for
example, check out or add objects), is associated with the current task.

Perform unit testing, so you know if additional modifications are required.

3. Complete the current task.

When you complete the task, Telelogic Synergy first checks in the objects
associated with it, then completes the task. Completed tasks are available to
the build manager for integration testing and to the build manager for
further integration and system testing. After completed tasks pass integration
testing, the build manager makes them available to other developers.
32 Introduction to Telelogic Synergy

Telelogic Synergy’s default workflow
The development process

Each developer working on a project has a working version of the project.
Developers copy their development projects from the build manager’s
integration testing projects.
Normally, a developer does not check in development projects. If a developer
makes and tests a change in his development project, Telelogic Synergy
automatically checks in the individual object versions that implement the change
when he checks in the task; the developer does not check in the project itself.
Development projects are like containers—they can be reused from release to
release. The projects’ contents change each time the developer updates.
When a developer starts work on a new task or is ready to update his project to
bring in the most recent changes, he updates it. He keeps a project current by
updating it when needed, and he uses the same version of a development project
for every change to its member objects.
Each developer is responsible for using his development project to unit test his
changes. The developer should update his project, then re-test his changes
before checking in the task, to verify that his changes are compatible with other
developers’ latest changes. After unit testing is complete, the developer should
complete the task, thereby checking in all interdependent objects simultaneously.
This ensures that all necessary objects are available to the build manager for
integration testing.
By default, when a developer updates his development projects, Telelogic
Synergy collects all of his own assigned and completed tasks for the current
release, plus the latest tasks that have passed integration testing for that release.

The integration test cycle

The goal of the integration test cycle is to find problems as early in the
development cycle as possible. Recall that build management projects are the
projects build managers use to prepare software for testing and release. The
integration testing projects collect the most recently checked-in changes and build
them for integration testing. Because the integration testing projects contain
many recent changes and users are continually checking in new objects, the
integration test area is typically unstable. Such instability is to be expected,
because the goal is to find problems.
By default, when a build manager updates the build management projects to
build them for integration testing, Telelogic Synergy collects all the completed
tasks for the current release. The build manager does not want to include
developers’ assigned tasks because the developers are still working on the fixes
and the objects are not ready for integration.
Introduction to Telelogic Synergy 33

Chapter 4: Telelogic Synergy methodology
The integration test cycle is often iterative—the team may build, test, fix, and add
tasks many times before the software reaches the desired quality standard.
Normally, when the build manager updates a set of integration testing projects,
the task list is refreshed automatically to get the most recently completed tasks. If
a build manager needs to fix a broken build, he’ll want to stop the completed
tasks from being automatically brought into the integration testing project, and
then include only the tasks that fixes the build to the integration testing project
grouping.
Consider a build manager who is updating the integration testing projects for
release editor/2.0. The following default behavior occurs:

• Each project’s baseline project is set to the appropriate project in the latest
Integration Testing baseline.

• Each project includes the folder, All Completed Tasks for Release editor/
2.0. This folder uses a query to select all tasks for release editor/2.0 that are
in the completed state.

The build manager updates his integration testing project regularly to build the
software for integration testing. When he updates the project, the All
Completed Tasks for Release editor/2.0 folder uses its query to select from
the database all tasks that were completed by developers working on release
editor/2.0, and the project is updated with the object versions associated with
those tasks. Then the build manager can build the software application.
If the build is not successful, the build manager can do two things: he can create
tasks and assign them to the developers whose objects failed to build, or he can
tell the developers whose objects failed to build that they need to fix them, then
each developer would create his own task.
Once the build manager successfully builds the product, he creates a new
baseline. When a developer updates his projects, this ensures that the most
recently tested changes are brought in.
Normally, the build manager does not check in integration testing projects. These
projects are like containers—they can be reused from release to release. The
projects’ contents change each time the build manager updates and brings in
developers latest completed tasks.
34 Introduction to Telelogic Synergy

Telelogic Synergy’s default workflow
The system test cycle

Once the development team has made significant progress towards a stable build
or a milestone, the build manager typically builds a software installation for the
Quality Assurance (QA) team to use for system testing. The goal of system
testing is to prepare the software application for a milestone, such as a release. A
system testing project represents all developers’ work that is ready for system testing;
it contains the versions of the files, directories, and products used for system
testing and release preparation.
Because developers continue to complete tasks as they develop and test their
changes, the integration testing projects continue to pick up the developers’ latest
changes. The build manager needs to prepare the more stable system testing
projects as an area insulated from developer’s newly checked in changes.
When a build manager updates the build management projects to build them for
system testing, he specifies an exact list of tasks to be tested. By managing the
exact list of tasks that are included in the software, the team can fix, build, and
retest the software until it meets their quality standard. The system test cycle is
often iterative—the team may build, test, fix, and add tasks many times before
the software reaches the desired quality standard.
Consider a build manager who is updating the system testing projects for release
editor/2.0. The build management projects are set up as follows:

• Each project’s baseline project is initially set to the appropriate project in the
latest Integration Testing baseline.

• On subsequent iterations, the build manager stops the latest Integration
Testing baseline from being automatically brought into the system testing
project. He’ll add tasks as needed to get the system testing build to the
desired quality level. (He’ll be testing an exact list of tasks and only wants
those tasks that he’s specified.)

The build manager initially sets the System Testing project grouping to pick up
the latest Integration Testing baseline, in preparation for a new system test cycle.
The system testing then iterates through the following steps:

1. The build manager updates and builds the system testing projects.

2. The QA team tests the resulting software.

3. The team reviews any problems that were found and decides which of them
should be fixed for this cycle.

4. The team creates tasks for the problems that were approved in step 3 and
assigns them to developers.
Introduction to Telelogic Synergy 35

Chapter 4: Telelogic Synergy methodology
5. The build manager stops the System Testing project grouping from picking
up the latest Integration Testing baseline.

6. After the developers have completed the approved tasks, the build manager
adds them to the system testing project grouping. The process starts again at
step 1.

7. Repeat step 1 - step 6 until there are no additional problems to fix.

8. Create the baseline.

9. Release the baseline.

Release the system test baseline

Once the software ships, the build manager should immediately transition the
system test baseline used to build the software to the released state, to create a
starting point for future releases. All objects in the released state are non-
modifiable, which guarantees that the software is preserved and can be re-created
later, if necessary.

Prepare for the next release

Once the build manager releases a project, it can be used as a baseline for the
next release. The following steps are necessary in preparing for the next release:

• The build manager adds the new release to the list of releases and sets up
process rules for the new release.

• The developers update their development projects to use the new release so
they can reuse the projects while working on the new release.

• The build manager changes the integration testing projects to use the new
release. Because integration testing projects are not checked in, the build
manager can reuse the projects for integration testing of the new release, by
updating the projects.

• The build manager changes the system testing projects to use the new
release.

If your team started the next release before finishing with the current release,
the build manager needs to perform a copy project to create a new
integration testing project and a new system testing project. (He copies the
old projects to create the new.)
36 Introduction to Telelogic Synergy

Telelogic Synergy’s default workflow
Summary

We have now covered the entire development cycle, from developers completing
tasks in their development projects, through the build managers gathering and
testing of tasks, to the final project release and the establishment of a baseline for
the next release. The figure below summarizes how projects are used to
implement the workflow. The arrows show how tasks flow through the various
projects. The key points in the figure are:

• The project shown as the baseline project is the one that developers
normally copy to a development project. Alternatively, a developer could
copy the Integration Testing or System Testing project. Developers usually
copy from a project that is a member of the baseline. The project shown at
the end, PROJECT-2.0, is part of the new released baseline. In the example,
only one project is shown for the sake of simplicity. Typically, a baseline
contains many projects.

• Each developer’s project includes the latest baseline. The build manager
creates a new baseline after the completed tasks pass integration testing.
Each developer also has a personal folder (for example, Jane’s Assigned or
Completed Tasks for Release editor/2.0) to gather his or her tasks for the
specified release. Each developer can add tasks to or remove tasks from his
project grouping.

• The build manager uses the integration and system testing projects for
testing. The integration testing projects use a folder named All Completed
Tasks for Release editor/2.0, that gathers tasks using a query. The build
manager adds approved changes to or removes approved changes from his
project grouping.

• The build manager creates a baseline from each integration testing build and
system testing build that passes the appropriate level of testing. At the end of
the release, the build manager releases the final system testing baseline.
Introduction to Telelogic Synergy 37

Chapter 4: Telelogic Synergy methodology
PROJECT-
bob

PROJECT-
jane

PROJECT-
int2.0

All editor/2.0

Integration Testing

Projects

PROJECT-
sys2.0

System testing project
managed by the build
manager

All editor/2.0 System
Testing Projects

PROJECT-2.0

Released baseline
project for release
editor/2.0

Development project for
developer jane

Development project for
developer bob

PROJECT-
sam

Development project for
developer sam

Jane’s editor/2.0
Insulated Development
Projects

Integration testing
project managed by the
build manager

Sam’s editor/2.0

Insulated Development

Projects

Bob’s editor/2.0

Insulated Development

Projects

PROJECT-
20021221

Baseline project
38 Introduction to Telelogic Synergy

Parallel development
Parallel development
Parallel development is the simultaneous development of more than one version
of an object. By default, Telelogic Synergy allows you to develop any object type
(for example, csrc, library, etc.) in parallel. It is important to understand that
parallel object versions must have some characteristic (i.e., property) that
distinguishes one from the other, so that Telelogic Synergy can select the correct
version in a project. Such characteristics determine how the object version is
evaluated during an update. The properties that distinguish parallel object
versions from each other are called parallel development properties.
Telelogic Synergy supports the following types of parallel development:

• Parallel concurrent development occurs when multiple developers check
out their own working versions from the same object. Each developer most
likely works on different sections of code. Once they complete their work,
the two versions of code should be merged.

• Parallel variant development (also known as parallel platform development)
occurs when multiple developers are working on different versions of the
same object for different hardware platforms (often called variants). The
different versions of the objects (such as one version for Windows and
another for UNIX) are usually not merged.

• Parallel release development occurs when an organization needs to
produce multiple releases of its software product simultaneously. An
example of this situation would be different developers working on the next
release, a patch to the current release, and a maintenance release, all
baselined on the current release. Parallel releases are typically merged after
one of the releases is finished. For example, when a patch for the current
release is finished, it is merged into the maintenance release and when the
maintenance release is finished, it is merged into the next release.

The following paragraphs describe how Telelogic Synergy manages these types
of parallel development.
Introduction to Telelogic Synergy 39

Chapter 4: Telelogic Synergy methodology
Parallel concurrent development

Telelogic Synergy manages parallel concurrent versions using the values of the
status and owner properties. When an object version is in the working state,
only the owner can include it in his project. The update process compares the
owner of a working object version with the owner of the project being updated, to
ensure that the correct version is selected. As soon as two parallel working
versions (and their associated tasks) are checked in, they must be merged, since
there is no single version that contains all the changes. If the versions are checked
in but not merged, a project update that includes both tasks selects the version
with the latest creation time, and the project shows a parallel conflict.

Parallel platform development

The platform property identifies a project or object that is designed for a
particular platform. If you build your software for multiple platforms, you need a
platform-specific project for each platform, and each project version needs its
platform property set. For example, if you build the snap project for UNIX
and Windows, you need two versions: one with its platform property set to unix,
and one with the property set to win.
When you update your projects using a baseline, folders, and tasks, selection is
limited to the candidates specified by your update properties. If your candidates
contain parallel versions for different platforms, you must set the candidates’
platform property so that the update operation can select the version that
matches the project’s platform property.
For example, consider the snap project, which contains line.c. This version of
the project has its platform value set to win32, indicating that it is built for the
32-bit Windows platform. The line.c object has two versions: one marked for
win32, and one marked for unix. If both are candidates because they were
included in the project’s folders or tasks, the selection rules picks the one whose
platform value matches.
40 Introduction to Telelogic Synergy

Component-based development
Parallel release development

Recall that the release property identifies a project or task that is specific to a
particular release. If you are developing software for multiple releases, you need
one version of each project for each release, and each project version’s release
property should be set accordingly. This ensures that each project selects the
matching subprojects and tasks during an update.
Your tasks must be marked with the correct release property so they are selected
by the projects with a matching release.

Note You must create separate tasks to make a change that applies
to multiple releases.

Component-based development
A component is one or more library or executable files, along with supporting
files that indicate how it is used, such as header files, help, information about
compatibility and dependencies, hardware or software requirements, design
information, test cases, and so on. A component can also contain source code.
In Telelogic Synergy, a component can be represented by an individual file or a
project.
Because file versions are reusable in Telelogic Synergy, they can be created or
built in one project and used in another. For example, the ccmscci.dll
library file might be built in the ccmscci project where its source code resides,
but the same file can also be included as a member in both the
visual_studio_integration and va_java_integration projects. (Each project
can contain a different version of the file, depending on its needs.)
In addition, you can choose to create a new project to contain several files that
are published together as a component. For example, you might create a new
project called ccmserver_ext (similar to the ccmserver project, but for external
use), containing the files ccmserver.jar, ccmserver.properties,
and ccmserver.html. You may have many versions of the ccmserver_ext
project, each containing a published version of the component with compatible
files.
You might also consider an entire source project a component, if the component
users need to be able to view or modify the code.
Because components can be composed from other components, you might even
have an entire project hierarchy that represents a component.
Introduction to Telelogic Synergy 41

Chapter 4: Telelogic Synergy methodology
Managing components

In Telelogic Synergy, a release specifies the release label of your software
application, for example, Telelogic Synergy/6.6 or Telelogic Change/5.1.
Releases are similar to versions, but they apply to an entire software product. A
release can represent a product you have already delivered (or released), or it can
represent a release you are currently developing. Each project is usually marked
for a specific release, as is each task.
Each component should have its own release stream. For example, consider a
team who develops a GUI library and two applications: a calculator and an editor.
They might set up releases similar to the following example.

The purpose of setting up a different release stream for each component is to
decouple the different components so they are independent of one another. This
enables the components to be on different release schedules, and ensures that the
development teams can use different processes if they choose.

Publishing components

A component can be published by releasing (or checking in to a non-modifiable
state) the files or projects that represent the component. When publishing
components, the component developer develops software and publishes
components for use by others, while the build manager gathers and builds
software for integration testing, and the build manager gathers and builds
software for system testing.
If a component is developed by a structured team who uses rigorous testing
procedures, the component typically is published by the build manager.
Conversely, if a component is developed by a small, informal team or an
individual developer, the component developer publishes components.
At the time a component is published, the publisher (build manager or
component developer) may choose to associate it with a task so that others can
reference it. If a team wants to be notified automatically when components are
published, they can define triggers.

Component Release Streams

GUI library gui_lib/1.1, gui_lib/1.2, gui_lib/1.3

Editor application editor/1.0, editor/2.0, editor/2.1, editor/
3.0, editor/4.0

Calculator application calc/1.0, calc/2.0
42 Introduction to Telelogic Synergy

Component-based development
Referencing components

A component can be associated with a task. A task enables the consumers of the
component to specify which component version to use. Typically, each version
of a component is associated with a separate task.
The person who publishes the component might create a task and associate it
with the appropriate files and/or projects. It is also possible for the component
consumer to create a task and associate it with the component files he or she
needs. A given component can be associated with several tasks.
The benefit of having the consumer create the task is that he or she can unit test
the new version of the component, make any additional changes needed, and
associate them with the same task. This keeps together all of the logical changes
of upgrading to the new component version, and the rest of the team is not
affected by the new component version. (Note that a given component version
may be associated with multiple tasks: one for the team who developed it, and
potentially one for each team that uses it.)
Telelogic Synergy also enables you to group tasks into folders. This means you
can build folders that group sets of compatible component versions that have
been certified for use together. Such a folder can be shared by different
consumer applications that want to reuse those exact sets of components.

Process patterns

Component-based development promises to accelerate the delivery of software
solutions with lower cost, improved quality, and increased customer satisfaction.
The practice is sweeping the software development industry; however, most of
today’s tools and techniques overlook the critical issue of how teams work
together to manage, publish, and share components.
Telelogic Synergy provides a strong framework and process for sharing
components between teams or individuals. It enables you to manage, publish,
reuse, and distribute components, while its built-in workflow enables and
encourages best practices for software development.
Telelogic Synergy supports component-based development in a flexible way,
providing a variety of process patterns from which to choose. The process
patterns are described in the white paper, A Framework for Managing Component
Based Development, available on the IBM Rational Software Support site at http://
www.ibm.com/software/rational/support/.
Introduction to Telelogic Synergy 43

http://www.ibm.com/software/rational/support/
http://www.ibm.com/software/rational/support/

Chapter 4: Telelogic Synergy methodology
44 Introduction to Telelogic Synergy

5 Terms and concepts
.

Term Definition

assign The process of allocating a particular task to a developer
to work on it.

associated Objects grouped by task are said to be associated with
the task.

attributes See properties.

baseline A snapshot of a set of projects and tasks at a point in
time. May be used as the starting point for further
development; may be compared to other baselines for
reference.

baseline project The project version on which you base your project is
called its baseline project. For example, the baseline
project for the editor-2.0 project would be editor-1.0.
When you check out a new version of a project, its
baseline project is set automatically.

build The process of generating a file from existing source
files, using a tool, compiler, or code generator.

build manager A person in a development organization who is
responsible for building projects and products from
source files. Build managers can create, copy, modify,
and delete processes, releases, folders, and folder
templates. Build managers can create, modify, and delete
process rules, purposes, and releases.

build management
project

Projects build managers use to prepare software for
testing and release.

candidates The file versions that are eligible to be used in a
directory entry within a project.

check in An operation used to make a developer’s object version
available to other users.
Introduction to Telelogic Synergy 45

Chapter 5: Terms and concepts
check out A process that creates a new version of an object from
an existing version stored in the Telelogic Synergy
database. Developers check out objects so they can work
on them.

CLI Acronym for “command line interface.” You can
perform most Telelogic Synergy operations from the
UNIX or Windows CLI.

collaborative
development

The ability of reusing file versions in Telelogic Synergy.
File versions can be created or built in one project and
used in another.

completed state A state assigned to a task that is finished.

component One or more library or executable files, along with
supporting files that indicate how it is used, such as
header files, help, information about compatibility and
dependencies, hardware or software requirements,
design information, test cases, and so on.

component name See “release” on page 50.

component release See “release” on page 50.

controlled product A product file that is controlled as an object version
within Telelogic Synergy.

copy project Copies a project for use by a developer. Developers
must copy a project if they need to modify it.

current task The task a developer is currently working on. Once a
developer designates a current task, any object he checks
out is automatically associated with that task.

development project A project a developer uses to develop and test his
changes.

directory entry A placeholder in a Telelogic Synergy directory that keeps
track of a file that belongs in that directory.

external project A special project that contains products. Developers can
access the products without having to copy the projects
containing the source code used to build them.

Term Definition
46 Introduction to Telelogic Synergy

folder A named grouping of tasks.

folder template A pattern used to create folders. A folder template has a
set of properties that apply to each folder that is based
on the template: the name, who can write to the folder,
who can use it, whether it is updated manually or using a
query, and the query that will be used to select tasks. A
process rule can use folder templates as part of the basis
for how a project is updated.

four-part name A unique identifier for an object in the Telelogic Synergy
database. A four-part name is written like this: name-
version:type:instance (Also called the object spec or full
name.)

full name See four-part name.

GUI Acronym for “graphical user interface.” You can
perform many Telelogic Synergy operations from the
GUI.

history All of an object’s existing versions and the relationships
between the versions.

History dialog box A Telelogic Synergy dialog box that displays an object’s
history. See “history” above.

instance An property value used to distinguish between multiple
objects with the same name and type, but that are not
versions of each other.

insulated development Telelogic Synergy enables developers to develop and test
their changes in their development projects without
getting changes from other developers until they want
them. When developers complete a task, it is available
for inclusion in the integration testing projects. When
developers update their projects, they keep their own
checked-out versions, and they get the latest versions
that have passed integration testing.

integrate state A state given to an object that was checked in by a
developer. Other developers can check out and use an
object that is in the integrate state.

Term Definition
Introduction to Telelogic Synergy 47

Chapter 5: Terms and concepts
integration testing
project

A project used to gather all of the tasks that have been
completed to date for integration testing.

integration testing The process of building and testing discrete software
changes together to be certain they work correctly.

lifecycle A set of states through which an object version may be
transitioned. An object version can be in only one state
at any given time.

methodology The process and strategy used to manage software
development.

object A collection of data, such as a file or directory. Examples
of objects are source files, makefiles, test results,
directories, and documents.

object spec See “four-part name” on page 47.

object version A specific revision of an object. Each object version has
a set of properties (e.g., name, owner, create time) to
further define it.

parallel development
property

The properties that distinguish parallel object versions
from each other.

parallel concurrent
development

Occurs when multiple developers check out their own
working versions from the same object, usually to work
on different sections of code.

parallel release
development

Occurs when an organization needs to produce multiple
releases of its software product simultaneously (e.g.,
different developers working on the next release, a patch
to the current release, and a maintenance release, all
using the same baseline).

parallel variant
development

Occurs when multiple developers are working on
different versions of the same object for different
hardware platforms (often called variants).

parallel versions Two or more objects checked out from a single object.

platform property An identifier that designates a project or object for a
particular hardware platform.

Term Definition
48 Introduction to Telelogic Synergy

prep projects See build management projects. See “build management
project” on page 45.

privileges Privileges determine what operations you are allowed to
perform in a database, and may be different for each
database in which you work. Users never need to change
privileges manually; when a user issues an operation,
Telelogic Synergy determines whether the appropriate
privilege for the operation is available.

process Groups process rules into a named set designed to work
together. A process is used to specify the process rules
you can use for a release.

process rules Patterns that define how projects are updated. They
specify rules for determining the baseline plus a set of
tasks to be used when someone updates a project.

product Files that are built by processing other files.

product task A task automatically created by Telelogic Synergy to
manage a product.

project A user-defined group of related files, directories, and
other projects (called subprojects). A project normally
represents a logical grouping of software, such as a
library or an executable, and it contains the directory
structure of the files.

project grouping Telelogic Synergy groups projects by purpose and
release, for example, My 1.0 Insulated Development
Projects. This is called a project grouping. Additionally,
project groupings contain the tasks and baseline used
when a project is updated.

properties The properties given to an object. The basic properties
of an object are those items identified by its four-part
name (name, type, instance, version) and also include
owner, status, platform, and release.

purpose A setting that specifies a project’s state and maps it to a
process rule for the project’s release to ensure that it
selects the right members when you update a project.

Term Definition
Introduction to Telelogic Synergy 49

Chapter 5: Terms and concepts
reconfigure properties See “update properties” on page 51.

release property An property that identifies a project or task that is
specific to a particular release.

release A release consists of an optional component name and
release delimiter, and a component release. The
component name might represent the name of an
application or component, such as Telelogic Synergy
or editor. The component release identifies the specific
release of that application or component. Telelogic
Synergy/6.7 is an example of a release.

released project A version of the software that has been released or has
reached a milestone.

released state A state given to objects that have been released or have
reached a milestone.

roles See “privileges” on page 49.

shared state A state given to projects that can be modified by
multiple users.

state Defines an object’s characteristics, such as its stage in its
lifecycle, and the actions that can be performed, such as
who can modify it.

subproject A project contained within another project.

synchronize An operation a developer uses to compare his work area
with the database and update it selectively.

synopsis A task’s name.

system testing projects Projects that contain the versions of the files, directories,
and products used for system testing and release
preparation.

task A grouping of all the software modifications needed to
complete a logical change in a software application.

task_assigned state A state designating a task that has been assigned to a
developer.

Term Definition
50 Introduction to Telelogic Synergy

task-based
methodology

A methodology that enables a development organization
to track changes to a software application using tasks,
rather than individual files, as the basic unit of work.

Telelogic Synergy
database

A data repository that stores all of your controlled data,
including source and data files, their properties, and their
relationships to one another.

uncontrolled product A product that exists in your work area, but not in the
Telelogic Synergy database.

update A process that automatically updates a project’s contents
with the most recent versions of its member objects.
Each object version in the project or directory is
evaluated, and the appropriate version is selected from
the available candidates in the Telelogic Synergy
database.

update properties Properties that a project uses to decide which object
versions to select when someone updates a project.

variant project A platform-specific variation of a product.

visible state A state given to source objects so they can be used, but
not changed, by other users.

work area A location in the file system into which Telelogic
Synergy writes a project when a user copies a project for
personal use.

working project See “development project” on page 46.

working state The state of a developer’s personal copy of an object.
This is the state in which a developer makes changes.

Term Definition
Introduction to Telelogic Synergy 51

Chapter 5: Terms and concepts
52 Introduction to Telelogic Synergy

Appendix: Notices
This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.
IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send written license inquiries to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
written inquiries to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Some states do not allow disclaimer of express or implied warranties in certain
transactions. Therefore, this statement may not apply to you.
Introduction to Telelogic Synergy 53

Notices
This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.
Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.
IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
1 Rogers Street
Cambridge, Massachusetts 02142
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.
The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement or any equivalent
agreement between us.
Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.
Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy of
54 Introduction to Telelogic Synergy

performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.
This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.
If you are viewing this information softcopy, the photographs and color
illustrations may not appear.
Introduction to Telelogic Synergy 55

Notices
Trademarks

IBM, the IBM logo, ibm.com, Telelogic, Telelogic Synergy, Telelogic Change,
Rational, and AIX are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries, or both. are
trademarks of Telelogic, an IBM Company, in the United States, other countries,
or both. These and other IBM trademarked terms are marked on their first
occurrence in this information with the appropriate symbol (® or ™), indicating
US registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available
on the Web at www.ibm.com/legal/copytrade.html.
Eclipse is a trademark or registered trademark of the Eclipse Foundation, Inc.
Microsoft, Windows, Windows NT, Visual C++, Visual Basic, Visual Studio
and/or other Microsoft products referenced herein are either trademarks or
registered trademarks of Microsoft Corporation in the United States, other
countries, or both.
PVCS® is a registered trademark of SERENA Software, Inc.
UNIX is a registered trademark of The Open Group in the United States and
other countries.
Other company, product or service names may be trademarks or service marks of
others.
56 Introduction to Telelogic Synergy

Index

A
assign tasks, discussed, 32
associated objects, defined, 12

B
baseline

and process rules, 22
and project groupings, 19
and update, 23
defined, 45
discussed, 22
project, defined, 45
project, discussed, 22

benefits of configuration management, 6
build

defined, 24
see also makefile

build management project, 19

C
candidate, defined, 20
check in, 14–15
check out

defined, 14
specify release, 28

completed state, defined, 18
concepts, discussed, 11
configuration management

benefits and features, 6
goals of, 5

copy an object, discussed, 22
copy project and specify release, 28
create object, 22
current task, discussed, 16
cut an object, 22

D
data repository, discussed, 11
database

defined, 11
how sync affects backup, 21
sync with work area, 20, 21
transferring information to, 8

definitions
discussion, 11

deleting an object, 22
development

project, and tasks, 33
project, defined, 19

development process for projects, 33
directory entry, 20
directory, defined, 20

E
Eclipse, 10

F
features of configuration management, 6
folder

add tasks to, 23
defined, 23

G
GUI (graphical user interface), 2

H
history object, described, 16

I
IBM Customer Support, 4
integrate state, 17
integration test cycle, 33
integration testing project, 27, 33
Introduction to Telelogic Synergy 57

Index
integrations
Eclipse, 10
Microsoft Visual Basic, 10
Microsoft Visual C++, 10
Microsoft Visual Studio, 10
VisualCafe, 10

integrations for Windows development, 10

L
lifecycle

object, 17
task, 18

M
merge parallel object versions, 15
methodology, task-based, 25
Microsoft Visual Basic, 10
Microsoft Visual C++, 10
Microsoft Visual Studio, 10

O
object

check in, 14–15
check out, 14
create, 22
create new version, 14
cut, 22
defined, 11
delete, 22
four-part name, 14
full name, 14
history, 16
lifecycle, 17
make available to other users, 14–15
modify, 14
multiple locations of, 14
paste into project, 22
properties, 16

spec, 14
state, 17–18
update, 22
use, 21
version history, 16
version, and four-part name, 14
version, defined, 11

P
parallel development

concurrent, 39
for different platforms, 39, 40
for different releases, 39, 41
property, 39
types, 39

personal project version, 33
platform property, 13, 16
privileges, defined, 49
process rules, defined, 23
product, defined, 24
project

build management, 19
defined, 18
development, 33
development process, 33
development, defined, 19
how versioned, 18
integration testing project, 27, 33
modify objects in, 21
personal version, 33
purpose, 30
released, 19, 27, 36
subproject, 19
system testing project, 27, 35
update, 22
workflow, 26–31

project grouping
defined, 49
discussed, 19

properties of an object, 16
purpose, project, 30
58 Introduction to Telelogic Synergy

Index
Q
QA test cycle, 35

R
release

name, defined, 28
prepare for next, 36
property, 13, 16
specify when copying a project, 28

release, example, 29
released

project, and versions, 19
project, workflow, 27
state, and baseline, 36
state, and lifecycle, 17

S
states of an object, 17–18
subproject, 19
subsystem property, 13
sync

database and work area, 21
work area and database, 20

synopsis, 12
system test cycle, 35
system testing project, 27, 35

T
task

and development project, 33
assign, 32
associated objects, 12
current, discussed, 16
defined, 11
developers’ process for modifying, 32
lifecycle, defined, 18
relationship with object, 12
use of, 32

task_assigned state, defined, 18
task-based methodology, described, 25

Telelogic Synergy Classic interface,
described, 2

Telelogic Synergy Distributed, 8
terms

discussion, 11
test cycle

integration, 33
QA, 35
system, 35

U
update, 22

object, 22
project, 22
projects and objects

see update properties
update properties

defined, 31
how objects are evaluated, 31

use an object, 21

V
version

of object, and four-part name, 14
of object, defined, 11

VisualCafe, 10

W
Windows development, integrations for,

10
work area

defined, 20
sync with database, 20

workflow
and projects, 26

working
state, discussed, 17
Introduction to Telelogic Synergy 59

Index
60 Introduction to Telelogic Synergy

	Introduction
	Transitioning from other tools
	Conventions
	Telelogic Synergy graphical user interfaces
	Telelogic Synergy command line interface
	Typefaces and symbols

	Contacting IBM Rational Software Support
	Product support

	Benefits of using Telelogic Synergy
	Goals of a configuration management tool
	Telelogic Synergy’s benefits
	Easy to use, right out of the box
	Fast start-up
	Rapid productivity for new users
	Flexible, automated workflow
	Secure team engineering environment
	World-wide control and transfer of information
	Seamless integrations for Windows development

	Telelogic Synergy terminology
	The Telelogic Synergy database
	Tasks and objects
	More about objects
	Check out and check in
	History
	Properties
	Current task
	Users, lifecycles, and states
	Projects and project groupings
	Directories and candidates
	The work area
	Synchronize
	Use, create, add, delete, or remove objects
	Update, baseline, tasks, and process rules
	Folder
	Build, products, and makefiles

	Telelogic Synergy methodology
	Task-based methodology
	Users
	Projects and workflow
	Release
	Project purpose
	Update properties

	Telelogic Synergy’s default workflow
	The use of tasks
	The development process
	The integration test cycle
	The system test cycle
	Release the system test baseline
	Prepare for the next release
	Summary

	Parallel development
	Parallel concurrent development
	Parallel platform development
	Parallel release development

	Component-based development
	Managing components
	Publishing components
	Referencing components
	Process patterns

	Terms and concepts
	Appendix: Notices
	Trademarks

	Index

