




Rational Synergy Classic CLI Help

Release 7.1



Before using this information, be sure to read the general information under “Notices” on page 528.

This edition applies to VERSION 7.1, Rational Synergy (product number 5724V66) and to all subsequent 
releases and modifications until otherwise indicated in new editions. 
© Copyright IBM Corporation 1992, 2009 
US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP 
Schedule Contract with IBM Corp.



Contents

General usage information  1
Readme and documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2
Using the command line interface - Windows users  . . . . . . . . . . . . . . . . . . . . . . . . .  5
Using the command line interface - UNIX users  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6
Rational Synergy interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7
Rational Synergy help systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9
Terminology and name changes in Rational Synergy 7.1 . . . . . . . . . . . . . . . . . . . .  10
Command and argument syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12
Naming restrictions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24
Case and file name limit database options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27
Date formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28
Built-In keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29
Regular expressions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32
Administering purposes and templates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

Default settings  35
How defaults are set  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36
Default options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38
Initialization file - Windows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66
Initialization file - UNIX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67
Startup file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68
GUI settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70
Environment variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71
Setting model object attribute options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73
Creating a list box for a new attribute. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75
Setting object type attribute options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76
Setting options in the system or personal ini file  . . . . . . . . . . . . . . . . . . . . . . . . . . .  77
Setting options using the ccm set command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  78

Commands  79
alias command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80
attribute command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  82
Rational Synergy Classic CLI Help, Release 7.1     iii



baseline command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86
bom command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101
candidates command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  102
cat command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  103
change_type command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  104
checkin command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  105
checkout command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  109
checkpoint command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  118
clean_cache command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120
clean_up command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  122
collapse command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124
conflicts command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127
copy_project command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  129
copy_to_file_system command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  135
create command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  137
dcm command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142
dcm examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  169
delete command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  176
delimiter command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  179
depend command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  182
diff command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  184
dir command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  186
edit command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  189
expand command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  190
export command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  191
finduse command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  194
folder command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  199
folder Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  213
folder_template command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  218
fs_check command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  228
groups command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  232
help command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  235
history command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  236
import command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  238
license command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  241
iv     Rational Synergy Classic CLI Help, Release 7.1



lmgr_status command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  242
ln command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  243
ls command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  245
merge command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  247
message command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  250
migrate command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  252
monitor command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  259
move command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  261
ps command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  264
process_rule command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  266
process_rule examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  275
project_grouping command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  279
project_purpose command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  289
properties command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  294
query command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  297
reconcile command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  301
reconfigure command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  308
reconfigure_properties command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  309
reconfigure_template command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  310
relate command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  311
release command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  314
resync command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  322
set command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  323
show command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  325
soad command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  328
soad_scope command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  332
source command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  338
start command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  339
status command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  346
stop command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  348
sync command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  349
task command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  352
task examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  368
type command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  373
typedef command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  374
Rational Synergy Classic CLI Help, Release 7.1     v



unalias command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  379
unrelate command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  380
undo_reconfigure command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  381
undo_update command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  382
unset command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  384
unuse command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  385
update command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  389
update_properties command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  392
update_properties examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  401
update_template command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  406
use command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  408
users command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  410
version command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  412
view command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  413
work_area command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  414
work_area examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  424
wa_snapshot command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  426

Learn more about  427
Conflict detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  429
Date formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  439
Defining the merge tool  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  442
Migration rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  444
Query expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  462
Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  476
Shared projects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  480
SOAD scopes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  490
Triggers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  500
Work area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  506
Work area conflicts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  520

Links to all Rational Synergy help  526

Notices  528
vi     Rational Synergy Classic CLI Help, Release 7.1



General usage information

This section describes how to use IBM® Rational® Synergy. The following topics are 
discussed:

• Readme and documentation

• Contacting IBM Rational Software Support

• Using the command line interface - Windows users

• Using the command line interface - UNIX users

• Rational Synergy interfaces

• Rational Synergy help systems

• Terminology and name changes in Rational Synergy 7.1

• Command and argument syntax

• Naming restrictions

• Case and file name limit database options

• Date formats

• Built-In keywords

• Regular expressions

• Administering purposes and templates
Rational Synergy Classic CLI Help, Release 7.1     1



General usage information
Readme and documentation
Be sure to read the latest Readme file prior to using or administering Rational Synergy. 
The Readme file contains much of the information previously contained in the Release 
Notes document, which is no longer issued. The latest Readme is located on the Support 
site (see Contacting IBM Rational Software Support).

The Rational Synergy README contains general information about the product release, 
and includes the following topics:

• System Requirements

• Compatibility with Other Rational Products and Releases 

• New Release Features

Other documents referenced in this help can be found on the Documentation section of 
the DVD or downloaded from Support site.

Contacting IBM Rational Software Support
If the self-help resources have not provided a resolution to your problem, you can contact 
IBM® Rational® Software Support for assistance in resolving product issues.

Note If you are a heritage Telelogic customer, a single 
reference site for all support resources is located at http://
www.ibm.com/software/rational/support/telelogic/

Prerequisites
To submit your problem to IBM Rational Software Support, you must have an active 
Passport Advantage® software maintenance agreement. Passport Advantage is the IBM 
comprehensive software licensing and software maintenance (product upgrades and 
technical support) offering. You can enroll online in Passport Advantage from http://
www.ibm.com/software/lotus/passportadvantage/howtoenroll.html

• To learn more about Passport Advantage, visit the Passport Advantage FAQs at http:/
/www.ibm.com/software/lotus/passportadvantage/brochures_faqs_quickguides.html.

• For further assistance, contact your IBM representative.

To submit your problem online (from the IBM Web site) to IBM Rational Software Support, 
you must additionally:

• Be a registered user on the IBM Rational Software Support Web site. For details about 
registering, go to http://www.ibm.com/software/support/.

• Be listed as an authorized caller in the service request tool.
2     Rational Synergy Classic CLI Help, Release 7.1

http://www.ibm.com/software/rational/support/telelogic/
http://www.ibm.com/software/rational/support/telelogic/
http://www.ibm.com/software/lotus/passportadvantage/howtoenroll.html
http://www.ibm.com/software/lotus/passportadvantage/howtoenroll.html
http://www.ibm.com/software/lotus/passportadvantage/brochures_faqs_quickguides.html
http://www.ibm.com/software/lotus/passportadvantage/brochures_faqs_quickguides.html
http://www-01.ibm.com/software/support/


Readme and documentation
Submitting problems
To submit your problem to IBM Rational Software Support:

1. Determine the business impact of your problem. When you report a problem to IBM, 
you are asked to supply a severity level. Therefore, you need to understand and 
assess the business impact of the problem that you are reporting.

Use the following table to determine the severity level.

2. Describe your problem and gather background information, When describing a 
problem to IBM, be as specific as possible. Include all relevant background 
information so that IBM Rational Software Support specialists can help you solve the 
problem efficiently. To save time, know the answers to these questions:

• What software versions were you running when the problem occurred?

To determine the exact product name and version, use the option applicable to you: 

- Start the IBM Installation Manager and select File > View Installed Packages. 
Expand a package group and select a package to see the package name and version 
number. 

- Start your product, and click Help > About to see the offering name and version 
number. 

• What is your operating system and version number (including any service packs 
or patches)? 

• Do you have logs, traces, and messages that are related to the problem 
symptoms? 

• Can you recreate the problem? If so, what steps do you perform to recreate the 
problem? 

Severity Description

1 The problem has a critical business impact: You are 
unable to use the program, resulting in a critical impact on 
operations. This condition requires an immediate solution.

2 This problem has a significant business impact: The 
program is usable, but it is severely limited.

3 The problem has some business impact: The program is 
usable, but less significant features (not critical to 
operations) are unavailable.

 4 The problem has minimal business impact: The problem 
causes little impact on operations or a reasonable 
circumvention to the problem was implemented.
Rational Synergy Classic CLI Help, Release 7.1     3



General usage information
• Did you make any changes to the system? For example, did you make changes to 
the hardware, operating system, networking software, or other system 
components? 

• Are you currently using a workaround for the problem? If so, be prepared to 
describe the workaround when you report the problem.

3. Submit your problem to IBM Rational Software Support. You can submit your problem 
to IBM Rational Software Support in the following ways:

• Online: Go to the IBM Rational Software Support Web site at https://
www.ibm.com/software/rational/support/ and in the Rational support task 
navigator, click Open Service Request. Select the electronic problem reporting 
tool, and open a Problem Management Record (PMR), describing the problem 
accurately in your own words.

For more information about opening a service request, go to http://www.ibm.com/
software/support/help.html

You can also open an online service request using the IBM Support Assistant. For 
more information, go to http://www.ibm.com/software/support/isa/faq.html.

• By phone: For the phone number to call in your country or region, go to the IBM 
directory of worldwide contacts at http://www.ibm.com/planetwide/ and click the 
name of your country or geographic region.

• Through your IBM Representative: If you cannot access IBM Rational Software 
Support online or by phone, contact your IBM Representative. If necessary, your 
IBM Representative can open a service request for you. You can find complete 
contact information for each country at http://www.ibm.com/planetwide/.

Other information
For Rational software product news, events, and other information, visit the IBM Rational 
Software Web site.
4     Rational Synergy Classic CLI Help, Release 7.1

http://www.ibm.com/software/rational/
http://www.ibm.com/software/rational/
https://www.ibm.com/software/rational/support/
https://www.ibm.com/software/rational/support/
http://www.ibm.com/software/support/help.html
http://www.ibm.com/software/support/help.html
http://www-01.ibm.com/software/support/isa/faq.html
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/


Using the command line interface - Windows users
Using the command line interface - Windows users
Rational Synergy supports the command line interface (CLI) under all supported 
Windows® platforms.

You can execute any Rational Synergy command from the Windows command prompt.

Note that you cannot start the command line interface from the Rational Synergy interface. 
You must start the CLI separately.

Option delimiter
By default, the Windows client supports the slash ( / ) option delimiter. The dash ( - ) option 
delimiter is also supported. Examples in this help are shown using the dash ( - ) option 
delimiter.

Universal naming convention
Use the universal naming convention (UNC) any time you enter a path to an administrative 
command. UNC makes network access to files, machines, and other devices easier. It 
enables you to refer to remote machines and files by using a particular format. The format 
is: \\computer_name\share_name\path.

In the following example, \\loon\ccmdb\tstgonzo is a UNC-style path.
> ccm message /d \\loon\ccmdb\tstgonzo "Server going down for repair."

All Rational Synergy commands accept both UNC paths and paths with drive letters (for 
example, c:\users\ccmdb\base). However, three commands, ccmdb create, ccmdb 
copy, and ccmdb unpack require UNC paths for the database to be created.

File paths
The Windows client supports the standard Windows file specification, which usually is 
written as:
drive:\directory\filename

Rational Synergy online help uses the following to represent file paths:

c:\directory\filename

Although your files might reside on a different drive, Rational Synergy help uses drive c: 
for consistency.

Location of CCM_HOME
CCM_HOME is the directory where the Rational Synergy product was installed. For example, 
if you want to edit the remexec.cfg file, which resides in the etc directory in the Rational 
Synergy installation area, change directory to CCM_HOME\etc.

The default install directory for a client installation is:  
C:\Program Files\IBM\Rational\Synergy 7.1
Rational Synergy Classic CLI Help, Release 7.1     5



General usage information
Using the command line interface - UNIX users
Rational Synergy supports the command line interface (CLI) under all UNIX® platforms.

You can execute any Rational Synergy command from the UNIX shell.

Note that you cannot start the command line interface from the Rational Synergy interface. 
You must start the CLI separately.

Option delimiter
By default, the UNIX client supports the dash ( - ) option delimiter.

Location of CCM_HOME
CCM_HOME is the directory where the Rational Synergy product was installed. For example, 
if you want to edit the remexec.cfg file, which resides in the etc directory in the Rational 
Synergy installation area, change directory to $CCM_HOME/etc.
6     Rational Synergy Classic CLI Help, Release 7.1



Rational Synergy interfaces
Rational Synergy interfaces

Rational Synergy provides the following interfaces:

• Synergy GUI

This interface provides full functionality for developers and build managers. It does not 
support administrative operations, but you can use it for non-administrative use. You 
can run the Synergy GUI in two modes: Web mode or Traditional mode.  These 
modes are described Web mode and Traditional mode below.

• Synergy CLI

This interface provides near full functionality for developers and build managers. It 
does not support administrative operations, and runs in Web mode only. Web Mode is 
described Web mode and Traditional mode below.

• Synergy Classic GUI

This interface is available primarily for administrative operations. Users who work with 
the Classic GUI should plan to switch to the Synergy GUI. The Classic GUI is not 
available in Web mode. This interface will be phased out in a future release.

• Synergy Classic CLI

This interface is available primarily for administrative operations, and to provide a 
transition period for converting existing scripts to use the Synergy CLI. The Classic 
CLI is not available in Web mode. This interface will be phased out in a future release. 
You are currently reading the Synergy Classic CLI help.

Web mode and Traditional mode
Synergy 7.1 introduces a new, faster way of working called Web mode. Web mode uses a 
new underlying architecture for communication between the client and server. It is 
intended primarily for use across a wide area network (WAN), but can be used on a local 
area network (LAN) as well. Your Synergy administrator will provide information about 
which mode you should use.

Web mode and Traditional mode differ in the following ways:

Traditional mode Web mode

Performance Same as previous releases Much faster, especially over a 
WAN

Synergy GUI Same as previous releases Available in Web mode

Classic GUI Same as 6.5 Not available in Web mode
Rational Synergy Classic CLI Help, Release 7.1     7



General usage information
Eventually Traditional mode will be phased out, but it is supported now because it offers 
capabilities not yet available through the GUI or CLI in Web mode. You must use 
Traditional mode for most administration functions, such as saving data offline and 
cleaning out obsolete data, changing delimiters, adding or modifying type definitions, 
performing an upgrade, database backups and integrity checks, and migrating data using 
the migration utility.

Synergy CLI Not available in Traditional 
mode

New in Release 7.0. Limited 
support for administrative 
commands.

Classic CLI Same as previous releases Not available in Web mode

Administration Same as 6.5 Same as 6.5, plus Synergy 
server configuration and TDS 
(see below)

Installation Same as previous releases No different from Traditional 
mode

Network protocol Proprietary (RFC) HTTP or HTTPS

User authentication Operating system (OS) IBM® Rational® Directory 
Server™ (TDS), (LDAP)

Work area Same as previous releases Supports copy-based work 
areas only

Traditional mode Web mode
8     Rational Synergy Classic CLI Help, Release 7.1



Rational Synergy help systems
Rational Synergy help systems
You are currently viewing help for the Synergy Classic command line interface (CLI) for 
the 7.1 release of Rational Synergy. This help contains all supported commands, except 
for some database administration commands that are documented in the Administration 
Guides.

If you use the Synergy Classic graphical user interface (GUI), you may notice similar 
information in the help system that opens from that interface.  Although online help for the 
CLI is contained in that help system, it is not the most current command line information, 
as it does not include new commands and options. For the latest commands and options 
available in this release, start the help while using the command line interface. 

The most current help for the Synergy Classic interface is help written for the 6.3 release. 
The Synergy Classic GUI has had only minor changes since the 6.3 release. Check the 
README for information about those differences.

If you are not sure which help you are viewing, check the footer on the bottom of each help 
page, which identifies the release. In addition, help written for Synergy Classic (both the 
CLI and GUI systems) has a light blue background; help for Rational Synergy has a white 
background.
Rational Synergy Classic CLI Help, Release 7.1     9



General usage information
Terminology and name changes in Rational Synergy 7.1
The Rational Synergy product is in the process of phasing out certain features and 
behaviors from the command line and graphical interfaces. This process takes time and 
has occurred over several releases, in part to give our customers the opportunity to 
change scripts at convenient times in their work cycles. Depending on which interface you 
work in, you might see differences in terminology and names.

The following name changes have occurred in the last several releases:

• In releases prior to 6.4, the product was named CM Synergy. The core product was 
referred to as CM Synergy, with an interface specifically geared for users working in 
the developer role named CM Synergy for Developers.

• Effective with the 6.4 release, the interface previously named CM Synergy for 
Developers was enhanced and was referred to as SYNERGY/CM. The other 
graphical interface was referred to as SYNERGY/CM Classic.

• Effective with the 6.5 release, the interface previously named SYNERGY/CM was 
enhanced and was referred to as Synergy. The other graphical interface is referred to 
as Synergy Classic.

• Effective with the 7.0 release, the Rational Synergy interface can be run in two modes: 
Web mode and Traditional mode. The other graphical interface is still referred to as 
Synergy Classic. The corresponding command interface is called Synergy Classic 
CLI.

In addition to the product name changes, some terminology has been changed to be more 
consistent between interfaces. As this help is intended for use with the Synergy Classic 
command line interface, the terminology changes listed here affect that interface. The help 
for the Rational Synergy interface uses the new terminology. Terms used in the synergy 
classic GUI interface have not changed. The following table shows the terms used in 6.3 
and prior releases, the 6.4 release, and current terms used in this CLI help. 

Classic GUI and CLI 6.4 Term Synergy GUI and CLI

Reconfigure/Update Members Update Update

Reconfigure Template Update Template Process Rule

Reconfigure Properties Update Properties Update Properties

Undo Reconfigure Undo Update Undo Update

Check Out (Project) Copy Project Copy Project

Work Area Snapshot Copy to File System Copy to File System

Default Task Current Task Current Task
10     Rational Synergy Classic CLI Help, Release 7.1



Terminology and name changes in Rational Synergy 7.1
Commands have also been changed for consistency between interfaces. For example, 
the ccm update command also exists as the ccm reconfigure command. Links in the 
help take you to commands renamed with the new terminology. Aliases have been written 
so that scripts using the 6.3 and 6.4 commands can be used. References to the terms 
used in prior releases have been placed in the help for your convenience.
Rational Synergy Classic CLI Help, Release 7.1     11



General usage information
Command and argument syntax
You can enter the commands to run the Rational Synergy tool as follows:

• The ccm command prefix precedes each user command. Enter user commands 
individually, such as:

Windows:   ccm dir 
UNIX:      ccm ls 

• The Windows administrative commands are discussed in the Rational Synergy 
Administration Guide for Windows. Documents are available on the Rational Software 
Information Center.

• On UNIX, some administrative commands also use the ccm command prefix, but you 
also must prepend the command with an underscore. Enter these administrative 
commands individually, such as:

$ ccm_install

• The UNIX administrative commands are discussed in the Rational Synergy 
Administration Guide for UNIX. Users running on an Oracle database should use   
Rational Synergy Administration Guide for UNIX (Oracle). 

The majority of the commands in the command set require a file_spec or a 
project_spec as an argument. These arguments enable you to specify a controlled 
object in a Rational Synergy database. Other common arguments are task_spec,  
folder_spec, and change_request_spec.

The following topics are described:

Baseline specification

Change request specification

File specification

Folder specification

Problem specification

Project specification

Project grouping specification

Task specification
12     Rational Synergy Classic CLI Help, Release 7.1



Command and argument syntax
Baseline specification
A baseline_spec is a reference to baseline name. A baseline_spec can have any of the 
following forms.

• baseline_name

• a selection set reference (@number)

• the entire selection set reference (@)

When you release a baseline, you can specify a baseline_spec that includes a leading 
DCM database ID (dbid) and a DCM delimiter (for example, J#; where J is the dbid and # 
is the DCM delimiter).

Version template specification

A version_template is any string, with optional keywords, which can be of the 
form %keyword or %{keyword}. The keyword can be any Rational Synergy attribute, 
the special keyword %baseline_name, or the special keywords, %date and %build.  
When an attribute is specified, the corresponding attribute value from the prep project 
or product being copied is used.

Alternate keyword syntax for version template

The keyword syntax provides a way to alter the expansion behavior of keywords 
based on their existence.

• %{keyword:-string} If keyword is set and is non-null, it expands normally; 
otherwise it expands to string. Note that string can be an empty string if you 
want to see nothing when the keyword is not found.

• %{keyword:+string} If keyword is set and is non-null, it expands to string; 
otherwise it expands to the empty string (substitute nothing). 

So, to get solaris_7.0 or 7.0 (depending on whether platform exists), specify the 
following:

%{platform:-}%{platform:+_}7.0

• %{platform:-} expands to solaris if the platform exists (and was solaris); 
otherwise it expands to the empty string.

• %{platform:+_} expands to _ if the platform exists; otherwise it expands to the 
empty string.
Rational Synergy Classic CLI Help, Release 7.1     13



General usage information
Change request specification
A change_request_spec is a reference to one or more change requests. A 
change_request_spec can have any of the following forms:

• change_request_number (a single change request number)

• change_request_number,change_request_number (a list of change request 
numbers separated by commas)

• change_request_number-change_request_number (a range of values)

• selection set reference (@number)
14     Rational Synergy Classic CLI Help, Release 7.1



Command and argument syntax
File specification
A file_spec is a reference to a non-project object version in the Rational Synergy 
database.

A file_spec can be in one of four forms: 

• Work area reference form

• Selection set reference form

• Project reference form

• Object reference form

An object_name can contain up to 151 characters; the object’s version can contain up to 
32 characters.

Work area reference form

When an object version is a member of a project and the project is synchronized 
under a work area directory in the file system, you can reference the object version by 
its path in the projected directory structure.

The following example uses Windows paths. The functionality is the same on UNIX. 
For example, if the foo.c-4 object version is a member of the jobA-1 project under 
the dir1 directory and the project’s work area is c:\users\joe\ccm_tutorial, the 
work area reference form for foo.c-4 is:

c:\users\joe\ccm_tutorial\jobA-1\jobA\dir1\foo.c

If the current working directory is c:\users\joe\ccmtest\jobA-1\jobA, you can 
reference the foo.c-4 object version by using the relative path file_spec:

dir1\foo.c

You can augment the file_spec with the version to refer to another version of the 
object:

path\object_name[-version]

Use this file specification to refer to any different versions of the object version.

For example, if foo.c-4 is a member of the current project and has a predecessor 
foo.c-1, you can reference the predecessor by using the relative path belonging to 
foo.c-4:

dir1\foo.c-1

You can use the ccm delimiter command to change the delimiter, which separates 
the object from its version. You must be in the ccm_admin role to change the delimiter, 
as this command changes the delimiter for the entire database. (Be sure to read the 
Note shown for the delimiter command.)
Rational Synergy Classic CLI Help, Release 7.1     15



General usage information
Selection set reference form

The ccm query, ccm candidates, and ccm show commands display lists of object 
versions. A list of object versions is called a selection set. You can use the object 
versions in the command line selection set as file_specs.

For example, enter the following command to list all objects named foo.c owned by 
user joseph (the selection set follows the command).

ccm query -name foo.c -owner joseph 
1) foo.c-1 integrate joseph csrc 1 
2) foo.c-2 integrate joseph csrc 1 
3) foo.c-3 integrate joseph csrc 1 
4) foo.c-4 working joseph csrc 1

To use the command line selection set reference form to receive information on 
foo.c-2, use the ccm properties command as follows:

ccm properties @2

For some commands, you can reference the entire contents of the command line 
selection set by using the @ symbol only:

ccm properties @

Project reference form

When an object version is a member of a project, but the project is not under a work 
area directory in the file system, you can reference the object version by its relative 
path within the project. This example uses Windows paths:

relative_path\object_name[-version]@project_name-project_version

For example, to use the project reference form for the foo.c-4 object version in the 
jobA-1 project in the dir1 directory, use the following file_spec:

jobA\dir1\foo.c@jobA-1

You do not need to know the version of foo.c that you are referencing; you only need 
to know the name of the project in which it is a member.

Note In a DCM database, the project_spec must be a 
four-part name (object_name-version:type:instance). 
To learn more about the project_spec, see Project 
specification.
16     Rational Synergy Classic CLI Help, Release 7.1



Command and argument syntax
Object reference form

The object reference form  (also called the four-part name) requires the name, 
version, type, and instance of the object version. The object reference form is:

object_name-version:type:instance  or
object_name:version:type:instance

For example, use the following object reference form for the second instance of the 
foo.c-4 object version, which is a csrc object:

foo.c-4:csrc:2

Note You and other users could have several objects with 
the same name and type (for example, multiple csrc files 
named main.c). The instance differentiates objects with the 
same name and type.
Rational Synergy Classic CLI Help, Release 7.1     17



General usage information
Folder specification
A folder_spec is a reference to one folder number. A folder_spec can have any of the 
following forms.

• folder_number (an integer value)

• DCM-style folder_number (database_id#folder_number)

• four-part name (object_name-version:type:instance)

• selection set reference (@number)

• name of a file that contains a single folder number (folder_id_filename)

When the folder_specs reference is to more than one folder number, the folder_specs 
can have any of the following forms:

• folder_specs,folder_specs (a list of values)

• folder_specs-folder_specs (a range of values)

• name of a file that contains one or more folder numbers (folder_id_filename)

The folder_spec used in the folder_specs (multiple argument) syntax must be in the 
folder_number, DCM folder_number, or selection set form.

For example, to add the irv database’s 14th folder and the current database’s (not irv’s) 
sixth, seventh, and eighth folders to the jobA-1 project’s update properties, use the 
following folder_specs:

ccm up -a -folders irv#14,6-8 jobA-1

Folder template specification

A folder_template_spec is a reference to one folder template. A 
folder_template_spec can have any of the following forms:

• folder_template (a name such as "All completed tasks for release %release")
• DCM-style folder_template (database_id#folder_template)
• four-part name (object_name-version:type:instance)
• selection set reference (@number)
• name of a file that contains a single folder name (folder_template_filename)

When the folder_template_specs reference is to more than one folder template, the 
folder_template_specs can have any of the following forms:

• folder_template_specs,folder_template_specs (a list of values)
• name of a file that contains one or more folder descriptions 

(folder_template_description_filename)

The folder_template_spec used in the folder_template_specs (multiple 
argument) syntax must be in the folder_template, DCM folder_template, or 
selection set form.
18     Rational Synergy Classic CLI Help, Release 7.1



Command and argument syntax
For example, to add the irv database’s ninth folder template and the current 
database’s (not irv’s) fourth folder template to the process rules for the "Integration 
Testing" purpose for release 3.2, use the following folder_template_specs:

ccm process_rules -add -folder_temps irv#T9,T4 3.2:"Integration 
Testing"

Process rule specification

A process_rule_spec is a reference to a process rule. A process_rule_spec can 
have any of the following forms:

• selection set reference (@number)
• four-part name
• release:name of generic process rule for release-specific rules 

defined_name for generic process rules

Note  The old form of update_template_spec is no longer 
accepted. If used, it will fail, unless the name of the purpose 
specified is the same name as a generic process rule. 

For example, to add a folder template, T7, to the release-specific process rule 1.0: 
Collaborative Development, use the following process_rule_spec:

 ccm process_rule -add -folder_temp T7 1.0:"Colloborative Development"
Rational Synergy Classic CLI Help, Release 7.1     19



General usage information
Problem specification
A problem_spec is a reference to one or more problems. As problems are now called 
change requests, usage of problem_spec will be replaced by change_request_spec in a 
future release. A problem_spec can have any of the following forms:

• problem_number (a single problem number)

• problem_number,problem_number (a list of values)

• problem_number-problem_number (a range of values)

• selection set reference (@number)
20     Rational Synergy Classic CLI Help, Release 7.1



Command and argument syntax
Project specification
A project_spec is a reference to a project object version.

When a command requires a project as an argument, you must supply a project_spec to 
the command. In a DCM database, the project_spec must be a four-part name 
(object_name-version:type:instance) if the project doesn’t have the default instance 
of dbid#1, where dbid is the database’s database identifier. For projects that were 
created in the current database with multiple non-local project instances disabled (the 
default setting), projects can be specified with a two-part spec. Otherwise, the 
project_spec consists of the name and the version of the project:

project_name-project_version

For example, to show information about the jobA-1 project, use the following 
project_spec:

 ccm properties -p jobA-1

A project_name can contain up to 155 characters; the project’s version can contain up 
to 32 characters.

The default delimiter is - (hyphen). To learn how to change your delimiter, see delimiter 
command.

You can also use the following form to parse a project_spec.
project_name version_delimiter : project_version : project_instance

If you specify the two-part form (that is, without the project instance), a default instance is 
assumed, as follows:

• In a non DCM-initialized database: 1

• In a DCM-initialized database: dbid dcm_delimiter 1 (for example, A#1)
Rational Synergy Classic CLI Help, Release 7.1     21



General usage information
Project grouping specification
A project_grouping_spec is a reference to a project grouping. Grouping of projects 
allows you to update a group of projects using the same baseline and tasks.

A project_grouping_spec can be any of the following:

• The project grouping’s four-part name. The name consists of:

- The name attribute is the same ASCII encoding of the release and member_status 
that is used for the name of a process rule.

- The version attribute, which is always 1.

- The type, which is always project_grouping

- The instance is either:  
A private project grouping's instance is the same as its owner, for a non-DCM-enabled 
database.  For a DCM-enabled database, the instance is the local database id, 
followed by the DCM delimiter, followed by the owner

 or:

- A non-private project grouping's instance is 1, for a non-DCM-enabled database.  
For a DCM-enabled database, the instance is the database id of the database in 
which it was created, followed by the DCM delimiter, followed by 1

An example of the four-part name is:  
CM%002f7.1%3Acollaborative-1:project_grouping:linda

• The default displayname for a project grouping. For cases where the user is the owner 
of the project grouping, user_name's is allowed as an alternative to My. If the 
displayname for project_grouping is customized, it does not affect the syntax of the 
project_grouping_spec.

Examples of the displayname are: Linda's Synergy/7.1 Collaborative 
Development Projects and All Synergy/7.1 Integration Testing Projects 
for Database P

• A query reference (@number) that refers to a project grouping in a selection set from a 
query, such as @1

• For commands that allow multiple project groupings, a query reference that refers to 
the entire selection set, such as: @
22     Rational Synergy Classic CLI Help, Release 7.1



Command and argument syntax
Task specification
A task_spec is a reference to one task number. A task_spec can have any of the 
following forms:

• task_number (an integer value)

• DCM-style task_number (database_id#task_number)

• four-part name (object_name-version:type:instance)

• selection set reference (@number)

• name of a file that contains a single task number (task_id_filename)

When the task_specs reference is to more than one task number, the task_specs can 
have any of the following forms:

• task_specs,task_specs (a list of values)

• task_specs-task_specs (a range of values)

• name of a file that contains a one or more task numbers (task_id_filename)

Note task_specs that reference multiple specs can be 
separated by a comma and white space.

The task_spec used in the task_specs (multiple argument) syntax must be in the 
task_number, DCM task_number, or selection set form.

For example, to add the current database’s fifth, eighth, ninth, and tenth tasks in the query 
output to the jobA-1 project’s update properties, use the following task_specs:
 ccm up -a -tasks @5,@8-@10 jobA-1
Rational Synergy Classic CLI Help, Release 7.1     23



General usage information
Naming restrictions
This section describes the Rational Synergy object, release, database, and DCM naming 
restrictions.

Restricted object names
An object name can contain any combination of alpha numerics and symbols except for 
those characters that are restricted.

You cannot use any of the restricted characters as a version delimiter. For more 
information, see delimiter command.

Following are some of the Rational Synergy object naming restrictions.

• 8-bit and double-byte characters (with the top bit set) are not permitted in object 
names.

• Project names must not contain tabs. Makefile names must not contain tabs or 
spaces.

• Keyword expansion in source files whose names include spaces may contain syntax 
errors when compiled. Avoid using spaces in source code file names, or comment out 
(or remove) the keyword. 

Other restricted characters, and the reasons they are restricted, are shown in the following 
table.

Character Why restricted

/ UNIX path delimiter; internal delimiter

\ Windows path delimiter; escape character

’ UNIX quoting character (forward quote)

" Windows quoting character

: Windows drive letter delimiter; Rational Synergy object 
specification delimiter

? INFORMIX single-character wild card; regular expression

* INFORMIX multiple-character wild card; regular expression

[ INFORMIX match syntax; regular expression

] INFORMIX match syntax; regular expression

@ Rational Synergy object specifications delimiter

- Rational Synergy version delimiter
24     Rational Synergy Classic CLI Help, Release 7.1



Naming restrictions
You cannot use the following characters as the first character in an object name:

• , (comma)
• + (plus sign)
• - (dash)
• ~ (tilde)

Restricted release names
Each Rational Synergy release name must conform to the following conventions:

• The release name cannot contain any of the restricted characters shown in the 
preceding table.

• The values Any, None, none, as_is, and Default Release are reserved values that 
cannot be used.

• The component name must contain 64 or fewer characters.

• The component release must contain 32 or fewer characters.

Restricted database names
Each Rational Synergy database name must conform to the following conventions:

• If two databases use the same database server, they cannot have the same name. 
The name is the leaf directory in the full database path.

• The database name can contain letters, digits, and underscores only.

• The database name must begin with a letter.

• The database name must contain 18 characters or fewer.

Note When naming a Rational Synergy database, 
uppercase and lowercase characters are equivalent.

Restricted baseline names
Each Rational Synergy baseline name must conform to the following conventions:

• The name cannot contain the # character.

DCM restrictions 
Following are naming restrictions for DCM databases.
Rational Synergy Classic CLI Help, Release 7.1     25



General usage information
The following characters cannot be used in the database ID of the DCM database.

In addition to the restricted characters listed above, the database ID cannot be longer 
than 8 characters and cannot be the name "probtrac". The database ID cannot 
contain the version delimiter by default. This can be changed by the 
allow_delimiter_in_name attribute. 

The DCM database ID is case-sensitive. In any DCM cluster that uses lowercase 
databases, DCM database IDs must be unique without respect to case. That is, you 
must not use database IDs that are only different with regards to case. 

You cannot use characters a-z, A-Z, or 0-9 for the DCM delimiter. You can use "!", "~", 
or "=" as an alternative delimiter. The default DCM delimiter is "#", which should be 
used whenever possible.

Character Why restricted

/ UNIX path delimiter; internal delimiter

\ Windows path delimiter; escape character

’ UNIX quoting character (forward quote)

" Windows quoting character

: Windows drive letter delimiter; Rational Synergy object 
specification delimiter

$ INFORMIX single-character wild card; regular expression

? INFORMIX single-character wild card; regular expression

* INFORMIX multiple-character wild card; regular expression

[ INFORMIX match syntax; regular expression

] INFORMIX match syntax; regular expression

@ Rational Synergy object specifications delimiter

<space> The database ID cannot be enclosed in quotes

# Rational Synergy DCM delimiter; comment in GNU makefiles
26     Rational Synergy Classic CLI Help, Release 7.1



Case and file name limit database options
Case and file name limit database options
The following two database options, Case and File name limit, could have an impact on 
the names you give your objects in the Rational Synergy database:

Case
Rational Synergy supports case-sensitive file names. The keywords that support this 
option enable you to preserve the case of object names or to make object names 
lowercase in a Rational Synergy database.

If you want to view the case setting for your database, enter the following command:

ccmdb info database_path [-k case] 

For a discussion of how to change the case option, refer to the ccmdb_info command in 
the appropriate Rational Synergy Administration Guide.

File name limit
File name limits are dependent on both file system and Rational Synergy limitations. By 
default, you can create objects (files, directories, and projects) with names up to 256 
characters (Windows) or 155 characters (UNIX) in a Rational Synergy database. (See 
Command and argument syntax for a list of illegal symbols.)

To view the file name limit keyword for your database, enter the following command:
ccmdb info database_path [-k filelimit] 

To change the file name limit keyword, you must be working as user ccm_root. For a 
complete discussion of how to change the file name limit mode, refer to the ccmdb info 
command in the appropriate Rational Synergy Administration Guide.
Rational Synergy Classic CLI Help, Release 7.1     27



General usage information
Date formats
For more information on acceptable date formats in Rational Synergy, see Date formats.
28     Rational Synergy Classic CLI Help, Release 7.1



Built-In keywords
Built-In keywords
The following keywords are built into Rational Synergy. You can use these keywords to 
control the format of the output from query, list, and show operations on the command line, 
and query operations in the GUI.

Note You also can use attribute names as keywords. To list 
the attributes that are associated with an object, use the 
ccm attr command with the -list option.

Keyword Description  

%baseline Returns a project’s baseline project. Returns 
<No baseline> if no baseline exists.

%change_request Displays one or more change requests that are  
associated with the object. For a file, these 
change requests are determined based on the 
associated tasks and the change requests that 
are associated with those tasks.

%change_request_duplicates Returns a list of a change request’s duplicate 
change requests.

%change_request_original For a change request in the duplicate state, 
returns the original change request of which it is 
a duplicate.

%change_request_release Displays the release property of change 
requests that are associated with the object.

%change_request_status Displays the status of one or more change 
requests that are associated with the object.

%change_request_synopsis Displays the synopsis of one or more change 
requests that are associated with the object.

%dcm_delimiter Returns a number sign (#) for non DCM-
initialized databases. Returns the actual DCM 
delimiter for DCM-initialized databases.

%displayname Defaults to name-version.

%fullname Returns the four-part name in subsystem/
cvtype/name/version format.

%has_relationship Displays those objects that have a relationship 
from the object in the query.
Rational Synergy Classic CLI Help, Release 7.1     29



General usage information
%in_baseline Returns the name of a project’s baseline, if the 
project is in a baseline.

%in_build Returns the build number of the baseline for 
projects that are members of a baseline, if the 
project is in a baseline.

%instance Alias for the %subsystem part of the object 
name.

%is_relationship_of Displays those objects that have a relationship 
to the object in the query.

%model Returns the %fullname of the current model 
object.

%objectname Returns object name in name-
version:cvtype:subsystem format.

%optional_project_instance Returns a blank string if it has a default instance 
value ("1"). Returns a DCM delimiter and 
project instance for non-default ("dbid#1").

%problem_duplicates Returns a list of a problem’s duplicate 
problems.

%problem_original For a problem in the duplicate state, returns the 
original problem of which it is a duplicate.

%purpose Displays a project’s purpose.

%requirement_id Displays the requirement ID saved on the 
change requests that are associated with the 
task or object’s associated tasks.

%root Returns the <no_root> string if the object is not 
a root directory, and the project’s %fullname if it 
is a root directory.

%sourcename Defaults to the name of the object.

%states Returns legal object states separated by 
spaces.

Keyword Description  (Continued)
30     Rational Synergy Classic CLI Help, Release 7.1



Built-In keywords
%task Returns a comma-separated list of task 
numbers associated with this object. Returns 
<void> if no associated tasks exist.

%task_platform Returns a comma-separated list of platform 
values of the tasks associated with this object. 
Returns <void> if no associated tasks exist.

%task_release Returns a comma-separated list of release 
values of the tasks associated with this object. 
Returns <void> if no associated tasks exist.

%task_status Returns a comma-separated list of task 
statuses associated with this object. Returns 
<void> if no associated tasks exist.

%task_subsystem Returns a comma-separated list of subsystems 
(task_subsys) values of the tasks associated 
with this object. Returns <void> if no 
associated tasks exist.

%task_synopsis If the object is a task, returns the 
task_synopsis attribute. Otherwise, returns a 
semi-colon-separated list of task_synopses for 
the tasks associated with this object, or <void> 
if no tasks are associated.

%type Returns the type of the object (stored in the 
cvtype attribute).

Keyword Description  (Continued)
Rational Synergy Classic CLI Help, Release 7.1     31



General usage information
Regular expressions 
The following regular expressions can be used in certain commands to match against 
string values and optionally specify replacements to be made in the resulting string

• Ordinary characters

An ordinary character in a regular expression matches itself. The ordinary characters 
are characters other than those described below as special characters.

     (   )   [   ]   ^   $   .   *   +   ?   |   \

• Special characters

The special characters affect the matching behavior of regular expressions as 
described in the table below. Note that constructs that match arbitrary-length 
character sequences, i.e.,  *  +  ?, will always match the longest left-most string that 
permits a match. 

The table below shows special characters and their restrictions.

Character Why restricted

^ Matches the beginning of the string. For example: 
str ? * "^abc" only matches if str starts with abc

$ Matches the end of the string. For example: 
str ? * "abc$" only matches if str ends with abc

. Matches any single character. For example: 
str ? * "a.c$" matches values of str containing abc, axc, 
etc

* Matches zero or more of the immediately preceding expression. 
For example: 
str ? * "ab*c$" matches values of str containing ac, abc, 
abbc, etc

+ Matches one or more of the immediately preceding expression. 
For example: 
str ? * "a+c$" matches values of str containing abc, 
abbc, agggc, but not ac

? Matches zero or one of the immediately preceding expression. 
For example: 
str ? * "ab?c" only matches if str contains ac or abc
32     Rational Synergy Classic CLI Help, Release 7.1



Regular expressions
Wild card match regular expressions
The following characters can be used with the keyword MATCHES.

| Matches either the preceding or following expression.  
For example: 
str ? * "a|b|c" matches values of str containing a, b, or 
c

[ ] Matches any single character listed between brackets.  
 For example: 
str ? * "[ab]c" matches values of str containing ac or bc

[^ ] This combination of characters matches any single character 
not listed between brackets. For example: 
str ? * "a[^b]c" matches values of str containing axc for 
any replacement of x except for b

\ Escapes the character which immediately follows. For example: 
str ? * "a\.c$" matches if str contains a.c, and str ? * 
"a\\c$" matches if str contains a\c 
To embed a backslash character in a string, the string literal 
must contain two consecutive backslashes.

(  ) Delimits subexpressions. For example: 
str ? * "a(b|c)*d*" matches if str contains a followed by 
any number of b’s or c’s followed by d, such as "ad" or 
"acbbccd"

Character Why Restricted

* Matches zero or more characters

? Matches any single character

\ Removes the special significance of the next character (used to 
match* or ? by writing \* or \?)

Character Why restricted
Rational Synergy Classic CLI Help, Release 7.1     33



General usage information
Administering purposes and templates
The CM administrator (the ccm_admin role) can define the roles allowed to perform 
administrative operations for project purposes and process rules.

Project purpose manager
A project purpose manager is any user with a role that contains the privilege 
PRIVILEGE_MANAGE_PROJECT_PURPOSES. By default, the privilege is contained in 
two roles: build_mgr and ccm_admin. Each site can add or remove this privilege from any 
role.

A project purpose manager can create or delete the project purposes for a database. 
However,  if a build manager tries to modify a purpose that would require modification of a 
project for which the build manager does not have permission to modify, the operation will 
fail.

Only a user in the ccm_admin role can edit this privilege.

Process rules manager
The process rules manager (previously called reconfigure properties and update template 
manager) exists for databases that use process rules. 

A process rules manager is any user with a role that contains the privilege 
PRIVILEGE_MANAGE_PROCESS_RULES. By default, this privilege is contained by two 
roles: build_mgr and ccm_admin, and only a user in the ccm_admin role can edit this 
privilege. Each site can add or remove this privilege from any role.

A process rules manager can create or edit a process rule. However, if a build manager 
tries to modify a process rule that would require modification of a project for which the 
build manager does not have permission to modify, the operation will fail. In addition, a 
build manager cannot delete a process rule that is in use in any developer’s working 
project. Only a user in the ccm_admin role can delete a process rule.

For information about setting roles, see role_definitions.

Release manager
The release manager is any user with a role that contains the privilege 
PRIVILEGE_MANAGE_RELEASES. By default, this privilege is contained by two roles: 
build_mgr and ccm_admin. Each site can add or remove this privilege from any role.

A release manager can create or edit release information. However, some operations 
require the ccm_admin role, for example, renaming or deleting a release that is in use.
34     Rational Synergy Classic CLI Help, Release 7.1



Default settings

In order for Rational Synergy to be operational when you install it, it is shipped with a set of 
pre-designed values or settings, called defaults. These default settings have been defined 
as the settings that a majority of users would choose. However, these settings can be 
modified by you to better meet your needs. The information presented here defines the 
default values and where they are stored, describes how to change them, and explains 
any interaction between the settings. The following topics are discussed:

• How defaults are set

• Default options

• Initialization file - Windows

• Initialization file - UNIX

• Startup file

• GUI settings

• Environment variables
Rational Synergy Classic CLI Help, Release 7.1     35



Default settings
How defaults are set
The typical ways you can set or change default values are as follows:

• System-wide settings

• Database-wide settings

• Personal settings

• Command line settings

Rational Synergy reads the system-wide or database-wide settings first, then the personal 
settings, and then any values set from the command line. The last values that are read 
override the previous settings. The following paragraphs describe these common ways of 
setting default values. 

System-wide settings
System-wide default settings affect all users of an installation area. These defaults are 
usually set in the system initialization (ini) file.

The initialization file is called ccm.ini, and is found in the etc directory in CCM_HOME. All 
users of the installation area must restart their sessions to be able to use a new default 
setting in the system initialization file.

Database-wide settings
Database-wide settings affect all users of a specific database. These defaults are usually 
set in an attribute on the model object, or in an attribute on a specific type object. When 
you change a setting by modifying an attribute in the model, you may need to restart your 
session for the new setting to take effect.

Personal settings
Personal settings affect only your own sessions and databases. You set these defaults in 
one of three places, depending on the particular option:

• In the [Options] section in your personal initialization (ini) file

On Windows, the initialization file is called ccm.ini, and you create it in your Windows 
Documents and Settings directory (for example, C:\Documents and 
Settings\user_name_directory).

On UNIX, the initialization file is called .ccm.ini, and you create it in your $HOME 
directory.

You must restart your session to be able to use a new default setting in your 
initialization file.
36     Rational Synergy Classic CLI Help, Release 7.1



How defaults are set
• On the command line

Some personal settings are set using the command line. Some of these options are 
also available from the Rational Synergy Options dialog box.

• In the Rational Synergy Options dialog box

Some options are set in the Options dialog box. Some of these options may also be 
set on the command line.

Command line settings
You can use the ccm set command to set many Rational Synergy options by setting 
variables from the command line.  This action sets the defaults for your immediate use so 
that you do not need to restart your session to have take effect. Depending on the option, 
the setting may apply for your current session only, or may persist between sessions. The 
syntax of the set command is:
ccm set variable_name variable_value

Most of the options that can be set with the ccm set command apply for the current 
session only.  Those that are persistent are marked as such.
Rational Synergy Classic CLI Help, Release 7.1     37



Default settings
Default options
The following section contains the Rational Synergy options, their default values, and 
where to set them. The options are listed in alphabetical order. The option names are 
case-insensitive, when specified as a variable on the command line or in a personal 
initialization file.  However, for those options that are specified in a model attribute, the 
name of the attribute must be in lower case.

Rational Synergy uses settings made to the default options in the following order of 
precedence:

1. On the system or database level (that is, the system ccm.ini file or model attribute)

Rational Synergy reads the Options set in the system ini file or the appropriate model 
attribute first.

2. On the personal level (that is, in your personal ccm.ini file)

Options set in the personal ini file override system ini-level settings.

3. Using the ccm set command

Changes made using the ccm set command override both the system and personal 
ini-level settings.

The default line continuation character in an initialization file is a plus sign ( + ) on 
Windows and a backslash sign ( \ ) on UNIX.

For information about how to set model attribute options, see Setting model object 
attribute options.

For information about how to set options in the system or personal ini file, see Setting 
options in the system or personal ini file.

For information about how to set options using the set command, see Setting options 
using the ccm set command.

add_object_task_assoc
Set Option:             Model object attribute

Ensures that an existing object being added to a project is associated with the current 
(default) task. This option is used with the Paste operation (from the GUI) or the use 
command (from the CLI).

The default is TRUE.

If you want your model to match Rational Synergy release 4.5 or earlier, you must set this 
option to FALSE. 

You must restart your session for this change to take affect. For information about how to 
set model attribute options, see Setting model object attribute options. 
38     Rational Synergy Classic CLI Help, Release 7.1



Default options
allow_delimiter_in_name
Set Option:             Model object or type-specific attribute

Controls whether the delimiter is a restricted character.

When set to TRUE, the current delimiter is no longer a restricted character for non-project 
object names. The delimiter is still restricted for versions, types, instances, and projects.

With this feature enabled, object parsing is done from right to left in the sense that the 
right-most delimiter character is taken to be the delimiter. As a practical matter, object 
identification is done by first attempting to identify a given string as a name, and if that 
fails, it is identified as name<delimiter>version. This capability is particularly an issue 
with create, move, and use.

Note All databases in the same DCM cluster must use the 
same value for this attribute. Failure to synchronize this 
value may result in undesirable behavior similar to having 
objects with "~" in them, and changing the delimiter to a "~."

With the feature enabled, you can also create non-project objects with versions. However, 
you will also be unable to use ccm move to set a version on a renamed file. (You can work 
around this limitation by using the ccm attr command or the Properties dialog to change 
the version.)

This attribute can also exist on individual types. In this case, the database setting is 
overridden  if the database setting is FALSE and the type-specific setting is TRUE.

The following built-in types have allow_delimiter_in_name set to TRUE:

process_rule
processdef
saved_query
releasedef
project_grouping
folder_temp

The default is FALSE.

This option has the following restrictions and effects:

• Project names cannot contain the delimiter.  If a user attempts to create or migrate a 
project whose name contains the delimiter, it will fail with an error message.

• After turning on this option, the version can no longer be specified for the create 
operation in the GUI or CLI; it will always treat the object_spec as the name.  (Before 
this change, you can specify both the name and the version when creating an object, 
for example, specifying foo-one would create an object named foo with version one.  
After the delimiter change, it will create an object named foo-one with version 1.)  
Otherwise, there is no other way to create an object whose name contains the 
delimiter; you would need to create it and then rename it. 

• After turning on this option, CLI commands that use the object reference form 
name<delim>version will first try to find an object with that name, and if that fails, will 
Rational Synergy Classic CLI Help, Release 7.1     39



Default settings
try again without the part to the right of the delimiter.  For example, if files named foo-
one and foo both exist in the work area, and you specify foo-one, it will first look for a 
file named foo-one. Only if a file with that name is not found will it look for a file 
named foo with version one.  You can still identify the other file (foo version one) 
using its 4-part name or the selection set reference form.

• After turning on this option, CLI commands will fail for objects that have the delimiter 
as the first character of the name, if the delimiter is - (dash or minus) because the 
delimiter is also the option delimiter.  For example, the command ccm create -foo.c 
will fail.

For information about how to set model attribute options, see Setting model object 
attribute options.

allow_prep
Set Option:             Project or project type attribute.

Enables you to include prep subprojects when you update your project, if they are 
candidates (either from using a prep project as a baseline or from including in your update 
properties a task or folder that contains them).

This option is provided to support alternative methodologies. However, if you use this 
option, you run the risk of overwriting prep products with different (inappropriate) contents. 
Here is what can happen:

-- If a project includes prep subprojects, and the project owner (or build manager, in a 
prep project) is running in the build_mgr role, then when he builds his project, the 
projects within the prep subprojects can be rebuilt if they are determined to be out of 
date. After being rebuilt, they may be out of sync with respect to the rest of the 
products that make up the software for which they were last built.

The default is FALSE, and prep subprojects cannot be used when a project is updated.

A project type attribute is set the same way as model attributes. For information about how 
to set model attribute options, see Setting model object attribute options.

baseline_template
Set Option:             Model object attribute or ccm set command or Options dialog box

Specifies the version template to be used for project and products in a baseline when 
none is explicitly specified in the create baseline or modify baseline operation.

The default is %{version}_%date

Use the ccm set command to change the template to be used. The setting is persistent 
and applies to all sessions on all clients for the given user in the given database.

This option is available in the Options dialog box. This setting is also persistent and 
applies to all sessions on all clients for the given user in the given database.

The syntax for a baseline template is defined in the baseline command.
40     Rational Synergy Classic CLI Help, Release 7.1



Default options
For information about how to set model attribute options, see Setting model object 
attribute options.

For information about how to set options using the set command, see Setting options 
using the ccm set command.

baseline_template_date_format
Set Option:             Model object attribute  or ccm set command or Options dialog box

Specifies the date format to be used when creating a baseline when expanding the date 
keyword in the baseline_template.

The default is  = %Y%m%d

Use the ccm set command to change the date format to be used. The setting applies to 
all sessions on all clients for the given user in the given database.

This option is available in the Options dialog box. This setting is also persistent and 
applies to all sessions on all clients for the given user in the given database.

For information about how to set model attribute options, see Setting model object 
attribute options.

For information about how to set options using the set command, see Setting options 
using the ccm set command.

baseline_template_repl_char
Set Option:             Model object attribute or ccm set command or Options dialog box

Sets the default version string replacement character that is used if the instantiated 
version_template for any project or product in the baseline contains characters that are 
not allowed in a version string.  

The default is the underscore character (_).  

For example, if %platform is part of a project version template, and the prep project has a 
platform of SPARC-solaris, then the version string contains the string SPARC_solaris.  
Or, if %release is part of a product version template, and the prep product has a release of 
CM/7.1, then the version string contains the string CM_7.1.

Use the ccm set command to change the character to be used. The setting applies to all 
sessions on all clients for the given user in the given database.

This option is available in the Options dialog box. This setting is also persistent and 
applies to all sessions on all clients for the given user in the given database.

For information about how to set model attribute options, see Setting model object 
attribute options.

For information about how to set options using the set command, see Setting options 
using the ccm set command.
Rational Synergy Classic CLI Help, Release 7.1     41



Default settings
check_release
Set Option:             Model object attribute

Compares the release values of an object and its associated task to ensure they are the 
same. If the values do not match, a message is written to the Message View (ccm_ui.log) 
informing you of the mismatch.

The default is TRUE.

For information about how to set model attribute options, see Setting model object 
attribute options.

cli_compare_cmd 
cli_proj_compare_cmd 
cli_dir_compare_cmd 
cli_symlink_compare_cmd 
cli_merge_cli 
cli_dir_merge_cmd
Set Option:             System or personal ini file, or object, or object type attribute or ccm 
set command

cli_compare_cmd is the default command that is executed when two normal files are 
compared from the CLI.  A normal file is an object that is not a project, directory, or 
symbolic link. It defaults to the cli_compare_cmd attribute on the first object selected, 
which is, by default, ccm_dff -o %outfile %file1 %file2.

cli_proj_compare_cmd is the default command that is executed when two projects are 
compared from the CLI.  It defaults to the cli_compare_cmd attribute on the first project 
selected, which is, by default, sdiff -w 80 %file1 %file2.

cli_dir_compare_cmd is the default command that is executed when two directories are 
compared from the CLI.  It defaults to the cli_compare_cmd attribute on the first directory, 
which is, by default, %ccm_merge.

cli_symlink_compare_cmd is the default command that is executed when two symlinks 
are compared from the CLI.  It defaults to the cli_compare_cmd attribute on the first 
symlink, which is, by default, ccm_dff -o %outfile %file1 %file2.

cli_merge_cmd is the default command that is executed when two normal files are 
merged from the CLI.  A normal file is an object that is not a project, directory, or symbolic 
link. It defaults to the cli_compare_cmd attribute on the first object selected, which is, by 
default,  %ccm_merge.

cli_dir_merge_cmd is the default command that is executed when two directories are 
merged from the CLI.  It defaults to the cli_compare_cmd attribute on the first directory, 
which is, by default, %ccm_merge_dir.

On Windows, defaults for all four of these options are specified on the system initialization 
file, overriding the defaults on the object types.  The Window defaults for all four options 
are the same: ccm_dff -o %outfile %file1 %file2
42     Rational Synergy Classic CLI Help, Release 7.1



Default options
All lines in your initialization file that reference the ccm_dff command use -o %outfile to 
write the results of the diff to %outfile rather than to standard output. (%outfile is the file 
that contains the results of the two diff’d files.)

For information about how to set options in the system or personal ini file, see Setting 
options in the system or personal ini file.

For information about how to set object type options, see Setting object type attribute 
options.

For information about how to set options using the set command, see Setting options 
using the ccm set command.

cli.text_editor
Set Option:             System or personal ini file, or ccm set command

Specifies the text editor used to modify an object’s source. The cli prefix indicates that 
the default is for command line use. The user interface uses this variable to determine 
which tool to use to edit a text attribute. Be sure to include the full path name to the 
program, or the directory must be included in your path.

The default GUI and CLI text editor is Notepad on Windows and vi on UNIX.

For information about how to set options in the system or personal ini file, see Setting 
options in the system or personal ini file.

For information about how to set options using the set command, see Setting options 
using the ccm set command.

cli.text_viewer
Set Option:             System or personal ini file, or ccm set command

Specifies the text editor used to view an object’s source. The cli prefix indicates that the 
default is for command line use.

The default CLI text viewer is Notepad on Windows and vi on UNIX.

For information about how to set options in the system or personal ini file, see Setting 
options in the system or personal ini file.

For information about how to set options using the set command, see Setting options 
using the ccm set command.

conflict_exclude_rules
Set Option:             Model object attribute
Rational Synergy Classic CLI Help, Release 7.1     43



Default settings
This attribute will cause the new conflicts to be excluded, depending on attribute values of 
the conflicting objects. The following syntaxes are supported:

The default value of conflict_exclude_rules is unset.

Additional Information:

• The ! and != rules support values of type string and boolean.

• The values specified in the rules cannot contain the new line character.

• None of the rules should contain character sequences = or !=, except as delimiters for 
the equal/not-equal rules.

• Any lines that the parser does not understand will be ignored.

• Quotes are not needed around attribute names or string values, and should not be 
used. If present, they will be considered as literals, in other words, part of the name or 
value.

• The value of the conflict_exclude_rules attribute is cached in the model code, 
so if the rules are changed, user with active sessions will need to restart their sessions 
to get the new value.

• This attribute must be set manually, or through a model install. No customization 
interface is provided.

For information about how to set model attribute options, see Setting model object 
attribute options.

Syntax Description

attrname=attrvalue Excludes any conflict where the object’s attrname 
attribute value matches attrvalue.

attrname!=attrvalue Excludes any conflicts where the object’s attrname 
attribute value does not match attrvalue.

EXISTS(attrname) Excludes any conflicts where the object has an 
attribute named attrname.

NOT_EXISTS(attrname) Excludes any conflicts where the object does not 
have an attribute named attrname.

MATCHING(attrname) Excludes any conflicts where the object’s attrname 
attribute value matches that of the project.

NOT_MATCHING(attrname) Excludes any conflicts where the object’s attrname 
attribute value does not match that of the self 
version.
44     Rational Synergy Classic CLI Help, Release 7.1



Default options
conflict_parameters
Set Option:             Model object attribute.

Specifies which types of conflicts users in this database will see when they show conflicts 
for a project. The default value of the attribute lists each type of conflict and whether or not 
conflicts of that type are displayed when you request to see conflicts for a project.

The default editor displays the attribute settings, which contain one conflict setting per line. 
The line has the following format: conflict_number: TRUE|FALSE. Lines that begin with 
the pound character (#) are treated as comments.

The conflict default values for this option are:

# No task associated with object 
1: TRUE 
# Multiple tasks associated with object 
2: FALSE 
# Implicitly included object 
3: FALSE 
# Object included by use operation? 
4: TRUE 
# Object implicitly required but before baseline 
5: FALSE 
# Object implicitly required but not included - newer 
6: TRUE 
# Object implicitly required but not included - parallel 
7: TRUE 
# Object explicitly specified but before baseline 
8: FALSE 
# Object explicitly specified but not included - newer 
9: TRUE 
# Object explicitly specified but not included - parallel 
10: TRUE 
# Object explicitly specified but no versions of object in project 
11: FALSE 
# Object implicitly required but no versions of object in project 
12: FALSE 
# Task implicitly included 
13: TRUE 
# Task implicitly required but not included 
14: TRUE 
# Task explicitly specified but not included 
15: TRUE 
# Task explicitly specified but none of its associated objects 
# in project 
16: FALSE 
# Excluded task explicitly included 
17:  TRUE 
# Excluded task implicitly included 
18: TRUE 
Rational Synergy Classic CLI Help, Release 7.1     45



Default settings
# Completed fix task not included 
19: TRUE 
# Assigned fix task not included 
20: FALSE 
# Task fixed by this task not included 
21: FALSE 
# Implicit task from explicit object 
22: TRUE 
# Implicitly required by multiple tasks - newer 
23: TRUE 
# Implicitly required by multiple tasks - parallel 
24: TRUE

See Conflict detection for more information about conflicts, including a description of each 
conflict.

For information about how to set model attribute options, see Setting model object 
attribute options.
46     Rational Synergy Classic CLI Help, Release 7.1



Default options
copy_db_always
Set Option:             System or personal ini file

On Windows, forces a database copy when set to TRUE.

On UNIX, forces a database copy on ccm start -rc when set to TRUE.

The default for copy_db_always is unset, which causes a database copy to occur only 
when the _timetag file has been touched.

For information about how to set options in the system or personal ini file, see Setting 
options in the system or personal ini file.

date_modified
Set Option:             Model object attribute

Creates a keyword to indicate the last time the file was modified. The default model does 
not include a date_modified keyword.  You can create this keyword and set its value to 
the current time by adding the line date_modified current_time to the selection set. 
This will indicate when the file was checked in, if the keyword is expanded on check in. 

For information about how to set model attribute options, see Setting model object 
attribute options.

dcm_broadcast_dbid
Set Option:             Model object attribute

Creates a database ID used as an identifier in order to receive transfer packages for the 
correct database. If dcm_broadcast_dbid is set to a non-blank string, DCM initialize 
automatically creates a DCM database definition for the broadcast database using the 
value of that attribute as the DCM database identifier. If dcm_broadcast_dbid is set to a 
non-blank string, then DCM receives DCM transfer packages that were generated for a 
matching DCM broadcast database ID.

The default setting is TRUE.

For information about how to set model attribute options, see Setting model object 
attribute options.

dcm_log_enabled
Set Option:             Model object attribute

Specifies that a dcm_log attribute be created and updated after the import phase of a 
DCM receive. This will show each object that DCM tells import or XML import to process. 
Each line will be of the form:
Rational Synergy Classic CLI Help, Release 7.1     47



Default settings
<action> from transfer set "<tset>" from database <dbid> on <date>

where <action> is one of the following:

created
updated (<A|R|AR[I])

A is attrs eligible for update 
R is relations eligible for update 
I is image handling

    <tset> is the transfer set name 
     <dbid> is the database ID

The dcm_log attribute will be excluded by export and XML export, and ignored by import 
and XML import. It will not be copied on checkout.

The default setting is FALSE. This option is intended for use by Support personnel in order 
to assist customers in debugging DCM issues. This option should remain disabled unless 
such debugging is required.

For information about how to set model attribute options, see Setting model object 
attribute options.

dcm_time_sync_tolerance
Set Option:             Model object attribute

Controls the amount of time (in seconds) subtracted from the server’s current time to 
compensate for different time settings between machines accessing the database. For 
additional information about synchronizing servers used in DCM transfers, see 
"Synchronize Engines and Servers" in Rational Synergy Distributed.

The default setting is 60 seconds.

For information about how to set model attribute options, see Setting model object 
attribute options.

default_task_query
Set Option:             System or personal ini file

Specifies a user-defined query that can be used to specify a folder’s query. You can 
modify this default query by using query values, which are described in Query 
expressions.

When you specify the default_task_query option in the ini file, the ccm folder 
command’s task_scope option contains a user_defined value. Selecting the User 
Defined value causes the query specified by the default_task_query option to be part 
of the folder’s query.

When the default_task_query is specified in the ini file, the -task_scope option of the 
ccm folder command supports the user_defined value. Using task_scope 
user_defined with the ccm folder command will use the query specified by the 
default_task_query option as part of the folder’s query. 
48     Rational Synergy Classic CLI Help, Release 7.1



Default options
For information about how to set options in the system or personal ini file, see Setting 
options in the system or personal ini file.

default_version
Set Option:             Model object attribute

Specifies the default string for the first version of an object. Use this option to specify an 
alternative first version string, such as 0001.

The default for default_version is 1.

For information about how to set model attribute options, see Setting model object 
attribute options.

engine_host
Set Option:             System or personal ini file

Specifies the machine on which the Rational Synergy engine runs.

The default for engine_host is unset.

This option is not used by the Rational Synergy GUI.

For information about how to set options in the system or personal ini file, see Setting 
options in the system or personal ini file.

expand_on_checkin
Set Option:             Set on the cvtype

Allows the database administrator to add an attribute to any cvtype, which will cause 
keywords to expand on the specified cvtype. Keyword expansion normally occurs at 
check out, but with this option will occur at checkin.

To force keyword expansion at checkin for objects of a certain type, add the 
expand_on_checkin attribute to any type. For example, to enable it for all text type 
objects, add the expand_on_checkin attribute to the ascii cvtype; this value will be 
inherited by all objects in the ascii hierarchy.

The default for expand_on_checkin is unset. This option is boolean, so it must be set to 
either TRUE or FALSE. 

An example of how to enable this for the ascii type is
     $ ccm set role ccm_admin
     $ ccm query -t cvtype -n ascii
     $ ccm attr -c expand_on_checkin -t boolean -v TRUE @1
Rational Synergy Classic CLI Help, Release 7.1     49



Default settings
html_browser
Set Option:             System or personal ini file

Specifies the HTML browser used to view Rational Synergy HTML help. The value must 
be the fully qualified path to the executable; for example:

html_browser = /usr/local/bin/netscape

The default on Windows is ccm_exec; on UNIX the default is ccm_browser.

This option is not used by the Rational Synergy GUI.

For information about how to set options in the system or personal ini file, see Setting 
options in the system or personal ini file.

html_default_file
Set Option:             System or personal ini file

This setting operates only on UNIX operating systems.

Specifies an alternative default HTML help file. The default HTML page is displayed when 
you invoke the HTML help.

The default is ccm.htm.

For information about how to set options in the system or personal ini file, see Setting 
options in the system or personal ini file.

html_location
Set Option:             System or personal ini file

Specifies an alternative Rational Synergy HTML help file location. The value can be an 
Internet location.

The default is $CCM_HOME/help.

For information about how to set options in the system or personal ini file, see Setting 
options in the system or personal ini file.

include_required_tasks
Set Option:             Model object attribute

Specifies that when a task is added to Added Tasks of a project grouping, the required 
tasks on which the task depends are computed and added as well.

The default is unset.

For information about how to set model attribute options, see Setting model object 
attribute options.
50     Rational Synergy Classic CLI Help, Release 7.1



Default options
initial_role
Set Option:             System or personal ini file

Specifies the role with which you start the Rational Synergy CLI. The role and user name 
determine the access that you have to the objects in the system.

Besides setting your role in your ini file, you can change roles by executing the ccm set 
command (described in role). When using the ccm set command, the variable name is 
role.

The default for intial_role is unset. 

Note To change roles successfully using the ccm set 
command, be sure you have privileges for the role you are 
changing to; otherwise the command will fail.

For information about how to set options in the system or personal ini file, see Setting 
options in the system or personal ini file.

initials
Set Option:             System or personal ini file

Specifies the default next version for a project or product object to be the initials you 
specify. The next version will default to initials when you check out a project or product 
object if the new project or purpose has a private purpose. If this option is unset, the 
default next version for private projects and products is your user name. (The default next 
version is numeric for all other purposes, regardless of the initials option setting.)

To change the default next version to use your initials, enter the following in the system or 
personal initialization file:

initials=your_initials

For example: 
initials=leb

The default for initials is unset.

For information about how to set options in the system or personal ini file, see Setting 
options in the system or personal ini file.

mail_cmd
Set Option:             System or personal ini file

Rational Synergy uses a default mail tool for DCM e-mail notification. If you want to use 
your own mailer instead of Rational Synergy’s mailer, enter the following line in the 
[Options] section in your ini file.
mail_cmd = user-defined_mail_command
Rational Synergy Classic CLI Help, Release 7.1     51



Default settings
The syntax for user-defined_mail_command depends on the mailer you want to use. 
However, your mailer typically will require recipients, subject, and content options and 
arguments. For example, the following is a mail_cmd definition for ccmail:
mail_cmd = C:\ccmail\mailer.exe -r %recipients -s %subject -f %content

The %recipients, %subject, and %content arguments are expanded automatically by 
Rational Synergy, which uses the information you supply in your dialogs.

For information about how to set options in the system or personal ini file, see Setting 
options in the system or personal ini file.

migrate_check_required_task
Set Option:             System or personal ini file

When this option is set to TRUE, the migrate operation enforces task requirements for 
creating and checking out new versions, and for checking in checked-out versions’ 
predecessors. The task requirement is defined in each type’s Require Task At option.

The default is TRUE.

For information about how to set options in the system or personal ini file, see Setting 
options in the system or personal ini file.

migrate_default_arch_state
Set Option:             System or personal ini file

Specifies the default initial state used when migrating archive files.

The default is integrate.

For information about how to set options in the system or personal ini file, see Setting 
options in the system or personal ini file.

migrate_default_state
Set Option:             System or personal ini file

Specifies the default initial state used when migrating files.

The default is integrate.

For information about how to set options in the system or personal ini file, see Setting 
options in the system or personal ini file.

migrate_default_type
Set Option:             System or personal ini file

Sets the default file type to be used when migrating files into Rational Synergy. The default 
types cannot be specified to project or dir when these types need special handling. 

Note The default type will be used for create and reconcile 
operations, as well as migrate.
52     Rational Synergy Classic CLI Help, Release 7.1



Default options
The default is ascii.

Note Rational does not support ISO-Latin-1(ISO 8859-1) 
character set.

For information about how to set options in the system or personal ini file, see Setting 
options in the system or personal ini file.

multiple_local_proj_instances
Set Option:             Model object attribute

Sets the behavior on project creation. Normally, if a project (any version) is created and 
another instance of that project exists and that project is local to the database, the create 
will fail. Multiple instances of the same project cannot be created locally. However, if a 
non-local project has been received from another database, this does not prevent a local 
project from being created with the same name.

If this attribute is set to TRUE, multiple local project instances are allowed. In a non-DCM 
initialized database, whenever a project is created, it will start with an instance of 1; if that 
instance already exists, the next available instance number is used. If the user specifies a 
project without an instance number, then 1 is assumed by default.

The default is FALSE.

For information about how to set model attribute options, see Setting model object 
attribute options.

parallel_exclude_rules
Set Option:             Model object attribute

Contains a set of rules defining which version will be excluded form parallel notification.

The following syntaxes are supported:

Syntax Description

attrname=attrvalue Excludes any parallel CVs whose attrname 
attribute’s value matches attrvalue.

Example: status=rejected

attrname!=attrvalue Excludes any parallel CVs whose attrname 
attribute’s value does not match attrvalue.

Example: is_product!=TRUE

EXISTS(attrname) Excludes any parallel CVs that have an attribute 
named attrname.

Example: EXISTS(is_product)
Rational Synergy Classic CLI Help, Release 7.1     53



Default settings
The default value of this attribute is:

status=rejected
is_product=TRUE
EXCLUDE_NON_LEAF_NODES
NOT_MATCHING(release)

EXCLUDE_NON_LEAF_NODES Excludes any non-leaf nodes on parallel 
versions.

NOT_EXISTS(attrname) Excludes any parallel CVs that don’t have an 
attribute named attrname.

Example: NOT_EXISTS(is_product)

MATCHING(attrname) Excludes any parallel versions for which the 
attrname attribute’s value matches that of the 
self version.

Example: MATCHING(release)

NOT_MATCHING(attrname) Excludes any parallel versions for which the 
attrname attribute’s doesn’t match that of the 
self version.

Example: NOT_MATCHING(release)

Syntax Description
54     Rational Synergy Classic CLI Help, Release 7.1



Default options
Additional Information:

• The ! and != rules support values of type string and boolean.

• The values specified in the rules cannot contain the new line character.

• None of the rules should contain character sequences = or !=, except as delimiters for 
the equal/not-equal rules.

• Any lines that the parser does not understand will be ignored.

• Quotes are not needed around attribute names or string values, and should not be 
used. If present, they will be considered as literals (in other words, part of the name or 
value).

• This attribute must be set manually, or through a model install. No customization 
interface is provided.

• Some customers may want to add the following rules to the default value, to exclude 
parallel variant branches from notification:

NOT_MATCHING(release)
NOT_MATCHING(platform)

• The rule MATCHING(owner) should not be used. This rule will not work for checkout, 
because it uses the version you are deriving from to detect parallels.

For information about how to set model attribute options, see Setting model object 
attribute options.

proj_idx_wa_cache
Set Option:             System or personal ini file

Controls the size of the second work area path cache. The default value is 2500. Users 
can increase this value to improve the performance of file accesses in very large projects.

For information about how to set options in the system or personal ini file, see Setting 
options in the system or personal ini file.

project_subdir_template
Set Option:             Model object attribute or ccm set command or Options dialog box

Enables you to change the default template defining the project-specific directory of your 
work area path. Setting this option affects the work area path for projects created after the 
setting has been saved; it does not change the work area path of existing projects.

When changing the value of this option from the command line, you set the 
project_subdir_template variable. This automatically sets the option for the given 
platform where your interface is running - either UNIX or Windows. The setting is 
persistent and applies to all sessions on all clients for the given user in the given 
database.
Rational Synergy Classic CLI Help, Release 7.1     55



Default settings
When changing the model-wide default setting, you need to append _unix or _windows to 
the name of the attribute, to indicate whether the template applies to Windows or UNIX 
work areas. For example, to set a model-wide template for UNIX work areas, you would 
create an attribute called project_subdir_template_unix.

This option is available in the Options dialog box as Add project-specific directory. This 
setting is also persistent and applies to all sessions on all clients for the given user in the 
given database.

The following keywords are valid:

%project_name replaces %project_name with the new project name. 
%project_version replaces %project_version with the new version. 
%release replaces %release with the new release value. 
%platform replaces %platform with the new platform name. 
%delimiter replaces %delimiter with the new delimiter.

The default is %project_name%delimiter%project_version.

If you need to change the non-project-specific portion of the work area path, see 
wa_path_template.

For information about how to set model attribute options, see Setting model object 
attribute options.

For information about how to set options using the set command, see Setting options 
using the ccm set command.

range_for_keyword_expand
Set Option:             System or personal ini file

Establishes how many characters in a file will be scanned for keywords when an object is 
created or derived, starting from the beginning of the file.

When you check out a file, it scans the file and replaces keywords with values. If you have 
a large file with keywords defined in all parts of the file, the amount of time to scan the 
entire file can cause the create or check-out operation to be very slow.

The default number is 2048, which refers to the maximum number of characters that will 
be scanned for keywords. (If your file is set up for 80 characters per line, the default 
setting will allow at least the first 33 lines per file.)

The default setting works well if you have all of your keywords in the header area. If the 
keywords are spread throughout your file, you will need to reset this preference so that the 
keyword expansion can be done throughout the file.

For information about how to set options in the system or personal ini file, see Setting 
options in the system or personal ini file.

reconcile.control_files_below_new_project
Set Option:             System or personal ini file
56     Rational Synergy Classic CLI Help, Release 7.1



Default options
Specifies whether uncontrolled files are added to new projects derived from directories 
during the reconcile operation.

The default is FALSE.

For information about how to set options in the system or personal ini file, see Setting 
options in the system or personal ini file.

reconcile.save_uncontrolled
Set Option:             System or personal ini file

Specifies whether uncontrolled files that are removed from the work area due to conflict 
resolution should be saved in the work area wastebasket. Setting the option to TRUE will 
store an uncontrolled file in the work area wastebasket if the file is removed from the work 
area by an Update Work Area from Database resolution.

The default is FALSE.

For information about how to set options in the system or personal ini file, see Setting 
options in the system or personal ini file.

reconf_consider_all_cands
Set Option:             Model object attribute.

Specifies that a directory be populated with the best match when there are no candidates 
in a project’s update (reconfigure) properties. If this attribute does not exist or if the value if 
FALSE, the directory entries are left empty when there are no candidates in the project’s 
update properties.

The default is FALSE. 

If you want your model to match Synergy release 4.5 or earlier, you must set this option to 
TRUE.

For information about how to set model attribute options, see Setting model object 
attribute options.

reconf_release_score
Set Option:             Model object attribute.

Specifies that release scoring be used to select object versions whose release best 
matches the project's release. Release scoring is not used by default for task-based 
update, but may be considered if you develop parallel releases and one release includes 
the other release's changes. As there are definite caveats to using this option, it should be 
used only after serious consideration. For additional information, see the Rational 
Information Center at http://publib.boulder.ibm.com/infocenter/rsdp/v1r0m0/index.jsp/

The default is FALSE.

For information about how to set model attribute options, see Setting model object 
attribute options.
Rational Synergy Classic CLI Help, Release 7.1     57



Default settings
reconf_stop_on_fail
Set Option:             System or personal ini file

Stops the update (reconfigure) process when an individual operation fails. When set to 
TRUE, update stops if an individual operation within the update fails. When set to FALSE, 
the update process continues if an individual operation fails, allowing you to find all errors 
at one time.

The default is TRUE.

For information about how to set options in the system or personal ini file, see Setting 
options in the system or personal ini file.

reconfigure_parallel_check
Set Option:             System or personal ini file

Indicates whether parallel version notification is given on update (reconfigure).

This option can have the value FALSE, TRUE, or FULL. If set to FALSE or not specified, no 
parallel detection is done. If set to TRUE, parallel detection is done only among the 
candidates chosen by the update selection rules. This setting shows parallel versions 
specified by the saved baselines and tasks. If set to FULL, parallel detection is done 
among all version of the selected object.

The default is FALSE (no notification).

For information about how to set options in the system or personal ini file, see Setting 
options in the system or personal ini file.

reconfigure_using_tasks
Set Option:             Model object attribute

Indicates whether you are using task-based Rational Synergy to update projects. This 
setting applies to your entire database.

The default is TRUE.

For information about how to set model attribute options, see Setting model object 
attribute options.

release_phase_list
Set Option:              Model object attribute

Defines the various phases of development or deployment of a release. This feature 
allows you to track the status of a release during the development process. You can 
customize this list to match the development phases of your products, or use the default 
list. The default phase list contains the following phases:  New, Requirements 
Definition, Function Definition, Implementation, Validation, and 
Released. 
58     Rational Synergy Classic CLI Help, Release 7.1



Default options
The model attribute is formatted with each entry on a separate line. The default value 
when a release is created is the first value in the list.

For information about how to set model attribute options, see Setting model object 
attribute options.

replace_subproj
Set Option:             System or personal ini file 

Indicates whether the update (reconfigure) operation replaces subprojects as default 
behavior. 

This option can have the value TRUE (replace subprojects during update), or FALSE (do not 
replace subprojects).

The default is TRUE (that is, replace subprojects).

This option is used by the CLI and Synergy Classic, but is not used by the Rational 
Synergy GUI.

There is another option in the Options dialog box for replacing subprojects in the GUI. 
That option only applies to the GUI.

For information about how to set options in the system or personal ini file, see Setting 
options in the system or personal ini file.

required_attributes
Set Option:             Object type attribute.

Specifies whether users are required to fill in certain fields prior to transitioning an object of 
the given type to a static state. If one of the required fields is missing or contains an illegal 
value, the object will not transition to the static state.

The contents of this attribute should be the name of the required attributes, one per line.  
For example, if you want release, task description and priority to be required fields on a 
task, you should specify:
   release 
   task_description 
   priority

The task will not be able to be completed unless the attributes specified each have a valid 
value.

The default is an empty string.

For information about how to set object type attribute options, see Setting object type 
attribute options.

restrict_reconf_setting
Set Option:             Model object attribute.
Rational Synergy Classic CLI Help, Release 7.1     59



Default settings
Specifies whether developers can change their projects’ update (reconfigure) properties 
from "object status" to "tasks," and vice-versa. This option also controls whether the 
update properties can be set at the time a project is created.

Note With a setting of FALSE, each user can change his 
update properties whenever he wants, which could result in 
unexpected build results. If set to FALSE, be sure teams 
agree on the type of update properties to use.

By default this option is set to TRUE, and developers are restricted from changing the 
update properties setting. This option is a model object attribute. You must be working as 
a build manager or be in the ccm_admin role to set or change this option.

For information about how to set model attribute options, see Setting model object 
attribute options.

role
Set Option:             System or personal ini file, or ccm set command

Specifies the default role for using the Rational Synergy CLI.

To change the default role in your initialization file, use the initial_role option.

To change roles successfully using the ccm set command, be sure you have privileges for 
the role you are changing to; otherwise, the command will fail.

The default is developer.

This option does not affect the Rational Synergy GUI.

For information about how to set options in the system or personal ini file, see Setting 
options in the system or personal ini file.

For information about how to set options using the set command, see Setting options 
using the ccm set command.

role_definitions
Set Option:             Model object attribute

This attribute on the model object specifies what privileges are available to users in the 
various roles.

You would also modify this attribute to:

• Change the default roles that are allowed to modify a process rule (an update or 
reconfigure template), by adding or removing the privilege 
PRIVILEGE_MANAGE_PROCESS_RULES from a given role.

• Add a new role to manage releases by adding the privilege 
PRIVILEGE_MANAGE_RELEASES to the new role.
60     Rational Synergy Classic CLI Help, Release 7.1



Default options
• Change the default roles that are allowed to create and assign tasks, by adding or 
removing the privilege PRIVILEGE_CREATE_AND_ASSIGN_TASKS from a given 
role.

• Change the default roles that are allowed to assign DCM tasks, by adding or removing 
the privilege PRIVILEGE_ASSIGN_FOREIGN_TASKS from a given role.

After modifying this attribute, you need to restart your sessions.

For information about how to set model attribute options, see Setting model object 
attribute options.

save_to_wastebasket
Set Option:             System or personal ini file

Causes any uncontrolled file in your work area that needs to be removed to be moved to a 
wastebasket directory. If the update_db_from_workarea option is TRUE, files involved in 
collisions with controlled files are copied to the database, not to the wastebasket.

The default is TRUE.

For information about how to set options in the system or personal ini file, see Setting 
options in the system or personal ini file.

shared_project_directory_checkin
Set Option:             System or personal ini file

Causes non-writable directories in shared projects to be checked in to the integrate state 
automatically when objects are added to or deleted from such directories.

The default is TRUE.

For more information about shared projects, see Shared projects.

For information about how to set options in the system or personal ini file, see Setting 
options in the system or personal ini file.

start_day_of_week
Set Option:             Model object attribute

Specifies the start day of the week to be used when calculating queries that use relative 
time keywords: %this_week_begin, %this_week_end, %last_week_begin, and 
%last_week_end. Valid entries are integers from 0 - 6, with 0 being Sunday, 1 being 
Monday, etc.

The default is 0.

For information about how to set model attribute options, see Setting model object 
attribute options.
Rational Synergy Classic CLI Help, Release 7.1     61



Default settings
sync_output
Set Option:             System or personal ini file, or ccm set command

If you want to display sync status messages from the command line, you do not need to 
do anything; the default is to display the messages. If you do not want the messages to be 
displayed, you will need to set the sync_output option in one of the following two ways.

For information about how to set options in the system or personal ini file, see Setting 
options in the system or personal ini file.

For information about how to set options using the set command, see Setting options 
using the ccm set command.

system_filename_filters
Set Option:             Model object attribute.

Specifies the database default file patterns to be ignored when users sync the work area. 
This is set by the CM administrator (the ccm_admin role).

If certain files are being ignored in the work area based on their extension, and they 
should be included, the solution is to remove the extension from the 
system_filename_filters attribute.

The table below lists the default filters.

Default filters

*.APS *.BAK

*.BSC *.class

*.CLW *.ENC

*.EXP *.IDB

*.ILK *.INCR

*.MD# *.MD~

*.MD% *.NCB

*.OBJ *.OPT

*.PCH *.PDB

*.PLG *.PROJDATA

*.RES *.SBR

*.SUO *.TLH
62     Rational Synergy Classic CLI Help, Release 7.1



Default options
For information about how to set model attribute options, see Setting model object 
attribute options.

update_on_checkin_if_equal
Set Option:             System or personal ini file

When you use some editors or you perform scripted check-outs and check-ins, the 
timestamps on the database and work area versions of a file can appear to be identical. 
When set to TRUE, the update_on_checkin_if_equal option forces Rational Synergy to 
copy such files from the work area to the database, even though their timestamps indicate 
that they are not newer than their database versions.

The default is FALSE.

For information about how to set options in the system or personal ini file, see Setting 
options in the system or personal ini file.

verbosity
Set Option:             System or personal ini file

Specifies the default verbosity for messages output from the ccm update command. A 
level of 5 or greater causes additional information to be displayed by the update operation. 
The model your database uses also can use the verbosity level.

The default is 0 (zero), the lowest setting.

The Options dialog box also has a verbosity setting, which has the same effect as this 
setting.

For information about how to set options in the system or personal ini file, see Setting 
options in the system or personal ini file.

wastebasket
Set Option:             System or personal ini file

Use the wastebasket option to specify the location of your wastebasket directory.

*.TLI *.TMP

*.USER *.WBK

_vti* _vti*\*

~* *~

Copy of * New Folder

timestamp.inf

Default filters
Rational Synergy Classic CLI Help, Release 7.1     63



Default settings
%database becomes the name of the database for which the wastebasket is being used. 
(The wastebasket directory is hidden.)

%database and %user are keywords you can use to specify the wastebasket path to 
create directory names that differ for each user and/or database using the same template. 
These keywords are replaced at startup. If the directory does not exist, Rational Synergy 
creates it.

The default path resides in your home directory and is:
Windows:  HOME\%user\ccm_wa\.moved\%database
UNIX:     $HOME/%user_name/ccm_wa/.moved/%database

where %user replaces %user with your user name. 

For information about how to set options in the system or personal ini file, see Setting 
options in the system or personal ini file.

wa_path_cache_size
Set Option:             System or personal ini file

Controls the size of the work area path cache. The default value is 500. Users can 
increase this value to improve the performance of file accesses in large projects.

For information about how to set options in the system or personal ini file, see Setting 
options in the system or personal ini file.

wa_path_template
Set Option:             Model object attribute

Enables you to change the default template defining the non-project-specific directory of 
your work area path. Setting this option affects the work area path for projects created 
after the setting has been saved; it does not change the work area path of existing 
projects.

When changing the value of this option from the command line, you set the 
wa_path_template variable. This automatically sets the option for the given platform 
where your interface is running - either UNIX or Windows. The setting is persistent and 
applies to all sessions on all clients for the given user in the given database.

When changing the model-wide default setting, you need to append _unix or _windows to 
the name of the attribute, to indicate whether the template applies to Windows or UNIX 
work areas. For example, to set a model-wide template for UNIX work areas, you would 
create an attribute called wa_path_template_unix.

Set the following path using the ccm set command.
ccm set wa_path_template %home\%database\location

The following keywords are valid:
64     Rational Synergy Classic CLI Help, Release 7.1



Default options
%database replaces %database with the new database name. 
%user replaces %user with your user name. 
%owner replaces %owner with the project owner’s name. 
%home replaces %home with your home directory.

The Windows default is %home\ccm_wa\%database, where %home is your home directory 
(wherever you designated that to be in the Startup Info dialog's Home Directory text 
box).

The UNIX default is %home/ccm_wa/%database, where. %home is your UNIX home 
directory.

This option is available in the Options dialog box as Set default path for all work areas. 
This setting is also persistent and applies to all sessions on all clients for the given user in 
the given database.

If you need to change the project-specific portion of the work area path, see 
project_subdir_template.

For information about how to set model attribute options, see Setting model object 
attribute options.

For information about how to set options using the set command, see Setting options 
using the ccm set command.
Rational Synergy Classic CLI Help, Release 7.1     65



Default settings
Initialization file - Windows

Run Rational Synergy from the PC server
Typically, the ccm.ini file is located in two places: the system file is located in the 
interface’s installation area, CCM_HOME\etc, and a personal file usually exists in each 
user’s Windows Documents and Settings directory. If you do not have a ccm.ini file in 
your Windows Documents and Settings directory, you can copy the system file, and then 
modify it with the options you want to set.

The personal ccm.ini file overrides the system file.

You can edit your ccm.ini file by using any text editor.

Run Rational Synergy on your PC
If you are running Rational Synergy from an installation on your PC, the ccm.ini file is in 
CCM_HOME\etc. You can modify this file directly since it will affect your machine only.
66     Rational Synergy Classic CLI Help, Release 7.1



Initialization file - UNIX
Initialization file - UNIX
The default ccm.ini file is located in $CCM_HOME/etc/ccm.ini. You can copy the 
default file to your home directory, and then modify it for your use. Once you do this, the 
settings in your .ccm.ini file will override those of the system .ccm.ini file. Even if you 
haven’t changed any settings, if you don’t already have a personal .ccm.ini file, it is 
created automatically when you exit from your session.

You can create and edit your personal .ccm.ini file by using any text editor. The 
.ccm.ini file must reside in your home directory. Options that are preceded with the word 
Motif affect only the graphical user interface. When no interface is specified, the option 
applies to all interfaces, as appropriate.
Rational Synergy Classic CLI Help, Release 7.1     67



Default settings
Startup file
Startup file commands are stored in a Rational Synergy file called ccminit. You can use 
these commands to do the following:

• Define commands

• Define aliases

• Run commands

You can change these commands: 

a. for an installation area, 

b. for a particular database, or 

c. for your personal session.

The Windows startup files are read and executed in the following order:

• CCM_HOME\etc\ccminit

• database_directory\lib\ccminit

• user’s_home_directory\ccminit

The UNIX startup files are read and executed in the following order:

• CCM_HOME/etc/ccminit

• database_directory/lib/ccminit

• user’s_home_directory/.ccminit

If all three startup files exist, Rational Synergy will read and execute the commands in all 
three; each additional startup file provides extra commands to execute at startup. 

Rational Synergy reads the installation area settings first, then the database-specific 
settings, and then the personal settings. The commands in the last file read override those 
read from the previous files.

Note Regardless of which startup file you change, you must 
restart your session to make the new command(s) 
available.

Installation area setting
Setting commands in this file affects all users of an installation area. These commands are 
set in the system startup file (ccminit).

The system startup file resides in the directory:

Windows:  CCM_HOME\etc  
UNIX:     $CCM_HOME/etc
68     Rational Synergy Classic CLI Help, Release 7.1



Startup file
Database-specific setting
Setting commands in this file affects all users of a specific database. These commands 
are set in the database startup file (ccminit).

The database startup file resides in the directory:

Windows: database_directory\lib  
UNIX:        database_directory/lib

Personal setting
Setting commands in this file affects only your own session. You can set these defaults in 
your personal startup file (ccminit on Windows, .ccminit on UNIX).

If you do not already have a personal startup file, you will need to create one in your home 
directory.

Example
Assume that you want to set an alias permanently for your session only, but that you do 
not have a ccminit file in your home directory.

1. Create a startup file in your home directory.

2. Add your alias to the startup file. 

For example, your startup file might contain the following lines:

alias my_tasks "task -query -task_scope all_my_assigned" 
alias cidt "task -checkin default" 
alias exit stop

Note You can add as many aliases as you want to the 
startup file, but each alias should be on its own line.

Note Do not include the leading ccm for Rational Synergy 
commands. For example, the command to set an alias is 
ccm alias. Notice that in the last line of the example 
above, the command contains alias only.

3. Save your changes, and then exit from the startup file.

4. If you have a session running, exit from Rational Synergy, and then restart a session.

The alias is available for your use.
Rational Synergy Classic CLI Help, Release 7.1     69



Default settings
GUI settings
You can change the settings for the Rational Synergy graphical user interface by using the 
Options dialog box.
70     Rational Synergy Classic CLI Help, Release 7.1



Environment variables
Environment variables
You can define the following variables to affect the way Rational Synergy runs. The 
following table shows environment variables that you can set.

Environment variable Required Use

AUTOMOUNT_FIX 

(UNIX only)
No Used to determine the portion of path names that 

should be stripped to support automounter usage. 
Not needed if the  
/tmp_mnt prefix is used by the automounter. This 
variable is also used by SunOS automounter patch.

For more information, refer to the Rational Synergy 
Administration Guide for UNIX.

CCM_ADDR No Specifies the remote function call (RFC) address 
(host:socket) for the Rational Synergy interface.

CCM_ENGLOG No Used to redirect the engine log. If not set, the 
ccm_eng.log file in your Windows installation 
directory or UNIX home directory is used. The engine 
log file must be visible and writable by ccm_root.

CCM_HOME No Specifies the Rational Synergy installation directory, 
typically C:\Program 
Files\IBM\Rational\Synergy 7.1 for a Windows 
client, and   
/usr/local/ccm on UNIX.

CCM_PAGER

(UNIX only)
No Specifies the name of an executable used to display 

a file or report output using ccm monitor on UNIX. 
This takes preference over PAGER, if set.

CCM_UILOG No Used to redirect the user interface log. If not set, the 
ccm_ui.log in your installation directory on Windows 
or home directory on UNIX is used.

DISPLAY 

(UNIX only)
Yes Name of X display server; for example, unix:0.0.

HOME 

(UNIX only)
Yes Specifies your UNIX home directory.

LD_LIBRARY_PATH

(Sun only)
Yes Specifies a list of directories used to search for 

dynamic object libraries, for example:

/usr/lib/X11:/usr/openwin/lib
Rational Synergy Classic CLI Help, Release 7.1     71



Default settings
Note Rational Synergy uses other variables starting with 
CCM_ or AC_ for internal diagnostic purposes. Do not set 
any such variables, nor INFORMIXDIR, INFORMIXSERVER, or 
ONCONFIG variables, unless you are told to do so by Support 
personnel.

PAGER 

(UNIX only)
No Specifies the name of an executable used to display 

a file or report output using ccm monitor on UNIX.

PATH Yes Specifies a list of directories used to search for 
executables. 

PRINT_EDIT_CMD No If this variable is set to a value, the model-defined 
editor method that is being used is displayed 
whenever the editor command is executed.

PRINT_TOOL_CMD No If this variable is set to any value at all, the model-
defined tool method (for example, debug, print, or 
execute) is displayed whenever the tool command is 
executed.

RECONF_TIME No Times and displays the execution of an update 
(reconfigure) command.

SHELL

(UNIX only)
Yes Specifies the name of a UNIX command interpreter 

shell to invoke for subprocesses, for example, /bin/
csh.

TERM

(UNIX only)
Yes Specifies the type of terminal from which UNIX 

commands are entered, for example, xterm.

UIDPATH

(UNIX only)
No Specifies a list of directories used to search for files.

USER

(UNIX only)
Yes Specifies your user name.

Environment variable Required Use
72     Rational Synergy Classic CLI Help, Release 7.1



Setting model object attribute options
Setting model object attribute options
You can set model-wide attributes on model objects; these settings affect all users of 
databases into which that model has been installed. You must be in the ccm_admin role to 
change model attribute objects. 

The first example shows how to create the attribute, which is required in some cases. After 
creating the attribute, you can then set it. The second example shows how to modify an 
attribute that is already set.

Substitute the appropriate option name and syntax for the option you are changing.

Create an attribute
This example uses the allow_deliminiter_in_name attribute, which specifies whether 
the version delimiter is allows in an object name. By default, this attribute does not exist, 
which means the delimiter is not allowed.

To set this option the first time, you must create the attribute as follows:

1. Set your role to ccm_admin.

ccm set role ccm_admin

2. Query for the model object in the Rational Synergy database.

ccm query -t model -n base

3. Create the attribute.

ccm attr -c allow_delimiter_in_name -t boolean @1

4. Set the value.

ccm attr -m allow_delimiter_in_name -v TRUE @1

5. Restart your session. (All users of this database must restart their sessions.)

Modify an attribute
This example uses the wa_path_template_unix attribute, which specifies the default 
non-project-specific work area directory. By default, this directory is  %home/ccm_wa/
%database.

To modify this attribute, do the following:

1. Set your role to ccm_admin.

ccm set role ccm_admin

2. Query for the model object in the Rational Synergy database. 

ccm query -t model -n base

3. Specify the new path.
Rational Synergy Classic CLI Help, Release 7.1     73



Default settings
ccm attr -m wa_path_template_unix @1 -v "%home/workareas/%database"

4. View the new contents of the attribute.

$ ccm attr -show wa_path_template_unix @1

5. Change back to your previous role.

ccm set role previous_role

6. Restart your session. (All users of this database must restart their sessions.)
74     Rational Synergy Classic CLI Help, Release 7.1



Creating a list box for a new attribute
Creating a list box for a new attribute
You can create list boxes for newly created attributes. The syntax for creating new list 
boxes is as follows:
attr_name:attr_type[:[label][:#textlines]] |
attr_name:attr_type[:[label]:[#textlines]:values_ref]

where values_ref is defined in a new values definition entry, in a separate attribute.

Each values_ref values definition entry must be defined in a separate text attribute on 
an object or type called info_attrs.values_ref, where values_ref is the name of the 
list of values referred to in the info_attrs definition. This allows the list of values to be 
easily populated from external tools.

A values_ref must be a legal attribute name because it becomes part of the name of an 
attribute. A values_ref attribute name is limited to 21 characters because the limit on the 
length of an attribute name is 32 characters and 11 characters are used by the string, 
info_attrs.

The contents of an info_attrs.values_ref attribute must be a newline-separated list of 
possible values.

A value in a value list may be any ASCII string with embedded white space allowed, but no 
leading or trailing white space (since such white space will be considered part of the 
newline delimiter).

Example:

Suppose you want to add a custom attribute to the task type called approval_level and 
the possible values for this attribute are from the following list:

" new

" pending

" approved level 1

" approved level 2

You could create an entry in the info_attrs attribute on the task type as follows:

approval_level:string:Approval Level::approval_values

You could then create an attribute on the task type called info_attrs.approval_level 
with the following contents:

new

pending

approved level 1

approved level 2
Rational Synergy Classic CLI Help, Release 7.1     75



Default settings
Setting object type attribute options
You can set object type attributes on objects; these settings affect all users of databases 
having that object type. You must be in the ccm_admin role to change object types. 

Substitute the appropriate option name and syntax for the option you are changing.

1. Set your role to ccm_admin.

ccm set role ccm_admin

2. Query for the type whose setting you want to change. 

ccm query -t cvtype -n misc

3. Modify the attribute.

ccm attr -m required_attributes @1 

This will bring up an editor on the attribute. Make your changes, and then save the 
value. 

4. Change back to your previous role.

ccm set role previous_role

5. Restart your session. (All users of this database must restart their sessions.)
76     Rational Synergy Classic CLI Help, Release 7.1



Setting options in the system or personal ini file
Setting options in the system or personal ini file
Some options can be set by changing your personal ini file or using the ccm set 
command. Changing the option using your personal ini file will cause the change to be in 
effect every time you start a session. Changing the option using the ccm set command 
makes the change at the run-time level (that is, you do not need to restart a session for the 
change to take effect).

The following examples change the cli.text_editor option, the first in your Windows 
ccm.ini file, and the second, in your UNIX .ccm.ini file. Substitute the appropriate 
option name and syntax for the option you are changing.

• To specify Notepad as the default editor, your ccm.ini file should contain the following 
setting:

cli.text_editor=notepad %filename

• To specify vi as the editor, your .ccm.ini file should contain the following settings:

cli.text_editor="vi %filename"
Rational Synergy Classic CLI Help, Release 7.1     77



Default settings
Setting options using the ccm set command
Some options can be set by changing your personal ini file or using the ccm set 
command. Changing the option using your personal ini file will cause the change to be in 
effect every time you start a session. Changing the option using the ccm set command 
makes the change at the run- time level (that is, you do not need to restart a session for 
the change to take effect).

The following example changes the wa_path_template option. 

Substitute the appropriate option name and syntax for the option you are changing.

Enter the following to change the work are path template:
ccm set wa_path_template %home/workareas/%database
78     Rational Synergy Classic CLI Help, Release 7.1



Commands
Rational Synergy Classic CLI Help, Release 7.1     79



Commands
alias command

Synopsis
ccm alias [alias_name ["string"]]

Description and uses
The alias command enables you to create another name for a command. Use this 
command in the following way.

• With no arguments, alias lists all defined aliases.

• With a single argument, alias prints the value of name.

• With two arguments, alias sets the new alias name to the value string or changes 
the value of the existing alias name to string.

Setting the alias command applies the alias to the current session only. To learn how to 
set the alias permanently, see Startup file.

Options and arguments
name

Specifies the name of the alias.

string

Specifies the command to be substituted by the alias.

An alias is a direct textual substitution, so string can be a command name, a full 
command, or part of a command. If string is a command with arguments, enclose 
the entire command in quotes.

Examples
• List all defined aliases.

ccm alias

• Create an alias to check out a file with a new version.

ccm alias getf "checkout -t"

When you use the new alias, it will be in the following form:

ccm getf myversion foo.c

• Change the value of an alias.

ccm alias alias_name "new alias value"
80     Rational Synergy Classic CLI Help, Release 7.1



alias command
For example, assume you have an alias, my_query, defined to query for objects. 
Now you want to change the value of my_query to query for tasks. You would change 
the my_query alias’s value to query for tasks by running the alias command.

Related topics

• unalias command
Rational Synergy Classic CLI Help, Release 7.1     81



attribute command

Synopsis

Copy Attribute
ccm attr|attribute -cp|-copy [attr_name[:attr_name...]
                   [-append] from_file_spec to_file_spec
                   [to_file_spec...]
ccm attr|attribute -cp|-copy attr_name[:attr_name...]
                   [-append] [-subproj] [-suball]
                   -p|-project from_project_spec
                   to_project_spec [to_project_spec...]

Create Attribute
ccm attr|attribute -c|-create attr_name [-f|-force]
                   -t|-type type [-v|-value value]
                   file_spec [file_spec...]
ccm attr|attribute -c|-create attr_name [-f|-force]
                   -t|-type type [-v|-value value]
                   -p|-project project_spec [project_spec...]

Delete Attribute
ccm attr|attribute -d|-delete attr_name file_spec [file_spec...]
ccm attr|attribute -d|-delete attr_name
                   -p|-project project_spec [project_spec...]

Modify Text Attributes
ccm attr|attribute -m|-modify attr_name [-v|-value value]
                   file_spec [file_spec...]
ccm attr|attribute -m|-modify attr_name [-v|-value value]
                   -p|-project project_spec [project_spec...]

Modify Non-Text Attributes
ccm attr|attribute -m|-modify attr_name -v|-value value
                   file_spec [file_spec...]
ccm attr|attribute -m|-modify attr_name -v|-value value
                   -p|-project project_spec [project_spec...]

Show Attributes
ccm attr|attribute -s|-show attr_name file_spec [file_spec...]
ccm attr|attribute -s|-show attr_name
                   -p|-project project_spec [project_spec...]
82     Rational Synergy Classic CLI Help, Release 7.1



attribute command
List Attributes
ccm attr|attribute -l|-la|-li file_spec [file_spec...]
ccm attr|attribute -l|-la|-li
                   -p|-project project_spec [project_spec...]

Description and uses
Use the attribute command to manipulate the Rational Synergy attributes associated 
with objects. If the attribute is a text attribute, -v is optional.

Options and arguments
-append

Appends the specified attribute value(s) to the specified object. If you do not use this 
option, any existing values for the specified attributes are overwritten by the new 
values.

-cp|-copy attr_name[:attr_name...]

Copies an attribute or set of attributes to a selected set of object or project versions in 
a single operation. You can use the colon as the separator character if you want to 
specify more than one attribute name.

-c|-create attr_name

Creates an attribute.

-d|-delete attr_name

Deletes an attribute.

file_spec

Specifies the file or directory whose attribute will be changed (that is, modified, 
deleted, etc.).

-f|-force

You must use the -type option with the -force option.

Checks whether the attribute to be created exists and has the same type, and then 
causes one of the following to occur:

• If the attribute to be created exists and has the same type, the attribute’s value is 
changed (if you use the -value option).
Rational Synergy Classic CLI Help, Release 7.1     83



• If the attribute does not exist, the new attribute is created.
• If an attribute with the same name exists, but has a different type, the operation 

fails.

The difference between ccm attr -c attr_name -t type and ccm attr -c 
attr_name -f -t type is that the command without the -force option fails if the 
attribute already exists.

from_file_spec to_file_spec

When used with -cp, this option specifies that from_file_spec is the file from which 
the attribute is copied and to_file_spec is the file to which the attribute is copied.

-l

Lists all local attributes.

-la

Lists all attributes.

-li

Lists the inherited attributes.

-m|-modify attr_name

Modifies an attribute. If you do not specify the -v option, an editor is invoked on the 
attribute.

-p|-project from_project_spec to_project_spec

When used with -cp, this option specifies that from_project_spec is the project from 
which the attribute is copied and to_project_spec is the project to which the attribute 
is copied. If -subproj or -suball is used, the project is applied to to_proj_spec.

-p|-project project_spec

Specifies the project whose attribute will be changed (that is, deleted, copied, etc.).

-s|-show attr_name

Shows the value of an attribute.
84     Rational Synergy Classic CLI Help, Release 7.1



attribute command
-suball

Recursively copies the specified attribute(s) to subproject objects and all members of 
the specified project. This option applies to to_proj_spec and requires the -p option.

-subproj

Recursively copies the specified attribute or set of attributes to the subproject objects 
in the specified project. This option applies to to_proj_spec and requires the -p 
option.

-t|-type type

Specifies the type of the attribute. Use this option only when you create attributes. 
Valid built-in values include the following:

• string (used for single-line ascii attributes)
• boolean
• text (used for multi-line ascii attributes)

-v|-value value

Specifies the value of the attribute.

Examples
• Create a string attribute named new_attr for the driver.c object.

ccm attr -c new_attr -type string driver.c

• Show the value of the comment attribute for the driver.c object.

ccm attr -s comment driver.c

• Change the release attribute of foo.c to 4.2_int.

ccm attr -m release -v 4.2_int foo.c

• Copy the version attribute from a project, attr_test-1, to its subprojects.

ccm attr -copy version -project attr_test-1 -subproj attr_test-1 
Copying attrs: version 
from: attr_test-1. 
    to: attr_test2-1:project:1. 
    to: attr_test3-1:project:1. 
    to: attr_test4-1:project:1. 
Attribute Copy completed with 0 errors
Rational Synergy Classic CLI Help, Release 7.1     85



baseline command

Synopses

Compare Two Baselines
ccm baseline -compare baseline_spec1 baseline_spec2  
           [-tasks] [-objects] [-projects] [-change_requests]

Create or Preview a Baseline
ccm baseline -c|-create
           [-rehearse]
           -p|-project project_spec -p|-project [project_spec. . .] |
           -bl|-baseline baseline_spec [-baseline baseline_spec…] |
           -pg|-project_grouping project_grouping_spec [project_grouping_spec. 
. . ]
           [-r|-release release]
           [-purpose purpose_spec]
           [-d|-description "baseline_description"]
           [-subprojects|-no_subprojects|-all_subprojects]
           [-vt|-version_template version_template]
           [s|-state state_name]
           [-b|-build build_string]
           [baseline_name]

Delete a Baseline
ccm baseline -delete baseline_spec
            [-wp|-with_projects_and_products]
            [-np|-no_projects_and_products]

List Baselines
ccm baseline -l|-list [-release release] [-purpose purpose_spec]
           [-f|-format "format_string"] [-ns|-no_sort] [-u|-un_numbered]

Mark a Baseline for Deletion
ccm baseline -mfd|-mark_for_deletion 
             baseline_spec
86     Rational Synergy Classic CLI Help, Release 7.1



baseline command
Modify a Baseline
ccm baseline -modify baseline_spec
           [-n|-name name]
           [-b|-build build]
           [-v|-versions [-vt|-version_template version_template]
             [-skip_nonvisible_projects]]
           baseline_spec

Publish a Baseline
ccm baseline -publish baseline_spec

Release a Baseline
ccm baseline -rb|-release_baseline
           [-comment comment_string]
           baseline_spec

Restore a Deleted Baseline
ccm baseline -undelete
           baseline_spec

Show a Baseline
ccm baseline -sh|-show
           i|info|information|
           proj|project|projects|
           obj|objs|objects|
           t|task|tasks|
           cr|change_request|change_requests
           
(fcr|fully_included_change_request|fully_included_change_requests)|
           (pcr|partially_included_change_request| 
           partially_included_change_requests))
           [-f|-format "format_string"]
           [-ns|-no_sort]
           [-u|-un_numbered]
           baseline_spec
ccm baseline -sh|-show
           ((r|release)|(p|purpose)|(o|owner)|(desc|description)|(b|build))
           baseline_spec

Description and uses
A baseline is a set of projects and tasks used to represent your data at a specific point in 
time. A baseline has many uses. When you perform an update, Rational Synergy uses a 
baseline as a starting point to look for new changes. You can also compare two baselines 
Rational Synergy Classic CLI Help, Release 7.1     87



to see what changes have been made relative to a particular build. If you use Rational 
Change, you can use baselines to generate change request reports.

Typically, a build manager creates a baseline; a developer doesn’t need to create a 
baseline because he doesn’t make his builds available to other users.

You might find it useful to create a baseline as soon as you perform a build. You can create 
a baseline and make it available to the test group without making it available to all 
developers. Making the baseline as soon as you build saves a representation of the build 
in Rational Synergy in case it’s needed later to create a fix for that particular build.

Creating a baseline for each Integration Testing and System Testing build enables 
testers and developers to refer back to the set of changes that were used to create the 
build. Typically, you’ll create a baseline for all projects in the same release and purpose. 
For example, you would create a baseline for each Integration Testing build using all 
Integration Testing projects for that release.

Note When you create a baseline, you’ll specify a list of 
projects to be included in the baseline. Be sure to include all 
related projects in your baseline so that you have a 
complete set for reference

Baselines can be used by process rules to define the baseline for the projects that use that 
template. For example, a build manager may create a baseline named Integration 
Build 20040913 containing static projects toolkit-int_20040913, calculator-
int_20040913, etc. The numeric designation is the date (yyyymmdd) the baseline was 
created.

A process rule can specify that its projects use a particular baseline; the projects that 
reference that process rule use the baseline to identify which baseline project to use when 
updating. For example, if the Integration Testing process rule for the current release 
specified that the Integration Build 20040913 baseline should be used, a developer’s 
calculator-bob project would select calculator-20040913 as its baseline project.

Using baselines has the following benefits:

• Build managers have a lightweight way to save a set of projects that were successfully 
built and tested.

• Process rules are more flexible; they can specify a particular baseline or the latest 
baseline with certain characteristics, enabling build managers to control the team’s 
process more precisely. If problems were discovered in a newer baseline, the build 
manager can reset the team’s baseline to a previous, successfully-built baseline.

• The update operation uses the baseline to streamline which tasks are evaluated, 
thereby improving update performance.  Only those tasks on top of the baseline are 
considered when computing update candidates. When a baseline is created, the set of 
tasks is taken from either the project grouping or from the projects themselves for the 
projects that update manually. In addition, the tasks from the project grouping’s 
baseline are added to the new baseline, unless the release is different.
88     Rational Synergy Classic CLI Help, Release 7.1



baseline command
• Team members can compare baselines to identify which tasks were introduced in the 
latest baseline, or identify whether a baseline includes a particular task. This is useful 
for testers who need to know what features to test, as well as whether to expect a 
known problem to be fixed in a particular build. 

• Specify that a project should be updated to match the latest successful build.

How is a new baseline created?

Both prep-state projects and static projects may be added to a new baseline. However, if a 
prep project is added to a baseline, the actual project is not added. Instead, a copy of the 
project is created and added to the baseline and checked in. Prep projects and their work 
areas are preserved as is so as not to cause unnecessary rebuilds. Moreover, new 
versions are checked out and checked in for all non-static products that are members of 
the prep project. Other than that, the new project has the same members as the prep 
project. The new projects and products are checked in to the member_status that is 
associated with the baseline’s purpose. If this member_status is not a valid state, the 
projects and products are checked in to the integrate state. 

For example, a baseline that has the Integration Testing purpose has projects and 
products that are in the integrate state. 

If a prep project contains any non-static members that are not projects or products, you 
cannot add it to a baseline. Before you can add such a project to a baseline, you must 
check in its non-static members. In addition, you cannot add to a baseline any project 
whose update properties include a task that is not complete. 

A new project’s or new product’s version is created based on the prep project’s version, 
the date, and if necessary to make the version unique, an incremental number that is 
appended. For example, if project ccm_gui-sol_int is saved as part of a baseline, the 
new baseline project becomes something like ccm_gui-sol_int_20040709. If it is not 
possible to append an underscore, the date, and an incremental number to the existing 
version string (and also stay within the limit of 32 characters), then just the date and the 
number are used. 

After a baseline is created, the history view links are changed so that it appears that 
existing prep projects are checked out from the new baseline projects. In addition, project 
histories are updated to make it look as though existing prep products are checked out 
from the products that are created for the baseline projects. 

New projects that are created as part of a baseline do not have work areas. If you want the 
projects to have work areas, you must enable work area maintenance after the baseline 
has been created. When a project that has a visible work area is added to a baseline, it is 
checked for work area conflicts. If any non-resolvable conflicts are found, the create 
baseline operation will fail. To resolve this issue, you must reconcile the project.

If a project with a non-visible work area is added to a baseline, the latest-built product may 
not have been copied to the database. In such a case, the baseline will contain what is in 
the database, not what is in the non-visible work area. To avoid this problem, the build 
manager must make sure that changes to all non-visible work areas of projects that are 
Rational Synergy Classic CLI Help, Release 7.1     89



added to a baseline have been synchronized to the database. This must be done before 
adding such projects to a baseline.  

Use the baseline command to:

• Create a baseline from an existing prep hierarchy or set of hierarchies.

• Save a baseline instead of manually populating the Tested Tasks folder in order to 
publish the latest tested changes to developers.

• Show information or associated projects, objects, and tasks for a specific baseline.

• List baselines.

• Modify or rename a baseline

• Release a baseline or compare two baselines.

• Delete an existing baseline, or mark a baseline for deletion.

• Restore a deleted baseline.

You must be working as a build manager to create or release a baseline. You must be 
working as in the ccm_admin role to delete a baseline or modify the build of a released 
baseline. Any user can show, compare, or list baselines.

Options and arguments
-all_subprojects

When this option is used with -create, specifies that entire project hierarchies be 
added to a baseline. The default behavior is -subprojects.

-baseline baseline_spec

If this option is used with -create and one or more baseline_specs are specified,  
the projects in the specified existing baselines are added to the new baseline.

Note that the –subprojects, -no_subprojects, and –all subprojects options will 
affect which subprojects are also added.

By default, if the –baseline option is used, but the –project option is not, 
subprojects are not included.  However, if the –project and –baseline options are 
used together, then the –subprojects default implied by –project overrides the –
no_subprojects default implied by –baseline.
90     Rational Synergy Classic CLI Help, Release 7.1



baseline command
baseline_name

The baseline_name is the name that is assigned to the baseline. When you create a 
baseline, you can assign any legal object version name to the baseline. 

If you do not specify a baseline_name when you carry out the ccm baseline -
create or -modify command, a unique name is automatically assigned to the 
baseline. This default name is a name that is in the form yyyymmdd. If needed, the 
default name is followed by an underscore and an incremental number to make it 
unique. For example, the first baseline created on April 1, 2002 has a default name of 
20020401. The second such baseline created on the same day has a default name of 
20020401_1.

baseline_spec

The baseline_spec allows the baseline_name  or selection set reference form to be 
used where a baseline name is allowed. The entire selection set reference, @, can be 
used. For more information, see Baseline specification.

When you release a baseline, you can specify a baseline_spec that includes a 
leading DCM database ID (dbid) and a DCM delimeter (for example, J#; where J is 
the dbid and # is the DCM delimeter).

-build build_string

If this option is used with -create, the create operation uses the build_string for 
the new baseline.

When used with -modify, allows the build string on a baseline to be changed. A build 
can be changed by a user working as a build manager, unless the baseline is in the 
released state. A baseline that has been released can be modified only by a user 
working in the ccm_admin role.

-cr|-change_request|-change_requests

If this option is used with -show, the show operation shows the partially and fully 
included change requests in the baseline. The default format is: %displayname: 
%problem_synopsis.

If this option is used with -compare, the compare baseline operation shows 
differences in change requests between the two baselines. For example, when 
comparing two baselines B1 and B2, the comparison output includes change requests 
Rational Synergy Classic CLI Help, Release 7.1     91



fully included in both B1 and B2, change requests partially included in both B1 and B2, 
and change requests that are fully or partially included in one project or the other.

-comment string

If a comment is specified, it is appended to the comment on all baseline projects and 
their members. This occurs when the baseline is released and those projects and 
members are checked in.

-compare

If this option is used with -baseline, compares two baselines that have the specified 
baseline_specs. Shows the differences between the properties of two baselines, 
compares different versions of the same project, shows projects that were either 
added to or removed from the baseline, and shows differences in change requests 
between the projects. It also shows the differences in tasks of the two baselines.

-create

Creates a new baseline. If the baseline name that you specify is already in use by a 
baseline that is local to the database, the command will fail. Moreover, if you specify 
an invalid or non-active release, the command will fail.

The baseline you create includes all static projects in the hierarchies that you specify 
by the project_spec. It includes all static projects and copies of prep projects. If any 
projects in the hierarchy do not match the release or purpose that you specify, the 
command will succeed; however, a warning message will be displayed. The Selection 
set reference form or the full selection set (@) can be used as the project_spec. To 
learn more about project_spec, see Project specification.

You can add prep-state projects to baselines that you create.

The project hierarchies that you specify can contain modifiable products. If any other 
modifiable members are not products or projects, the create baseline operation will 
fail. If you do not specify the release and purpose, the release and purpose of the first 
specified project is used.

-delete

Deletes the baseline that has the baseline_spec you specify. You must be in the  
ccm_admin role to use this option. If -wp is specified, the baseline is deleted with 
projects and products. If -np is specified, only the baseline is deleted. The default 
behavior is to delete the baseline and the projects and products that did not exist in a 
static state before the baseline was created.
92     Rational Synergy Classic CLI Help, Release 7.1



baseline command
You cannot delete a baseline if any non-static project uses that baseline, or if a 
process rule uses the baseline. In addition, if you try to delete a baseline and its 
checked-in projects and products, and one or more of its associated projects or 
products is a member of a project that is not part of the baseline, the delete baseline 
operation will succeed; however, those projects or products will not be deleted. 
Furthermore, if one or more projects that are in the baseline are members of another 
baseline, or are baseline projects, the delete operation will be successful, but those 
projects will not be deleted.

The -delete option works with multiple baselines, including a single item selection 
set reference, such as @[0-9]+, or the entire selection set reference.  

-description "baseline_description"

Optionally, provides a detailed description of the baseline. There is no limit on its 
length, and no restriction on its contents. The baseline_description must be 
enclosed in double quotes if it contains one or more spaces.

-f|-format "format_string"

Specifies the command's output format. The default format depends on the options 
that you use with -format (for example, -list or -show) and those options' keyword 
arguments. To learn more about the default output formats, see the descriptions of the 
options that you can use with -format. 

The format can contain a combination of text and keywords. Keywords are replaced 
by specific data about each object. For example, the keyword %owner is replaced with 
sue if information about an object owned by user sue is displayed. 

-list

Lists baselines. If -release or -purpose is specified, only those baselines that match 
the release or purpose are listed. 

-mfd|mark_for_deletion

Marks the baseline for deletion. A baseline marked for deletion can be deleted later 
with save offline and delete (SOAD), or manually by a user working in the ccm_admin 
role. Note that a baseline does not have to be in the deleted_baseline state to be 
deleted by a user in the ccm_admin role. 
Rational Synergy Classic CLI Help, Release 7.1     93



-modify

Allows various attributes of the baseline to be changed. If the version template is 
updated, it is updated after the name and build attributes are modified, as the template 
may be expanded differently if the name or build is changed. You must be working as 
a build manager to make modifications to a baseline.

The name and build keywords in a template expand to the newly specified name and 
build if they were also specified.

If a work area is visible, but cannot be updated for other reasons, such as lack of 
proper file permissions or lack of disk space, the operation fails and the command 
returns an error code of 1, regardless of the setting of the -
skip_nonvisible_projects option. However, the operation continues, even on 
failure, reporting all failures to update work area at the end. 

-name

When used with -modify, allows the baseline to be renamed. A baseline can be 
renamed by a user working as a build manager, unless the baseline is in the released 
state. A baseline that has been released can be modified only by a user in the 
ccm_admin role.

-np|-no_projects_and_products

If this option is used with -delete, causes the baseline to be deleted, but does not 
delete projects that are associated with the baseline, and the products in those 
projects.

-no_subprojects

When used with -create, specifies that no subprojects be included in the baseline. 

-ns|-no_sort

Specifies that the command's output will not be sorted. 

-objects

If this option is used with -compare, the compare baseline operation shows common 
objects or objects that were added or removed between the two baselines.
94     Rational Synergy Classic CLI Help, Release 7.1



baseline command
-project

If this option is used with -create and a project_spec is specified, it indicates the 
projects is to be added to the baseline. By default, when a project is added, its entire 
hierarchy is also added. The -no_subprojects option can be used to override this.

-projects

If this option is used with -compare, common projects and projects unique to each 
baseline are listed.

-project_grouping project_grouping_spec 

If this option is used with -create and one or more project_grouping_specs are 
specified, the projects in the specified project groupings are added to the new 
baseline. By default, when a project grouping is added, only those projects in the 
project grouping are added; subprojects that are not part of the project grouping are 
not added. The –all_subprojects option can be used to override this. 

Note that the –subprojects, -no_subprojects, and –all subprojects will affect 
which subprojects are also added.

By default, if the –project_grouping option is used, but the –project option is not, 
subprojects are not included.  However, if the –project and –project_grouping 
options are used together, then the –subprojects default implied by –project  
overrides the –no_subprojects default implied by –project_grouping.

project_spec 

Each project_spec that is specified represents a project that is to be included in the 
baseline. To learn more about project_specs, see Project specification.

-publish baseline_spec

Transitions baselines in the test_baseline state to the published_baseline state. 
You must be working as a build manager to complete this transition.

-purpose purpose_spec

Specifies the baseline purpose. If not specified, the purpose defaults to the purpose of 
the first project specified.
Rational Synergy Classic CLI Help, Release 7.1     95



-rehearse

Lists the projects and products that will make up the baseline.

If any version conflicts are found, either when creating a baseline or when using the -
rehearse option, you will see a warning, listing all the product and project versions 
that are in conflict, either because an existing version already exists, or because the 
resulting version would not be a legal version string.

-rb|-release_baseline

Releases the baseline that has the baseline_name you specify. Also checks in all of 
the baseline’s projects and their members to the released state. 

-release release

Specifies the release value of the baseline. When creating a baseline, any active 
release value may be used.  If not specified, the release defaults to the release of the 
first project specified.

-show

Shows the release, purpose, and project information that is associated with the 
baseline_name you specify. Also shows the release and purpose for each project that 
is in the baseline.

i|info|information

If specified, the following information is displayed.

Name 
Description 
Release 
Purpose 
Released 
Projects 
Build

r|release

If specified, the baseline’s release value is displayed.

p|purpose

If specified, the baseline’s purpose is displayed.
96     Rational Synergy Classic CLI Help, Release 7.1



baseline command
o|owner

If specified, the name of the baseline’s owner is displayed.

desc|description

If specified, the baseline’s description is displayed.

projects

If specified, all projects that are included in the baseline are displayed. The default 
format is:

%displayname %status %owner %release %create_time

The default format may be overridden by using the -format option.

objects

If specified, all objects that are included in the baseline are displayed. The default 
format is:

     %displayname %status %owner %release %create_time

The default format may be overridden by using the -format option.

tasks

If specified, all tasks that are included in the baseline are displayed. The default 
format is:

     %displayname %release %owner %create_time

The default format may be overridden by using the -format option.

cr|change_requests

If specified, all change requests included in the baseline are displayed. 

fcr|fully_included_change_request|fully_included_change_requests

If specified, only fully included change requests are displayed. 

pcr|partially_included_change_request|partially_included_change_reques
ts

If specified, only partially included change requests are displayed. 
Rational Synergy Classic CLI Help, Release 7.1     97



-skip_nonvisible_projects

When this option is used with -modify, it specifies that projects without a visible work 
area will not be changed.

For each work area that cannot be updated because it is not visible, a warning is 
displayed; the operation continues and is successful if there are no other problems 
and -skip_nonvisible_projects was used. If -skip_nonvisible_projects was 
used, an error is returned, but the operation continues and does not clean up. All 
errors are reported at the end. The message indicates whether the failure was 
because the work area was not visible or because it could not be modified

-state

Specifies the state of the baseline when it is created. When creating a baseline, valid 
states are test_baseline, published_baseline, and released. The default state for a 
baseline is test_baseline. Developers can see the baseline in this state and can use it 
manually. They won’t get is automatically as the latest baseline. SQA can use it for 
testing. Once it passes testing, the build manager must transition the test baseline to 
published_baseline to make it available for developers to use.

Creating a baseline in the released state is equivalent to creating one in the 
published_baseline state, and then releasing it.

-subprojects

When this option is used with -create, specifies that project hierarchies be added to 
a baseline. This includes all prep subprojects, and nonmodifiable subprojects will be 
included if the component part of the release of that nonmodifiable subproject 
matches the release of the baseline. This must be an exact match of the component 
name. A release without a component name can only match another release without a 
component name. This is the default behavior if no options are specified.

-tasks

If this option is used with -compare, common tasks and tasks unique to each baseline  
are listed.

-u|-un_numbered

Suppresses automatic numbering of the command's output (that is, the output is un-
numbered). 
98     Rational Synergy Classic CLI Help, Release 7.1



baseline command
-undelete

Restores a baseline in the deleted_baseline state to the state it was in before it was 
deleted. If the baseline is not in the deleted_baseline state, no change occurs.

-ver|-versions

Specifies that the version of the projects and products are to be modified.

version_template

A version_template is any string, with optional keywords, which can be of the 
form %keyword or %{keyword}. The keyword can be any Rational Synergy attribute 
or a built-in keyword. 

When an attribute is expanded, the corresponding attribute value from the prep 
project or product being examined is used. If no attribute or built-in keyword is found 
for a specified keyword name, the empty string is used to replace the keyword.

-vt|-version_template version_template

When used with –create, all new project and product versions that are checked in 
during the command use the version_template for their versions.

When used with –modify, the versions of the project and product versions that 
became static when the baseline was created are updated to match 
version_template. However, projects that existed in a static state before the 
baseline was created are not reversioned. For example, if a CM/6.3 SP3 baseline was 
created with 20 existing static projects from the CM/6.3 SP2 baseline and 5 new 
projects from the CM/6.3 SP3, only the 5 new projects will be reversioned.

If the instantiated version_template for any project or product in the baseline 
contains characters that are not allowed in a version string, then those characters are 
replaced with the default version string replacement character. This is specified in the 
ccm.ini file, with the option baseline_template_repl_char.  This character default 
is the underscore character (_).  For example, if %platform is part of a project version 
template, and the prep project has a platform of SPARC-solaris, then the version 
string contains the string SPARC_solaris.  Or, if %release is part of a product version 
template, and the prep product has a release of CM/7.1, then the version string 
contains the string CM_7.1.

If the instantiated version_template  for any project or product in the baseline is 
already in use for another version of that project or product, then the version is made 
Rational Synergy Classic CLI Help, Release 7.1     99



unique by appending the underscore character (_) and the first integer, starting with 1, 
that will make the version unique.  If this causes the version string to be too long, then 
a version based on the current date is used for that project or product, and a warning 
is given.

If  –version_template is not specified, then the default (i.e., saved) template is used. 
For more information, see Version template specification.

The work area is updated if the work area template for the project includes the 
version. If a work area cannot be updated because it is not visible, and -
skip_nonvisible_projects is not used, the operation continues and all errors are 
reported. If the work area is visible, but cannot be updated for other reasons, such as 
lack of proper file permissions or lack of disk space, the operation continues and all 
failures are reported.

-wp|-with_projects_and_products

If this option is used with -delete, it causes the projects that are associated with a 
baseline, and the products in those projects, to also be deleted.

Examples
• Display a list of baselines for release 2.2 and purpose Integration Testing.

ccm baseline -list -release 2.2 -purpose "Integration Testing"

• Compare the projects that are in a baseline named 20020401_1 and a baseline 
named 20020401_2.

ccm baseline -compare 20020401_1 20020401_2 -projects

• Create a baseline named Build_1234_int for Release 2.0, for the purpose of 
Integration Testing, that includes a project named proj1-sqa_3 and its subprojects.

ccm baseline -c Build_1234_int -d "Integration build 1234" -r 2.0 -
purpose "Integration Testing" -projects proj1-sqa_3 -subprojects

Related topics

• update_properties command

• process_rule command
100     Rational Synergy Classic CLI Help, Release 7.1



Rational Synergy Classic CLI Help, Release 7.1     101

bom command

bom command

Synopsis
ccm bom file_spec [file_spec...]

Description and uses
The bom command enables you to display the Bill-of-Materials to standard output for one 
or more specified object s.

You also can view a BOM from a product object’s Properties dialog.

Any user can execute this command.

Options and arguments
file_spec

Specifies the name of the file for which the Bill-of-Materials is displayed. file_spec 
must be a controlled product.

Example
• View a Bill-of-Materials.

ccm bom file_spec



102     Rational Synergy Classic CLI Help, Release 7.1

candidates command

Synopsis
ccm cand|candidates [-recommend] file_spec

Description and uses
The candidates command lists all versions of an object that are eligible for selection 
when you perform a use or update operation in a directory entry. An object is a candidate 
for use if the name, type, and object instance attribute values of the object match those of 
the directory entry.

The output shows each object version’s name, version, state, owner, project in which it 
was created, instance, and associated task number.

Options and arguments
file_spec

Specifies the name of the object or directory entry for which the candidate versions 
are listed.

-recommend

Adds an asterisk (*) to the listed version that would be selected by Rational Synergy 
based on its selection rules.

Example
• List the versions of Xincls.h that can be members of the current project in the 

directory, and recommend the version to use.

ccm cand Xincls.h -recommend 
1) Xincls.h-1 integrate chrisb incl projX 1 5 
2) Xincls.h-2 integrate chrisb incl projX 1 12 
3) Xincls.h-3 integrate terri  incl projX 1 13 
4) Xincls.h-4 integrate terri  incl projX 1 15 *

Related topics

• update command

• use command



Rational Synergy Classic CLI Help, Release 7.1     103

cat command

cat command

Synopsis
ccm cat file_spec [file_spec...]

Description and uses
The cat command displays the source of an object. This command is useful for displaying 
the contents of an object that is not currently a member of the directory.

Options and arguments
file_spec

Specifies the name of the file to be displayed.

Example
Display the second instance of the foo.c-9 object version, which is a csrc object.
ccm cat foo.c-9:csrc:2

Related topics

• view command

• type command



104     Rational Synergy Classic CLI Help, Release 7.1

change_type command

Synopsis
ccm change_type file_spec -t|-type new_type -task task_number

Description and uses
Changes the type of a specific object. A new version of the object that has the specified 
type is created. If the specified object is in the working state, it is replaced with the new 
object, and the specified object is deleted from the database. If the object is a member of 
a project and the change_type command is executed within the project, the old object is 
replaced by the new object in the project. If the parent directory is not modifiable, it is 
automatically checked out for you. The project must be writable by you. If the object is a 
member of more than one project, or if the command is not executed within the project 
where the object is a member, the command fails.

Any user can perform this operation.

Options and arguments
-type new_type

Specifies the new type that the object will have. 

file_spec 

Specifies the name of the file whose type you are changing. 

-task task_number 

Associates any newly-created directory and object with the specified task. 

If the current (default) task is set and you do not specify a different task, the newly-
created directory is associated with the current task automatically.

Example
• Change the type of the file. 

ccm change_type file_spec -t|-type new_type



checkin command
checkin command

Synopsis
ccm ci|checkin [-s|-state state]
               [-nc|-nocomment] [-cr|-commentreplace]
               [-c|-comment "string"]
               [-ce|-commentedit]
               [-cf|-commentfile file_path]
               [file_spec [file_spec...]
ccm ci|checkin [-source] [-products] [-projects]
               [-h|-hierarchy] [-task task_number]
               [-s|-state state]
               [-ps|-product_state product_state]
               [-ss|-source_state source_state]
               [-nc|-nocomment] [-cr|-commentreplace]
               [-c|-comment "string"]
               [-ce|-commentedit]
               [-cf|-commentfile file_path]
               -p|-project [project_spec project_spec...]

Description and uses
Use the checkin command to check in one or more objects and, if necessary, set the next 
state.

You can check in source (non-product objects), product and project objects, assign task 
numbers to objects you will check in, and add, modify, or replace a comment for the object 
you will check in.

Note You should make changes from only one work area, 
and you should perform your check-ins with that work area 
visible.

Options and arguments
-c|-comment "string"

Enables you to add the string as the object’s comment. If you are checking in a task, 
the comment is added to the task.

-ce|-commentedit

Brings up an editor to enter the comment.
Rational Synergy Classic CLI Help, Release 7.1     105



-cf|-commentfile file_path

Uses the comments from the specified file. If you specify both a comment string and 
comment file, the comments are merged, with the comment string following the 
comments from the file.

-cr|-commentreplace

Normally, any newly specified comment(s) is appended to an existing comment. Use 
the -cr option to replace an existing comment. You can replace a comment only on 
writable objects.

file_spec

Specifies the file or directory you want to check in.

-h|-hierarchy

Applies the check-in scope (for source, products, or projects) to the project hierarchy.

-nc|-nocomment

Do not prompt for comments. (Normally, if you do not specify a comment with either 
the -c or -cf option and the object does not already have a comment, you are 
prompted for a comment.)

-products

Checks in all products in the current project.

-p|-project project_spec [project_spec...]

Indicates that the specified object is a project.

-projects

Checks in all projects in the top-level project, and then checks in the top-level project.

-ps|-product_state product_state

Use this option with the -products option.

Specifies the state of product objects when checking in a product. This applies both to 
hierarchy and non-hierarchy check-ins (that is, this option does not require the -s 
option).
106     Rational Synergy Classic CLI Help, Release 7.1



checkin command
-s|-state state

Explicitly sets the states of the files or projects to be checked in. If you do not specify a 
state, the default next state is calculated automatically.

If you enter the -products and -source options but do not enter the -p and -ps 
options, this option (-state state) is used as the next state for products and source 
objects.

-source

Checks in all objects in the current project that are not products or projects.

-ss|-source_state source_state

Enables you to specify the state of non-product objects when checking in a project 
hierarchy.

Examples
• Check in the current version of foo.c with a state of visible.

ccm checkin -s visible foo.c

• Check in the directory utils without any new comments.

ccm ci -nc utils

• Check in three files (clear.c, concat.c, and display.c).

ccm ci -nc clear.c concat.c display.c

• Check in the c_includes symbolic link to the checkpoint state (UNIX only).

ccm ci -c "let others edit" -state checkpoint c_includes

• Check in the projB-3 project.

ccm ci -c "configuration sent to customer A" -p projB-3

• Check in all members of the tools-5 project, with product members going to the 
checkpoint state, and source (non-product) members going to the integrate state.

ccm ci -p tools-5 -products -s checkpoint 
ccm ci -p tools-5 -source -ss integrate
Rational Synergy Classic CLI Help, Release 7.1     107



Caveats
To check in a project version to a non-modifiable state, be sure that all members are in a 
non-modifiable state already because you cannot check in a project to a non-modifiable 
state if it has modifiable members.

Related topics

• checkout command 

• task command
108     Rational Synergy Classic CLI Help, Release 7.1



checkout command
checkout command

Synopsis
ccm co|checkout [-task task_number]
                [-t|-to file_spec|version]
                [-c|-comment "string"]
                [-ce|-commentedit]
                [-cf|-commentfile file_path]
                file_spec [file_spec...]
ccm co|checkout [-purpose purpose_spec]
                [-platform platform]
                [-release release|as_is|none]
                [-reconf tasks|os]
                [-subprojects]
                [-versions "old_ver:new_ver,old_ver:new_ver,..."]
                [-t|-to version]
                [-c|-comment "string"]
                [-ce|-commentedit]
                [-cf|-commentfile file_path]
                -p|-project project_spec

Check out a project and set work area properties
ccm co|checkout check_out_options
                [-cb|-copy_based|-not_copy_based|-ncb  (UNIX only)]
                [-rel|-relative|-nrel|-not_relative]
                [-path|-set|-setpath] absolute_path
                [-mod|modifiable_wa] [-nmod|not_modifiable_wa] 
                [-tl|-translate|-ntl|-no_translate]
                [-wa|-maintain_wa|-nwa|-no_wa]
                [-wa_t|-wa_time|-nwat|-no_wa_time]
                [-u|update|-no_u|-no_update]
                -p|-project project_spec 

Description and uses
Use the checkout command to check out objects, and use the copy_project command to 
check out projects. Note that the checkout -project operation is now called the  
copy_project operation in Rational Synergy.

When you check out an object in a non-shared project, its default state is working. When 
you check out a file or directory in a shared project, its default state is visible if it is a non-
product, and shared if it is a product.

If you specify the -p option, the specified project (or the entire project hierarchy) is 
checked out. The copy_project command  functions the same as the checkout 
command with the -p option.
Rational Synergy Classic CLI Help, Release 7.1     109



When you check out from a static (non-modifiable) project and do not check out 
subprojects, and the subprojects have relative work areas, new copies of those 
subprojects’ work areas are created in the appropriate locations within the work area of 
the project being checked out. This enables developers to reuse static subprojects that 
have relative work areas.

Static work areas are not maintained and cannot be reconciled with the database; they are 
ignored during reconcile. Sync’ing a static work area will replace any files that have been 
modified with files from the database. Checking out a project with a static work area will 
leave the original work area in place; you must reconcile it to discard or keep changes.

Use the checkout command in the two following ways.

Create a Modifiable Version of a File or Directory 
When you check out an object, a writable version of the object is placed in the directory. 
(Use the ccm dir (Windows) or ccm ls (UNIX) command to verify the object.) When 
you check out a directory, no visible change is made to the file system. When you use the 
-t option to specify a new version at check out, you can specify the version and change 
the name of the new object. On UNIX, the checkout of a symbolic link enables you to 
change the location to which the symbolic link points.

You can use the following forms to check out an object version within a work area:

• project reference form

sub_proj\foo.c@my_proj-1 (Windows) 
sub_proj/foo.c@my_proj-1 (UNIX)

• selection reference form

@1

• object reference form

foo.c-1:csrc:1

• work area reference form

c:\users\tom\ccm_wa\main-1\main\src\foo.c  (Windows) 
/users/tom/ccm_wa/main-1/main/src/foo.c  (UNIX) 

From outside of a work area, you can use the project reference form only for objects that 
are used.(

sub_proj\foo.c@main-1  (Windows) 
sub_proj/foo.c@main-1   (UNIX)

From outside of a work area, you must use one of the following forms if the object is not 
used anywhere (that is, it is a floating object):

• selection reference form

@1
110     Rational Synergy Classic CLI Help, Release 7.1



checkout command
• object reference form

foo.c-1:csrc:1

Create a Modifiable Version of a Project or Project Hierarchy
By default, when you check out a project, it is created in the database and a work area is 
created automatically. You can set work area properties at the time you check out the 
project.

Options and arguments
-c|-comment "string"

Specifies the comment string.

-cb|-copy_based (UNIX only)

Makes the work area copy based. You can use this option only with the -p option.

See work_area command for more information.

-ce|-commentedit

Brings up your default editor to enter the comment.

-cf|-commentfile file_path

Uses the comments from the specified file. If you specify both a comment string and 
comment file, the comments are merged, with the comment string following the 
comments from the file.

file_spec

Specifies the name of the file or directory that you want to check out.

-mod|-modifiable_wa 

Specifies that the work area can be modified.

-nmod|-not_modifiable_wa 

Specifies that the work area is not modifiable.

-no_u|-no_update

Specifies that the project is not updated when it is copied.
Rational Synergy Classic CLI Help, Release 7.1     111



-not_copy_based|-ncb (UNIX only)

Makes the work area link-based. You can use this option only with the -p option.

See work_area command for more information.

-ntl|-no_translation

Indicates that ASCII files should not be translated when they are copied between 
Windows and UNIX within the project’s work area. You can use this option only with 
the -p option.

See work_area command for more information.

-nrel|-not_relative

On Windows, makes subprojects’ work areas absolute instead of relative to the parent 
project’s work area. This is the default when you first create a project. You can use this 
option only with the -p option.

On UNIX, causes links to be used for subprojects and makes subprojects’ work areas 
absolute instead of relative to the parent project’s work area. This is the default when 
you first create a project. You can use this option only with the -p option.

See work_area command for more information.

-nwa|-no_wa

Causes the work area not to be maintained (that is, disconnects your work area from 
the database). You can use this option only with the -p option.

See work_area command for more information.

-nwat|-no_wa_time

Sets the time stamps of the files in the project’s work area to reflect the last 
modification time stored in Rational Synergy, rather than the time the files were copied 
into the work area.  You can use this option only with the -p option.

See work_area command for more information.
112     Rational Synergy Classic CLI Help, Release 7.1



checkout command
-platform platform

Enables you to specify the platform value that is set on the project or project hierarchy 
that you are checking out. The platform choices are listed in the 
CCM_HOME\etc\om_hosts.cfg file (Windows) or $CCM_HOME/etc/om_hosts.cfg file 
(UNIX) in your Rational Synergy installation area.

By default, the current platform value for each project in the hierarchy is copied to its 
new version. You can use this option only with the -p option.

-p|-project project_spec

Checks out a project, or if specified with the -subprojects option, the entire project 
hierarchy is checked out.

-purpose purpose_spec

Specifies the purpose to associate with the specified project.

The purpose choices are listed in the Project Purpose Table and include all of the 
purpose values that are being used in your database. 

If you are working as a developer when you perform the check out, this option defaults 
to Insulated Development, but you can specify Shared, instead. If you are working 
as a build manager or in the ccm_admin role, Integration Testing is the default 
setting. You can use this option only with the -p option.

-reconf tasks|os

Enables you to specify whether the project or project hierarchy you are checking out is 
updated using a baseline and tasks (tasks) or the state of the candidate objects (os). 
(The latter is the only method used in releases previous to Synergy 4.2.) You can use 
this option only with the -p option.

-rel|-relative

Makes the work area path relative to the parent project’s path. You can set this option 
only if the project is used in one place. After you set it, this project cannot be used as 
a subproject in any other project. You can use this option only with the -p option.

-release release

Enables you to specify the release value that is set on the project or project hierarchy 
that you are checking out. The release choices include all of the release values that 
are being used in your database, as is, or none.
Rational Synergy Classic CLI Help, Release 7.1     113



By default, the current release value for each project in the hierarchy is copied to its 
new version. You can use this option only with the -p option.

-subprojects

Causes all subprojects in the specified project’s hierarchy to be checked out. You can 
use this option only with the -p option.

-t|-to file_spec|version

Enables you to specify the version and/or change the name of the new, non-project 
object, or specify the version of a new project or project hierarchy.

By default, the -to argument is interpreted as a new version. For example, if you 
execute the following command:

ccm co foo.c -to bar

the new object version is:

foo.c-bar

To change the name, you must include the object name and the version in the 
destination argument. For example, if you execute the following command:

ccm co foo.c -to bar.c-1

the new object version is:

bar.c-1

If you are checking out a project, you can specify the version only. If you are checking 
out a hierarchy of projects, the new version is used for the project as well as its 
subprojects. Use the -versions option to map new versions to old versions of 
projects in the hierarchy. The -to and -versions options are mutually exclusive. 
Also, if you do not specify the -to or -version option, the default next version is 
computed automatically using a Rational Synergy built-in algorithm.

If you are checking out a new version of an object that is used in your current project, 
the newly checked-out version (the "to" version) also will be used in your project.

Note When you check out to a new object name in a non-
writable directory, a new directory version is checked out 
automatically.
114     Rational Synergy Classic CLI Help, Release 7.1



checkout command
If you are in a shared project and your current directory is 
non-writable, the directory is checked out and associated 
automatically with the default (or specified) task and is 
checked in to the integrate state. You can disable this 
feature by setting shared_project_directory_checkin to 
FALSE in your initialization file. (See 
shared_project_directory_checkin.)

-task task_number

Associates the objects being checked out with the specified task.

If the current (default) task is set and you do not specify a different task, the objects 
you are checking out are associated with the current task automatically.

-tl|-translate

Indicates that ASCII files should be translated when they are copied between 
Windows and UNIX within the project’s work area. You can use this option only with 
the -p option.

See work_area command for more information.

-u|-update

Specifies to update the project when it is copied. The project is checked out without a 
work area and is then updated, respecting the project grouping’s setting that indicates 
whether the baseline and tasks should be refreshed. Then the project is synchronized.

-versions "old_ver:new_ver,old_ver:new_ver,..."

You can use this option only with the -p option.

The default next version is computed using a Rational Synergy built-in algorithm. (In 
most cases the current version is incremented by "1.") To change the next version, 
map the old version to the new version using the syntax shown.

If you are checking out a project hierarchy, each mapping applies to all projects in the 
hierarchy that currently have that value. If new_ver is NoCheckOut, projects with the 
corresponding old_ver are not checked out.
Rational Synergy Classic CLI Help, Release 7.1     115



Use the -to option to specify the same version for all new projects that you are 
checking out. The -to and -version options are mutually exclusive.

-wa|-maintain_wa

Causes the work area to be maintained (that is, synchronizes the work area and 
keeps it synchronized). You can use this option only with the -p option.

See work_area command for more information.

-wat|-wa_time

Sets the timestamps of the files in the project’s work area to show the time the files 
were copied into the work area, rather than the Rational Synergy modification time.  
You can use this option only with the -p option.

See work_area command for more information.

Examples
• Check out version patch1 from version 1 of foo.c (version 3 of foo.c is in the current 

directory).

ccm co -c "patch1: fix symbol table bug" -to patch1 foo.c-1

• Check out the utils\tools (Windows) or utils/tools  (UNIX) directory, which 
currently is at version 4.

Windows:  
> ccm co -c "added new files" c:\users\bob\ccm_wa\test_db\projA-
3\utils\tools 
UNIX:  
$ ccm co -c "added new files" ~/ccm_wa/test_db/projA-3/utils\tools 

• Set the comment and associate a task with the object_version(s) you are checking 
out.

ccm co -c "comment string" -task task_number object_name1 object_name2 

• Check out a new working project hierarchy from an existing project hierarchy. Set the 
versions of all of the projects to your name.

ccm co -p toolkit-int -subprojects -to john
116     Rational Synergy Classic CLI Help, Release 7.1



checkout command
• Check out a new prep project hierarchy for system testing. Set the release and 
platform values and versions.

Windows: 
> ccm co -p tool_top-1.0 -subprojects -release 2.0 -platform win32 -
purpose sqa -versions 
"1.0:sqa,win16_1.0:win16_sqa,win32_1.0:win32_sqa"
UNIX: 
$ ccm co -p tool_top-1.0 -subprojects -release 2.0 -platform SunOS -
purpose sqa -versions 
"1.0:sqa,win16_1.0:win16_sqa,win32_1.0:win32_sqa"

• Modify a top-level project’s version and propagate the change to its subproject 
versions.

ccm co -p top_project_spec -subprojects -to version

Related topics

• checkin command 

• copy_project command
Rational Synergy Classic CLI Help, Release 7.1     117



checkpoint command

Synopsis
ccm ckpt|checkpoint [-t|-to version] [-cr|-commentreplace]
                    [-c|-comment "string"]
                    [-ce|-commentedit]
                    [-cf|-commentfile file_path]
                    [-task task_id]
                    file_spec [file_spec...]
ccm ckpt|checkpoint [-t|-to version][-cr|-commentreplace]
                    [-c|-comment "string"]
                    [-ce|-commentedit]
                    [-cf|-commentfile file_path
                    [-task task_id]
                    -p|-project [project_spec...]

Prerequisites
You must own the object to perform a checkpoint. Only working objects can be 
checkpointed.

Description and uses
The checkpoint command enables you to save a personal version of an object for your 
use only, by preserving it in a state that is not modifiable, but that you can delete later 
when you no longer need it.

When you perform a checkpoint, the current version of the object is moved to the 
checkpoint state and a new version of the object is created. All comments specified on the 
checkpoint command are applied to the checkpointed object. 

Options and arguments
-c|-comment "string"

Specifies the comment string.

-ce|-commentedit

Brings up an editor to enter the comments.

-cf|-commentfile file_path

Takes the comments from the specified file. If you specify both a comment string and 
comment file, the comments are merged, with the comment string following the 
comments from the file.
118     Rational Synergy Classic CLI Help, Release 7.1



checkpoint command
-cr|-commentreplace

Normally, the comment specified is appended to any existing comment. However, if 
you use the -cr option, the new comment will replace any existing comment.

file_spec

Specifies the name of the file or directory, or project that you want to checkpoint.

-t|-to version

Sets the version of the newly checked-out object. You also can do this by adding the 
version to the object name.

-task task_id

Specifies the task with which you want your newly checked-out object to be 
associated.

If you do not specify a task but a current task is set, the newly created object version is 
associated with the current task. Any task associated with the checkpoint object 
version remains unchanged.

-p|-project project_spec

Checkpoints a project.

Examples
• Checkpoint the current working version of foo.c, and add a comment.

ccm ckpt -c "Phase 1 works." foo.c 
Adding ’release’ attribute with value ’2.0’ to object foo.c-3:csrc:11 
Associated object foo.c-3:csrc:11 with task 36 
Checkpointed object version: ’foo.c-2:csrc:11’

• Checkpoint the current working version of foo.c. Add a comment and specify the new 
working object’s version to be joe.

ccm ckpt -c "Trying Jane’s algorithm." -t joe foo.c 
Adding ’release’ attribute with value ’2.0’ to object foo.c-
joe:csrc:11 
Associated object foo.c-joe:csrc:11 with task 36. 
Checkpointed object version: ’foo.c-3:csrc:11’

Related topics

• collapse command
Rational Synergy Classic CLI Help, Release 7.1     119



clean_cache command

Synopsis
ccm clean_cache [-t|-type type] [-s|-status status]
                [-c|-cutoff_time time] [-u|-used]
                [-v|-verbose]

Description and uses
By default, the clean_cache command removes archived cache files of non-modifiable 
objects that are older than 14 days and not used in work areas.

Cache files for object versions that were not archived are never deleted.

Only users in the ccm_admin role can use this command.

On Windows, for more information on deleting cache files, refer to "Delete Cache Files" in 
the Rational Synergy Administration Guide for Windows.

On UNIX, for more information on deleting cache files, refer to "Delete Cache Files" in the 
Rational Synergy Administration Guide for UNIX. 

Options and arguments
-c|-cutoff_time time

Specifies that cache files are deleted only for object versions with sources older than 
time. The time used is the access time of the file, not the modify time. The time 
default removes files older than 14 days (-c "-14:0:0:0").

-s|-status status

Specifies the status of the object versions for which cache files are deleted. By default, 
versions in non-modifiable states are selected.

-t|-type type

Specifies the type of the object versions for which cache files are deleted. The default 
is to delete cache files for all types.

-u|-used

Deletes cache files, regardless if they are used in any projects, with or without work 
areas. By default, cache files that are used in a project with a work area are not 
deleted. On UNIX, the project’s work area would then contain symbolic links to files 
that no longer exist.

Note Do not use this option unless you understand the 
repercussions of its use.
120     Rational Synergy Classic CLI Help, Release 7.1



clean_cache command
Examples
• Remove csrc cache files that are more than 45 days old.

ccm clean_cache -type csrc -cutoff_time "-45:0:0:0" 
Rational Synergy Classic CLI Help, Release 7.1     121



clean_up command

Synopsis
ccm clean_up -all|-task|-rpt [-used]
             [-q|-quiet | -v|-verbose]
             [-rel|-release release]
             [-user user_name]

Description and uses
Use the clean_up command to delete unused automatic tasks or to delete process rules 
from a Rational Synergy database.

You must be working in the ccm_admin role to delete process rules. If you attempt to 
delete process rules while working as the PT administrator, a message appears stating 
that the process rules will not be deleted.

Also, any user can remove his or her own automatic tasks, but you must be working in the 
ccm_admin role or as the PT administrator to delete automatic tasks owned by another 
user.

Options and arguments
-all

Equivalent to specifying both the -task and -rpt options. Causes Rational Synergy 
to delete both unused automatic tasks and unused process rules. 

-q|-quiet

Minimizes output messages.

-rel|-release release

Causes automatic tasks and/or process rules to be removed only for the specified 
release.

-rpt

Causes unused process rules to be deleted.

A process rule is unused if no project is using that process rule to set its update 
properties.

-task

Causes unused automatic tasks to be deleted. 
122     Rational Synergy Classic CLI Help, Release 7.1



clean_up command
Note If you are working in the ccm_admin role and run this 
command without the -user option, all unused tasks in the 
database will be deleted.

An automatic task is unused if 1) it is not contained in the update properties of any 
project, and 2) it has no objects associated with it. 

When you are not working as the CM or PT administrator, -task is the same as -
task -user your_user_name.

-used

Causes in-use process rules, as well as unused process rules, to be deleted. Rational 
Synergy sets update properties to 'manual’ on the in-use process rules’ projects.

This option has an effect only when used with the -rpt option.

-user user_name

Causes automatic tasks owned by user_name to be deleted. You cannot use this 
option with the -rpt option.

-v|-verbose

Maximizes output messages.

Examples
• Remove all unused process rules.

ccm clean_up -rpt 

• Remove both in-use and unused process rules.

ccm clean_up -rpt -used 

• Remove both in-use and unused process rules for release 5.0, and execute the 
command verbosely.

ccm clean_up -rpt -used -rel 5.0 -v

• Remove all automatic tasks belonging to another user, user_name.

ccm clean_up -task -user user_name
Rational Synergy Classic CLI Help, Release 7.1     123



collapse command

Synopsis
ccm collapse [-from file_spec] file_spec [file_spec...]
ccm collapse -all file_spec [file_spec...]

Description and uses
The collapse command enables you to delete object versions from the database and 
adjust history links. You use this command when the object you delete has successors.

All collapsed objects are removed from the database. If you collapse a project, its 
members are unused and the project is removed.

Note Before you check in a working version to a non-
modifiable state, be sure to collapse the earlier 
checkpointed versions you do not want in your database; 
otherwise, you will only be able to collapse the 
checkpointed versions while working in the ccm_admin 
role.

The immediate successor of a checkpointed version 
must be writable to collapse the predecessor. For 
example, assume you have an object named bufcolor.c 
with a version history of: 1 --> 2 --> 3 --> 4, where version 1 
is in the integrate state, versions 2 and 3 are checkpointed 
versions, and version 4 is in the working state. If you want 
to collapse version 3, you can do so because version 4 is in 
the working state. If version 4 was in the integrate state, you 
would not be able to collapse version 3.

You can perform a collapse command on a specified object except when the object has 
either of the following characteristics:

• the object is non-modifiable and you are not working in the ccm_admin role

• the object is a member of a project

Note Collapsing a version that has multiple successors and 
predecessors links each of the version’s predecessors with 
each of the version’s successors. Collapsing a version that 
has no predecessors and multiple successors unlinks the 
successors’ histories.

All users can collapse objects to which they have write access. 

Users working in the ccm_admin role can collapse non-modifiable objects as well.
124     Rational Synergy Classic CLI Help, Release 7.1



collapse command
If a user working in the ccm_admin role performs a collapse -all command, a simplified 
history will result, which generally includes only those object versions that are members of 
projects. All intermediate versions, regardless of their states, are removed.

Options and arguments
-all

Indicates that all versions of the file or directory (that is, the entire history) specified by 
file_spec will be collapsed.

Caution Working objects will also be collapsed if they are 
not project members. Use caution when you use the -all 
option.

file_spec

Specifies the first object version in a range to be collapsed.

-from

Specifies the last object version in a range. The collapse is performed from the last 
object in a range to the first, inclusive. (See the first example below.)

Examples
In the ico_616-1 project, bufcolor.c has the following version history: 1 --> 2 --> 3 --> 4 
--> 5, where version 1 is in the integrate state, versions 2, 3, and 4 are in the checkpoint 
state, and version 5 is in the working state.

• Collapse bufcolor.c-4.

ccm collapse bufcolor.c-4 -from bufcolor.c-5 
Starting Collapse Process... 
Unable to remove bufcolor.c-5:csrc:1 : it is a member of a project. 
bufcolor.c-4:csrc:1 removed. 
Collapse complete with 1 success and 1 failure.

Note that version 5 was not removed. You cannot remove it because it is a member of 
a project. The new version history of bufcolor.c will be 1 --> 2--> 3 --> 5 and version 
5 will remain a working version.

• Collapse bufcolor.c-3 only.

ccm collapse bufcolor.c-3 
bufcolor.c-3:csrc:1 removed.

You would see the following version history for the bufcolor.c objects in the 
ico_616-1 project: 1 --> 2 --> 5.
Rational Synergy Classic CLI Help, Release 7.1     125



Suppose you needed to make changes to bufcolor.c, so you checked out, and then 
checked in a few versions of this object. The version history for the bufcolor.c 
objects in the ico_616-1 project is now: 1 --> 2 --> 5 --> 6 --> 7 --> 8 (version 1 is in 
the integrate state, versions 2, 5, 6, and 7 are in the checkpoint state, and version 8 is 
in the working state).

• Collapse all of the remaining checkpointed versions of the bufcolor.c objects in the 
ico_616-1 project.

ccm collapse bufcolor.c -all 
Starting Collapse Process... 
Unable to remove bufcolor.c-1:csrc:1 : no write access. 
bufcolor.c-2:csrc:1 removed. 
bufcolor.c-5:csrc:1 removed. 
bufcolor.c-6:csrc:1 removed. 
bufcolor.c-7:csrc:1 removed. 
Unable to remove bufcolor.c-8:csrc:1 : it is a member of a project. 
Collapse complete with 4 successes and 2 failures.

You would see the following version history for the bufcolor.c objects in the 
ico_616-1 project: 1 --> 8.

• Collapse all products over 10 days old that are not used in any project. You must be in 
the ccm_admin role to collapse non-modifiable objects

1. Query for the products.

ccm query "is_product=TRUE and not is_bound()  
and create_time<time(’-10:0:0:0’)"

2. Collapse the product objects.

ccm collapse @

Related topics

• checkpoint command
126     Rational Synergy Classic CLI Help, Release 7.1



conflicts command
conflicts command

Synopsis
ccm conflicts [-r|-recurse] [-t|-tasks] [-v|-verbose] [-noformat] [-nowrap] 
project_spec

Description and uses
The conflicts command displays the conflicts for a project whose update properties are 
set to update using tasks and a baseline.

If your project’s update properties are set to update using object status and you use this 
command, you will receive a warning message informing you that, in order to use this 
command, your project must be set up to update using tasks.

For detailed information about conflicts and how they are identified, see Conflict detection.

Options and arguments
project_spec

Specifies the project whose conflicts you want to show.

-noformat 

Specifies that the command's output is not wrapped, is not formatted, and contains 
one line for each object version and its conflicts. Each field is separated by a <tab> 
character, which allows parsing of fields within each line.

This option also enables you to filter the output so that you can, for example, remove 
lines that contain occurrences of the "No Task" conflicts and keep lines that contain 
occurrences of "Parallel" conflicts.

-nowrap

Specifies that the command’s output is not wrapped and contains one line for each 
object version and its conflicts. 

This option also enables you to filter the output so that you can, for example, remove 
lines that contain occurrences of the "No Task" conflicts and keep lines that contain 
occurrences of "Parallel" conflicts.

By default, the output from the conflicts command wraps at 80 characters.
Rational Synergy Classic CLI Help, Release 7.1     127



-r|-recurse

Detects conflicts for all projects and subprojects in the project hierarchy topped by the 
specified project.

-t|-tasks 

Specifies that task conflicts be displayed. By default, object conflicts are displayed.

-v|-verbose

Specifies that you want additional conflict detection messages output.

Example
• Show the conflict detection information for the toolkit-2 project.

ccm conflicts toolkit-2
 
Project: toolkit-2 
Object Ver.  Task Conflicts 
-----------  ---- ------------------------------------------------ 
main.c-0.1.1 57   Implicitly required but not included - parallel 
draw.c-4     117  Explicitly specified but not included - parallel 
init.c-2             No task
128     Rational Synergy Classic CLI Help, Release 7.1



copy_project command
copy_project command

Synopsis
ccm copy_project|cp|checkout -p|-project|co -p|-project
                [-purpose purpose_spec]
                [-platform platform]
                [-release release|as_is|none]
                [-reconf tasks|os]
                [-subprojects]
                [-versions "old_ver:new_ver,old_ver:new_ver,..."]
                [-t|-to version]
                [-c|-comment "string"]
                [-ce|-commentedit]
                [-cf|-commentfile file_path]
                project_spec

Copy and Set Work Area Properties
ccm copy_project|cp|checkout|co copy_project_options
                [-cb|-copy_based|-not_copy_based|-ncb  (UNIX only)]
                [-rel|-relative|-nrel|-not_relative]
                [-path|-set|-setpath] absolute_path
                [-mod|modifiable_wa] [-nmod|not_modifiable_wa] 
                [-tl|-translate|-ntl|-no_translate]
                [-wa|-maintain_wa|-nwa|-no_wa]
                [-wa_t|-wa_time|-nwat|-no_wa_time]
                [-u|update|-no_u|-no_update]
                project_spec 

Copy and Update a New Project
ccm copy_project|cp|checkout -p|-project|co -p|-project copy_project_options
                [-u|-update|-no_u|-no_update]
                project_spec 

Description and uses
Use the copy_project command to create a modifiable version of a project or project 
hierarchy. By default, when you copy a project, it is created in the database and a work 
area is created automatically. You can set work area properties at the time you copy the 
project. The copy_project command  functions the same as the checkout command 
with the -project option, and the copy_project operation was referred to as the 
checkout -project operation in prior releases.
Rational Synergy Classic CLI Help, Release 7.1     129



When you specify the -p option, the specified project (or the entire project hierarchy) is 
copied.

When you copy a project from a static (non-modifiable) project and do not copy 
subprojects, and the subprojects have relative work areas, new copies of those 
subprojects’ work areas are created in the appropriate locations within the work area of 
the project being copied. This enables developers to reuse static subprojects that have 
relative work areas.

Static work areas are not maintained and cannot be reconciled with the database; they are 
ignored during reconcile. Sync’ing a static work area will replace any files that have been 
modified with files from the database. Copying a project with a static work area will leave 
the original work area in place; you must reconcile it to discard or keep changes.

Options and arguments
-c|-comment "string"

Specifies the comment string.

-cb|-copy_based (UNIX only)

Makes the work area copy based. 

See work_area command for more information.

-ce|-commentedit

Brings up your default editor to enter the comment.

-cf|-commentfile file_path

Uses the comments from the specified file. If you specify both a comment string and 
comment file, the comments are merged, with the comment string following the 
comments from the file.

-mod|-modifiable_wa 

Specifies that the work area can be modified.

-nmod|-not_modifiable_wa 

Specifies that the work area is not modifiable.

-no_u|-no_update

Specifies that the project is not updated when it is copied.
130     Rational Synergy Classic CLI Help, Release 7.1



copy_project command
-not_copy_based|-ncb (UNIX only)

Makes the work area link-based. 

See work_area command for more information.

-ntl|-no_translation

Indicates that ASCII files should not be translated when they are copied between 
Windows and UNIX within the project’s work area. 

See work_area command for more information.

-nrel|-not_relative

On Windows, makes subprojects’ work areas absolute instead of relative to the parent 
project’s work area. This is the default when you first create a project. 

On UNIX, causes links to be used for subprojects and makes subprojects’ work areas 
absolute instead of relative to the parent project’s work area. This is the default when 
you first create a project. 

See work_area command for more information.

-nwa|-no_wa

Causes the work area not to be maintained (that is, disconnects your work area from 
the database).

See work_area command for more information.

-nwat|-no_wa_time

Sets the time stamps of the files in the project’s work area to reflect the time the files 
were copied into the work area, rather than the last modification time stored in 
Rational Synergy. 

See work_area command for more information.
Rational Synergy Classic CLI Help, Release 7.1     131



-platform platform

Enables you to specify the platform value that is set on the project or project hierarchy 
that you are copying. The platform choices are listed in the 
CCM_HOME\etc\om_hosts.cfg file (Windows) or $CCM_HOME/etc/om_hosts.cfg file 
(UNIX) in your Rational Synergy installation area.

By default, the current platform value for each project in the hierarchy is copied to its 
new version. You can use this option only with the -p option.

-p|-project project_spec

Copies a project, or if specified with the -subprojects option, the entire project 
hierarchy is copied.

-purpose purpose_spec

Specifies the purpose to associate with the specified project.

The purpose choices are listed in the Project Purpose Table in synergy classic  and 
include all of the purpose values that are being used in your database.

If you are working as a developer when you copy the project, this option defaults to 
Insulated Development, but you can specify Shared, instead. If you are working as 
a build manager or in the ccm_admin role, Integration Testing is the default 
setting. 

-reconf tasks|os

Enables you to specify whether the project or project hierarchy you are copying is 
updated using a baseline and tasks (tasks) or the state of the candidate objects (os). 
(The latter is the only method used in releases previous to Synergy 4.2.) 

-rel|-relative

Makes the work area path relative to the parent project’s path. You can set this option 
only if the project is used in one place. After you set it, this project cannot be used as 
a subproject in any other project. 

-release release

Enables you to specify the release value that is set on the project or project hierarchy 
that you are copying. The release choices include all of the release values that are 
being used in your database, as is, or none.
132     Rational Synergy Classic CLI Help, Release 7.1



copy_project command
By default, the current release value for each project in the hierarchy is copied to its 
new version. 

-subprojects

Causes all subprojects in the specified project’s hierarchy to be copied. 

-t|-to file_spec|version

Enables you to specify the version of a new project or project hierarchy.

If you are copying a project, you can specify the version only. If you are copying a 
hierarchy of projects, the new version is used for the project as well as its subprojects. 
Use the -versions option to map new versions to old versions of projects in the 
hierarchy. The -to and -versions options are mutually exclusive. Also, if you do not 
specify the -to or -version option, the default next version is computed automatically 
using a Rational Synergy built-in algorithm.

-tl|-translate

Indicates that ASCII files should be translated when they are copied between 
Windows and UNIX within the project’s work area. 

See work_area command for more information.

-u|-update 

Specifies to update the project when it is copied. The project is copied without a work 
area and is then updated, respecting the project grouping’s setting that indicates 
whether the baseline and tasks should be refreshed. Then work area maintenance is 
enabled, meaning that a work area is maintained for the project.

-versions "old_ver:new_ver,old_ver:new_ver,..."

The default next version is computed using a Rational Synergy built-in algorithm. (In 
most cases the current version is incremented by "1.") To change the next version, 
map the old version to the new version using the syntax shown.

If you are copying a project hierarchy, each mapping applies to all projects in the 
hierarchy that currently have that value. If new_ver is NoCopy, projects with the 
corresponding old_ver are not copied.
Rational Synergy Classic CLI Help, Release 7.1     133



Use the -to option to specify the same version for all new projects that you are 
copying. The -to and -version options are mutually exclusive.

-wa|-maintain_wa

Causes the work area to be maintained (that is, synchronizes the work area and 
keeps it synchronized). 

See work_area command for more information.

-wat|-wa_time

Sets the timestamps of the files in the project’s work area to show the Rational 
Synergy modification time rather than the time the files were copied into the work 
area. 

See work_area command for more information.

Examples
• Copy a new version of the projA-3 project.

ccm copy_project -c "test projA" projA-3

• Copy a new working project hierarchy from an existing project hierarchy. Set the 
versions of all of the projects to your name.

ccm copy_project toolkit-int -subprojects -to bill

• Copy a new prep project hierarchy for system testing. Set the release and platform 
values and versions.

ccm copy_project tool_top-1.0 -subprojects -release 2.0 -platform 
win32 -purpose sqa -versions 
"1.0:sqa,win16_1.0:win16_sqa,win32_1.0:win32_sqa"

• Modify a top-level project’s version and propagate the change to its subproject 
versions.

ccm copy_project top_project_spec -subprojects -to version

Related topics

• checkin command 
134     Rational Synergy Classic CLI Help, Release 7.1



copy_to_file_system command
copy_to_file_system command

Synopsis
ccm cfs|copy_to_file_system|wa_snapshot project_spec [project_spec] [-p|-path 
path] [-r|-recurse]
                

Description and uses
The copy_to_file_system command enables you to make a copy of a non-writable 
project in your work area.

You cannot maintain and reconcile the project after it is created. 

A project copied to your work area has the following characteristics:

• always copy-based, never link-based

• files are read-only

• file modification time is set to the time the copy is created

• can be created on a project that does not have a work area

Options and arguments
-p|-path path

Specifies the path to which the copied project is written. The path defaults to the 
default work area path;  (ccm_wa\database_name on Windows, or ccm_wa/
database_name  on UNIX in your home directory).

Note if a path is not specified, the path will default to the 
default work area path template. Also, the path must be 
empty and the directory must not contain files.

project_spec [project_spec]

Specifies the project to be copied.

-r|-recurse

Creates copied projects for the subprojects as well as the selected project 
(ccm_wa\database_name on Windows, or ccm_wa/database_name  on UNIX in your 
home directory).

Note This option will create work area copies for the 
specified project(s) and all subprojects. If this option is not 
on, subprojects are ignored.
Rational Synergy Classic CLI Help, Release 7.1     135



Example
Create a copied project in your work area for project list proj1-1 proj2-2:

ccm copy_to_file_system -path C:\ccm_wa\ccm_docs proj1-1 proj2-1
136     Rational Synergy Classic CLI Help, Release 7.1



create command
create command

Synopsis
ccm create [-t|-type type] [-task task_number]
           [-c|-comment "string"] [-ce|-commentedit]
           [-cf|-commentfile file_path]
           file_spec [file_spec...] [-v version]
ccm create [-t|-type project]
           [-c|-comment "string"] [-ce|-commentedit]
           [-cf|-commentfile file_path]
           [-release release] [-plat|-platform platform]
           [-purp|-purpose purpose_spec]
           [-task task_number]
           [-reconf|-reconfigure tasks|os]
           [-wa|-maintain_wa|-nwa|-no_wa] [-set]
           project_spec [project_spec...]
ccm create -t|-type project
           [-c|-comment "string"] [-ce|-commentedit]
           [-cf|-commentfile file_path]
           [-release release] [-plat|-platform platform]
           [-purp|-purpose purpose_spec]
           [-task task_number]
           [-reconf|-reconfigure tasks|os]
           -r|-root dir_spec -v version

Description and uses
The create command creates a new object and adds it to the current Rational Synergy 
project in the following ways.

• When you create a new file or directory, it is added to the current directory, which must 
be part of a Rational Synergy project.

• When you create an object in a non-shared project, its default state is working. When 
you create a file or directory in a shared project, its default state is visible if it is a non-
product, and shared if it is a product.

• When you create a new object in a non-writable directory, a new directory version is 
checked out automatically.

If you are in a shared project and your current directory is non-modifiable, the 
directory is checked out and associated automatically with the default (or specified) 
task and is checked in to the integrate state. You can disable the automatic check-in 
feature by setting shared_project_directory_checkin to FALSE in your initialization 
file. (See shared_project_directory_checkin.)

• When you create a new project, it is created as a floating object, but you can make it a 
subproject in an existing Rational Synergy project by using the use -p command. 
(See Caveats.)
Rational Synergy Classic CLI Help, Release 7.1     137



• When you create a project, Rational Synergy creates a work area for it automatically. 
By default, the work area is located in My Documents\Synergy\ 
ccm_wa\database\project_name-version (Windows) or ccm_wa/database/
project_name-version  (UNIX) in your home directory. (See work_area command 
for how to change your work area location.)

• When you use the -t project -r dir_spec -v version options to create a project, 
Rational Synergy uses the existing dir_spec as the root directory for the new project, 
and the project takes the name of the dir_spec object.

• To add members to a directory, it must be writable (that is, checked out). If you try to 
create an object in a non-modifiable directory, Rational Synergy checks out the 
directory automatically. You will need to check in the directory and the new object to 
make the new object available to other users.

Options and arguments
-c|-comment "string"

Specifies the comment string.

-ce|-commentedit

Brings up an editor to enter the comments.

-cf|-commentfile file_path

Takes the comments from the specified file. If both a comment string and comment file 
are specified, the comments are merged, with the comment string following the 
comments from the file.

file_spec

Specifies the name of the file to be created.

-nwa|-no_wa 

Causes the work area not to be maintained (that is, disconnects your work area from 
the database).

-plat|-platform platform

Specifies the platform of the project to be created. 

project_spec

Specifies the name of the project to be created. The new project will be displayed 
automatically if it is not a subproject.
138     Rational Synergy Classic CLI Help, Release 7.1



create command
-purpose purpose_spec

Specifies the purpose name or member status of the project to be created. Use ccm 
project_purpose -show to view a list of all project purposes.

-r|-root dir_spec

Specifies that the dir_spec will be the root directory for the new project. The new 
project’s name is taken from the root directory’s name.

-reconf|-reconfigure tasks|os

Specifies how the new project will be updated (reconfigured).

-release release

Specifies the release of the project to be created. 

-set

Sets the work area path. This option can be used only with the -wa option.

-t|-type type

Specifies the type of the new object. If you do not specify a type, the default is 
calculated from the extension (for example, a .c object defaults to a csrc type).

Use the show command to view a list of valid types.

-task task_number

Associates the newly created objects with the specified task. Also associates a newly 
checked-out directory with the task if the object was created in a read-only directory.

If the current (default) task is set and you do not specify a different task, the objects 
you are creating or checking out are associated with the current task automatically.

-v version

Specifies the version of the new project. You must use the type and root options with 
this option.
Rational Synergy Classic CLI Help, Release 7.1     139



When allow_delimiter_in_name is set to FALSE, you can include the version in the 
object name. For example:

ccm create foo-1

However, if allow_delimiter_in_name  is set to TRUE, you must use the version 
option. For example:

ccm create foo -v 1

-wa|-maintain_wa 

Causes the work area to be maintained (that is, synchronizes the work area and 
keeps it synchronized).

Examples
• Create an initial project called proj1 in the work area.

ccm create -t project proj1

• On Windows, create a new C source object called sort.c in the utils\sym_tool 
directory.

ccm create -type csrc utils\sym_tool\sort.c

• On UNIX, create a new C source object called sort.c in the utils/sym_tool 
directory.

ccm create -type csrc utils/sym_tool/sort.c

• Create a new directory object called testcase under the current directory.

ccm create -t dir testcase

• Create a new project from the GUI directory with a version of final.

ccm create -t project -v final -r GUI

• Create an initial project and maintain a work area.

ccm create -t project -c "test" -wa -set "/tmp" testwa-1.0

• Change a Rational Synergy directory into a subproject under the current directory.

1. Create the project.

 ccm create -t project -purpose project_purpose -release 
release_value -r directory_name -v version [project_create_options]

2. Then, replace the directory with the subproject. First, unuse the directory.

ccm unuse directory_name

3. Use the new subproject.
140     Rational Synergy Classic CLI Help, Release 7.1



create command
ccm use -p project-version

Caveats
You cannot create a new project by using the -r dir_spec option at the top-level project’s 
root directory. Use this option only on subdirectories.

Related topics

• delete command

• show command

• use command 
Rational Synergy Classic CLI Help, Release 7.1     141



dcm command

Synopsis

Initialize
ccm dcm -init -dbid|-database_id database_id
                       [-delim "single-character_delimiter"]
                       [-description description]
                       [-location location]
                       [-admin_info admin_info]

Add
ccm dcm -add -ts|-transfer_set "transfer_set_name"
                       [-h|-history] | [-nh|-no_history]
                       file_spec [file_spec...]

Change Database ID and Update Affected Objects
ccm dcm -change -dbid|-database_id database_id -convert

Change the DCM Delimiter and Update All Objects
ccm dcm -change [-from_delim|-from_delimiter delimiter] 
                 -delim|-delimiter delimiter

Change Database ID Without Updating Any Objects
ccm dcm -change -dbid|-database_id database_id

Change Directory Project Instance
ccm dcm -change_dir_project_instance | 
        -cdpi project_name instance dirobjectspec1 [...dirobjectspecN]

Convert the Database ID of Objects Created in Another Database
ccm dcm -change -from_dbid|-from_database_id fromdbid
        -to_dbid|-to_database_id todbid
142     Rational Synergy Classic CLI Help, Release 7.1



dcm command
Create a Database Definition
ccm dcm -create -dbid|-database_id database_id
                       [-desc|-description description_of_database]
                       [-tm|-transfer_mode transfer_mode_name]
                       [-ar|-automatic_receive|-noar|-noautomatic_receive
                       [-rb|-run_in_background|-norb|-norun_in_background]
                       [-host hostname]
                       [-os|-operating_system UNIX|Windows]
                       [-path path]
                       [-ccm_home path]
                       [-zip|-nozip]
                       [-tp|-transfer_path transfer_path]
                       [-ga|-generate_allowed|-noga|-nogenerate_allowed]
                       [-hidden|-nohidden]
                       [-handover_dbid|-handover_database_id dbid]
                       [-location location]
                       [-admin_info admin_info]

Create a Transfer Set
ccm dcm -create -ts|-transfer_set "transfer_set_name"
                       [-email email_address]
                       [-crsc|-change_request_scope change_request_scope_name]
                       [-crq|-change_request_query query_expression]
                       [-exclude_products|-noexclude_products]
                       [-exclude_imported_objects|
                       -noexclude_imported_objects]
                       [-exclude_types "list_of_types"]
                       [-exclude_typedefs|-noexclude_typedefs]
                       [-local_parallel|nolocal_parallel]
                       [-ferp|-noferp]
                       [-rsc|-release_scope release_scope_name]
                       [-rq|-release_query release_query_string]
                       [-cumrsc|-cumulative_release_scope|-nocumrsc| -
nocumulative_release_scope]
                       [-dir]
                       [-ib|-include_baselines|-noib|-noinclude_baselines]
                       [-ep|-email_policy policy]
                       [-exclude_nct|-exclude_non_completed_tasks|
                       -noexclude_nct|-noexclude_non_completed_tasks]
                       [-exclude_db_info|-noexclude_db_info]
                       [-cumulative|-nocumulative]
Rational Synergy Classic CLI Help, Release 7.1     143



Delete a Database Definition
ccm dcm -delete -dbid|-database_id database_id

Delete a Transfer Set
ccm dcm -delete -ts|-transfer_set "transfer_set_name"

Generate
ccm dcm -gen|-generate -dbid|-database_id database_id
                       [-ts|-transfer_set "transfer_set_name"|-notransfer]
                       [-lg|-last_generated last_generated_value]
                       [-wait|-nowait]
                       [-email email_address|-noemail]

Generate and Transfer
ccm dcm -gen|-generate -trn|-transfer
                       -dbid|-database_id database_id
                       -ts|-transfer_set "transfer_set_name"

Generate, Transfer, and Receive
ccm dcm -gen|-generate -trn|-transfer -rec|-receive
                       -dbid|-database_id database_id
                       -ts|-transfer_set "transfer_set_name"

Modify a Database Definition
ccm dcm -modify -dbid|-database_id database_id
                       [-desc|-description description_of_database]
                       [-tm|-transfer_mode transfer_mode_name]
                       [-ar|-automatic_receive|-noar|-noautomatic_receive]
                       [-rb|-run_in_background|-norb|-norun_in_background]
                       [-host hostname] 
                       [-os|-operating_system UNIX|Windows]
                       [-path path]
                       [-ccm_home path]
                       [-zip|-nozip]
                       [-tp|-transfer_path transfer_path]
                       [-ga|-generate_allowed|-noga|-nogenerate_allowed]
                       [-hidden|-nohidden]
                       [-handover_dbid|-handover_database_id dbid]
                       [-location location]
                       [-admin_info admin_info]
144     Rational Synergy Classic CLI Help, Release 7.1



dcm command
Modify a Transfer Set
ccm dcm -modify -ts|-transfer_set "transfer_set_name"
                       [-email email_address|-noemail]
                       [-crsc|-change_request_scope change_request_scope_name]
                       [-crq|-change_request_query query_expression]
                       [-exclude_products|-noexclude_products]
                       [-exclude_imported_objects|-noexclude_imported_objects]
                       [-exclude_types "list_of_types"]     
                       [-exclude_typedefs|-noexclude_typedefs]
                       [-local_parallel|nolocal_parallel]
                       [-ferp|-noferp]
                       [-dir]
                       [-rsc|-release_scope release_scope_name]
                       [-rq|-release_query release_query_string]
                       [-cumrsc|-cumulative_release_scope|-nocumrsc| -
nocumulative_release_scope]
                       [-ib|-include_baselines|-noib|-noinclude_baselines]
                       [-ep|-email_policy policy]
                       [-exclude_nct|-exclude_non_completed_tasks|-
noexclude_nct|-noexclude_non_completed_tasks]
                       [-exclude_db_info|-noexclude_db_info]
                       [-cumulative|-nocumulative]

Modify DCM Settings
ccm dcm -m|-modify -settings
                       [-desc|-description description_of_database]
                       [-location location]
                       [-admin_info admin_info]
                       [-default_add_history|-nodefault_add_history]
                       [-default_include_baselines|-
nodefault_include_baselines]
                       [-ignore_maintain_wa|-noignore_maintain_wa]
                       [-update_db_info|-noupdate_db_info]
                       [-keep_typedefs|-nokeep_typedefs]
                       [-event_log_size log_size]
                       [-parallel_checking parallel_check_keyword]
                       [-update_releases release_action_keyword]
                       [-add_receive_control_transition transition]
                       [-remove_receive_control_transition transition]
                       [-no_of_generate_times generate_times]
                       [-no_of_old_generate_times old_generate_times]
                       [-old_generate_time_resolution old_generate_resolution]
                       [-update_rft|-noupdate_rft]
Rational Synergy Classic CLI Help, Release 7.1     145



Receive
ccm dcm -rec|-receive [-a|-all]
                      [-dbid|-database_id database_id]
                      [-dir directory]
                      [-ts|-transfer_set "transfer_set_name"]
                      [-im|-ignore_missing]
                      [-wait|-nowait]
                      [-ic|-ignore_checks|-noic|-noignore_checks]

Recompute the Indirect Change Request Members of a Transfer Set
ccm dcm -recompute -crs|-change_requests|-problems -ts|-transfer_set 
"transfer_set_name" [-dbid|-database_id database_id]

Recompute the Members of a Transfer Set
ccm dcm -recompute -ts|-transfer_set "transfer_set_name"

Reinitialize
ccm dcm -init [-dbid|-database_id database_id]
                       [-delim "single-character_delimiter"]
                       [-description description]
                       [-location location]
                       [-admin_info admin_info]

Remove an Object from a Transfer Set
ccm dcm -remove -ts "transfer_set_name" filespec [filespec...]

Show All Database IDs and Descriptions
ccm dcm -show -dbid|-database_id -all

Show Current DCM Database ID
ccm dcm -show -dbid|-database_id

Show Database Definition
ccm dcm -show -dbid|-database_id database_id

Show DCM Properties
ccm dcm -show -prop|-properties objectspec1 [ objectspec2 ... objectspecN]

Show DCM Settings
ccm dcm -show -settings
146     Rational Synergy Classic CLI Help, Release 7.1



dcm command
Show Last Generate Time(s)
ccm dcm -show -ts|-transfer_set "transfer_set_name"
                      -dbid|-database_id "database_id"

Show One Specified Event
ccm dcm -show -event_log|-el -index number
                      [-f|-format format] 
                      [-info] 
                      [-messages]

Show Receive Lock
ccm dcm -show -receive_lock

Show Summary of Events
ccm dcm -show -event_log|-el
                      [-f|-format format]
                      [-dbid|-database_id dbid]
                      [-ts|-transfer_set transfer_set_name]

Show Transfer Set
ccm dcm -show -ts|-transfer_set "transfer_set_name"
                      [-members direct|all][-u]

Note The ccm dcm -show -ts command displays change 
request scope and change request query information only if 
a Distributed Change (DCS) license is available.

Transfer
ccm dcm -trn|-transfer [-a|-all] |
                       [-dbid|-database_id database_id]
                       [-ts|-transfer_set "transfer_set_name"]

Prerequisites
The current database must be initialized to use distributed change management (DCM), 
also called Rational Synergy Distributed. For detailed information about this feature, 
please read the Rational Synergy Distributed manual, which can be downloaded from the 
Synergy Support Web site.
Rational Synergy Classic CLI Help, Release 7.1     147



Description and uses
The dcm command generates a transfer package, sends a transfer package to a 
destination database, receives a transfer package, and adds objects to a transfer set. The 
dcm command’s options enable you to perform one or more of these operations.

You must be working as the DCM manager to use the -add, -create, -gen, -modify, 
-delete, and -remove options. You must be working in the ccm_admin role to use the -
rec, -init, -change, -modify, and -settings options.

Options and arguments
-a|-all

Sends all transfer sets to their destination databases when used with the -trn option, 
or receives all transfer sets into the current database when used with the -rec option.

This option can be used with -dbid for the ccm dcm -show command, but not for the 
ccm dcm -transfer command. The -all option cannot be used with the -ts option.

-add

Adds the specified objects (single file, project, task, or folder) to the specified transfer 
set. The transfer set must be defined already.

-add_receive_control_transition transition

Adds a valid state transition to the Receive Control Transitions list. This added state 
transition will be allowed when receiving an object that is controlled in the current 
database. The value that you specify for transition must be in the following form:

   from_state:to_state

where:

   from_state must be a valid state, and 

   to_state must be a valid state for which a transition exists from the specified 
from_state.

-admin_info admin_info

Specifies the contact information of the person who is responsible for DCM 
administration issues. The value of admin_info is free-form text that might include 
one or more names, phone numbers, and e-mail addresses.

-ar|-automatic_receive

Specifies that the receive is to be automatically initiated during the generate operation.
148     Rational Synergy Classic CLI Help, Release 7.1



dcm command
-ccm_home path

Specifies the absolute path to the Rational Synergy installation area. Enter a UNC 
path if you are using a Windows server.

-change

Specifies that a change is to be made to the current database ID and/or DCM 
delimiter. This option requires that the database be protected and no other sessions 
are running on the database.

-change_dir_project_instance|-cdpi

Modifies the directory entry for the named project to reference the specified instance 
in one or more specified subdirectories. After you upgrade from an earlier release or 
after you receive a package from an earlier release, this option makes allows you to fix 
any such directory entries. The directory arguments that are used with the -
change_dir_project_instance option are standard object specifications that can 
include query references.

-crq|-change_request_query query_expression

Specifies a change request query expression. For any change_request_scope other 
than none, you can define a query expression. You need a DCS license to use this 
option. If you use this option without a DCS license, the command fails, and an error 
message is displayed.

-crsc|-change_request_scope change_request_scope_name

Specifies the change requests and associated tasks and objects that are eligible for 
inclusion in the transfer package (see the Rational Synergy Distributed book for 
further details). You need a DCS license to use this option. If you use this option 
without a DCS license, the command fails, and an error message is displayed.

The change_request_scope_name must have one of the following values:

—  none 
—  crs 
—  crs only 
—  crs and tasks 
—  crs_and_tasks 
—  crs_tasks_and_objects 
—  crs, tasks and objects 
—  change_requests 
—  change_requests_and_tasks 
—  change_requests_tasks_and_objects 
Rational Synergy Classic CLI Help, Release 7.1     149



—  problems 
—  problems_and_tasks 
—  problems_tasks_and_objects

-crs|-change_requests

When used with -recompute, this prevents change requests that were automatically 
added to the transfer set from being sent in the following DCM transfer package as 
well as the current one being generated.

-convert

Specifies that the change operation is to change the database ID of the current 
database and update affected objects. This option is typically used on a database 
whose database ID is not the desired value and, therefore, all objects that were 
created in the current database need to updated so that they refer to the correct 
database ID.

-cumulative

Specifies that the change request scope is cumulative. The change request scope and 
query for transfer sets is always evaluated each time a generate or generate preview 
operation is performed. However, if cumulative is specified, older members found by 
previous queries will never be removed. That is, the indirect query-based membership 
will only be added to and will thus be cumulative.

-cumrsc|-cumulative_release_scope

Specifies that the release scope is cumulative. The release scope and query for 
transfer sets are always evaluated and older members found by previous queries will 
never be removed. 

-dbid|-database_id customer_dbid

Specifies the database id of customers who can receive the package that is to be 
generated.

-dbid|-database_id database_id

Specifies the destination database for the transfer set when used with the -gen or -
trn options, or the source destination database of the transfer set when used with the 
-rec option. 

Specifies the database ID of the database that you want to DCM initialize when used 
with the -init option.
150     Rational Synergy Classic CLI Help, Release 7.1



dcm command
Specifies the new database ID that you want to assign to the current database when 
used with the -change option. To learn about restricted characters, and why they are 
restricted, see Naming restrictions. If many objects need to be updated, it takes a long 
time to carry out the ccm dcm -change command.

Specifies that only entries for the specified database will be listed when used with the 
-event_log option.

-default_add_history

Specifies that objects that are added to a transfer set are added along with their 
predecessors.

-default_include_baselines

Specifies that baselines that are associated with transfer set members are included in 
transfers sets.

-delim delimiter

Specifies the new delimiter that you want to assign to the current database. 

You cannot use characters a-z, A-Z, or 0-9 for the DCM delimiter. You can use "!", "~", 
or "=" as an alternative delimiter. The default DCM Delimiter is "#", which should be 
used whenever possible.

 If many objects need to be updated, it takes a long time to carry out the ccm dcm -
change -delim delimiter command.

The -delim option is not mandatory. If omitted, a default value of "#" is used.

If you use the -init option to reinitialize a DCM database, the -delim option, if 
specified, must match that of the current database.

-desc|-description description_of_database

Specifies a description of the database.

-dir|-directory 

Sets the generate directory for the transfer set when used with the ccm dcm -create 
-ts or ccm dcm -modify -ts commands. The default on transfer set creation is a 
blank string. A blank string means that the current database’s default dcm -generate 
path is used.

-dir directory 

Specifies that the DCM package is to be received from the specified directory, instead 
of the default directory: database/dcm/receive.
Rational Synergy Classic CLI Help, Release 7.1     151



-email email_address 

Sets the e-mail address of the person or persons who will receive an e-mail 
notification following a generate or receive. You can define multiple e-mail recipients 
for the transfer set by separating the addresses with a space or comma. If you want to 
define e-mail lists, you can set up e-mail aliases or distribution lists by using the 
facilities of your mail server. To learn how to do this, consult your mail server and 
operating system 

-ep|-email_policy policy

Specifies the e-mail policy that is used during generate operations and transfer 
operations. The value that you type for policy is a case-insensitive string that must 
be one of the following: Transfer, Generate, or Always. 

• Transfer - Specifies that an e-mail message is sent only when you transfer a 
non-empty package to the destination database. Moreover, no message is sent if 
there are no objects to be included when the DCM generate operation is 
performed.

• Generate - Specifies that an e-mail message is sent when you generate and/or 
transfer a non-empty transfer package. This is the default when a new transfer set 
is created. However, no message is sent if there are no objects to be included 
when the DCM generate operation is performed.

• Always - Specifies that an e-mail message is sent whenever you generate and/
or transfer a non-empty transfer package. This includes occasions when there are 
no objects to be included when you perform the DCM generate operation or when 
you generate a package that is not automatically delivered to the destination 
database.

-event_log_size log_size

Specifies the maximum number of entries in the event log. The log_size is a positive 
non-zero integer. When the event log list reaches the value that you specify for 
log_size, each new entry replaces the oldest entry.

-exclude_db_info

Specifies that information about the current database and known DCM database 
definitions are excluded from the DCM information file. This option cannot be used 
with the -noexclude_db_info option.

-exclude_imported_objects

Specifies that imported objects are to be excluded from the DCM transfer set.
152     Rational Synergy Classic CLI Help, Release 7.1



dcm command
-exclude_nct|-exclude_non_completed_tasks

Specifies that tasks that are not completed are excluded from the transfer list. The -
exclude_non_completed_tasks and -noexclude_non_completed_tasks options 
cannot be used together.

-exclude_products

Specifies that product objects are to be excluded from the DCM transfer set.

-exclude_typedefs

Prevents the transfer package from containing user-defined type definitions. This 
option can only be used with the ccm dcm -create -ts command, or the ccm dcm -
modify -ts command. The -exclude_typedefs and -noexclude_typedefs options 
cannot be used together.

-exclude_types "list_of_types"

Specifies that the types in the list are to be excluded from the DCM transfer set.

-ferp

Specifies that a project’s update (reconfigure) properties are fully expanded to include:

• All task objects—even if these objects are members of the project hierarchy

• All folders and tasks in the projects’ update properties

The -ferp and -noferp options cannot be used together. The default on transfer set 
creation is -noferp.

-file_spec

Specifies the name of the file, project, folder, or task that you want to add to the 
transfer set.

-format format

Specifies the command’s output format. The as-shipped default format for the event 
log is as follows:

%index %event_time %event_type %status %dbid %ts

where:

%index is the index number, which is a unique number that identifies the event entry.
Rational Synergy Classic CLI Help, Release 7.1     153



%event_time is the date and time at which the log file entry was made.

%event_type is the type of event that is logged. Possible values for %event_type 
include Generate, Transfer, and Receive.

%status is the status of the operation. Possible values for %status include Started, 
Successful, Failed, and Cancelled.

%dbid is, for generate or transfer events, the destination database ID. For receive 
events, %dbid is the source database ID.

%ts is the name of the transfer set.

You can also specify the %user keyword to define a field in the event list; where %user 
is the user who performed the operation.

-from_dbid|-from_database_id fromdbid

Specifies that objects referencing the fromdbid database are to be converted so that 
they use the database ID of a todbid database. This does not change the current 
DCM database ID. If many objects need to be updated, it takes a long time to carry out 
a command that uses this option.

-from_delim|-from_delimiter delimiter

Specifies the old DCM delimiter that is to be converted. If the -from_delim option is 
omitted, the old DCM delimiter is converted to the new one that you specify.

-ga|-generate_allowed

Specifies that the database whose definition you are creating or modifying can be 
used as the destination database for a DCM generate operation. This is the default 
when you create a new database definition. This option cannot be used with the -
nogenerate_allowed option.

-gen|-generate

Generates a transfer package for the specified transfer set and destination database 
pair.

Enter dcm -gen to see a usage message.

-handover_dbid|-handover_database_id dbid

Specifies the database through which control is handed over when control is handed 
over to the specified database. The default value when creating a DCM database 
definition is a blank string. This means that when you hand control over to a spoke via 
a hub database, you must specify the hub dbid for the dbid option value. The 
154     Rational Synergy Classic CLI Help, Release 7.1



dcm command
specified dbid must be either a known DCM database definition for which a generate 
is permitted, or a blank string. A blank string means that no handover of control to that 
database is permitted.

-hidden

Specifies that the database ID (dbid) of the database whose definition you are creating 
or modifying will not appear in dialog list boxes that pertain to databases. This option 
cannot be used with the -nohidden option.

-h|-history

Causes the history of each specified object to be included in the transfer set. You can 
include the histories only for single files or projects, not for folders or tasks. You use 
this option only if you are using the -add option.

-ib|-include_baselines

Specifies that any baselines that are associated with objects that are members of the 
transfer set will be included. This option cannot be used with the -noib|-
noinclude_baselines option. The default setting when creating a transfer set is 
determined by the DCM setting of Default Include Baselines.

-ignore_checks

Allows a DCM receive operation to continue even if checks on the transfer package 
indicate a potential problem.

Caution Using this option without understanding its 
implications may cause incorrect results (see the Rational 
Synergy Distributed book for further details).

This option can only be used with the ccm dcm -receive command. The -
ignore_checks and -noignore_checks options cannot be used together.

-ignore_maintain_wa

Specifies that projects that were created by import or XML import will never have a 
maintained work area.

-im|-ignore_missing

Tells DCM to ignore any missing transfer packages.

Caution This option may result in empty directory entries or 
missing relationships.
Rational Synergy Classic CLI Help, Release 7.1     155



-index number

Specifies the index number of an event. The index number is a unique number that 
identifies the event entry. The first event that is logged is assigned an index number 
of 1, the second event that is logged is assigned an index number of 2, and so on.

A positive non-zero index number is the absolute index of a specific event that is in the 
DCM event log. A zero or negative index number signifies a relative index; where 0 
means the last entry, and a negative number is the number of entries back from the 
last entry.

-info

Specifies that you want to display information that is stored in the summary file for the 
specified event.

-init

Initializes the specified database to the specified database ID and DCM delimiter.

You must use the -dbid option if you initializing a database that has not previously 
been DCM initialized. If the database has already been DCM initialized, the -dbid can 
be omitted, or if specified, the value must match that of the current database ID. 
Similarly, when you use the to -init option to reinitialize a DCM database, the -
delim option, if specified, must match that of the current database.

-keep_typedefs

Specifies that type definitions are kept after a receive operation is completed.

-lg|-last_generated

Specifies the last_generated time.

The last_generated argument must have one of the following values:

— never 
— current 
— integer index where 1 refers to the most recent generated transfer package.

This option is for advanced users only. If you select a timestamp that is not the most 
recent timestamp, the generated transfer package includes all objects that have 
changed since that date. Also, the more recent timestamps are removed from the list. 

Specifying current sets the time stamp as if the transfer package has just been 
generated, even though it has not. The result is that all members appear to be up-to-
156     Rational Synergy Classic CLI Help, Release 7.1



dcm command
date, and no objects are included in the transfer package. Use current when you are 
setting up a new transfer package to send updates to hub or publisher databases. 

Caution The never choice causes all previous time stamps 
to be removed from the list.

When the value of last_generated is never, the transfer package is generated as if 
for the first time; the transfer package will include all objects that were included in 
previous transfers, plus all objects that have changed since the last transfer. 

-local_parallel

Results in parallel notifications being e-mailed to local owners of parallels of received 
objects. This is the default when creating a new transfer set. This option can only be 
used with the ccm dcm -create -ts command, or the ccm dcm -modify -ts 
command. The -local_parallel and -nolocal_parallel options cannot be used 
together.

-location location

Specifies the geographic location of the database (for example, Irvine, 
California). The value of location indicates which site owns the database.

-log

Specifies that captured messages from the log file are displayed in the event log for 
the specified event.

-members direct|all

If -members direct is specified, only direct members are displayed when the 
command is carried out. If all is specified, both direct and indirect members are 
displayed when the command is carried out. 

-messages

Specifies that you want to display captured messages from the log file for the specified 
event.

-mpi|-map_project_instances

Specifies that project instances in the database whose definition you are creating or 
modifying are mapped to a value of "1" during a DCM generate operation. This option 
cannot be used with the -nomap_project_instances option. By default, project 
Rational Synergy Classic CLI Help, Release 7.1     157



instances are not mapped to a value of "1" when you create a new DCM database 
definition.

-nh|-no_history

Prevents the history of each specified object from being included automatically in the 
transfer set.

To ensure that only the specified version of the object is included in the transfer set, be 
sure to use this option. Use this option only if you are using the -add option.

-no_of_generate_times generate_times

Specifies the number of generate times that DCM stores. The value that you specify 
for generate_times must be a positive non-zero integer that is greater than or equal 
to the number of old generate times.

-no_of_old_generate_times old_generate_times

Specifies the number of old generate times that DCM stores. The value that you 
specify for old_generate_times must be a positive non-zero integer that is less than 
or equal to the number of generate times.

-noar|-noautomatic_receive

Specifies that the receive is not to be automatically initiated during the generate 
operation.

-nocumulative

Specifies that the change request scope will not be cumulative. This is the default 
when a new transfer set is created. The change request scope and query for transfer 
sets is evaluated each time a generate or generate preview operation is performed. 
However, if nocumulative is specified, objects that were formerly indirect query 
members of the transfer set that are no longer found by the query are removed from 
the transfer set. Thus, the change request scope is not cumulative.

-nocumrsc|-nocumulative_release_scope

Specifies that the release scope is not cumulative. The release scope and query for 
transfer sets are always evaluated and older members found by previous queries will  
be removed. 
158     Rational Synergy Classic CLI Help, Release 7.1



dcm command
-nocumulative_release_scope

Specifies that the release scope is not cumulative. The release scope and query for 
transfer sets is always evaluated and older members found by previous queries will be 
removed. 

-nodefault_add_history

Specifies that objects that are added to a transfer set are not added along with their 
predecessors.

-nodefault_include_baselines

Specifies that baselines that are associated with transfer set members are not 
included in transfers sets.

-noemail

Specifies that no e-mail parameter is defined on the transfer package.

-noexclude_db_info

Specifies that information about the current database and known DCM database 
definitions are included in the DCM information file. The default on transfer set 
creation is -noexclude_db_info. This option cannot be used with the -
exclude_db_info option.

-noexclude_imported_objects

Specifies that imported objects are to be included in the DCM transfer set.

-noexclude_nct|-noexclude_non_completed_tasks

Specifies that tasks that are not completed are included in the transfer list. This option 
cannot be used with the -exclude_non_completed_tasks option.

-noexclude_products

Specifies that product objects are to be included in the DCM transfer set.

-noexclude_typedefs

Results in the transfer package containing user-defined type definitions. This option 
can only be used with the ccm dcm -create -ts command, or the ccm dcm -modify 
-ts command. This option cannot be used with the -exclude_typedefs option.
Rational Synergy Classic CLI Help, Release 7.1     159



-noferp

Specifies that a project’s update properties are not fully expanded to include. that is, 
the project’s update properties do not include:

• All task objects
• All folders and tasks in the projects’ update properties

The -ferp and -noferp options cannot be used together. The default on transfer set 
creation is -noferp.

-noga|-nogenerate_allowed

Specifies that the database whose definition you are creating or modifying cannot be 
used as the destination database for a DCM generate operation. This option specifies 
that the database whose definition you are creating or modifying will not appear in 
DCM Generate dialogs and cannot be used in the ccm dcm -generate command. 
This option cannot be used with the -generate_allowed option.

-nohidden

Specifies that the database ID (dbid) of the database whose definition you are creating 
or modifying will appear in dialog list boxes that pertain to databases. This option 
cannot be used with the -hidden option.

-noib|-noinclude_baselines

Specifies that any baselines that are associated with objects that are members of the 
transfer set will not be included. This option cannot be used with the -ib|-
include_baselines option. The default setting when creating a transfer set is 
determined by the DCM setting of Default Include Baselines.

-noignore_checks

Prevents a DCM receive operation from continuing if checks on the transfer package 
indicate a potential problem. For safety reasons, this is the default. This option can 
only be used with the -receive option. The -ignore_checks and -
noignore_checks options cannot be used together.

-noignore_maintain_wa

Specifies that projects that were created by import or XML import will have a 
maintained work area.
160     Rational Synergy Classic CLI Help, Release 7.1



dcm command
-nokeep_typedefs

Specifies that type definitions are not kept after a receive operation is completed.

-nolocal_parallel

Prevents parallel notifications from being e-mailed to local owners of parallels of 
received objects. This option can only be used with the ccm dcm -create -ts 
command, or the ccm dcm -modify -ts command. The -local_parallel and -
nolocal_parallel options cannot be used together.

-norb|-norun_in_background

Specifies that the automatic receive is not to be executed in the background. 
Therefore, you have to wait for the transfer package to be received before you can 
continue using your session.

-noupdate_db_info

Specifies that DCM database information is not updated during a receive operation. 

-noupdate_rtf

Specifies that process rules are not updated during a receive operation.

-nowait

Causes a transfer package to perform a DCM receive or auto-receive even though 
another session might be performing a receive. The default is -wait.

-nozip

Specifies that the transfer package is left as a collection of data files, each of which is 
to be transferred. The -zip and -nozip options cannot be used together.

-old_generate_time_resolution old_generate_resolution

Specifies the interval between the old generate times (expressed in units of days). The 
value that you specify for old_generate_resolution must be a positive non-zero 
floating number. 

-os|-operating_system UNIX|Windows

Specifies the destination database’s operating system.
Rational Synergy Classic CLI Help, Release 7.1     161



-parallel_checking parallel_check_keyword

Specifies the type of parallel checking that is performed during a DCM receive 
operation. The values that you can specify for parallel_check_keyword include 
none, created, and updated. These values are case sensitive.

-path path

Specifies the absolute path to the destination database, including the database name. 
Enter a UNC path if you are using an NT server.

-prop|-properties

Displays the transfer sets of which the specified object or objects are members, the 
type of members, and the database to which the object has been sent. This option 
displays the same information as the Show DCM Properties dialog.

-rb|-run_in_background

Causes the automatic receive to be executed in the background so that you do not 
have to wait for the transfer package to be received before you can continue using 
your session.

-rec|-receive

Causes a transfer package to be received automatically at the destination database 
when used with the -gen or -trn options, or starts the receive operation in the 
current database when used with the -rec option.

Receive all transfer packages with the name "transfer_set_name" (from all 
databases) by including the -ts option and omitting the -dbid option. Receive all 
transfer packages from the specified database by including the -dbid option and 
omitting the -ts option.

Enter dcm -rec to see a usage message.

-receive_lock

If there is a receive lock, displays the details of the receive lock. If there is no receive 
lock, this option displays no output.

If a DCM receive was started by using the -nowait option, the receive may have 
skipped getting a receive lock. If so, the -receive_lock option will not be able to 
determine whether such a DCM receive is currently running on the current database.
162     Rational Synergy Classic CLI Help, Release 7.1



dcm command
-recompute

Updates the transfer set so that it includes any changes to indirect members. When 
used with -change_requests, this prevents change requests that were automatically 
added to the transfer set from being sent in the following DCM transfer package as 
well as the current one being generated. To achieve this, perform the recompute of the 
change request members, wait the DCM sync tolerance time plus 1 second (the 
default is 61 seconds), then perform the DCM generate.

-remove

Removes the specified objects (single file, project, task, or folder) from the specified 
transfer set. The transfer set must be defined already.

-remove_receive_control_transition transition

Removes the specified transition from the Receive Control Transitions list. The 
removed state transition will no longer be allowed when receiving an object that is 
controlled in the current database. The value that you specify for transition must be 
in the following form:

   from_state:to_state

where:

   from_state must be a valid state that is in the Receive Control Transitions list, and 

   to_state must be a valid state for which a transition exists from the specified 
from_state.

-rq|-release_query release_query_string

Specifies that the specified new release query string should be used when creating or 
modifying transfer sets.  This option can be used only with the ccm dcm -create -ts 
and ccm dcm -modify -ts commands.

-rsc|-release_scope release_scope_name

Specifies that a new release scope value should be used when creating or modifying 
transfer sets.  This option can be used only with the ccm dcm -create -ts and ccm 
dcm -modify -ts commands.

The release_scope_name must have one of the following values: 
 
none 
releases 
releases_templates 
Rational Synergy Classic CLI Help, Release 7.1     163



releases_and_templates 
release and templates.

-settings

Indicates that DCM settings are to be changed when used with the ccm dcm -modify 
command. Specifies that DCM settings are to be displayed when used with the ccm 
dcm -show command.

-show

Displays the current database id when used with the -dbid or -database_id 
options. The output of the ccm dcm -show -dbid dbid command includes the 
following: 

• The geographic location of the database.
• The contact information for one or more persons who are responsible for DCM 

administration of the database.
• The dbid of the handover database (an empty string means that, during a DCM 

receive operation, any objects that are controlled in that database and received in 
the current database will never be marked as pending handover. Moreover, these 
objects will always be eligible for update from that database).

• The current export format.
• The zip setting.
• Whether or not project instances are mapped to "1" during a DCM generate 

operation.
• The transfer path.

If the transfer mode is specified as either direct or ftp, the zip setting is 
automatically changed as follows: For direct, the zip setting is changed to OFF, and 
for ftp it is changed to ON.

The -show option displays a list of DCM settings when used with the -settings 
option. The output of the ccm dcm -show -settings command includes the following:

• Description of the current database.
• Location of the current database.
• Information about the person who is responsible for DCM administration issues 

for the current database.
• Default for history setting on DCM add operation (may be overridden by .ini file).
• Number of entries in event log.
• Whether maintain_wa is ignored by default.
• How release definitions are updated during a receive operation.
• Whether type definitions are kept after a receive operation.
164     Rational Synergy Classic CLI Help, Release 7.1



dcm command
• How parallel checking is performed during a receive operation.
• Which state transitions, if any, may be received for an object that is controlled in 

the current database.
• Whether DCM database information is updated during a receive operation.
• Whether process rules are updated during a receive operation.
• The number of generate times that DCM stores.
• The number of old generate times that DCM stores.
• The interval between the old generate times (expressed in units of days).

The -show option displays the current transfer set name when used with the -ts or -
transfer_set options. The output of the ccm dcm -show -ts command shows the 
following:

• The setting of the -ferp|-noferp option.
• The value of the -dir option. If this directory is physically stored as a blank string, 

the Generate Directory is displayed as the current database’s default dcm/
generate directory.

-tm|-transfer_mode transfer_mode_name

Specifies the mechanism used to send a transfer package to the destination 
database.

The transfer_mode argument must have one of the following values:

— manual | manual_copy 
— cp | copy | local_copy 
— ftp | file_transfer_protocol 
— rcp | remote_copy 
— user | user_defined

The transfer modes are as follows:

Manual Copy - Use a manual method, such as tape, to send the transfer package to 
the destination database. Note that manual_copy is a transfer mode that generates 
the transfer package without sending it.

Local Copy - Send the transfer package to a database that is accessible using a copy 
command. The database is accessible using a copy command if the sending 
database’s engine can copy to the destination database’s database_dir/dcm/
receive directory. 

File Transfer Protocol - Send the transfer package using ftp. The ftp login and 
destination directory must be set up in advance of any transfers. 
Rational Synergy Classic CLI Help, Release 7.1     165



Remote Copy - Send the transfer package to a database that is accessible using an 
rcp command. The database is accessible using an rcp command if the sending 
database’s engine can rcp to the destination database’s database_dir/dcm/
receive directory. 

User Defined - Send the transfer package using your own mechanism. 

-to_dbid|-to_database_id todbid

Specifies that objects referencing a fromdbid database are to be converted so that 
they use the database ID of the todbid database. This does not change the current 
DCM database ID. If many objects need to be updated, it takes a long time to carry out 
a command that uses this option.

-tp|-transfer_path transfer_path

Sends a single transfer package to its destination database when used with the -gen 
option, or sends one or more transfer packages to their destination databases when 
used with the -trn option.

-trn|-transfer

Sets the transfer path to the specified value. When you create a DCM database 
definition, the default transfer_path is a blank string.

Send all transfer packages with the name "transfer_set_name" by including the -ts 
option and omitting the -dbid option. Send all transfer packages destined for the 
specified database by including the -dbid option and omitting the -ts option.

Enter dcm -trn to see a usage message.

-ts|-transfer_set "transfer_set_name"

Specifies the name of the transfer set to generate, send, or receive, or to which 
transfer set to add one or more objects.

Specifies that only entries for the specified transfer set will be listed when used with 
the -event_log option.
166     Rational Synergy Classic CLI Help, Release 7.1



dcm command
The transfer set name must be enclosed in double quotes if it contains one or more 
spaces.

-u

Suppresses automatic numbering of this command’s output ("un-numbered").

-update_db_info

Specifies that DCM database information is updated during a receive operation. This 
information is updated from data that is in the DCM Information file .

-update_rtf

Specifies that process rules are updated during a receive operation.

-update_releases release_action_keyword

Specifies how release definitions are updated on a DCM receive. The values that you 
can specify for release_action_keyword include none, active, and inactive. 
These values are  case sensitive and are described as follows:

• none

Specifies that release definitions are neither created nor updated.

• active

If the DCM transfer package includes release definitions, any release definitions 
that currently exist in the receiving database are updated, but only new active 
release definitions are created. If the DCM transfer package includes release 
table information only (from Synergy 6.2 or earlier), release definitions for 
releases are created as active releases.

• inactive

If the DCM transfer package includes release definitions, these are created or 
updated in the receiving database. If the DCM transfer package includes release 
table information only (from Synergy 6.2 or earlier), release definitions for 
releases are created as inactive releases.

-wait

Causes a transfer package to wait indefinitely until the receiving database has 
completed the receive. The user is able to interrupt (CTRL+C) the command to abort 
the operation. The default is -wait.
Rational Synergy Classic CLI Help, Release 7.1     167



-zip

Specifies that the transfer package will be tarred and zipped. The default value of -
zip is TRUE, expect when the transfer mode id Direct. This option does not affect the 
direct transfer mode. The -zip and -nozip options cannot be used together.

Related topics

• dcm examples
168     Rational Synergy Classic CLI Help, Release 7.1



dcm examples
dcm examples
Choose from examples for the following operations.

• Add

• Change

• Create

• Delete

• Generate

• Generate and Transfer

• Generate, Transfer, and Receive

• Modify Settings

• Receive

• Show

• Transfer

Add
• Add the infotec-23 project to the "InfoServer source" transfer set.

ccm dcm -add -ts "InfoServer source" infotec-23:project:1
Adding object 'infotec-23:project:1' to transfer set 'InfoServer 

source'.

You also can use query output to specify object names.

Change
• Change the database identifier to ldn1 without updating objects.

ccm dcm -change -dbid ldn1

• Change the database identifier from jfil to sdg1 updating all objects.

ccm dcm -change -from_dbid jfil -to_dbid sdg1
...progress messages...
DCM database conversion is complete with no errors. 
4 objects had attributes updated. 
No objects had directory entries updated. 
Your Rational Synergy session must be restarted. 
Rational Synergy engine exiting.

• Change the DCM delimiter to a new value and update all objects in the current 
database so that they use the same delimiter.

ccm dcm -change -from_delimiter delimiter -delim delimiter
Rational Synergy Classic CLI Help, Release 7.1     169



Create
• Create a DCM database definition and add it to your DCM destination database 

definitions.

ccm dcm -create -dbid database_id -desc description -tm 
transfer_mode_name

• Exclude object types from a transfer set (while you are creating the transfer set).

ccm dcm -create -ts "transfer_set_name" -exclude_types "list_of_types"

• Include products in a transfer set (while you are creating the transfer set).

ccm dcm -create -ts "transfer_set_name" -noexclude_products

• Exclude imported objects from a transfer set (while you are creating the transfer set).

ccm dcm -create -ts "transfer_set_name" -exclude_imported_objects

• Exclude database information from a transfer set (while you are creating the transfer 
set).

ccm dcm -create -ts "transfer_set_name" -exclude_db_info

Delete

• Delete one or more transfer sets.

ccm dcm -delete -ts "transfer_set_name"

Generate
• Generate the transfer package for the Secure transformer layer transfer set and 

the BST database, and save it to transfer later.

ccm dcm -gen -ts "Secure transformer layer" -dbid BST
Computing transfer package...
Computing transfer package for 'Secure transformer layer' going to 

database 'BST'...
115 objects will be included in transfer package for 'Secure 

transformer layer' going to database 'BST'...
Generating transfer package...
...
DCM data generated to file 
 '\\ccmsrv\ccmdbs\appdevdb\dcm\generate\CA#7#BST#865889312.tar.gz'
Updating database...
DCM Generate completed successfully.

Generate and Transfer
• Generate and send the transfer package for the Visual interface include files 

transfer set and the CA database.
170     Rational Synergy Classic CLI Help, Release 7.1



dcm examples
ccm dcm -gen -ts "Visual interface include files" -dbid CA -trn
Computing transfer package...
Computing transfer package for 'Visual interface include files' going 

to database 'CA'...
123 objects will be included in transfer package for 'Visual interface
include files' going to database 'CA'...
Generating transfer package...
...
Transferring package...
Transfer successful, clean up in progress...
Sending transfer package status email...

DCM generate-transfer email notification has been sent to:
dcmadmin@company.comUpdating database...
DCM Generate completed successfully.

Generate, Transfer, and Receive
• Generate, send, and automatically receive the transfer package for the Visual 

Interface Project transfer set and CH database.

ccm dcm -gen -ts "Visual Interface Project" -dbid CH -trn -rec

Computing transfer package...
Computing transfer package for 'Visual Interface Project' going to 

database 'CH'...
335 objects will be included in transfer package for 'Visual Interface

Project' going to database 'CH'...
Generating transfer package...
Creating transfer package information files...
DCM transfer information saved to file '
\\ccmsrv\ccmdbs\appdevdb\dcm\generate\CA#7#CH#865893092#dcm_info.txt'
DCM transfer preview information saved to file 

'\\ccmsrv\ccmdbs\appdevdb\dcm\generate\CA#7#CH#865893092#dcm_preview.txt'
Creating transfer package...
Creating transfer package for 'Visual Interface Project' going to 

database CH...
Compressing transfer data...
Compressing transfer data for transfer set 'Visual Interface Project' 

and database CH...
Cleaning up temp files...
DCM data generated to file 
'\\ccmsrv\ccmdbs\appdevdb\dcm\generate\CA#7#CH#865893092.tar.gz'
Transferring package...
Transfer successful, clean up in progress...
Doing remote receive...
Starting receive remotely. Progress will not update until the receive 

completes.
Rational Synergy Classic CLI Help, Release 7.1     171



Executing command '\\dbsrv\ccm\bin\util\ccm_receive -h dbsrv -d 
\\dbhost\ccmdbs\visystem -dbid CA -ts Visual Interface Project 
ccm_home\\dbsrv\ccm'

Receiving all transfer sets 'Visual Interface Project' from database 
'CA'...

Receiving transfer package 'Visual Interface Project' from database 
CA...

Receiving 1 of 1 transfer packages...
Decompressing data generated 06-09-97 14:51:32 PDT for transfer set 

'Visual Interface Project' and database CA...
Extracting data...
Extracting data generated 06-09-97 14:51:32 PDT for transfer set 

Visual Interface Project' and database CA...
Importing data...
Receive complete for transfer package 'Visual Interface Project' from 

database CA.
DCM Receive completed successfully.
Rational Synergy engine exiting.

Mon Jun  9 14:51:53 2004

Receive DCM data done. Remote receive complete
Sending transfer package status email...
DCM generate-transfer email notification has been sent to: 
dcmadmin@company.com
Updating database...
DCM Generate completed successfully.

Initialize
• Initialize the current database by using the database ID jfil and the default DCM 

delimiter ("#"). 

Include the following in the initialize command. 

   — A description of the database.

   — The geographic location of the site that owns the database.

   — The contact information of the person who is responsible for DCM administration 
issues.

By entering the preceding data, when you replicate with other databases, a DCM 
database definition is created that includes description, location, and admin_info 
fields that are populated with meaningful data.

ccm dcm -init -dbid jfil -description "Development database for 
ProductXYZ" -location "Los Angeles, California" -admin_info "Jane Smith, 
(206) 555-9090, JSmith@xyz.com"
172     Rational Synergy Classic CLI Help, Release 7.1



dcm examples
...progress messages...

DCM database conversion is complete with no errors. 
4 objects had attributes updated. 
No objects had directory entries updated. 
Your Rational Synergy session must be restarted. 
Rational Synergy engine exiting.

Modify Settings
• Change the settings for the event log size and the number of old generate times.

ccm dcm -modify -settings -event_log_size log_size -
no_of_old_generate_times old_generate_times

Receive
• Receive a transfer package from a source database.

ccm dcm -rec -dir /vol/dbserver1/dcm/receive/ -ts "transfer_set_name" 
-dbid src_database_ID

Show
• Show DCM events for database sdg1.

ccm dcm -show -event_log -dbid sdg1

66 Mon Jul 22 15:16:53 2002 Receive      Successful E   eproj
65 Mon Jul 22 15:15:22 2002 Receive      Successful E   eproj
64 Wed Jul 17 15:27:13 2002 Receive      Successful K   All projects and 
related objects for Release rename/1.0 saved on Wed Jul 17 15:23:45 2002 
63 Wed Jul 17 15:23:45 2002 Save Offline Successful Any All projects and 
related objects for Release rename/1.0 saved on Wed Jul 17 15:23:45 2002 
62 Fri Jul 12 14:53:00 2002 Receive      Successful K3  M12251 
61 Fri Jul 12 14:50:55 2002 Generate     Successful K3  M12251 
60 Fri Jul 12 12:30:44 2002 Receive      Successful E   task completed_in 
test
59 Fri Jul 12 12:29:48 2002 Receive      Successful E   task completed_in 
test
58 Thu Jun 27 17:42:49 2002 Generate     Successful foo foo
57 Thu Jun 27 16:09:10 2002 Generate     Failed     foo foo 
56 Thu Jun 27 15:25:13 2002 Generate     Cancelled  foo foo
55 Thu Jun 27 15:23:19 2002 Generate     Successful foo foo 
54 Thu Jun 27 15:22:11 2002 Generate     Cancelled  foo smallexport
53 Wed Jun 26 13:13:42 2002 Generate     Cancelled  K3  R17951 
52 Wed Jun 26 13:12:07 2002 Generate     Cancelled  K3  R17951 
51 Wed Jun 26 13:10:53 2002 Generate     Successful K3  R17951 
50 Wed Jun 26 13:10:20 2002 Generate     Cancelled  K3  R17951 
49 Wed Jun 26 13:09:57 2002 Generate     Cancelled  K3  R17951 
Rational Synergy Classic CLI Help, Release 7.1     173



48 Tue Jun 25 14:53:48 2002 Generate     Successful K3  smallexport 
47  Wed Jun 19 16:08:20 2002 Generate     Successful K3  jre
46  Wed Jun 19 16:08:05 2002 Generate     Successful K3  jre
45  Wed Jun 19 16:06:57 2002 Generate     Failed     K3  jre
44  Fri Jun 14 15:18:50 2002 Receive      Successful E   skipback
43  Fri Jun 14 15:17:27 2002 Generate     Successful E   skip
42  Fri Jun 14 15:02:32 2002 Generate     Successful E   skip
41  Fri Jun 14 10:18:14 2002 Generate     Successful E   jre 
40  Thu Jun 13 18:37:15 2002 Generate     Successful E   jre 
39  Thu Jun 13 16:08:20 2002 Receive      Started    E   eproj
38  Thu Jun 13 15:30:37 2002 Generate     Successful E   jre  
37  Thu Jun 13 13:31:42 2002 Generate     Successful E   jre  
36  Mon Jun 10 23:27:56 2002 Save Offline Successful Any Projects named 
ccm on Mon Jun 10 23:27:56 2002
35  Mon Jun 10 23:23:29 2002 Save Offline Successful Any Projects named 
ccm on Mon Jun 10 23:23:29 2002
34  Thu Jun 06 15:31:19 2002 Generate     Successful K3  test subproject 
rename
33  Thu Jun 06 15:29:04 2002 Generate     Successful K3  test subproject 
rename
32  Thu Jun 06 13:55:33 2002 Generate     Successful K3  test subproject 
rename
31  Tue Jun 04 16:15:29 2002 Generate     Successful K3  folder only   
30  Tue Jun 04 16:05:47 2002 Generate     Started    K3  folder only  
29  Thu May 30 19:34:15 2002 Generate     Successful K3  testwa 
28  Thu May 30 19:32:59 2002 Generate     Successful K3  testwa 
27  Thu May 30 19:30:20 2002 Generate     Successful K3  testwa 

Transfer
• Send transfer packages for all transfer sets to the BST database.

ccm dcm -transfer -dbid BST
Transferring all transfer packages with destination database 'BST'...
Transferring 'Secure transformer layer' generated on 06-09-97 13:48:32 
PDT to database 'BST'.
Sending transfer package status email...
DCM generate-transfer email notification has been sent to: 
dcmadmin@company.com
Transfer completed successfully.

• Transfer the saved transfer package for the RDBMS Server API transfer set (that was 
generated for the CH database).

ccm dcm -transfer -ts "RDBMS Server API"
Transferring all transfer packages 'RDBMS Server API'...
Transferring 'RDBMS Server API' generated on 06-09-97 14:42:20 PDT to 
database 'CH'.
Sending transfer package status email...
174     Rational Synergy Classic CLI Help, Release 7.1



dcm examples
DCM generate-transfer email notification has been sent to: 
dcmadmin@company.com
Transfer completed successfully.
Rational Synergy Classic CLI Help, Release 7.1     175



delete command

Synopsis
ccm del|delete [-repl|-replace] [-scope delete_scope]
               [-t|-task task_number]
               file_spec [file_spec...]
ccm del|delete [-repl|-replace] -force file_spec [file_spec...]
ccm del|delete [-r|-recurse] [-repl|-replace]
               [-t|-task task_number]
               file_spec [file_spec...]
ccm del|delete [-repl|-replace] [-scope delete_scope]
               -p|-project project_spec [project_spec...]
ccm del|delete [-r|-recurse] [-repl|-replace]
               -p|-project project_spec [project_spec...]
ccm del|delete [-r|-recurse] [-repl|-replace] [-h|-hierarchy]
               [-t|-task task_number] [file_spec...]
ccm del|delete [-r|-recurse] [-repl|-replace] [-h|-hierarchy]
               -p|-project project_spec [project_spec...]

Description and uses
The delete command enables you to delete a specific version of a file or directory or 
project from a directory and from the database. Additionally, you can delete a project 
hierarchy from the command line or from the GUI.

An object version can be deleted if it is not a member of a project or if it is only a member 
of the current project and has no successors.

Note When you delete an object from a non-writable 
directory, a new directory version is checked out 
automatically.

If you are in a shared project and your current directory is 
non-writable, the directory is checked out and associated 
automatically with the current (or specified) task and is 
checked in to the integrate state. You can disable the 
automatic check-in feature by setting 
shared_project_directory_checkin to FALSE in your 
initialization file. (See shared_project_directory_checkin.) 

For more information, see Shared projects.

Caution The delete operation is permanent.
176     Rational Synergy Classic CLI Help, Release 7.1



delete command
Options and arguments
file_spec

Specifies the name of the file or directory to be deleted.

-force

The -force option suppresses confirmation messages and forces the delete operation 
to be carried out.

-h|-hierarchy

Causes the operation to delete the entire project hierarchy. Must be used with the -
recurse option.

-p|-project project_spec

Deletes the specified project.

-r|-recurse

If the target of the command is a directory or a project, this option causes all objects, 
including the directory and/or project, to be deleted, which will make objects that 
cannot be deleted floating objects.

When using this option to hierarchically delete objects, the following apply:

• -recurse file_spec or -recurse -hierarchy file_spec deletes the specified 
file in the current project. (Rational Synergy ignores both -recurse and -
hierarchy if file_spec is not a directory.)

• -recurse file_spec (where file_spec is a directory) alone deletes all object 
versions in a directory, except subprojects.

• -recurse -hierarchy file_spec (where file_spec is a directory) deletes all 
object versions, including subprojects, that reside below the specified directory.

• -recurse -project project_spec alone deletes all object versions in a project, 
except subprojects.

• -recurse -hierarchy -project project_spec deletes all object versions, 
including subprojects, that reside below the specified project.

When used with a project_spec, the -recurse option is the same as defining the 
scope of the delete with the -scope project_and_non-project_members option. The 
-recurse -hierarchy option is the same as defining the scope of the delete with the 
-scope entire_project_hierarchy option.
Rational Synergy Classic CLI Help, Release 7.1     177



-repl|-replace

Deletes an object and replaces it with its predecessor. 

-scope delete_scope

Defines the scope of the delete. The valid delete_scope values are:

• project_only

• project_and_non-project_members

• project_and_subproject_hierarchy

• entire_project_hierarchy

The valid values for directory objects are:
• directory_only

• directory_and_non-project_members

• entire_directory_hierarchy

-t|-task task_number

When you delete an object whose parent directory is read-only, a new version of the 
directory is checked out automatically.

This option associates the newly checked-out directory with a task if the object was 
deleted from a read-only directory.

If the current task is set and you do not specify a different task, the newly checked-out 
directory is associated with the current task automatically.

Example
• Delete the sort.c file and replace it with the previous version.

ccm delete sort.c 
Member sort.c-1 deleted from project ico_proj-1

Related topics

• create command

• unuse command

• use command
178     Rational Synergy Classic CLI Help, Release 7.1



delimiter command

Synopsis
ccm delim|delimiter [value]

Description and uses
The delimiter is the character that separates the project or object name and version 
values. Also, you can use it to separate the project name from the version when creating 
the initial work area path for a project.

The delimiter command enables a user in the ccm_admin role to change the value of 
the delimiter character. The default is the dash character ( - ). You can set the delimiter to 
any non-restricted character (see Command and argument syntax). Additionally, be sure 
to read Naming restrictions. When you set the delimiter, you set it for a Rational Synergy 
database.

The main reason for changing a delimiter is to avoid using a character that is used in 
object names in the Rational Synergy database. The user in the ccm_admin role should 
ensure that the default delimiter will not conflict with objects that contain the dash 
character as a part of their name. If this is the case, change the default delimiter before 
users begin to use the database.

Note If you change the delimiter for a database, do so 
before migrating software under Rational Synergy control. 
You can change the delimiter at any time, but if you do so 
when projects already exist in a database, you will need to 
change the work area paths of those projects that include 
the delimiter character.

After you change the delimiter and restart the interface, any 
new project that you create will use the new delimiter that 
you set. Work area paths for existing projects are not 
affected.

Caution Changing your delimiter might affect your work 
areas. See work_area command for more information.

You must be in the ccm_admin role to use this command.

Delimiter Restrictions
Some characters are forbidden for use as the delimiter by the ccm delimiter command. 
These characters are listed in Naming restrictions.

You can control whether the delimiter is a restricted character. See 
allow_delimiter_in_name for information about changing restrictions  for non-project object 
names. The delimiter is still restricted for versions, types, instances, and projects.
Rational Synergy Classic CLI Help, Release 7.1     179



Options and arguments
value

Specifies the new character to be used as the delimiter for an entire database.

Examples
• The display name, object name, and work area path use the delimiter to separate the 

name from the version. For example, your project work area might be in the following 
location.

Windows:
c:\users\linda\ccm_wa\ccmint22\hello-linda 
UNIX: 
~linda/ccm_wa/ccmint22/hello-linda

You could change the delimiter between the file name and version to a comma by 
using the following delim command.

ccm delim ","

When you restart your interface and create a new project (for example, 
goodbye,linda), your project work area is in the following location.

Windows: 
c:\users\linda\ccm_wa\ccmint22\goodbye,linda 
UNIX: 
~linda/ccm_wa/ccmint22/goodbye,linda

• Suppose you want to reference a csrc file’s work area version of poly.c,2 even 
though you have version 3 (poly.c,3) in your work area. If your delimiter is set to a 
comma, you would specify the file as follows:

Windows: 
ccm dir poly.c,2 
integrate mary Aug 01 08:07 csrc 1 poly.c,2 
UNIX: 
ccm ls -l poly.c,2 
integrate mary Aug 01 08:07 csrc 1 poly.c,2

If you tried to specify the file using the dash delimiter, you would see the following 
error message:

Windows: 
ccm dir poly.c-2 
Referenced object version could not be identified: 'poly.c-2' 
UNIX: 
ccm ls -l poly.c-2 
Referenced object version could not be identified: 'poly.c-2'
180     Rational Synergy Classic CLI Help, Release 7.1



delimiter command
Related topics

• work_area command
Rational Synergy Classic CLI Help, Release 7.1     181



depend command

Synopsis
ccm depend -a|-append dependency_file [-f makefile]

ccm depend -w|-write dependency_file [-f makefile]

ccm depend -d|-delete [-f makefile]

ccm depend -s|-show [-f makefile]

Description and uses
The depend command enables you to update makefile dependencies using a third-party 
make tool.

First, generate makefile format dependencies using a third-party tool. Next, execute the 
depend command to copy the generated dependencies to the controlled makefile’s 
dependency attribute.

Note If you do not use the -f option, Rational Synergy 
searches the current directory for a valid, controlled 
makefile (upper-, lower-, or mixed-case "makefile" or 
"makefile.mk") and performs the operation on that 
makefile object’s dependency attribute.

Any user can execute this command.

Options and arguments
-a|-append

Appends the dependencies in dependency_file to any existing dependencies 
associated with the makefile.

-d|-delete

Deletes the dependencies from the makefile’s dependency attribute.

dependency_file

Specifies the name of the file that contains the dependencies.

-f makefile

Specifies the name of the makefile to which to copy dependencies.
Rational Synergy Classic CLI Help, Release 7.1     182



depend command
-s|-show

Displays the makefile’s dependency attribute. Rational Synergy uses the default view 
method to display the attribute.

-w|-write

Saves the dependencies in dependency_file for the makefile. This option overwrites 
any existing dependencies for the makefile.

Examples
• Generate dependencies using your make tool, and then save the dependencies to the 

dependency attribute on the makefile_name.

Windows: 
mytool foo.c > depend_file
ccm depend -w depend_file -f makefile_name
del depend_file

UNIX: 
mytool foo.c > depend_file
ccm depend -w depend_file -f makefile_name
rm depend_file

• Delete the dependencies associated with the makefile_name.

ccm depend -d -f makefile_name

• Append a new set of dependencies from the depend_new_file to the 
makefile_name.

ccm depend -a depend_new_file -f makefile_name
Rational Synergy Classic CLI Help, Release 7.1     183



diff command

Synopsis
ccm diff [-vc|-versioncompare] file_spec1 file_spec2
ccm diff [-vc|-versioncompare]
         -p|-project project_spec1 project_spec2

Description and uses
The diff command shows the differences between files, directories, or projects.

Use this command to do two types of comparisons: a source compare (the default) and a 
version compare.

Compare
Shows the differences between source files, directories, or projects. If you perform the 
diff command on directories, a comparison of the lists of non-versioned members is 
done. For projects, the lists of versioned member files are compared.

Version Compare
Compares other attributes of the files, directories, and projects that are not considered to 
be the source; for example, the create_time, modify_time, name, and version.

Options and arguments
file_spec1

Specifies the name of the first file or directory that you want to compare.

file_spec2

Specifies the name of the second file or directory that you want to compare.

-g

Brings up the graphical compare tool or the appropriate dialog, depending on the type 
of objects you are comparing. You must enter the names and versions of the objects 
whose differences you want to view; otherwise, you will receive an error message.

If you start a session with the -nogui option, you will not be able to view differences 
between objects graphically.

-p|-project

Shows the differences between projects.
184     Rational Synergy Classic CLI Help, Release 7.1



diff command
project_spec1

Specifies the name of the first project that you want compared.

project_spec2

Specifies the name of the second project that you want compared.

-vc|-versioncompare

Perform a version compare instead of a source compare. (A source compare is the 
default.)

Examples
• Compare the current version of draw.c with the original.

ccm diff draw.c draw.c-1

• Compare the tools and my_tools directories.

ccm diff tools my_tools

• Compare the projects rel-test3.1 and rel-joe_3.1.

ccm diff -p rel-test3.1 rel-joe_3.1

• Do a version compare of draw.c-4 and draw.c-5.

ccm diff -vc draw.c-4 draw.c-5

• Do a version compare of projects rel-test3.1 and rel-joe_3.1.

ccm diff -vc -p rel-test3.1 rel-joe_3.1

Related topics

• merge command
Rational Synergy Classic CLI Help, Release 7.1     185



dir command

Synopsis
ccm dir [-m] [-w] [-s] [-f|-format "format_string"] [file_spec...]

Description and uses
The dir command operates only on Windows operating systems.

The dir command lists the contents of a directory in a work area. Enter this command 
without any options to view objects in the long format, which contains the status, owner, 
last modification time, type, instance, name, version, and task.

By default, the output consists of a list of objects and their associated projections in the file 
system.

The dir command displays two categories of files: objects under Rational Synergy control 
and files that exist in the file system only. To find out how to display these files, see the -w 
option and the -m option.

Options and arguments
-f|-format "format_string"

Specifies the format of the output. The format only applies to controlled files. The 
required string uses keywords and literal text, such as:

   %displayname %owner

A keyword can be built-in (%fullname, %displayname, %objectname) or the name of 
any existing attribute such as %modify_time or %status.

See Built-In keywords for a list of keywords.

When %path is specified in the format string, all objects are displayed with an absolute 
work area path. If the work area is not visible, the path is computed.

file_spec

Specifies the file(s) to be displayed.

-m

Shows files that are controlled and uncontrolled. Uncontrolled files are those that are 
in the work area, but not in the project.
186     Rational Synergy Classic CLI Help, Release 7.1



dir command
This option causes the following marks to display before the output, when appropriate:

• LC (local copy)

Denotes files that are in the project and in a copy-based work area. (All Windows 
client users work in a copy-based work area.)

• NS (not sync’d)

Denotes files that are in the project, but not in the work area. This occurs when files 
are created in the project, but are not sync’d out to the work area, or if the work area 
copy is deleted.

If most of the files in your work area are displayed with this mark, perform a reconcile 
operation. For information on the reconcile feature, see the reconcile command.

• UC (uncontrolled)

Denotes files that are in the work area, but not in the project. Note that to view 
uncontrolled, marked files, you must use the -m option with the -w option.

-s

Displays subdirectory members recursively. The command does not recurse into 
subprojects.

-w

Lists the file name and version only, in an unformatted column.

Examples
• List the files that are not controlled by Rational Synergy.

ccm dir -m 
(UC) working  bill Jan 11 18:09        csrc 1 cli.c-2 543 
(UC) working  bill Jan 11 18:09        csrc 1 input.c-1 432 
(UC) working  bill Jan 11 18:09        csrc 1 simple.c-2 543 
(UC) working  bill Jan 11 18:09        csrc 1 main.c-1 432 
(UC) drwx        0 Feb 02 11:11        images 
     released   bob Jan 11 18:11         dir 1 scripts-2 440
Rational Synergy Classic CLI Help, Release 7.1     187



• List the current directory in the long format. (Files preceded by LC are local copy files.)

ccm dir 
(LC)  integrate  paul  Dec 24  16:48  makefile    4  Makefile-1 
(LC)  integrate  paul  Dec 24  16:48      csrc    1  callback.c-1 
(LC)  integrate  paul  Dec 24  16:46      csrc    1  error.c-1 
(LC)  integrate  paul  Dec 24  16:46      csrc    1  gui.c-1 
(LC)  integrate  paul  Dec 24  16:46      csrc    1  info.c-1 
(LC)  integrate  paul  Dec 24  16:47      csrc    1  init.c-1 
(LC)    working  paul  Dec 24  17:17      csrc    2  main.c-3 
(LC)  integrate  paul  Dec 24  16:48      csrc    1  output.c-1 
(LC) integrate    paul  Dec 24 16:49     csrc   1  release.c-1

• In the current directory, list the file name and version for all objects.

ccm dir -w 
ext_incl-1 
incl-1 
src-1

• In the current directory, show all members, including subdirectories.

ccm dir /s

integrate ann Jun 19  2003      dir  J#1 include,2 J#5565
(LC) integrate pat Jan 26 15:41 makefile  J15 Makefile.pc,#7 J#6103

      released    ann Jan 16  2001      dir J#12 src,1 J#120

include:
(LC) integrate pat Jan 26 15:42 makefile J#1 make_include.pc,13 J#6103

src:
(LC) integrate joe Mar 27  2003 java J#1 Main.c,6 J#5339

• In the current directory, show the absolute paths for all objects.

ccm dir /f "%displayname %type %path"

VersionedObject.java,10 java C:\joe\ccm_wa\ccm_java\objectapi-
joe\objectapi\src\com\Rational\cm\objectapi\VersionedObject.java
188     Rational Synergy Classic CLI Help, Release 7.1



Rational Synergy Classic CLI Help, Release 7.1     189

edit command

edit command

Synopsis
ccm edit file_spec [file_spec...]

Description and uses
The edit command enables you to edit the specified source file.

Use this command to view a version of a file that is not currently a member of the directory 
or to invoke the type-based editor on the object. The default editor is used to edit the file.

Note When you edit a file (Windows), or edit your file in a 
copy-based work area (UNIX), the corresponding database 
object is not updated automatically with your changes. 
Reconcile your work area regularly when your are editing 
and saving a files.

Options and arguments
file_spec

Specifies the file that you want to edit.

Example
Edit version 8 of the log.c file. To edit an object, it must be writable by you.
ccm edit log.c-8

Caveats
On Windows, modifiable files can be edited only from within a project with a visible work 
area.

On UNIX, only files that are modifiable by the current user can be edited.

Related topics

• view command

• reconcile command 

• typedef command

• cli.text_editor

• cli.text_viewer



Rational Synergy Classic CLI Help, Release 7.1     190

expand command

Synopsis
ccm expand [-c] [-s suffix] makefile [makefile...]
ccm expand -a|-all [-c] [-s suffix]

Description and uses
The expand command converts a Rational Synergy Makefile to a stand-alone makefile.

Options and arguments
-a|-all

Expands all objects of type makefile in the current project.

-c

Controls the expanded makefile under Rational Synergy.

makefile

Specifies one or more makefiles to expand. You do not need to specify any makefiles 
if you are using the -a option.

-s suffix

Specifies the expanded makefile’s suffix. (The default suffix is .out.) If the %platform 
string is found in the suffix, expand replaces that string with the platform attribute 
from the project or makefile. The makefile platform attribute overrides the project 
platform attribute.

Example
• Generate a stand-alone makefile from a makefile named Makefile.

ccm expand Makefile -s

The default name for an expanded makefile is makefile_name.out.



export command

Synopsis
ccm export [-r|-recurse] [-t|-to pathname] [-q|-quiet]
           [-delimiter delimiter_value] 
           file_spec [file_spec...]
ccm export [-r|-recurse] [-t|-to pathname] [-q|-quiet]
           [-delimiter delimiter_value] 
           [-leave_wa_paths|-lwp]
           -p|-project project_spec [project_spec...]

Prerequisite
User ccm_root must be able to write to the export directory because the Rational Synergy 
engine process performs the export, and that process runs as user ccm_root.

Description and uses
The export command exports objects from the Rational Synergy database to the file 
system in the Rational Synergy import/export format.

Any user can execute this command.

Note The export directory must be visible to the engine 
host.

If you do not specify the -t option, the objects are exported 
to the current working directory.

If you specify the -p option, the project object and its root 
directory are exported.

If you specify the -r option and the object specified for 
export is a project or a directory, all of the objects used in 
the project or directory hierarchy are exported.

Options and arguments
-delimiter delimiter_value

Specifies the delimiter that separates the parts in an object’s four-part name. Use this 
to export to a database that uses a different delimiter than the one used in the current 
database. For example, to export from a 4.4 to a 4.2.1 UNIX database, use a colon for 
delimiter_value. You must use the -nid option with this option.

The default is "@."
Rational Synergy Classic CLI Help, Release 7.1     191



file_spec

Specifies the name of the file or directory to be exported.

-leave_wa_paths|-lwp

Preserves the current database’s work area path for the exported objects.

When the objects are imported into a new database, their work area paths are already 
set to the old database’s path.

-p|-project project_spec

Specifies the project being exported.

project_spec

Specifies the name of the project to be exported.

-q|-quiet

Suppresses messages output by the command.

-r|-recurse

Recursively exports all of the objects that are members of the directory or project 
hierarchy.

-t|-to pathname

Specifies the directory path to which the specified object will export. If you are 
exporting on a remote client (Windows), or local client (UNIX), you must use this 
option. The path you specify must be visible to the engine and must be writable by 
ccm_root.

Examples
Windows: 
From the work area in the c:\users\doug\cm_test_db\job-1\job directory, you can do 
any of the following:

• Export the src\foo.cobject to the /users/doug/export_dir directory.

ccm export -to \\users\doug\export_dir src\foo.c

• Recursively export the job-1 project to the /users/doug/export_dir directory.

ccm export -to \\users\doug\export_dir /recurse -p job-1
192     Rational Synergy Classic CLI Help, Release 7.1



export command
• Export the src directory object to the /users/doug/export_dir directory.

ccm export -to \\users\doug\export_dir src

• Export the src directory object, and every object under the directory, to the /users/
doug/export_dir directory.

ccm export -to \\users\doug\export_dir -recurse src

• Export the src\foo.c-1 object version to the /users/doug/export_dir directory.

ccm export -to \\users\doug\export_dir foo.c-1@csrc@1

UNIX: 
From the work area in the /users/doug/cm_test_db/job-1/job directory, you can do any 
of the following:

• Export the src/foo.c object to the /users/doug/export_dir directory.

ccm export -to /users/doug/export_dir src/foo.c

• Recursively export the job-1 project to the /users/doug/export_dir directory.

ccm export -to /users/doug/export_dir -recurse -p job-1

• Export the src directory object to the /users/doug/export_dir directory.

ccm export -to /users/doug/export_dir src

• Export the src directory object, and every object under the directory, to the /users/
doug/export_dir directory.

ccm export -to /users/doug/export_dir -recurse src

• Export the src/foo.c-1 object version to the /users/doug/export_dir directory.

ccm export -to /users/doug/export_dir foo.c-1:csrc:1

Note The default delimiter is the @ ("at") sign.

Caveat
You can run this command from a remote client (Windows) or local client (UNIX), but you 
can only export objects to paths visible to the engine process and writable by the ccm_root 
user.

Related topics

• import command
Rational Synergy Classic CLI Help, Release 7.1     193



finduse command

Synopsis
ccm finduse [finduse_scope_spec] file_spec

ccm finduse -task [finduse_scope_spec] task_id [task_id...]

ccm finduse -fol|/folder [finduse_scope_spec] folder_id [folder_id...]

ccm finduse -baseline [baseline_spec]

ccm finduse [-q|-query "query_expression"]
            [-n|-name object_name] [-o|-owner owner]
            [-s|-state state] [-t|-type type]
            [-v|-version version] [-i|-instance instance]
            [finduse_scope_spec]  [-p project_spec]
            

Description and uses
The finduse command searches the database for uses of a specified object and returns a 
list of reference specifications identifying where it is used.

Options and arguments
-apg|-all_project_groupings

Finds uses of the object in all project groupings.

-baseline baseline_spec

Displays the project groupings that use the specified baseline. The default scope is -
all_project_groupings, which shows all project groupings that use the specified 
baseline. A baseline is considered to be "used" in a project grouping If it is that project 
grouping's baseline. To view the baseline, use the project grouping's Properties 
dialog, or  the ccm project_grouping -show baseline command.

 

The various scopes on project groupings restrict the project groupings that are 
returned in the usual way.  These scopes are:

        -all_project_groupings 
    -working_project_groupings 
    -my_project_groupings 
    -prep_project_groupings 
    -shared_project_groupings
194     Rational Synergy Classic CLI Help, Release 7.1



finduse command
file_spec

Specifies the name of the file, directory, or project for which the uses are to be found.

finduse_scope_spec

Specifies the scope of the search. The valid finduse_scope_spec values are:

    [-working_proj] 
  [-shared_proj] 
  [-prep_proj] 
  [-released_proj] 
  [-all_proj] 
  [-personal_folder] 
  [-shared_folder] 
  [-prep_folder] 
  [-non_write_folder] 
  [-all_folder] 
  [-all_baseline|-all_baselines] 
  [-wpg|-working_project_groupings] 
  [-mpg|-my_project_groupings] 
  [-ppg|-prep_project_groupings] 
  [-spg|-shared_project_groupings] 
  [-apg|-all_project_groupings]

When a finduse_scope_spec is not specified, -all_proj is used.

-f|-folder folder_id

Finds all projects with the folder folder_id in their update properties.

-i|-instance instance

Finds all projects that include objects with the instance number instance.

-mpg|-my_project_groupings

Finds uses of the object in all private project groupings owned by the current user.

-n|-name object_name

Finds all projects that include objects with the name object_name.

-o|-owner owner

Finds all projects that include objects owned by owner.
Rational Synergy Classic CLI Help, Release 7.1     195



-ppg|-prep_project_groupings

Finds uses of the object in all prep project groupings.

-p project_spec

Finds all projects that include project_spec.

-q|-query "query_expression"

Specifies a query expression that yields a set of objects, and then displays the uses of 
each object in the set. The -q option cannot be used with the -p option.

-spg|-shared_project_groupings

Finds uses of the object in all shared project groupings.

-s|-state state

Finds all projects that include objects in the state state.

-t|-task task_id

Finds all projects that use the task task_id in their update properties, either directly or 
through a folder. Also finds the folders that contain the task task_id if a folder scope 
is specified using the finduse_scope_spec.

-t|-type type

Finds all projects that include objects of type type.

-v|-version version

Finds all projects that include objects with the version version.

-wpg|-working_project_groupings

Finds uses of the object in all working project groupings.
196     Rational Synergy Classic CLI Help, Release 7.1



finduse command
Examples
• Find all uses of the object version named display.c in projects.

ccm finduse -name display.c
display.c-1 integrate epresley csrc ico_proj 1
ico_proj/src/display.c-1@ico_proj-1
display.c-2 integrate epresley csrc ico_proj 1
ico_proj/src/display.c-2@ico_proj-int2
display.c-3 integrate epresley csrc ico_proj 1
Object not used in scope
display.c-4 integrate epresley csrc ico_proj 1
ico_proj/src/display.c-4@ico_proj-epresley

• Find all uses in projects of the version of draw.c that is being used in the current 
directory.

ccm finduse draw.c
draw.c-1 integrate epresley csrc gditest EAP#3 EAP#274

       gditest/draw.c-1@gditest-org
       gditest/draw.c-1@gditest-shared2.1
       gditest/draw.c-1@gditest-visible2.1
       gditest/draw.c-1@gditest-int2.1
       gditest/draw.c-1@gditest-org1

• Find all folders containing task 128.

ccm finduse -all_folders -task 128
Task EAP#128:  Correct color of icons
Folder EAP#3:  All Completed Tasks for Release 1.2

        Folder EAP#7:  bill's Completed Tasks for Release 1.2
        Folder EAP#8:  Integration Testing Tasks for Release 1.2

• Find all personal folders containing object draw.c-2:csrc:EAP#1.

ccm finduse -personal_folder draw.c-2:csrc:EAP#1
draw.c-2 integrate bill csrc draw_proj EAP#1 EAP#128

    Folder EAP#7:  bill's Completed Tasks for Release 1.2
        Folder EAP#9:  bill's Assigned or Completed Tasks for Release 1.2

• Find prep projects containing task 128.

ccm finduse -prep_proj -task 128
Task EAP#128:  Correct color of icons
draw_proj-int1.2
util_proj-int1.2

• Find all projects that are using folder 7.
Rational Synergy Classic CLI Help, Release 7.1     197



ccm finduse -folder 7
Folder EAP#7:  bill's Completed Tasks for Release 1.2
draw_proj-bill
util_proj-bill

 

198     Rational Synergy Classic CLI Help, Release 7.1



folder command
folder command

Synopsis

Compare Folders
ccm folder -comp|-compare folder_spec1
           -un|-union |
           -int|-intersection |
           -not|-not_in
           [-f|-format "format_string"] [-ns|-no_sort] [-u]
           folder_spec2

Copy Folder
ccm folder -cp|-copy folder_spec
           [-e|-existing existing_folder_spec [-append]] |
           [-new "new_folder_name"]
           [-y] [-q|-quiet]

Create Folder
ccm folder -cr|-create -n|-name "folder_name"
           [-us|-usable usable_by]
           [-w|-writable writable_by]
           [-qu|-query] [-q|-quiet]
           query_spec

Delete a Folder
ccm folder -delete [-y] folder_specs
           [-q|-quiet]

Find Uses of a Folder
ccm folder -fu|-find_use
           [-f|-format "format_string"] [-ns|-no_sort] [-u]
           folder_spec

List Folders
ccm folder -l|-list [scope]
           [-f|-format "format_string"] [-ns|-no_sort] [-u]

Modify Folders
ccm folder -m|-modify
           [-at|-add_task|-add_tasks task_specs] [-related]|
           [-rt|-remove_task|-remove_tasks task_specs] [-related]|
Rational Synergy Classic CLI Help, Release 7.1     199



           [-up|-update] |
           [-mode {man|manual | uq|use_query}] |
           ["query_expression"] |
           [-n|-name "name_string"] |
           [-us|-usable usable_by] |
           [-w|-writable writable_by]
           [-y] [-q|-quiet]
           folder_specs

Show Folder Information
ccm folder -sh|-show
           i|info|information [-v|-verbose]|
           obj|objs|objects |
           t|task|tasks [-v|-verbose]
           [-f|-format "format_string"] [-ns|-no_sort] [-u]
           folder_specs
ccm folder -sh|-show
           mode |
           n|na|name |
           q|qu|query |
           u|us|usable |
           w|wr|writable
           folder_specs

Description and uses
Use the folder command to perform the following task-based Rational Synergy 
operations:

• Compare two folders

• Copy a folder

• Create a folder

• Delete one or more folders

• Show folder

• Modify folders

• Find the uses of a folder

• List folders

Options and arguments
-at|-add_task|-add_tasks task_specs

Adds one or more tasks to the specified folder.
200     Rational Synergy Classic CLI Help, Release 7.1



folder command
You can use this option only with the -modify option, and the folder to which you are 
adding tasks must be writable by you. 

-append

Appends the contents of the source folder (folder_id1) to the contents of the 
destination folder (folder_id2).

You can use the -append option with the -copy and -existing options only. 

-comp|-compare folder_spec1 folder_spec2

Compares the contents of the specified folders. A selection set is populated with the 
tasks listed in the output.

Use the -f option to change the command’s output format. Use -u to suppress 
automatic numbering of the output and -ns to suppress sorting.

The default output format for folder -compare is:

Task %displayname: %task_synopsis

where:

%displayname is %name if DCM is not enabled. 
%displayname is <database_ID><DCM_delimiter><task_number> if DCM is 
enabled. 
%task_synopsis is a description of the task.

The differences shown are relative to folder_spec1. The types of comparisons you 
can perform are:

    — union (show the tasks that are in either of the folders) 
    — intersection (show the folders’ common tasks) 
    — not_in (show the tasks that are in folder_spec1 but not in folder_spec2)

If the command is successful, the return value is 0; otherwise, it is non-zero.

-cp|-copy

Copies all folder definitions from folder_spec to either a new folder (-new 
"new_folder_name") or an existing folder (-e|-existing existing_folder_spec). 
Additionally, you can use the -append option to append the contents of the source 
folder (folder_id1) to the contents of an existing destination folder (folder_id2).
Rational Synergy Classic CLI Help, Release 7.1     201



Use this option with -q (quiet mode) to suppress the command’s output, except the 
folder ID if a folder was created.

If the command is successful, the return value is 0; otherwise, it is non-zero.

-cr|-create

Enables you to create a folder with the specified properties.

Use this option with -q (quiet mode) to suppress all of the command’s output except 
the folder ID.

You must use this option with the -name option. 

If the command is successful, the return value is 0; otherwise, it is non-zero.

-delete

Deletes the specified folders. If you specify the -y option as well, Rational Synergy 
deletes the folders without displaying the confirmation message. (See the Caution for 
the -y option.)

The folder you are deleting must be writable by you.

Use this option with -q (quiet mode) to suppress the command’s output except a 
count of all folders deleted.

If the command is successful, the return value is 0; otherwise, it is non-zero.

-e|-existing existing_folder_spec

Specifies the existing folder to which you are copying tasks from folder_spec.

The copy operation sets the destination folder to add tasks manually.

You can use this option with the -copy option only, and the destination folder must be 
writable by you. Additionally, you can use the -append option with the -copy and -
202     Rational Synergy Classic CLI Help, Release 7.1



folder command
existing options to append the contents of the source folder (folder_id1) to the 
contents of the destination folder (folder_id2).

-f|-format "format_string"

Specifies the command’s output format. The default format depends on the other 
options you use with -format (that is, -finduse, -list, or -show) and those options’ 
keyword arguments. See the options’ descriptions for their default output formats.

The format can contain a combination of text and keywords. Keywords are replaced 
by specific information about each object as they are displayed. For example, the 
keyword %owner is replaced with sue if an object owned by user sue is displayed.

 

The name of any existing attribute can be used as a keyword. In addition, a number of 
built-in keywords are defined, such as %displayname and %task_number. See Built-
In keywords for a list.

-fu|-find_use

Finds where the specified folder is in use in the current database.

Use the -format option to change the command’s output format. Use -u to suppress 
automatic numbering of the output and -no_sort to suppress sorting.

The default output format for folder -finduse is:

%name %status %owner %version

where:

    — %name is the project name. 
    — %status is the project status. 
    — %owner is the owner of the project. 
    — %version is the project version.

folder_spec

Specifies the ID of the folder that you are listing, adding, removing, or changing. 
Folder specs can be separated by a comma or white space.

For this argument’s syntax, see Folder specification.
Rational Synergy Classic CLI Help, Release 7.1     203



You must use this option with the folder_spec option. 

-int|-intersection

Indicates that the compare results will show all tasks that are common to both of the 
specified folders.

You can use this option only with the -compare option.

-l|-list [scope]

Lists all folders, or the folders specified by scope.

Use the -format option to change the command’s output format. Use -u to suppress 
automatic numbering of the output, and -no_sort to suppress sorting.

The default output format for folder -list is:

Folder %displayname: %description

where:

    %displayname is %name if DCM is not enabled. 
    database_ID is <database_ID><DCM_delimiter><task_number> if DCM is 
enabled. 
    %description is the folder name.

The scope argument must have one of the following values:

— all_personal 
— all_build_mgrs 
— all_shared 
— all_non_writable 
— all

By default, all of your personal folders are listed.

If the command is successful, the return value is 0; otherwise, it is non-zero.

-mode {man|manual | uq|use_query}

Defines the folder’s contents either manually (manual) or using a query (use_query).
204     Rational Synergy Classic CLI Help, Release 7.1



folder command
You can use this option only with the -modify option.

Rational Synergy treats changes in mode from manual to query-based in the following 
ways.

• If you change a manual folder to a query-based folder and the folder was 
previously query-based, its last query is used.

• If you change a manual folder to a query-based folder and the folder was never 
query-based and there is a user-defined query (default_task_query), the user-
defined query becomes the query.

• If you change a manual folder to a query-based folder and the folder was never 
query-based and there is not a user-defined query (default_task_query) and you 
are working as the build manager, the query becomes All Completed Tasks.

• If you change a manual folder to a query-based folder and the folder was never 
query-based and there is not a user-defined query (default_task_query) and you 
are not working as the build manager, the query becomes All Tasks Assigned 
to your_user_name.

-m|-modify

Enables you to change a folder property by using any combination of the following sub 
options:

    -at|-add_task task_specs [-related] 
    -rt|-remove_task|-remove_tasks task_specs [-related] 
    -up|-update 
    -mode {man|manual | uq|use_query} 
    query_spec 
    -n|-name "name_string" 
    -us|-usable usable_by 
    -w|-writable writable_by 
    -q|-quiet 
    folder_specs

The -modify option accepts multiple sub options.

You can use this option to make incremental changes to the folder’s default-style or 
custom-style query. 

If folder A uses a default-style query of All completed tasks for release 2.1, 
and you perform a ccm folder -modify -release 2.2 command on it, the query 
will incrementally change to All completed tasks for release 2.2. 
Rational Synergy Classic CLI Help, Release 7.1     205



If folder A uses a custom-style query and you perform a ccm folder -modify 
query_spec command, the query is replaced. Additionally, if you do not use the -
custom option, but you use the -task_scope option, the folder’s query will change to 
default-style.

The folder on which you are changing the option must be writable by you. 

Use this option with -quiet to suppress the command’s output. Use the -y option to 
suppress the confirmation message.

If you use the -add_task option to add an excluded task to a folder, you will receive a 
confirmation message. Answer appropriately to continue.

If the command is successful, the return value is 0; otherwise, it is non-zero.

-n|-name "folder_name"

Renames the specified folder.

You can use this option only with the -create or -modify option, and the folder you 
are renaming must be writable by you. 

-new "new_folder_name"

Specifies the name of the new folder to which you are copying folder properties from 
folder_spec.

The copy operation sets up the destination folder, new_folder_name, to add tasks 
manually.

You can use this option only with the -cp option.

-not|-not_in

Indicates that the compare results will show all tasks that are contained in 
folder_spec1 that are not contained in folder_spec2.

You can use this option only with the -compare option.
206     Rational Synergy Classic CLI Help, Release 7.1



folder command
-ns|-no_sort

Specifies to not sort the command’s output.

-q|-quiet

Executes the command with a reduced number of output messages. When you create 
a folder, this option causes the output to contain only the folder ID (for example, 3).

-qu|-query

Makes a folder query-based.

You can use this option only with the -create option.

The query is defined according to the following conditions if you are using no 
query_spec:

• If there is a user-defined query (default_task_query), the user-defined query 
becomes the query.

• If there is not a user-defined query (default_task_query) and you are working as 
the build manager, the query becomes All Completed Tasks.

• If there is not a user-defined query (default_task_query) and you are not working 
as the build manager, the query becomes All Tasks Assigned to 
your_user_name.

query_spec

Changes the query that is used to add tasks to the specified folders.

The syntax for query_spec is:

    [-cus|-custom "query_expression"] 
    [-db|-dbid|-database_id database_id] 
    [-plat|-platform platform] 
    [-rel|-release release] 
    [-sub|-subsystem subsystem] 
    [-ts|-scope|-task_scope task_scope]

where task_scope is one of the following folders:

    user_defined 
    all_my_assigned_or_completed (default) 
    all_my_assigned 
    all_my_completed 
Rational Synergy Classic CLI Help, Release 7.1     207



    all_my_tasks 
    all_completed 
    all_tasks

Any user-created queries in the CLI are saved as custom queries (with no query 
clauses); the scope associated with the specified option is not saved.

If you do not specify a task scope, Rational Synergy uses the value 
all_my_assigned_or_completed.

query_expression is the same as the query_expression for the query command.

You can use this argument only with the -create or -modify option.

-related

Use -related with -add_tasks or -remove_tasks to relate all tasks that have a 
status of completed to the specified folder or folders.

-rt|-remove_task task_specs

Removes one or more tasks from the specified folder. See Task specification for the 
syntax of the task_specs argument.

You can use this option only with the -modify option, and the folder you are modifying 
must be writable by you. 

scope_spec

Changes the query that is used to list folders.

scope_spec is one of the following:

    all_personal | all_build_mgrs | all_shared | all_non_writable | all

-sh|-show

Shows the properties of the specified folders. When you use this option with the info, 
objs, or tasks keywords or their variants, a selection set is populated with the objects 
or tasks listed in the output.
208     Rational Synergy Classic CLI Help, Release 7.1



folder command
Use the -format option to change the command’s output format. Use -u to suppress 
automatic numbering of the output, and -no_sort to suppress sorting.

If you are using one of the following keywords, the -format option is allowed:

    i|info|information 
    obj|objs|objects 
    t|task|tasks

If you are using -show info, you can use the -verbose option to display all folders 
with all associated tasks and all objects that are affected by tasks. If you are using -
show tasks, you can use the -verbose option to display all tasks for each folder and 
all objects that are affected by tasks.

The default output format for folder -show information is:

    Folder %displayname: %description

where:

    %displayname is %name if DCM is not enabled. 
    %displayname is <database_ID><DCM_delimiter><task_number> if DCM is 
enabled. 
    %description is the name of the folder.

These lines are followed by additional information on some of the folder’s properties.

The default output format for folder -show objects is:

    %objectname %status %owner %task

where:

    %objectname is the object’s name-version:type:instance. 
    %status is the status of the object. 
    %owner is the owner of the object. 
    %task is the task associated with the object.

The default output format for folder -show tasks is:

  Task %displayname: %task_synopsis

where:
Rational Synergy Classic CLI Help, Release 7.1     209



    %displayname is %name if DCM is not enabled. 
    %displayname is <database_ID><DCM_delimiter><task_number> if DCM is 
enabled. 
    %task_synopsis is a description of the task.

You can also show folder properties using one of the following keywords if you are not 
using the -format option:

mode 
n|na|name 
q|qu|query 
u|us|usable 
w|wr|writable

If the command is successful, the return value is 0; otherwise, it is non-zero.

task_specs

Specifies the IDs of the tasks. For this argument’s syntax, see Task specification.

-u

Suppresses automatic numbering of this command’s output ("un-numbered").

-un|-union

Indicates that the compare results will show all tasks that are in either of the specified 
folders.

You can use this option only with the -compare option.

-up|-update

Updates the objects associated with the specified folder’s tasks.

You can use this option only with the -modify option.

-us|-usable usable_by

Makes the folder usable by Owner, Build_Manager, All, or None.

You can use this option only with the -create or -modify option, and the folder you 
are modifying must be writable by you.
210     Rational Synergy Classic CLI Help, Release 7.1



folder command
The default output format for folder -usable is:

    %owner

where:

    — %owner is the owner of the project.

-v|-verbose

If you are using -show info, you can use the -verbose option to display all folders 
with all associated tasks and all objects that are affected by tasks. If you are using -
show tasks, you can use the -verbose option to display all tasks for each folder and 
all objects that are affected by tasks.

-w|-writable writable_by

Makes the folder writable by Owner, Build_Manager, All, or None. If you attempt to 
set this option to None, Rational Synergy displays a confirmation message, since this 
action will make the folder read-only for all users. You can use the -y option to 
suppress the confirmation message.

You can use this option only with the -create or -modify option, and the folder you 
are modifying must be writable by you. 

The default output format for folder -writable is:

    %owner

where:

    — %owner is the owner of the project.

-y

Suppresses the confirmation message that would otherwise be displayed when you 
delete or modify a folder. You can use this option only with the -delete or -modify 
options.

Confirmation messages provide important safeguards against user error. Use the -y 
option with caution.
Rational Synergy Classic CLI Help, Release 7.1     211



Related topics

• folder Examples
212     Rational Synergy Classic CLI Help, Release 7.1



folder Examples
folder Examples
View examples for the following operations:

• Compare Folders

• Copy Folders

• Create a Folder

• Delete a Folder

• Find Uses of a Folder

• List Folders

• Modify Folders

• Rename a Folder

• Show Folder Information

Compare Folders
• Show the tasks that are in either folder 154 or folder 155.

ccm folder -comp 154 -un 155 
1) Task 12: System error when time zone changes 
2) Task 15: Correct spelling errors in output 
3) Task 19: Rewrite messaging module 
4) Task 26: Close box no longer active 
5) Task 31: Wrong window receives message 
6) Task 40: Auto-calculation gives incorrect result 
7) Task 53: Download of images occurs too slowly

• Show the tasks that folders 154 and 155 have in common.

ccm folder -comp 154 -int 155 
1) Task 15: Correct spelling errors in output 
2) Task 19: Rewrite messaging module 
3) Task 26: Close box no longer active 
4) Task 40: Auto-calculation gives incorrect result

• Show the tasks that are in folder 154 but not in folder 155.

ccm folder -comp 154 -not 155 
1) Task 12: System error when time zone changes 
2) Task 31: Wrong window receives message

• Compare two folders in the database. First, query for all folders.

ccm folder -list all 

Output similar to the following is displayed. 
Rational Synergy Classic CLI Help, Release 7.1     213



1) Folder 27: All completed tasks for release 2.0
2) Folder 32: All tested tasks for release 2.0
3) Folder 13: Bill’s tasks for release 2.0 

Then, show tasks in the All completed tasks for release 2.0 folder  
that are not in the All tested tasks for release 2.0 folder.

$ ccm folder -compare @1 -not_in @2
Task 304: Change splash screen for release 2.0
Task 306: Change copyright for release 2.0 

Copy Folders
• Copy folder 95 to a new folder named Tasks Completed for Release 3.4 on 

September 15, 1997.

ccm folder -copy 95 -new "Tasks Completed for Release 3.4 on September 
15, 1997" 
Folder '95: Tasks Completed for Release 3.4' copied to '158: Tasks 
Completed for Release 3.4 on September 15, 1997'

• Copy folder 95 to an existing folder, number 103.

ccm folder -cp 95 -existing 103 
Folder '95: Tasks Completed for Release 3.4' copied to '103:  Tested 
Tasks for Release 3.4"

• Copy folder All completed tasks for 2.1 to an existing folder, All completed 
tasks for 2.0, merging the two folders’ contents.

ccm folder -copy All completed tasks for 2.1 -existing All completed 
tasks for 2.0 -append

Create a Folder
• Create a new folder named Tested Tasks for Release 3.5 that is writable by its 

owner and usable by all, and suppress all output from the command except for the 
folder ID.

ccm folder -cr -n "Tested Tasks for Release 3.5" -w Owner -us All -q
159

• Create a new folder named My Tasks for Release 3.5 that uses a task_spec and 
a release value for a query_spec.

ccm folder -cr -name "My Tasks for Release 3.5" -ts all_my_tasks -rel 
3.5 
Created folder 160.
214     Rational Synergy Classic CLI Help, Release 7.1



folder Examples
Delete a Folder
• Delete folders 109,110, and 158.

ccm folder -delete 109-110,158 
Are you sure that you want to delete folder '109: Tasks Completed for 
Release 2.1 on May 1, 1996'? (Yes/All/No) [No] y 
Deleted folder '109: Tasks Completed for Release 2.1 on May 1, 1996'. 
Are you sure that you want to delete folder '110: Tasks Completed for 
Release 2.2 on July 1, 1996'? (Yes/All/No) [No] y 
Deleted folder '110: Tasks Completed for Release 2.2 on July 1, 1996'. 
Are you sure that you want to delete folder '158: Tasks Completed for 
Release 3.4 on September 15, 1997'? (Yes/All/No) [No] y 
Deleted folder '158: Tasks Completed for Release 3.4 on September 15, 
1997'.

Find Uses of a Folder
• Find where the folder named All Completed Tasks for Release 2.1 is used in the 

current database.

ccm folder -list all_non_writable -format "%displayname %description" 
All Non-Writable Folders 
1) 42 All Completed Tasks for Release 2.1 
2) 89 All Completed Tasks for Release 2.2

List Folders
• List all of the build manager’s folders in the current database.

ccm folder -list all_build_mgrs 
1) Folder 42: All Completed Tasks for Release 2.1 
2) Folder 95: Tasks Completed for Release 3.4

• List all of your personal folders.

ccm folder -list 
1) Folder 111: mary's Insulated Development Folder 
2) Folder 145: mary's Completed Tasks for Release 4.2 
3) Folder 146: mary's Assigned Tasks

• List all folder templates in the database.

ccm folder -list -template all

Modify Folders
• Add tasks 5-9 to folder 95.

ccm folder -modify -at 5-9 95 
Updating folder 95: Tested Tasks for Release 3.2 ...

    Added task 5 
   Added task 6 
Rational Synergy Classic CLI Help, Release 7.1     215



   Added task 7 
   Added task 8 
    Task 9 is already in the folder 
    Added 4 tasks.

• Remove tasks 5-9 from folder 95.

ccm folder -modify -rt 5-9 95 
Updating folder 95: Tested Tasks for Release 3.2 ... 

    Removed task 5 
    Removed task 6 
    Removed task 7 
    Removed task 8 
    Removed task 9 
   Removed 5 tasks.

• Add multiple  tasks (5, 12, 14) to folder 51.

ccm folder -modify -add_task 5,12,14 51

• Update the contents of folder 160.

ccm folder -m -up 160 
Updated folder '160: My Tasks for Release 3.5'.

• Change the mode of folder 111 so that it uses a query to add tasks.

ccm folder -modify -mode use_query 111 
Folder '111: mary’s Insulated Development Folder' has been changed to 
add tasks using a query.

• Change folder 111 so that it uses the all_my_tasks scope and release 3.5 to add 
tasks.

ccm folder -modify -ts all_my_tasks -rel 3.5 111 
The query for folder '111: mary's Insulated Development Folder' has 
been changed to: owner='mary' and release='3.5'

• Change the use and write permissions to use_permission and write_permission, 
respectively, for folder_number.

ccm folder -modify -usable use_permission -writable write_permission 
folder_number

read_permission and write_permission can have any of the following values:

• Owner
• Build_Manager
• All
• None

Caution Changing the use or write permission to None 
makes the folder unusable or read-only, respectively, by all 
users.
216     Rational Synergy Classic CLI Help, Release 7.1



folder Examples
Rename a Folder

• Change the name of folder_number.

ccm folder -modify -name "new_folder_name_string" folder_number

Note If the folder is controlled by a template, you will 
receive, and must respond to, a confirmation message 
when you change the folder’s name. You can suppress the 
message by adding the  -y option to the command.

Show Folder Information
• Show folder 160 information.

ccm folder -sh info 160 
Folder '160: My Tasks for Release 3.5' 
    Owner:        mary 
    Writable By:  Owner 
    Usable By:    Owner 
    Query Type:   All My Tasks 
    Query:        owner='john' and release='3.5'

• Show the tasks in folder 111.

ccm folder -show tasks 111 
1) Task 19: Rewrite messaging module 
2) Task 26: Close box no longer active 
3) Task 31: Wrong window receives message 
4) Task 40: Auto-calculation gives incorrect result 
5) Task 53: Download of images occurs too slowly

• Show the objects that are associated with folder 160.

ccm folder -sh objects 160 
1) UTIL.C-2:csrc:1    integrate  mary 19 
2) MSGS.C-3:csrc:1    integrate  mary 19 
3) MSGS.H-2:incl:1    integrate  mary 19 
4) DIALOG.C-8:csrc:1  integrate  mary 57 
5) DIALOG.H-13:incl:1 integrate  mary 57
Rational Synergy Classic CLI Help, Release 7.1     217



folder_template command

Synopses

Create a Folder Template
ccm ft|folder_temp|folder_template -c|-create
           [-desc|-description description]
           [-us|-usable usable_by] [-w|-writable writable_by]
           [-mode {man|manual | uq|use_query]
           [-task_scope|-ts task_scope]
           [-database_id|-dbid|-db dbid]
           [-must_be_local|-nomust_be_local]
           [-release|-rel release]
           [-platform|-plat platform]
           [-subsystem|-sub task_subsystem]
           [-custom “query_expression”]
           “folder_template_name”

Modify Folder Templates
ccm ft|folder_temp|folder_template -m|-modify
           [-desc|-description description]
           [-us|-usable usable_by] [-w|-writable writable_by]
           [-mode {man|manual | uq|use_query]
           [-task_scope|-ts task_scope]
           [-database_id|-dbid|-db dbid]
           [-must_be_local|-nomust_be_local]
           [-release|-rel release]
           [-platform|-plat platform]
           [-subsystem|-sub task_subsystem]
           [-custom “query_expression”]
           folder_template_specs [folder_template_specs]*

Delete Folder Templates
ccm ft|folder_temp|folder_template -d|-delete
           folder_template_specs [folder_template_specs]*

List Folder Templates
ccm ft|folder_temp|folder_template -l|-list

Set Controlling Database for Folder Templates
ccm ft|folder_temp|folder_template -cdb|-controlling_database
           (-local | -handover database_id | -accept database_id)
218     Rational Synergy Classic CLI Help, Release 7.1



folder_template command
Show Detailed Properties of Folder Templates
ccm ft|folder_temp|folder_template -sh|-show (i|info|information)
           folder_template_specs [folder_template_specs]*

Show Specific Property of Folder Templates
ccm ft|folder_temp|folder_template -sh|-show
           (description|mode|description|query|(u|us|usable)|(w|wr|writable))
           folder_template_specs [folder_template_specs]*

Description and uses
Folder templates provide a pattern used to create folders. The process rule can use folder 
templates as part of the basis for how a project is updated (reconfigured). 

Use the folder_temp command to perform the following task-based Rational Synergy 
operations:

• Create a folder template

• Modify folder templates

• Delete folder templates

• List folder templates

• Set controlling database for folder template(s)

• Show detailed properties of folder templates

• Show specific properties of folder templates
Rational Synergy Classic CLI Help, Release 7.1     219



Options and arguments
-accept

Specifies that the object is set to accept control from the specified database.

-cdb|-controlling_database

Specifies a controlling database for the specified folder templates.

-cr|-create

Enables you to create a folder template and give it the specified 
folder_template_name. If a folder template that has that name already exists, the 
command reports an error and the new folder template is not created.

If the command is successful, the return value is 0; otherwise, it is non-zero.

-delete

Deletes one or more specified folder templates. If a specified folder template is being 
used by a process rule or if it is a system-defined folder template, the command 
reports an error and the folder template is not deleted.

A folder template you are deleting must be writable by you.

If the command is successful, the return value is 0; otherwise, it is non-zero.

-dbid|-database_id dbid

Specifies the database ID that is associated with the folder template you are creating 
or modifying. If you do not specify a dbid, the database ID of the current database is 
used.

-desc|-description description

Specifies a string that is used after keyword expansion when creating folders from the 
folder template. If you do not specify a description, the folder template name is used 
as a default value.

You can give a folder template any description, using any character, except the pipe   
(|) character. The folder template description can include the following three keywords 
in any combination: %owner, %release, %database. A folder template’s description 
does not have to include keywords. When the description of a folder template does 
220     Rational Synergy Classic CLI Help, Release 7.1



folder_template command
not contain a keyword, all folders created from this folder template will have the same 
description. 

For example, if you create a folder template whose description is Completed Tasks 
for Release %release, the keyword %release is expanded to the release value of 
the projects that are using a process rule containing this folder template. The keyword 
%release is expanded when this folder template creates a folder. For instance, when 
a project with release 2.0 uses a process rule that contains a folder template whose 
description is Completed Tasks for Release %release, the folder created from this 
template and added to the project’s update properties will have a description of 
Completed Tasks for Release 2.0. 

The %owner keyword expands to the owner of the project whose update properties 
contain folders created from a folder template. For example, if a project owned by joe 
with a release of 3.1 uses a process rule that contains a folder template whose 
description is %owner’s Completed Tasks for Release %release, a folder whose 
description is joe’s Completed Tasks for Release 3.1 will be created from this 
folder template and added to the project’s update properties. 

The %database keyword expands to the DCM database identifier of the database in 
which the project that is using the folder that is being created was created. For 
example, if a project owned by joe with a release of 3.1 is in a DCM database called 
Bristol, and is using a process rule that contains a folder template whose description 
is %owner’s Completed Tasks for Release %release from Database 
%database, a folder whose description is joe’s Completed Tasks for Release 
3.1 from Database Bristol will be created from this folder template and added to 
the project’s update properties. 

folder_template_name

Specifies the name of the folder template or templates that you are creating or 
modifying. The folder template name is required and must be unique. Double quotes 
and single quotes are restricted in folder template names. For example, a  folder 
template name of "%owner’s tasks" is invalid.

folder_template_specs

Specifies the folder templates that you are creating or modifying.

Arguments of type folder_template_specs may be any of the following:

• A folder template name.
• A list of folder template names separated by comma.
• A four-part objectname.
Rational Synergy Classic CLI Help, Release 7.1     221



• A selection set reference (@n or @), or a series of such references separated by 
commas.

• A cvid form (@=n), or a series of such separated by commas.
• A filename that contains one or more folder template names, each name placed 

on a separate line.

-handover

Specifies that control of the object is handed over from the current database to the 
specified database.

-l|-list

Lists all currently-defined folder templates.

-local

Specifies that local control is set, which breaks any previous DCM replication from 
another database. 

-mode {man|manual | uq|use_query}

Defines the folder template’s contents either manually (manual) or using a query 
(use_query).

You can use this option only with the -create or -modify option.

Rational Synergy treats changes in mode from manual to query-based in the following 
ways.

• If you change a manual folder template to a query-based folder template and the 
folder template was previously query-based, its last query is used.

• If you change a manual folder template to a query-based folder template and the 
folder template was never query-based and there is a user-defined query 
(default_task_query), the user-defined query becomes the query.

• If you change a manual folder template to a query-based folder template and the 
folder template was never query-based and there is not a user-defined query 
(default_task_query) and you are working as the build manager, the query 
becomes All Completed Tasks.

• If you change a manual folder template to a query-based folder template and the 
folder template was never query-based and there is not a user-defined query 
(default_task_query) and you are not working as the build manager, the query 
becomes All Tasks Assigned to your_user_name.
222     Rational Synergy Classic CLI Help, Release 7.1



folder_template command
-m|-modify

Enables you to change a folder template property. The -modify option accepts 
multiple sub options. You can use this option to make incremental changes to the 
folder template’s default-style or custom-style query. 

The folder template on which you are changing the option must be writable by you. 

If the command is successful, the return value is 0; otherwise, it is non-zero.

-must_be_local

Specifies that a local folder must be used by the folder template for update properties 
of projects created locally. 

The -must_be_local and -nomust_be_local options cannot be used together. If 
neither is specified when a folder template is created, the default is  
-nomust_be_local.

-nomust_be_local

Specifies that a non-local folder can be used by the folder template for update 
properties of projects created locally. 

The -must_be_local and -nomust_be_local options cannot be used together. If 
neither is specified when a folder template is created, the default is  
-nomust_be_local.

-plat|-platform platform

Specifies the platform to which the change associated with the folder template applies. 
The platform choices are defined in the CCM_HOME\etc\om_hosts.cfg file (Windows), 
or $CCM_HOME/etc/om_hosts.cfg file (UNIX). If a folder template applies to multiple 
platforms, you should not set a platform value.

You can use this option only with the -create or -modify option.

-qu|-query

Makes a folder template query-based.
Rational Synergy Classic CLI Help, Release 7.1     223



You can use this option only with the -create option.

Any user-created queries in the CLI are saved as custom queries (with no query 
clauses); the scope associated with the specified option is not saved.

-r|-release release_value

Specifies a release value for the folder template. Possible release values include, but 
are not limited to, the defined active release values in this database.

-rt|-remove_task task_specs

Removes one or more tasks from the specified folder. See Task specification for the 
syntax of the task_specs argument.

You can use this option only with the -modify option, and the folder you are modifying 
must be writable by you. 

scope_spec

Changes the query that is used to list folders.

scope_spec is one of the following:

    all_personal | all_build_mgrs | all_shared | all_non_writable | all

-sh|-show

Shows the properties of the specified folder templates. When you use this option with 
the info keyword, a selection set is populated with the objects or tasks listed in the 
output.

The default output format for folder_template -show information is:

    Folder_Template %displayname: %description

where:

    %displayname is %name if DCM is not enabled. 
    %displayname is <database_ID><DCM_delimiter><task_number> if DCM is 
enabled. 
    %description is the name of the folder.

These lines are followed by additional information on some of the folder’s properties.
224     Rational Synergy Classic CLI Help, Release 7.1



folder_template command
The default output format for folder_template -show objects is:

    %objectname %status %owner %task

where:

    %objectname is the object’s name-version:type:instance. 
    %status is the status of the object. 
    %owner is the owner of the object. 
    %task is the task associated with the object.

If the command is successful, the return value is 0; otherwise, it is non-zero.

-sub|-subsystem task_subsystem

Specifies the subsystem to which the task belongs (for example, Any, GUI code, CLI 
code, or documentation). If the subsystem specification contains spaces, you must 
enclose it in quotes.

You can use this option only with the -create or -modify option.

-task_scope|-ts task_scope

Specifies the task scope, where where task_scope is one of the following folders:

    all_owners_assigned_or_completed (default) 
    all_owners_assigned 
    all_owners_completed 
    all_owners_tasks 
    all_completed 
    all_tasks

-us|-usable usable_by

Makes the folder template usable by Owner, Build_Manager, All, or None.

You can use this option only with the -create, -modify, or -controlling_database 
options, and the folder template must be writable by you.

The default output format for folder_template -usable is:

    %owner

where   %owner is the owner of the project.
Rational Synergy Classic CLI Help, Release 7.1     225



-w|-writable writable_by

Makes the folder writable by Owner, Build_Manager, All, or None. If you attempt to 
set this option to None, Rational Synergy displays a confirmation message, because 
this action will make the folder template read-only for all users.

You can use this option only with the -create or -modify option, and the folder 
template you are modifying must be writable by you. 

The default output format for folder -writable is:

    %owner

where %owner is the owner of the project.

Examples
• View all personal folder templates.

ccm folder_template -list -template all_personal 

• Create a folder template whose description is "%owner’s Completed Tasks for 
Release %release from Database X", set the folder template to use a query, and 
enter a folder query. You do not need to set who can write and use the folder template 
because the default setting is owner.

ccm folder_template -create -description "%owner’s Completed Tasks for 
Release %release from Database X" -task_scope all_owners_completed  
-release "%release" -database_id X "Tasks completed by %owner for 
Release %release from Database X"

• Hand over control of a locally-controlled folder template to a database whose ID is A1.

ccm folder_template -controlling_database -handover A1 
folder_template_spec

• In a DCM database, change folder template 99 so that it is not database-specific.

ccm folder_template -modify -desc "Completed Tasks for Release 
%release" -database_id Any T99

• Modify a folder template with a name of T99 to use a custom query to gather tasks that 
were completed before April 29, 2006. 

ccm folder_template -modify -custom "(status=’completed’) and 
(completion_date<time(’4/29/06’)) T99

• Do the following to define a default query that a folder template will use to populate its 
folders with tasks:
226     Rational Synergy Classic CLI Help, Release 7.1



folder_template command
1. Set the scope. 

2. Set the release. 

Set this attribute for parallel development and folder template management reasons. 

3. Set the subsystem, if necessary.

4. Set the platform, if necessary.

If a folder applies to multiple platforms, you do not need to set the platform value.

5. Set the database, if it is initialized to use DCM.

ccm folder_template -create -desc name -task_scope scope -release 
%release -usable usable_by -writable writable_by

For example, create a new folder template. Folders created from this template will 
collect all completed tasks for the current release, and will be writable and usable by 
build managers.

ccm folder_template -create -desc "All Completed Tasks for Release 
%release" -task_scope all_completed -release "%" -usable Build_Manager 
-writable Build_Manager

Related topics

• folder command
Rational Synergy Classic CLI Help, Release 7.1     227



fs_check command

Synopsis
ccm fs_check [-d|-dir directory_path] [-f|-fix] [object_spec...]
             [-v|-verbose][-t|-type type] [-e|-empty_skip] [-u|-unused_skip]
             [-nd|-noduplicates] [-w|-windows]
             [-n|-null_byte][-z|-zero_counts] 

Description and uses
Use the ccm fs_check command to check the consistency of a Rational Synergy 
database’s file systems. By default, the ccm fs_check command checks that:

• Every file in the cache area corresponds to an existing object version.

• Every file in the archive area corresponds to one or more static object versions.

• Every entry in an archive file corresponds to one static object version.

• The source for a project or directory is empty.

Checking all the files in the cache and archive areas takes time and memory resources, 
and may be suppressed using the -u|-unused option.

To ensure consistency, execute ccm fs_check to check your entire database. This 
command can be used regularly to reduce the disk space taken up by cache files. 
However, as the check can take a long time on large databases, you can perform a 
quicker check by checking only specific types of objects. You can use the -t option to 
check only objects of the specified type, or you can check a list of objects using 
object_specs (for example, using query results). You cannot use both the -t option and a 
list of objects.  In order to examine the results, you should direct the output to a file.

If unexpected or extra files or archive entries are found, they are reported individually and 
summarized at the end. However, such cases are not counted as errors and do not cause  
ccm fs_check to fail with a non-zero exit status. The -fix option to ccm fs_check  does 
not remove these extra entries; doing so might lead to data loss in cases where you have 
created such files manually for your own purposes, or where you have restored a file 
system and metadata backup taken at slightly different times. Contact Rational Technical 
Support for assistance in removing unwanted extra cache and archive entries.

All users can perform this operation, however, you must be in the ccm_admin role to 
perform the -fix option.

Options and arguments
-d|-dir directory_path

Specifies the directory into which inconsistent archive entries are written. By default, 
these files are written to database_path/st_root/tmp/check.
Rational Synergy Classic CLI Help, Release 7.1     228



fs_check command
-e|-empty_skip

Suppresses warnings about non-empty sources on projects and directories.

-f|-fix

Fixes some simple errors, including the following:

• If you unpack a database from a pack file created on UNIX, it is likely that cache 
files are in UNIX format. If this newline style is the only difference between the 
cache and archive, the -f|-fix flag causes the cache file to be deleted.

• If the cache file is zero length, but the archived content is not, the -f|-fix flag 
causes the cache file to be deleted.

• If the cache file has the wrong modify time, but is equal in content to the archive, 
use the -f|-fix option to update the modify time to be equal to the 
source_modify_time attribute.

-nd|-noduplicates

Specifies to not check for duplicate archive entries.Use this option to reduce the 
memory resources used when checking very large databases that might otherwise fail 
due to lack of memory. Since it reduces the strength of archive checking, it should only 
be used when necessary.

-n|-null_byte

Checks the source attribute for null (0x00) bytes. Generates a warning message when 
objects of type ascii and subtypes of ascii contain null bytes.

object_spec

Provides a list of objects to check. You can use query results for this argument.

You cannot use this argument with the -t option.

-t|-type type

Specifies the type of objects to check.

You cannot use this option with object_spec.

-u|-unused_skip

Suppresses the check that all cache and archive files and entries are used.
Rational Synergy Classic CLI Help, Release 7.1     229



-v|-verbose

Generates more detailed information about each error. The errors report the following:

• Objects with no source attributes, excluding problems and tasks. These objects 
have no cache or archive entries, and are skipped.

• Files still archived by the old pre-4.1 archivers (SCCS, compress, and RCS, not 
ccm_rcs). This means that you must perform archive conversion.

• Objects with no cache files. Such objects were probably affected by an earlier 
execution of ccm clean_cache.

• Objects with no source_modify_time attributes. This is a minor error. Such 
objects have not been upgraded correctly to current database standards. You can 
create the source_modify_time attribute, of type time, and set it to the correct 
time (the time when the source file was last edited, before it was checked in). This 
should be the modify time on the cache file.

• Object cache files with times earlier than their source_modify_times. This error 
is not serious, and might have been caused by the failure of a call to set the cache 
file time. Fix this by deleting the cache file after you have ensured that the archive 
entry is correct.

-w|-windows

Suppresses a warning message given when files differ only in carriage return 
characters.

-z|-zero_counts

In the summary at the end, zero counts (reporting conditions not seen) are normally 
suppressed. If you use the -z option, all counts are printed, including those with zero 
values. This option is useful when the output of fs_check is being analyzed by 
another program. It also allows you to detect when new checks have been added to 
the command.

Note This option re-uses the -z option that previously 
meant skip the empty file check. If you previously used this 
option in your scripts, you must change your scripts. 

Example
Check the file system consistency of the project1 database and provide detailed output 
information.
Windows: 
ccm fs_check -d c:\data\ccmdb\project1 -v
230     Rational Synergy Classic CLI Help, Release 7.1



fs_check command
UNIX: 
ccm fs_check -d /vol/hydra1/ccmdb/project1 -v

Related topics

• lmgr_status command
Rational Synergy Classic CLI Help, Release 7.1     231



groups command

Synopsis
ccm groups    [-a|-assign] object_spec
              [-a|-assign] [-v|-value groupname] object_spec
              [-l|-list]
              [-c|-create] group_name
              [-e|-edit] group_name

Description and uses
A Rational Synergy database can contain many different collections of objects. It may not 
always be appropriate to allow all users with the applicable role to view, check out, and 
modify all objects. Group security allows restriction of check out and modify permissions to 
a specified group of users. In addition, read security, which limits visibility of objects to 
designated groups, can be specified. Use the groups command to implement and define 
security for objects.

If you are working as the group manager, group security allows you to:

• define a named group of users

• define and modify the users that are members of that named group

• restrict check out, read, and modify access of an object to specified named groups by 
assigning one or more groups to it.

A user working in a role that is allowed to create objects, such as developer, writer, 
component_developer or build_mgr, can restrict access of an object to specified groups if 
that object is the only version of that object and the user can modify that object.

Read security is implemented by providing access control to an object’s source attribute. 
Users can query for objects and see other attributes regardless of any read restrictions. 
Read security applies to source objects which can be versioned, and does not apply to 
directories and projects.

Note  If you apply read security to an object that is currently 
in users’ work areas, the files will still be readable by the 
users.

Three different levels of read access security can be defined:

• An object that has no read access restrictions to its source can be accessed by any 
user.

• An object that has one or more groups defined for read access will only allow access 
to the source if the user is a member of at least one of those groups. All other users 
will be denied access to the source contents of that object.
232     Rational Synergy Classic CLI Help, Release 7.1



groups command
• An object with the highest level of security (no access to the source) can’t be viewed, 
checked out, or modified, but other attributes can be viewed. However, users working 
in the ccm_admin role can always view the source contents of files. 

Any object that is checked out inherits the same group security restrictions as its 
predecessor, including read security restrictions.

The following examples illustrate how security is applied and used for an object:

1. When no groups exist, or no groups are assigned to an object, there are no 
restrictions, meaning everyone can view, check out, and modify source files.

2. When one or more groups are created, and one group is assigned to that object, only 
users in the specified group can view, check out. and modify files. Users not in the 
specified group can only view the source objects. In other words, check out and 
modify security is implemented, but read security does not yet exist.

3. When one or more groups are created, and one group is given read security access 
(the ability to view source files), then all other groups do not have read access to the 
files. So once you start using the read security option, access to source contents is 
denied by default. 

Note that read security can only be used with copy-based work areas. For additional 
information about setting up databases for read security, see the appropriate Rational 
Synergy Administration Guide. 

If you have a directory in the public state that uses group security and the user is not a 
member of any of the directory's groups, the user is still allowed to create new objects, 
add them to, or unuse them from the directory. For best results, do not use public 
directories because users can easily overwrite each others' changes.

For detailed information about using group security with DCM, see the Rational Synergy 
Distributed book 

Options and arguments
-a|-assign object_spec:readsource

Assigns you to assign security for a specified object. Uses the default text editor to 
add groups. If the group_name contains spaces, quotes must be used.  If :readsource 
is used, that object has read security (the source file cannot be viewed).

-c|-create group_name

Creates a group name. Uses the default text editor to define the group membership.

-e|-edit group_name

Edits an the user membership of an existing named group.
Rational Synergy Classic CLI Help, Release 7.1     233



groupname

Specifies the group name, with one or more items separated by spaces, tabs, and/or 
commas. If groupname:readsource is specified, users in the specified named group 
are granted read access to the source contents.

-l|-list

Lists all the defined groups.

-v|-value groupname

Shows the groups available to the specified object.

Example
• List all defined groups.

ccm groups -l 

• Create a group named docs.

ccm groups -c docs 

• Show the groups available to an object named makefile.pc-1:makefile:tut63#4.

ccm groups -value makefile.pc-1:makefile:tut63#4 
qa_team 
design_team
234     Rational Synergy Classic CLI Help, Release 7.1



Rational Synergy Classic CLI Help, Release 7.1     235

help command

help command

Synopsis
ccm help [argument]

Description and uses
Use the help command to obtain online help. Note the following ways that you can 
receive general information about help:

• Without an argument, the ccm help command displays a list of Rational Synergy 
commands.

• Entering ccm alias displays Rational Synergy command aliases.

Online help is invoked in the following ways.

• Windows users

Requesting help from the command line in the form of ccm help command causes 
Rational Synergy to invoke the default browser, and then display help for the 
command requested.

• UNIX users (running a GUI process; the terminal window from which you issued the 
command has its DISPLAY environment variable set correctly)

Requesting help from the command line in the form of ccm help command causes 
Rational Synergy to invoke the default browser, and then display help for the 
command requested.

• UNIX users (not running a GUI process, or running a GUI process but with the 
DISPLAY environment variable not set in the terminal window from which you issued 
the command)

Requesting help from the command line in the form of ccm help command causes 
Rational Synergy to display an ASCII text translation of the HTML help file.

Options and arguments
argument

Specifies the name of the command for which you want help.

Example
• Request help on the type command.

ccm help type



history command

Synopsis
ccm hist|history [-f|-format "format_string"]
                 file_spec [file_spec...]
ccm hist|history [-f|-format "format_string"]
                 -p|-project project_spec [project_spec...]

Description and uses
Use the history command to show the version history of an object. With the -g option, 
the version history is displayed graphically; otherwise, it is displayed in the format of a log 
report.

Options and arguments
-f|-format "format_string"

Specifies the format of the output. The required string uses keywords and literal text, 
such as:

    %displayname %owner

A keyword can be built-in (%fullname, %displayname, %objectname) or the name of 
any existing attribute such as %modify_time or %status.

See Built-In keywords for a list of keywords.

file_spec

Specifies the name of the file or directory for which the history is being shown.

-g

Brings up the appropriate dialog. You must specify the file_spec or project_spec 
for the object whose history you want to view, otherwise you will receive an error 
message.

-p|-project project_spec

Shows the history of a project.
236     Rational Synergy Classic CLI Help, Release 7.1



history command
Examples
• Examine the history of main.c from within the parent project’s work area.

ccm history main.c 
Object:  main.c-1 (csrc:2) 
Owner:   bob 
State:   integrate 
Created: Tue Jun 4 13:04:23 1999 
Task:    4 
Comment: 
Predecessors: 
Successors: 
 
   main.c-2:csrc:2 
************************************************************** 
Object:  main.c-2 (csrc:2) 
Owner:   john 
State:   integrate 
Created: Mon Jun 24 18:02:22 1999 
Task:    7 
Comment: 
Predecessors: 
      main.c-1:csrc:2 
Successors: 
      main.c-3:csrc:2 
************************************************************** 
Object:  main.c-3 (csrc:2) 
Owner:   bob 
State:   working 
Created: Mon Aug 12 18:03:31 1999 
Task:    12 
Comment: 
Predecessors: 
      main.c-2:csrc:2 
Successors: 
**************************************************************

Related topics

• attribute command

• properties command

• relate command

• unrelate command
Rational Synergy Classic CLI Help, Release 7.1     237



import command

Synopsis
ccm import -f|-from import_dir_path [-q|-quiet] [-a|-all]
           [-image] [-delimiter delimiter_value] 
ccm import {[-f|-from import_dir_path]
           [-n|-name name]
           [-t|-type type]
           [-v|-version version]
           [-i|-instance instance]}
           [-image] [-delimiter delimiter_value]
           [-q|-quiet]

Prerequisite
User ccm_root must be able to read from the import directory because the Rational 
Synergy engine process performs the import, and that process runs as user ccm_root.

Description and uses
The import command imports object versions that are in the Rational Synergy import/
export format from the file system into the Rational Synergy database. On Windows, the 
import directory must be visible to the engine host.

Additionally, you can run this command from a remote client. To do so, use the -from 
option and be sure that the path you specify is visible to the engine host.

When you invoke this command without any arguments or with the -all option, all of the 
exported objects in the directory are imported.

Note This command will overwrite existing objects and 
tasks in the database without warning.

You must be in the ccm_admin role to execute this command.

Options and arguments
-a|-all

Imports every object found in the directory.

-delimiter delimiter_value

Specifies the delimiter that separates the parts in an object’s four-part name. Use this 
to import from a database that uses a different delimiter than the one used in the 
current database. For example, to import from a 4.2.1 UNIX to a 4.4 database, use a 
colon for delimiter_value.

The default is "@".
Rational Synergy Classic CLI Help, Release 7.1     238



import command
-f|-from import_dir_path

Specifies the directory path from which to import. The path you specify must be visible 
to the engine.

-image

Replaces each object’s properties in the database with the properties in the import 
directory: new properties are added, changed properties are replaced, and deleted 
properties are removed from the database.

-i|-instance instance

Imports every object with an instance of instance in the directory.

-n|-name name

Imports every object with the name name in the directory.

-q|-quiet

Suppresses some messages output by the command, including warnings about 
missing relation objects.

-t|-type type]

Imports every object of the type type in the directory.

-skip_model

Disables any model handling of imported objects, including any post-handling 
conversion of objects’ data formats to valid formats for this database.

Use this option with care.

-v|-version version]

Imports every object with the version version in the directory.
Rational Synergy Classic CLI Help, Release 7.1     239



Examples
Windows:

• Import foo.c from the /users/patty/export_dir directory.

ccm import -from /users/patty/export_dir -n foo.c

• Import foo.c from the \\fileserver1\export_dir\demo directory on the 
fileserver1 machine. The machine must be visible to the engine process.

ccm import -from \\fileserver1\export_dir\demo -n foo.c

UNIX:

• Import foo.c from the /users/patty/export_dir directory.

ccm import -from /users/patty/export_dir -n foo.c

Related topics

• export command
240     Rational Synergy Classic CLI Help, Release 7.1



Rational Synergy Classic CLI Help, Release 7.1     241

license command

license command

Synopsis
ccm license [-i|-info] [-t|-timeout minutes]

Description and uses
Use the license command to display license information, and to set the timeout value.

Options and arguments
-i|-info

Displays the current license and the license timeout. This is the default.

-t|-timeout minutes

Sets the license timeout to minutes.

This option does not apply to sessions with per-user licenses.

Examples
• Set the license timeout to 60 minutes.

ccm license -t 60

• Show whether the current user has a license, or what the license timeout period is.

ccm license -i



242     Rational Synergy Classic CLI Help, Release 7.1

lmgr_status command

Synopsis
ccm lmgr_status

Description and uses
The ccm lmgr_status command displays SYNERGY per-user licenses only.

Any user can run this command.

Note The command displays "--" where applicable (no 
licenses).

Options and arguments
None.

Example
ccm lmgr_status

Related topics

• message command

• monitor command

• ps command



ln command
ln command

Synopsis
ccm ln [-s] [-c "comment_string"] [-ce|-commentedit] -cf|-commentfile
       [-t|-task <task_number>]file_path] path_name file_spec

Description and uses
The ln command operates only on UNIX operating systems.

The ln command creates a controlled symbolic link from file_spec to path_name.

Note When you create a new link in a non-writable 
directory, a new directory version is checked out 
automatically.

If you are in a shared project and your current directory is 
non-writable, the directory is checked out and associated 
automatically with the default (or specified) task and is 
checked in to the integrate state. You can disable this 
feature by setting shared_project_directory_checkin to 
FALSE in your initialization file. (See 
shared_project_directory_checkin.)

Options and arguments
-c "comment_string"

Specifies a comment entered in "comment_string".

-ce|-commentedit

Brings up an editor for comment entry.

-cf|-commentfile file_path

Specifies where (file_path) to read the comments for the object.

file_spec

Specifies the name of the object from which to create the symbolic link.

path_name

Specifies the path to which the symbolic link will point.
Rational Synergy Classic CLI Help, Release 7.1     243



-s

Provides UNIX-style compatibility; otherwise, the option is ignored.

-t|-task <task_number>

Associates the newly created symbolic link with the specified task number.

Example
• Creates  symbolic link called sort.c to the sort.c object in the ico_2-1 project.

ccm ln -s \

/jane/ccm_jane_Aug10/ico_2-1/ico_2/utils/sort.c sort.c
Member sort.c-1 added to project ico_2-1
ccm ln -t 44 /users/kg/ccm_wa/keng421/gdidemo-unix/gdidemo/init.c /users/
gke
Member init.c added to project gdidemo-unix
Associated object version with task 44: init.c-1:symlink:1
Associated object version with task 44: subdirectory-2:dir:1

Related topics

• work_area command
244     Rational Synergy Classic CLI Help, Release 7.1



ls command
ls command

Synopsis
ccm ls [-l] [-m] [-R] [-f|-format "format_string"] [file_spec...]

Description and uses
The ln command operates only on UNIX operating systems.

The ls command lists the contents of a directory object version in a work area. By default, 
the output consists of a list of objects and their associated projections in the file system.

The ls command displays two categories of files: objects under Rational Synergy control 
and files that exist in the file system only. To find out how to display these files, see the -l 
option and the -m option.

Options and arguments
-f|-format "format_string"

Specifies the format of the output. The format only applies to controlled files. The 
required string uses keywords and literal text, such as:

    %displayname %owner

A keyword can be built-in (%fullname, %displayname, %objectname) or the name of 
any existing attribute such as %modify_time or %status.

See Built-In keywords for a list of keywords.

When %path is specified in the format string, all objects are displayed with an absolute 
work area path. If the work area is not visible, the path is computed.

file_spec

Specifies the file(s) to be displayed.

-l

Lists the information in the long format, which contains the status, owner, last 
modification time, type, instance, name, and version.

If the object is more than six months old, the year is shown instead of the time.
Rational Synergy Classic CLI Help, Release 7.1     245



This option causes the following marks to display before the output, when appropriate:

• LC (local copy)

Denotes files that are in the project, but have a local copy rather than a symbolic 
link in the work area. 

If files are displayed with this mark and your work area is link-based, you should 
perform a reconcile operation. For information on the reconcile feature, see the 
reconcile command.

• NS (not sync’d)

Denotes files that are in the project, but not in the work area. This situation occurs 
when you add files to the project, but your work area is not visible, or when a file’s 
link or local copy is deleted.

If most of the files in your work area are displayed with this mark, you should 
perform a reconcile operation. For information on the reconcile feature, see the 
reconcile command.

• UC (uncontrolled)

Denotes files that are in the work area, but not in the project. To view uncontrolled 
files marked with UC, you must use the -m option with the -l option.

To find out advanced information about work areas, read Work area.

-m

Shows files that are controlled and uncontrolled. Uncontrolled files are those that are 
in the work area, but not in the project. To view uncontrolled, marked files, you must 
use the -m option with the -l option.

-R

Displays subdirectory members recursively. The command does not recurse into 
subprojects.

Example
List the current directory in the long format.

ccm ls -l
working linda Nov 18 11:56 csrc 1 alias.c-4.5 
working linda Nov 18 11:56 csrc 1 diff.c-4.5 
working linda Nov 18 11:56 csrc 1 move.c-4.5 
working linda Nov 18 11:57 csrc  1 start.c-4.5
246     Rational Synergy Classic CLI Help, Release 7.1



merge command

Synopsis
ccm merge [[-create_task] | [-t|-task task_number]]
          [-c|-comment "string"]
          [-ce|-commentedit] [-cf|-commentfile file_path]
          file_spec1 file_spec2

Description and uses
When you use the merge command to merge source files or directories, the merge tool 
compares the versions you selected, then compares each version’s differences to the 
closest common ancestor. Rational Synergy creates a new, merged, controlled version 
automatically when you exit your merge tool.

The merge operation works with both static and modifiable, non-static objects. This 
feature allows users to merge parallel versions, even when parallel check-in is prevented, 
in order to use the merge tool. In previous releases, the parallel check-in would not be 
allowed, so the merge tool could not be invoked.

If you request Rational Synergy to create a new task automatically at the merge, Rational 
Synergy obtains the task’s release value from the project in which file_spec1 resides.

File Merge
Each type of object for which you can merge source has default merge tools predefined by 
Rational Synergy for both the CLI and the GUI. 

The automerge tool creates a new, controlled version of your file. If the merge is 
successful, the merge results are written to the new file. 

An area "in conflict" occurs when both versions have changes in the same place relative to 
the predecessor. If your merged file contains any conflicts, a warning is issued, the tool 
marks the conflicts so you can find them quickly and easily, then automerge writes the 
merge results to the new file.

The following example shows how the temporary file is marked:

<<<<<<<file1 (file1 changes recommended) 
unique lines in file1 
======= (common lines) 
unique lines in file2 
>>>>>>>file2 (file2 changes recommended)

Directory Merge
From the command line, the merge tool automatically includes all members from both 
directories in a new, controlled, merged directory. If one of the objects to be merged is a 
Rational Synergy Classic CLI Help, Release 7.1     247



member of the current project, Rational Synergy uses the new merged directory in the 
project. This applies to both root directories and subdirectories.

Options and arguments
-c|-comment "string"

Specifies the comment string.

-ce|-commentedit

Brings up the default editor.

-cf|-commentfile file_path

Uses the comments from the specified file. If you specify both a comment string and 
comment file, the comments are merged; the comment string will follow the comments 
from the file.

-create_task

Causes a task to be created automatically when Rational Synergy creates the new, 
merged object version, and associates the new object version with that task.

The task is assigned to the user who performed the merge. The task’s release value is 
set to the release value of the project in which the new object version is created. If the 
object version is created outside of a project, the release value is not set.

file_spec1

Specifies the name of the first file or directory to be merged.

file_spec2

Specifies the name of the second file or directory to be merged.

To bring up the Merge dialog, you must specify the two files and their versions to be 
merged, otherwise you will receive an error message. If the objects to be merged are 
directories, the Directory Merge dialog is displayed.

-task task_number

Associates the newly created, merged object with the specified task.
248     Rational Synergy Classic CLI Help, Release 7.1



merge command
If you have set the current (default) task and do not specify a different task in this field, 
the merged object is associated with the current task automatically.

Example
• Merge two files: bufcolor.c-4 and bufcolor.c-2.1.2.

ccm merge bufcolor.c-4 bufcolor.c-2.1.2 
The current task is set to: 
ccmint24#22: Merge 'bufcolor.c-4' (associated with task '21') ... 
Task 'ccmint24#22: Merge 'bufcolor.c-4' (associated with task '21') ...' 
was created with a release value of 1.1. 
Merging attribute source between objects: 
        bufcolor.c-4 and bufcolor.c-2.1.2 
        with ancestor bufcolor.c-2.1.1. 
        Merge Source in progress... 
Parallel versions exist for bufcolor.c-4:csrc:ccmint24#1 
Adding 'release' attribute with value '' to object bufcolor.c 
5:csrc:ccmint24#1 
Warning: Merge Source warning. (overlaps during merge). 
        Merge conflicts have been noted in bufcolor.c-5. 
        Search for '<<<<<<<' to find conflicts. 
Merge Source completed successfully. 
        Merged object is bufcolor.c-5 
Associated object version with task 22: bufcolor.c-5:csrc:ccmint24#1 
Using file 'bufcolor.c-5' in project 'test-laura'... 
Replaced 'bufcolor.c-2.1.2' with 'bufcolor.c-5' in project 'test-laura'...

• Merge two files and create a new task.

When you merge two object versions, Rational Synergy takes the data in each file, 
then creates a third object version. The third object gets its version from the first object 
version you specify from the command line.

ccm merge file_spec1 file_spec2 -create_task -comment "Your comment."

If you do not know which version to merge with, use the following query command to 
find the correct object version.

ccm query -o username -v version -s state -t type

• Merge two directories.

ccm merge directory1-version directory2-version

Related topics

• diff command
Rational Synergy Classic CLI Help, Release 7.1     249



message command

Synopsis
ccm message -u|-user username "message_text"
            -d database_path "message_text"
            -rfc_address address "message_text"
            -attr value "message_text"

Description and uses
The ccm message command communicates a message directly or by broadcast to users 
who are running a Rational Synergy session.

Messages are prepended with the name of the user who sends the message. If you want 
to send messages to specific sessions, use the /rfc_address switch. 

Options and arguments
-attr value

Provides an additional criterion for the message destination. The possible attr option 
is replaced with one of the following values: process, callback, display,  pid, 
user, host, database, engine_address, and pwa_path.

You can use only one switch at a time.

-d database_path

Specifies the database to which the message is sent. 

You can use an ACCENT regular expression to specify multiple databases. The 
ACCENT regular expression must contain a leading question mark ( ? ) character.

-rfc_address address

Specifies the RFC (remote function call) to which the message will be sent. The format 
starts with a host name or IP address, such as host:port[:ip] or ip:port[:ip] 
[:ip] represents zero or more IP addresses.

Note If the specified rfc_address is for an engine, the 
ccm message command will fail.

-user user

Specifies the user to whom the message will be sent.
250     Rational Synergy Classic CLI Help, Release 7.1



message command
Example
• Execute the ccm message command using the host attribute:

ccm message -host comp1 "New compile server is up"

• Use the database attribute to specify a message to all databases:

ccm message -d "?" "Server going down in 2 minutes..."

Caveats
If the -rfc_address specified is for an engine, the command will fail.

Related topics

• fs_check command

• monitor command

• ps command

• diff command
Rational Synergy Classic CLI Help, Release 7.1     251



migrate command

Synopsis
Migrate
ccm migrate -d|-dir|-directory dirname -p|-project project_spec
            [-a|-arch_state arch_state]
            [-cb|-copy_based|-not_copy_based|-ncb] - UNIX only
            [-dt|-default_type type]
            [-i|-import_identical]
            [-mc|-meta_create_time]
            [-mo|-meta_owner]
            [-mr|-meta_release]
            [-ms|-meta_status]
            [-n|-nomerge]
            [-nt|-notask]
            [-path|-set|-setpath]absolute_path
            [-r|-release release_value]
            [-rel|-relative|-nrel|-not_relative]
            [-rl|-rules filename]
            [-st|-state state]
            [-t|-task task_number]
            [-tl|-translate|-ntl|-no_translate]
            [-wa|-maintain_wa|-nwa|-no_wa]
            [-wat|-wa_time |-nwat|-no_wa_time]

Description and uses
The migrate command loads a directory structure from a file system into Rational 
Synergy. 

Any user can execute this command.

For additional information about the migrate process, see Migration rules.

Options and arguments
-a|-arch_state arch_state

Specifies the state (status) that the PVCS® (Windows) or RCS and SCCS (UNIX) 
archived object versions will have after you load them into Rational Synergy.

You can set this value in the initialization file for all migrates. See 
migrate_default_arch_state for more information.

-cb|-copy_based 

Makes the work area copy-based (UNIX only).

This is a work area option. See work_area command for more information.
Rational Synergy Classic CLI Help, Release 7.1     252



migrate command
-d|-dir|-directory dirname

Specifies the root directory to be migrated.

-dt|-default_type type

Specifies the object type for files that have no migration rules. For example, if 
default_type is set to binary and there are no migration rules for *.pdf files, *.pdf 
files are migrated as binary files. 

Incremental migration of a new version of an existing object will keep the same type.

You can set this value in the initialization file for all migrates. See 
migrate_default_type for more information.

-g

Brings up the appropriate dialog.

-i|-import_identical

Causes new versions to be created for files in the file system that are identical to their 
corresponding objects in the database. (The file and the latest version of its 
corresponding object are "identical" if their source codes are identical.) Usually, you 
skip identical versions (the default); however, you might choose to load identical 
versions if you are migrating a new release of another vendor’s software.

By default, identical files are skipped.

-mc|-meta_create_time

Causes migrated files’ Rational Synergy create time attributes to be set to their third-
party archive create times: PVCS (Windows), or SCCS or RCS9 (UNIX).

Note You must be in the ccm_admin role to use this option.

-mo|-meta_owner

Causes migrated files’ Rational Synergy owner attributes to be set to their third party 
archive owner: PVCS (Windows), or SCCS or RCS9 (UNIX).

Note You must be in the ccm_admin role to use this option.
Rational Synergy Classic CLI Help, Release 7.1     253



-mr|-meta_release

Causes migrated files’ Rational Synergy release attributes to be set to their third-party 
archive release values: PVCS (Windows), or SCCS (UNIX).

Rational Synergy does not ensure that the third-party archiver’s release value is a 
valid release before setting a migrated file’s release value. You must add the release  
manually if the value does not exist.

Caution for Windows -  If a PVCS file has more than one 
version (release value) label, the labels are concatenated 
into one space-delimited line that you must edit after 
migrating the file.

-ms|-meta_status

Causes migrated file’s Rational Synergy state attributes to be set to their third-party 
archive state values: PVCS (Windows), or SCCS or RCS9 (UNIX).

Note You must be in the ccm_admin role to use this option.

Caution You must define the state as a SYNERGY status.

-n|-nomerge

Causes new versions of directory objects to replace old versions. The result is that the 
new directory object’s list of members contains only the members just migrated 
instead of a merged list of the old and new members.

-ncb|-not_copy_based - UNIX only

Makes the work area link-based.

This is a work area option. See work_area command for more information.

-nrel|-not_relative

Windows: Makes subprojects’ work areas absolute instead of relative to the parent 
project’s work area. This is the default when you first create a project.

UNIX: Causes links to be used for subprojects and makes subprojects’ work areas 
absolute instead of relative to the parent project’s work area. This is the default when 
you first create a project.
254     Rational Synergy Classic CLI Help, Release 7.1



migrate command
This is a work area option. See work_area command for more information.

-nt|-notask

Causes the migrate operation to ignore task requirements.

By default, the migrate operation enforces task requirements for creating and 
checking out new versions, and for checking in checked-out versions’ predecessors. 
The task requirement is defined in each type’s Require Task At option.

-ntl|-no_translate

If you are using a UNIX server and a Windows client, preserves the Windows format 
of ascii-type object sources. For example, Windows newlines in a csrc object are 
preserved instead of being converted to UNIX newlines.

This is a work area option. See work_area command for more information.

-nwa|-no_wa

Causes the work area not to be maintained (that is, disconnects the migrated project’s 
work area from the database).

This is a work area option. See work_area command for more information.

-nwat|-no_wa_time

Use this option only if you are going to stop performing third-party builds in this 
project, or you previously have set  Use New Timestamps in the GUI, or used the -
wa_time option on the command line. See the work_area command for more work 
area information.

Ensures that the objects’ timestamps are set to their Rational Synergy modification 
(database creation or use) times instead of their file system times.

-p|-project project_spec

Specifies the project and version into which the objects will be migrated. Use a unique 
name if you are creating a new project. If you are performing an incremental migrate, 
make sure you use the existing project name and hierarchy.
Rational Synergy Classic CLI Help, Release 7.1     255



Note If the name you use matches an existing name, your 
project will be overwritten with the migrated objects. No 
warning is given before the objects are changed.

-path|-set|-setpath absolute_path

Changes the specified project’s work area path to the new location.

This is a work area option. See work_area command for more information.

-r|-release release_value

Specifies a release value for the migrated files and directories. Possible candidates 
include components and component release values used in the database, plus other 
release values used in your database.

-rl|-rules filename

Specifies the name of the optional rules file to use. You can set up an unlimited 
number of rules files, but you can use only one at a time.

See Migration rules for more information about the rules.

-rel|-relative

Makes the work area path relative to the parent project’s path. You can set this option 
if the project is used in only one place. After you set the project’s work area path to 
relative, you cannot use the project in more than one project.

Directories migrated as subprojects are affected by this option because they have 
parent projects. Parent projects are not affected.

This is a work area option. See work_area command for more information.

-st|-state state

Specifies the state (status) given to the migrated files.

If you set the archive state to be a writable state, the history of the migrated object will 
not be preserved if the object is an archived object. 
256     Rational Synergy Classic CLI Help, Release 7.1



migrate command
When you migrate an SCCS or RCS file using a non-writable initial state, all the file’s 
versions are migrated into the database. The history of the resulting file object shows 
a preserved version history; that is, successor versions are checked out from previous 
versions, resulting in the preservation of the archive’s history. If you choose a writable 
state for the import state of archive types, an object version is created for the specified 
file instead of being checked out from the previous version because you cannot check 
out from a writable version. The result is that you cannot preserve the archive’s history 
unless the archive import is non-writable.

You can set this value in the initialization file for all migrates. See 
migrate_default_state for more information.

-t|-task task_number

Specifies a task with which to associate newly checked-out or created object versions.

-tl|-translate

If you are using a UNIX server and a Windows client, converts ascii-type object 
source from the Windows format to the UNIX format. For example, Windows newlines 
in a csrc object are converted to UNIX newlines.

This is a work area option. See work_area command for more information.

-wa|-maintain_wa

Causes the work area to be maintained (that is, synchronizes the work area and 
keeps it synchronized).

This is a work area option. See work_area command for more information.

-wat|-wa_time

Ensures that the objects’ timestamps are set to their file system times instead of their 
Rational Synergy modification (database creation or use) times.

Use this option only if you are going to perform third-party builds in this project. See 
the work_area command for more work area information.
Rational Synergy Classic CLI Help, Release 7.1     257



Examples
Windows: 
Migrate a project named ico-1 from the directory C:\examples\ico\man, with the 
migration rules located in C:\rules\migrate.rul.
ccm migrate -p ico-1 -d C:\examples\ico\man -rl C:\rules\migrate.rul

UNIX: 
Migrate a project named ico-1 from the directory /usr/local/ccm/examples/ico/man, 
with the migration rules located in ~/migrate.rul.

ccm migrate -p ico-1 -d /usr/local/ccm/examples/ico/man -rl ~/migrate.rul

• Migrate the directory_path directory hierarchy into the project_name-version 
project with the object and archive states set to state and archive_state, 
respectively.

ccm migrate -p project_name-version -d directory_path -st state -a 
arch_state

• Migrate the directory_path directory hierarchy into the project_name-version 
project, with the default object type set to html.

ccm migrate -p project_name-version -d directory_path -dt html

• Migrate the directory_path directory hierarchy into the project_name-version 
project, and load identical versions.

ccm migrate -p project_name-version -d directory_path -i
258     Rational Synergy Classic CLI Help, Release 7.1



monitor command
monitor command

Synopsis
ccm monitor -u|-user username
            -d|-database database
            -rfc_address address
            -attr value

Description and uses
The ccm monitor command provides a network-wide view of Rational Synergy user and 
process information including: 

• user

• process type (engine, user interface, router, license manager, or object registrar)

• host

• port

• process ID

• database path

The ccm monitor command appends an exclamation point ( ! ) to the status field of a 
process when that process has not responded to the router for a fixed amount of time. 
This failure to respond is assumed to indicate a problem (for example, the machine that 
was running the process has gone down or the process is hung).

If a delay in response is due to a busy machine, the exclamation point will go away when 
the operation that is using the machine is finished.

The monitor view may refresh, depending on what is changing.

To stop monitoring on UNIX, press CTRL+C.

Options and arguments
-attr value

Specifies the name of the field to be monitored. The possible attr option is replaced 
with one of the following values: process, display, pid, user, host, database, 
engine_address, and pwa_path.

You can use only one switch at a time.

-database database

Specifies that all users of database are monitored.
Rational Synergy Classic CLI Help, Release 7.1     259



You can use a regular expression to monitor multiple databases. The regular 
expression must contain a leading question mark ( ? ) character.

-rfc_address address

Specifies the remote function call (RFC) address of the Rational Synergy interface 
(GUI) process to be monitored. The format starts with a host name or IP address, 
such as host:port[:ip] or ip:port[:ip]. [:ip] represents zero or more IP 
addresses.

Note If the specified rfc_address is for an engine, the ccm 
monitor command will fail.

-user user

Specifies the user to be monitored.

Example
Monitor user kim's engine processes. 

ccm monitor -user kim -process engine

Rational process monitor...7 process(es) located:
user     process  host     port   pid    database path                        
----     -------  ----     ----   ---    -------------                        
ccm_root router   galaxy   1514   28496  -                                    
ccm_root objreg   orbit    34525  18273  -                                    
ccm_root objreg   galaxy   41587  28507  -                                    
ccm_root objreg   dbserver 62240  19592  -                                    
linda   engine   lego    34728  21182 /vol/dbserver/ccmdb/ccm51new  
linda   gui      lego    34725  21181 /vol/dbserver/ccmdb/ccm51new  
linda   monitor  lego    34737  21205  -  
[Press ^C to quit Rational monitor.]

Related topics

• fs_check command

• lmgr_status command

• message command

• ps command
260     Rational Synergy Classic CLI Help, Release 7.1



move command
move command

Synopsis
ccm move file_spec [file_spec...] dest_directory
         [-task task_number]
ccm move directory [directory...] dest_directory
         [-task task_number]
ccm move file_spec new_file_spec [-task task_number]
ccm move -p|-project project_spec new_project_spec

Description and uses
The move command has the following uses:

• Renames a file or project. Once you rename the project, the root directory is renamed 
automatically to reflect the project’s new name.

Note If you attempt to rename a project that is writable by 
you, but that has a root directory that is non-writable, the 
operation will fail. You must first check out the root directory. 
By doing so, when you rename the project, Rational 
Synergy will rename the root directory automatically.

• Moves one or more files to another directory.

• Moves a file to a new project (in a new work area).

• Moves one or more directories and their contents to a particular directory.

• Moves a subproject to a new top-level project.

• Moves one or more subprojects and their contents to another directory.

Note When you move an object to or from a non-writable 
directory, one of the following occurs:

Rational Synergy checks out a new directory version 
automatically. You must check in the directory to make it 
available to other users. If you are using task-based 
methodology, this is done automatically when you check in 
the default (or specified) task. If you are using object-status-
based methodology, you must remember to check in the 
directory.

If you are in a shared project and your current directory is 
non-writable, Rational Synergy checks out the directory and 
associates it automatically with the default (or specified) 
task, then checks it in to the integrate state. You can disable 
this feature by setting 
Rational Synergy Classic CLI Help, Release 7.1     261



shared_project_directory_checkin to FALSE in your 
initialization file. (See shared_project_directory_checkin.)

You do not need to be in a work area to use this command as long as you use the Project 
reference form.

Note If you attempt to rename a project or object used in 
other directories or directory versions besides the current or 
specified directory, you are reminded to check out a new 
version of the object. The rename of an object requires the 
modification of all directories binding the specified object, 
but only the current or specified directory can be safely 
updated.

Options and arguments
dest_directory

Specifies the name of the directory to which the file or directory is being moved.

directory

Specifies the name of the directory to be moved.

file_spec

Specifies the name of the file or directory that is being moved.

-p|-project project_spec new_project_spec

Specifies the name of the project that you want to rename and the new name.

You must use this option if you are renaming a top-level project.

You cannot use this option to rename a project that is in use as a subproject.

-task task_number

Associates any newly created directory with the specified task.

If the current (default) task is set and you do not specify a different task, the newly 
created directory is associated with the current task automatically.
262     Rational Synergy Classic CLI Help, Release 7.1



move command
Examples
• Move the file oops.h from the src directory to the incl directory in your current 

project.

Windows: 
ccm move src\oops.h incl/ 
UNIX: 
ccm move src/oops.h incl/ 
 
Member oops.h-3 removed from the project sandbox-lb 
Adding ’release’ attribute with value ’2.0’ to object incl-2:dir:5 
Associated object incl-2:dir:5 with task 36. 
Member oops.h-3 added to project sandbox-lb

• Rename the file turquoise.c to magenta.c in the current project.

ccm move turquoise.c magenta.c

• Rename the ccm_aug8-1 project to test_a-1.

Windows: 
ccm move -p ccm_aug8-1 test_a-1 
Setting path for work area of ’test_a-1’ to 
’c:\users\linda\ccm_wa\ccmint07\test_a-1’...
UNIX: 
ccm move -p ccm_aug8-1 test_a-1 
Setting path for work area of ’test_a-1’ to ’/linda/ccm_wa/ccmint07/
test_a-1’...

• Rename the hello.c file to hi_world.c, then move it to another project’s directory.

Windows: 
ccm move proj\hello.c@proj-1 screen\src\hi_dir\hi_world.c@beta-3 
UNIX: 
ccm move proj/hello.c@proj-1 screen/src/hi_dir/hi_world.c@beta-3 
 
Member hi_world.c-1 removed from project proj-1  
Member hi_world.c-1 added to project beta-3

• Move the file hello.c from beta-1 to a new project called final-1.

Windows: 
ccm move beta-1\hello.c@beta-1 final@final-1 
UNIX: 
ccm move beta-1/hello.c@beta-1 final@final-1 
 
Member hello.c-1 removed from project beta-1 
Member hello.c-1 added to project final-1
Rational Synergy Classic CLI Help, Release 7.1     263



ps command

Synopsis
ccm ps -user username "message_text"
        -d|-database database "message_text"
        -rfc_address address "message_text"
        -attr value "message_text" 

Description and uses
The ccm ps command provides network-wide process status information on Rational 
Synergy users and processes. It is a maximum verbosity version of ccm monitor.

Options and arguments
-attr value

Specifies the name of the field to be monitored. The possible attr option is replaced 
with one of the following values: process, display,  pid, user, host, 
database, engine_address, and pwa_path.

You can use only one switch at a time.

-d|database database

Specifies that all uses of database are monitored.

You can use a regular expression to monitor multiple databases. The regular 
expression must contain a leading question mark ( ? ) character.

-rfc_address address

Specifies the remote function call (RFC) address of the Rational Synergy interface 
(GUI) process to be displayed. The format starts with a host name or IP address, such 
as host:port[:ip] or ip:port[:ip] [:ip] represents zero or more IP addresses.

Note If the specified rfc_address is for an engine, the ccm 
process command will fail.

-user username

Specifies the user to be monitored.
264     Rational Synergy Classic CLI Help, Release 7.1



ps command
Example
• Display the process information for the interface with a host address of 

"horse.abbd0.com".

ccm ps -host horse.abcc0.com

• Display the process information for databases that have names containing 
"training".

ccm ps -d "?training"

Related topics

• fs_check command

• message command

• monitor command
Rational Synergy Classic CLI Help, Release 7.1     265



process_rule command

Synopses

Add Folders and/or Folder Templates to a Process Rule 
ccm pr|process_rule|ut|update_temp|update_template|  
            rt|recon_temp|reconfigure_template -a|-ad|-add
       [-fol|-folder|-folders folder_specs]
       [-ft|-folder_temp|-folder_temps|
       -folder_template|-folder_templates folder_template_specs]
       [-q|-quiet] process_rule_specs

Copy a Process Rule
ccm pr|process_rule|ut|update_temp|update_template| 
            rt|recon_temp|reconfigure_template -cp|-copy 
      process_rule_spec1 process_rule_spec2

Compare Two Process Rules
ccm pr|process_rule|ut|update_temp|update_template| 
             rt|recon_temp|reconfigure_template 
      -comp|-compare process_rule_spec1 process_rule_spec2

Delete Process Rules
ccm pr|process_rule|ut|update_temp|update_template| 
              rt|recon_temp|reconfigure_template -d|-delete [-force]
      process_rule_specs

List Process Rules
ccm ut|update_temp|update_template| 
             rt|recon_temp|reconfigure_template -l|-list

Modify a Process Rule
ccm pr|process_rule|ut|update_temp|update_template| 
               rt|recon_temp|reconfigure_template -m|-modify
       [-fol|-folder|-folders folder_specs]
       [-ft|-folder_temp|-folder_temps|-folder_template|
       -folder_templates folder_template_specs]
       [(-bn|-baseline_name baseline_name)|
       (-lb|-latest_baseline)|(-usb|-user_selected_baseline)|
       (-lbp|-latest_baseline_projects)]
       [-brp|-baseline_release_purpose|
       -baseline_release_purposes release_purposes [(-pr|-prepend)|
266     Rational Synergy Classic CLI Help, Release 7.1



process_rule command
       (-ap|-append)]
       [(-pb|-prep_baseline)| (-nopb|-noprep_baseline)]
       [-matching "version_matching_string"]
       [-default|-nodefault]
             process_rule_specs

Remove Folders and/or Folder Templates from a Process Rule
ccm pr|process_rule|ut|update_temp|update_template| 
              rt|recon_temp|reconfigure_template -rem|-remove
       [-fol|-folder|-folders folder_specs]
       [-ft|-folder_temp|-folder_temps|-folder_template|
       -folder_templates folder_template_specs]
       [-q|-quiet] process_rule_specs

Set the Controlling Database for a Process Rule
ccm pr|process_rule|ut|update_temp|update_template| 
             rt|recon_temp|reconfigure_template -cdb|-controlling_database
       [-local|-handover dbid|-accept dbid]
       process_rule_specs

Show Information about Process Rules
ccm pr|process_rule|ut|update_temp|update_template| 
             rt|recon_temp|reconfigure_template -sh|-show keyword
      process_rule_specs

Description and uses
The process_rule command displays and sets process rules. Note that the 
process_rule command was referred to as the update_template and  
reconfigure_template commands in prior releases of Rational Synergy.

A process rule specifies how a project will be updated when an update operation is 
performed on the project. The combination of a project’s purpose and release value 
determines which process rule can be used in the project. Multiple process rules can be 
created for a release/purpose pair. This allows you to set up rules, and then select rules to 
apply to a given release and purpose, and to switch among the set of process rules during 
the course of a release. It also allows you to reuse process rules for future releases, rather 
than have to continually modify the process rule for each purpose. 

Process rules are automatically created whenever one of the following occurs. 

• When a build manager creates a new release value, a process rule is created for each 
valid purpose that is associated with that release value.

• When a build manager adds a new purpose to the list of valid purposes for a particular 
release value, a process rule is created for that unique combination of project purpose 
and release value.
Rational Synergy Classic CLI Help, Release 7.1     267



• When a build manager creates a new purpose, a general process rule is created for 
that purpose. The build manager must then edit this new (empty) process rule.

• When a build manager copies a process rule.

General process rules are shipped with the product for both standard and distributed 
processes. A non-DCM-initialized database contains the standard process, and a DCM-
initialized database contains both the standard and the distributed processes. The process 
rules have the same behavior in each, with the following exceptions:

• In the standard process, Collaborative Development collects all completed tasks from 
all databases, while in the distributed process, Local Collaborative Development 
collects all completed tasks from the local database.

• In the standard process, Integration Testing collects all completed tasks from all 
databases, while in the distributed process, Local Integration Testing collects all 
completed tasks from the local database, and master integration tested tasks from 
foreign databases.

The standard process is used to provide process rules in synergy classic and the CLI 
when a purpose is specified.

You can specify which process rule is to be used when you create a new release. For 
more information, see the  release command. 

Use this command to perform the following operations.

• Edit a process rule.

• Add folders and/or folder templates to a process rule.

• Remove folders and/or folder templates from a process rule.

• Copy a process rule.

• Compare two process rules.

• Delete one or more process rules.

• List the currently-defined process rules.

• Set the controlling database for process rules.

• Show information about one or more process rules.

Options and arguments
-accept dbid

Specifies that the object is set to accept control from the specified database. This 
enables you to set up central administration of process rules using DCM.
268     Rational Synergy Classic CLI Help, Release 7.1



process_rule command
-bn|-baseline_name baseline_name

Specifies the name of the baseline (baseline_name) you want to use for your process 
rule. 

-brp|-baseline_release_purpose|-baseline_release_purposes release_purposes  
[(-pr|-prepend) | (-a|-append)]

Specifies the list of release-purpose pairs for the process rule. The 
release_purposes value is a list of one or more release-purpose items that are  
separated by commas. A release-purpose item consists of a release value, a colon (:), 
and a purpose value. The release value may be a valid release name or the keywords 
%release or %baseline_release. The purpose value may be a valid purpose as 
defined in the project purpose table, or the value Any. The release-purpose items are 
specified in decreasing order of search priority. If the -pr|-prepend option is 
specified, the specified values are inserted at the beginning of the existing list. If the -
a|-append option is specified, the specified values are appended at the end of the 
existing list. If neither option is specified, the specified values replace the current list.

-cdb|-controlling_database

Specifies that the specified process rule is to have a controlling database. Use with 
the -local, -handover, or -accept option to specify where the template is defined. 
Use these options to set up centralized administration for process rules.

-comp|-compare process_rule_spec1 process_rule_spec2

Compares two process rules.

-cp|-copy process_rule_spec1 process_rule_spec2

Copies a specified process rule to a new process rule or copies over an existing one. 
The following rules apply when copying process rules:

Generic to generic copies: 
If a generic process rule is copied to an existing generic process rule, the target 
process rule keeps the old name (the four-part name and the case_preserved_name 
attribute), but all other properties are copied from the source process rule.

You can copy a generic process rule to a new generic process rule.

Generic to release-specific copies: 
If a generic process rule is copied to an existing release-specific process rule, the 
target process rule keeps the old name (the four-part name, the 
Rational Synergy Classic CLI Help, Release 7.1     269



case_preserved_name attribute, and the release attribute) and its old association to 
a generic process rule. All other properties are copied from the source process rule.

Release-specific to release-specific copies: 
If a release-specific process rule is copied to an existing release-specific process rule, 
the target process rule keeps its old name (the four-part name, the 
case_preserved_name attribute, and the release attribute), but all other properties 
are copied from the source process rule.

The target release-specific process rule also keeps its existing association with a 
generic process rule.

Release specific to generic copies: 
You cannot copy a release-specific process rule to a generic process rule. 

You must be working as an Process rules manager to use this option.

-default|-nodefault

If -default is specified, causes all new projects that have the same release value and 
purpose combination as the process rule you are editing to automatically use the 
process rule. If -nodefault is specified, all new projects that have the same release 
value and purpose as the process rule will not use the process rule and will update 
manually.

If you do not specify this option, the default is -default.

-d|-delete process_rule_specs

Deletes the specified process_rule_spec. If the specified process rule is generic or 
is used by one or more projects, it is deleted only if you specify the -force option.

-fol|-folder|-folders folder_spec

Specifies the IDs of the folders that you are adding or removing. For this argument’s 
syntax, see Folder specification.

Note You can specify the name of a file that contains a 
folder_spec wherever you can specify folder_spec.

-force

The -force option suppresses confirmation messages and forces the delete 
operation to be carried out.
270     Rational Synergy Classic CLI Help, Release 7.1



process_rule command
-ft|-folder_temp|-folder_temps|-folder_template|-folder_templates 
folder_template_specs

Specifies the folder templates that you are adding or removing.

-handover dbid

Specifies that control of the object is handed over from the current database to the 
specified database. Use this option to set up centralized administration for process 
rules using DCM.

-lb|-latest_baseline

The baseline with the latest creation time, and with matching baseline_release and 
baseline_purpose, is used as the baseline for instantiations of the template. If this 
option is used, the following options cannot be used: -baseline_name, -
latest_baseline_projects, -prep_baseline, and -matching.

When this option is used, the currently-selected process rule chooses the baseline 
from a non-empty pool of baselines that match one of the release/purpose pairs.  
When a baseline project cannot be selected using latest_baseline, the project will 
not have a baseline.

-lbp|-latest_baseline_projects

Each project that uses this template will select its own individual project baseline at 
the time that the update operation is carried out. The baseline project is the one with 
matching baseline_release and baseline_purpose, and with a version that 
matches version_matching_string. The -prep_baseline option and the -
matching option may be used with this option only.

-local

Specifies that local control is set, which breaks any previous DCM replication from 
another database. 

-l|-list [scope]

Lists the currently-defined process rules.

-matching "version_matching_string"

Matches the appropriate baselines to projects that use process rules.
Rational Synergy Classic CLI Help, Release 7.1     271



Enables you to enter a version that can be used to identify the baseline. Use this field 
if specifying the release of the baseline is insufficient because you have more than 
one release version of a project with the same release value.

For example, let’s say a company has three released project hierarchies all for release 
1.0: the project versions are 1.0_alpha, 1.0_beta, and 1.0_gr. In this case, 
specifying the Baseline Release option as 1.0 is not enough to identify projects that 
use this process rule. You would want to set the Baseline Versions Matching option to 
1.0_gr to indicate that the project with a version of 1.0_gr should be used as the 
baseline.

If all baselines in the 1.0_gr project hierarchy do not have identical versions, but their 
versions are similar, you can specify a wildcard. For example, if your project hierarchy 
contains projects with versions 1.0_gr, 1.0_gr_unix, and 1.0_gr_windows, you 
could set the Baseline Versions Matching option to 1.0_gr*. This setting would select 
the version with the prefix 1.0_gr, even though the remainder of the version might 
differ. (If a project has more than one choice for a baseline, it will select the baseline 
whose platform matches. For example, project 2.0_int_unix might identify 
1.0_gr_unix and 1.0_gr_windows as potential baselines, but it will check for a 
matching platform, then use 1.0_gr_unix. This is because Rational Synergy is set up 
to support development of parallel platforms by default.)

-modify

Modify the properties of an existing process rule.

-nopb|-noprep_baseline

This option is only relevant when the process rule has a baseline selection mode of 
latest_baseline_projects. It indicates that prep state projects are not to be 
considered as potential baseline projects for the individual projects that use this 
process rule.

-pb|-prep_baseline

This option is relevant only when the process rule has a baseline selection mode of 
latest_baseline_projects. It indicates that static projects and  prep state projects 
are to be considered as potential baseline projects for the individual projects that use 
this process rule.

-quiet

Reduces the number of output messages that are displayed. This option is useful for 
scripting.
272     Rational Synergy Classic CLI Help, Release 7.1



process_rule command
-rem|-remove

Removes the specified task or folder from the process rule.

-sh|-show keyword

Shows information about the specified process rule.

The following keywords are supported by this option:

• baseline_projects

Shows the baseline projects that match the process rule’s baseline properties.

• brp|baseline_release_purpose|baseline_release_purposes

Shows the baseline release and purposes for the process rule.

• bsm|baseline_selection_mode

Shows the baseline selection mode, which is one of the following:

Baseline_name

Latest Baseline

User-Selected Baseline

Latest Baseline Projects

• default

Shows whether the process rule is used for new projects by default.

• fol|folder|folders

Shows the folders that are used by the process rule.

• ft|folder_temp|folder_temps|folder_template|folder_templates

Shows the folder templates that are used by the process rule.

• i|info|information

Shows all properties of the specified template.

• matching

Shows the version-matching string for the process rule.

• members

Shows the tasks, folders, and folder templates that are used by the process rule.

• pb|prep_baseline

Shows whether a prep baseline is an eligible baseline for the process rule.
Rational Synergy Classic CLI Help, Release 7.1     273



-usb|-user_selected_baseline

Specifies that the process rule does not specify a baseline that is to be used to find 
baseline projects. The baseline is selected by the user. 

Related topics

• process_rule examples
274     Rational Synergy Classic CLI Help, Release 7.1



process_rule examples
process_rule examples
View examples for the following operations:

• Add  Folder and/or Folder Templates

• Compare Two Process Rules

• Copy a Process Rule

• Delete Process Rules

• Modify a Process Rule

• Set the Controlling Database for Process Rules

• Show Information about Process Rules

Add  Folder  and/or Folder Templates
• Add folder 3 to the 2.1:Insulated Development process rule:

ccm pr -add -folders 3 "2.1:Insulated Development" 

Added the following folder(s) to process rule 2.1:Insulated 
Development 
      Folder 3 

Added 1 folder to process rule 2.1:Insulated Development.

• Add folder template xxx to the 2.1:Insulated Development process rule.

ccm pr -add -folder_temp "integration tested tasks for release 
%release" "2.1:Insulated Development" 
 

Added the following folder template(s) to process rule 2.1:Insulated 
Development 
      Folder template integration tested tasks for release %release 

Added 1 folder template to process rule 2.1:Insulated Development.
Rational Synergy Classic CLI Help, Release 7.1     275



Compare Two Process Rules
• Compare the process rules for the toolkit/2.0:Collaborative Development 

project and the toolkit/2.0:Insulated Development project.

ccm process_rule -compare "toolkit/2.0:Collaborative Development" 
"toolkit/2.0:Insulated Development"

Baseline selection for process rule toolkit/2.0:Collaborative 
Development
    Baseline Selection Mode: Latest Baseline Projects
    Prep Allowed:            No
    Versions Matching:       
    Release Purposes:        

Baseline selection for process rule toolkit/2.0:Insulated Development
    Baseline Selection Mode: Latest Baseline Projects
    Prep Allowed:            No
    Versions Matching:       
    Release Purposes:        

New Projects use process rule toolkit/2.0:Collaborative Development by 
default

New Projects use process rule toolkit/2.0:Insulated Development by 
default

Folder Templates and Folders only in process rule toolkit/
2.0:Collaborative Development
    Template All Completed Tasks for Release %release for Collaborative 
projects from Database %database

Folder Templates and Folders only in process rule toolkit/
2.0:Insulated Development
    Template Integration Tested Tasks for Release %release from Database 
%database
    Template Master Integration Tested Tasks for Release %release

Folder Templates and Folders in both process rules
    Template Assigned Or Completed Tasks for %owner for Release %release 
from Database %database
    Template Miscellaneous Tasks for %owner for Release %release

Copy a Process Rule
• Copy the 2.0:Insulated Development process rule over the existing 

2.1:Insulated Development process rule.

ccm process_rule -copy "2.0:Insulated Development" "2.1:Insulated 
Development"
276     Rational Synergy Classic CLI Help, Release 7.1



process_rule examples
Delete Process Rules
• Delete the 2.1:Shared process rule. 

ccm pr -delete "2.1:Shared"

List Current Process Rules
• List all currently defined process rules. 

ccm process_rule -list

Collaborative Development
Insulated Development
Custom Development
Shared Development
Visible Development
Integration Testing
System Testing
1.0:Integration Testing
1.0:System Testing
1.0:Insulated Development
2.0:Integration Testing
2.0:System Testing
2.0:Collaborative Development
2.0:Insulated Development
Local Collaborative Development
Local Integration Testing
Master Integration Testing

Modify a Process Rule
• Set the 2.1:Insulated Development process rule to use the latest baseline.

ccm pr -m "2.1:Insulated Development" -latest_baseline

• Set the 2.1:Insulated Development process rule to use the latest baseline projects 
with the specified release and purpose combinations.

ccm pr -m "2.1:Insulated Development" -latest_baseline_projects -
baseline_release_purpose "2.1:Integration Testing,2.1:System 
Testing,2.0:Any"
Rational Synergy Classic CLI Help, Release 7.1     277



• Edit the list of release/purpose pairs that are used by a specific process rule to search 
for a baseline.

ccm pr -modify -baseline_release_purposes "2.0:Any,1.0:System Testing"  
-prepend "2.0:Integration Testing"

• Select a baseline named Build_1234_int for a process rule whose 
process_rule_spec is 2.0:Insulated Development.

ccm process_rule -modify -bn Build_1234_int "2.0:Insulated 
Development"

Set the Controlling Database for Process Rules
• Set the controlling database to use the 2.1-patch1:Insulated Development 

process rule. 

ccm pr -controlling_database -accept A "2.1-patch1:Insulated 
Development"

Show Information about Process Rules
• Show all properties of the 2.1:Insulated Development process rule. 

ccm process_rule -show info "2.1:Insulated Development"
278     Rational Synergy Classic CLI Help, Release 7.1



project_grouping command
project_grouping command

Synopses

Add Tasks to the Update Properties of a Project Grouping
ccm pg|project_grouping
           -at|-add_task|-add_tasks task_spec|all_removed
           project_grouping_spec

Copy Tasks from One Project Grouping to Another Project Grouping
ccm pg|project_grouping
           -ct|-copy_tasks
           project_grouping_spec1
           project_grouping_spec2

Delete a Project Grouping and its Member Projects
ccm pg|project_grouping
           -d|-delete [-m|-members|-nm|-no_members]
           project_grouping_spec

List Project Groupings
ccm pg|project_grouping -l|-list 
           [-r|-release release]
           [-purpose purpose_spec]
           [-o|-owner owner_spec]
           [-f|-format "format_string"]
           [-ns|-no_sort]
           [-u|-un_numbered]
           [-sep separator_char]
           [-nf]

Refresh the Baseline and Tasks of a Project Grouping
ccm pg|project_grouping
           -rbt|-refresh|-refresh_baseline_and_tasks
           project_grouping_spec

Remove Tasks from the Update Properties of a Project Grouping
ccm pg|project_grouping
           -rt|-remove_task|-remove_tasks task_spec|all|all_added
           project_grouping_spec
Rational Synergy Classic CLI Help, Release 7.1     279



Set the Auto-refresh Mode of a Project Grouping
ccm pg|project_grouping
           -ar|-auto_refresh_baseline_and_tasks|-thaw
           project_grouping_spec
ccm pg|project_grouping
           -no_ar|-no_auto_refresh_baseline_and_tasks|-freeze
           project_grouping_spec

Show the Properties of a Project Grouping
ccm pg|project_grouping -sh|-show keyword
           project_grouping_spec
           [-f|-format "format_string"]
           [-ns|-no_sort]
           [-u|-un_numbered]
           [-sep separator_char]
           [-nf]

ccm pg|project_grouping -sh|-show
           i|info|information|
           n|name
           r|release|
           p|purpose|
           created_in
           o|owner|
           ar|auto_refresh_baselines_and_tasks
           rtime|refresh_time
           project_grouping_spec

Description and uses
Project groupings are used to organize projects by release and purpose for the update 
operation. A project grouping’s task and baseline properties are used when a project is 
updated so that member selection is consistent across all projects in the group. A project 
can be a member of only one project grouping. A project grouping is created automatically 
when a project is created.

Project groupings can be private or non-private. All projects in a private project grouping 
have the same owner, release, purpose, and state as the project grouping. Private project 
groupings are identified in one of the following ways:

• My release purpose Projects --  the owner of the project grouping is the same as 
the current user and the database is not DCM-enabled, or the project grouping was 
created in the local database, such as My CM/7.1 Insulated Development 
Projects.

• owner's release purpose Projects -- the owner of the project grouping is a 
different user and the database is not DCM-enabled, or the project grouping was 
280     Rational Synergy Classic CLI Help, Release 7.1



project_grouping command
created in the local database, such as Mary’s CM/7.1 Insulated Development 
Projects.

• My release purpose Projects from Database dbid -- the owner of the project 
grouping is the same as the current user and the database is DCM-enabled, and the 
project grouping was not created in the local database, such as My CM/7.1 
Insulated Development Projects from Database D.

• owner's release purpose Projects from Database dbid -- the owner of the 
project grouping is a different user and the database is DCM-enabled, and the project 
grouping was not created in the local database, such as Mary’s CM/7.1 Insulated 
Development Projects from Database D.

All projects in a non-private project grouping have the same release, purpose, and state 
as the project grouping. Non-private project groupings are identified in one of the following 
ways:

• All release purpose Projects from Database dbid for DCM-enabled 
databases, where dbid is the database id of the database in which the project 
grouping was created, such as  All CM/7.1 Integration Testing Projects from 
Database D.

• All release purpose Projects for non DCM-enabled databases, such as All CM/
7.1 System Testing Projects.

Every local project grouping is associated with the process rule that corresponds to its 
release and purpose. A project grouping always has one, and only one, related process 
rule. 

However, note that in some cases, all projects in a project grouping may not have update 
properties as specified by the project grouping. Those that use process rules will have the 
same update properties.  But a project grouping can contain projects that don't use 
process rules, or even projects that update using objects instead of tasks. The ability to 
place them in the same grouping enables you to create baselines from the full set of 
projects.

In order to have the appropriate update properties, project groupings have many 
associations with other objects in the database. Because process rules use folders and 
tasks, these same folders and tasks are associated with a project grouping that use 
process rules. In addition, a project grouping has a set of saved tasks, a set of additional 
tasks, a set of removed tasks, and a set of automatic tasks, each of which is specific to the 
project grouping. You can also add and remove tasks in the grouping. Every local project 
grouping also has a relationship to a baseline, if the process rules use baselines. 

For more detailed information about how build managers can best use project groupings, 
see the Build Manager’s Guide.

Use the project_grouping command to:

• Show information or associated projects, objects, and tasks for a specific project 
grouping.
Rational Synergy Classic CLI Help, Release 7.1     281



• List project groupings.

• Modify a project grouping.

• Delete an existing project grouping.

After a user has created a project, the user can refresh baselines and tasks, add and 
remove tasks, update the grouping, copy tasks to the grouping, specify auto-refresh 
options, and delete the grouping.  

Options and arguments
project_grouping_name

The project_grouping_name is the name that is assigned to the project grouping. 

-at|add_task|add_tasks

Adds the specified task or tasks to the project grouping. 

If a task is in Removed Tasks, it is removed from Removed Tasks and added to Saved 
Tasks. In this case, required tasks on which the specified task depends are not added, 
regardless of the setting of the include_required_tasks option.

If a task is in neither Removed Tasks nor Saved Tasks, it is added to  Added Tasks. If 
the include_required_tasks option is TRUE, required tasks are computed and 
added to  Added Tasks as well.

If the string all_removed is specified in the task_spec, all removed tasks are added 
back, and required tasks are not computed.

If you cancel this command while in progress, be sure to read the message about the 
status of the operation. The outcome will vary, depending on whether any tasks have 
been added before you cancelled.

-ar|-auto_refresh_baselines_and_tasks|-thaw

Specifies that the project grouping always refreshes the baseline and tasks during an 
update operation.
282     Rational Synergy Classic CLI Help, Release 7.1



project_grouping command
-ct|-copy_tasks project_grouping_spec1 project_grouping_spec2

Copies the net tasks (Saved Tasks plus Added Tasks) from one project grouping to 
another. The tasks are added to the second project grouping in the same way as if the 
-add_tasks option had been used.

However, dependency analysis is not done, and required tasks are not calculated. 
This gives you a way to add the exact set of tasks to a different project grouping. 

-delete

Deletes the project grouping that has the project_grouping_name you specify. 

If -no members is specified, or -members is not specified, only the project grouping is 
deleted if it does not have any projects in it. If is does have projects in it, the command 
will fail.

If -members is specified, the project grouping is deleted along with all associated 
projects, and all associated folders that are not used in any project or project grouping 
are also deleted.

-description "project_grouping_description"

Optionally, provides a detailed description of the project grouping. There is no limit on 
its length, and no restriction on its contents. The project_grouping_description 
must be enclosed in double quotes if it contains one or more spaces.

-f|-format "format_string"

Specifies the command's output format. The default format depends on the options 
that you use with -format (for example, -list or -show) and those options' keyword 
arguments. To learn more about the default output formats, see the descriptions of the 
options that you can use with -format. 

The format can contain a combination of text and keywords. Keywords are replaced 
by specific data about each object. For example, the keyword %owner is replaced with 
sue if information about an object owned by user sue is displayed. 

-list

Lists all project groupings in the database. If  -release, -purpose, or -owner is 
specified, the list shall be limited to those project groupings whose properties match 
those specified.
Rational Synergy Classic CLI Help, Release 7.1     283



The default format is %displayname, but it can be overridden by the specification of 
the -format option.

This command sets the selection set to the list of project groupings returned. 

-nf

Specifies that the output will not be displayed in columnar format.

-no_ar|-no_auto_refresh_baselines_and_tasks|-freeze

Specifies that the project grouping always uses the saved baseline and tasks.

-ns|-no_sort

Specifies that the command's output will not be sorted. 

-purpose purpose_spec

Specifies the purpose of the projects that are to be listed.

-rbt|-refresh_baseline_and_tasks

Specifies that the baseline and tasks be refreshed and saved on the project grouping, 
regardless of the project grouping’s auto-refresh mode. Even if the project grouping is 
frozen, the baseline and tasks are updated. However, it does not change the auto-
refresh setting of the project grouping.

-rt|-remove_task|-remove_tasks  task_spec|all|all_added

Removes a task or tasks from a project grouping.

If the task is in  Added Tasks, it is removed from Added Tasks. If the task is in Saved 
Tasks, it is removed from Saved Tasks and added to  Removed Tasks. In no cases 
will dependent tasks be calculated and removed.

If all is specified, all Added Tasks are removed, and all Saved Tasks are added to 
the Removed Tasks folder. The remove task operation is applied to each Added Task 
and each Saved Task.
284     Rational Synergy Classic CLI Help, Release 7.1



project_grouping command
It all_added is specified, all tasks are removed from Added Tasks. The remove tasks 
operation is applied to each Added Task.

-sep separator_char

Used only with the –format option.  Specifies the separation character you are using 
in your format string to separate input fields from one another.  The command 
output displays your fields in columns, separated by spaces, wherever you specify this 
character.

-show

Shows the properties associated with the project_grouping_name you specify.

i|info|information

If specified, name, release, purpose, owner, and created_in information is 
displayed.

n|name

If specified, the project grouping’s name is displayed.

r|release

If specified, the project grouping’s release value is displayed.

p|purpose

If specified, the project grouping’s purpose is displayed.

o|owner

If specified, the name of the project grouping’s owner is displayed.

created_in

If specified, the name of the database where the project grouping was created is 
displayed.

rtime|refresh_time

If specified, the time that the baseline and tasks were last computed (and saved) is 
displayed.
Rational Synergy Classic CLI Help, Release 7.1     285



-- The following keywords are supported with -show:

proj|projects

If specified, all projects that are included in the project grouping are displayed. The 
default format is:

%displayname %status %owner %release %create_time

The default format may be overridden by using the -format option.

bl|baseline

If specified, the baseline name is displayed. The default format is:

%displayname: %description

fo|folders

If specified, the project grouping's folders are displayed.  The default format is:

%displayname

ar|auto_refresh_baselines_and_tasks

If specified, the auto-refresh mode of the project grouping is displayed. The auto-
refresh is either TRUE, (enabled or thawed), or FALSE (disabled or frozen).

st|saved_tasks

If specified, all tasks that are in the project grouping's Saved Tasks are displayed. The 
Saved Tasks are the tasks that are shown in the Rational Synergy Project Grouping 
Properties dialog, in the Baseline & Tasks tab, under the heading "Tasks on top of 
the baseline".  These are the tasks determined from the project grouping's process 
rule.

The default format is:

%displayname %release %owner %create_time

The default format may be overridden by using the -format option.

at|added_tasks

If specified, all tasks that are in the project grouping's Added Tasks are displayed. 
Added Tasks are the tasks that the user added manually.  These are the tasks that are 
shown in the Rational Synergy Project Grouping Properties dialog, in the Manually 
Added Tasks tab.

The default format is:
286     Rational Synergy Classic CLI Help, Release 7.1



project_grouping command
%displayname %release %owner %create_time

The default format may be overridden by using the -format option.

rt|removed_tasks

If specified, all tasks that are in the project grouping's Removed Tasks are displayed. 
The Removed Tasks are those tasks in the Rational Synergy Baseline & Tasks tab 
that have a cleared checkbox.  These are the tasks that the user manually removed.

The default format is:

%displayname %release %owner %create_time

The default format may be overridden by using the -format option.

all_tasks

If specified, the net tasks (Saved Tasks plus Added Tasks) are displayed. The default 
format is:

%displayname %release %owner %create_time

The default format may be overridden by using the -format option.

obj|objs|objects

If specified, all objects that are included in all projects in the project grouping are 
displayed. The default format is: 

%displayname %status %owner %release %create_time

The default format may be overridden by using the -format option.

automatic_tasks

If specified, the automatic tasks from the process rule that are consequently related to 
the project grouping are displayed. The default format is

%displayname %release %owner %create_time

The default format may be overridden by using the -format option.

-u|-un_numbered

Suppresses automatic numbering of the command's output (that is, the output is un-
numbered). 
Rational Synergy Classic CLI Help, Release 7.1     287



Examples
• Refresh the baseline and tasks of a project grouping named My CM/6.3 

Collaborative Development.

ccm project_grouping -refresh "My CM/6.3 Collaborative Development"

• Show information about a project grouping named My Fav/5.1 Visible Projects.

ccm pg -show info "My Fav/5.1 Visible Projects"

Related topics

• update_properties command

• process_rule command
288     Rational Synergy Classic CLI Help, Release 7.1



project_purpose command
project_purpose command

Synopsis

Create a Project Purpose
ccm project_purpose -cr|-create -n|-name "purpose name"
                    -stat|-status status
                    [-ms|-member_status member_status]

Delete a Project Purpose
ccm project_purpose -d|-delete [-y] purpose_specs

Modify a Project Purpose
ccm project_purpose -m|-modify [-n|-name "new name"]
                    [-ms|-member_status new_member_status] purpose_spec

Show a Project Purpose
ccm project_purpose -s|-sh|-show [-stat|-status status]
                    [-r|-role [role]] [purpose_spec]

Description and uses
The project_purpose command enables you to create, delete, modify, or show 
(depending on your user role) the project purposes for a Rational Synergy database. The 
project purposes are used to set up multiple prep, shared, working, or visible versions of 
the same project for different uses, such as different levels of testing. 

The project purposes include the following:

• Purpose name

This name reflects the purpose, for example, performance testing, personal use, etc.

• Member status for the purpose 

The member status enables you to differentiate projects of the same state being used 
for different purposes when you perform an update operation. For example, you could 
define three unique levels of system testing called sqa1, sqa2, and sqa3.

• Status of the project

The status shows what state projects (working, prep, etc.) of this purpose can use. 

All users can show project purposes. A project purpose manager can create or delete a 
project purpose. You must be in the ccm_admin role to edit a project purpose.

The project purpose table affects the following:
Rational Synergy Classic CLI Help, Release 7.1     289



• Options that are displayed in the Purpose field for the following dialog boxes: Copy 
Project, Create Project, Properties (for a project or product) 

• Options you can specify in the following commands: ccm copy_project, ccm 
create, ccm create -type project, and ccm properties

• Specifies the status and member_status values that are used for the projects copied 
using each purpose option

• Determines which automatic tasks projects will be associated with

• Affects the synopses of corresponding automatic tasks

Each Rational Synergy database contains one project purpose list only. You can define  
project purpose lists for each release.

The default subsets of the project purpose table define the following purposes:
Integration Testing:       prep:         integrate
System Testing:            prep:         sqa
Insulated Development:     working:      working
Collaborative Development: working:      collaborative
Shared Development:        shared:       shared
Visible Development:       visible:      visible

Additionally, if your database is DCM-enabled, it will also have the following purpose: 
Master Integration Testing:  master_integrate:    prep

This project purpose table defines one purpose per line. The line has the following format:

purpose_label:   status:   member_status

purpose_label is the option that is displayed in the dialogs' Purpose fields and the 
purpose you would specify with the commands' -purpose options.

status is the state of any project with that purpose.

member_status is the value that your new project's member_status attribute will have. 
The member_status value should be similar to the purpose. For example, if you create a 
purpose of Test Integration, the member status should be set to a similar value, such 
as test_int. This value can be used in place of the purpose in CLI commands.

If you update using object status, all of your member_status values must be actual states 
defined in your database. If you update using tasks, your member_status values can be 
any unique word that will differentiate your prep or shared projects from one another when 
you update. For example, you could set this option to the following value to define four 
unique levels of system testing:

Insulated Development:    working:     working
Integration Testing:      prep:        integrate
System Testing 1:         prep:        sqa1
System Testing 2:         prep:        sqa2
System Testing 3:         prep:        sqa3
System Testing 4:         prep:        sqa4
290     Rational Synergy Classic CLI Help, Release 7.1



project_purpose command
Options and arguments
-cr|-create

Creates a project purpose. The -name, "purpose name", and -status options are 
required with this option.

Also, you can specify the -member_status option if you want a specific value. If you 
do not specify a member status, the member_status value will default to the value of 
the -status option you entered.

-d|-delete purpose_spec

Deletes a project purpose specified by purpose_spec.

Once a project purpose is deleted, the following behavior will occur:

• Projects cannot be checked out or created with the deleted purpose.
• Existing projects and products retain the member status setting.
• Existing projects and products cannot have their purpose changed to the deleted 

purpose.
• Process rules for that purpose are deleted.

-m|-modify

Modifies a project purpose. When used with the -name purpose_spec options, 
specifies the name of the project purpose to change. When used with the -
member_status option, specifies the value of the member status to change.

-ms|-member_status

Specifies a project purpose’s member status. The member status enables you to 
differentiate projects of the same state being used for different purposes when you 
update. The value must be unique in the database.

Use this option with the -create option to specify the member status of the purpose 
you are creating; use it with the -modify option to specify the member status of the 
purpose you are modifying. Values from the project purpose table are used for each 
purpose option.

The purpose and the member status should be similar. For example, if you are 
creating a purpose of Test Integration, then the member status should be set to a 
similar value, such as test_int.
Rational Synergy Classic CLI Help, Release 7.1     291



-n|-name "purpose name"

Names a project purpose. Use this option with the -create option to specify the name 
of the project purpose you are creating; use it with the -modify option to specify the 
new name of a project purpose you are modifying.

purpose_spec

Is either "purpose name" or member_status. 

When used with the -modify option, specifies the project purpose to change. 

purpose_specs

Specifies that you will use more than one purpose_spec. There must be at least one 
space between purpose_specs.

When used with the -show option, displays the project purposes specified by 
purpose_specs. 

-r|-role [role]

When used with the -show option but without specifying a role, displays the purposes 
that can be used by the role you are in. When used with the -show option and a 
specified role, displays the purposes that can be used by the specified role.

-s|-sh|-show [purpose_specs]

Shows project purposes. When used without the purpose_specs option, displays all 
project purposes. When used with the purpose_specs option, displays the project 
purposes specified by purpose_specs.

-stat|-status status

Specifies the status. When used with the -show option, specifies that you want to view 
project purposes with a specific status setting. When used with the -create option, 
specifies the status for the project purpose. Values from the project_purpose_list 
are used for each purpose option.

-y

When used with the -delete option, deletes the project purpose without displaying 
confirmation messages.
292     Rational Synergy Classic CLI Help, Release 7.1



project_purpose command
Examples
• Create a project purpose with a name of Test Purpose, a status of prep, and a 

member status of test. View the newly created purpose.

ccm project_purpose -cr -name "Test Purpose" -stat prep -ms test
ccm project_purpose -s "Test Purpose"
Purpose         Member Status     Status

  Test Purpose    test              prep

• Delete a project purpose called Test2 Purpose.

ccm project_purpose -d "Test2 Purpose" 
Are you sure that you want to delete purpose ’Test2 Purpose’? (Yes/No) 
[No] Yes

• Change a project purpose’s name and member status. 

ccm project_purpose -m -n "Test2 Purpose" -ms test2 "Test Purpose"

• Show the project purposes for a user in the developer role. 

ccm set role developer
ccm project_purpose -s -r
 Purpose                Member Status     Status

  Insulated Development   working           working
  Shared Development      shared            shared
  Visible Development     visible           visible

 Collaborative Development  
Rational Synergy Classic CLI Help, Release 7.1     293



properties command

Synopsis

Show Properties
ccm prop|properties|info [-s] [-n] file_spec [file_spec...]
ccm prop|properties|info [-s] [-n] -p |
                         -project project_spec [project_spec...]

Show an Arbitrary Set of Attributes
ccm prop|properties|info [-sep separator_char] [-nf]
                         -f|-format "format_string" file_spec [file_spec...]
ccm prop|properties|info [-sep separator_char] [-nf]
                         -f|-format "format_string"
                         -p|-project project_spec [project_spec...]

Description and uses
The properties command provides information about one or more objects.

This command displays the attribute values of a group of model-defined attributes for the 
specified object(s) to standard output.

If you are using object status to configure your projects, the exclude_status and 
member_status attributes are displayed from the command line; otherwise, the baseline 
attribute is shown.

For additional information about using the ccm properties command to show information 
about object versions, see Selection set reference form.

Options and arguments
file_spec

Specifies the name of the file or directory for which information is being displayed.

-f|-format "format_string"

Specifies the output format of the properties.

You can specify keywords or rearrange the keywords. For example, you can specify 
just %objectname, which will return the query information in the object reference form 
(that is, object_name-version:type:instance) or use %displayname to return the 
query information without type and instance (that is, object_name-version).
294     Rational Synergy Classic CLI Help, Release 7.1



properties command
The required string uses keywords and literal text, such as:

    %displayname owned by

A keyword can be built-in (%fullname, %displayname, %objectname ) or the name of 
any existing attribute such as %modify_time or %status.

-n

Do not display labels (in default mode) or a header (single-line mode) when displaying 
an object’s properties.

You cannot use this option if you are using the -f option.

-nf

Do not make the output columnar.

You can use this option only with the -f option.

-p project_spec

Specifies the name of the project for which information is to be displayed.

-s

Shows the information on a single line.

-sep separator_char

Used only with the -format option, specifies the separation character you are using in 
your format_string to separate input fields from one another. Rational Synergy 
displays your fields in columns, separated by spaces, wherever you specify this 
character.

Note that -sep has no affect on output. The columns are always space-separated 
unless you use -nf to suppress columns altogether.
Rational Synergy Classic CLI Help, Release 7.1     295



Examples
• Obtain information on the os_ico-1 project, which uses object status to update.

ccm prop -p os_ico-jeff 
name           : os_ico 
version        : john 
owner          : john 
status         : working 
type           : project 
create_time    : Tue Aug 13 11:09:33 1998 
modify_time    : Thu Aug 15 10:41:35 1998 
platform       : <void> 
release        : 2.1 
task           : 6 
member_status  : working 
exclude_status : public shared visible

Note that the project has member_status and exclude_status attributes.

• Obtain information on the task_ico-2 project, which uses tasks to update.

ccm prop -p task_ico-2 
name           : task_ico 
version        : 2 
owner          : sue 
status         : working 
type           : project 
create_time    : Tue Aug 13 11:09:33 1998 
modify_time    : Thu Aug 15 10:41:35 1998 
platform       : <void> 
release        : 4.6 
task          : 6

• Show the release values of all of the objects in the current directory.

ccm prop -f "%objectname %release" *
296     Rational Synergy Classic CLI Help, Release 7.1



query command
query command

Synopsis
ccm query [-ns|-no_sort]

ccm query [-n|-name name] [-ns|-no_sort]
          [-o|-owner owner] [-s|-state state]
          [-t|-type type] [-v|-version version]
          [-i|-instance instance]
          [[-task task_number] [-db database_ID]]
          [-f|-format "format_string"] [-u] [-nf]
          [-sep separator_char] ["query_expression"]

Description and uses
Use the query command to search for objects in the database by evaluating a query 
expression. The query results are displayed sorted unless you specify no sort.

Note If a query function provides a sorting capability, and if 
you combine that query function with other query operators 
to make a compound query, the sorting will be lost.

The results of the query are placed in the selection set, then are available for use as 
arguments to subsequent commands by using the selection set reference syntax 
("@listed_object_number").

The -db option is available only if your database is initialized for DCM.

Options and arguments
-db database_ID

This option can only be used with the -task option. When specified, it finds the 
objects that are associated with the specified task that were created in the specified 
database. The default is to find objects associated with the task created in any 
database.

-f|-format "format_string"

Specifies the output format of the query.

The default format is:

    %displayname %status %owner %type %project %instance %task
Rational Synergy Classic CLI Help, Release 7.1     297



where the %displayname keyword is made up of the name and version keywords, 
separated by the default delimiter, %name-%version.

You can specify other keywords or rearrange the keywords. For example, you can 
specify just %objectname, which will return the query information in the object 
reference form (that is, object_name-version:type:instance), or use 
%displayname to return the query information without type and instance (that is, 
object_name-version).

The required string may use keywords and literal text, such as:

  %object %displayname is owned by %owner

A keyword can be built-in (%fullname, %displayname, %objectname) or the name of 
any existing attribute or pseudo-attribute such as %modify_time or %status.

See Built-In keywords for a list of keywords.

-i|-instance instance

Finds all objects with the instance number instance.

-n|-name name

Finds all objects named name.

-nf

Do not make the output columnar.

-ns|-no_sort

Do not sort the output.

-o|-owner owner

Finds all objects owned by owner.

"query_expression"

Specifies the expression for the query. For information on query expressions, see 
Query expressions.
298     Rational Synergy Classic CLI Help, Release 7.1



query command
-s|-state state

Finds all objects in the state state.

-sep separator_char

Used only with the -format option. Specifies the separation character you are using in 
your format_string to separate input fields from one another. Rational Synergy 
displays your fields in columns, separated by spaces, wherever you specify this 
character.

-task task_number

Finds only the objects associated with the specified task.

-t|-type type

Finds all objects of type type.

-u

Suppresses automatic numbering of this command’s output ("un-numbered").

-v|-version version

Finds all objects with the version version.

Examples
• List all objects named foo.c owned by mary.

ccm query -n foo.c -o mary 
1) foo.c-1    integrate bob nasub1 csrc 1 1 
2) foo.c-1.2  working   bob nasub1 csrc 1 4 
3) foo.c-2    working    bob nasub2 csrc 1 5

• To look at the source contents of item 3 in the selection set, enter the following.

ccm cat @3

• List all objects named foo.c, owned by sue, for task 4.

ccm query -n foo.c -o sue -task 4 
1) foo.c-1.2  working  sue csrc 1 4

• List the name and time last modified of all objects named brochure.doc owned by 
fiona.

ccm query -n brochure.doc -o linda -f "%name %modify_time" 
1) brochure.doc Tue Aug  6 12:17:55 1996
Rational Synergy Classic CLI Help, Release 7.1     299



• List all objects associated with task 3 that are from the santa_fe database.

ccm query -task 3 -db santa_fe 
1) DropEdit.cpp-1    integrate tom c++ diffmerge santa_fe#1 <void> 
2) vdifmrgDoc.cpp-1  integrate tom c++ diffmerge santa_fe#1 <void>

• List change requests associated with a particular transfer set.

ccm query query_expression

where query_expression is the change request query that is being used for the 
transfer set, and includes "cvtype=problem". 

For example:

ccm query "cvtype='problem' and product_name='myproduct'"

• Show release-specific process rules that are instantiations of the "Collaborative 
Development" generic process rule.

ccm query ’’cvtype=’process_rule’ and name=’Collaborative 
Development’’ -f "%none %is_generic_pr_of"

Related topics

• finduse command
300     Rational Synergy Classic CLI Help, Release 7.1



reconcile command
reconcile command

Synopsis
ccm rwa|reconc|reconcile]
              [-t|-task task]
              [-c|-comment string]
              [-r|-recurse|-no_recurse]
              [-iu|-ignore_uncontrolled|-cu|-consider_uncontrolled]
              [-mwaf|-missing_wa_file|-imwaf|-ignore_missing_wa_file]
              [-if file_spec]
              [-rpt|-report file_spec]
              [-s|-show]
              [-udb|-update_db|-uwa|-update_wa]
              [-p|-project] project_spec [project_spec...]

Description and uses
The reconcile command compares the files in your work area with your database files. If 
reconcile is able to resolve differences automatically, it does so. Otherwise, it identifies the 
files as a conflict and takes no action. Reconcile will update files automatically in the 
following cases:

• If you have a file checked out and you changed the file in your work area, the 
database is updated automatically. This does not occur when you use the -update_wa 
option, which updates the work area from the database.

• If you have a file checked out and have updated the database from another work area, 
this work area is updated automatically.

When the reconcile operation is unable to update either the database or the work area 
automatically, it identifies the file as being in conflict. Conflicts occur in the following cases:

• You modified a file in your work area, whether or not it was checked out.

• You changed the database copy of a file from another work area and you changed the 
same file in this work area.

• You changed a file in the database, but the work area being updated was not available 
to update.

• You created a file in the work area, but did not place it under source control.

• You checked in a file from another work area, but the work area was not available to 
update with changes.

• You removed a file from the work area, but did not delete it from your project. 

Additional errors can occur with controlled links and symbolic links and the work area 
paths. You will need to manually resolve these types of conflicts. For additional information 
about work area conflicts, see Work area conflicts.
Rational Synergy Classic CLI Help, Release 7.1     301



A few other ways to use this command with files that are checked out include:

• If your work area is on a laptop and you are able to work disconnected from Rational 
Synergy, you can use the reconcile command to bring your work area and the 
database back in sync.

• On UNIX, If a tool you are using breaks the link(s) between an object(s) you are 
modifying and the Rational Synergy database, the reconcile command will reconcile 
the changes, then re-establish the link(s).

For example, if you do not have a Rational Synergy session up and you need to modify an 
object that is not checked out, you can change it in your work area then update the 
Rational Synergy database later. Do this by resetting the Read Only attribute on the file 
and modifying it. Later, when you bring up a Rational Synergy session, you can use the 
reconcile command to update your database with the work area changes.

Note To stop a reconcile from the CLI, enter <CTRL+C> at 
any time.

When you stop the reconcile from the CLI, you will receive a 
message stating that errors may occur in your work area. 
The errors will not occur until you try to use the work area; 
to avoid problems, reconcile the work area completely 
before you use it.

Options and arguments
-c|-comment string

Specifies the comment string.

-cu|-consider_uncontrolled

Specifies to consider uncontrolled files during reconcile. During the reconcile process, 
the work area is checked for files that are not under source control. When uncontrolled 
files are found, they are automatically created in the database and placed under 
control if the -update_db option is also specified. The file extension is used to 
determine the type.

If neither -consider_uncontrolled or   -ignore_uncontrolled is specified, the 
default is to ignore uncontrolled files

-if|-ignore_types

Specifies not to reconcile files whose file name contains the specified extension. This 
option works only for uncontrolled files, and must be used with the -
consider_uncontrolled option.
302     Rational Synergy Classic CLI Help, Release 7.1



reconcile command
Use a comma, semicolon or white space to separate entries.

-imwf|-ignore_missing_wa_file

Specifies not to reconcile files that are missing in the work area. Use this option when 
you don’t want all the files from a project in your work area.

-iu|-ignore_uncontrolled

Specifies not to reconcile files that are uncontrolled. If neither -ignore_uncontrolled 
or -consider_uncontrolled is specified, the default is to ignore uncontrolled files.

-mwaf|-missing_wa_file

Compares the database against the work area, looking for missing work area files. 
During the reconcile process, files in the work area are checked against those in the 
database. When a file is found in the database but not in the work area, it is copied to 
the work area if the -update_wa option is specified. Use this option if you want to 
ensure that you have the same files in your database and your work area. However, 
this can take some time on large projects.

-nr|-no_recurse

Specifies not to reconcile subprojects belonging to the project you specify for 
reconciliation.

-p|-project project_spec

Specifies the project to be reconciled.

-rpt|-report

Generates a text report about the reconcile process.

-r|-recurse

Specifies to reconcile subprojects belonging to the project you specify for 
reconciliation. 

This option controls the depth of a reconcile operation when you synchronize a 
project. This is important because if you are synchronizing a top-level project with 
many nested subprojects, a recurse reconcile could take a substantial amount of time 
and resources. You should carefully choose whether to recurse as it will reconcile 
every subproject beneath your specified top-level project. If you do not synchronize 
the hierarchy, you will save time and resources. Alternatively, if you need to reconcile 
the entire hierarchy, this option enables you to do so in one operation.
Rational Synergy Classic CLI Help, Release 7.1     303



-s|-show

Shows the conflicts without resolving them. This is the default.

-t|-task task

Associates any objects being checked out with the specified task.

If the current (default) task is set and you do not specify a different task, the objects 
you are checking out are associated with the current task automatically.

-udb|-update_db

Updates the database with versions in your work area. Uses of this option include:

• If you modified a file that was not checked out, reconcile creates a new version by 
default, and the database is updated with your changes.

• If you updated the database copy of a file from another work area and you 
changed the same file from this work area, reconcile updates the database from 
this work area.

Use this option when you are certain that the work area represents the correct set of 
changes.

-uwa|-update_wa

Updates your work area with versions from your database. Use this option when you 
are certain that the database represents the correct set of changes

Examples
• Reconcile the file foo.c   by updating the database from the work area.

ccm reconcile -update_db foo.c-1:csrc:1 

• Reconcile the ico_june16-1 project, but do not reconcile files whose file name 
contains any of the following extensions: .doc, .gif, or .exe.

ccm reconcile -p ico_june16-1 -ignore_types "*.doc;*.gif;*.exe"

• Reconcile the directory src in proj1, update the work area from database, and check 
for missing files.

Windows:  ccm reconcile -missing_wa_file -update_wa 
c:\users\bhoskins\ccm_wa\proj1-1\src 

UNIX:    ccm reconcile -missing_wa_file -update_wa /users/bhoskins/
ccm_wa/proj1-1/src 
304     Rational Synergy Classic CLI Help, Release 7.1



reconcile command
• Reconcile the project proj1 and subprojects, updating the database from the work 
area, checking for uncontrolled files.

ccm reconcile -recurse -consider_uncontrolled -update_db -project 
proj1-1 

• Reconcile the project proj1 and subprojects without updating the database, ignore 
*.tmp files, and generate a report.

ccm reconcile -recurse -report conflict.txt -if *.tmp -project proj1-1 

A portion of a sample report is shown below.

Reconcile Report: 06/24/99 10:02:06

Project:
proj1-1

Options: 
Conflict Handling: Select 
Ignore Files: *.tmp 
Generate Report: c:\temp\conflict.txt 
Recurse Hierarchy

Conflict Summary: 
34 Project(s) reconciled 
129 Directories reconciled 
1 Work Area Change(s) to Working Object(s) 
1 File(s) Missing from Work Area 
105 Uncontrolled File(s) 
2 File(s) Ignored 
235 File(s) not in Conflict

-------------------------------------------------------------------------
344 Total Files Examined

Conflict Details: 
1 Work Area Change(s) to Working Object(s)
-------------------------------------------------------------------------
Conflict:        Work Area file: 'file.c-1' does not match the Database 
File:            d:\users\joe\ccm_wa\ccm46\proj1-1\proj1\x1\file.c 
File Type:       Source File 
Project Name:    proj1-1 
Object Name:     file.c-1 
Object Status:   working 
Work Area Time:  06/23/98 14:34:04 
Database Time:   06/19/98 12:39:33

1 File(s) Missing from Work Area
Rational Synergy Classic CLI Help, Release 7.1     305



-------------------------------------------------------------------------
--
Conflict:        'file.h-1' is missing from the Work Area 
File:            d:\users\joe\ccm_wa\ccm46\proj1-1\proj1\x1\file.h 
File Type:       Source File 
Project Name:    proj1-1 
Object Name:     file.h-1

• UNIX: Reconcile the ico_june16-1 project and reconcile its subprojects.

This example assumes that you needed to modify four objects outside of the Rational 
Synergy product. You made copies of the four objects in your work area so that you 
could modify the objects. Two of the objects were in the working state: bufcolor.c 
and clear.c. Two of the objects were in the integrate state: drawbuf.c and 
concat.c. After you modified these files, you reconciled the project from the 
command line.

ccm reconcile -p ico_june16-1 
Work area reconciliation starting... 
recursing hierarchy, conflicts will be automatically updated 
Updating '/users/linda/ccm_wa/ccmint15/ico_june16-1'... 
Updating database with file '/users/linda/ccm_wa/ccmint15/ico_june16-
1/ico_june16/src/bufcolor.c'... 
Updating database with file '/users/linda/ccm_wa/ccmint15/ico_june16-
1/ico_june16/src/clear.c'... 
Creating new members for project ico_june16-1 ... 
Creating version 2 of concat.c-1:csrc:1 ... 
Updating database with file '/users/linda/ccm_wa/ccmint15/ico_june16-
1/ico_june16/src/concat.c'... 
Creating version 2 of drawbuf.c-1:csrc:1 ... 
Updating database with file '/users/linda/ccm_wa/ccmint15/ico_june16-
1/ico_june16/src/drawbuf.c'... 
2 new OV(s) successfully created. 
concat.c-2:csrc:1 
drawbuf.c-2:csrc:1 
Reconciliation complete.

• UNIX: Reconcile the ico_june16-1 project, but discard the updates made in your 
work area and do not reconcile subprojects belonging to the project.

For this example, assume you were tasked to update the move.c object, which was in 
the working state, and the colname.c object, which was in the integrate state. After 
you copied and modified these objects in your work area, the direction of the project 
changed and you ended up not needing these changes after all.

% cd ~linda/ccm_wa/ccmint15 
% ls 
ico_june16-1 
306     Rational Synergy Classic CLI Help, Release 7.1



reconcile command
$ ccm reconcile -p ico_june16-1 -no_recurse 
Examining work area for conflicts... 
not recursing hierarchy, conflicts will be automatically discarded 
Updating '/users/linda/ccm_wa/ccmint15/ico_june16-1'... 
Discarding changes to '/users/linda/ccm_wa/ccmint15/ico_june16-1/
ico_june16/src/colname.c'.. 
Discarding changes to '/users/linda/ccm_wa/ccmint15/ico_june16-1/
ico_june16/src/move.c'... 
Reconciliation complete.

Note that the work area was updated with the original files from the database, and that 
the changes made to colname.c and move.c were discarded.

Related topics

• resync command

• sync command 

• work_area command 

• Work area conflicts
Rational Synergy Classic CLI Help, Release 7.1     307



308     Rational Synergy Classic CLI Help, Release 7.1

reconfigure command
The reconfigure command is an alias for the update command.



Rational Synergy Classic CLI Help, Release 7.1     309

reconfigure_properties command

reconfigure_properties command
The reconfigure_properties command is an alias for the update_properties command.



310     Rational Synergy Classic CLI Help, Release 7.1

reconfigure_template command
The reconfigure_template command is an alias for the process_rule command.



relate command
relate command

Synopsis
ccm relate -s|-show [-l] 
           [-l|
           -fmt|-format "format_for_from_object::format_for_to_object"]
           [n|-name relation_name]
           [-f|-from file_spec1] [-t|-to file_spec2]
ccm relate -n|-name relation_name
           -f|-from file_spec1 -t|-to file_spec2

Description and uses
The relate command enables you to add a relationship (relation_name) between 
file_spec1 and file_spec2, or to show the relationship with the specified data.

More relationships are predefined in Rational Synergy. See Relationships for a table 
showing these relationships. However, you can define new relationships using the relate 
command.

Options and arguments
-f|-from file_spec1

Specifies the object from which to show or create a relationship.

-fmt|-format "format_for_from_object::format_for_to_object"

Specifies the output format for the -s|-show option.

The default relate command output is as follows:

’from’_object_info relationship_name ’to’_object_info rel_create_time

The default format for each object is as follows:

    %displayname %status %owner %type %project %instance %task

where the %displayname keyword is made up of the name and version keywords, 
separated by the default delimiter, %name-%version. You can specify other keywords 
or rearrange the keywords.

The required string may use keywords and literal text, such as:

  %object %displayname is owned by %owner
Rational Synergy Classic CLI Help, Release 7.1     311



A keyword can be built in (%fullname, %displayname, %objectname) or the name of 
any existing attribute such as %modify_time or %status.

See Built-In keywords for a list of keywords.

You can specify different formats for each object by using the 
"format_for_’from’_object::format_for_’to’_object" argument.

For example, to specify a format that shows a description of each folder (’from’ object) 
that has the task_in_folder relationship, and the task synopsis for each task (’to’ 
object) in the folder, use the following command:

ccm relate -s -n task_in_folder -fmt "%description::%task_synopsis

The output would be as follows for each folder:

folder_object_description task_in_folder task_synopsis

Do not use this option with the -l option. The -l option is equivalent to specifying the 
following:

ccm relate -show -sep / -fmt "(%objectname/%status/%owner)" -f 
Makefile-2:makefile:17

(Makefile-2:makefile:17 test steveh) successor (Makefile-3:makefile:17 
working sue) Fri Nov 19 10:09:13 2004

ccm relate -sep / -fmt "(%objectname/%status/%owner)"

-l

When showing relationships, use the long output format.

-n|-name relation_name

Specifies the name of the relationship to create or show.

-s|-show

Show the relationships among the specified objects.

-sep separator_character

Used only with the -format option. Specifies the separation character you are using in 
your format_string to separate input fields from one another. Rational Synergy 
312     Rational Synergy Classic CLI Help, Release 7.1



relate command
displays your fields in columns, separated by spaces, wherever you specify this 
character.

-t|-to file_spec2

Specifies the object to which to show or create a relationship.

Examples
• Make clear-2 a successor to clear-1.

ccm relate -n successor -f clear-1 -t clear-2

• Show the relationship(s) between clear-2 and clear-1.

ccm relate -s -f clear-1 -t clear-2

• Show every relationship in the database from clear-1 to any other object version.

ccm relate -s -f clear-1

• Link version 5.1.1 of print.c to version 6.

ccm relate -name successor -from print.c-5.1.1:csrc:1 -to print.c-
6:csrc:1

Related topics

• history command

• unrelate command
Rational Synergy Classic CLI Help, Release 7.1     313



release command

Synopsis

Controlling Database
ccm release  -cdb|controlling_database
             [-local|-handover dbid| -accept dbid]
             [-component componentname | releasename]

Create
ccm release  -c|-create [-from releasename] releasename
             [-baseline|-bl releasename]
             [-description|-desc description |
                 -description_file|-desc_file description_file]
             [-manager manager]
             [-active|-inactive]
             [-allow_dcm_transfer|-noallow_dcm_transfer]
             [-allow_parallel_check_out|-noallow_parallel_check_out]
             [-allow_parallel_check_in|-noallow_parallel_check_in]
             [-groups groups]
             [-included_releases included_releases|
                  -included_releases_file included_releases_file]
             [-purposes purpose_spec |
                  -purposes_file purposes_file]
             [-phase phase]
             [-process process_name]

Delete
ccm release -d|-delete releasename [-force]
            [-old] releasename [[-force]

Delimiter
ccm release -delimiter [-preview] old_delimiter new_delimiter

List
ccm release -l|-list [-active|-inactive] [-component componentname]
            [-old]
314     Rational Synergy Classic CLI Help, Release 7.1



release command
Modify
ccm release  -m|-modify releasename
            [-baseline|-bl releasename]
            [-description|-desc description|
               -description_file|-desc_file description_file]
            [-manager manager]
            [-active|-inactive]
            [-allow_dcm_transfer|-noallow_dcm_transfer]
            [-allow_parallel_check_out|-noallow_parallel_check_out] 
            [-allow_parallel_check_in|-noallow_parallel_check_in]
            [-groups groups]
            [-included_releases included_releases|
               -included_releases_file included_releases_file]
            [-purposes purpose_spec |
               -purposes_file purposes_file]
            [-phase phase]

Rename
ccm release -rename oldreleasename newreleasename
            [-all|-local|-dbid dbids|-database_id dbids]
            [-force]
            [-preview]
            [-nocheck]

Show
ccm release -s|-show (information|active|allow_dcm_transfer|baseline| 
               create_time|description|groups|included_releases| 
               manager|modifiable_in|owner|parallel_check_out| 
               parallel_check_in|phase|phase_log|purposes) releasename

Description and uses
Use the release command to create, modify, delete, and show release information.

You must be working in the required role to perform a release operation:

• Any user can show or list releases.

• A build manager or a user in the ccm_admin role can create, modify, or delete a 
release definition.

• A user in the ccm_admin role can change the release delimiter.
Rational Synergy Classic CLI Help, Release 7.1     315



• A build manager or a user in the ccm_admin role can rename a release if only the 
release definition and its associated process rules will be updated, and you must be in 
the ccm_admin role if other associated objects will be updated.

Options and arguments

-accept dbid

Specifies that updates are to be accepted from a specified database for a specified 
release or set of releases. 

-active

Specifies that only active releases are listed. If not specified, both active and inactive 
releases are listed or modified. 

-baseline releasename

Specifies the baseline release to be used when creating the new release. 

-component componentname

Specifies a component name in the release - all of the release definitions matching 
that component name will be modified. The componentname can be the empty string 
"" meaning all releases for the null component name. This can be used in conjunction 
with the controlling_database option to receive control of all upgraded releases 
from some other database, or the -list option.

-cdb|-controlling_database

Sets DCM to either hand over to a specified database, or accept updates only from a 
specified database.

-c|-create

Creates a new release.

-d|-delete releasename [-force]

Deletes an existing release definition. If the release definition has any successor 
release definitions, these will be automatically history-collapsed. If there are any 
objects using the specified release name other than process rules for the release, the 
operation will fail if the -force option is not specified. If -force is specified and there 
are objects using the release name, a warning will be issued but the operation will be 
performed.
316     Rational Synergy Classic CLI Help, Release 7.1



release command
-d|-delete -old releasename [-force]

Deletes an release definition that has not been converted on upgrade. Use this 
command to remove releases that are not longer required. If there are any objects 
using the specified release name, the operation will fail if the -force option is not 
specified. If -force is specified and there are objects using the release name, a 
warning will be issued but the operation will be performed.

-d|-delimiter

Shows or changes the release delimiter used in release names.

-description

Specifies a one-line description of the release. If you need to enter a multi-line 
description, use the description_file option instead.

-description_path

Specifies a path to a file containing the description to be used.

-force

Suppresses confirmation messages and forces the rename or delete operation to be 
carried out. You can use this option only with the -delete and -rename options.

-from releasename

Specifies the release name to be copied when creating the new release.

-groups

Displays the groups (based on existing group security) that have permissions to 
modify or delete this definition.

-handover

Specifies that control of the database is to be handled by the selected database. This 
option can be used only when the release is locally controlled. 

-inactive

Specifies that only inactive releases are listed. If not specified, both active and inactive 
releases are listed or modified. 
Rational Synergy Classic CLI Help, Release 7.1     317



-included_releases

Specifies one or many release names to be included in the release. This string 
supports multiple release names separated by a comma, and optionally, spaces. The 
comma is required; however, release names with leading or trailing spaces are not 
supported. Alternatively, you can use the included_releases_file option and enter 
data from a file.

-included_releases_file

Specifies a path to a file containing the releases to be included.

-l|-list

Lists release names.

-local

Specifies that control of the database is to be handled by the local database. 

-manager

Specifies the product or component manager for the release name. The default on 
create is the user who is creating the release definition, and can be only a one-line 
string.

-m|-modify

Modifies an existing release.

-nocheck

Allows the -rename command to be started even though the user might not be in the 
ccm_admin role, the database might not be protected, or if other sessions are running 
on that database. If there are no objects to be renamed, then the command will 
attempt to rename the release. If there are any objects to be renamed, then the 
command will fail. The option delays the checks required for renaming objects until 
after the query has been performed to determine which objects are referenced in the 
release.

-phase phasename

Specifies a release phase value to indicate the phase of the release. The value must 
match one of the valid release phase values and is case sensitive. The default value 
is: New, Requirements Definition, Function Definition, Implementation, 
Validation, and Released. 
318     Rational Synergy Classic CLI Help, Release 7.1



release command
-preview

Allows the -rename option to be run to show a summary of how many objects would 
be updated.

-process process_name

Allows you to specify a process for a release as it is being created. The release-
specific process rules associated with the generic process rules for the specified 
process are associated with the new release. If any of the release-specific process 
rules do not exist, they will be created.

The -process option cannot be used with the -purpose or -purposes_file options.

-purposes

Specifies one or many purpose names to be included in the release. If one of the 
purposes specified has more than one generic process rule, then the process rule 
from the default process rule will be used.  Each purpose name must be a valid 
purpose as defined in the project purpose table. This string supports multiple purpose 
names separated by a comma, and optionally, spaces. The comma is required; 
however, purpose names with leading or trailing spaces are not supported. 
Alternatively, you can use the purposes_file option and enter data from a file.

-purposes_file

Specifies a path to a file containing the purposes to be included in the release. Each 
purpose name must be entered on a new line.

-releasename

Specifies the release name. In most cases, releasename includes the component 
name, release delimiter, and component release value, such as CM/6.4. In the case 
where the componentname equals "None", the release name will be the component 
release value, such as 6.4. This allows for backward compatibility. 

The maximum allowed length of release component names is 64 characters.

-r|-rename

Renames an existing release.  If a release definition exists for the specified 
oldreleasename it is renamed to the newreleasename. If an old release table entry 
exists for the oldreleasename, that entry is deleted and a release definition for the 
Rational Synergy Classic CLI Help, Release 7.1     319



newreleasename is created if one does not exist. All objects referencing the old 
release name will be updated to reference the new release name 

If objects exist using the new release name, then this signifies a release merge. Such 
a release merge will fail with an error message if the -force option. For a release 
merge with -force specified, a warning will be issued but the operation will be 
permitted.

-s|-show information release_name

Shows all of the properties for the specified release.

-s|-show property release_name

Shows a specific property of the specified release. The following property keywords 
are supported:

active 
allow_dcm_transfer 
baseline 
create_time 
description 
groups 
included_releases 
information 
manager 
modifiable_in 
owner 
parallel_check_out 
parallel_check_in 
phase 
phase_log 
purposes
320     Rational Synergy Classic CLI Help, Release 7.1



release command
Examples
• Delete the release definition for Sweet 7.1, regardless if any objects use the specified 

release name.

ccm release -delete "Sweet/7.1" -force

• Create a new release alphabets 2.0, using the properties from alphabets 1.

Windows: 
ccm release -create "alphabets/2.0" -from "alphabets/1.0" -
description_file  c:\alphabets_2\features.doc\

UNIX: 
ccm release -create "alphabets/2.0" -from "alphabets/1.0" -
description_file  /usr/tom/alphabets_2/features

• Create a release for a new component (not based on an existing release) named 
harmony 1.0.

ccm release -create "harmony/1.0" -desc "new product line to integrate 
X and Y" -manager "S Sweet" -active -noallow_dcm_transfer 

• In Widget release 5.2, use the release information from the 5.1 and 5.0 releases 
when reconfiguring. Note that this operation is used mainly for object-based CM.

ccm release -m "Widget/5.2" -included_releases "5.1,5.0"

• View the release names that have not been upgraded for the Kit Ten product.

ccm release -list -inactive "Kit Ten"

• Show all active releases in Synergy

ccm release -list -active "Synergy" 

• View information about Synergy 7.1.

ccm release -show information "Synergy/7.1" 

• Edit the release information to show a new description, a new manager and that the 
release is in the implementation phase.

ccm release  -modify -description "version a of release 1.0 without 
graphics capability" -manager sue -phase Implementation

• Hand over control of a locally-controlled release definition to a database whose ID is 
A1.

ccm release -controlling_database -handover A1 -component releasename
Rational Synergy Classic CLI Help, Release 7.1     321



322     Rational Synergy Classic CLI Help, Release 7.1

resync command

Synopsis
ccm resync -f file_spec

Description and uses
The resync command updates the database with one or more objects from the work area. 
On UNIX, perform this operation only if you are using file copies in your project, or if you 
have deleted a link and replaced the link with a file copy.

Any user can execute this command.

Options and arguments
-f file_spec

Specifies the file(s) to be resynchronized.

Example
Resynchronize clear.c (update the database with the file from the work area).

ccm resync clear.c

Related topics

• reconcile command

• sync command



set command
set command

Synopsis
ccm set [option [value]]

Description and uses
The set command enables you to set Rational Synergy options, display the values for 
options, and list options.

With no arguments, set lists Rational Synergy options and their values. If you specify an 
option name without a new value, the current value of the option is displayed. For 
example, to find out what role you are in, enter ccm set role, and the value are 
displayed.

The initial values for options are set in the initialization file.

Some of the options you can set include: make_format, use_format, text_editor, 
text_viewer, role, verbosity, and many more. See Default settings for a 
comprehensive list of options, and how and where to set them.

Options and arguments
option value

Specifies the name of the option to be set or displayed, and optionally, the value to set 
it to.

Examples
• Set your role to developer.

ccm set role developer

• Display your current role.

ccm set role 
developer

• Set the value of the use_format option.

ccm set use_format "%displayname %status %owner %task %platform 
%release"

• Show the value of text_editor.

Windows: 
ccm set text_editor 
NOTEPAD.EXE %filename 

 
UNIX: 
ccm set text_editor 
vi %filename
Rational Synergy Classic CLI Help, Release 7.1     323



Caveat
Some Rational Synergy options are set implicitly (wa_type, sync_on_derive, etc.) and 
cannot be modified with the set command.

Related topics

• unset command
324     Rational Synergy Classic CLI Help, Release 7.1



show command
show command

Synopsis
ccm show -p|-projects [-o|-owner owner]
        [-n|-name name] [-v|-version version]
        [-s|-state state] [-f|-format "format_string"]
        [-task task_number]
ccm show -t|-types
ccm show -mar|-migrate_auto_rules

Description and uses
The show command enables you to view the settings for certain attributes for projects, or 
to view all types in the database.

When used with the -p option, the show command lists projects that satisfy the criteria 
established with the other options.

When used with the -t option, the show command lists object types defined in the 
database.

When used with the -mar option, the show command lists the migrate rules that are auto-
generated based on the type definitions. 

Options and arguments
-f|-format "format_string"

Specifies a replacement string, which specifies the output format. Both text and 
Rational Synergy keywords are valid entries, for example, "Name: %name, Type: 
%type". By default, the output format of this command shows %displayname, 
%status, %owner, %type, %project, %instance, and %task.

"format_string" uses keywords and literal text, such as:

Name: %displayname Owner: %owner

A keyword can be built-in (%fullname, %displayname, %objectname) or the name of 
any existing attribute such as %modify_time or %status.

See Built-In keywords for a list of keywords.

-mar|-migrate_auto_rules

    Shows the migrate rules that are auto-generated based on the type definitions.
Rational Synergy Classic CLI Help, Release 7.1     325



-n|-name name

Shows only objects with the name name.

-o|-owner owner

Shows only objects owned by owner.

-p|-projects

Shows projects in the database.

-s|-state state

Shows only objects in status state.

-task task_number

Shows only the objects associated with the specified task.

-t|-types

Shows the types in the database.

-v|-version version

Shows only objects with the version version.

Examples
• Show projects in the database that have the status integrate and owner mike.

ccm show -p -s integrate -o mary 
1) projY-1   integrate mary project projY 1 2 
2) projY-2   integrate mary project projY 1 7 
3) projY-2.1 integrate mary project projY 1 8

• Show projects in the database that have the status integrate, owner mary, and are 
associated with task 8.

ccm show -p -s integrate -o mary -task 8 
1) projY-2.1 integrate mary project projY 1 8
326     Rational Synergy Classic CLI Help, Release 7.1



show command
• Show the types defined in the database.

ccm show -t
 
ascii 
binary 
c++ 
csrc 
dir 
executable 
incl 
library 
lsrc 
makefile 
project 
relocatable_obj 
shared_library 
shsrc 
symlink (UNIX) 
ysrc
Rational Synergy Classic CLI Help, Release 7.1     327



soad command

Synopsis

Preview / Create Object List
ccm soad -preview -scope "scope_name" [arg1 [arg2 [arg3 [arg4 [arg5 ]]]]]
                  [-so|-save_offline]
                  [-sort|-nosort]
                  [-f|-format "format"]
                  [-v|-verbose]

Delete Using Object List
ccm soad -delete [-pn|-package_name "package_name"]
                  [-path "path"]
                  [-v|-verbose]

Delete Using Scope
ccm soad -delete -scope "scope_name" [arg1 [arg2 [arg3 [arg4 [arg5 ]]]]]
                  [-so|-save_offline]
                  [-pn|-package_name "package_name"]
                  [-path "package_path"]
                  [-v|-verbose]

Prerequisites
To save objects offline, the current database must be initialized for DCM and a DCM 
license must be available.

Description and uses
The soad command enables you to preview and create an object list, to save objects 
offline, and to delete objects. The save operation creates a DCM transfer set with which 
you can restore the objects later. 

The following are common types of data you might want to save offline and delete: 

• Unwanted “Insulated Development” projects for specific developers

• Unwanted “Integration Testing” projects

• Old, static project hierarchies and the old files associated with them, where the 
hierarchies have been superseded by later released versions

• Unused old products

The following are the SOAD command roles and restrictions.
328     Rational Synergy Classic CLI Help, Release 7.1



soad command
Scope Roles

Any user can view the available scopes. The roles defined for each scope determine 
whether you can use that scope to save offline and delete.

Rational Synergy Rules

In accordance with Rational Synergy rules, you can delete any working-state project or 
object owned by you. If you are working as a build manager, you can delete prep projects 
and objects. If you are in the ccm_admin role, you can save offline and delete objects in 
any non-working state or objects owned by other users. Only users in the ccm_admin role 
can save offline.

Work Areas

You can delete projects or objects if the work area is visible and writable. If you are a build 
manager or in the ccm_admin role, you can delete projects and objects if the work area is 
not visible or writable, but you might need to clean up the work area manually first.

Options and arguments
-delete

Deletes the database objects specified by the scope.

The scope for the deleted objects is determined in either of the following ways.

• from the accompanying -scope option
• from a previous preview of the object list (selection set)

The objects are saved before being deleted if either of the following is true:

• the -so option accompanies the command
• the -so option was used on a previous ccm soad -preview command

In either case, the deletion excludes (preserves in the database) any object that would 
be the last remaining version of that object name and instance.

-f|-format "format"

Enables you to change the default output format of the object list using Rational 
Synergy keywords. For the list of keywords, see Built-In keywords.

You can use this option only with the -preview option.

-path "package_path"

Specifies the path to the DCM package using the previously specified path.

If you have not saved a package previously, you must specify the path.
Rational Synergy Classic CLI Help, Release 7.1     329



Note The path must be visible to the engine and writable by 
ccm_root.

-pn|-package_name "package_name"

Specifies the name of the DCM package to which the objects are saved. The default 
name is "Save Offline and Delete saved on %date."

Note You should include the %date keyword in the name if 
you define your own package name. Including the date 
keyword helps ensure that you can differentiate between 
packages created using the same scope.

-preview

Using the selected scope and optional arguments, creates an object list (selection set) 
that excludes (preserves in the database) any object that would be the last remaining 
version of that object name and instance, then lists the objects found.

You can use the object list as input to other Rational Synergy commands, including 
other ccm soad commands.

Note The preview results are not overwritten if you perform 
a query after a preview and before you use the object list for 
a ccm soad -delete command.

-scope "scope_name" [arg1 [arg2 [arg3 [arg4 [arg5 ]]]]]

Specifies the scope (modified "query") used to save offline or delete objects.

Arguments arg1 through arg5 are required only if appropriate for the specified scope. 
For example, the scope "My working projects and products for a specified 
release" requires that you specify a release value, which is arg1.

You must specify the arguments in the order used in the scope definition.

-so|-save_offline

When used with the -preview option, creates an object list that excludes (preserves 
in the database) any object that would be the last remaining version of that object 
name and instance.

When used with the -delete option, creates an object list that excludes (preserves in 
the database) any object that would be the last remaining version of that object name 
and instance, then saves the objects to a DCM package before deleting the objects.

-sort|-nosort

Sorts the preview output alphanumerically, or disables sorting. By default, the output is 
sorted.
330     Rational Synergy Classic CLI Help, Release 7.1



soad command
-v|-verbose

Generates messages detailing why objects are being included in or excluded from the 
list.

Examples
• Save a project offline, then delete the objects in the project.

1. Preview the list of objects to be deleted.

ccm soad -pr -scope "scope_name" [arguments] -so

Review the preview results to ensure that they are correct.

Caution Always preview the object list before saving the 
objects offline and deleting them. Choose a different scope, 
edit the scope, or create a new scope if the results are not 
correct.

2. Save offline and delete the objects (using the object list).

ccm soad -delete [-pn "package_name"] [-path "path"]

• Restore the objects in the specified SOAD transfer set.

ccm dcm -rec -dir dir_path -ts "soad_scope_name"

Note You can restore the objects into a different database, 
or into a database for which the database ID has changed, 
by specifying the -dbid database_id option.

Related topics

• soad_scope command
Rational Synergy Classic CLI Help, Release 7.1     331



soad_scope command

Synopsis

Create Scope
ccm soad_scope -c|-create "scope_name"
               [-roles role1 role2... roleN]
               [-parameters [label1 [|label2 [|label3 [|label4 [|
                 label5 ]]]]]]
               [-object object_spec | -query "query_expression"]
               [-expand|expansion_rules "expand_rules"]
               [-exclude|-exclusion_rules "exclude_rules"]
               [-exclude_query|-exclusion_query "query_expression"]
               [-pn|-package_name "package_name"]

Edit Scope
ccm soad_scope -m|-modify "scope_name"
               [-roles role1 role2... roleN]
               [-parameters [label1 [|label2 [|label3 [|label4 [|
               label5 ]]]]]]
               [-object object_spec | -query "query_expression"]
               [-expand|expansion_rules "expand_rules"]
               [-exclude|-exclusion_rules "exclude_rules"]
               [-exclude_query|-exclusion_query "query_expression"]
               [-pn|-package_name "package_name"]

List Scopes
ccm soad_scope -list 
                [-s|-scope]
                [-expand|-expansion_rules]
                [-exclude|-exclusion_rules]}

Show Scope
ccm soad_scope -show "scope_name"

Delete Scope
ccm soad_scope -d|-delete "scope_name"

Prerequisites
None.
332     Rational Synergy Classic CLI Help, Release 7.1



soad_scope command
Description and uses
The soad_scope command edits, creates, and deletes scopes used to save offline and 
delete objects.

Caution Before you create a new scope, you should start 
with an existing scope, preserve all exclusion rules, and 
validate the scope using test data.

You can edit, create, or delete a scope only when working in the ccm_admin role.

Options and arguments
-d|-delete "scope_name"

Deletes the specified scope.

-exclude|-exclusion_rules ’rule1’ | ’rule2’ | ...’ruleN’

Used with the -list option, lists the exclusion rules.

Used with the -modify or -create option, specifies one or more exclusion rules as 
follows. Exclusion rules remove related objects from the initial object list.

For example, if your query retrieves all objects for a specified release, with the release 
name as the first parameter (release=’%1’), you can restrict the scope by adding 
exclusion rules to remove from the scope folders and tasks used by other projects; 
tasks used by other folders or associated with other objects; baselines used by other 
non-static projects; and objects that are part of other saved baselines.

For the text of the scope described above, see Release-based scope.

-expand|-expansion_rules ’rule1’ | ’rule2’ | ...’ruleN’

Used with the -list option, lists the expansion rules.

Used with the -modify or -create option, specifies one or more expansion rules. 
Expansion rules add related objects to the initial object list.

For example, if your query retrieves all objects for a specified release, with the release 
name as the first parameter (release=’%1’), you can expand the scope by adding 
expansion rules to include the project’s folder and tasks; the folders’ tasks; and the 
tasks’ objects.

For the text of the scope described above, see Release-based scope.
Rational Synergy Classic CLI Help, Release 7.1     333



-exclude_query|-exclusion_query "query_expression"

Specifies a query used to remove objects from the scope.

For example, to exclude from the scope objects that have an attribute named 
requirements, specify the following query expression:

has_attr('requirements')

SOAD will add the following negated clause, wherever it evaluates an object name, 
query, or rule:

and not has_attr('requirements')

-l|-list

Shows all scopes.

The -list option requires that -scope, -expand or -exclude be specified.

-m|-modify "scope_name"

Edits the specified scope.

-object object_spec

Specifies the name of the object used for the initial object list (for example, %1). The 
resulting expanded string must be a valid 4-part object name.

For example, you can use the project object name, entered as the first parameter (%1), 
to set the initial object list to that project object name.

For the text of the scope described above, see Release-based scope.

-parameters [label1 [|label2 [|label3 [|label4 [|label5 ]]]]]]

Supplies labels for arguments for the -object, -query, and -exclude_query and 
definitions.

For example, define a scope such as the following for one parameter label, Release 
Value, for the query used in the "All objects for specified release" scope:

    ccm soad_scope -create "All objects for specified release" 

    -parameters "Release Value" -query "release='%1'" other_options

Next, use the scope in the following ccm soad -delete command, where "2.3" is the 
release value:

    ccm soad -delete -scope "All objects for specified release" 2.3
334     Rational Synergy Classic CLI Help, Release 7.1



soad_scope command
-pn|-package_name "package_name"

Specifies the name of the DCM package to which objects are saved for the scope. The 
package name can include keywords.

-query "query_expression"

Specifies the query expression that defines the initial object list.

For example, to make the initial object list include all the current user’s projects and 
products for a specified release, specify the following query expression:

    (cvtype='project' or is_product=TRUE) and owner='%user' and

    status='working' and release='%1'

-roles role1 role2... roleN

Specifies one or more roles allowed to use the scope. By default, only users working 
in the ccm_admin role can use the scope.

"scope_name"

Specifies the scope for Save Offline and Delete.

Use only characters not restricted by the OS.

This name is also the scope’s file name, including spaces and other characters, 
converted to a URL. For example, if you name the scope This is my test scope, 
the file name created is This%20is%20my%20test%20scope.xml.

-show "scope_name"

Shows all scopes, with the following details:

• Roles
• Parameter Labels
• Object
• Query
• Expansion Rules
• Exclusion Rules
• Exclusion Query
• Package Name

Examples

• View details of a specific scope.

ccm soad_scope -show "scope_name"
Rational Synergy Classic CLI Help, Release 7.1     335



• Create a new scope.

1. List available scope names (to avoid using an existing name).

ccm soad_scope -list

2. Optionally, show expansion rule choices.

ccm soad_scope -list -expansion_rules

3. Optionally, show exclusion rule choices.

ccm soad_scope -list -exclusion_rules

4. Define the new scope.

Caution Exclusion rules are usually required for scopes 
that remove an entire release. 

ccm soad_scope -create "scope_name"
[-roles role1 role2... roleN]
-object object_spec | -query "query_expression"
[-expand_rules "expand_rules"]
[-exclude_rules "exclude_rules"]
[-exclude_query "query_expression"]
[-parameters [label1 [|label2 [|label3 [|label4 [|label5 ]]]]]]
[-package_name "package_name"]

5. Verify the new scope.

ccm soad_scope -show "scope_name"

• Edit a scope.

1. List available scope names (to avoid using an existing name).

ccm soad_scope -list

2. Optionally, show expansion rule choices.

ccm soad_scope -list -expand

3. Optionally, show exclusion rule choices.

ccm soad_scope -list -exclude

4. Define the new scope.

Caution Exclusion rules are usually required for scopes 
that remove an entire release. 

ccm soad_scope -modify "scope_name"
[-roles role1 role2... roleN]
-object object_spec | -query "query_expression"
[-expansion_rules "expand_rules"]
[-exclusion_rules "exclude_rules"]
[-exclude_query "query_expression"]
336     Rational Synergy Classic CLI Help, Release 7.1



soad_scope command
[-parameters [label1 [|label2 [|label3 [|label4 [|label5 ]]]]]]
[-package_name "package_name"]

5. Verify the updated scope.

ccm soad_scope -show "scope_name"

• Delete a scope.

ccm soad_scope -delete "scope_name"

Related topics

• soad command
Rational Synergy Classic CLI Help, Release 7.1     337



338     Rational Synergy Classic CLI Help, Release 7.1

source command

Synopsis
ccm source filename

Description and uses
The source command executes the Rational Synergy commands found in the file 
filename. The Rational Synergy commands contained in filename should not include 
the "ccm" prefix. The source command is useful for running command sequences that you 
perform frequently.

Options and arguments
filename

Specifies the name of the file that contains the Rational Synergy commands.

Example
• Source the ccm_product_cleanup file, which selects floating products that are not 

being used in the database, then deletes them. (This script requires the user to be in 
the ccm_admin role.)

ccm source ccm_product_cleanup

The ccm_product_cleanup file contains the following commands:

set role ccm_admin 
query -type executable "not is_bound()" 
collapse @ 
query -type library "not is_bound()" 
collapse @ 
set role developer



start command
start command

Synopsis
ccm start [-nogui] [-q] [-d database_pathname] [-f filename] 
          [-h engine_hostname] [-m] [-r initial_role]
          [-p project_spec] [-pw password][-u pathname]
          [-n user_name] (Windows only) [-home homedir]
          [-rc] (UNIX only)

Description and uses
The start command begins a Synergy Classic or CLI session by starting the engine and 
interface. After you enter the appropriate information in the Start dialog or on the 
command line, a progress bar shows the progress of the startup. After the session comes 
up, the Rational Synergy address (CCM_ADDR), which is a unique identifier for this interface 
session, is printed in your ccm_ui.log, in the Message View, and in your command 
window (Windows) or in the shell where you launched the session (UNIX).

If the CLI is is the only session that you are running, all Rational Synergy commands that 
you enter, from any command prompt (Windows) or shell (UNIX), from any machine on 
the local network that has access to your home directory, are executed by this Rational 
Synergy session.

If you set the CCM_INI_FILE environment variable to the path of a ccm.ini file (Windows), 
or .ccm.ini file (UNIX),  that file is used for the startup and subsequent Rational Synergy 
commands.

If you run multiple Rational Synergy sessions, set the CCM_ADDR environment variable to 
specify which session will execute your Rational Synergy commands.

The type of connection used can affect performance. If the Rational Synergy server 
machine runs the engine process (the engine host) through a shared memory connection 
such as ipcshm protocol, you may have better performance compared to a remote 
connection (soctcp or tlitcp protocols).

Note If you are running Synergy Classic or the CLI on a 
UNIX client and do not specify the engine host using the -h 
option on startup, the engine process is started on the local 
machine. For better performance, you can specify to run the 
engine process on the Rational Synergy server machine by 
using ccm start -h server_name

For Windows options and arguments, see Options and arguments (Windows).

For UNIX options and arguments, see Options and arguments (UNIX).
Rational Synergy Classic CLI Help, Release 7.1     339



Options and arguments (Windows)
-d database_pathname

Specifies the absolute database path. The default is defined in your ccm.ini file.

-f filename

Specifies a different ccm.ini file, such as ccm_test.ini. You must use a full path 
name for the alternative initialization file (for example, c:\ccm\new_inits\ccm.ini). 
The path name cannot contain spaces.

-h engine_hostname

Specifies the machine on which the engine will run. 

-home homedir

Specifies the path to the user’s home directory.

-m

Permit multiple sessions. All Rational Synergy commands executed from a command 
prompt in which CCM_ADDR is set will use the interface process specified by that 
address. The address is displayed when the session is started.

For example: set CCM_ADDR=murray:2775

murray:2775 is the CCM_ADDR value that would be displayed when you start your 
session.

Sessions started with this option require that CCM_ADDR be set before you can issue 
any commands.

-n user_name

Allows scripted session startup for a specified user.

-nogui

If -nogui is specified, Rational Synergy starts without GUI support. In this mode, only 
the CLI is available.
340     Rational Synergy Classic CLI Help, Release 7.1



start command
-p project_spec

Specifies the name and version of the startup focus project. If you do not specify a 
startup project, the focus project and project history stack from your previous session 
are loaded automatically by default.

-pw password

Specifies your password. This command is typically used to start sessions for scripting 
when you don’t want the dialog brought up.

-q

Starts session in Quiet mode. When this option is used, these results occur:

• When the Synergy Classic session starts, the Startup screen is not displayed.
• The only output to stdout is the CCM_ADDR of the interface process.

If ESD is enabled, either the username and password must be entered, or the  .ccmrc file 
needs to exist, in order to use this option, or you must configure your Synergy server for 
trusted hosts. For more information on trusted hosts, see the appropriate Administration 
Guide.

-r initial_role

Specifies the role that you are assigned at startup. The specified role must be a role 
permitted for you, or your session will not start.

-u pathname

Specifies the path name to which your database information is copied when you are 
running a remote client session. However, if your PC can access the database path, 
then you can leave this option out.

The default is c:\temp\ccm. You can change this location by using the -u option on 
the start command, or by setting ui_database_dir to the new path in the 
[Options] section of your ccm.ini file.

Examples
• Start Synergy Classic using the specified engine and database.

ccm start -h cwi -d \\dbserver1\ccmdb\myproject

• Start a session in Quiet mode (without bringing up the Splash screen).

ccm start -q -pw password -h engine_hostname -d database_path
Rational Synergy Classic CLI Help, Release 7.1     341



 

For more information about the start command, see Caveats.

Options and arguments (UNIX)
-d database_pathname

Specifies the absolute database path. The default is defined in your .ccm.ini file.

-f filename

Specifies a different .ccm.ini file, such as .ccm_test.ini. You must use a full path 
name for the alternative initialization file (for example, /users/sue/new_inits/
.ccm.ini). The path name cannot contain spaces.

-h engine_hostname

Specifies the machine on which the engine will run. 

-home homedir

Specifies the path to the user’s home directory.

-m

Permit multiple sessions. All Rational Synergy commands executed from a shell in 
which CCM_ADDR is set will use the interface process specified by that address. The 
address is displayed when the session is started.

For example: export ccm ADDR=murray:2775:

murray:2775 is the CCM_ADDR value that would be displayed when you start your 
session.

Sessions started with this option require that CCM_ADDR be set before you can issue 
any commands.

-nogui

If -nogui is specified, Rational Synergy starts without GUI support. In this mode, only 
the CLI is available.

The output of Rational Synergy commands is displayed in your shell.
342     Rational Synergy Classic CLI Help, Release 7.1



start command
-p project_spec

Specifies the name and version of the startup focus project. If you do not specify a 
startup project, the focus project and project history stack from your previous session 
are loaded automatically by default.

-pw password

Specifies your password. This command is typically used to start sessions for scripting 
when you don’t want the dialog brought up.

Sessions that connect across a firewall must specify a valid password using this 
option. If you don’t specify a password, you will be prompted for a password before 
ccm start continues.

-q

Starts session in Quiet mode. When this option is used, the only output to stdout is the 
CCM_ADDR of the interface process.

-r initial_role

Specifies the role that you are assigned at startup. The specified role must be a role 
permitted for you, or your session will not start.

-rc

Specifies that you want to start a session as a remote client. The remote client mode 
will automatically be enabled for Rational Synergy sessions connected across a 
firewall.

A remote client session enables you to access a Rational Synergy database that is 
not visible from the interface—for example, a database that is not NFS-mounted on 
the interface host. (The database must, however, be visible to the engine.)

When you first start a remote client session, some of the database files are copied to a 
local directory called /tmp/ccm/database_path. You can change this location by 
using the -u option on the start command, or by setting ui_database_dir to the new 
path in the [Options] section of your .ccm.ini file.

You use file copies in your work area instead of files symbolically linked to database 
files when you are working in a remote client session.
Rational Synergy Classic CLI Help, Release 7.1     343



-u pathname

Specifies the path name to which your database information is copied when you are 
running a remote client session. This option is used only with the -rc option.

The default is /tmp/ccm. You can change this location by using the /-u option on the 
start command, or by setting ui_database_dir to the new path in the [Options] 
section of your .ccm.ini file.

Examples
• Start Synergy Classic with the default Project View startup.

ccm start

• Start Rational Synergy using the specified engine host and database.

ccm start -h remoteHP -d /mnt/dev/ccmdb/myproject

• Create an alias or use a script with the -q option to start another session and set its 
address.

alias ccmstart  export CCM_ADDR=`ccm start -m -q $*`

OR

#!/bin/sh
export CCM_ADDR=`ccm start -m -q -nogui`

Note: Use this method for Rational Synergy command 
scripts.

Caveats
If you start an additional Rational session and you plan to use the command line, a 
warning message is displayed. Set the CCM_ADDR variable for the new session to the 
address displayed by Rational Synergy start, for example:

set CCM_ADDR=prefect.cwi.com:1368

This causes your Rational Synergy commands to be executed by the new session rather 
than by the session you were already running.

When running as user ccm_root, always use the -m option and always set CCM_ADDR in the 
environment. This enables you to distinguish your ccm_root session from sessions where 
other users are running as ccm_root.

Environment Variables
CCM_ADDR
344     Rational Synergy Classic CLI Help, Release 7.1



start command
Files
ccminit (Windows) or .ccminit (UNIX) -  (set of commands to be executed upon 
startup, for example, alias r update)

ccm_ui.log (user interface log file)

ccm_eng.log (engine log file)

ccm.ini (initialization file - Windows) or .ccmi.ini (initialization file - UNIX)

Related topics

• stop command
Rational Synergy Classic CLI Help, Release 7.1     345



status command

Synopsis
ccm status

Description and uses
The status command displays information for your sessions. The information displayed 
includes the address of each interface process and the database being used. If you are in 
a work area, the name of the current project also is displayed.

Options and arguments
None

Example
• Obtain status on the current user.

ccm status

Rational Synergy sessions for user mary: 
 

Graphical Interface @ toto:2531 (current session) 
Database: /users/mb/devccmdb/test/db 

 
Current project: 'rainbow platform_name 2.2'

• Obtain status on sessions running.

choochoo[121]: ccm status

Rational Synergy sessions for user npoulin:
 

Graphical Interface @ choochoo:34721:192.187.201.84
Database: /vol/dbserver.2/ccmdb/test_ccm51new

 
command Interface @ choochoo:34732:192.187.201.84
Database: /vol/dbserver.2/ccmdb/test_ccm51new

 
command Interface @ choochoo:34749:192.187.201.84
Database: /vol/dbserver.2/ccmdb/test_ccm51new
346     Rational Synergy Classic CLI Help, Release 7.1



status command
• Obtain status when no sessions are running.

choochoo[131]: ccm status
Rational Synergy sessions for user mary:

 
        No sessions found.

Related topics

• monitor command
Rational Synergy Classic CLI Help, Release 7.1     347



348     Rational Synergy Classic CLI Help, Release 7.1

stop command

Synopsis
ccm stop|quit

Description and uses
The stop command ends a Rational Synergy session. 

Options and arguments
None

Example
• Stop the current Rational Synergy session.

ccm stop

Related topics

• start command



sync command
sync command

Synopsis
ccm sync [-r|-recurse] [-nr|-no_recurse]
         [-p|-project] project_spec [project_spec...]

Description and uses
The sync command creates or updates a work area for a project. The default directory in 
which all project work areas are created is ccm_wa followed by the database name in 
your home directory. Use the sync command to force a synchronization of the work area.

Note Only a build manager or a user in the ccm_admin role 
can sync a non-writable project.

Your work area is created automatically when you create a project and when you check 
out a project using the check out commands. As you add new members to your project, 
your work area is updated automatically.

You will need to force a sync of your work area in the following cases:

• If you "clean out" (delete) any or all objects in your work area

When you force a sync, only the necessary (controlled) objects from your database 
are written out to your work area.

• If the work_area command fails while changing your work area path

When you change your work area path using the work_area command, the Work 
Area Properties dialog, or by moving the project, Rational Synergy will try to update 
your work area path to the new location. If another application is using the old work 
area path, the move will fail and you will need to synchronize your work area.

• If you change your work area type from one that uses local copies to one that uses 
symbolic links (or vice-versa)

If you want to change your work area type, do the following:

1. Reconcile the work area that you are currently using (either local copies or 
symbolic links).

2. Delete the work area objects from the file system.

3. Set your work area path and options.

4. Start a new session using the client option of choice (either local copies or 
symbolic links).

5. Re-create your work area by forcing a sync (execute the sync command).
Rational Synergy Classic CLI Help, Release 7.1     349



If the work area already exists for a project and is the same type, you can use the 
reconcile command to update that work area (for example, after working disconnected 
from your database). The reconcile command is similar to the sync command, but has 
more conflict handling options.

Options and arguments
Note To stop a sync from the CLI, enter CTRL+C at any time.

Whenever you perform a sync from the CLI with a Project 
View open (Synergy Classic), the Work Area Update 
Status dialog is displayed.

To stop the sync, click the Work Area Update Status 
dialog’s Stop button.

If you stop the sync, you will receive an error message 
stating that errors may occur in your work area. The errors 
will not occur until you try to use the work area; to avoid 
problems, perform a complete synchronization of the work 
area before you use it.

-nr|-no_recurse

Do not recurse the project hierarchy during the project sync. Synchronize only the 
specified project.

-p|-project project_spec [project_spec...]

Specifies the project that you want to synchronize.

-r|-recurse

Causes all objects in the project hierarchy to be sync’d along with the specified 
project. This is the default.

-s|-static

Updates an already-existing static work area with current data from the database (a 
static work area is a local copy of the work area for a static subproject). In addition, 
updates all static work areas in the hierarchy for which the ccm sync command was 
issued. This allows you to fully synchronize all static work areas in the hierarchy by 
using one command. If no static work area exists in the hierarchy, this option is 
ignored.
350     Rational Synergy Classic CLI Help, Release 7.1



sync command
Example

• Synchronize the work area for toolkit-mary and its subprojects.

ccm sync -recurse -project toolkit-mary

• Create a work area for the specified project.

ccm sync -p ico_aug1-1

Defaults
You can set the following related options in your ccm.ini file (Windows) or .ccm.ini 
file (UNIX):

• save_to_wastebasket

• wastebasket

• wa_path_template

• sync_output

Related topics

• reconcile command

• resync command 

• work_area command
Rational Synergy Classic CLI Help, Release 7.1     351



task command

Synopsis

Assign a Task
ccm task -as|-assign task_specs -t|-to resolver -q|-quiet

Associate a Task with Objects, Existing Tasks, or Change Requests
ccm task -a|-associate|-relate task_spec
         {[-obj|-object file_spec [file_spec...]] | [-fixes task_spec] |
         [-cr|-change_request|-problem]  change_request_spec]}

Break a Relationship of a Task to Objects, Existing Tasks, or Change 
Requests
ccm task -d|-disassociate|-unrelate task_spec
         {[-obj|-object file_spec [file_spec...]] | [-fixes task_spec] | 
         [-change_request|-problem]  change_request_spec]}

Complete a Task
ccm task -complete|-ci|-checkin task_spec|default
         [-c|-comment "string"]
         [-time|-time_actual task_duration] -y

Copy a Task
ccm task -cp|-copy -s|-synopsis "string"
         [-rel|-release release]
         [-p|-priority priority]
         [-r|-resolver resolver]
         [-sub|-subsystem subsystem]
         [-plat|-platform platform]
         [-time|-time_estimate time_estimate]
         [-date date_estimate] [-no_objects]
         [-register]
         [-description "description"]
         [-descriptionedit]
         [-descriptionfile file_path]
         [-def|-default] [-q|-quiet]
         task_specs
352     Rational Synergy Classic CLI Help, Release 7.1



task command
Create a Task
ccm task -cr|-create -s|-synopsis "string"
         [-p|-priority priority]
         [-plat|-platform platform]
         [-r|-resolver resolver]
         [-rel|-release release]
         [-sub|-subsystem subsystem]
         [-time|-time_estimate time_estimate]
         [-date date_estimate]
         [-description "description"]
         [-descriptionedit]
         [-descriptionfile file_path]
         [-def|-default] [-q|-quiet]

Fix a Task
ccm task -fix -s|-synopsis "string"
         [-rel|-release release]
         [-p|-priority priority]
         [-r|-resolver resolver]
         [-sub|-subsystem subsystem]
         [-plat|-platform platform]
         [-time|-time_estimate time_estimate]
         [-date date_estimate] [-register]
         [-exclude]
         [-description "description"]
         [-descriptionedit]
         [-descriptionfile file_path]
         [-def|-default] [-q|-quiet]
         task_specs

Modify Task
ccm task -mod|-modify
         {[-p|-priority priority]
         [-plat|-platform platform]
         [-r|-resolver resolver]
         [-rel|-release release]
         [-s|-synopsis "string"]
         [-sub|-subsystem subsystem]
         [-time|-time_estimate time_estimate]
         [-date|-date_estimate date_estimate]}
         [-description "description"]
         [-descriptionedit]
         [-descriptionfile file_path]
         task_specs -q|-quiet
Rational Synergy Classic CLI Help, Release 7.1     353



Query for Tasks
ccm task -qu|-query query_spec
         [-f|-format "format_string"] [-ns|-no_sort] [-u]
         [-in_rel|-in_release] [old_project_spec] project_spec
         [-not_in_rel|-not_in_release] project_spec

Relate a Task to Objects, Tasks
ccm task -rel|-relate task_spec
         {[-obj|-object file_spec[ file_spec...]] | [-fix task_spec]}

Set or Clear the Current (Default) Task
ccm task -def|-default [task_spec|None]

Show Task Information
ccm task -sh|-show
         { i|info|information [-v|-verbose]| obj| objs| objects |
          -fix| -related [-all] | fixed_by | [-v|-verbose]}
         [-f|-format "format_string"] [-ns|-no_sort] [-u] task_specs
ccm task -sh|-show
         {p|priority |
         plat|platform |
         r|resolver |
         rel|release |
         s|synopsis |
         sub|subsystem |
         time|time_estimate |
         date|date_estimate |
         description | 
         status_log
         cr|change_request|change_requests|prob|problem|problems}
         task_specs

Transition a Task to a Different State
ccm task -st|-state task_assigned | completed | excluded
         [-r|-resolver resolver]|
         [-description "description"]
         [-descriptionedit]
         [-descriptionfile file_path]
         task_specs
354     Rational Synergy Classic CLI Help, Release 7.1



task command
Unrelate a Task from Objects, Tasks
ccm task -unrelate task_spec
         {[-obj|-object file_spec[ file_spec...]] |
         [-fix task_spec]}

Description and uses
Use the task command to perform the following task-based operations:

• Assign a task

• Associate a task with objects, another task, or a change request

• Complete (check in) a task

• Copy a task

• Create a task

• Disassociate a task from objects, another task, or a change request

• Fix a task

• Modify a task

• Query for tasks

• Create (relate) or break (unrelate) relationships between a task and tasks, or objects

• Set or clear the current (default) task

• Show task information

• Transition a task to a different state

Options and arguments
-a|-associate

Associates the specified task with one or more tasks, objects, or change requests.

Use this command to fix a task with an existing task. To fix a task with a new task, see  
-fix.

The task with which you are associating objects or another task must be assigned and 
writable by you. When associating a change request, the change request must be 
writable by you and must be in a state that allows the association of tasks.

If the command is successful, the return value is 0; otherwise, the return value is non-
zero.
Rational Synergy Classic CLI Help, Release 7.1     355



-as|-assign

Assign the one or more specified tasks to a resolver.

You must be working as an assigner or as PT administrator to use this option. 

Use -quiet with this option to reduce the number of output messages displayed.

If the command is successful, the return value is 0; otherwise, the return value is non-
zero.

-c|-comment "string"

Enables you to add string as a comment to the task and associated objects you are 
checking in.

-cr|-change_request|-problem

Specifies the IDs of the change request on which you are performing an operation. For 
this argument’s syntax, see Change request specification. Change request 
specifications can be separated by a comma or white space.

-ci|-checkin

Checks in either the current (default) task or the specified tasks. Note that "check in a 
task" is now called "complete a task" in Rational Synergy.

If you use the -y option and the task you are checking in is not associated with any 
objects, the confirmation message is suppressed.

If the command is successful, the return value is 0; otherwise, the return value is non-
zero.

-complete

Completes the current (default) task or the specified tasks. If you use the -y option 
and the completed task is not associated with any objects, the confirmation message 
is suppressed.

If the command is successful, the return value is 0; otherwise, the return value is non-
zero.
356     Rational Synergy Classic CLI Help, Release 7.1



task command
-cp|-copy

Enables you to copy a task. Copy a task when you need to apply a task that you fixed 
for the release to a different release. The copied task and the original task might have 
the same associated objects, different associated objects, or a combination.

The description of the copied task is not copied from the source task. Use -
description or -descriptionfile to add a task description. Use -
descriptionedit to bring up a text editor. 

Use -no_objects if you do not want the objects associated with the source task to be 
associated with the copied task. Use -register to set the copied task’s state to 
registered. Use -resolver to specify which user will complete the copied task.

By default, if you do not specify -register, the task is assigned to the same user as 
the source task or to the user specified by the -resolver option.

Use -quiet to reduce the number of output messages displayed.

-cr|-create

Enables you to create a task with the specified properties.

Use -description or -descriptionfile to append text to the existing task 
description. Use -descriptionedit to bring up a text editor displaying the existing 
task description. Use -quiet to reduce the number of output messages displayed.

If the command is successful, the return value is 0; otherwise, the return value is non-
zero.

-date|-date_estimate date_estimate

Enables you to estimate the date that the task will be be completed.

You can use this option only with the -create, -copy, -fix, or -modify option.

The -show option also can have a value of "date_estimate" (without the dash).
Rational Synergy Classic CLI Help, Release 7.1     357



-def|-default

Enables you to set the current (default) task to the specified task number, to None, or 
to display the current task. Note that the default task is now called the current task in 
Rational Synergy.

When you use this option with the -create option, the new task is created, assigned 
to you, then set as the current task for the current  Synergy Classic session. If you use 
the -resolver option to assign the task to another user, you will receive an error 
message and the task will not be created.

If the command is successful, the return value is 0; otherwise, the return value is non-
zero.

Note Any current task you select must be in the assigned 
state and you must be the task’s resolver.

If a current task is not set and you enter  -default, you will receive a message 
stating that the default is not set. The return value from this command is 1 when the 
current task is not set.

-description "description"

Enables you to add a task description.

-descriptionfile file_path

Enables you to write a task description.

-descriptionedit

Brings up a text editor that displays the task description.

-d|-disassociate

Disassociates the specified task or change request from one or more tasks, or 
objects. Use this command to break the relationship with an existing task.

The task from which you are disassociating must be writable by you.

If the command is successful, the return value is 0; otherwise, the return value is non-
zero.
358     Rational Synergy Classic CLI Help, Release 7.1



task command
-fix

Creates a task and establishes a relationship between it and the task to be fixed; 
breaks a relationship between a task and the task it fixed.

Creating a fix task creates a relationship between the tasks. This enables Rational 
Synergy to detect when a project is using one task without the other. (This is called a 
conflict.) For information on conflicts, see conflicts command.

Use this command to fix a task by creating a relationship with a fix task.

To fix a task with an existing task, see  -relate or  -a|-associate option (both 
commands do the same thing; use -relate when possible). If the fix task contains a 
bug, create a new fix task to fix the first fix task.

Additionally, you can break a task relationship by using the -unrelate option. Break a 
fix relationship between two tasks when the fix relationship was set up incorrectly.

The following outlines task requirements for creating a fix relationship:

• Tasks related to each other can be from different databases.
• Tasks to be fixed must be in either the completed or excluded state.
• A fix task must be modifiable by the user establishing the relationship.
• A task can only fix one task.

The description of the fix task is not copied from the source task. Use -description or -
descriptionfile to write a task description. Use -descriptionedit to bring up a text 
editor.

Use -exclude to set the state of the fix task to excluded. Use -register to set the 
state of the fix task to registered. Use -resolver to specify which user will complete 
the fix task.

By default, if you do not specify -register, the task is assigned to the same user as 
the source task or to the user specified by the -resolver option.

Use -quiet to reduce the number of output messages displayed.
Rational Synergy Classic CLI Help, Release 7.1     359



See the  -modify, -associate, or -disassociate commands to change values (that 
is, synopsis, resolver, platform, release, etc.).

-fixes

When used with -associate|-relate, establishes a relationship between two 
existing tasks;  when used with -disassociate|-unrelate, deletes a relationship 
between two existing tasks.

-f|-format "format_string"

Specifies the command’s output format. The default format depends on the other 
options you use with -format (that is, -query or -show) and those options’ keyword 
arguments. See the options’ descriptions for their default output formats.

The required string uses keywords and literal text, such as:

    %displayname %owner

A keyword can be built-in (%fullname, %displayname, %objectname) or the name of 
any existing attribute such as %modify_time or %status.

See Built-In keywords for a list of keywords.

-in_rel|-in_release [old_project_spec] project_spec

Shows all tasks that are in the project hierarchy with project_spec as its root. This is 
determined by getting all tasks for all objects in the hierarchy, and for all their 
ancestors, subtracting the similar list of tasks for the hierarchy with 
old_project_spec as its root.

If old_project_spec is not specified, no tasks are subtracted. You should specify  
old_project_spec except for the first release of the product, when there is no 
baseline release. 

-m|-modify

Enables you to change a task property using any combination of the following sub 
options:

-s|-synopsis "synopsis" 
-p|-priority priority 
-r|-resolver resolver 
-sub|-subsystem subsystem 
360     Rational Synergy Classic CLI Help, Release 7.1



task command
-plat|-platform platform 
-time|-time_estimate time_estimate 
-date|-date_estimate date_estimate 
-rel|-release release 
-q|-quiet 
task_specs

Use -description or -descriptionfile to append text to the existing task 
description. Use -descriptionedit to bring up a text editor, displaying the existing 
task description. Use -quiet with this option to reduce the number of output 
messages displayed.

The -modify option accepts multiple sub options.

If the command is successful, the return value is 0; otherwise, the return value is non-
zero.

-not_in_rel|-not_in_release project_spec

Shows all tasks that are marked for a release but are not included in that release. This 
is determined by getting a list of completed tasks whose release matches the release 
of project_spec and subtracting all tasks for all objects in the hierarchy and their 
ancestors.  

-ns|-no_sort

Do not sort the command’s output.

-obj|-object file_spec[ file_spec...]

Specifies the name of the file or directory that is a member of the project.

If you specify more than one file_spec, you must leave at least one space between 
the file specifications.

You can use a selection set as an argument to this option if you are using the -
associate or -disassociate option.

-p|-priority priority

Specifies the priority of the task you are creating. The priority can be high, medium, 
low, or any.
Rational Synergy Classic CLI Help, Release 7.1     361



You can use this option only with the -create or -modify option.

-plat|-platform platform

Specifies the platform to which the change associated with the task applies. The 
platform choices are defined in the CCM_HOME\etc\om_hosts.cf file (Windows) or 
$CCM_HOME/etc/om_hosts.cf file (UNIX). If a task applies to multiple platforms, you 
should not set a platform value on the task.

You can use this option only with the -create or -modify option.

-problem

See -cr|-change_request|-problem.

-qu|-query query_spec

Displays the tasks that are found by the query performed using query_spec. 
Executing this command with the -format option populates a selection set with the 
tasks listed in the output.

You can control the format of the output by using the -format option. The default 
format is:

    Task %nnnn: %task_synopsis

You can control the format of the output by using the dbid option to query a database 
other then your own.  

    Task %dbid#nnnn: %task_synopsis

where dbid is the Database ID, # is the DCM delimiter, and nnnn is the task number.

The syntax for query_spec is:

[-cus|-custom query_expression] 
[-db|-database_id database_id] 
[-plat|-platform platform] 
[-rel|-release release] 
[-sub|-subsystem subsystem] 
[-ts|-scope|-task_scope task_scope]

where task_scope is one of the following:
362     Rational Synergy Classic CLI Help, Release 7.1



task command
user_defined 
all_my_assigned 
all_my_completed 
all_my_tasks 
all_completed 
all_tasks

If you do not specify -subsystem, -release, -platform, or -database_id, they are 
assumed to have the value Any.

query_expression is the same as the query_expression for the query command 
command.

-q|-quiet

Reduces the number of output messages that are displayed.

-relate

Create a relationship between the specified task and one or more tasks, or objects.

Use this command to fix a task with an existing task. To fix a task with a new task, see   
-fix.

The task with which you are associating objects must be writable by you.

Use the -fix option to use an existing task to fix a task. Use the -object option to 
associate an object to the task.

If the command is successful, the return value is 0; otherwise, the return value is non-
zero.

-rel|-release release

Specifies the release to which the change associated with the task applies. You can 
view release choices by using the ccm release command.

You can use this option only with the -create or -modify option.
Rational Synergy Classic CLI Help, Release 7.1     363



-r|-resolver resolver

Specifies which user is responsible for resolving the task. You can specify any one of 
the database users.

You must be working as the assigner or as the PT administrator to use this option. 

You can use this option only with the -create or -modify option, and the task must be 
writable by you. If you use this option when you create or modify a task, the task is 
automatically assigned to the resolver that you specify.

-s|-synopsis "string"

Describes the task and is required. The string must be enclosed in quotes.

You can use this option only with the -create or -modify option.

-sh|-show

Shows the properties of the specified tasks. When you use this option with the info, 
objs, or prob keywords or their variants, a selection set is populated with the folders, 
objects, projects, and tasks listed in the output. Additionally, the info keyword will 
show tasks that are fixed by the current task and the tasks that the current task fixes.

Use the -f option to change the command’s output format. Use -u to suppress 
automatic numbering of the output and -ns to suppress sorting.

Use -show with the  -fix option to display the task that the current task fixes. Use -
show with the fixed_by option to display the tasks that fix the current task. Use -show 
with the related option to display a list of completed tasks that fix or are fixed by the 
task. The tasks that fix and are fixed by tasks that are directly related are also 
displayed. To display tasks of all statuses, use the -all option with -show related. 

You can use one of the following keywords if you are using the -format option:

i|info|information 
obj|objs|objects 
cr|change_request|change_requests|prob|problem|problems

 Use -show info with the -verbose option to display all associated tasks and objects 
affected by the specified task. Use -show info with the -description option to 
display the task_description attribute of the tasks specified by task_spec. Use -
364     Rational Synergy Classic CLI Help, Release 7.1



task command
show info with the -status_log option to display the status_log attribute of the 
tasks specified by task_spec.

The default output format for task -show information is:

    Task %displayname: %task_synopsis

    

where:

    %displayname is %name if DCM is not enabled, and 
    <database_ID><DCM_delimiter>%name if DCM is enabled. 
    %task_synopsis is a description of the task.

These lines are followed by additional information on some of the task’s properties.

The default output format for task -show objects is:

    %objectname %status %owner

where:

    %objectname is the object’s name-version:type:instance. 
    %status is the status of the object. 
    %owner is the owner of the object.

You also can show task properties using one of the following keywords if you are not 
using the -format option:

cr|change_request|change_requests|prob|problem|problems 
p|priority 
plat|platform 
r|resolver 
rel|release 
s|synopsis 
sub|subsystem 
time|time_estimate

If the command is successful, the return value is 0; otherwise, the return value is non-
zero.
Rational Synergy Classic CLI Help, Release 7.1     365



-sub|-subsystem subsystem

Specifies the subsystem to which the task belongs (for example, Any, GUI code, CLI 
code, or documentation). If the subsystem specification contains spaces, you must 
enclose it in quotes.

You can use this option only with the -create or -modify option.

-st|-state task_assigned | completed | excluded

Enables a developer to transition a task from the completed state to the excluded 
state and from the excluded state to the completed state if he is the resolver of the 
task. Enables a build manager, a PT administrator, or a user in the ccm_admin role to 
transition a task from the completed state to the excluded state and from the excluded 
state to the completed state.

You can use the -resolver resolver option only if you use the -state 
task_assigned option.

-t|-to resolver

Specifies the resolver to which you are assigning one or more tasks.

If you use this option with the -assign option, the task must be writable by you. 

task_spec

Specifies the IDs of the tasks on which you are performing an operation. For this 
argument’s syntax, see Task specification. Task specifications can be separated by a 
comma or white space.

Note You can specify the name of a file containing a 
task_spec wherever you can specify task_spec.

-time|-time_actual task_duration

Enables you to specify the actual time required to complete the task.

You can use this option only with the -checkin option.

-time|-time_estimate time_estimate

Enables you to specify the estimated time required to complete the task.
366     Rational Synergy Classic CLI Help, Release 7.1



task command
You can use this option only with the -create or -modify option.

-u

Suppresses automatic numbering of this command’s output ("un-numbered").

-unrelate

Breaks the relationship between the specified task and one or more tasks, or objects.

The task from which you are disassociating tasks, or objects must be writable by you.

Use the -fix option to break the relationship between an existing task and the task 
that fixed it.

If the command is successful, the return value is 0; otherwise, the return value is non-
zero.

-y

Suppresses a confirmation message when you are completing a task and the task is 
not associated with any objects.

Related topics

• task examples
Rational Synergy Classic CLI Help, Release 7.1     367



task examples
View examples for the following operations:

• Associate a Task

• Assign a Task

• Complete (Check In) a Task

• Copy a Task

• Create a Task

• Disassociate a Task from Objects

• Disassociate a Task from a Change Request

• Fix a Task

• Modify Task

• Query for Tasks

• Set or Clear the Current (Default) Task

• Show Task Information

• Transition a Task

Associate a Task
• Associate task 17 with the object MAIN.C-3:csrc:1.

ccm task -a 17 -obj MAIN.C-3:csrc:1

• Associate task 54 with change request D#1231.

ccm task -associate 54 -change_request D#1231

Assign a Task
• Assign tasks 54, 60-63, and 74 to user lseyer.

ccm task -as 54,60-63,74 -to lseyer

Assigned task 54 
Assigned task 60 
Assigned task 61 
Assigned task 62 
Assigned task 63 
Assigned task 74
368     Rational Synergy Classic CLI Help, Release 7.1



task examples
Complete (Check In) a Task
• Check in all of the objects associated with task 40.

ccm task -checkin 40 -comment "The problem is fixed."

Object version is already associated with task. 
Archiving CALC.H-4:source 
Checked in 'CALC.H-4' to 'integrate' 
Object version is already in the 'integrate' state: 'CALC.C-6' 
Object version is already associated with task. 
Archiving MSGS.H-5:source 
Checked in 'MSGS.H-5' to 'integrate' 
Summary: 
1  skipped 
2  succeeded 
0  failed 
Task '40' checked in.

• Complete the current task (check in the default task).

ccm task -ci default

Copy a Task
• Copy task 40, but give it a new synopsis, release, resolver, and description, and 

specify not to copy over the objects associated with it.

ccm task -copy 40 -synopsis "Fix GUI color problem" -release 2.0 -
resolver bob -no_objects -description "check RGB module"

Task hawaii#50 created.

Create a Task
• Create a new task with the synopsis (name) Entanglement methods.

ccm task -create -synopsis "Entanglement methods"

Task 44 created.

Disassociate a Task from Objects
• Disassociate task 35 from object version MAIN.C-3:csrc:1.

ccm task -d 34 -obj MAIN.C-3:csrc:1

Disassociated object version from task 34: MAIN.C-3:csrc:1
Rational Synergy Classic CLI Help, Release 7.1     369



Disassociate a Task from a Change Request
• Disassociate task 10668 from change request 6569.

ccm task -d 10668 -change_request 6569

Fix a Task
• Create a relationship between the fix task (19) and the task to be fixed (4).

ccm task -relate 19 -fixes 4

• Break a relationship between the fix task (25) and the task it fixed (12).

ccm task -unrelate 25 -fixes 12

Modify Task
• Change task 68’s release to 4.1.

ccm task -modify -release 4.1 68

Changed release of task 68

Query for Tasks
• Query for the tasks that have a release value set to 3.0. Format the output so that it 

shows only the task synopsis.

ccm task -qu -rel 3.0 -f "%priority %task_synopsis"

1) high  Correct formatting of calculating number 
2) high  Redesign gui for file open dialog 
3) high  Performance improvement for file close 
4) low   Enhance message text

Set or Clear the Current (Default) Task
• Show the current (default) task.

ccm task -default

The current task is not set.

• Set the current (default) task.

ccm task -default 26

The current task is set to: 
26:  Close box no longer active

• Clear the current (default) task.

ccm task -default None
370     Rational Synergy Classic CLI Help, Release 7.1



task examples
The current task has been cleared.

Show Task Information
• Show information on task 31.

ccm task -show info 31

Task:    31 
 Synopsis:   Wrong window receives message 
 State:      completed 

 
 Resolver:        john 
 Release:         3.1 
 Priority:        high 
 Subsystem:       <Uninitialized> 
 Platform:        <Uninitialized> 
 Database Id:     M 

 
Task Description: 
The wrong window receives the event message when users abort an 

operation. Currently, the Show window receives the abort message. The Home 
window should receive this message. 
 
Status Log: 
Mon Aug 16 15:57:09 1999: Status set to ’registered’ by mary in role 
assigner 
Mon Aug 16 15:57:14 1999: Status set to ’task_assigned’ by mary in role 
assigner 
Tue Aug 17 11:16:55 1999: Status set to ’completed’ by bill in role 
developer 

• Show formatted information on tasks 30 - 33.

ccm task -show info 30-34 -format "%priority %30-33 %task_synopsis" -
ns 
 
1) high 33  Date field not validated on Inventory Form 
2) high 41  Wrong window receives message 
3) high 22 Saving a file takes forever  
4) low 39  Button icons are rather obscure 
5) low 4  OK button not default

• Show the change requests associated with task 68.

ccm task -show change_request 68 
 

1) Change request 5 
2) Change request 6
Rational Synergy Classic CLI Help, Release 7.1     371



• Show the objects associated with tasks 4 and 5.

ccm task -show objects 4,5 
 

1) MAIN.C-2:csrc:1  integrate  john 
2) MAIN.H-4:incl:1  integrate  john 
3) UTIL.C-7:csrc:1  integrate  john 
4) MSGS.H-9:incl:1  integrate   john

Transition a Task
• Transition a task from completed to excluded.

ccm task -state excluded 94 
 

Changed state of task KJG461#94 to excluded

• Transition a task from excluded to completed.

ccm task -state completed 94 
 

Changed state of task KJG461#94 to completed
372     Rational Synergy Classic CLI Help, Release 7.1



Rational Synergy Classic CLI Help, Release 7.1     373

type command

type command
The type command is an alias for the cat command. 



typedef command

Synopsis
ccm typedef type_name -d|-description type_description
            -s|-super_type super_type_name
            [-f|-file_extension file_extensions]
            [-fw file_extensions] [-fu file_extensions]
            [-mm match_regular_expressions]
            [-mmw match_regular_expressions]
            [-mmu match_regular_expressions]
            [-mi TRUE|FALSE]
            [-miw TRUE|FALSE] [-miu TRUE|FALSE]

ccm typedef -i|-import type_name [-image] -dir from_path [-force]
ccm typedef -e|-export type_name -dir to_path [-force]
            [-ef|-export_format export_format]

Description and uses
Use the typedef command to add new types and update existing types in the current 
database. If you specify migrate rules for the type, these are stored as part of the type 
definition and are used for any automatically generated rules. When you create a new 
type, Rational Synergy automatically creates and stores its corresponding migration rules.

When you use the -i option, this command imports the specified type from the file system 
into the database. It must be a type that was previously exported from a Rational Synergy 
database using the -e option.

The -e option exports the specified type from the database into the file system. The 
directory to which you export the type must exist already, and must be writable by 
ccm_root.

You must be working as a type developer to use the typedef command.

Options and arguments
-d|-description type_description

Describes the type being added. If the description contains spaces, enclose the 
description in quotes.

-dir from_path|to_path

Specifies the full path to the directory from which the type is imported, or to which the 
type is exported. If the path contains spaces, enclose it in quotes.

-e|-export type_name

Exports the specified type from the database into the file system.
374     Rational Synergy Classic CLI Help, Release 7.1



typedef command
If you do not specify the -force option and the path is already populated, the path is 
not updated. If you specify the -force option, the exported representation of the type 
is overwritten.

-ef|-export_format export_format

Specifies that the export_format is either XML or CCM45SP2. The default is XML. If the 
format is XML, the type definition is represented as a single XML file named type.xml. 
This file contains the definition of the cvtype object and any attype object.

-f|-file_extension file_extensions

Specifies the default file extensions for the type. Use   -f ""   for no file extension.

-force

Forces an existing type to be overwritten with the new type, and adds any new 
attributes. You can use this option only with the -import and -export options.

Note Use the -image option, instead, if you want to remove 
attributes from an existing type because those attributes are 
not present in the new type.

-fu file_extensions

Specifies the type’s default file extensions for use with a UNIX client. This is a list of 
one or more file suffixes separated by at least once space. Begin each suffix with a 
period (’.’).

-fw file_extensions

Specifies the type’s default file extensions for use with a Windows client. This is a list 
of one or more file suffixes separated by at least once space. Begin each suffix with a 
period (’.’).

-g

Brings up the appropriate dialog.

-i|-import type_name

Imports the specified type from the file system into the database.

Note To import into an existing type, the type must be 
visible to the engine. You also must use either the -force 
option or the -image option to overwrite the existing type.
Rational Synergy Classic CLI Help, Release 7.1     375



Caution If you import using the -force or -image option, 
the changes apply to all objects of the specified type in the 
database.

-image

Replaces all attributes, for all objects of the specified type, with the attributes in the 
import directory. New attributes are added, changed properties are replaced, and 
deleted attributes are removed from the database. You can use this option only with 
the -import option.

-mi TRUE|FALSE

Specifies, for the current client, whether objects of the specified type should be 
ignored on Migrate. A value of TRUE means ignore, a value of FALSE (default) means 
don’t ignore. 

-miu TRUE|FALSE

Specifies, for the UNIX client, whether objects of the specified type should be ignored 
on Migrate. A value of TRUE means ignore, a value of FALSE (default) means don’t 
ignore. 

-miw TRUE|FALSE

Specifies, for the Windows client, whether objects of the specified type should be 
ignored on Migrate. A value of TRUE means ignore, a value of FALSE (default) means 
don’t ignore. 

-mm match_regular_expressions

Specifies, for the current client, any regular expressions that should be used for file 
matching in the migrate rules. The value should be a list of one or more regular 
expressions separated by one or more spaces. See Migration rules for further 
information on regular expressions.

-mmu match_regular_expressions

Specifies, for the UNIX client, any regular expressions that should be used for file 
matching in the migrate rules. The value should be a list of one or more regular 
expressions separated by one or more spaces. See Migration rules for further 
information on regular expressions.
376     Rational Synergy Classic CLI Help, Release 7.1



typedef command
-mmw match_regular_expressions

Specifies, for the Windows client, any regular expressions that should be used for file 
matching in the migrate rules. The value should be a list of one or more regular 
expressions separated by one or more spaces. See Migration rules for further 
information on regular expressions.

-s|-super_type super_type_name

Specifies the super type of the type being added – that is, the type from which it 
should inherit its characteristics. Use the show command to list the types defined in 
the database.

Examples
• Create an object type for HTML files, with its characteristics inherited from the ascii 

super type, and with a .html extension for the current type of Rational client.

ccm typedef html -d "Hypertext Markup Language" -s ascii -f ".html"

• Create an object type for JPEG files, with its characteristics inherited from the binary 
type, and with .jpeg, .jpg, and .jpe suffixes for both Windows and UNIX clients.

ccm typedef jpeg -d "JPEG Image" -s binary -fw ".jpeg .jpg .jpe" -fu 
".jpeg .jpg .jpe"

• Create an object type for listing files, with: 1) Its characteristics inherited from the ascii 
type, 2) “.lst” suffix on Windows, 3) “.lis” suffix on UNIX, and 4) Ignore by default on 
Migrate on UNIX clients:

ccm typedef list -d "Listing file" -s ascii -fw ".lst” -fu ".lis" -miu 
TRUE

• Create an object type for MS word documents, with: 1) Its characteristics inherited 
from the binary type, and 2) A migrate match rule that recognizes .doc and .dot 
suffixes on Windows clients:

ccm typedef msword -d "MS Word" -s binary -mmw ".*[Dd][Oo][CcTt]"

• Windows: 
Export the pascal type from the current database to the c:\ccm\exported types 
directory.

ccm typedef -export pascal -dir "c:\ccm\exported types"

UNIX: 
Export the pascal type from the current database to the /mnt/ccm/exported types 
directory.

ccm typedef -export pascal -dir "/mnt/ccm/exported types" 
Rational Synergy Classic CLI Help, Release 7.1     377



• Windows: 
Import the fmdoc type into the current database from the c:\ccm\types_to_import 
directory.

ccm typedef -import fmdoc -dir c:\ccm\types_to_import

UNIX: 
Import the fmdoc type into the current database from the /mnt/ccm/
types_to_import directory.

ccm typedef -import fmdoc -dir /mnt/ccm/types_to_import

Caveat
You cannot change built-in types using the typedef command.
378     Rational Synergy Classic CLI Help, Release 7.1



Rational Synergy Classic CLI Help, Release 7.1     379

unalias command

unalias command

Synopsis
ccm unalias alias_name

Description and uses
The unalias command removes a defined alias.

Using the unalias command removes an alias for the current session only. 

Options and arguments
alias_name

Specifies the name of the alias you want to remove.

Example
Unalias the getf command.
ccm unalias getf

Related topics

• alias command



380     Rational Synergy Classic CLI Help, Release 7.1

unrelate command

Synopsis
ccm unrelate -n|-name rel_name -f|-from file_spec1
             -t|-to file_spec2

Description and uses
The unrelate command deletes a relationship, rel_name, between file_spec1 and 
file_spec2.

More relationships are predefined in Rational Synergy. See Relationships for a table of 
these relationships. However, you can define new relationships using the relate 
command.

To delete the relationship between two objects, you must include all three object 
specifications (defined below).

Options and arguments
-f|-from file_spec1

Deletes the relationship(s) originating with file_spec1.

-n|-name rel_name

Deletes the relationship(s) designated by rel_name.

-t|-to file_spec2

Deletes the relationship(s) to file_spec2.

Example
Delete the successor relationship from clear.c-2 to clear.c-1:

ccm unrelate -n successor -f clear.c-1:csrc:1 -t clear.c-2:csrc:1

Related topics

• relate command



Rational Synergy Classic CLI Help, Release 7.1     381

undo_reconfigure command

undo_reconfigure command
The unreconf|undo_reconfigure command is an alias for the undo_update command.



undo_update command

Synopsis
ccm unupd|undo_update|unreconf|undo_reconfigure
                       [-v|-verbose] [-r|recurse] file_spec
ccm unupd|undo_update|unreconf|undo_reconfigure
                       [-v|-verbose] [-r|-recurse]
                       -p|-project project_spec
ccm unupd|undo_update|unreconf|undo_reconfigure
                       [-v|-verbose] [-r|-recurse]
                       -pg|-project_grouping project_grouping_spec

Description and uses
The undo_update command reverses the update (reconfigure) operation for a specified 
directory or project object.

By default and for performance purposes, the undo_update command does not provide 
parallel version notification when it encounters parallel object versions. You can enable 
parallel version notification by setting the reconfigure_parallel_check user option to TRUE 
in your initialization file.

The undo update process stops if an individual operation within the undo fails. For 
example, if the current version of an object has a work area conflict, the process stops and 
the new version is not automatically used. This is done to protect the data in the user’s 
work area. 

The default setting to stop the undo update can be changed by modifying your initialization 
file. Some users may want to continue with the undo update process, even though an 
individual failure has occurred. You can set update to continue by setting the 
reconf_stop_on_fail option to False.

The undo_update command can be used to reverse the last undo update operation. In 
other words, if two or more undo updates are performed, only the last one will be 
reversed.

Options and arguments
file_spec

Specifies the directory where the update will be reversed.

-p|-project project_spec

Specifies the project where the update will be reversed.
382     Rational Synergy Classic CLI Help, Release 7.1



undo_update command
-pg|-project_grouping project_grouping_spec

Specifies that all projects in the project grouping have their updates reversed. No 
changes are made to the project grouping’s baseline and tasks.

-r|-recurse

Specifies that subprojects should be included.

-v|-verbose

Displays detailed on the undo update messages.

Example
• Undo the update on the proj1-1 project.

ccm unupd -p proj1-1

• Undo an update on a project named toolkit-mary, which has subprojects to be 
reversed.

ccm undo_update -recurse -project toolkit-mary

Related topics

• update command
Rational Synergy Classic CLI Help, Release 7.1     383



384     Rational Synergy Classic CLI Help, Release 7.1

unset command

Synopsis
ccm unset option

Description and uses
The unset command removes any settings to the value of an option.

Options and arguments
option

Specifies the name of the option for which the value is being unset.

Example
Unset the proj_log option.

ccm unset proj_log

Caveat
Some Rational Synergy variables are set implicitly and cannot be unset with the unset 
command.

Related topics

• set command



unuse command
unuse command

Synopsis
ccm unuse [-t|-task task_number]
          [-d|-delete] [-r|-replace]
          file_spec [file_spec...]
ccm unuse [-t|-task task_number]
          [-d|-delete] [-r|-replace]
          -p|-project project_spec [project_spec...]
ccm unuse -delete -force file_spec [file_spec...]

Description and uses
Removes an existing file, directory, root directory, or project from the current project or 
directory. The directory must be checked out to remove members from it; however, if you 
try to remove an object from a non-modifiable directory, Rational Synergy checks out the 
directory automatically (unless you specify the -r option). You must check in the directory 
to make the changes in the directory available to other users. Note that unuse is now 
called cut Rational Synergy.

The root directory can be the target of this command, but only when specified with the -d 
and -r options. If you want to use a different version of the root directory, use the use 
command. You cannot cut the root directory without replacing it because a project must 
always have a root directory.

Note When you cut an object in a non-modifiable directory, 
a new directory version is checked out automatically unless 
you replace the object with a different version.

If you are in a shared project and your current directory is 
non-modifiable, the directory is checked out and associated 
automatically with the current (or specified) task and is 
checked in to the integrate state. You can disable the 
automatic check-in feature by setting 
shared_project_directory_checkin to FALSE in your 
initialization file. (See shared_project_directory_checkin.)

If you want to delete a project, see the delete command (ccm delete -p project_name-
version).

You do not need to be in a work area to use this command as long as you use the project 
reference form:

Windows: relative_path\object_name@project_name-project_version

UNIX: relative_path/object_name@project_name-project_version
Rational Synergy Classic CLI Help, Release 7.1     385



The following is an example of the project reference form and how to use it to delete the 
root directory, ico/hi_world.c@final-1:
ccm unuse -d -r final@final-1

Options and arguments
-d|-delete

Remove the object from the directory, then delete it from the database.

You cannot cut and delete a project. When you perform this operation on a project, the 
project is cut but not deleted. Use the delete command to delete a project.

file_spec

Specifies the object or objects to unuse.

-force

The -force option suppresses confirmation messages and forces the delete operation 
to be carried out.

-g

Brings up the appropriate dialog.

-p|-project project_spec

Specifies the project or projects to cut.

If you are removing a subproject or subprojects, you must change to the directory that 
contains the subprojects, and you do not need to include the -p option.

-r|-replace

Replace the object in the directory with its predecessor. When this option is specified, 
the list of files in the directory remains unchanged; only the version of the specified 
object changes.

-t|-task task_number

Associates the newly checked-out directory with a task number, if an unuse -delete 
deleted an object from a read-only directory.
386     Rational Synergy Classic CLI Help, Release 7.1



unuse command
If the current (default) task is set and you do not specify a different task, the objects 
you are checking out are associated with the current task automatically.
Rational Synergy Classic CLI Help, Release 7.1     387



Examples
• Cut the sort.c object from the current project.

ccm unuse sort.c 
 
Member sort.c-1 removed from project ico-1

• Remove the ico_jan5 and ico_jan6 subprojects from the ico_jan4-1 top-level 
project.

ccm unuse ico_jan5 ico_jan6 
 
Member ico_jan5-1 removed from project ico_jan4-1 
Member ico_jan6-1 removed from project ico_jan4-1

• Delete and replace an object from your project.

ccm unuse -delete -replace object_version

You will receive a message telling you the object_version that was removed and 
which version replaced it. 

Related topics

• use command
388     Rational Synergy Classic CLI Help, Release 7.1



update command
update command

Synopsis
ccm u|update|update_members|reconf|reconfigure 
                       [-v|-verbose] [-r|-recurse]
                       [-rs|-replace_subprojects | -ks|-keep_subprojects]
                       file_spec
ccm u|update|update_members|reconf|reconfigure  
                       [-v|-verbose] [-r|-recurse]
                       [-rs|-replace_subprojects | -ks|-keep_subprojects]
                       -p|-project project_spec
ccm u|update|update_members|reconf|reconfigure 
                       [-v|-verbose] [-r|-recurse]
                       [-rs|-replace_subprojects | -ks|-keep_subprojects]
                       [-pg|-project_grouping]
                       project_grouping_spec
                       

Description and uses
The update command updates the specified directory, project object, or project grouping. 
It uses the baseline and tasks of project groupings to find the appropriate candidates and 
selection rules to select new versions of the members, if appropriate. You can also specify 
a project grouping to be updated. Note that the reconfigure or update members operation 
is now called update in Rational Synergy.

The update process stops if an individual operation within the update fails. For example, if 
the current version of an object has a work area conflict, the process stops and the new 
version is not automatically used. This is done to protect the data in the user’s work area. 

The default setting to stop the update can be changed by modifying your initialization file. 
Some users may want to continue with the update process, even though an individual 
failure has occurred. You can set update to continue by setting the reconf_stop_on_fail 
option to False.

The use of project groupings enables you to more easily perform a multiphase build, 
where the set of projects in a project grouping is not updated all at once. In such a case, 
all the projects are updated using the same baseline and tasks. A developer or build 
manager can update additional projects in the same project grouping, using the same 
baseline and tasks, without having that baseline and those tasks refreshed. Thus, it is 
necessary to calculate and save this baseline and tasks, and to specify that subsequent 
project updates use this saved baseline and tasks.

You may need to change the update properties of a project. The update properties 
determine whether a project is updated using tasks and a baseline or object status, and 
enable you to set parameters that control which objects are selected. Here are some of 
the properties you may need to change, and the commands to be used to change them:

• Change the project's release or purpose with the ccm attr command.
Rational Synergy Classic CLI Help, Release 7.1     389



• Switch between process-rule-based and manual updates with the ccm 
update_properties command).

• Switch between object status-based and task-based updates with the ccm 
update_properties command

• Add and remove tasks for process-rule-based projects, with the ccm 
project_grouping command.

• Set the baseline for custom development purpose process-rule-based projects, with 
the ccm project_grouping command.

• Add and remove tasks, and set the baseline, for manual projects, with the ccm 
update_properties command.

You can also change update properties using the Rational Synergy GUI.

By default and for performance purposes, the update command does not provide parallel 
version notification when it encounters parallel object versions. You can enable parallel 
version notification by setting the reconfigure_parallel_check user option.

Options and arguments
file_spec

Specifies the directory to be updated.

-ks|-keep_subprojects

Specifies that subprojects are to be kept in place. This is the default for the current 
session, unless the replace_subproj has been changed so that subprojects are 
replaced. If an update command is issued without the -ks or -rs option, the existing 
default is used.

-p|-project project_spec

Specifies the project to be updated.

-pg|-project_grouping

Specifies that the entire project grouping should be updated. The update properties 
are refreshed according to the settings on the project grouping. For additional 
information on project groupings, see the project_grouping command.

project_gouping_spec

Specifies the project grouping to be updated. 
390     Rational Synergy Classic CLI Help, Release 7.1



update command
This can be entered as the four-part name, or as the default displayname for the 
grouping, such as All CM/6.4 Integrations Testing Projects or Linda’s CM/
6.4 Collaborative Development Projects. For more information, see Project 
grouping specification.

-r|-recurse

Specifies that subprojects should be updated.

-rs|-replace_subprojects

Specifies that subprojects can be replaced with new subprojects. Subprojects are 
replaced only if the other versions of those subprojects are selected by the selection 
rules. If an update command is issued without the -ks or -rs option, the existing 
default is used.

-v|-verbose

Specifies that detailed update messages are to be displayed.

Examples
• Update a project named proj1-1 and replace its subprojects.

ccm update -rs -p proj1-1

• Update all projects in the grouping named All Fox/2.01 Integration Testing 
Projects.

ccm update -pg "All Fox/2.01 Integration Testing Projects"

Related topics

• undo_update command

• project_grouping command
Rational Synergy Classic CLI Help, Release 7.1     391



update_properties command

Synopses

Compare Update Properties
ccm up|update_prop|update_properties|rp|reconf_prop|reconfigure_properties -
comp|-compare
       project_spec1 project_spec2

Add Tasks and/or Folders
ccm up|update_prop|update_properties|rp|reconf_prop|reconfigure_properties -
a|-ad|-add
       [-t|-task|-tasks task_specs] [-y] [-related]
       [-fol|-folder|-folders folder_specs]
       [-r|-recurse] [-q|-quiet] project_specs

Remove Tasks and/or Folders
ccm up|update_prop|update_properties|rp|reconf_prop|reconfigure_properties -
rem|-remove
       [-t|-task|-tasks task_specs] [-related]
       [-fol|-folder|-folders folder_specs]
       [-r|-recurse] [-q|-quiet] project_specs

Show Baseline, Tasks, Folders, and/or Objects
ccm up|update_prop|update_properties|rp|reconf_prop|reconfigure_properties -
sh|-show
       {at|all_t|all_tasks|
       b|bl| baseline_project
       fol|folders|
       obj|objects|
       t|tasks|
       tf|t_and_f|tasks_and_folders}
       [-auto|-automatic|-no_auto|-no_automatic]
       [-f|-format "format_string"]
       [-ns|-no_sort] [-u] [-r|-recurse] [-v|-verbose]
       project_spec
392     Rational Synergy Classic CLI Help, Release 7.1



update_properties command
Show Update Properties
ccm up|update_prop|update_properties|rp|reconf_prop|reconfigure_properties -
sh|-show
       i|info|information
       [-v|-verbose] [-r|-recurse] project_specs 

Set the Update Method
ccm up|update_prop|update_properties|rp|reconf_prop|reconfigure_properties -
ru|-reconf_using
       {os|obj_stat|object_status | t|tasks | template | manual}
       [-r|-recurse] [-q|-quiet] project_specs

Set Baseline for Specific Project
ccm up|update_prop|update_properties|rp|reconf_prop|reconfigure_properties
       -mb|-modify_baseline_project {baseline_spec|base_project_version}
       [-r|-recurse] -q|-quiet project_specs

Refresh Update Properties
ccm up|update_prop|update_properties|rp|reconf_prop|reconfigure_properties -
refresh [-recurse]
       project_specs

Save Update Properties to Subprojects
ccm up|update_prop|update_properties|rp|reconf_prop|reconfigure_properties -
ats|-apply_to_subprojs
       [-no_baseline] [-no_tasks_and_folders] project_specs

Show Valid Baseline Projects for a Specific Project
ccm up|update_prop|update_properties|rp|reconf_prop|reconfigure_properties -
vb|-valid_baseline_projects
       [-f|-format "format_string"] [-ns|-no_sort] [-u] project_spec

Description and uses
The update_properties command displays and sets the update properties on one or 
more projects, and allows you to compare the update properties of two projects.

A project’s update properties consist of: 

project’s update properties 

• The baseline and tasks on the project's project grouping, if the project is set to update 
using a process rule, or

• The baseline and tasks on the project, if the project is not set to use a process rule.
Rational Synergy Classic CLI Help, Release 7.1     393



If you do not specify a project, the command applies to the project that is associated with 
the work area in which you execute the command.

Use the update_properties command to perform the following operations:

• Compare update properties.

• Add tasks and/or folders to a project.

• Removes tasks and/or folders from a project.

• Show baseline, tasks, folders, and/or objects for one or more projects

• Show update properties for a project.

• Set a project’s update method.

• Set the baseline for a specific project.

• Apply update properties to subprojects.

• Update the baseline, folder, and tasks.

• Show the valid baselines for a specified project.

Options and arguments
-a|-add

Adds the specified task or folder to the update properties of project_spec. You can 
use this option only on projects that are writable by you. 

If you add a task that is in the excluded state to a folder, you will receive a confirmation 
message that shows the state of the task and asks for confirmation. You can turn off 
this option by using the -y option.

Use -quiet to reduce the number of output messages displayed. Use -r to add a 
specified task or folder recursively to the update properties.

Use -related with -add and -tasks to add tasks to a specified folder or project. If 
you add a task that is in the excluded state to a folder, you will receive a confirmation 
message that shows the state of the task and asks for confirmation. Additionally, if you 
add a completed fix task to a folder without adding the task that it fixed, you will 
receive a message asking if you want to add the related task(s). For best results, add 
the related task or tasks.

If the command is successful, the return value is 0; otherwise, the return value is non-
zero.
394     Rational Synergy Classic CLI Help, Release 7.1



update_properties command
-ats|-apply_to_subprojs

Sets the scope of the update properties to all projects in the specified project’s 
hierarchy. Alone, this argument can be used to save the specified project’s update 
properties to its subprojects.

-auto|-automatic

Specifies that automatic tasks are to be displayed.

You must use one of the following commands with this option:

• ccm up -show tasks
• ccm up -show all_tasks
• ccm up -show tasks_and_folders 

This option overrides the values that are set in the ccm.ini file (Windows) or 
.ccm.ini file (UNIX). The default for this option is FALSE; automatic tasks are not 
displayed by default.

-comp|-compare project_spec1 project_spec2

Compares two projects’ update properties.

-f|-format "format_string"

Specifies the command’s output format. The default format depends on the other 
options used with the command.

The format can contain a combination of text and keywords. Keywords are replaced 
by specific information about each object as it displays. For example, the keyword 
%owner is replaced with sue if an object owned by user sue is displayed.

  

The name of any existing attribute can be used as a keyword. In addition, a number of 
built-in keywords are defined, such as %displayname and %task_number.See Built-In 
keywords for a list.

-fol|-folder|-folders folder_spec

Specifies the IDs of the folders that you are adding, listing, or removing. For this 
argument’s syntax, see Folder specification.

Note You can specify the name of a file containing a 
folder_spec wherever you can specify folder_spec.
Rational Synergy Classic CLI Help, Release 7.1     395



-mb|-modify_baseline base_project_spec|base_project_version

Sets the baseline to base_project_spec project or base_project_version project 
version for the project specified by project_spec.

Use -quiet with this option to reduce the number of output messages displayed.

You can use this option only on projects that are writable by you.

If the command is successful, the return value is 0; otherwise, the return value is non-
zero.

-no_auto|-no_automatic

Specifies automatic tasks not to display.

You must use one of the following commands with this option.

• ccm up -show tasks

• ccm up -show all_tasks

• ccm up -show tasks_and_folders 

This option overrides the values set in the ccm.ini file (Windows) or .ccm.ini file 
(UNIX). The default for this option is FALSE; automatic tasks are not displayed by 
default.

-no_baseline

Specifies that the project hierarchy’s baseline project is not applied to the subprojects. 
This option is used with the -apply_to_subprojs option.

-no_tasks_and_folders

Specifies that the project hierarchy’s tasks and folders are not applied to the 
subprojects. This option is used with the -apply_to_subprojs option.

-ns|-no_sort

Do not sort the command’s output.
396     Rational Synergy Classic CLI Help, Release 7.1



update_properties command
-quiet

Reduces the number of output messages. This option is useful for scripting.

project_specs

Is more than one project_spec.

-r|-recurse

Applies the current command to subprojects in the project hierarchy as well as the 
specified project.

-refresh

Updates the baseline, folder, and tasks on a project to make them consistent with the 
process rule. Updating the folder includes performing a query.

The update applies to subprojects only if you use the -recurse option.

This option is valid only for projects that are updated using a process rule and for 
which the update properties are modifiable by the current user in his or her current 
role.

-related

Use -related with -tasks and -add or -remove. This allows you to either:

• Add all tasks that are related to the specified fix task to the specified folder or 
project, 

OR

• Remove all tasks that are related to the specified fix task from the specified folder 
or project.

-rem|-remove

Removes the specified task or folder from the update properties of the specified 
project. You can use this option only on projects that are writable by you.

Use -quiet with this option to reduce the number of output messages displayed. Use 
-recurse to recursively remove a specified task from the update properties.
Rational Synergy Classic CLI Help, Release 7.1     397



If the command is successful, the return value is 0; otherwise, the return value is non-
zero.

-ru|-reconf_using

Specifies the method that is to be used to update the specified project(s). The options 
are task-based (t|tasks|template|manual) or object-status-based 
(os|obj_stat|object_status).

Use -q with this option to reduce the number of output messages displayed. Use -r to 
change the update method for a project recursively.

-sh|-show

Shows the specified type of object that is included in the project_spec project’s 
update properties. A selection set is populated with the folders, objects, projects, and 
tasks listed in the output.

You must use one of the following arguments with the -show option.

at|all_t|all_tasks -auto|-automatic | -no_auto|-no_automatic 
    Shows all tasks that are directly or indirectly in the project’s update properties 
(indirectly means the task is in a folder that is in the project’s update properties).

b|bl|baseline_project 
    Shows the project’s baseline.

fol|folders 
    Shows folders that are in the project’s update properties.

obj|objects 
    Shows objects in the task that are either directly or indirectly in the project’s update 
properties.

t|tasks -auto|-automatic | -no_auto|-no_automatic 
    Shows tasks that are directly in the project’s update properties.

tf|t_and_f|tasks_and_folders -auto|-automatic | -no_auto|-no_automatic 
    Shows tasks and folders that are directly in the project’s update properties.

Use the -f option to change the command’s output format. Use -u to suppress the 
output’s automatic numbering and -ns to suppress sorting. Use -r to show specified 
update properties recursively.

Use the info suboption to show information for the baseline project, tasks, and 
folders that make up the update properties for a project. Use -r with the info 
398     Rational Synergy Classic CLI Help, Release 7.1



update_properties command
suboption to show update properties recursively. Use -v info suboption to display 
detailed messages.

The default output format for ccm up -show tasks and ccm up -show all_tasks is:

    Task %displayname: %task_synopsis

where:

    %displayname is %name if DCM is not enabled, and 
    <database_ID><DCM_delimiter>%name if DCM is enabled. 
    %task_synopsis is a description of the task.

When performing ccm up -show tasks, ccm up -show all_tasks, or ccm up -show 
task_and_folder, and if show_auto_tasks is set to TRUE in the ccm.ini file 
(Windows) or .ccm.ini file (UNIX), automatic tasks will display in the output.

The default output format for up -show baseline_project is:

    %displayname

The default output format for up -show folder is:

    Folder %displayname: %description

where:

    %displayname is %name if DCM is not enabled, and 
    <database_ID><DCM_delimiter>%name if DCM is enabled. 
    %description is the name of the folder.

The default output format for up -show objects is: 
    %objectname %status %owner %task

where:

    %objectname is the object’s name-version:type:instance. 
    %status is the status of the object. 
    %owner is the owner of the object. 
    %task is the task associated with the object.

The default output format for up -show tasks_and_folders is:

    %displayname %description %task_synopsis
Rational Synergy Classic CLI Help, Release 7.1     399



-t|-task|-tasks task_specs

Specifies the IDs of the tasks that you are adding or removing. For this argument’s 
syntax, see Task specification.

-u

Suppresses automatic numbering of this command’s output ("un-numbered").

-vb|-valid_baselines

Shows the possible project versions that could be used as a baseline for the project 
that is specified by project_spec.

Use the -f option to change the command’s output format. Use -u to suppress 
automatic numbering of the output and -ns to suppress sorting. The default output 
format is %displayname.

-v|-verbose

Specifies that you want additional update properties messages output.

-y

Use -y to suppress confirmation messages. This option is useful for scripting.

Related topics

• update_properties examples
400     Rational Synergy Classic CLI Help, Release 7.1



update_properties examples
update_properties examples
View examples for the following operations:

• Add Tasks and/or Folders

• Compare Update Properties

• Remove Tasks and/or Folders

• Show Information for Baseline, Tasks, and Folders

• Set the Update Method

• Show/Set Valid Baselines

• Show Baseline, Tasks, Folders, and/or Objects

Add Tasks and/or Folders
• Add tasks 3,12-14, and 40-42 to the utility-mary project.

ccm update_prop -add -tasks 3,12-14,40-42 utility-mary 
 

Adding tasks to utility-mary... 
      Added task 3 to the update properties of project utility-mary 
      Added task 12 to the update properties of project utility-mary 
      Added task 13 to the update properties of project utility-mary 
      Added task 14 to the update properties of project utility-mary 
      Added task 40 to the update properties of project utility-mary 
      Added task 41 to the update properties of project utility-mary 
      Added task 42 to the update properties of project utility-mary 
 
   Added the following task(s) to project utility-mary 
      Task 3 
      Task 12 
      Task 13 
      Task 14 
      Task 40 
      Task 41 
      Task 42 

Added 7 tasks to utility-mary.

• In a DCM-initialized database, add tasks 5 and 17, imported from the frankfurt 
database, to the utility-mary project.

ccm update_prop -add -tasks frankfurt#5,frankfurt#17 utility-mary 
 

Updating update properties of utility-mary... 
      Added task 5 
      Added task 17 

Added 2 tasks.
Rational Synergy Classic CLI Help, Release 7.1     401



• Add the folders 5-7 and 14 to the utility-mary project.

ccm update_prop -add -folders 5-7,114 utility-mary 
 
Adding folders to utility-mary... 
Added folder 5 to the update properties of project utility-mary 
Added folder 6 to the update properties of project utility-mary 
Added folder 7 to the update properties of project utility-mary 
Added folder 114 to the update properties of project utility-mary 
 
Added the following folder(s) to project utility-mary 
      Folder 5 
      Folder 6 
      Folder 7 
      Folder 114 
 
Added 4 folders to utility-mary.

Compare Update Properties
• Compare the update properties for the utility-mary project and the toolkit-

2.0_gui project.

ccm up -compare utility-mary utility-2.0 
 
Baseline for utility-mary = utility-1.0 
Baseline for utility-2.0 = utility-1.0 
Tasks and Folders Only in Project utility-mary 

        folder 1: All completed tasks for release 2.0 
        folder 6: Assigned and completed tasks for mary for Release 2.0 
        task   13: Insulated Development projects for mary for release 2.0 
        task   14: Insulated Development products for mary for release 2.0 

 
Tasks and Folders Only in Project utility-2.0 

        folder 2: All tested tasks for release 2.0 
        task   9: Integration Testing projects for release 2.0 
        task   10: Integration Testing products for release 2.0 
 

Tasks and Folders in Both Projects 

Remove Tasks and/or Folders
• Remove tasks 3, 12-14, and 40-42 from the new-mary project.

ccm update_prop -remove -tasks 3,12-14,40-42 new-mary 
 

Removing tasks from new-mary... 
      Removed task 3 from the update properties of project new-mary 
      Removed task 12 from the update properties of project new-mary 
402     Rational Synergy Classic CLI Help, Release 7.1



update_properties examples
      Removed task 13 from the update properties of project new-mary 
      Removed task 14 from the update properties of project new-mary 
      Removed task 40 from the update properties of project new-mary 
      Removed task 41 from the update properties of project new-mary 
      Removed task 42 from the update properties of project new-mary 
 
   Removed the following task(s) from project new-mary 
      Task 3 
      Task 12 
      Task 13 
      Task 14 
      Task 40 
      Task 41 
      Task 42 

Removed 7 tasks from new-mary.

• Remove folders 5-7 and 114 from the new-mary project.

ccm up -rem -folders 5-7,114 new-mary 
 
Removing folders from new-mary... 
Removed folder 5 from the update properties of project new-mary 
Removed folder 6 from the update properties of project new-mary 
Removed folder 7 from the update properties of project new-mary 
Removed folder 114 from the update properties of project new-mary 
Removed the following folder(s) from project new-mary 
      Folder 5 
      Folder 6 
      Folder 7 
      Folder 114 

Removed 4 folders from new-mary.

• In a DCM-initialized database, remove folder 37 imported from the frankfurt 
database, from the utility-mary project.

ccm up -rem -folders frankfurt#37 utility-mary 
 

Updating update properties of utility-mary... 
Removed folder 'frankfurt#37: Nepal’s Tested Tasks' 
Removed 1 folder.

Show Information for Baseline, Tasks, and Folders
• Show information recursively for the utility-mary project; view verbose messages. 

ccm up -show info utility-mary -v -r
Rational Synergy Classic CLI Help, Release 7.1     403



Set the Update Method
• Set the utility-mary project’s update method to use a template instead of manual 

update properties.

ccm up -ru template utility-mary -r 
 
utility-mary has been set to update using the process rule that will 

maintain its update properties automatically.

Show/Set Valid Baselines
• Show the possible baselines of the utility-mary project.

ccm up -vb utility-mary 
 

1) utility-3.0 
2) utility-3.1

• Set the baseline of the utility-mary project to utility-3.1.

ccm up -mb utility-3.1 utility-mary 
 

Set baseline to 'utility-3.1'

Show Baseline, Tasks, Folders, and/or Objects
• Show the baselines for the utility-mary project.

ccm up -sh bl utility-mary

• Show the tasks for the utility-mary project.

The tasks shown are only those tasks included directly in the project’s update 
properties.

ccm up -sh tasks utility-mary 
 

1) Task 5: mary’s insulated development projects 
2) Task 6: mary’s insulated development products 
3) Task 40: Auto-calculation gives incorrect result 
4) Task 53: Download of images occurs too slow

• Show the folders for the utility-mary project.

ccm up -sh folders utility-mary 
 

1) Folder 111: mary’s Insulated Development Task Folder 
2) Folder 146: mary’s Assigned Tasks 
3) Folder 161: Tested Tasks for Release 3.2

• Show the tasks and folders for the utility-mary project.
404     Rational Synergy Classic CLI Help, Release 7.1



update_properties examples
The tasks shown are only those tasks included directly in the project’s update 
properties.

ccm up -sh t_and_f utility-mary 
 

1) 111 mary’s Insulated Development Task Folder <void> 
2) 146 mary’s Assigned Tasks <void> 
3) 161 Tested Tasks for Release 3.2 <void> 
4) 40 <void> Auto-calculation gives incorrect result 
5) 5 <void> mary’s insulated development projects 
6) 53 <void> Download of images occurs too slow 
7) 6 <void> mary’s insulated development products

• Show all tasks for the utility-mary project.

The tasks shown are all of the tasks associated with the project, whether they are 
included directly in the project’s update properties or are included indirectly through 
folders.

ccm up -sh all_tasks utility-mary 
 

1) Task 15: Correct spelling errors in output 
2) Task 19: Rewrite messaging module 
3) Task 26: Close box no longer active 
4) Task 40: Auto-calculation gives incorrect result 
5) Task 5: mary’s insulated development projects 
6) Task 53: Download of images occurs too slow 
7) Task 6: mary’s insulated development products

• Show the objects for the utility-mary project.

ccm up -show objects utility-mary 
 

1) main.c-4:csrc:1 integrate  mary  26 
2) main.h-3:incl:1 integrate  mary  26 
3) msg.c-5:csrc:1  integrate  mary  19 
4) msg.h-4:csrc:1  integrate   mary  19
Rational Synergy Classic CLI Help, Release 7.1     405



update_template command
The update_template command is an alias for the process_rule command.
406     Rational Synergy Classic CLI Help, Release 7.1



update_template command
Rational Synergy Classic CLI Help, Release 7.1     407



use command

Synopsis
ccm use [-t|-task task_number] [-r|-rules]
        file_spec [file_spec…]
ccm use [-r|-rules]
        -p|-project project_spec [project_spec…]

Description and uses
The use command performs either of the following operations:

• replaces an existing file, directory, or project with another version

• pastes an existing file, directory, or project that is not already in the current directory

Note When you paste an object to a non-writable directory, 
a new directory version is checked out automatically.

If you are in a shared project and your current directory is 
non-writable, the directory is checked out and associated 
automatically with the default (or specified) task and is 
checked in to the integrate state. You can disable the 
automatic check-in feature by setting 
shared_project_directory_checkin to FALSE in your 
initialization file. (See shared_project_directory_checkin.)

When you "use" a directory, the directory is updated automatically. You must check in the 
directory to make the changes in its content available to other users.

Options and arguments
file_spec

Specifies the object version(s) you are using.

-g

Brings up the appropriate dialog.

-p|-project project_spec

Adds a project to the current directory.

-r|-rules

Uses the version selected by the selection rules.
408     Rational Synergy Classic CLI Help, Release 7.1



use command
-t|-task task_number

Associates the newly checked-out directory with a task number if a use adds an object 
to a read-only directory.

Associates the object you add with the task. If the current (default) task is set and you 
do not specify a different task, the objects are associated with the current task 
automatically.

Examples
• Add an object that exists in the database, but not in your project. Added objects do not 

have to be writable by you.

1. Query for the object version. 

ccm query -n objectname

2. From the listed query items, identify the object version to use.

3. Add the object version to your project.

ccm use @item_number

• Add the util-b2 and tools-b2 projects to the current directory.

ccm use -p util-b2 tools-b2

• Use version 2 of display.c in place of the current version.

ccm use display.c-2

• Use the version of clear.c chosen by the selection rules.

ccm use -rules clear.c

Related topics

• delete command

• unuse command
Rational Synergy Classic CLI Help, Release 7.1     409



users command

Synopsis
ccm users

Description and uses
The users command brings up the users list for a specific Rational Synergy database. 
Using the default editor, you can add or remove users and their roles in this file.

When setting roles for users, be sure to set the first role to be the one the user will run in 
most often. (The first role is the default role when the user starts a session.) No user 
should have a first role setting of ccm_admin, even if he has access to it, for preventative 
reasons.

Database users are defined in a single table, one user per entry. One user list is used for 
the entire database. Add a user and his appropriate roles in the following format: 

username = role(s)

A user name is followed by the roles to which the user has access. For example, a user 
could have one role or more than one role, as in the following example: 

user bob = developer ccm_admin;  
user john = writer;  
user mary = developer build_mgr ccm_admin;

Note You must add a semicolon at the end of each entry in 
the users list, as shown in the example above.

Do not list a user twice, even if he has different roles in the 
same database. Instead, list all of his roles together, as 
shown in the example above (under user erin and user 
matt).

You must be in the ccm_admin role to use this command.

Options and arguments
None

Example

• Add a user to the database.

1. Open the users list.

ccm users

2. Add a user to the database by copying an existing line, then replacing the new 
user’s username.
410     Rational Synergy Classic CLI Help, Release 7.1



users command
3. Save and exit from the list.

• Change a user’s roles in the database.

1. Open the users list.

ccm users

2. Change a user’s roles by adding or deleting roles after his name.

3. Save and exit from the list.

• Delete a user from the database.

1. Open the users list.

ccm users

2. Remove a user from a database by deleting the appropriate line.

3. Save and exit from the list.
Rational Synergy Classic CLI Help, Release 7.1     411



412     Rational Synergy Classic CLI Help, Release 7.1

version command

Synopsis
ccm version [-d|-dbschema] [-a|-all] [-c|-ccm] [-i|-informix]

Description and uses
The ccm version command displays the version of Rational Synergy that is running. 

Options and arguments
-a|-all

Displays the version of the current database schema, the INFORMIX database server, 
and the Rational Synergy release.

-c|-ccm

Displays the version of the Rational Synergy release. 

If you enter ccm version without any switches, only the Rational Synergy release 
number is displayed.

-d|-dbschema

Displays the version of the database schema.

-i|-informix

Displays the version of the database server.

Example
Show the version of the current database schema, the INFORMIX database server, and 
the Rational Synergy release that are running.
ccm version -a

INFORMIX Dynamic Server Version 10.00.UC5XA
Rational Synergy Version 7.1
Rational Synergy Schema Version 0111



Rational Synergy Classic CLI Help, Release 7.1     413

view command

view command

Synopsis
ccm view file_spec [file_spec...]

Description and uses
Use this command to view the source for an object that is not in the current directory or to 
invoke the viewer set by the cli.text_viewer option in your initialization file.

Options and arguments
file_spec

Specifies the object to be displayed.

Example
View version 8 of the log.c object.
ccm view log.c-8

Related topics

• cat command (UNIX only)

• edit command



work_area command

Synopsis

Show Work Area Options
ccm wa|work_area -show [-r|-recurse]
                 [-p|-project] project_spec [project_spec...]

Change Work Area Options
ccm wa|work_area [-wa|-maintain_wa] [-nwa|-no_wa]
                 [-cb|-copy_based] [-ncb|-not_copy_based]
                 [-rel|relative] [-nrel|not_relative]
                 [-mod|modifiable] [-nmod|not_modifiable] 
                 [-wat|wa_time] [-nwat|no_wa_time] 
                 [-tl|translate] [-ntl|no_translation] 
                 [-r|-recurse] [-nr|-no_recurse]
                 [-setpath|-path|-set path] 
                 [-pst|-project_subdir_template template] 
                 [-p|-project] project_spec [project_spec...]

Find and Show All Projects with the Specified Character String in 
their Work Area Paths
ccm wa|work_area -find "find_string" [-reg|-regexp] [-replace "new_string"]
                 -show 
                 [-scope working|prep|shared|checkpoint|STATIC|ALL|DB]
                 [-p|-project] project_spec [project_spec...]

Find and Replace a Character String in a Work Area Path
ccm wa|work_area -find "find_string" [-reg|-regexp] -replace "new_string"
                 [-scope working|prep|shared|checkpoint|STATIC|ALL|DB]
                 [-new|-visible]
                 [-p|-project] project_spec [project_spec...]

Identify and Show All of the Projects with the Specified Database Path
ccm wa|work_area -dbpath "old_database_path"
                 -show
                 [-scope working|prep|shared|checkpoint|STATIC|ALL|DB]
                 [-p|-project] project_spec [project_spec...]
                 [-ns|-nosync]
414     Rational Synergy Classic CLI Help, Release 7.1



work_area command
Identify and Replace a Database Path
ccm wa|work_area -dbpath "old_database_path"
                 [-scope working|prep|shared|checkpoint|STATIC|ALL|DB]
                 [-p|-project] project_spec [project_spec...]

Description and uses
The work_area command enables you to show and modify work area options, and to 
show and update work area and database paths.

The following sections describe the ways in which you can change the work area 
information associated with one or more projects.

Changing work area options
The work area options you can change on a project are:

• whether the work area is maintained (synchronized to the file system): -wa or -nwa

• whether subprojects are relative to a parent project: -rel or -nrel

• whether the work area is copy-based or link-based: -cb or -ncb

• whether work area times are used: -wat or -nwat

• whether the source is copied as ASCII or binary files: -tl or -ntl

• the work area path (where the project is synchronized to the file system): -setpath 
path or -pst path

• whether files in the work area are not set to read-only, even if the object is static: -mod 
or -nmod 

You can also set the project’s work area path to a new location by changing the project-
specific portion of the work area path. This change is made using the -pst|-
project_subdir_template template option.

Updating an obsolete work area path
A project’s work area path is the absolute path to the project in your file system. For 
example, a work area path could be:
Windows:    c:\ccm_wa\tools\ordtime-john  
UNIX:        /users/john/ccm_wa/tools/ordtime-john

If you were to copy or unpack (ccmdb cp and ccmdb unpack on Windows) or (ccmdb_cp 
and ccmdb_unpack on UNIX)  a database to a new database, it is likely that you would 
want to synchronize the new database’s projects to new work area paths different from the 
work area paths to which the old database’s projects were synchronized. This requires 
that you replace the old work area paths with new ones. The -find "find_string" -
replace "new_string" options enable you to make these changes.
Rational Synergy Classic CLI Help, Release 7.1     415



You can "rehearse" the change to the work area path by using the -show option.

Updating an obsolete database path
Each project has a database path associated with it. For example, a project’s database 
path could be:
Windows:   y:\stanton\ccmdb\ccm_docs\db 
UNIX:     /vol/stanton/ccmdb/ccm_docs/db

If you were to move a database to a new database path, the projects’ database paths in 
the new location would be incorrect: they would still be set to the old path. Therefore, you 
must replace the old database paths with the new database path. The -dbpath 
"old_database_path" option enables you to make these changes.

You can "rehearse" the change to the database path by using the -show option.

Options and arguments
Note All options default to the values set for the specified 
project.

-cb|-copy_based 

Specifies that your work area will contain file copies rather than links. Work areas in 
Windows are copy-based.

-dbpath "old_database_path"

Windows: 
Identifies the projects that have old_database_path in their _ccmwaid.inf (Rational 
Synergy work area identification) files, then changes those projects’ _ccmwaid.inf 
file database strings to the path of the current database.

Use this option to update database paths when a database has been moved.

UNIX: 
Identifies the projects that have old_database_path in their .ccmwaid.inf (Rational 
Synergy work area identification) files, then changes those projects’ .ccmwaid.inf 
file database strings to the path of the current database.

Use this option to update database paths when a database has been moved.

You must have write access to the work area to use this option. You must be in the 
ccm_admin role to update the work area identification file of a non-writable project.
416     Rational Synergy Classic CLI Help, Release 7.1



work_area command
Note: For link-based work areas, the work area is 
resynchronized automatically in order to update the 
symbolic links to the new database. Also, you must 
update all copy-based work areas before you update 
link-based work areas. Copy-based work areas must be 
updated from a remote client (a session that was started 
with the -rc option).

After you update your work area path names, restart the 
session without the -rc option to update any link-based 
work areas.

-find "find_string"

Locates the projects that have find_string in their work area path names. Use this 
option to update work area paths that are out of date.

Use the -reg option if you want to use a regular expression (for example, ".*") in 
find_string. For more information, see Regular expressions.

You must have write access to the work area to use this option. You must be in the 
ccm_admin role to update the work area path name of a non-writable project.

On UNIX, you must update all copy-based work areas before you update link-
based work areas. Copy-based work areas must be updated from a remote client (a 
session that was started with the -rc option). After you update your work area path 
names, restart the session without the -rc option to update any link-based work 
areas.

-ncb|-not_copy_based 

Specifies that your work area contains links to files rather than copies. This option is 
not available for Windows.

-new

Used with -find -replace to indicate that this is a new database. This option is 
intended for two situations: when the work areas specified by the -find option are not 
visible, and when the work areas specified by the -find option are visible but should 
be ignored.
Rational Synergy Classic CLI Help, Release 7.1     417



If this option is not specified, the command will operate only on projects with visible 
work areas. See the -visible option for information on updating visible work areas.

You can use this option only with the -find option.

-nr|-no_recurse

Do not recurse the project hierarchy when applying these options. Change only the 
specified project. This is the default.

-nrel|-not_relative

Do not make the work area relative to the parent project’s work area, and on UNIX, 
use links for subprojects. This is the default when you first create a project.

-ns|-nosync

Specifies that your work area will not be synced.

-ntl|-no_translation 

Specifies to copy source as binary files.

-nwa|-no_wa

Specifies that a work area not be maintained. Specifying this option will disconnect 
your work area from the database.

This option enables you to have a project that exists only in the database without a 
corresponding work area. (A project without a work area is called a "grouping 
project.") Use it to create logical groups of projects where a work area is not 
necessary or possible. 

• For example, a work area is not necessary in the following example:

Suppose that you are the build manager and you need to create a project for a 
platform that does not exist now, but will exist in the near future. You know that you will 
need a platform for a new Windows OS  soon, so you use this option to turn off the 
work area. Create the project. When you are ready to use the new platform project, 
you synchronize the new project to your work area by using the -wa option.

• A work area is not possible in the following scenario:
418     Rational Synergy Classic CLI Help, Release 7.1



work_area command
Suppose that you are developing software to be released on the Windows XP platform 
and the Solaris platform. The work areas for the projects for both of these platforms 
may not be visible from both platforms, but you want to view both projects, so you 
decide to group them. To create a project that groups both of these as subprojects, 
you would need to use a project without a work area.

-nwat|-no_wa_time 

Specifies that new timestamps not be used, that is, sets the time stamps of the files to 
reflect the first modification time stored in Rational Synergy, rather than the time a file  
was copied to the work area.

-p|-project project_spec

Designates the project to which you want to apply the specified options.

You must specify project_name-version for the project to which you want to apply 
changes; however, you do not need to enter the option name -p.

-pst|-project_subdir_template] template 

Changes the specified project’s work area path (where the project is synchronized to 
the file system) to a new location. This parameter changes only the project-specific 
portion of the work area path. To change to a different part of the file system for your 
work area or synchronize your work area to a different platform, see -set|-path|-
setpath path.

The default directory in which all project work areas are created is ccm_wa followed 
by the database_name in your home directory. By default, the project name and 
version are appended to the database_name. You can change the project-specific 
portion of the name to include project_name, project_version, release, platform, 
and delimiter by modifying the work area template.

If the previous path is visible to the interface host, it is moved to the new location. 
Otherwise, the work area is created when you execute the work_area command with 
this option.

-r|-recurse

Causes all projects in the project hierarchy to be updated along with the specified 
project.
Rational Synergy Classic CLI Help, Release 7.1     419



-reg|-regexp

Indicates that new_string and find_string are regular expressions.

You can use this option only with the -find option.

-rel|-relative

Makes the work area path relative to the parent project’s path. A relative work area 
can be used in multiple projects, as long as the project is non-modifiable. It can be 
used in only one project if it is modifiable.

-replace "new_string"

Substitutes new_string for find_string in the work area paths of all of the projects 
found using the -find find_string option.

Use the -reg option if you want to use a regular expression (for example, ".*") for 
new_string.

You can use this option only with the -find option.

-scope

Establishes an initial criterion for which projects can be found using the -find or -
dbpath options.

The scope option can be one of the following states:

      working (all of your working-state projects) 
      checkpoint (all of your checkpoint-state projects) 
      prep (all prep projects) 
      shared (all shared projects)

or one of the following case-sensitive keywords:

      STATIC (all of your non-writable projects; for example, projects in the integrate, 
test, sqa, or released state) 
      ALL (all projects, regardless of status) 
      DB (all projects for the current database, regardless of ownership or status)

If the scope is working, checkpoint, or ALL, the projects must be owned by you.
420     Rational Synergy Classic CLI Help, Release 7.1



work_area command
The default scope is working.

You can use this option only with the -find or -dbpath option.

-set|-path|-setpath path

Changes the specified project’s work area path to the new location. This parameter 
changes the non-project-specific portion of the work area path. To change the project-
specific portion of the name, such as project_name, project_version, release, 
platform, and delimiter by modifying the work area template, see -pst|-
project_subdir_template] template.

The default directory in which all project work areas are created is the database name 
in ccm_wa in your home directory. This is your work area path. If you want to use a 
different part of the file system for your work area or you want to synchronize your 
work area to a different platform, you can change the work area path using this option.

If the previous path is visible to the interface host, it is moved to the new location. 
Otherwise, the work area is created when you execute the work_area command with 
this option.

You can change the work area path of a read-only project only if you are in the 
ccm_admin role.

-show

Shows the work area options for the specified project(s) if you are not using the -find 
or -dbpath option. If you are using the -find or -dbpath option, you are shown the 
projects that a) satisfy the scope criterion, are specified by the -p option, or are in the 
selection set, and b) contain the specified string or database path.

When you use this option with -replace, you are shown what would result if you were 
to perform the operation.

-visible

Indicates that only visible work areas should be considered for update. 
Rational Synergy Classic CLI Help, Release 7.1     421



This is the default. A message is displayed for work areas skipped because the work 
area is not visible to the interface.

See the -new option for information on updating work area paths of projects that are in 
a database in which work areas have not yet been created.

You can use this option only with the -find option.

-wa|-maintain_wa

Maintain a work area. Setting this option synchronizes the work area and keeps it 
synchronized.

To stop a sync from the CLI, enter <CTRL+C> at any time.

However, if you stop the sync, you will receive an error message stating that errors 
may occur in your work area. The errors will not occur until you try to use the work 
area. To avoid problems, perform a complete synchronization of the work area before 
you use it.

You can use this option on a read-only project only if you are in the ccm_admin role.

-wat|-wa_time 

Specifies that new timestamps be used, that is, sets the timestamps of the files to 
reflect the time a file was copied to the work area, rather than the Rational Synergy 
modification time. 

This setting should be used if you are using a third-party Make tool. If you do not use 
this option, the work area maintains the modification time of a file. While at first this 
may sound appropriate, problems arise when a different version of a file is selected 
into the work area. If the file's modification time is older than any product in this work 
area that depends on it, the Make tool will not be able to determine that the product 
needs to be rebuilt. 
422     Rational Synergy Classic CLI Help, Release 7.1



work_area command
Related topics

• work_area examples

• delimiter command

• reconcile command

• resync command

• sync command
Rational Synergy Classic CLI Help, Release 7.1     423



work_area examples
View examples for the following operations:

• Show Work Area Options

• Change Work Area Options

• Find and Replace a Character String in a Work Area Path

• Identify and Replace a Database Path

Show Work Area Options
• Show the work area options for the ico_may2-1 project.

ccm work_area -show -p ico_may2-1

Change Work Area Options
• Change the path of the specified project and resynchronize the project.

Windows:  ccm work_area /setpath c:\users\linda\new_wa\database /p 
ico_feb1-1 
UNIX:  ccm work_area -setpath /users/linda/new_wa/database -p ico_feb1-
1

Find and Replace a Character String in a Work Area Path
• Find all of your working projects with visible work areas whose paths contain the "-" 

character, and change the "-" to a "~". 

ccm wa -find "-" -replace "~"

This command would be appropriate for database delimiter changes. It would need to 
be executed by each user from enough sessions to cover all work areas. If all of a 
user's work areas could be seen from one session, one session would be sufficient. 
However, if a user has both Windows and UNIX work areas, this command would 
need to be run from both Windows and UNIX clients.

• Find all of the prep projects with visible work areas whose paths contain the "-" 
character and change the "-" to a "~". 

ccm wa -find "-" -replace "~" -scope prep

This would be appropriate for database delimiter changes. It would need to be 
executed by a build manager from enough sessions to cover all build management 
work areas. If all of the prep work areas could be seen from one session, one session 
would be sufficient. However, if there are both Windows and UNIX build management 
work areas, this command would need to be run from both Windows and UNIX clients.
424     Rational Synergy Classic CLI Help, Release 7.1



work_area examples
• In a newly copied database that still has work area paths from the original database, 
find all of your work area paths that contain the string platform and change the string 
to services.

ccm wa -find platform -replace services -new

This would be appropriate for a database that was unpacked or copied to a new 
name. The -new option is used here to create all new work areas. This is because the 
old work areas are for the old database. If the old work areas are to be reused, such 
as for a database that is moved, the user would first need to update the work area ID 
files using the -dbpath option so that the old work areas would appear to be for this 
database.

• On Windows, using a regular expression, shorten the work area path 
c:\users\joe\+joe45\hsaw~1 to  c:\users\joe45\hsaw~1 by removing the 
\+joe45 directory. (Note the leading special character.)

 ccm wa -find "\+joe45\\\\" -reg -replace "" -p hsaw~1

Identify and Replace a Database Path
Find all of the user's working projects with work areas for the database "/vol/acrel5/
ccmdb/ccm_platform," and update the work area ID files with the path to the current 
database.
ccm wa -dbpath "/vol/acrel5/ccmdb/ccm_platform"

This would be appropriate for a database that has been moved to a new location in the file 
system, and the old work areas are still available. It would need to be executed by each 
user from enough sessions to cover all work areas. If all of a user's work areas could be 
seen from one session, one session would be sufficient. If, however, a user has both 
Windows and UNIX work areas, this command would need to be run from both Windows 
and UNIX clients.

Default
You can set the wa_path_template and project_subdir_template options in your ccm.ini 
file (Windows), or .ccm.ini file (UNIX), or use the work_area command. 
Rational Synergy Classic CLI Help, Release 7.1     425



426     Rational Synergy Classic CLI Help, Release 7.1

wa_snapshot command
The wa_snapshot command is an alias for the copy_to_file_system command.



Learn more about

The following pages contain advanced, in-depth information about using Rational 
Synergy.

• Conflict detection

Conflict Detection identifies the types of conflicts detected by Rational Synergy.

• Date formats

Date Formats describes how to set and change formats for the date and time in 
Rational Synergy.

• Defining the merge tool

Define the Merge Tool explains how to use your own merge tool instead of the default 
merge tool.

• Migration rules

Migration Rules explains the migration rules, and gives detailed examples.

• Query expressions

Query Expressions provides details on how to construct query expressions.

• Relationships

Relationships describes the object-to-object relationships used in Rational Synergy.

• Shared projects

Shared Projects introduces the concepts and uses of shared projects.

• SOAD scopes

SOAD Scopes explains how the Save Offline and Delete (SOAD) tool uses scopes to 
create a list of objects to save offline and delete.

• Triggers

Triggers explains how to define programs that are used to notify users about activity in 
the database, such as when objects change state or problems are submitted.

• Work area

Work Area explains absolute versus relative work areas and copy-based versus link-
based work areas, and gives examples.
Rational Synergy Classic CLI Help, Release 7.1     427



Learn more about
• Work area conflicts

Work Area Conflicts describes the different types of work area conflicts you may 
encounter and explains how work area conflicts can be resolved.
428     Rational Synergy Classic CLI Help, Release 7.1



Conflict detection
Conflict detection
Conflict detection is Rational Synergy’s criteria and process for warning you that your work 
area or project has somehow deviated from the expected. Rational Synergy’s conflict 
detection keeps track of your project’s tasks and history relationships to ensure that your 
project contains all of the correct members; however, if any deviations appear necessary, 
Rational Synergy warns you so that you can decide how to proceed. Many different types 
of conflicts are possible, such as:

• If you are working as a developer, you may have conflicts when your work area is out 
of sync with the database, or when a file, directory, or project has parallel versions. 
For specific information about resolving conflicts while working in Rational Synergy, 
see the online help. 

• If you are working as a build manager, you may have conflicts between your project’s 
members and its update properties. 

The best time to show conflicts is immediately after an update, because the project 
members are up-to-date with the project’s update properties at that time.

If your update properties contain any folders that use queries, you can update the folder 
contents after your last update. Since discrepancies between your project’s update 
properties and your project’s members display as conflicts, your project might show 
additional conflicts if you have not updated recently.

The following topics are discussed:

• Conflicts detected by Rational Synergy

• Task and object relationships

• Types of conflicts

• Large-scale conflict detection
Rational Synergy Classic CLI Help, Release 7.1     429



Conflicts detected by Rational Synergy
You can view conflicts while working from the command line or one of the graphical user 
interfaces. When you have a conflict, you will see the object versions and associated tasks 
that have conflicts, and a brief description of each object’s conflict. The conflict messages 
are defined in the following table.

The table below, and the explanation of conflict detection that follows the table, use these 
definitions:

• "conflict" is defined as one of the following situations:

A file associated with a task not specified to be in your project was included.

A file associated with a task that was specified to be in your project was not included.

A file’s task relationships are not as expected (i.e., no task or multiple tasks were 
associated with the object).

• "explicit" means "directly requested," that is, included in your project’s update 
properties.

• "implicit" means "indirectly depended upon or partially included," that is, not included 
in your project’s update properties.

Conflict message

Conflicts 
shown by 
default? Description

No task yes The object version is included implicitly in this 
project, but not associated with any task. (It 
cannot be included explicitly because this 
would require its task to be included in the 
project's update properties.)

Multiple Tasks no The object version is included in this project, 
and is associated with multiple tasks.

Implicitly included yes The object version is not explicitly specified, but 
it is included in the project.

Included by "use" 
operation?

yes The object version is not explicitly specified, not 
implicitly required, and update would not have 
selected it.

Implicitly required but 
before baseline

no The object version is implicitly required, but it is 
a predecessor of the baseline. (This is not really 
a conflict, since it is implicitly included, but it 
might indicate a process problem.) 
430     Rational Synergy Classic CLI Help, Release 7.1



Conflict detection
Implicitly required but not 
included - newer

yes The object version is implicitly required, but is 
not included in the project. It is a successor of 
the current selected version of that object. 

Implicitly required by 
multiple tasks - newer

yes The object version is implicitly required 
because it was associated with a task that was 
implicitly included because another file in the 
project was associated with multiple tasks. The 
object version in conflict is not included in the 
project, and is a successor of the version of that 
file currently in the project.

Implicitly required but not 
included - parallel

yes The object version is implicitly required but not 
included in the project. It is parallel to the 
currently selected version, and may require a 
merge. 

Implicitly required by 
multiple tasks - parallel

yes The object version is implicitly required 
because it is associated with a task that was 
implicitly included because another file in the 
project was associated with multiple tasks. The 
object version in conflict is not included in the 
project, and is parallel to the version of the file 
currently in the project.

Explicitly specified but 
before baseline

no The object version is explicitly specified on the 
project, but is a predecessor of the baseline. 
(This is not really a conflict, since it is implicitly 
included, but it might indicate a process 
problem.)

Explicitly specified but not 
included - newer

yes The object version is explicitly specified on the 
project, but is a successor of the currently 
selected version of that object.

Explicitly specified but not 
included - parallel

yes The object version is explicitly specified on the 
project, but is not included in the project. It is 
parallel to the current version, and may require 
a merge.

Conflict message

Conflicts 
shown by 
default? Description
Rational Synergy Classic CLI Help, Release 7.1     431



Explicitly specified but 
object not in project

no The object version is explicitly specified on the 
project, but no versions of it are in the project. 
This is probably normal, since the same update 
properties are shared across entire project 
hierarchies.

Implicitly required but 
object not in project

no The object version is implicitly required through 
a task included in the project, but no versions of 
it are in the project. This is probably normal, 
since the same update properties are shared 
across entire project hierarchies.

Conflicts detected for tasks if shown with task option (displayed as messages)

Implicitly included yes The task is implicitly included in the project.

Implicit task from explicit 
object

yes The task’s associated file has multiple assigned 
tasks. At least one of the object’s associated 
tasks is explicit (that is, included in the update 
properties), but this task is not.

Implicitly required but not 
included

yes The task is implicitly required, but not included 
in the project.

Explicitly specified but not 
included

yes The task is explicitly specified by the project, 
but is not included.

Explicitly specified but no 
files in project

no The task is explicitly specified by the project, 
but none of its files are included in the project. 
This is probably normal, since the same update 
properties are shared across entire project 
hierarchies.

Excluded task explicitly 
included

yes An excluded task is included in a baseline and 
tasks in the project’s project grouping.

Excluded task implicitly 
included

yes An excluded task is implicitly included in a 
project’s update properties.

Completed fix task not 
included

yes A bad task is included in a project’s update 
properties, but its completed good task is not 
included.

Conflict message

Conflicts 
shown by 
default? Description
432     Rational Synergy Classic CLI Help, Release 7.1



Conflict detection
Assigned fix task not 
included

no A bad task is included in a project’s update 
properties, but its task_assigned good task is 
not included.

Task fixed by task not 
included

yes A bad task is not included in a project’s update 
properties, but the good task is included.

Conflict message

Conflicts 
shown by 
default? Description
Rational Synergy Classic CLI Help, Release 7.1     433



Task and object relationships
A task and a set of object versions can have a relationship. In Rational Synergy, you can 
associate a set of object versions with a task, which tells Rational Synergy that those 
object versions should be used together and that they depend on each others' changes. If 
your project includes only part of the changes associated with a task, your project 
probably will fail to build, or even worse, will fail to run correctly.

For example, if you change a function signature, you must update every other program 
that calls the function to have the signature change. You must include all of those changes 
together in the project, or you should not include any of the changes.

Object history relationships

Tasks have a history relationship, but it is different from an object’s history 
relationship. An object’s history usually is numerically consecutive. A task’s history is a 
conceptual relationship only, based on its associated files’ history relationship. 
Because a task groups files necessary to complete a change, the task’s history 
relationship causes a current set of changes to depend on the previous set of 
changes.

The following figure shows a version history for one file and each task associated with 
the file throughout the object’s history.

The foo.c file has five versions. Each version is associated with a different task. (The 
task number associated with each version is shown below the object version.)

Rational Synergy considers that a change to an object version contains the changes 
to all of its predecessor object versions. Therefore, in the example shown above, 
version 3 is considered to contain the changes from versions 2 and 1.
434     Rational Synergy Classic CLI Help, Release 7.1



Conflict detection
For example, if you changed the signature of a function in version 2, then version 3, 
version 4, and every version after that would include that signature change. The 
changes are layered on top of each other. Even a change that removes a part of 
another change is layered on top of its history versions. However, the change in 
foo.c-3 applies only to foo.c-2, since the change was made to that version.

Task dependencies

Furthermore, because version 3 contains the changes from versions 1 and 2, version 
3's associated tasks are considered to depend on the tasks associated with versions 1 
and 2. So in this example, task 58 depends on tasks 23 and 14.

Explicitly specified update properties

Consider the project myproj-bill, which contains foo.c-4.

Recall that a project's update properties contain a baseline project and a list of tasks. 
(It can also contain task folders, but they are collections of tasks.) If a task is specified 
in the project's update properties (either directly or by using a task folder), the project 
has specified explicitly that it should include the files associated with that task. For 
example, if the myproj-bill project’s update properties include tasks 72 and 23, then 
it has specified explicitly that it should include the object versions associated with 
tasks 72 and 23. In the previous figure, if the project has specified explicitly tasks 72 
and 23, then it also has specified explicitly object versions foo.c-4 and foo.c-2.

Remember that foo.c-4 contains the changes from foo.c-2, and task 72 depends 
on task 23.

When you update a project, its explicitly specified object versions are its candidates. 
Update will select the most appropriate candidate, usually the newest. So in this 
example, myproj-bill would use tasks 72 and 23 to determine the candidate list: 
foo.c-4 and foo.c-2. It would pick foo.c-4 as the newest candidate. Therefore, the 
project would include both the changes from foo.c-4 and foo.c-2. Likewise, it would 
contain the changes from both task 72 and task 23.

Implicitly specified update properties

Because the myproj-bill project contains foo.c-4, it contains task 72, which its 
update properties explicitly specified. It also depends on foo.c-3, since foo.c-3 is a 
predecessor of foo.c-4. It also depends on the task that is associated with foo.c-3: 
task 58.

However, if task 58 (and therefore, foo.c-3) is not explicitly specified in myproj-
bill's update properties, but the change is included anyway through its history 
relationship, then both the task and the object version are specified implicitly in the 
project. Note that files associated with an implicitly specified task are not included in 
the project automatically.
Rational Synergy Classic CLI Help, Release 7.1     435



Types of conflicts
Suppose that you are preparing to release your software application. You specify that the 
release should contain tasks 72 and 23, but you do not specify task 58. After your build, 
you might be surprised to find that task 58 was included in the application you were 
preparing. Rational Synergy can warn you that a task you did not request will be included. 
This is called a conflict.

There are many different types of conflicts. If you had manually used foo.c-5 in the 
project, but the project's update properties didn't explicitly specify task 86, and no other 
tasks that you had explicitly specified depended on task 86, that would be another type of 
conflict. Rational Synergy can warn you that it appears that an object version has been 
used in your project, rather than its task being explicitly specified.

Some conflicts are more serious than others.

For example, your team might decide that they will not fix more than one bug in a single 
version of a file because then it is too difficult to tell which changes fixed which bug. 
Further, your team decides that each developer should associate only one task with each 
object version he changes. If an object version in the release you are preparing is 
associated with more than one task, you need to know so that you can remind the 
developer that this is not a good idea. However, it is not a severe conflict, since the 
software you are preparing for the release contains all the changes it needs.

A more serious conflict is an implicitly included object version that is not associated with 
any task.

Rational Synergy can warn you about both types of conflicts.

Parallel conflicts
One of the most important types of conflict detection is detecting parallel object versions.

If your project has explicitly specified a change and it is not included, that is a serious 
conflict. For example, consider a situation where two parallel files are associated with two 
different tasks, and both tasks are explicitly specified. In this example, assume that 
myproj-bill contains bar.c-3. The bar.c file has the history relationships and task 
associations shown in the following figure.
436     Rational Synergy Classic CLI Help, Release 7.1



Conflict detection
The myproj-bill project's update properties specify that tasks 58 and 86 should be 
included. But your project includes only bar.c-3, which is associated with task 58. It is 
impossible for it also to include bar.c-2.1, which is associated with task 86, because that 
is a parallel branch. There is no one version of bar.c that contains both changes you have 
requested. This is a severe conflict, since a version that you know should be included in 
your project is not there.

Parallel conflicts can mean missing changes, but there are other types of missing changes 
as well.

Missing changes
Consider what would happen if you manually included (with ccm use or from the Use 
dialog) bar.c-2.1 in the myproj-bill project. Changes for both tasks 58 and 86 would 
be missing, even though they were explicitly specified, because they are newer than the 
version of the file currently in the project.

This change is explicitly specified, but missing. You might notice that it is missing if you 
looked at the tasks included in your project's update properties to see that they were 
included in your project. Other types of conflicts are even more difficult to detect.

Let's say we updated the update properties on myproj-bill to include tasks 86 and 36, 
rather than tasks 86 and 58. Now task 58 is no longer explicitly specified. Task 86 is 
associated with foo.c-5, and its predecessor is foo.c-4, which is associated with task 
72. So task 86 implicitly includes task 72. If your project includes foo.c-5, it includes both 
changes, and everything is fine. But what about bar.c? bar.c-2.1 is specified explicitly 
because it is associated with task 86, and bar.c-3 is specified implicitly because it is 
associated with task 58 (which is implicitly included in your project). Therefore, once again 
there is no version of bar.c that contains all of the changes that your project requested.
Rational Synergy Classic CLI Help, Release 7.1     437



Large-scale conflict detection
Now let’s consider a project with hundreds of members, each of which has many versions 
in its history, and a release that comprises hundreds of tasks. No matter how careful your 
team is, the bigger your project, the greater the opportunity for errors, for example, those 
due to parallel development (forgotten merges) or human error (forgotten object/task 
association). The solution is to find out about the errors and correct them before you build. 
Rational Synergy can detect conflicts on a large-scale project so that your team can 
resolve issues before they become problems (i.e., hold up the build).

Rational Synergy uses its knowledge of all of the history relationships and task 
relationships to detect these conflicts for you. In all, it can detect 24 different types of 
conflicts, although only 16 are shown by default. The other 8 are not severe, and they are 
not shown by default because seeing extra conflicts makes it more difficult to concentrate 
on the conflicts that really affect your software’s integrity. However, if you want to change 
the type of conflicts that are shown by default, see conflict_parameters. Note that you 
must be in the ccm_admin role to change these default settings.

Rational Synergy analyzes a project to determine whether it has any conflicts, then 
displays the conflicts. The operation is available for a single project rather than a 
hierarchy, although you can show conflicts for a project hierarchy from the command line 
(ccm conflicts).

Depending on the size and characteristics of your project, conflict detection can be time-
consuming, so only you will know the best time to show conflicts. Build managers should 
show conflicts after every update of a prep project. Developers may not want to show 
conflicts unless they suspect that their projects contain parallel versions or other conflicts 
that are causing problems.
438     Rational Synergy Classic CLI Help, Release 7.1



Date formats
Date formats
The following topics explain how to set and manipulate the date and time formats 
displayed in Rational Synergy dialogs and commands, reports, and date/time input 
formats to various functions.

• Dates displayed by Rational Synergy

• Dates accepted as Input by Rational Synergy

• Setting environment variables

• General information

Dates displayed by Rational Synergy
Rational Synergy displays dates in several Rational Synergy dialogs and ccm commands. 
By default, these dates are displayed in a locale-specific format, such as "Fri Oct 30 
12:04:38 1998", or "Mittwoch, 6. Mai 1998, 17:13:20 Uhr".

The following are the rules for date conversion on output:

1. If you set the environment variable CCM_DATETIME_FMT, Rational Synergy uses 
strftime() with the format specified in that variable.  Note that most, but not all, 
date/time conversion is done on the engine; to get the effect of a format everywhere, 
you must set the environment variable for both interface and engine processes.

2. If you do not set the environment variable, and the process is running on UNIX, then 
strftime() is used with a format of %c. Note that this includes UNIX engines for 
Windows clients. This format produces the locale-specific date and time format 
referred to in the first paragraph above.

3. If you do not set the environment variable, and the process is running on Windows, 
the long date format in the Regional Settings control panel is used, together with the 
time format defined by Windows for the locale.  Note that there is a control panel 
setting for the date format, but not for the time format.

Dates accepted as Input by Rational Synergy
Dates are accepted as input when using the time ("xxxxx") operator in queries, when 
setting the values of time attributes using the ccm attr command, and by certain other 
commands such as ccm clean_cache.

On some UNIX clients, dates can be accepted during input in locale-specific formats.  
Locale-specific date and time input is not available on some other UNIX clients, nor on 
Windows; on these systems, dates and times may be displayed in a locale-specific format, 
but must be entered in a numerical format with U.S. ordering. The systems that support 
locale-specific input vary from release to release, and are listed in the Rational Synergy 
README.  You can disable the locale-specific date input on any system by setting the 
environment variable CCM_NO_LOCALE_TIMES.
Rational Synergy Classic CLI Help, Release 7.1     439



On those systems that support it, locale-specific date input is handled by the routine 
strptime() with a format of %c. Rational Synergy also tries a few other formats - %c, %Ec, 
%c %Z, %x %X, %X %x, %x %X %Z, %X %x %Z, %x, and if not on Solaris, %X.

If CCM_NO_LOCALE_TIMES is set, or if the system does not support strptime(), Rational 
Synergy performs its own date and time translation. Rational Synergy tries several 
formats, most of which are specific to the U.S. conventions in language, punctuation, and 
ordering.

A format that should be acceptable for input on any system, locale-specific or not, is YYYY/
MM/DD hh:mm:ss. Alternatively, use the relative date and time format.  Use the relative 
date/time format in queries and with commands such as ccm clean_cache. 

Relative dates and times are specified in the following format:

-d:h:m:s

+d:h:m:s

Relative dates and times are interpreted relative to the start of today. Some sample date 
and time formats follow:

'Thu May 2 12:15'

'April 10 1998'         (The time defaults to the start of the day)

'2001/08/21 11:36:15'   (August 21st 2001 at 11:36:15am)

'-0:0:0:0'              (start of today)

'+0:0:0:0'              (midnight tonight)

'-1:18:0:0'             (6 A.M on the day before yesterday)

'-2:0:0:0'              (start of day before yesterday)

'-2:8:0:0'              (4pm three days ago)

Setting environment variables
You can set environment variables for the client (interface process) by setting the 
variables before calling ccm start.

To set an environment variable for the engine on Windows, add a section [Engine 
environment variables] to your ccm.ini file, and add the required variables and their 
values to that section.

To set an environment variable for the engine on UNIX, edit the script $CCM_HOME/bin/
util/ccm_engine.

Additionally, you can set a Rational Synergy command, ccm env, to set the interface or 
engine environment variables dynamically. The ccm env command is not installed by 
default, but it is available in the extras\contrib (Windows) or extras/contrib (UNIX) 
directory in your Rational Synergy installation area.
440     Rational Synergy Classic CLI Help, Release 7.1



Date formats
General information
Acceptable dates are from 1 second after the start of January 1st 1970 (GMT) until the 
end of 2037.  For example, in the Pacific Standard Time time zone, the earliest acceptable 
time is 1 second after 4pm on December 31st 1969.

Note Do not assume that a date displayed by Rational 
Synergy can be converted back into exactly the same time. 
The underlying OS code (even when using  
CCM_NO_LOCALE_TIMES) is not always accurate to the 
second, and conversions between time zones or between 
daylight saving times and standard time are known to be 
erratic on many systems.

On some releases of some operating systems, strptime() is available but does not work 
correctly. In these cases (for example, HP-UX 11.0), set the CCM_NO_LOCALE_TIMES 
environment variable to any value.

Date formats using ISO 8601 format
Date/time strings used in queries can be written in the ISO 8601 format of "2006-08-21 
T09:12:15-0100" using the following parameters:

• The full four-digit year number must be supplied.

• The month, day, hour, minute, and seconds field must be present and must be exactly 
two digits, with a leading zero if necessary.

• The year, month, and day fields must be separated by a single dash (-).

• The date and time must be separated by a single upper-case T

• The time fields must be separated by a single colon (:)

• The time zone field must be present, and can be either a single upper-case Z for UTC 
(GMT) time, or a plus (+) or minus (-) character followed by an offset from UTC

• The offset from UTC is in hours (two digits) and minutes (two digits); the hours and 
minutes may be separated by an optional colon (:) separator.  Thus, -0500 and -05:00 
are both valid time zone fields.
Rational Synergy Classic CLI Help, Release 7.1     441



Defining the merge tool
You can redefine or change only the interactive merge and compare tool. The following 
sections tell you how to do so.

• Prerequisites

• Command keywords

• Where to define the merge and compare commands

Prerequisites
The new merge tool must meet the following requirements:

• It must be installed on your system.

• The merge command must be able to accept three arguments: "ancestor" (the last 
common file before the multiple versions), and file1 and file2 (the files to be 
merged).

• The command must have a "save" capability that allows you to save to another file.

If your interactive merge tool does not have an output file option, you must save the output 
to the location specified by Rational Synergy. A message appears in the Merge dialog and 
Message View during the merge, telling you where Rational Synergy will save the file. By 
default, the file is saved as %file1 (the name of the first file specified) in your system’s 
default temporary directory. For example, if %file1 is foo.c-32 and the temporary 
directory is c:\temp (Windows) or /tmp (UNIX), Rational Synergy will save your merge 
results to c:\temp\foo.c (Windows) or /tmp/foo.c (UNIX). Following the save, 
Rational Synergy copies the contents of the saved file to the new, controlled file.

If the save directory already contains a file with the name you specified, Rational Synergy 
generates the file name merge_#.out, where "#" is an integer incremented by 1 for each 
file saved.
442     Rational Synergy Classic CLI Help, Release 7.1



Defining the merge tool
Command keywords
Use the keywords shown in the following table when defining your interactive merge or 
compare tool. These keywords are expanded during the merge or compare; enter them 
exactly as shown.

Where to define the merge and compare commands
You can use a different interactive merge tool by making the following change:

• In the type definition for your object

You can change a specific object type’s merge_cmd attribute by using the typedef 
command.

Changes made to a type affect only objects of that type.

Keyword Description

%outfile output file where merge output is saved

%ancestor common ancestor file, if one exists

%file1 first file selected to merge

%file2 second file selected to merge

%file1_label name and version of the first file

%file2_label name and version of the second file
Rational Synergy Classic CLI Help, Release 7.1     443



Migration rules
Migration rules use file characteristics to map files in the file system to Rational Synergy 
database objects when you perform a migrate operation. Rational Synergy also uses the 
migration rules when you perform create, reconcile, and build operations. Use the 
appropriate information:

• Migrating - Windows operating systems

• Migrating - UNIX operating systems
444     Rational Synergy Classic CLI Help, Release 7.1



Migration rules
Migrating  - Windows operating systems
The following sections explain more about the migration rules:

• Migration rules files

• Auto-generated rules

• Rule syntax and meaning

• Rules file example

• Migrating binary archive files

• Troubleshooting the migration rules

Migration rules files
You can define migration rules in any ASCII file. The default rules are in the 
database_path\lib\Windows\migrate.rul file.

Use an alternative migration rules file, with an arbitrary name, in any of the following ways:

• Create a rules file, then enter its name in a system or personal ccm.ini file using the 
following syntax:

migrate.options.rules_file: alternative_rules_filename

• Create a rules file, then use the Migrate Options dialog in Synergy Classic to load the 
rules file.

• Create a rules file, then use the following syntax on the command line to load a rules 
file:

ccm migrate -rules alternative_rules_filename

If you define more than one alternative migration rules file, the files’ precedence is as 
follows (highest to lowest):

1. File specified in the Migrate Options dialog in Synergy Classic or ccm migrate 
command option

2. File specified in the personal ccm.ini file

3. File specified in the system ccm.ini file

4. Default rules

Auto-generated rules
By default, the default migrate rules file contains an INCLUDE_AUTO_RULES directive. 
This directive includes automatically generated rules defined on type definitions for the 
type of client that is currently running. For example, you may have defined an msword type 
with two patterns that match .doc and .dot suffixes on a Windows client. The auto-
generated rules will include the following two rules at the point where the 
INCLUDE_AUTO_RULES directive has been specified:
Rational Synergy Classic CLI Help, Release 7.1     445



MAP_FILE_TO_TYPE .*[Dd][Oo][Cc]$ msword
MAP_FILE_TO_TYPE .*[Dd][Oo][Tt]$ msword

The benefit of using auto-generated rules is that the type-based rules are defined on the 
corresponding type definition. Moreover, if the type definition is exported from one 
database and imported to another, its corresponding migrate rules accompany it. This is 
especially useful if you are using DCM and replicating type definitions between databases.

The migrate rules file completely controls the ordering of migrate rules. If desired, you can 
remove the INCLUDE_AUTO_RULES directive so that the migrate rules file explicitly defines 
every rule. You can also move the position of the directive in the file to change the point at 
which the auto-generated rules are included.

The Auto-Generated rules are produced using the following process:

1. Auto-generated rules from the predefined ascii and binary types are produced first.

2. Each type that uses ascii or binary as its super type is then processed, so that the 
inheritance tree of types is traversed from top to bottom and left to right. This means 
that more specific types that are children of some super type generate rules after their 
parent super type.

3. Each non-comment entry in the type’s file match list generates a rule of the form:

MAP_FILE_TO_TYPE regular_expression type

4. Each type that has Ignore on Migrate set to TRUE generates a rule of the form:

MAP_TYPE_TO_IGNORE type TRUE

You can view the auto-generated rules that would be included by an 
INCLUDE_AUTO_RULES directive as follows:

From the CLI, use the ccm show -mar command.

Rule syntax and meaning
Each rule in a migration rules file sets an attribute on, or performs an operation on, files 
with the specified characteristics.

The rule syntax is as follows:

    mapping operand_1 operand_2

• mapping is the mapping action performed.

The mapping action sets object attributes or performs ignore or collapse operations.

• operand1 is the file characteristic.

The file characteristic is a regular expression, a string, or a macro, depending on the 
mapping action.

• operand2 is the value used by the mapping action.

The value is TRUE or FALSE for ignore and collapse mapping actions, or the attribute 
value for the other mapping actions.
446     Rational Synergy Classic CLI Help, Release 7.1



Migration rules
The rules are applied in the order in which they appear in the rules file. A pound sign 
precedes comments.

Note You can use upper, lower, or mixed case in file names, 
depending on which Windows operating system you are 
using.

For example, the following rules set the object type to csrc and version to "1.0" for files 
ending in ".c":

  # C source files
  MAP_FILE_TO_TYPE .*\.c$ csrc
  MAP_TYPE_TO_VERSION csrc 1.0

Note Back slash ( \ ) separators in path names are 
converted to forward slash ( / ) separators when the 
migration rules are applied. Therefore, migration rules can 
contain standard regular expression escapes ( \ ).

The following table shows the possible migration rules and their operands.

Mapping  Operand 1 Operand 2

to TYPE

MAP_FILE_TO_TYPE string or regexp valid type

MAP_TYPE_TO_TYPE string or regexp valid type

MAP_MODE_TO_TYPE value or macro valid type

to VERSION

MAP_FILE_TO_VERSION string or regexp valid version

MAP_TYPE_TO_VERSION string or regexp valid version

MAP_MODE_TO_VERSION value or macro valid version

to IGNORE

MAP_FILE_TO_IGNORE string or regexp TRUE or FALSE

MAP_TYPE_TO_IGNORE string or regexp TRUE or FALSE

MAP_MODE_TO_IGNORE value or macro TRUE or FALSE

to COLLAPSE
Rational Synergy Classic CLI Help, Release 7.1     447



The following sections show how the rules are used:

• Map to TYPE

• Map to VERSION

• Map to IGNORE

• Map to COLLAPSE

• Map to ATTRIBUTE

Map to TYPE
The MAP_*_TO_TYPE rule sets type attributes. Usually this is the first rule you enter for a 
file because the type attribute can be used in subsequent rules.

If the object type is %expand_pvcs, migrate treats the matching file as a PVCS archive and 
the migrate operation extracts the deltas from the file. These deltas become objects that 
appear in the list of objects being previewed.

Note The MAP_MODE_TO_* rules accept one pre-defined 
macro for operand_1: %dir.

Examples

• Set the Rational objects’ type attributes to csrc for all files with a .c extension.

MAP_FILE_TO_TYPE .*\.c$ csrc

• Expand all PVCS archive files by uncommenting the following rule.

MAP_FILE_TO_TYPE   .*\...[Vv]$ %expand_pvcs

• Set the Rational objects’ type attributes to dir for all directories.

MAP_MODE_TO_TYPE %dir dir

MAP_FILE_TO_COLLAPSE string or regexp TRUE or FALSE

MAP_TYPE_TO_COLLAPSE string or regexp TRUE or FALSE

MAP_MODE_TO_COLLAPSE value or macro TRUE or FALSE

to ATTRIBUTE

MAP_FILE_TO_ATTRIBUTE string or regexp TRUE or FALSE

MAP_KEY_TO_ATTR string string

Mapping  (Continued) Operand 1 Operand 2
448     Rational Synergy Classic CLI Help, Release 7.1



Migration rules
Map to VERSION
The MAP_*_TO_VERSION rule sets the version attributes.

Note The MAP_MODE_TO_* rules accept one pre-defined 
macro for operand_1: %dir.

Example

• Set the Rational objects’ version attributes to 2 for all files with the .c extension.

MAP_FILE_TO_VERSION .*\.c$ 2

Note If an instance of this object already exists with a 
version set to 2, the next appropriate version is used.

Map to IGNORE
The MAP_*_TO_IGNORE rule, when set to TRUE, causes files to be ignored.

Note If a directory is marked as ignored, all files in the 
directory hierarchy are ignored.

Examples

• Ignore files with a .map file extension.

MAP_FILE_TO_IGNORE .*\.map$ TRUE

• Ignore files of type makefile.

MAP_TYPE_TO_IGNORE makefile TRUE

• Recognize PVCS files (by un-commenting commented-out, default migration rules).

These rules are usually commented out so that files with suffixes ending in V or v 
(such as .wav files) are not ignored. The second rule causes unexpanded PVCS files 
to be ignored.

MAP_FILE_TO_TYPE   .*\...[Vv]$ %expand_pvcs 
MAP_FILE_TO_IGNORE .*\...[Vv]$ TRUE

Map to COLLAPSE
The MAP_*_TO_COLLAPSE rule, when set to TRUE, causes directories to be collapsed 
before they are migrated.

All the matching directory's children become its parent directory's children. This method is 
typically used to bring archive files out of their archive directories and up to the level of 
their checked-out versions.

Caution For migrates, all COLLAPSE and %expand rules are 
evaluated during Preview only; they are not re-evaluated if 
the rules are edited.
Rational Synergy Classic CLI Help, Release 7.1     449



Example

• Collapse tmp directories.

MAP_FILE_TO_COLLAPSE .*/tmp$ TRUE

Map to ATTRIBUTE
The MAP_*_TO_ATTRIBUTE rule sets the specified attribute to the specified value.

Note You can map only text attributes to Rational Synergy 
attributes.

Example

• Set the SYNERGY objects’ reviewer attributes to the files’ PVCS Extended Revision 
Attributes, reviewed_by.

MAP_KEY_TO_ATTR reviewed_by reviewer

Note If the archive attribute does not exist on the objects, 
Rational Synergy creates the attribute as type text.

Rules file example
Suppose you are using the following migration rules file (the numbers at the left are 
provided for reference):

1. MAP_FILE_TO_TYPE .*\.mk$ makefile

2. MAP_FILE_TO_TYPE [Mm]akefile[^/]*$ makefile

3. MAP_TYPE_TO_IGNORE makefile TRUE

4. MAP_FILE_TO_TYPE .*\...[Vv]$ %expand_pvcs

5. MAP_FILE_TO_IGNORE .*\...[Vv]$ TRUE

6. MAP_MODE_TO_TYPE %dir dir

Then, suppose you are migrating the following files into the Rational Synergy database:

  dir1               <dir>
  Makefile.joe       
  Makefile.jov

The first file, dir1, is a directory. The rule applied to this file is:

  6. MAP_MODE_TO_TYPE %dir dir

The second file, Makefile.joe, is a makefile. The rules applied to this file are:

  2. MAP_FILE_TO_TYPE [Mm]akefile[^/]*$ makefile
  3. MAP_TYPE_TO_IGNORE makefile TRUE

Rule 2 is applied because the pattern "[Mm]akefile[^/]*$" matches the makefile’s file 
name, Makefile.joe. Rule 3 is applied because the file object has been given the type 
450     Rational Synergy Classic CLI Help, Release 7.1



Migration rules
makefile. The result is that files of type makefile are ignored. You also could write the 
following new rule to achieve the same result:

  MAP_FILE_TO_IGNORE [Mm]akefile[^/]*$

The third file, Makefile.jov, is a PVCS archive. The rules applied to this file are:

  4. MAP_FILE_TO_TYPE .*\...[Vv]$ %expand_pvcs
  5. MAP_FILE_TO_IGNORE .*\...[Vv]$ TRUE

Rule 4 is applied because the "*\...[Vv]$" pattern matches the file name, 
Makefile.jov. This rule causes the migrate operation to extract all the deltas inside the 
archive file and create an object for each of them in the preview list. Rule 5 has the same 
pattern match and marks the archive file as ignored. The result is that new object 
versions are created for the expanded PVCS files, but the archive file itself is ignored. 
Also, rules are applied to each file expanded from an archive file; therefore, each 
Makefile.jov file is assigned the type makefile according to rule 3.

Note Be sure to test your migration rules on test files before 
applying them to production files.

For example, the MAP_FILE_TO_* rules match a pattern to a 
file name. Because a file name includes the entire path, the 
MAP_FILE_TO_TYPE makefile rule would map a directory 
such as C:\my_makefiles\foo.c to type makefile, 
because the pattern "makefile" is in the path. Therefore, 
the rule MAP_FILE_TO_TYPE /makefile$ makefile (using 
a slash before the file name, and anchored to the end of the 
path) would be a better rule to use to ensure that the rule is 
applied to files, not to directories.

Migrating binary archive files
When assigning types to archive files, the migrate operation first extracts files from the 
archive files, then applies the migration rules to the resulting file name. If the resulting file 
name does not match any existing type, it could be assigned to ascii automatically. If the 
archive contents are not actually ascii, the migrate operation cannot load the file.

To prevent a migrate operation from loading archive files as ascii, do one of the 
following:

• Add rules mapping binary archive file names to a non-ascii type, such as binary 
(which is the usual way).

• Manually map the binary archive files to a non-ascii type for items selected from the 
Preview Results list.

• Check the Preview results before performing the load to ensure that the types are 
correct.
Rational Synergy Classic CLI Help, Release 7.1     451



Troubleshooting the migration rules
If the rules that you have entered have no effect, do the following:

1. Check that the changed rules have been saved and that the edit rules session has 
ended.

2. Check that the rules have not been superseded by rules that follow them in the rules 
list.

3. Consider that MAP_*_TO_TYPE, which uses %expand_pvcs, is applied during a 
preview, not after it is edited when other rules are re-applied.

4. Consider that MAP_FILE_TO_* rules match a full file path. For example, if a directory 
by the name of bitmap exists and a rule is MAP_FILE_TO_TYPE bitmap binary, the 
directory and everything in its hierarchy would be set to type binary. To avoid this 
behavior, set the first operand to /bitmap$.

For example, to migrate bitmap files as type binary, and bitmap directories as type 
dir, use the following rules:

MAP_FILE_TO_TYPE /bitmap$ binary
MAP_MODE_TO_TYPE $dir dir
452     Rational Synergy Classic CLI Help, Release 7.1



Migration rules
Migrating - UNIX operating systems
The following sections explain more about the migration rules:

• Migration rules files

• Auto-generated rules

• Rule syntax and meaning

• Rules file example

• Migrating binary archive files

• Troubleshooting the migration rules

Migration rules files
You can define migration rules in any ASCII file. The default rules are in the 
database_path/lib/UNIX/migrate.rul file.

Use an alternative migration rules file, with an arbitrary name, in any of the following ways:

• Create a rules file, then enter its name in a system or personal ccm.ini file using the 
following syntax:

migrate.options.rules_file: alternative_rules_filename

• Create a rules file, then use the Migrate Options dialog to load the rules file.

• Create a rules file, then use the following syntax on the command line to load a rules 
file:

ccm migrate -rules alternative_rules_filename

If you define more than one alternative migration rules file, the files’ precedence is as 
follows (highest to lowest):

1. File specified in the Migrate Options dialog or ccm migrate command option

2. File specified in the personal .ccm.ini file

3. File specified in the system .ccm.ini file

4. Default rules

Auto-generated rules
By default, the default migrate rules file contains an INCLUDE_AUTO_RULES directive. 
This directive includes automatically generated rules defined on type definitions for the 
type of client that is currently running. For example, you may have defined an msword type 
with two patterns that match .doc and .dot suffixes on a Windows client. The auto-
generated rules will include the following two rules at the point where the 
INCLUDE_AUTO_RULES directive has been specified:
MAP_FILE_TO_TYPE .*[Dd][Oo][Cc]$ msword
MAP_FILE_TO_TYPE .*[Dd][Oo][Tt]$ msword
Rational Synergy Classic CLI Help, Release 7.1     453



The benefit of using auto-generated rules is that the type-based rules are defined on the 
corresponding type definition. Moreover, if the type definition is exported from one 
database and imported to another, its corresponding migrate rules accompany it. This is 
especially useful if you are using DCM and replicating type definitions between databases.

The migrate rules file completely controls the ordering of migrate rules. If desired, you can 
remove the INCLUDE_AUTO_RULES directive so that the migrate rules file explicitly defines 
every rule. You can also move the position of the directive in the file to change the point at 
which the auto-generated rules are included.

The Auto-Generated rules are produced using the following process:

1. Auto-generated rules from the predefined ascii and binary types are produced first.

2. Each type that uses ascii or binary as its super type is then processed, so that the 
inheritance tree of types is traversed from top to bottom and left to right. This means 
that more specific types that are children of some super type generate rules after their 
parent super type.

3. Each non-comment entry in the type’s file match list generates a rule of the form:

MAP_FILE_TO_TYPE regular_expression type

4. Each type that has Ignore on Migrate set to TRUE generates a rule of the form:

MAP_TYPE_TO_IGNORE type TRUE

You can view the auto-generated rules that would be included by an 
INCLUDE_AUTO_RULES directive as follows:

From the CLI, use the ccm show -mar command.

Rule syntax and meaning
Each rule in a migration rules file sets an attribute on, or performs an operation on, files 
with the specified characteristics.

The rule syntax is as follows:
    mapping operand_1 operand_2

• mapping is the mapping action performed.

The mapping action sets object attributes or performs ignore or collapse operations.

• operand1 is the file characteristic.

The file characteristic is a regular expression, a string, or a macro, depending on the 
mapping action.

• operand2 is the value used by the mapping action.

The value is TRUE or FALSE for ignore and collapse mapping actions, or the attribute 
value for the other mapping actions.

The rules are applied in the order in which they appear in the rules file. A pound sign 
precedes comments.
454     Rational Synergy Classic CLI Help, Release 7.1



Migration rules
For example, the following rules set the object type to csrc and version to "1.0" for files 
ending in ".c":

  # C source files
  MAP_FILE_TO_TYPE .*\.c$ csrc
  MAP_TYPE_TO_VERSION csrc 1.0

The following table shows the possible migration rules and their operands.

Mapping  Operand 1 Operand 2

to TYPE

MAP_FILE_TO_TYPE string or regexp valid type

MAP_TYPE_TO_TYPE string or regexp valid type

MAP_MODE_TO_TYPE value or macro valid type

to VERSION

MAP_FILE_TO_VERSION string or regexp valid version

MAP_TYPE_TO_VERSION string or regexp valid version

MAP_MODE_TO_VERSION value or macro valid version

to IGNORE

MAP_FILE_TO_IGNORE string or regexp TRUE or FALSE

MAP_TYPE_TO_IGNORE string or regexp TRUE or FALSE

MAP_MODE_TO_IGNORE value or macro TRUE or FALSE

to COLLAPSE

MAP_FILE_TO_COLLAPSE string or regexp TRUE or FALSE

MAP_TYPE_TO_COLLAPSE string or regexp TRUE or FALSE

MAP_MODE_TO_COLLAPSE value or macro TRUE or FALSE

to STATUS

MAP_STATE_TO_STATUS string valid value

to ATTRIBUTE
Rational Synergy Classic CLI Help, Release 7.1     455



The following sections show how the rules are used:

• Map to TYPE

• Map to VERSION

• Map to IGNORE

• Map to COLLAPSE

• Map to STATUS

• Map to ATTRIBUTE

Map to TYPE
The MAP_*_TO_TYPE rule sets type attributes. Usually this is the first rule you enter for a 
file because the type attribute can be used in subsequent rules.

If the object type is %expand_rcs or %expand_sccs migrate treats the matching file as an 
RCS or SCCS archive and the migrate operation extracts the deltas from the file. These 
deltas become objects that appear in the list of objects being previewed.

Note: The MAP_MODE_TO_* rules accept a positive integer, 
an octal value, or a predefined macro as their first 
parameter. The positive integer or octal value represents a 
file mode. An octal value must begin with a zero; for 
example, a file with rwxr--r-- permissions is matched with 
an octal value of 0100744. The 0100000 of the bit pattern is 
the code for a regular file.

The predefined macros %dir, %link, and %exec are less 
restrictive than the integer or octal values. Whereas a rule 
such as MAP_MODE_TO_TYPE 0100111 executable 
matches only a file with the permissions ----x--x--x, the 
rule MAP_MODE_TO_TYPE %exec executable matches a file 
with any of the executable permissions set (for example, -
rwx--x--x)

Examples

• Set the Rational objects’ type attributes to csrc for all files with a .c extension.

MAP_FILE_TO_TYPE .*\.c$ csrc

MAP_FILE_TO_ATTRIBUTE string or regexp TRUE or FALSE

MAP_KEY_TO_ATTR symbols (lower-case 
character string)

string

Mapping  (Continued) Operand 1 Operand 2
456     Rational Synergy Classic CLI Help, Release 7.1



Migration rules
• Set the objects’ type attributes to executable for all files with mode executable. 
(%exec evaluates to TRUE if any of the file's permissions—user, group or other—are 
executable).

MAP_MODE_TO_TYPE %exec executable

• Set the Rational objects’ type attributes to dir for all directories.

MAP_MODE_TO_TYPE %dir dir

Map to VERSION
The MAP_*_TO_VERSION rule sets the version attributes.

Note: The MAP_MODE_TO_* rules accept a positive integer, 
an octal value, or a predefined macro as their first 
parameter. The positive integer or octal value represents a 
file mode. An octal value must begin with a zero; for 
example, a file with rwxr--r-- permissions is matched with 
an octal value of 0100744. The 0100000 of the bit pattern is 
the code for a regular file.

The predefined macros %dir, %link, and %exec are less 
restrictive than the integer or octal values. Whereas a rule 
such as MAP_MODE_TO_TYPE 0100111 executable 
matches only a file with the permissions ----x--x--x, the 
rule MAP_MODE_TO_TYPE %exec executable matches a file 
with any of the executable permissions set (for example, -
rwx--x--x).

Examples

• Set the Rational objects’ version attributes to 2 for all files with the .c extension.

MAP_FILE_TO_VERSION .*\.c$ 2

Note If an instance of this object already exists with a 
version set to 2, the next appropriate version is used.

• Set the version attributes to ver1 for all files of type link.

MAP_MODE_TO_VERSION %link link

• Set the version attributes to pre1 for all files that are user read- or write-only.

MAP_MODE_TO_VERSION 600 pre1

Map to IGNORE
The MAP_*_TO_IGNORE rule, when set to TRUE, causes files to be ignored.
Rational Synergy Classic CLI Help, Release 7.1     457



Note If a directory is marked as ignored, all files in the 
directory hierarchy are ignored.

Examples

• Ignore all files in the tmp directory.

MAP_FILE_TO_IGNORE /tmp/ TRUE

• Ignore files with an SCCS file extension.

MAP_FILE_TO_IGNORE .*/s\.[^/]+$ TRUE

• Ignore files of type makefile.

MAP_TYPE_TO_IGNORE makefile TRUE

Map to COLLAPSE
The MAP_*_TO_COLLAPSE rule, when set to TRUE, causes directories to be collapsed 
before they are migrated.

All the matching directory's children become its parent directory's children. This method is 
typically used to bring archive files out of their archive directories and up to the level of 
their checked-out versions.

Caution For migrates, all COLLAPSE and %expand rules are 
evaluated during Preview only; they are not re-evaluated if 
the rules are edited.

Example

• Collapse SCCS directories.

MAP_FILE_TO_COLLAPSE .*/SCCS$ TRUE

Map to STATUS
The MAP_STATE_TO_STATUS rule sets the status attributes.

Note: You must have the ccm_admin role to use this rule, 
and either set Use Status From Archive ON in the GUI or 
use the -meta_status option on the migrate command 
line.

This mapping is valid only when migrating files from an 
RCS archive.

Example

• Set the objects’ status attributes to released for all files with RCS status Exp.

MAP_STATE_TO_STATUS Exp released
458     Rational Synergy Classic CLI Help, Release 7.1



Migration rules
Map to ATTRIBUTE
The MAP_*_TO_ATTRIBUTE rule sets the specified attribute to the specified value.

Note You can map only text attributes to Rational Synergy 
attributes.

Example

• Set the objects’ release attributes to the files’ RCS symbols attribute.

MAP_KEY_TO_ATTR symbols release

Note If the archive attribute does not exist on the objects, 
Rational Synergy creates the attribute as type text.

Rules file example
Suppose you are using the following migration rules file (the numbers at the left are 
provided for reference):

1. MAP_MODE_TO_TYPE %exec executable

2. MAP_FILE_TO_TYPE .*\.mk$ makefile

3. MAP_FILE_TO_TYPE [Mm]akefile[^/]*$ makefile

4. MAP_TYPE_TO_IGNORE makefile TRUE

5. MAP_FILE_TO_TYPE .*/s\.[^/]+$ %expand_sccs

6. MAP_FILE_TO_IGNORE .*/s\.[^/]+$ TRUE

7. MAP_FILE_TO_COLLAPSE .*/SCCS$ TRUE

8. MAP_MODE_TO_TYPE %dir dir

Then, suppose you are migrating the following files into the Rational Synergy database:

  dir1               <dir>
  Makefile.joe       -rw-r--r--
  SCCS/              drwxr-xr-x
  s.Makefile.joe     -r--r--r--

The first file, dir1, is a directory. The rules applied to this file are:

  1. MAP_MODE_TO_TYPE %exec executable
  8. MAP_MODE_TO_TYPE %dir dir

Rule 1 is applied because a/ has an executable file bit set ("x"). Rule 8 is applied because 
the directory file bit is set. The resulting file type is dir because the second rule overrides 
the first rule.

The second file, Makefile.joe, is a makefile. The rules applied to this file are:
  3. MAP_FILE_TO_TYPE [Mm]akefile[^/]*$ makefile
  4. MAP_TYPE_TO_IGNORE makefile TRUE
Rational Synergy Classic CLI Help, Release 7.1     459



Rule 3 is applied because the pattern "[Mm]akefile[^/]*$" matches the makefile’s file 
name, Makefile.joe. Rule 4 is applied because the file object has been given the type 
makefile. The result is that files of type makefile are ignored. You also could write the 
following new rule to achieve the same result:

  MAP_FILE_TO_IGNORE [Mm]akefile[^/]*$

The third file, SCCS/, is an SCCS directory. The rule applied to this file is:

  7. MAP_FILE_TO_COLLAPSE .*/SCCS$ TRUE

(Rule 8 is applied also, but the file is already collapsed by rule 7.)

The first rule is applied because the pattern ".*/SCCS$" matches the directory's name. 
The rule causes the SCCS directory not to be migrated and the directory’s member files to 
be migrated into the migration’s destination directory.

The fourth file, s.Makefile.joe, is an SCCS archive. The rules applied to this file are:

  5. MAP_FILE_TO_TYPE .*/s\.[^/]+$ %expand_sccs
  6. MAP_FILE_TO_IGNORE .*/s\.[^/]+$ TRUE

Rule 5 is applied because the ".*/s\.[^/]+$" pattern matches the file name, 
s.Makefile.joe. This rule causes the migrate operation to extract all the deltas inside the 
archive file and create an object for each of them in the preview list. Rule 6 has the same 
pattern match and marks the archive file as ignored. The result is that new object 
versions are created for the expanded SCCS files, but the SCCS files themselves are 
ignored. Also, rules are applied to each file expanded from an archive file; therefore, each 
Makefile.joe file is assigned the type makefile according to Rule 4.

Note Be sure to test your migration rules on test files before 
applying them to production files.

For example, the MAP_FILE_TO_* rules match a pattern to a 
file name. Because a file name includes the entire path, the 
MAP_FILE_TO_TYPE makefile rule would map a directory 
such as /user/mark/proj1/my_makefiles/foo.c to type 
makefile, because the pattern "makefile" is in the path. 
Therefore, the rule MAP_FILE_TO_TYPE /makefile$ 
makefile (using a slash before the file name, and 
anchored to the end of the path) would be a better rule to 
use to ensure that the rule is applied to files, not to 
directories.

Migrating binary archive files
When assigning types to archive files, the migrate operation first extracts files from the 
archive files, then applies the migration rules to the resulting file name. If the resulting file 
name does not match any existing type, it could be assigned to ascii automatically. If the 
archive contents are not actually ascii, the migrate operation cannot load the file.
460     Rational Synergy Classic CLI Help, Release 7.1



Migration rules
To prevent a migrate operation from loading archive files as ascii, do one of the 
following:

• Add rules mapping binary archive file names to a non-ascii type, such as binary 
(which is the usual way).

• Manually map the binary archive files to a non-ascii type for items selected from the 
Preview Results list.

• Check the Preview results before performing the load to ensure that the types are 
correct.

Troubleshooting the migration rules
If the rules that you have entered have no effect, do the following:

1. Check that the changed rules have been saved and that the edit rules session has 
ended.

2. Check that the rules have not been superseded by rules that follow them in the rules 
list.

3. Consider that MAP_*_TO_TYPE, which uses %expand_sccs and %expand_rcs, is 
applied during a preview, not after it is edited when other rules are re-applied.

4. Consider that MAP_FILE_TO_* rules match a full file path. For example, if a directory 
by the name of core exists and a rule is MAP_FILE_TO_TYPE core binary, the 
directory and everything in its hierarchy would be set to type binary. To avoid this 
behavior, set the first operand to /core$.

For example, to migrate core files as type binary and core directories as type dir, 
use the following rules:

MAP_FILE_TO_TYPE /core$ binary
MAP_MODE_TO_TYPE $dir dir
Rational Synergy Classic CLI Help, Release 7.1     461



Query expressions
The following topics explain how to construct Rational Synergy database queries.

• Types of queries

• Query clause elements

• Sample queries
462     Rational Synergy Classic CLI Help, Release 7.1



Query expressions
Types of queries
Queries, or query expressions, are created using the ccm query command with one or 
more query clauses. Query clauses are the individual search criteria that make up a query 
expression.

The following sections show how to construct query expressions using different types of 
query clauses.

• Queries using attribute value clauses

• Queries using function test clauses

• Queries using both attribute value and function test clauses

• Queries using keywords

• Nested queries

Queries using attribute value clauses
A query clause based on an attribute value finds all object versions with (or without) 
matching attributes.

The syntax for this type of clause consists of the attribute name (attr_name), a relative 
operator (relative_operator), and the attribute’s value (constant), as shown below:

"attr_name relative_operator ’constant’"

Examples

• Find all object versions with a status of working.

ccm query "status=’working’"

The built-in shortcut for this command is as follows:

ccm query -s working

• Find and show all object versions with version 2.

ccm query "version=’2’"

The built-in shortcut for this command is as follows:

ccm query -v 2

Queries using function test clauses
A query clause based on a function test finds all object versions that match the function’s 
results.

The syntax for this type of clause consists of the function (function) and its arguments, 
as shown below:
"function(’function_arguments’)"

The functions are pre-defined. See Function definitions for the functions’ descriptions.
Rational Synergy Classic CLI Help, Release 7.1     463



Examples

• Find and delete all object versions that have the predecessor ico-1:executable:2.

ccm query "has_predecessor(’ico-1:executable:2’)" 
ccm delete @

• Find and select all object versions of type wdt.

ccm query "type=’wdt’"

The built-in shortcut for this command is as follows:

ccm query -type wdt

Queries using both attribute value and function test clauses
You can combine query clauses to narrow your search. The following lines show how to 
combine query clauses:
"not query_clause"
"query_clause and query_clause"
"query_clause or query_clause"

Examples

• Find and show all object versions that are not members of a project.

ccm query "not is_bound()"

• Find and show all object versions that are members of a project, and that have a 
modification time older than December 12, 2001.

ccm query "is_bound() and modify_time < time(’Fri Dec 12 2001’)"

Queries using keywords
Certain keywords relative to time can be used in query expressions. The following table 
shows the valid keywords.

Keyword Description

%today_begin Beginning of today, 00:00:00

%today_end End of today, 23:59:59

%this_week_begin End of this week, 23:59:59 ) 
See Note 1

%this_week_end Beginning of last week, 00:00:00 
See Note 1

%last_week_begin Beginning of last week, 00:00:00 
See Note 1
464     Rational Synergy Classic CLI Help, Release 7.1



Query expressions
Note 1 The first day of the week is Sunday by default. The 
model attribute start_day_of_week can be set to change 
this default. A value of 1 means Monday, 2 Tuesday and so 
on.

Note 2 When subtracting or adding months, if the current 
day of the month is greater than the number of days in the 
resultant month, the effective date is the last day of that 
month. In both cases, time is 00:00:00. For example, if 
today was 30 January 2003, then %today_plus1month 
would be 28 February 2003, 00:00:00.

%last_week_end Beginning of last week, 23:59:59 
See Note 1

%this_month_begin Beginning of this month, 00:00:00

%this_month_end End of this month, 23:59:59

%last_month_begin Beginning of last month, 00:00:00

%last_month_end End of last month,  23:59:59

%this_year_begin 1 Jan this year, 00:00:00

%this_year_end 31 Dec this year, 23:59:59

%today_minus<N>days Today minus <N> days, 00:00:00

%today_plus<N>days Today plus <N> days, 00:00:00

%today_minus<N>weeks Today minus <N> weeks, 00:00:00

%today_plus<N>weeks Today plus <N> weeks, 00:00:00

%today_minus<N>months Today minus <N> months, 00:00:00 
See Note 2

%today_plus<N>months Today plus <N> months, 00:00:00 
See Note 2

%today_minus<N>years Today minus <N> years, 00:00:00 
See Note 3

%today_plus<N>years Today plus <N> years, 00:00:00 
See Note 3

Keyword Description
Rational Synergy Classic CLI Help, Release 7.1     465



Note 3 When subtracting or adding years, if the current day 
of the month is greater than the number of days in that 
month in the resultant year, the effective date is the last day 
of the month. For example, if today was 29 February 2004, 
then %today_plus1years gives 28 February 2005, 
00:00:00.

Example

• Show all files called file1.c that were created today.

ccm query "name=’file1.c’ and create_time > time(’%today_begin’)"

Nested queries
A nested query is a query expression that uses a function test, in which one or more of the 
function’s arguments is a query expression.

Query functions usually have the following syntax:

query_function('object_name'|
              'project_name'|
               'type_name'|
               'attr_name'|
            'privilege_name'
                [,sort_order])

You can replace any object name, project name, or type name argument with any 
query expression that evaluates to zero or more objects of the appropriate type. 
Queries can be nested to any desired depth.

Examples

• Find all members of all projects named editor.

ccm query "is_member_of(cvtype='project' and name='editor')"

• Find all version 1.0 projects that have the same members as project toolkit-1.0.

ccm query "has_member(is_member_of('1/project/toolkit/1.0')) and 
version = '1.0'"

• Find all subprojects in all projects named editor, using the fastest search method (by 
specifying "none").

ccm query "hierarchy_asm_members(cvtype='project' and name = 'editor', 
'none')"

• Find all objects that have object save.c-1 (of type csrc) as their predecessor.

ccm query "has_predecessor(cvtype='csrc' and name='save.c' and 
version='1')"
466     Rational Synergy Classic CLI Help, Release 7.1



Query expressions
• Find all objects used in directory sources-1 in project editor-fcheng.

ccm query "is_child_of('sources-1:dir:1', cvtype='project' and 
name='editor' and version='fcheng')"

• Find all projects containing objects associated with tasks, for which the tasks’ release 
values are set to 1.0.

ccm query "has_member(is_associated_cv_of(cvtype='task' and 
release='1.0'))"

Note When you construct a query expression in the Query 
dialog’s Query field, you need not enclose the outer query 
expression in double quotes.
Rational Synergy Classic CLI Help, Release 7.1     467



Query clause elements
Query clauses are made of individual elements. You can use the following elements to 
construct a query clause:

• Functions

• Relative operators

• Logical operators

• Constants

• Grouping Query Clauses

Functions
Use the following function arguments and functions to construct function-based query 
clauses.

• Function arguments

• Function definitions

Function arguments

The function arguments are as follows:

attr_name

Specifies the name of any attribute, such as is_product or platform.

object_name

Specifies the object reference form of any object version:

name-version:type:instance

order_spec

Specifies the search order. If the value depth is used for the order_spec, the 
value indicates that a depth-first search is done. breadth is used to specify a 
breadth-first search. If the value "none" is used for the order_spec, it indicates 
that the order is not significant and the search can be done in any order (the 
fastest method is used).

        none | depth | breadth

privilege_name

Specifies the name of a permission such as read or write.

project_name

Specifies the name of any project object version:

project_name-version
468     Rational Synergy Classic CLI Help, Release 7.1



Query expressions
Function definitions

The query functions are as follows:

baseline (’baseline_spec’)

Queries the database for baselines that match the specified information.

build (’build_string’)

Queries the database for baselines that have the specified build string. This query 
function expands to "cvtype='baseline' and build='build_string'", which 
returns the set of all baselines with the given build string, i.e., with a matching 
build attribute.

cr (’cr_id’)

Queries the database for change requests that have the specified number.

folder (’folder_id’)

Queries the database for folders that have the specified number.

has_attr (’attr_name’)

Queries the database for all object versions that have the attribute attr_name (for 
example, is_product or platform).

has_child (’object_name’,’project_name’)

Queries the database for all directory object versions in project_name that have 
object_name as a member.

has_member (’object_name’)

Queries the database for all project object versions that have the specified object 
version as a member.

has_model (’object_name’)

Queries the database for all of the object versions that use the specified model 
object version as their model.

For example, if you use the Base Model, this query is has_model(base-
1:model:base’).

has_no_relationship ()

Queries the database for objects that do not have a relationship of that name to 
any object.

For example, has_no_successor returns every object that does not have a 
successor.

has_predecessor (’object_name’)

Queries the database for all object versions that have the specified object version 
as an immediate predecessor.
Rational Synergy Classic CLI Help, Release 7.1     469



has_priv (’privilege_name’)

privilege_name specifies the name of a privilege, such as read or write.

has_purpose (’purpose_name’)

Queries the database for all projects that have the specified purpose.

has_relationship (’objectspec’, ’operator’, time)

Queries the database for all objects having the specified relation to the specified 
object whose relation create time matches the specified operator (that is, =, !=, 
>,<=, >, or >=) and time value. For example, Rational Synergy uses 
has_successor to show history relationships.

The relationship can be any established relationship such as associated_cv 
or associated_task.

Note that has_relationship(’objectspec’, ’operator’, time) is the inverse query 
of has_relationship_of(’objectspec’, ’operator’, time).

For information on how to create a relationship, see the history command.

has_type (’type_name’)

Queries the database for all object versions of type type_name. For example, a 
query of has_type (’csrc-1:cvtype:base’) might find HelloWorld-1:csrc:1.

hierarchy_project_members (’project_name’, order_spec)

Queries the database for all projects in the project hierarchy specified by 
project_name. The order_spec argument specifies the search order, as 
described under recursive_is_member_of.

The query returns an ordered list of object version names. Use of other queries in 
conjunction with this query may change the result’s order.

Note that the project_name is returned from this query.

For a description of order_spec, see order_spec.

is_bound()

Queries the database for object versions that are members of any project. This is 
best used when specifying other limiting options, such as the name of a project.

is_child_of(’object_name’,’project_name’)

Queries the database for all object versions that are members of directory 
object_name in project project_name.

is_hist_leaf()

Queries the database for objects that are leaf nodes when viewing history (that is, 
queries for objects that do not have successors).
470     Rational Synergy Classic CLI Help, Release 7.1



Query expressions
is_hist_root ()

Queries the database for objects that are root nodes when viewing history (that is, 
queries for objects that do not have predecessors).

is_member_of (’project_name’)

Queries the database for all object versions that are members of the specified 
project.

is_model_of (’object_name’)

Queries the database for the model object version associated with the specified 
object version.

is_no_relationship ()

Queries the database for every object that is not the target of a relationship of that 
name to any object.

For example, is_no_successor returns any objects that are not successors.

is_predecessor_of (’object_name’)

Queries the database for all object versions that are immediate predecessors of 
the specified object version.

is_relationship_of (’objectspec’, ’operator’, time)

Queries for all objects having the specified relation from the specified object 
whose relation create time matches the specified operator (that is, =, !=, >,<=, >, 
or >=) and time value. 

For example: 
is_associated_cv_of ( ’task23-1:task:M’, ’>’, time (’May 1, 2002’) 

)

This query finds all the associated objects of task M#23 that were related to the 
task after May 1, 2002.

Note that has_relationship(’objectspec’, ’operator’, time) is the inverse query 
of is_relationship_of(’objectspec’, ’operator’, time).

For information on how to create a relationship, see history command.

is_type_of (’object_name’)

Queries for the type object version in the model that was used to create 
object_name.

recursive_is_member_of (’project_name’, order_spec)

Queries the database for all members of all projects of the project hierarchy 
specified by project_name.

The query returns a list of object version names, with all non-projects occurring 
first in the list followed by the projects that are members of the hierarchy. Only the 
Rational Synergy Classic CLI Help, Release 7.1     471



projects’ positions within the results are significant to the search order. Use of 
other queries in conjunction with this query may change the result’s order.

Note that the project_name is not returned from this query.

For a description of order_spec, see order_spec.

task (’task_id’)

Queries the database for tasks requests that have the specified number.

versions_in_a_baseline (’project_spec’)

Queries for project versions in a baseline. This query function expands to 
"cvtype='project' and name='<project_name>' and 
instance='<project_subsystem>' and not 
is_no_project_in_baseline()'", which returns, for the project object,  the set 
of all project versions that are in any baseline.

Relative operators
Relative operators are allowed in queries. The following table shows the relative operators 
available for constructing a query clause.

Operator Description

= The value of the attribute must be equal to the value of the 
constant.

!= The value of the attribute must not be equal to the value of 
the constant; however, the attribute must exist.

< The value of the attribute must be less than the value of the 
constant.

<= The value of the attribute must be less than or equal to the 
value of the constant.

> The value of the attribute must be greater than the value of 
the constant.

>= The value of the attribute must be greater than or equal to 
the value of the constant.
472     Rational Synergy Classic CLI Help, Release 7.1



Query expressions
Logical operators
The logical operators you can use to construct query clauses are and, or, and not.

query_clause1 and query_clause2:

Only object versions that meet the requirements of both query_clauses are selected.

query_clause1 or query_clause2:

Object versions that meet the requirements of either query_clause are selected.

not query_clause:

Only object versions that do not meet the requirements of the query_clause are 
selected.

The not operator takes precedence over the and operator. The and operator takes 
precedence over the or operator. Use parentheses in a query to override the existing 
rules of precedence.

match The value of the attribute must match a value of the 
constant, where the constant can include the wild card 
characters "*" and "?". The wild card "*" matches any 
number of missing characters and the wild card "?" matches 
a single missing character. The match operator is case-
sensitive.

You can use the wild card match only on the first 63 
characters of an attribute.

!match The value of the attribute cannot match any of the possible 
values of the constant.

smatch The value of the attribute must match a string. The smatch 
operator is case-sensitive.

Operator Description
Rational Synergy Classic CLI Help, Release 7.1     473



Constants
The constants allowed in query clauses are shown in the following table. Note that the 
class of attribute types found is determined by the constant specified. For example, if the 
constant is a string, only string attributes, or attributes that are a subtype of string, are 
found.

Grouping Query Clauses
You also can group query clauses (without a depth limit) using parentheses.

Constant type Comments

string Enclose strings in single quotes.

integer Integer values can be zero to +-2147483647.

boolean Boolean values can be TRUE or FALSE.

time Time values must be in the form 
time(’time_string’). See Date formats for more 
information.
474     Rational Synergy Classic CLI Help, Release 7.1



Query expressions
Sample queries
• Find and change all comment attributes in the working object versions of the 

proj_ico-1 project.

ccm query "status=’working’ and is_member_of(’proj_ico-1’)" 
ccm attr -m comment -v "increase surface complexity" @

• Find and show all executable-type object versions associated with task 374.

ccm query "type=’executable’ and is_associated_object_of(’task374-
1:task:probtrac’)"

• Find all objects that are members of projects that have a) "web" in their names, and b) 
release values set to 6.0. (Use a nested query).

ccm query "is_member_of(release=’6.0’ and name match ’*web*’)"

• Find all objects that are members of projects with a) the name Advanced_Topics, and 
b) release values set to 6.0. (Use a nested query).

ccm query "is_member_of(release=’6.0’ and "name=’Advanced_Topics’")"

• Find all members of project toolkit-1.0.

ccm query "is_member_of('1/project/toolkit/1.0')"

• Find all members of the editor-fcheng project hierarchy using the fastest search 
method (by specifying "none").

ccm query "recursive_is_member_of('1/project/editor/fcheng',none)"

• Find the cvtype in the model that was used to create the csrc object, save.c-2.

ccm query "is_cvtype_of(’save.c-2:csrc:1')"

• Find all objects owned by linda and modified with the past two days.

ccm query -o linda "modify_time>time(’-2:0:0:0’)"
Rational Synergy Classic CLI Help, Release 7.1     475



Relationships
A relationship enables Rational Synergy to relate one object to another object within a 
database. Relationships are maintained between objects (for example, a csrc object is a 
successor of the previous version it was checked out from), objects and tasks (for 
example, a task is associated with objects), change requests and tasks (for example, a 
task fixes a change request), and tasks (for example, a task fixes a task).

Note that the term object refers not only to versioned objects, but to any object that is 
stored in a Rational Synergy database, for example, projects, folders, tasks, change 
requests, etc.

The following topics explain Rational Synergy relationships.

• About relationships

• User-defined relationships

• Predefined relationships

• Query for related objects

About relationships
Each relationship has a name; its name identifies the nature of the relationship. Examples 
of relationship names include successor, duplicate, or associated_task. Relationship 
names can be any combination of alphanumeric characters.

A relationship is unidirectional. This means that it points from one object to the other 
object. For example, if cosine.c-2 is the successor of cosine.c-1, the relationship 
points from version 1 to version 2. You can access the relationship from either object. For 
example, you can find that version 1 has successor version 2, and that version 2 is a 
successor of version 1.

An object can have any number of relationships. It can have many instances of the same 
relationship (with the same name) to different objects; for example, a single  can have 
many associated tasks. An object can be on either end of a relationship; for example, an 
object can both have a successor object and be a successor to another object. An object 
can have many different types of relationships; for example, a task can be in a folder 
(task_in_folder), associated to source objects (associated_cv), and related to another 
task that fixes it (fix).

When you delete an object that has relationships, Rational Synergy automatically deletes 
the relationships too.

User-defined relationships
Rational Synergy provides interfaces for maintaining all predefined relationships; however, 
if you need new types of relationships, you can use the relate command to create them 
and the unrelate command to break them.
476     Rational Synergy Classic CLI Help, Release 7.1



Relationships
Teams might require new types of relationships for different reasons. You would need a 
new type of relationship if you wanted to be able to trace relationships between controlled 
objects that are useful to your team. For example, you might want to create a new 
relationship called associated_spec between a specification and the corresponding 
source code, to trace that relationship.

To relate or unrelate two objects from the CLI, you must specify the relationship name, the 
"from" object, and the "to" object. You can show relationships in a variety of ways, as 
described in the following examples:

• Show all relationships between two objects by specifying the "from" and "to" objects.

• Show all the other objects that an object is related to by specifying the "from" object.

• Show all the other objects that are related to an object by specifying the "to" object.

• Show all other objects that an object is related to through a specific relationship by 
specifying the "from" object and the relationship name.

By default, there are no rules to govern the security or semantics of user-defined 
relationships. For example, by default you can create a relationship between any two 
objects, whether or not they are modifiable. If you wanted a relationship to conform to 
semantics, such as one-to-many or type problem to type task, there is no way to define 
that in the relationship. Instead, you would need to write scripts or programs to maintain 
the relationship and enforce those rules, or you would need to customize Rational 
Synergy.

Predefined relationships
Rational Synergy provides interfaces for maintaining all predefined relationships. Use the 
Tasks tab to create, remove, or display fix relationships between two tasks; the History 
dialog to create, remove, or display successor relationships (links) between objects; and 
the Properties tab to create, remove, or display associated_task and associated_cv 
relationships (associations) between change requests and tasks or tasks and objects.

For best results, use the dialogs and commands provided to maintain the predefined 
relationships; use the relate command and unrelate command to support the user-defined 
relationships only.
Rational Synergy Classic CLI Help, Release 7.1     477



The following table shows the predefined relationships shipped with Rational Synergy.

Query for related objects
Another way to show related objects is by using a query. query provides two query 
functions for relationships, one to query from each direction. The following shows the 
query syntax:

is_relationship-name_of(objectname)

has_relationship-name(objectname)

For example, to find cosine.c-1’s successors, you would use the following command:

ccm query "is_successor_of(’cosine.c-1:csrc:1’)"

Name Description
added_task_in_pg From a project grouping to a task 
associated_cv From a task to a source object (many-to-many)
automatic_task_in_pg From a project grouping to a task (many-to-many)
baseline_in_pg From a project grouping to a baseline
baseline_project From a project to its baseline project (many-to-one)
fix From a fix task to a task (many-to-one)
folder_in_pg From the project grouping to a folder
folder_in_rp From the project to the folder (many-to-many)
folder_in_rpt From the process rule to the folder (many-to-many)
folder_template From the folder to the folder template (many-to-one)
folder_template_in_rpt From the process rule to the folder template (many-

to-many)
generic_pr From release-specific process rules to generic 

process rules (many-to-one)
generic_pr_in_process From processdef to generic process rules (many-to-

many)
pr_in_release From releasedef to process rule (many-to-many)
project_in_pg From a project grouping to a project
reconfigure_template From the process rule to the project (one-to-many)
removed_task_in_pg From a project grouping to a task
saved_task_in_pg  From a project grouping to a task
successor From a versioned object to its history successor 

(many-to-many)
task_in_folder From a folder to a task (many-to-many)
task_in_rp From the project to the task (many-to-many)
478     Rational Synergy Classic CLI Help, Release 7.1



Relationships
To find the objects that have cosine.c-2 as a successor, you would use the following 
command:

 ccm query "has_successor(’cosine.c-2:csrc:1’)"

These functions also work for user-defined relationships; for example, to find the objects 
that are associated with cosine.c-2, you would use the following command:

ccm query "is_associated_spec_of(’cosine.c-2:csrc:1’)"

For more information about constructing queries, see Predefined relationships and Query 
clause elements
Rational Synergy Classic CLI Help, Release 7.1     479



Shared projects
A shared project is a project in the shared state with members in the visible, shared, or 
any static state. A project in the shared state allows all users to make changes in the 
project. This behavior is unlike working or prep projects, in which only a single user or 
users in a particular role are allowed to make changes in the project.

The following topics introduce the concepts and uses of shared projects.

• How to determine whether shared projects will work for you

• Shared project methodology

• Parallel development and shared projects

• Troubleshooting shared projects

For more information about the dialogs and commands referenced in this document, see 
Rational Synergy Help.

How to determine whether shared projects will work for you
Shared projects have several advantages, mostly related to enabling multiple users to 
share a single project.

However, the same features that provide these benefits also impose limitations of which 
you should be aware. You should understand the limitations, as well as the benefits, so 
that you can determine whether shared projects are appropriate for your team.

• Benefits of shared projects

• Limitations of shared projects

• Best-case scenarios for using shared projects

Benefits of shared projects
Using shared projects has the following benefits.

• Time Savings

You need not check out a working version of a large project (or multiple projects) 
merely to make minor changes. Unless you are maintaining a working version of a 
shared project, you need not perform maintenance or administrative operations; 
instead, you have immediate access to the project and its objects.

• Less Training

Because all users can share the same project, individual users need not know how to 
administer the project (create, update, sync, set attributes, etc.). One user, such as 
the build manager, can be responsible for administering the project.
480     Rational Synergy Classic CLI Help, Release 7.1



Shared projects
• Shared development capability

Other users’ changes are available immediately. For example, if Bob and Sue are 
working in the same shared project, Bob’s changes are available to Sue as soon as he 
saves his changes.

• Less disk space needed

Because all users are using a single project, multiple copies of the project’s work 
areas are not needed. This feature can save disk space.

Consider, however, that the amount of disk space saved is minimal if you use link-
based work areas (with UNIX) or your team has few uncontrolled files in the work 
area.

Limitations of shared projects
Using shared projects imposes the following limitations.

• No insulation

This is the most significant limitation of shared projects, because several situations 
can occur in which you might get unexpected behavior, particularly when you build 
products.

Building in a shared project can have the effect of building in parallel, because users 
can build shared products at any time, and the new products are configured into the 
shared project automatically. Consequently, users’ build results can change without 
notice. For example, if one user changes a library in a shared project, the change is 
included immediately, and can affect other users’ subsequent builds.

Incomplete changes to shared files also can cause unpredictable results, because the 
files are members of the project while they are being worked on, even if they have not 
been debugged.

Finally, uncontrolled files in the shared work area can affect build results. For 
example, uncontrolled relocatable object files might be accessed by different users 
simultaneously, or in an order that corrupts the files or changes the build results.

Remember that the same feature that gives you immediate access to changes 
also delivers other users’ incompatible changes, incomplete changes, or 
errors—immediately and without notice.

If you require an insulated project, you can check out and work in a working version of 
the project (see Parallel development and shared projects).

• Limited file system security

Rational Synergy does not fully support file permissions for copy-based work areas of 
shared projects. All users have permissions to rename, move, or delete files in a copy-
based work area, and they may be able to change files for objects checked out to 
other users.
Rational Synergy Classic CLI Help, Release 7.1     481



In copy-based work areas, changes to work area files do not affect the controlled files 
in the Rational Synergy database. However, you should be careful to avoid reconciling 
unwanted changes from the work area back into the database.

Windows users can protect against unwanted changes to the work area by using non-
shared drives for their work areas. (Note, however, that this method prevents multiple 
users from sharing the same work area.) UNIX users can protect against unwanted 
changes to the work area by making the their work areas link-based, because other 
users can change the links to the files, but only the files’ owners can change the files 
themselves.

• Parallel development is prohibited

Parallel development is prohibited in shared projects. After an object has been 
checked out from a shared project, no one else can check it out.

You must not use a different version (ccm use command or Use dialog) and check out 
from that version, because you might remove another user’s changes. Instead, you 
can check out a working project from the shared project and work on a parallel version 
(see Parallel development and shared projects).

• Common work area path required

The work area of a shared project must be set to a path available to all users, and this 
path must be the same for all machines. Because all users must access the same 
work area from many different machines, the additional network traffic can slow 
performance.

Best-case scenarios for using shared projects
Shared projects are not suitable for all types of development projects; development 
projects suitable for shared projects typically have the project and development 
environment characteristics shown below. All aspects of the design should be considered  
when deciding whether to use shared projects.

Project characteristics

• Large projects with separate directories for each user’s area of responsibility

If your projects conform to this structure, you have the benefits of shared 
development, but you still reduce the risks inherent in the lack of insulation.

• Projects that do not build products

Examples of projects that do not build products are projects that manage 
documents or Web pages, or manage integrations such as PowerBuilder.

If a product must be built, you should modularize the build process (that is, create 
separate directories to provide some insulation). You might need to change 
makefiles to ensure that products are removed before being built; otherwise, file 
permissions might prevent one user from updating a file created by another user.
482     Rational Synergy Classic CLI Help, Release 7.1



Shared projects
• Projects that do not require work areas on a local machine

Because all users must be able to access the same work area, the project should 
be located on a shared drive, not on a local hard drive. Users might need to work 
on a local machine if they work disconnected from the data (for example, if they 
work on files at home or move the files to a local disk for better performance).

Development environment characteristics

• A small team that works well together and understands the issues caused by 
having uninsulated work areas

• Teams with users who are not trained to use all Rational Synergy features

Users can perform basic Rational Synergy operations, such as check in and 
check out, without much knowledge of the product. However, some knowledge of 
how to create and manage projects is required.

• All team members must understand the significance of uninsulated work 
areas.

Shared project methodology
The methodology described in this section is task-based. Shared projects and standard 
projects have different lifecycles, and several CM operations behave differently in shared 
projects than they do in standard projects.

• Lifecycles

• Creating a shared project

• Working in a shared project

• Updating a shared project

Lifecycles
Two states are used only in shared projects: shared and visible. Where these states are 
used depends on the type of object.

Projects

The shared state is used for shared projects. The shared state is between the working 
and prep states in a project’s lifecycle and allows all users to work in shared projects. 
By default, working objects are not used in shared projects.

Objects

The visible and shared states are used for checked-out objects in shared projects.
Rational Synergy Classic CLI Help, Release 7.1     483



The visible state is used for shared development of regular (non-product) objects. 
Only the object’s owner can change the object, but all users can use it (add it to their 
working projects or to a shared project).

The shared state is used for shared development of product objects. All users can 
change and use a shared object.

For complete information about lifecycles, see the Introduction to Rational Synergy, 
which fully describes project, object, and product lifecycles.This book is available at  
http://www.ibm.com/software/rational/support/.

Creating a shared project
Any user can create shared projects, but for best results, consider making the build 
manager responsible for shared projects, mainly because the build manager is familiar 
with project administration (creating, setting update properties, performing updates, etc.). 
However, in an environment where all users are familiar with projects, team leaders also 
can be responsible for shared projects. Making individual developers responsible for 
shared projects might also work well in a very small team in which the developers work 
together closely.

Using copy project

Although the project lifecycle starts at the working state, you can copy a project 
directly to the shared state by setting the project purpose to Shared Development in 
the Copy Project dialog. To create a shared project from the command line, use the 
ccm copy_project command with the -purpose Shared Development option. 

From Rational Synergy, you can change the purpose of a project to Shared 
Development, which also changes the state. 

Using create

Use the Create Project operation or ccm create command to create a project in the 
working state, then check in the project to the shared state. Be sure to set the next 
state to shared, because the next default state usually is checkpoint or prep, 
depending on your role.  

Working in a shared project
When you work in shared projects, you must perform check-out and check-in operations 
differently than in standard projects.

Check out state

Regular objects are checked out to the visible state in shared projects. Product 
objects are checked out to the shared state in shared projects. You can check out 
subprojects manually to the shared state.
484     Rational Synergy Classic CLI Help, Release 7.1

http://www.ibm.com/software/rational/support/


Shared projects
Note Always check out the object you want to change 
instead of making it writable by changing its file 
permissions. Changing only checked-out files helps ensure 
data integrity.

Automatic directory check-in

In shared projects, all commands that check out a directory automatically also check 
in the directory automatically. This features makes the shared directory available to all 
users so that they need not wait for a change to a directory member to be completed 
before making their own changes to the directory.

For example, if a user creates a new file in the web directory, the directory is 
automatically checked out as a result of the create command. Because the directory 
is checked in automatically, other developers can make changes while the user is 
changing his file. If the directory had not been checked in automatically, as well, the 
directory probably would have remained checked out (and unchangeable) until the 
user completed his changes.

Automatic directory check-in also requires that you set a current task before working 
in task-based shared projects. Without a current (default) task set, the directory is 
checked in without an associated task, and your change therefore cannot be selected 
by other projects during an update. Also, if a task is required on check-in and you 
have set no current task, the automatic directory check fails.

You can set the automatic directory check-in feature off by entering the following line 
in the ccm.ini file:

 shared_project_directory_checkin = FALSE

No parallel development

You cannot check out from a checked-out, visible object; however, in a shared project 
you can replace a checked-out object by using a different version of the object (ccm 
use command or Use dialog). If you do use a different version of a checked-out object, 
you are unusing someone’s checked-out object.

Again, edit only files checked out to you. Avoid changing files’ permissions to make 
them writable.

Caution Do not cut another user’s checked-out object. 
Data loss can result from such an operation.

Updating a shared project
When you work in shared projects, you must perform project update operations differently 
than in standard projects.
Rational Synergy Classic CLI Help, Release 7.1     485



Update

If only one version of a shared project exists (no user has a working version of the 
project), a shared project requires almost no maintenance— the shared project is 
always up-to-date and updates are not required, provided that objects in the shared 
project have not been checked out in other projects. You can, therefore, create the 
shared project, then allow users to update the project using basic Rational Synergy 
commands (set the current task, check out, create, edit, and complete (check in) a 
task).

If working versions of a shared project exist, the build manager or team leader must 
update the shared project to gather the changes made in the working projects. The 
update properties should contain one folder, set up to query for all tasks for the current 
release. The folder should be writable by all and usable by all.

Updates can cause many objects to be updated, which affects the developers using 
the shared project. To lessen disruptions, perform updates when few users are using 
the project. Also, following an update, the build manager should review the update log 
for unexpected results and for parallel versions that must be merged.

Use the following process to provide all users with an up-to-date project: 

1. The user responsible for managing the project (often the build manager) asks all 
users to check in their objects by completing their tasks.

2. Users complete their tasks.

3. The build manager updates the project.

Reconcile

All users can perform the reconcile operation in shared projects; however, each user 
can discard only object changes that are in a static state or checked out to him. 
Objects checked out to another user cannot be changed using the reconcile 
operation.

Use the ccm resync command to reconcile a single object.

Parallel development and shared projects
The following types of parallel development are common when using shared projects.

• Concurrent parallel development

Parallel versions of an object exist, because two or more developers must change the 
same object at the same time (a single object checked out to multiple users).
486     Rational Synergy Classic CLI Help, Release 7.1



Shared projects
• Parallel development for variants

Multiple versions of the project exist, because two or more releases or platforms are 
required.

Concurrent parallel development
Developers can check out a working version of a shared project to perform parallel 
development or to work in an insulated version of the project. A working version of the 
project provides the insulation that a developer needs, and the shared version allows 
other developers to continue their work on the project.

For example, if you are working in a shared project and must make changes that will take 
several days to complete, you want to prevent changes made by other developers from 
interfering with your work. Instead of working in the shared project, check out a working 
version of the shared project. The project check-out operation will create a working project 
with the same members as the original project. The newly checked-out working project will 
contain visible and shared objects. To maintain your insulated area, you must remove the 
modifiable objects from your working project.

To check out a working version of a shared project, follow these steps:

1. Check out the project with an insulated development or collaborative development 
purpose.

2. Update your project.

These steps ensure that your working project is insulated from changes. When you 
update, the visible and shared objects will no longer be in your project. If you need 
additional information on checking out a working project, see the Rational Synergy help. 

After you complete all the changes in a working project, the build manager can update the 
shared project to bring in the changes.

Parallel development for different platforms or releases
You might have several parallel versions of a shared project in different states, and these 
versions might support multiple platforms or releases.

For example, the shared project airplane-hp_2.0s (release 2.0 of airplane on the HP 
platform) might have parallel projects airplane-hp_3.0s (a future release), airplane-
hp_1.0p1 (a patch to a previous release), and airplane-aix_2.0s (a different platform 
for the current release). Version hp_2.0s is shared, but the other parallel projects need not 
be shared. In this example, airplane-hp_1.0p1 should be in the prep state with a list of 
patches to be delivered.

Hierarchies of shared projects are maintained using the platform and release attributes. 
Continuing from the previous example, assume the airplane project consists of the 
subprojects wing, fuselage, and rudder. When airplane-hp_2.0s is updated, wing-
hp_2.0s should be selected, not wing-hp_3.0s. The release attribute identifies 
matching versions of each subproject.
Rational Synergy Classic CLI Help, Release 7.1     487



However, if you have multiple shared project hierarchies for the same platform and 
release, the update operation could select the wrong subproject version. Avoid this 
behavior by using a unique project purpose to check out hierarchies that have the same 
platform and release values.

For example, the following project purpose list supports three separate hierarchies of 
shared projects for the airplane project: a general purpose shared project, a shared 
project for a team of structural engineers, and a shared project for electrical engineers.
Shared Development: shared:
Shared - structural: shared: structural
Shared - electrical: shared: electrical

Instead of creating versions of the airplane project for each of three teams, the three 
teams work in three separate shared projects. All three project hierarchies can be updated 
regularly to keep them synchronized, or each team can determine how often to bring in 
changes from the other teams.

Troubleshooting shared projects
If you have problems using shared projects, consider looking for the following problems:

Directories containing incomplete changes
The automatic directory check-in feature can cause directories to contain incomplete 
changes if the directory is checked out a second time before the first change is finished. 
For example, Bob is assigned a task to remove the file foo.c in the src directory. He 
deletes foo.c, which checks out and immediately checks in the src directory. He then 
removes references to foo.c in other objects. Before Bob completes the task of removing 
the references, Sue moves a file from the src directory to another directory. The src 
directory is checked out and immediately checked back in. Sue completes the task. The 
build manager updates the prep project, which uses both Sue’s and Bob’s changes, even 
though Bob has not completed his changes.

Incomplete changes appear as configuration conflicts in the prep project. The problem can 
be avoided if the build managers show conflicts after updating prep projects.

Excessive busy state
In a shared project, Rational Synergy updates all dialogs affected by a change 
immediately following the change. This behavior can cause your interface to be busy while 
another user’s operation is in progress.

For example, when Bob checks out an object that is in Sue’s Project Explorer, Sue sees 
the busy cursor momentarily while the object is being updated; the busy cursor is usually 
not noticeable. This behavior prevents any changes to the object while it is being updated. 
However, if a user performs an operation that changes numerous objects (for example, an 
update), the cumulative effect of the changes can result in a persistent busy cursor, which 
flickers on and off, making it difficult to use any dialogs.
488     Rational Synergy Classic CLI Help, Release 7.1



Shared projects
Because user’s interfaces can be rendered temporarily unusable during change-intensive 
operations, you should avoid performing such operations during peak hours.
Rational Synergy Classic CLI Help, Release 7.1     489



SOAD scopes
A scope is a modified query used by the Save Offline and Delete (SOAD) tool to create a 
list of objects to save offline and delete. The following advanced topics will help you 
understand how SOAD uses the scope to create a valid list of objects.

• Scope evaluation

• Scope validation

• Predefined scopes

Scope evaluation
Each Save Offline and Delete scope is evaluated as follows:

1. Any specified object is included in the initial object list. If the specified object does not 
exist, the evaluation quits with an error message.

2. Any query expression is evaluated (with any scope-specific exclusion query included), 
and the objects found are added to the object list.

3. If the object list is empty, the evaluation quits with an error message.

4. For each object in the query list, each applicable expansion rule is applied. If an 
expansion rule is type-specific, that rule is executed only if the object being expanded 
has that type. To avoid infinite recursion or duplicate expansions, the expansion keeps 
track of which objects have been expanded. When a query-based expansion rule is 
executed, any scope-specific exclusion query is added to the query expression. (This 
does not apply to ACcent-based expansion rules.)

5. For each object in the object list, any object whose type is one of the global excluded 
types (such as a model object) is removed from the list.

6. For each object remaining in the object list, if the objects are being saved offline any 
object that does not have other versions of the same instance is removed from the list.

7. The scope-specific exclusion rules are applied by evaluating each rule, in order, 
against the objects remaining in the list that match that type. If any of the objects 
returned by the query are not in the object list, the object being evaluated is removed 
from the list.

8. For each object remaining in the list, a query for projects using that object is 
performed. If an object has a parent project that is not on the object deletion list, it is 
removed.

9. Finally, if the user is not in the ccm_admin role, any object that is not modifiable by the 
user is removed from the list. This will allow non-administrators to use SOAD for 
deleting their own working, checkpoint, visible, public, or prep versions.

At the end of this evaluation, the object list contains all the objects targeted for deletion 
and optional saving offline.
490     Rational Synergy Classic CLI Help, Release 7.1



SOAD scopes
You can select the Verbose check box in the Save Offline and Delete dialog box in 
Synergy Classic or use the -verbose option on the command line to obtain detailed scope 
evaluation information. However, keep in mind that turning on this type of tracing will slow 
the processing.

The following are scope evaluation features that change the object list after the initial 
object specification or query is evaluated:

• Global exclusions

• Keywords

• Expansion and exclusion rules

Global exclusions
If you were to use only a general, query-based method to delete objects, you could delete 
objects unintentionally that you need to preserve. SOAD therefore excludes the following 
types of objects:

• Model object types

• Candidate objects in excluded projects

• Last static versions of objects

Model object types

To prevent deleting objects that are required for operating the Rational Synergy 
database, SOAD excludes the object types listed in a model attribute named 
soadf_excluded_types.

The shipped set of excluded types is as follows:

model 
mcomp 
cvtype 
attype 
bstype 
admin 
tset 
update_temp 
folder_temp

Candidate objects in excluded projects

SOAD security rules prohibit deleting an object that is used in a project that is not 
being deleted. Because this is a global restriction, the rule is applied to all scopes.
Rational Synergy Classic CLI Help, Release 7.1     491



Last static versions of objects

SOAD excludes any object that is the last (static) version of that object instance. 
Without such a restriction, after the object is deleted a user might create a new object 
with the same name and type, and the instance value would be reused. Restoring the 
original saved object would then be impossible because a cluster_id conflict would 
occur.

SOAD applies this rule by determining the depth of each version from the history root 
and choosing the static object with the highest depth. If the object has no static 
version, SOAD finds a non-static version with the highest depth, searching for a prep 
version first, then a version in any other state.

Note This option is applicable only if you are also using the 
Save Offline option.

Keywords
You can use keywords in object names, queries, expansion and exclusion queries, and 
package names.

Keywords start with a “%” and are expanded as shown in the following table.

Note You can define a literal string with a  “%” character by 
specifying the character twice; for example, to obtain a 
string that expands to "%release," specify  “%%release."

Keyword Expanded in 
rules

Expanded in object 
name, queries and 

package name

Replaced with

%1 No Yes Value of first parameter

%2 No Yes Value of second parameter

%3 No Yes Value of third parameter

%4 No Yes Value of fourth parameter

%5 No Yes Value of fifth parameter

%user Yes Yes User name

%date Yes Yes Current date and time

%object Yes No Name of object being processed
492     Rational Synergy Classic CLI Help, Release 7.1



SOAD scopes
Expansion and exclusion rules
Expansion rules add objects to the object list based on their relationship to objects initially 
in the list. Exclusion rules remove objects from the object list based on their relationship to 
objects initially in the list.

SOAD provides predefined sets of expansion and exclusion rules that should be powerful 
enough to provide the expansion and exclusion behavior you need. You cannot use the 
GUI or CLI to change or add expansion or exclusion rules; however, you can edit the rules 
using a standard text editor.

Expansion rules are stored in a model attribute named soadf_expansion_rules. 
Exclusion rules are stored in a model attribute named soadf_exclusion_rules. Each 
entry is stored on a separate line with the query name, object type, query type, and values 
separated by ‘:’. 

The predefined expansion rules are shown in the following table.

 

Expansion rule Object 
type

Rule 
type

Description

Project’s folders project query Includes all folders used in the specified 
project’s update properties.

Project’s tasks project query Includes all tasks used in the specified 
project’s update properties.

Project’s non-automatic 
tasks

project query Includes all non-automatic tasks used in the 
specified project’s update properties.

Project’s baseline 
project

project query Includes all baseline projects for the specified 
project.

Project’s members project query Includes all objects that are direct members 
of the specified project.

Project’s recursive 
members

project query Includes all objects that are direct or 
recursive members of the specified project.

Project’s products project query Includes all products that are direct members 
of the specified project.

Hierarchy project 
members

project query Includes all objects and projects that are 
direct or recursive members of the specified 
project.
Rational Synergy Classic CLI Help, Release 7.1     493



Projects using baseline 
project

project query Includes all projects that are baselines of the 
specified project.

Non-static projects using 
baseline project

project query Includes all non-static projects that are 
baselines of the specified project.

Project’s baselines project query Includes all projects that have the specified 
project in their baselines.

Folder’s tasks folder query Includes all tasks that are in the specified 
folder.

Folder’s non-automatic 
tasks

folder query Includes all non-automatic tasks that are in 
the specified folder.

Projects using folder folder query Includes all projects that use the specified 
folder in their update properties.

Task’s objects task query Includes all objects that are associated with 
the specified task.

Task’s baseline task query Includes all baselines that use the specified 
task.

Projects using task task query Includes all projects that use the specified 
task in their update properties.

Folders using task task query Includes all folders that use the specified 
task.

Baseline’s projects baseline accent Includes all projects that are in the specified 
baseline, and did not exist before the 
baseline was created.

Baseline’s tasks baseline query Includes all tasks that are in the specified 
baseline.

Tasks associated with 
object

query Includes all tasks that have the specified 
associated object.

Project’s project 
grouping

project query Includes all project groupings that contain the 
specified project.

 (Continued)
494     Rational Synergy Classic CLI Help, Release 7.1



SOAD scopes
The predefined exclusion rules are shown in the following table.
 

Exclusion Rule
Object 
Type

Query 
Type Description

Baselines used by other 
project groupings

query Excludes all baselines in use by other 
project groupings

Baseline projects used by 
other projects

project query Excludes all baseline projects in use by 
other projects.

Baseline projects used by 
other non-static projects

project query Excludes all baseline projects in use by 
other non-static projects.

Projects used by other 
baselines

project query Excludes all projects in use by other 
baselines.

Projects that are the last 
static version

project accent Excludes all projects that are the last static 
versions of the included projects.

Folder used by other 
projects

folder query Excludes all folders used in other projects’ in 
update properties.

Task used by other 
projects

task query Excludes all tasks used in other projects’ in 
update properties.

Task used by other folders task query Excludes all tasks in use by other folders.

Task used by other 
baselines

task query Excludes all tasks in use by other baselines.

Objects associated with 
other tasks

query Excludes all objects associated with other 
tasks.

Objects associated with 
other non-automatic tasks

query Excludes all objects associated with other 
non-automatic tasks.

Attachments of any 
change request

query Excludes all attachments associated with 
change requests.

Objects that are the last 
static version

accent Excludes all objects that are the last static 
versions of the included objects.

Project groupings 
containing other projects

project_ 
grouping

query Excludes project groupings containing other 
projects than the one being deleted.
Rational Synergy Classic CLI Help, Release 7.1     495



Scope validation
SOAD validates scopes as follows:

1. Before saving a new scope.

2. Before saving an edited scope.

3. Before scope evaluation.

The validation ensures the following:

• Referenced expansion rules exist.

• Referenced exclusion rules exist.

• The scope query syntax is valid.

• The scope exclusion query syntax is valid (although the query can still fail on 
evaluation).

• Keywords are valid in the scope object, scope query, scope exclusion query, and 
scope package name.

Note The query syntax check only determines whether the 
syntax is valid: It does not check that query functions have 
valid names and valid arguments, or that attribute values 
are appropriate. Therefore, a query expression that passes 
a syntax check might still fail when evaluated.

Predefined scopes
Each predefined Save Offline and Delete scope is defined and stored in an XML file in the 
CCM_HOME\etc\soad directory (Windows) or $CCM_HOME/etc/soad directory (UNIX). 
The file name is the scope name, encoded as a URL, with spaces replaced by %20 and an 
".xml" suffix.

Note Even though you can edit, create, and delete scope 
files using a text editor if you are logged in as ccm_root; it’s 
best to use the GUI or CLI for these operations.

The following are two examples of predefined scopes:

• Release-based scope

• Project hierarchy-based scope
496     Rational Synergy Classic CLI Help, Release 7.1



SOAD scopes
Release-based scope
The following is the content of the XML file for the predefined scope "All projects and 
related objects for a specified release":
<?xml version="1.0" encoding='ISO-8859-1'?>

<soadfscope version="1"> 
    <predefined>TRUE</predefined> 
    <role></role> 
    <parameter> 
        <label>Release value</label> 
    </parameter> 
    <object></object> 
    <query>release='%1' and cvtype!='problem'</query> 
    <expansion_rule>Folder's tasks</expansion_rule> 
    <expansion_rule>Project's folders</expansion_rule> 
    <expansion_rule>Project's tasks</expansion_rule> 
    <expansion_rule>Task's objects</expansion_rule> 
    <exclusion_rule>Baseline projects used by other non-static projects 
    </exclusion_rule> 
    <exclusion_rule>Folders used by other projects</exclusion_rule> 
    <exclusion_rule>Objects associated with other non-automatic tasks 
    </exclusion_rule> 
    <exclusion_rule>Projects used by other baselines</exclusion_rule> 
    <exclusion_rule>Tasks used by other baselines</exclusion_rule> 
    <exclusion_rule>Tasks used by other folders</exclusion_rule> 
    <exclusion_rule>Tasks used by other projects</exclusion_rule> 
    <exclusion_query></exclusion_query> 
    <package_name>All projects and related objects for Release %1 saved  
    on %date</package_name> 
</soadfscope>

First, the initial object list is created by querying for all objects that have a specified 
release.

Next, for each project found, expansion rules add the following to the list:

• each project’s folders and tasks

• each folder’s tasks

• each task’s associated objects
Rational Synergy Classic CLI Help, Release 7.1     497



Finally, exclusion rules remove the following from the object list to prevent damage to 
folders, tasks, and baselines that are not being deleted:

• baseline projects used by other non-static projects

• projects used by other baselines

• folders and tasks used in other projects

• tasks used by other baselines or folders

• objects associated with other non-automatic tasks

Project hierarchy-based scope
The following is the content of the XML file for the predefined scope "Project hierarchy 
and related folders and tasks":

<?xml version="1.0" encoding='ISO-8859-1'?>

<soadfscope version="1"> 
    <predefined>TRUE</predefined> 
    <role></role> 
    <parameter> 
        <label>Project objectname</label> 
    </parameter> 
    <object>%1</object> 
    <query></query> 
    <expansion_rule>Folder's non-automatic tasks</expansion_rule> 
    <expansion_rule>Project's folders</expansion_rule> 
    <expansion_rule>Project's non-automatic tasks</expansion_rule> 
    <expansion_rule>Project's recursive members</expansion_rule> 
    <exclusion_rule>Baseline projects used by other non-static projects 
    </exclusion_rule> 
    <exclusion_rule>Folders used by other projects</exclusion_rule> 
    <exclusion_rule>Objects associated with other non-automatic tasks 
    </exclusion_rule> 
    <exclusion_rule>Projects used by other baselines</exclusion_rule> 
    <exclusion_rule>Tasks used by other baselines</exclusion_rule> 
    <exclusion_rule>Tasks used by other folders</exclusion_rule> 
    <exclusion_rule>Tasks used by other projects</exclusion_rule> 
    <exclusion_query></exclusion_query> 
    <package_name>Project hierarchy %1 saved on %date</package_name> 
</soadfscope>
498     Rational Synergy Classic CLI Help, Release 7.1



SOAD scopes
First, the initial object list contains only the project specified by the object name.

Next, for the specified project, expansion rules recursively add the following to the list:

• the project’s folders, non-automatic tasks, and recursive members

• each folder’s non-automatic tasks

• each task’s associated objects

Finally, exclusion rules remove the following from the object list to prevent damage to 
folders, tasks, and baselines that are not being deleted:

• baselines used by other non-static projects

• projects used by other baselines

• folders used by other projects

• tasks used by other baselines, projects, or folders

• objects associated with other non-automatic tasks
Rational Synergy Classic CLI Help, Release 7.1     499



Triggers

Using notification triggers
The notify feature allows you to define programs that are to be called when objects 
change state, or when change requests are submitted.  The programs may be written in 
any language (or may be shell scripts or batch files), and may be passed literal values 
and/or the values of attributes of the object on which the trigger was invoked.

The following topics are discussed:

• Format and description of trigger definition files

• Programs

• Messages

• Examples

Format and description of trigger definition files
Following is a sample of a trigger definition file, followed by descriptions of components of 
the file.

trans_type
{

type 
type
  .
  .
  .
{

status  program  arg1 arg2 ... argN;
status  program  arg1 arg2 ... argN;

     .
     .
     .

}
.
.
.

}
.
.
.

500     Rational Synergy Classic CLI Help, Release 7.1



Triggers
Component descriptions
trans_type

Denotes when the program is to be called:

pretransition

The program is called before any work takes place on the transition. This is applicable 
for validating conditions on non-PT objects before proceeding with the rest of the 
trigger. If the pretransition fails, the entire transaction will fail.

posttransition

The program is called after the transition has completed successfully. This is 
applicable for transaction on non-PT objects.  The return status on posttransitions are 
ignored.

pt_transition

The program is called after a PT object has transitioned. The program is specially set 
up for the transition of PT-related objects. 

type

Defines the type of an object.  It should be a valid database type, or '*' to denote all 
types. If an all types transition is defined, it will be executed before the specific 
transitions are called.

status

Defines the status of an object.  It must be a valid status (i.e. working, integrate, test, 
sqa, released, public, etc.).

Arguments

Arguments in double quotes are treated as literals, and are passed to the trigger 
program as literals, without the quotes.

Arguments that begin with an "=" symbol are treated as template files.  The file is read 
into memory, keyword replacement is performed using the attribute values from the 
object, and the altered file in then written out to disk.  The path of the file is then 
passed to the program.  It is the responsibility of the program to remove the file after 
use.

The other arguments are assumed to be the names of attributes on the transitioning 
object.  The value of the attribute will be passed as the argument to the notify 
program.  If the name of the argument is preceded by '+', the trigger is not invoked if 
the attribute is missing or has an empty value.  Be aware  that some attributes are 
Rational Synergy Classic CLI Help, Release 7.1     501



created or set after an object has changed state, so at the instant a trigger is called, 
some attributes might not be present, or might not have the values you expect.

Multi-line text arguments (attributes and literals) cannot be passed.  If the attribute 
'source' is specified, then the path to the source file or the cache file will be passed.

The keywords dbid, database, and current_user are substituted with the database 
ID, the absolute path name to the database, and the name of the user running the 
current CM session.

Programs
Programs are in the notify directory of the database containing the objects or the 
CCM_HOME/bin/util directory of the run area.  For security reasons, you may not specify 
a relative or absolute path in the trigger definition file; you can write a wrapper program in 
the notify directory, and from there call programs not in the notify directory.

If the trigger is running on the interface (Trig_ui.def), the program is executed by the 
current user. If the trigger is running on the engine (Trig_eng.def), the program is 
executed by ccm_root. You should consider the security implications of this.

Note CCM commands are not supported within the 
triggered programs. Executing a ccm command via the 
triggers will cause your session to hang.

Messages
The programs can return informational messages and instructions back to the Rational 
Synergy session through stdout, stderr, or the Exit Status code.

stdout

ATTR_SET:<name>:<type>:<value>
ATTR_ADD:<name>:<type>:<value>

Both will create the attribute of the specified name and type if it doesn't already exist.  
ATTR_SET overrides any existing value, whereas ATTR_ADD appends information to a 
text attribute.

MSG:<string>

Messages in <string> will be displayed to the user.  If it was triggered from the GUI, 
the messages will be displayed in a dialog box.  If it was triggered from the CLI, 
messages will be displayed to the command line.
502     Rational Synergy Classic CLI Help, Release 7.1



Triggers
APPLY_ATTRS_ON_FAIL

Generally, any attributes returned will not be applied if the program returns a failure 
message. If this string is returned, then the attributes will be applied whatever the 
return status.

IGNORE_FAIL

As mentioned above if any program fails in a group, then the whole transaction will 
fail.  Returning this allows the program to fail, but for the transaction still to succeed.  
Note that the program is still considered to have failed; it just won't affect the overall 
result.

If this is set to true, then all other lines are treated as MSG.

FAILED

If this message is seen, the program is assumed to have failed, and the exit status is 
ignored.

<string>

All other output to stdout will be printed to the log files and message panel.  This 
differs from MSG: in that MSG: output is displayed in a pop-up dialog if the trigger is 
invoked from the GUI.

stderr

All output to stderr is displayed in the log files and message panel, and in a pop-up 
dialog if the trigger is invoked from the GUI.

If several program are running for a transaction then all output will be concatenated 
and displayed as one message.

Exit Status

An exit status of zero (0) is considered success.  If pretransition receives any other 
status, or if it receives the FAILED message, it will not allow the transition.
Rational Synergy Classic CLI Help, Release 7.1     503



Examples
Although the triggers can be executed on UNIX or Windows, the examples below call 
Windows batch files to demonstrate the capabilities of triggers where the client is running 
under Windows.

#  Before ANY object gets checked in to integrate state,
#  run the pretrans.bat script, passing the owner, object name,
#  and object version
pretransition

{
*

{
integrate pretrans.bat owner name version;
}

}

#  After ascii and csrc objects are created, call the psttrans.bat script,
#  passing the owner, name and version.
posttransition

{
ascii
csrc

{
working psttrans.bat owner name version;
}

}

#  After a problem has been verified, call the verified.bat script,
#  only if the submitter_email attribute is present and not empty.
#  Pass the script the name of a file that has the keyword expanded
#  contents of the verified.tpl template.
pt_transition

{
problem

{
verified verified.bat +submitter_email =verified.tpl;
}

}

504     Rational Synergy Classic CLI Help, Release 7.1



Triggers
#  Here is an example of the template you might use with the trigger
#  for email problem submissions, notifying the remote sender of the
#  new problem number.
#  The keywords you may use are any attributes of the object in question,
#  or one of the following special keywords:
# %dbid           DCM database id
# %database       Database path
# %current_user   Current user name
# %rfc822_date    Date in the RFC822 format Wed, 13 Oct 99 02:20:24 PDT
#  Attributes or keywords may be specified in the format %name or %{name}
To: %submitter_email
From: %current_user
Subject: Problem Receipt Notification
Date: %rfc822_date

Problem Receipt Notification
_________________________________________________________________________

Your problem report:

%problem_synopsis

was received and created as number %problem_number
in database %{database} by %{enterer}.
Rational Synergy Classic CLI Help, Release 7.1     505



Work area
A work area is a region in your file system into which Rational Synergy writes a project 
hierarchy. The project’s file structure in the work area therefore maps to the project’s 
database file structure.

In Windows, the work area contains copies of the database objects, which Rational 
Synergy keeps synchronized with the database.

In UNIX, a work area is either link-based (containing links to the database objects) or 
copy-based (containing copies of the database objects). In both types of work areas, 
Rational Synergy keeps the work area synchronized with the database.

The following topics explain how work areas function:

• How work areas are updated

• Work area locations

• Absolute and relative work areas

• Updating work area paths

For more information about the commands referenced in this document, see their Rational 
Synergy help topics.

How work areas are updated
Rational Synergy updates your work area automatically and transparently when you 
create or change a project: when you add members to a project, the work area is updated 
with the new files, and when you remove members from a project, the corresponding files 
are removed from your work area. You also can update work areas manually.

The following topics explain how Rational Synergy updates work areas:

• Updating copy-based work areas

• Updating link-based work areas

• Changing or recreating work areas

• Updating multiple work areas

Updating copy-based work areas
A copy-based work area contains a copy of the source for every object in your project. At 
least two copies of each file always exist: one in the work area and one in the database.

Whenever you access a controlled file, Rational Synergy checks the file to determine 
whether it has changed. If the object is checked out and you are making changes to the 
file in the work area, Rational Synergy automatically updates the database with the 
changes the next time the object is accessed. If you are making changes in your work 
area to a file that is not checked out, Rational Synergy notifies you that a conflict exists 
506     Rational Synergy Classic CLI Help, Release 7.1



Work area
when you access that file in the work area. See the reconcile command or the Sync Work 
Area operation to resolve work area conflicts.

All work areas in Windows are copy-based. To make a work area copy-based on UNIX, 
either create the project during a remote client session (using ccm start -rc), use the 
ccm work_area -cb option, or select the Symbolic Links or Copies option in the 
Properties dialog box.

Use copy-based work areas on UNIX if one of the following requirements is met:

• You do not have an NFS mount to the database from the client host.

• You need to work disconnected from the database, such as when you are working 
outside of the office.

• You are using a tool that does not use symbolic links properly.

Updating link-based work areas
By default, UNIX client users work from a link-based work area. The work area is called 
link-based because the files in your work area are symbolic links to the files in your 
Rational Synergy database. When you edit a file in a link-based work area, the database 
files are updated immediately with changes. This occurs because you are working on the 
files themselves, rather than on copies of them.

If you are running on the UNIX client, you can use either a copy-based or link-based work 
area. UNIX clients that start a remote client use copy-based work areas.

Note If you use a tool or command in your work area that 
breaks symbolic links, you must sync your project to update 
the database objects with the work area changes.

Changing or recreating work areas
You can perform the following operations to examine or change a work area:

• See any work area and database conflicts (before performing a work area operation)

If you would like to compare your controlled work area files with the database files, 
see the reconcile command.

• Change link-based to copy-based, and vice versa

If you want to change a work area from link-based to copy-based, or vice versa, use 
the ccm work_area -cb option or select the Symbolic Links or Copies option in the 
Properties dialog box to convert the work area automatically. See the reconcile 
command for information on converting link-based or copy-based work areas.

• Delete

You can delete a work area (for example, to remove unwanted, uncontrolled files). 
However, you should always sync before you delete a work area to ensure that the 
Rational Synergy Classic CLI Help, Release 7.1     507



database has been updated with your work area changes. See the reconcile 
command.

• Re-create

If you removed files from your work area and you want to write the database versions 
back into the work area, you can re-create the work area using the sync command.

Updating multiple work areas
Objects such as header files and libraries can be used in multiple projects, and can 
therefore reside in more than one work area. Rational Synergy keeps the files 
synchronized in multiple locations by updating the files when they are accessed.

Recall that for each copy-based work area in which a file is used, there is a copy of the file. 
As you make changes to a file in a copy-based work area, you change only its local copy. 
The next time you access the file, Rational Synergy detects the change and updates the 
file in the database and in any other visible work areas in which the file is used.

The example in the figure below shows how updates occur when a copy-based file that is 
used in multiple projects is updated. The boxes represent copies of a single source file or 
links to the source file. Only visible work areas are updated.
508     Rational Synergy Classic CLI Help, Release 7.1



Work area
The second example shows how updates occur when a link-based file used in multiple 
projects is updated. The boxes represent copies of a single source file or links to the 
source file. If a change is made through a link, copy-based work areas (such as Work Area 
1, below) are not updated until the object is accessed through a client to which the work 
area is visible.

If you have a file that is used in multiple projects and you change that file in more than one 
work area at a time, you are notified that a conflict exists when you access the changed 
file through Rational Synergy. You must resolve the conflict before continuing.

Work area locations
Each project version has a single work area location. You can change this location, but 
the work area always is maintained in a single location. 

• If you want to synchronize the same project to multiple locations, you must check out 
separate versions of the project for each work area.

• If you want to make this work area available to multiple users, sync the project to a 
location available to all users.

If you check out separate versions of a project, you will see all of them when you enter a 
command that lists your work area files. The following output shows a Windows work area, 
then a UNIX work area.
Rational Synergy Classic CLI Help, Release 7.1     509



Windows:
Directory of C:\ccm_wa\ccmdb219
.             <DIR>     02/01/99  3:04p .
..            <DIR>     02/01/99  3:04p ..
demo-1        <DIR>     02/01/99  3:04p demo-1
demo-2        <DIR>     02/07/99 11:23p demo-2
demo-3        <DIR>     02/21/99  9:15a demo-3
UNIX:
drwxr-xr-x   4 bill      develop       2048 Aug 31 14:37 ./
drwxr-xr-x   3 bill      develop        512 Aug 31 14:37 ../
-r--r--r--   1 bill      develop         63 Aug 31 14:37 .ccmwaid.inf
drwxr-xr-x   2 bill      develop       2560 Aug 31 14:37 demo-1/
drwxr-xr-x   2 bill      develop       1024 Aug 31 14:37 demo-2/
drwxr-xr-x   2 bill      develop        512 Aug 31 14:37 demo-3/

To go to the correct project, you must change directories to the appropriate project and 
version (project-version). In the output shown above, there are three versions of the 
demo project: demo-1, demo-2, and demo-3.

One consequence of a single-location work area is that if a project is synchronized to a 
local Windows file system, UNIX sessions cannot see this work area, and vice versa. 
Therefore, use different versions of the project for different platforms.

Absolute and relative work areas
Rational Synergy supports two kinds of work areas for subprojects: absolute and relative. 
The following topics describe these types of work areas.

• Absolute work areas

• Relative work areas

Absolute work areas
Absolute work areas exist as separate directory hierarchies; that is, an absolute 
subproject’s work area path need not be under its parent project’s path.

You can sync the subproject anywhere; however, by default, the subproject resides under 
your home directory in the following path:

Windows: home_directory\ccm_wa\database_name\project-version

UNIX:    ~/ccm_wa/database_name/project-version

This means that other projects can find and use absolute subprojects even if the projects’ 
work areas are not located in the same directory structure.

For example, suppose bar-1 is a subproject of foo-1 in the ccm_tools database and 
(UNIX only), you are not using symbolic links. If bar-1 is absolute, the work area will 
appear as follows:
510     Rational Synergy Classic CLI Help, Release 7.1



Work area
Windows:
c:\ccm_wa\ccm_tools

foo-1\

foo\

a.c

b.c

bar-1\

bar\

c.c

UNIX:
/users/bill/ccm_wa/ccm_tools
    foo-1/
        foo/
            a.c
            b.c
    bar-1/
        bar/
            c.c

You can use an absolute project as a subproject more than once. Rational Synergy 
expects developers to put absolute projects meant for use by multiple developers on a 
shared file system. This is particularly useful for external projects, such as those that store 
shared products, libraries, and header files.

On UNIX, when you are using symbolic links, absolute subprojects appear as 
subdirectories in their parent projects’ work areas. For example, if the subproject is 
absolute, you might see the following project hierarchy:

/users/bill/ccm_wa/ccm_tools

foo-1/

foo/

a.c

bar -> /users/bill/ccm_wa/ccm_tools/bar-1/bar

bar-1/

bar/

c.c

On a Windows client when a subproject is absolute, if you look at the parent project's work 
area you will not see the subproject as a subdirectory because Windows does not support 
symbolic links.

Using a work_area command operation, you can change a subproject from absolute to 
relative.
Rational Synergy Classic CLI Help, Release 7.1     511



Relative work areas
When used by another project, a relative subproject resides in the parent project’s work 
area as if it were a subdirectory. This is useful when you must structure your code into 
subprojects for performance reasons, or if your makefiles or tools are written to use 
relative paths.

The following examples show the work area for the same projects shown in the previous 
example, except that the bar-1 subproject is relative instead of absolute:

Windows:
c:\ccm_wa\ccm_tools

foo-1\

foo\

a.c

b.c

bar\

c.c

UNIX:
/users/bill/ccm_wa/ccm_tools
    foo-1\
        foo\
            a.c
            b.c
            bar\
                c.c

You can use a relative subproject as a subproject in multiple projects as long as it is 
static (cannot be modified). A relative subproject that is modifiable can be used 
only once because it resides in its parent project’s work area and can be 
synchronized only to one location. If you want to use a modifiable relative project in 
multiple locations, you must use multiple versions of the project.

Projects on both the Windows and UNIX clients are absolute by default when they are 
created. If you check out a new version of a project, the new version’s work area is relative 
only if you check it out from a relative project. Otherwise, it is absolute.

If the makefiles in a project hierarchy reference the members of a subproject through a 
relative path as if the subproject is a subdirectory, or if you are unable to use a symbolic 
link to a subproject directory, you must keep the project relative. If the makefiles in a 
project hierarchy reference the members of a subproject as if the subproject is in an 
entirely unrelated directory structure, the subproject can be absolute.

You can change your makefiles to work with either absolute or relative projects, or a 
combination of both, or you can set up your subprojects as either absolute or relative so 
that your existing makefiles can recognize the work area directory structure.
512     Rational Synergy Classic CLI Help, Release 7.1



Work area
Updating work area paths
If you want to synchronize a project to a different location in the file system, you must 
change its work area path. Also, if you copy or move a database, or change its version 
delimiter, you must change its path settings.

The following topics explain work area paths and some of the changes you might make to 
them.

• Elements of a work area path

• Moving a work area

• Changing a database

• Security and visibility issues

• work_area command syntax

Elements of a work area path
A typical project work area path consists of a user’s home directory location, a work area 
subdirectory (for example, ccm_wa), the database name, the project’s name and version, 
and the project’s root directory.

The typical syntax is as follows:

Windows: home_dir\ccm_wa\database_name\project_name-version\project_name
UNIX:    home_dir/ccm_wa/database_name/project_name-version/project_name

For example, the following path is for user bill’s  baselib-bill project in the ccmdb219 
database:

Windows:  c:\ccm_wa\ccmdb219\baselib-bill\baselib
UNIX:    /users/bill/ccm_wa/ccmdb219/baselib-bill/baselib

Moving a work area
To move a project’s work area, use the ccm work_area -setpath command, or the 
Properties dialog box. Note that these interfaces append 
project_name<version_delimiter>project_version to the work area path 
automatically; you need not specify that part of the work area path.

Note: UNIX link-based work areas represent a project’s 
controlled objects using symbolic links to the corresponding 
files in the database path. If you move a database, you 
must update all symbolic links in the work areas to point to 
files located in the new database path.

Changing a database
You might need to update the work area path if you rename, move, or copy a database (for 
example, use the ccmdb cp or ccmdb unpack command), or if you change a database’s 
Rational Synergy Classic CLI Help, Release 7.1     513



version delimiter. Use the work_area command’s -find option to help identify and update 
those projects whose work area paths are out-of-date. 

In addition, each work area contains an identification file, ccmwaid.inf (Windows) or 
.ccmwaid.inf (UNIX), which contains the path name to the project’s database. Rational 
Synergy uses this file to ensure that only one database updates a given work area. If you 
move a database, the work area identification file appears to be for a different database, 
making the work areas unusable. Use the work_area command’s -dbpath option to help 
identify and update work area identification files to account for changes in database 
location.

Security and visibility issues
To change a work area path, you must have Rational Synergy write access to the project. 
You must be in the ccm_admin role to update static projects. File system write access to 
work areas also is required to update any project.

The new work area path must be visible to the Rational Synergy client. If work areas are 
located on both Windows and UNIX file systems, you must use separate Rational Synergy 
sessions to update those work areas. To update Windows work areas you must use a 
Windows client session to which the Windows file systems are visible; to update UNIX 
work areas you must use a UNIX client session to which the UNIX file systems are visible.

You must have write access to the work area in the file system to update a work area 
identification file.

work_area command syntax
The following examples show the syntax for the -find and -dbpath options only. For 
more information, see the work_area command.

• Replace find_str with new_str in the work area of all projects found (in the 
specified scope, or specified with the -p option).

ccm work_area -find find_str -replace new_str 

If you also specify -reg or -regexp, both find_str and new_str are interpreted as 
regular expressions.

• Locate projects with work area identification files containing the database path name 
specified with the old_path argument, and update those files with the current 
database’s path name.

ccm work_area -dbpath old_path 

The old_path option cannot be interpreted as a regular expression. The -dbpath 
option updates the work area ID files for the found projects with the path name of the 
current database. This option should be used only when a database is moved. Use of 
this option on a UNIX link-based work area causes the work area to be synchronized 
in order to update the links to the new database location. If you also specify the -
514     Rational Synergy Classic CLI Help, Release 7.1



Work area
nosync option, the synchronization is deferred; however, you must perform the 
synchronization manually before the work areas can be used.

You can add the -new option to -find and -replace to indicate the presence of a new 
database. This means that the original work areas specified by -find are not visible to this 
session and should be ignored. This option is useful after a database has been unpacked 
to a new path name and you want to ignore the original database work areas, or if the 
original database is not present. If you do not add the -new option, the command operates 
only on projects with visible work areas.

You can add the -show option to -find or to -dbpath to show which projects are updated. 
If you use -show with -find and -replace, the replacement path names are displayed. 
This can be very useful if you are using -find and -replace with regular expressions (-
regexp).

Examples
• The following command finds all your working projects with visible work areas and 

paths that contain the "-" character, and changes "-" to a "~":

ccm work_area -find "-" -replace "~"

You could use this command after changing a database delimiter from "-" to a "~". 
You must execute the command from enough sessions to change all work areas. If all 
your work areas are visible from one session, one session is sufficient. However, if 
you have both Windows and UNIX work areas, you must execute this command from 
both Windows and UNIX clients.

• The following command finds all prep projects with visible work areas and paths that 
contain the "-" character, and changes "-" to a "~":

ccm work_area -find "-" -replace "~" -scope prep

You could use this command after changing a database delimiter from "-" to a "~". 
You must execute the command while working as a build manager from enough 
sessions to change all build management work areas. If all prep work areas are visible 
from one session, one session is sufficient. However, if you have both Windows and 
UNIX build management work areas, you must execute this command from both 
Windows and UNIX clients.

• On UNIX, the following command finds all of your working projects with work areas for 
the /vol/acrel5/ccmdb/ccm_platform database, and updates the work area ID files 
with the path to the current database location:

ccm work_area -dbpath /vol/acrel5/ccmdb/ccm_platform
Rational Synergy Classic CLI Help, Release 7.1     515



Use this command to update a database that has been moved but can use its old 
work area paths. You must execute the command from enough sessions to change all 
work areas. If all your work areas are visible from one session, one session is 
sufficient. However, if you have both Windows and UNIX work areas, you must 
execute this command from both Windows and UNIX clients.

• The following command finds all of your working projects with paths that contain the 
platform string, and changes the string to services:

ccm work_area -find platform -replace services -new

Use this command to update a database that was unpacked or copied to a new name. 
Note that the -new option creates all new work areas because the old work areas are 
in use by the old database. If you want to reuse the old work areas (such as for a 
database that has been moved), you first must update the work area ID files using the 
-dbpath option so that the old work areas are visible for this database.

Regular expression examples
Use the -reg or -regexp option to cause the work_area command to interpret the 
find_str and new_str arguments as regular expressions. For additional information, see 
Regular expressions.

Regular expressions can be useful, but have the following limitations:

• Windows clients use the backslash for directory names. A backslash in a regular 
expression might be interpreted as an escape or as part of a replacement construct.

• If you enclose a find_str or new_str argument in quotes, the command line 
processing can become confused because quotes are interpreted by both the UNIX 
shell the Rational Synergy command line processor (even on Windows clients).

The following examples show some work area path changes using regular expressions.

• Shorten all work area paths under c:\ccm_wa\bill45\ to c:\ccm_wa\. 

ccm wa /find "bill45\\\\" /replace "" /reg /p
    Checking work area paths for replacement...
    1 project(s) will be checked.
    Setting path for work area of ‘hsai~1’ to ‘c:\ccm_wa\hsai~1’...
    1 project work area path(s) were updated:
        ‘hsai~1’: ‘c:\ccm_wa\hsai~1’

When you remove a directory from a path, include an associated backslash. 
Specifying the leading backslash is simpler, but the following example uses the trailing 
backslash:

bill45\.

The Rational Synergy command processor sees the leading quote for bill45, then if 
it encounters a backslash while looking for the trailing quote, it interprets the 
backslash as a signal to include the following quote as part of the argument instead of 
516     Rational Synergy Classic CLI Help, Release 7.1



Work area
as the closing quote. Therefore, you must "escape" the backslash by prepending 
another backslash. Also, the expression that results from the Rational Synergy 
command processing (bill45\) will be misinterpreted by the regular expression 
processor as a backslash without a corresponding replacement construct character, 
unless the trailing backslash is, itself, escaped with two additional backslash 
characters.

If you specify multiple directories enclosed in quotes, you must use only four quotes 
for the trailing directory backslash, immediately preceding the closing quote. The 
directory backslash in the middle of the argument can be escaped once so that the 
regular expression processor does not interpret the backslash as the beginning of a 
replacement construct. 

ccm wa /find "ccm_wa\\bill45\\\\" /replace "" /reg /p hsaw~1
Checking work area paths for replacement...

    1 project(s) will be checked.
    Setting path for work area of ‘hsaw~1’ to ‘c:\users\bill\hsaw~1’...
    1 project work area path(s) were updated:         
        ‘hsaw~1’: ‘c:\users\bill\hsaw~1’ 

• Remove a directory with a leading special character from a path, using a trailing 
backslash, shortening a work area path from c:\ccm_wa\+bill45\hsaw~1 to 
c:\ccm_wa\hsaw~1. 

ccm wa /find "\+bill45\\\\" /replace "" /reg /p hsaw~1
    Checking work area paths for replacement...
    1 project(s) will be checked.
    Setting path for work area of ‘hsaw~1’ to ‘c:\ccm_wa\hsaw~1’...
    1 project work area path(s) were updated:
        ‘hsaw~1’: ‘c:\ccm_wa\hsaw~1’

• Remove a directory with a leading special character from a path, using a leading 
backslash.

ccm wa /find "\\\+bill45" /replace ""  /reg /p hsaw~1
    Checking work area paths for replacement...
    1 project(s) will be checked. Setting path for work area of ‘hsaw~1’ to
    ‘c:\ccm_wa\hsaw~1’...
    1 project work area path(s) were updated:
        ‘hsaw~1’: ‘c:\ccm_wa\hsaw~1’

In general, unless there are special characters or spaces in find_str or new_str, no 
quotes are needed (in a non-UNIX environment). The following examples show 
regular expressions without quotes.
Rational Synergy Classic CLI Help, Release 7.1     517



• Convert a work area path from c:\ccm_wa\bill\junk~1 to 
c:\temp\ccm\bill45\junk~1.

ccm wa /find users\\bill\\ccm_wa\\ /replace temp\\ccm\\ /reg /p junk~1
    Checking work area paths for replacement...
    1 project(s) will be checked. 
    Setting path for work area of ‘junk~1’ to
    ‘c:\temp\ccm\bill45\junk~1’...
    1 project work area path(s) were updated:
        ‘junk~1’: ‘c:\temp\ccm\bill45\junk~1’

In this case, the only characters that must be escaped are the backslashes with which 
the regular expression processor normally initiates replacement constructs. 

One common reason not to escape the replacement construct is that UNIX file 
systems are case-sensitive. 

• On UNIX, after executing a ccm query command that returned three projects with 
work areas, convert parts of the path names from lower case to first-character upper 
case.

The need to do this might arise if a user working in the ccm_admin role changed the 
criteria for naming directories.

    pc-1: /users/bill/ccm_wa/owner/pc-1
    pi-1: /users/bill/ccm_wa/static/pi-1
    pw-1: /users/bill/ccm_wa/owner/pw-

The arguments are enclosed in quotes to prevent the UNIX shell from processing "*" 
and other special characters, and the backslashes are escaped as well (although that 
is optional in this case). Parentheses identify the first and second expressions for later 
substitution. The selection set (@) operator refers to the results of the query.

ccm wa -find "/users/bill/ccm_wa/([^/]+)/(.*)" -replace \
"/users/bill/ccm_wa/\\u\\1/\\2" -reg @
    Checking work area paths for replacement...
    3 project(s) will be checked.
    Setting path for work area of ‘pc-1’ to ‘/users/bill/ccm_wa/Owner/pc-
1’ 
    . . .
    Setting path for work area of ‘pi-1’ to ‘/users/bill/ccm_wa/Static/pi-
1’
    . . . 
    Setting path for work area of ‘pw-1’ to ‘/users/bill/ccm_wa/Owner/pw-
1’
    . . . 
    3 project work area path(s) were updated:
        ‘pc-1’: ‘/users/bill/ccm_wa/Owner/pc-1’
        ‘pi-1’: ‘/users/bill/ccm_wa/Static/pi-1’
        ‘pw-1’: ‘/users/bill/ccm_wa/Owner/pw-1’
518     Rational Synergy Classic CLI Help, Release 7.1



Work area
• On Windows, after executing a ccm query command that returned three projects with 
work areas, convert parts of the path names from first-character upper case to lower 
case.

The need to do this might arise if the user working in the ccm_admin role changed the 
criteria for naming directories.

pc-1: c:\bill\ccm_wa\Owner\pc-1
pi-1: c:\bill\ccm_wa\Static/pi-1
pw-1: c:\bill\ccm_wa\Owner/pw-1

The arguments are enclosed in quotes to prevent the shell from processing ’*’ and 
other special characters, and the backslashes are escaped as well (although that is 
optional in this case). Parentheses identify the first and second expressions for later 
substitution. The selection set (@) operator refers to the results of the query.

ccm wa /find "\\bill\ccm_wa\\([^\\]+)\\(.*)" /replace
 "\\bill\ccm_wa\\\1\\\1\\\2" /reg @
    Checking work area paths for replacement...
    3 project(s) will be checked.
    Setting path for work area of ‘pc-1’ to ‘C:\bill\ccm_wa\owner\pc-1’ 
    . . .
    Setting path for work area of ‘pi-1’ to ‘C:\bill\ccm_wa\static\pi-1’
    . . . 
    Setting path for work area of ‘pw-1’ to ‘C:\bill\ccm_wa\owner\pw-1’
    . . . 
    3 project work area path(s) were updated:
        ‘pc-1’: ‘C:\bill\ccm_wa\owner\pc-1’
        ‘pi-1’: ‘C:\bill\ccm_wa\static\pi-1’
        ‘pw-1’: ‘C:\bill\ccm_wa\owner\pw-1’
Rational Synergy Classic CLI Help, Release 7.1     519



Work area conflicts
The reconcile process consists of two phases. The first phase, the reconcile operation, 
compares work area and database files, and if reconcile is able to resolve differences 
automatically, it does. No action is taken on files determined to be in conflict. The second 
phase, the conflict resolution phase, supplies you with a list of conflicts, and you determine 
how the conflicts are to be resolved. You can do this in batch mode (by resolving all 
conflicts in the same way), or on an individual basis (by selecting a unique resolution for 
the selected file). You can also leave the conflict unresolved.

Because the reconcile operation may cause files to be discarded, overwritten, or ignored, 
it is important to understand what happens when you perform a reconcile. It is also 
important to understand how conflicts are resolved. 

The following information is presented in order for you to understand how a conflict is 
detected, and what happens when you select a specific method to resolve the conflict. 
The following topics are described:

• Conflict types

• How conflicts are resolved using batch mode

• Conflict resolution - update database from work area batch mode

• Conflict resolution - update work area from database batch mode

• Conflict resolution - manually selecting and resolving conflicts
520     Rational Synergy Classic CLI Help, Release 7.1



Work area conflicts
Conflict types
The following information lists the eight types of work area conflicts and describes the 
situations in which they occur.

1. Work area change to working object.

You have an object in the working state and make a work area change to that object, 
such as when you change a file in the file system.

2. Database change to working object.

You have an object in the working state and the database gets updated by: 
- a location other than the work area where the working object is located 
- a different work area, because you may have two work areas 
- the database source cache file is updated outside of Rational Synergy’s control

3. Work area change to static object.

You change the permission of a file in the work area to a writable mode and then 
modify the file outside of Rational Synergy’s control.

4. Database change to static object.

The database source cache file for an object in a non-modifiable state is updated 
outside of Rational Synergy’s control.

5. Object changed in multiple locations.

Both the database source cache file for an object and the work area file for an object 
have been modified. The object could be in either a working or static state.

6. Files missing from the work area.

The work area file for an object under Rational Synergy’s control is missing from the 
work area. The object could be in either a working or static state.

7. Uncontrolled files.

Files/directories in the work area are not under Rational Synergy’s control.

8. Files in error.

Files under Rational Synergy’s control are in error; this type of error is usually related 
to link-based work areas. For this type of conflict, you do not have the ability to choose 
how these errors are resolved. They are handled specially by the reconcile process. 
The action taken can be:  
- update the work area from the database 
- update the database from the work area 
- relink the file (UNIX only) 
- delete the file.

You can also choose not to resolve the conflicts.
Rational Synergy Classic CLI Help, Release 7.1     521



How conflicts are resolved using batch mode
After conflicts have been detected, you can resolve them either on a case-by-case basis, 
or in batch mode.Two batch mode options are available: update database from work area, 
or update work area from database. When you use batch mode to resolve conflicts, all 
conflicts are resolved in the same manner. For example, if you select the option to update 
work area from database, all work area files are updated with files from the database.

The possible batch mode results are summarized in the following table.

For more details, see Conflict resolution - update database from work area batch mode 
and Conflict resolution - update work area from database batch mode.

Conflict Resolution Results - Batch Mode

Conflict Type
Result - Update database from 

work area batch mode
Result - Update work area from data-

base batch mode

1. Work area change 
to working object

Database object updated 
with changes from work 
area

Work area file updated with 
file from database

2. Database change to 
working object

Database object updated 
with changes from work 
area

Work area file updated with 
file from database

3. Work area change 
to static object

Database object checked 
out, then updated with 
changes from work area

Work area file updated with 
file from database

4. Database change to 
static object

Database object checked 
out, then updated with 
changes from work area

Work area file updated with 
file from database

5. Object changed in 
multiple locations

Database object checked 
out, then updated with 
changes from work area

Work area file updated with 
file from database

6. Files missing from 
work area

Database objects not found 
in work area are "unused" 
in project

Missing files copied from 
the database to the work 
area

7. Uncontrolled files Work area files added to 
database, then checked out

Uncontrolled files deleted 
from work area

8. Files in error Action dependent on con-
flict type—you can specify 
only to resolve error

Action dependent on con-
flict type—you can specify 
only to resolve error
522     Rational Synergy Classic CLI Help, Release 7.1



Work area conflicts
Conflict resolution - update database from work area batch mode
The batch mode Update database from work area resolves all conflicts by updating the 
database from the state of the work area. There is a conflict resolution strategy for each 
different conflict (see Conflict types). 

The following list describes what happens when you resolve conflicts by selecting update 
database from work area batch mode.

1. Work area change to working object.

The database object's source attribute is updated (work area changes accepted).

2. Database change to working object.

The database object's source attribute is updated with the contents of the work area 
file (database changes discarded).

3. Work area change to static object.

The database object is checked out and the source attribute is updated (work area 
changes accepted).

4. Database change to static object.

The database object is checked out and the source attribute is updated with the 
contents of the work area file (discard database changes).

5. Object changed in multiple locations.

The database object is checked out and the source attribute is updated with the 
contents of the work area file.

6.  Files missing from the work area.

An Unuse operation is performed on the database object associated with the missing 
work area file/directory.

7. Uncontrolled files.

The files/directories are created in the project or directory where they are located. 
These files are in the working state.

8. Files in error.

The action taken can be: update the work area from the database, update the 
database from the work area, relink the file (UNIX only), or delete the file.

Note Check-out operations can fail if it is not possible to 
check out the object; if this occurs, the work area file are left 
unchanged.
Rational Synergy Classic CLI Help, Release 7.1     523



Conflict resolution - update work area from database batch mode
The batch mode Update work area from database resolves all conflicts by updating 
the work area from the state of the database. There is a conflict resolution strategy for 
each different conflict (see Conflict types). 

The following list describes what happens when you resolve conflicts by selecting update 
work area from database batch mode.

1. Work area change to working object.

The work area file is overwritten with the contents of the database object's source 
attribute (work area changes discarded).

2. Database change to working object.

The work area file is overwritten with the contents of the database object's source 
attribute (database changes accepted).

3. Work area change to static object.

The work area file is overwritten with the contents of the database object's source 
attribute (work area changes discarded).

4. Database change to static object.

The work area file is overwritten with the contents of the database object's source 
attribute (database changes accepted).

5. Object changed in multiple locations.

The work area file is overwritten with the contents of the database object's source 
attribute.

6. Files missing from the work area.

The missing work area file/directory is copied from the database to the work area.

7. Uncontrolled files.

The uncontrolled files/directories are deleted from the work area.

8. Files in error.

The action taken can be: update the work area from the database, update the 
database from the work area, relink the file (UNIX only), or delete the file.
524     Rational Synergy Classic CLI Help, Release 7.1



Work area conflicts
Conflict resolution - manually selecting and resolving conflicts
The reconcile operation identifies the files it finds in conflict, but takes no action to resolve 
the conflict unless instructed to do so by you. 

The manual selection mode "Select" allows you to choose how the conflicts are resolved. 
This mode allows you to use different resolutions to resolve conflicts. Depending on the 
type of conflict detected, you can update the database from the work area, update the 
work area from the database, merge the files in conflict, or ignore the conflict. For more 
information about resolving conflicts using this method, use help for the specific type of 
conflict resolution.
Rational Synergy Classic CLI Help, Release 7.1     525



Links to all Rational Synergy help
Links to all Rational Synergy help

The following links enable you to read any of the Rational Synergy Help systems in PDF:

• Rational Synergy Help, Developers  PDF

• Rational Synergy Help, Team Leads and Build Managers PDF

• Rational Synergy CLI Help, Web mode| PDF

• Synergy Classic GUI Help, (UNIX, Windows) PDF
526     Rational Synergy Classic CLI Help, Release 7.1



Rational Synergy Classic CLI Help, Release 7.1     527



Notices

© Copyright 2000, 2009

U.S. Government Users Restricted Rights - Use, duplication, or disclosure restricted by 
GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A. IBM may 
not offer the products, services, or features discussed in this document in other countries. 
Consult your local IBM representative for information on the products and services 
currently available in your area. Any reference to an IBM product, program, or service is 
not intended to state or imply that only that IBM product, program, or service may be used. 
Any functionally equivalent product, program, or service that does not infringe any IBM 
intellectual property right may be used instead. However, it is the user's responsibility to 
evaluate and verify the operation of any non-IBM product, program, or service. 

IBM may have patents or pending patent applications covering subject matter described in 
this document. The furnishing of this document does not grant you any license to these 
patents. You can send written license inquiries to:  
 
IBM Director of Licensing 
IBM Corporation 
North Castle Drive 
Armonk, NY 10504-1785 
U.S.A.  
 
For license inquiries regarding double-byte character set (DBCS) information, contact the 
IBM Intellectual Property Department in your country or send written inquiries to:  
 
IBM World Trade Asia Corporation 
Licensing 
2-31 Roppongi 3-chome, Minato-ku 
Tokyo 106-0032, Japan  
 
The following paragraph does not apply to the United Kingdom or any other country where 
such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES 
CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF 
ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE 
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS 
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or 
implied warranties in certain transactions. Therefore, this statement may not apply to you. 

This information could include technical inaccuracies or typographical errors. Changes are 
periodically made to the information herein; these changes will be incorporated in new 
editions of the publication. IBM may make improvements and/or changes in the product(s) 
and/or the program(s) described in this publication at any time without notice. 
Rational Synergy Classic CLI Help, Release 7.1     528



Any references in this information to non-IBM Web sites are provided for convenience only 
and do not in any manner serve as an endorsement of those Web sites. The materials at 
those Web sites are not part of the materials for this IBM product and use of those Web 
sites is at your own risk. 

IBM may use or distribute any of the information you supply in any way it believes 
appropriate without incurring any obligation to you. 

Licensees of this program who wish to have information about it for the purpose of 
enabling: (i) the exchange of information between independently created programs and 
other programs (including this one) and (ii) the mutual use of the information which has 
been exchanged, should contact:  
 
Intellectual Property Dept. for Rational Software 
IBM Corporation 
1 Rogers Street 
Cambridge, Massachusetts 02142 
U.S.A. 
 
Such information may be available, subject to appropriate terms and conditions, including 
in some cases, payment of a fee. 

The licensed program described in this document and all licensed material available for it 
are provided by IBM under terms of the IBM Customer Agreement, IBM International 
Program License Agreement or any equivalent agreement between us. 

Any performance data contained herein was determined in a controlled environment. 
Therefore, the results obtained in other operating environments may vary significantly. 
Some measurements may have been made on development-level systems and there is 
no guarantee that these measurements will be the same on generally available systems. 
Furthermore, some measurements may have been estimated through extrapolation. 
Actual results may vary. Users of this document should verify the applicable data for their 
specific environment. 

Information concerning non-IBM products was obtained from the suppliers of those 
products, their published announcements or other publicly available sources. IBM has not 
tested those products and cannot confirm the accuracy of performance, compatibility or 
any other claims related to non-IBM products. Questions on the capabilities of non-IBM 
products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. 
To illustrate them as completely as possible, the examples include the names of 
individuals, companies, brands, and products. All of these names are fictitious and any 
similarity to the names and addresses used by an actual business enterprise is entirely 
coincidental. 

If you are viewing this information softcopy, the photographs and color illustrations may 
not appear. 
Rational Synergy Classic CLI Help, Release 7.1     529



Notices
Trademarks

See http://www.ibm.com/legal/copytrade.html.

Microsoft, Windows, and/or other Microsoft products referenced herein are either 
trademarks or registered trademarks of Microsoft Corporation.

UNIX is a registered trademark of The Open Group in the United States and other 
countries.

Other company, product or service names may be trademarks or service marks of others.
530     Rational Synergy Classic CLI Help, Release 7.1



Index
Index

Symbols
%baseline, 29

%change_request, 29

%change_request_duplicates, 29

%change_request_original, 29

%change_request_release, 29

%change_request_status, 29

%change_request_synopsis, 29

%dcm_delimiter, 29

%displayname, 29

%fullname, 29

%in_baseline, 30

%in_build, 30

%instance, 30

%model, 30

%objectname, 30

%optional_project_instance, 30

%problem_duplicates, 30

%problem_original, 30

%purpose, 30

%requirement_id, 30

%root, 30

%sourcename, 30

%states, 30

%task, 31

%task_platform, 31

%task_release, 31

%task_status, 31

%task_subsystem, 31

%task_synopsis, 31

%type, 31

@cvid, 16

A
absolute work areas

described, 510

display - UNIX, 245

display - Windows, 186

add_object_task_assoc, 38

adding

object, 408

types, 374

address, show, 346

alias
remove, 379

set, 80

alias command, 80

allow_delimeter_in_name, 39

allow_prep, 40

alphanumerics used, 24

archive meta-data
meta_create_time, 253

meta_owner, 254

meta_release, 254

associating
project and purpose, 113

task with object, 355

attribute command, 82

attributes
how to set required, 59

values in queries, 463

view settings, 325

AUTOMOUNT_FIX, 71

B
baseline command, 86

baseline names, 13

baseline specification syntax, 13

baseline_template, 40

baseline_template_date_format, 41

baseline_template_repl_char, 41

baselines
add projects, 95

compare, 92

define state, 98

modify, 94

show change requests, 91

baselines, naming restrictions, 25

bom command, 101

browser
setting default, 50

C
candidates command, 102
Rational Synergy Classic CLI Help, Release 7.1     531



Index
case of file names in migration rules, 447

cat command, 103

ccm query
define output, 297

examples, 299

show object version, 16

ccm.ini file, 36

location of personal file - UNIX, 67

location of personal file - Windows, 66

location of system file, 66

CCM_ADDR
set as ccm_root, 344

set, example, 340

usage explained, 71

when to set, 339

where stored, 339

ccm_eng.log
location of, 71

redirecting output using 
CCM_ENGLOG, 71

CCM_ENGLOG, 71

CCM_HOME
set variable, 71

UNIX location, 6

Windows location, 5

CCM_PAGER, 71

ccm_ui.log
contents of, 339

location of, 71

redirecting output using 
CCM_UILOG, 71

CCM_UILOG, 71

ccminit file, described, 68

change request specification, 14

change requests
associate with tasks, 356

notify users, 500

query function, 469

relationships with tasks, 476

syntax, 14

change_type command, 104

changing
delimiter (why to), 179

release information, 315

work area, 419

check_release, 42

checkin command, 105

checking file system consistency
, 228

checkout command, 109

checkpoint command, 118

clean_cache command, 120

clean_up command, 122

collapse command, 124

command syntax, 12

command-line default settings, 37

commands
alias, 80

baseline, 86

bom, 101

candidates, 102

cat, 103

change_type, 104

checkin, 105

checkout, 109

clean_cache, 120

clean_up, 122

conflicts, 127

copy_project, 129

copy_to_file_system, 135

dcm, 142

delete, 176

delimiter, 179

depend, 182

diff, 184

expand, 190

export, 191

find use, 194

folder, 199

folder_template, 218

fs_check, 228

groups, 232

history, 236

import, 238

lmgr_status, 242

ln, 243

message, 250

migrate, 252

monitor, 259

move, 261
532     Rational Synergy Classic CLI Help, Release 7.1



Index
process_rule, 266

project_grouping, 279

project_purpose, 289

properties, 294

ps, 264

query, 297

reconcile, 301

reconfigure, 308

reconfigure_template, 310

release, 314

resync, 322

set, 323

show, 325

soad, 328

soad_scope, 332

source, 338

start, 339

status, 346

stop, 348

sync, 349

task, 352

typedef, 374

undo_reconfigure, 381

undo_update, 382

unset, 384

unuse, 385

update_members, 389

update_properties, 392

update_template, 266

use, 408

users, 410

version, 412

view, 413

wa_snapshot, 426

work_area, 414

compare_cmd, 42

comparing
files to merge, 247

folders, 201

process rules, 269

source, 184

update properties, 395

versions, 184

conflict_parameters, 45

conflicts

batch mode resolution of, 522

database change to static object, 521

database change to working object, 
521

defined, 430

explicit, 430

files in error, 521

files missing from work area, 521

implicit, 430

in merge operation, 247

in reconcile operation, 301

in update process, 389

object changed in multiple locations, 

521

types, description of work area, 521

uncontrolled files, 521

update database from work area 
batch mode, 523

update work area from database 
batch mode, 524

work area change to static object, 521

work area change to working object, 
521

conflicts command, 127

controlling access to ojbjects, 232

copy_db_always, 47

copy_project command, 129

copy_to_file_system command, 135

create command, 137

creating
modifiable version of file or directory, 

110

modifiable version of project 
hierarchy, 129

objects, 137

queries, 462

symbolic link, 243

tasks, 357

current task
defined, 358

setting, 358

D
data, migrating, 252
Rational Synergy Classic CLI Help, Release 7.1     533



Index
database
bring in files, 238

define users, 410

monitor users, 264

naming restrictions, 25

replace work area path, 415

startup files, 68

date formats
ISO 8601, 441

rules, 439

date_modified, 47

dates
displaying, 439

local specific formats, 439

dcm command, 142

dcm command examples, 169

dcm_broadcast_dbid, 47

dcm_time_sync_tolerance, 48

default task See current task
default_task_query, 48

default_version, 49

defaults
add_object_task_assoc, 38

allow_delimiter_in_name, 39

allow_prep, 40

baseline_template, 40

baseline_template_date_format, 41

baseline_template_repl_char, 41

check_release, 42

command line, 37

compare_cmd, 42

conflict_parameters, 45

copy_db_always, 47

date_modified, 47

dcm_broadcast_dbid, 47

dcm_time_sync_tolerance, 48

default_task_query, 48

default_version, 49

engine_host, 49

expand_on_checkin, 49

html_browser, 50

html_default_file, 50

html_location, 50

include_required_tasks, 50

initial_role, 51

initials, 51

mail_cmd, 51

migrate_check_required_task, 52

migrate_default_arch_state, 52

migrate_default_state, 52

migrate_default_type, 52

multiple_local_proj_instances, 53

personal, 36

proj_idx_wa_cache, 55

project_subdir_template_unix, 55

range_for_keyword_expand, 56

reconcile.control_files_below_new_
project, 56

reconcile.save_uncontrolled, 57

reconf_consider_all_cands, 57

reconf_stop_on_fail, 57, 58

reconfigure_parallel_check, 58

reconfigure_using_tasks, 58

release_phase_list, 58

required_attributes, 59

restrict_reconf_setting, 59

role, 60

save_to_wastebasket, 61

shared_project_directory_checkin, 

61

start_day_of_week, 61

sync_output, 62

system_filename_filters, 62

system-wide, 36

text_viewer, 43

update_on_checkin_if_equal, 63

verbosity, 63

wa_path_cache_size, 64

wa_path_template, 64

wastebasket, 63

where stored, 36

where to set, 36

work area directory, 349

defining
migration rules, details, 444

required fields, 59

delete command, 176

deleting
hierarchy, 177

object versions, 124
534     Rational Synergy Classic CLI Help, Release 7.1



Index
recursively, 177

relationships, 380

settings, 384

tasks, 122

templates, 122

with unuse command, 385

delimiter
change for a database, 179

defined, 179

for four-part names, 191

UNIX, 6

Windows, 5

delimiter command, 179

depend command, 182

diff command, 184

dir command, 186

directory
automatic check in for shared 

projects, 243

create writable version of, 110

list contents of, 186

merge, 247

remove files, 385

replace, 408

update, 389

when checked out automatically, 114

where added when new, 137

disassociating tasks, 358

DISPLAY, 71

displaying object versions, 16

E
edit command, 189

engine
log file, 71

start, 339

engine_host, 49

environment variables
CCM_ADDR, set as ccm_root, 344

CCM_ADDR, set example, 340

CCM_ADDR, when to set, 339

evaluating scopes, 490

exclusion rules for scopes, 493

expand command, 190

expand_on_checkin, 49

expanding keywords in scopes, 492

expansion rules for scopes, 493

explicit conflict detection, 430

export command, 191

expressions
file matching in migrate, 376

query, 298

F
fields, defining required, 59

file names, 15

file specification syntax, 15

files
add, 408

add relationships, 311

case-sensitive names, 27

ccm.ini, 66

ccm_eng.log, 71

ccm_ui.log, 71

ccminit, 68

compare, 184

compare/merge, 247

create writable version of, 110

editing, 189

find where used, 194

local copy marks, 246

merge, 247

merged, how annotated, 247

new, where added in project, 137

notification of changes, 500

replace, 408

show not sync’ed, 187

finding
objects in projects, 16

uses of objects, 194

work area path string, 414

finduse command, 194

floating object
add to database, 301

add to project, 137

folder
change to query-based, query specs 

used, 207
Rational Synergy Classic CLI Help, Release 7.1     535



Index
make incremental changes to, 205

specification syntax, 18

folder command, 199

examples, 213

folder specification syntax, 18

folder_template command, 218

four-part name, delimiter, 191

fs_check command, 228

G
General Usage Information, 1

global exclusions for scopes, 491

grouping project, defined, 418

groups command, 232

H
help

how to invoke, 235

specify alternate location, 50

help command, 235

history command, 236

history, show, 236

HOME, 71

HTML
browser default, 50

help file name default, 50

help files location default, 50

html_browser, 50

html_filename, 50

html_location, 50

I
IBM Customer Support, 2
identification file, work area, 514

implicit conflict detection, 430

import command, 238

importing
files into database, 238

types, 374

include_required_tasks, 50

incremental changes
to folder templates, 223

to folders, 205

Informix, display version, 412

initial_role, 51

initialization file, 66

personal, 67

system, 67

where located, 36

where to make personal entries, 36

initials, 51

installation area startup files, 68

instance of an object, 17

interface address for Rational Synergy, 

339

K
keywords

built in, 29

change behavior, 13

used for merge, 443

using attribute names, 29

L
LC, defined, 246

LD_LIBRARY_PATH, 71

legal notices, copyright information, 528

license command, 241

licenses, display number of, 242

links
remove, 385

replace, 408

listing
directory contents - UNIX, 245

directory contents - Windows, 186

objects in long format, 245

lmgr_status command, 242

ln command, 243

local
copy marks, 187

copy, defined, 246

locating objects - See finduse command, 

297

location, change work area, 419

ls command, 245
536     Rational Synergy Classic CLI Help, Release 7.1



Index
M
mail_cmd, 51

makefile
and subprojects, 512

converting, 190

managers
process rules manager, defined, 34

project purpose manager, defined, 34

release, defined, 34

marks used by dir command, 187

match example, for query, 475

merge command, 247

merging
and conflicts, 247

defining tool for, 442

directories, 247

files, 247

how a merged file is annotated, 247

message command, 250

messages, send using triggers, 502

meta_create_time, 253

meta_owner, 254

meta_release, 254

migrate command, 252

migrate_check_required_task, 52

migrate_default_archive_state, 52

migrate_default_state, 52

migrate_default_type, 52

migrating
archive files, 460

defining UNIX rules, 453

defining Windows rules, 445

setting UNIX types, 456

setting Windows types, 448

UNIX troubleshooting after, 461

Windows archive files, 451

Windows troubleshooting after, 452

migration rules, 444

assign types for binary archive files - 
UNIX, 460

assign types for binary archive files - 
Windows, 451

case of file names, 447

meaning and syntax - UNIX, 454

meaning and syntax - Windows, 446

precedence of files - UNIX, 453

precedence of files - Windows, 445

troubleshoot - UNIX, 461

troubleshoot - Windows, 452

monitor command, 259

verbose version, 264

move command, 261

moving
files, 261

subprojects, 261

multiple_local_proj_instances, 53

N
naming restrictions

baseline, 25

databases, 25

object, 24

release, 25

notices, legal, 528

notifying users automatically, 500

NS, not sync’d marks, 246

O
object

checkpoint, 118

get latest version, 389

make modifiable version, 109

name length limit, 15

reference form, 17

save for personal use, 118

search for, 297

specification syntax, 13, 15

object names
baseline, 13

file, 15

object reference form, 17

project reference form, 16

selection set reference form, 16

valid CLI check out forms, 110

work area reference form, 15

online help, how invoked, 235

option delimiter
UNIX, 6
Rational Synergy Classic CLI Help, Release 7.1     537



Index
Windows, 5

options
implicitly set, 324

set in ccm.ini files, 38

where to set initial values, 323

Options section in initialization file, 36

P
PAGER, 72

parallel development
using shared projects, 486

PATH, 72

path
CCM_HOME - UNIX, 6

CCM_HOME - Windows, 5

define non-project-specific directory, 

64

define project-specific directory, 55

set for work area, 421

performance, improve, 64

personal
ccm.ini file, location - UNIX, 67

ccm.ini file, location - Windows, 66

default settings, 36

startup files, 68

predefined scopes, 496

PRINT_EDIT_CMD, 72

PRINT_TOOL_CMD
, 72

prior, 360

problem number syntax, 20

problem See change request
process rule

defined, 267

how created, 267

remove a folder, 273

remove a task, 273

show information, 273

specification, 19

standard behavior, 268

use with project grouping, 281

process_rule command, 266

processes, show status of, 264

proj_idx_wa_cache, 55

project
check out version of, 111

create writable version of, 129

created as floating object, 137

make copy of, 135

names, 21

remove, 124

renaming, 261

replace, 408

show all projects in specified path, 

414

specification, 21

to which new object is added, 137

project grouping
defined, 280

specification, 22

update, 389

project reference form, 16

project_grouping command, 279

project_purpose command, 289

project_subdir_template_unix, 55

properties command, 294

ps command, 264

PVCS, migrating data, 252

Q
query

constants, 474

control format of, 29

date formats, 441

elements, 468

expressions, 462

expressions, combinations of, 464

for tasks, 362

function arguments, 468

function definitions, 469

logical operators, 473

samples, 475

search order, 468

types of, 463

use attribute values, 463

use attributes, 463

use function tests, 463

used when making a folder query-
538     Rational Synergy Classic CLI Help, Release 7.1



Index
based, 207

using attribute values, 463

query command, 297

query function arguments
attr_name, 468

object_name, 468

order_spec, 468

privilege_name, 468

project_name, 468

query function definitions
baseline, 469

cr, 469

folder, 469

has_attr, 469

has_child, 469

has_cvtype, 470

has_member, 469

has_model, 469

has_no_relationship, 469, 471

has_predecessor, 469

has_priv, 470

has_purpose, 470

has_relationship, 470

hierarchy_asm_members, 470

is_bound, 470

is_child_of, 470

is_cvtype_of, 471, 472

is_hist_leaf, 470

is_hist_root, 471

is_member_of, 471

is_model_of, 471

is_predecessor_of, 471

is_relationship_of, 471

recursive_is_member_of, 471

task, 469, 472

query search order
breadth-first using order_spec, 468

depth-first using order_spec, 468

quiet mode, when starting SYNERGY/
CM session, 343

R
range_for_keyword_expand, 56

Rational Synergy

CCM_HOME variable, 71

display number of licenses, 242

monitor users, 259

show version, 412

start, 339

stop, 348

view process information, 264

RCS, migrating data, 252

README contents, 2

reconcile command, 301

reconcile.control_files_below_new_proje
ct, 56

reconcile.save_uncontrolled, 57

reconciling
files in database, 301

stopping a sync during, 302

reconf_consider_all_cands, 57

reconf_stop_on_fail, 57, 58

RECONF_TIME, 72

reconfigure command, 308

reconfigure See update
reconfigure_parallel_check, 58

reconfigure_properties See 
update_properties

reconfigure_template command, 310

reconfigure_template See process_rule
reconfigure_using_tasks, 58

regular expressions
example in work area, 425

in messages, 250

in type definition, 376

relate command, 311

relationships
define, 311

delete, 380

how identified, 476

predefined, 477

query for, 478

user-defined, 477

using relate command, 311

relative subproject, where resides, 512

release command, 314

release_phase_list, 58

releases, naming restrictions, 25

removing
Rational Synergy Classic CLI Help, Release 7.1     539



Index
files, 385

symbolic link, 385

required_attributes, 59

resolving conflicts
batch mode options, 522

update database from work area 
batch mode, 523

update work area from database 
batch mode, 524

restrict_reconf_setting, 59

restricted
characters, 24

DCM characters, 25

names, 24

resync command, 322

RFC address, defined, 264

role, set default, 60

roles, define user, 410

rules, for migrated files, 444

S
sample queries, 475

save offline and delete
scopes explained, 490

why use, 328

save offline and delete command, 328

save_to_wastebasket, 61

SCCS, migrating data, 252

scopes
evaluate, 490

exclusion rules, 493

expansion rules, 493

global exclusions, 491

globally excluded object types, 491

globally excluded objects, 491

keyword expansion, 492

last static versions, 492

predefined, 496

validate, 496

search for objects in database, 297

search, order in query, 468

security
apply settings, 232

assign levels, 232

set read, 232

selection set reference form, 16

selection sets, 16

sending data using dcm, 148

sessions
show, 346

stop, 348

set command, 323

setting
archive state for migrate, 252

current task, 358

date formats, 439

default user roles, 410

file patterns to be ignored on sync, 62

required fields at task completion, 59

work area path for migrate, 256

settings
remove, 384

view, 325

shared projects
automatic directory check in, 243

benefits, 480

defined, 480

limitations, 481

methodology, 483

states of files created in, 137

shared_project_directory_checkin, 61

SHELL, 72

show command, 325

showing
source for an object, 413

version of Rational Synergy, 412

soad command, 328

soad_scope command, 332

source command, 338

source, compare, 184

specification
baseline, 13

change request, 14

file, 15

folder, 18

process rule, 19

project, 21

project grouping, 22

task, 23
540     Rational Synergy Classic CLI Help, Release 7.1



Index
start
Rational Synergy in nogui mode, 340

Rational Synergy in quiet mode, 343

Rational Synergy session, 339

start command, 339

start_day_of_week, 61

startup files, 68

status command, 346

stop command, 348

subprojects
and makefiles, 512

relative, where resides, 512

symbolic link, create - UNIX, 243

sync command, 349

sync, stopping
during reconcile, 302

during sync, 350

sync_output, 62

syntax
baseline specification, 13

change request specification, 14

file specification, 15

folder specification, 18

for commands, 12

for projects, 21

object reference form, 17

problem number, 20

project grouping specification, 22

project reference form, 16

project specification, 21

selection set reference form, 16

task specification, 23

work area reference form, 15

system ccm.ini file, location of, 66

system default settings, 36

system_filename_filters, 62

T
task

create and assign, 358

disassociate task, 358

query for, 362

set current, 358

specification syntax, 23

unrelate tasks, 367

task command, 352

TERM, 72

text_viewer, 43

time update operation, 72

triggers, how to use, 500

typedef command, 374

types
add, 374

update, 374

U
UC, defined, 187

UIDPATH, 72

unalias command, 379

UNC, or "universal naming convention", 5

uncontrolled marks, 246

undo_reconfigure command, 381

undo_reconfigure See undo_update
undo_update command, 382

unrelate
objects, 380

tasks, 367

unrelate command, 380

unset command, 384

unset variables, 384

unuse command, 385

update
display and time, 72

how to reverse, 382

list candidates, 102

setting for consistency, 280

update command, 389

update properties
compare, 392

remove a folder, 397

remove a task, 397

set, 392

set a baseline, 396

set update method, 398

show baselines, 398

show folders, 398

show tasks, 398

update properties command, 392
Rational Synergy Classic CLI Help, Release 7.1     541



Index
update_members command, 389

update_on_checkin_if_equal, 63

update_template See process_rule
updating

types, 374

work area, 349

work area’s path string, 414

use command, 408

USER, 72

user
list, caveat when setting roles, 410

users
broadcasting info, 250

define, 410

define groups, 232

restrict access to objects, 232

set roles, 410

show status, 346

users command, 410

V
validating scopes, 496

variables
AUTOMOUNT_FIX, 71

CCM_ADDR, 71

CCM_ENGLOG, 71

CCM_HOME, 71

CCM_PAGER, 71

CCM_UILOG, 71

DISPLAY, 71

HOME, 71

implicitly set by Rational Synergy, 384

LD_LIBRARY_PATH, 71

PAGER, 72

PATH, 72

PRINT_EDIT_CMD, 72

RECONF_TIME, 72

SHELL, 72

TERM, 72

UIDPATH, 72

USER, 72

verbose
process information, 264

reconfigure messages, 63

verbosity option, 63

version
compare, 184

length limit, 15

show history, 236

version command, 412

view command, 413

W
wa_path_cache_size, 64

wa_path_template, 64

wa_snapshot command. See 
copy_to_file_system command

wastebasket, 63

work area
absolute, 510

change location, 419

change options, 414

example of absolute subproject 
structure, 510

identification file, 514

location for project versions, 509

not maintaining, 418

project creation, 138

project options, 415

projections, 509

reconcile, 301

reference form, 15

relative, 510

replace path, 415

set path, 421

update, 349

where created by default, 349

work area path
define, 55

find string, 414

set for migrate, 256

work_area command, 414
542     Rational Synergy Classic CLI Help, Release 7.1



Index
Rational Synergy Classic CLI Help, Release 7.1     543



544     Rational Synergy Classic CLI Help, Release 7.1


	General usage information
	Readme and documentation
	Other information

	Using the command line interface - Windows users
	Option delimiter
	Universal naming convention
	File paths
	Location of CCM_HOME

	Using the command line interface - UNIX users
	Option delimiter
	Location of CCM_HOME

	Rational Synergy interfaces
	Web mode and Traditional mode

	Rational Synergy help systems
	Terminology and name changes in Rational Synergy 7.1
	Command and argument syntax
	Baseline specification
	Change request specification
	File specification
	Folder specification
	Problem specification
	Project specification
	Project grouping specification
	Task specification

	Naming restrictions
	Restricted object names
	Restricted release names
	Restricted database names
	Restricted baseline names
	DCM restrictions

	Case and file name limit database options
	Case
	File name limit

	Date formats
	Built-In keywords
	Regular expressions
	Wild card match regular expressions

	Administering purposes and templates
	Project purpose manager
	Process rules manager
	Release manager


	Default settings
	How defaults are set
	System-wide settings
	Database-wide settings
	Personal settings
	Command line settings

	Default options
	add_object_task_assoc
	allow_delimiter_in_name
	allow_prep
	baseline_template
	baseline_template_date_format
	baseline_template_repl_char
	check_release
	cli_compare_cmd cli_proj_compare_cmd cli_dir_compare_cmd cli_symlink_compare_cmd cli_merge_cli cli_dir_merge_cmd
	cli.text_editor
	cli.text_viewer
	conflict_exclude_rules
	conflict_parameters
	copy_db_always
	date_modified
	dcm_broadcast_dbid
	dcm_log_enabled
	dcm_time_sync_tolerance
	default_task_query
	default_version
	engine_host
	expand_on_checkin
	html_browser
	html_default_file
	html_location
	include_required_tasks
	initial_role
	initials
	mail_cmd
	migrate_check_required_task
	migrate_default_arch_state
	migrate_default_state
	migrate_default_type
	multiple_local_proj_instances
	parallel_exclude_rules
	proj_idx_wa_cache
	project_subdir_template
	range_for_keyword_expand
	reconcile.control_files_below_new_project
	reconcile.save_uncontrolled
	reconf_consider_all_cands
	reconf_release_score
	reconf_stop_on_fail
	reconfigure_parallel_check
	reconfigure_using_tasks
	release_phase_list
	replace_subproj
	required_attributes
	restrict_reconf_setting
	role
	role_definitions
	save_to_wastebasket
	shared_project_directory_checkin
	start_day_of_week
	sync_output
	system_filename_filters
	update_on_checkin_if_equal
	verbosity
	wastebasket
	wa_path_cache_size
	wa_path_template

	Initialization file - Windows
	Run Rational Synergy from the PC server
	Run Rational Synergy on your PC

	Initialization file - UNIX
	Startup file
	Installation area setting
	Database-specific setting
	Personal setting
	Example

	GUI settings
	Environment variables
	Setting model object attribute options
	Create an attribute
	Modify an attribute

	Creating a list box for a new attribute
	Setting object type attribute options
	Setting options in the system or personal ini file
	Setting options using the ccm set command

	Commands
	alias command
	attribute command
	Copy Attribute
	Create Attribute
	Delete Attribute
	Modify Text Attributes
	Modify Non-Text Attributes
	Show Attributes
	List Attributes

	baseline command
	Compare Two Baselines
	Create or Preview a Baseline
	Delete a Baseline
	List Baselines
	Mark a Baseline for Deletion
	Modify a Baseline
	Publish a Baseline
	Release a Baseline
	Restore a Deleted Baseline
	Show a Baseline

	bom command
	candidates command
	cat command
	change_type command
	checkin command
	checkout command
	Check out a project and set work area properties
	Create a Modifiable Version of a File or Directory
	Create a Modifiable Version of a Project or Project Hierarchy

	checkpoint command
	clean_cache command
	clean_up command
	collapse command
	conflicts command
	copy_project command
	Copy and Set Work Area Properties
	Copy and Update a New Project

	copy_to_file_system command
	create command
	dcm command
	Initialize
	Add
	Change Database ID and Update Affected Objects
	Change the DCM Delimiter and Update All Objects
	Change Database ID Without Updating Any Objects
	Change Directory Project Instance
	Convert the Database ID of Objects Created in Another Database
	Create a Database Definition
	Create a Transfer Set
	Delete a Database Definition
	Delete a Transfer Set
	Generate
	Generate and Transfer
	Generate, Transfer, and Receive
	Modify a Database Definition
	Modify a Transfer Set
	Modify DCM Settings
	Receive
	Recompute the Indirect Change Request Members of a Transfer Set
	Recompute the Members of a Transfer Set
	Reinitialize
	Remove an Object from a Transfer Set
	Show All Database IDs and Descriptions
	Show Current DCM Database ID
	Show Database Definition
	Show DCM Properties
	Show DCM Settings
	Show Last Generate Time(s)
	Show One Specified Event
	Show Receive Lock
	Show Summary of Events
	Show Transfer Set
	Transfer

	dcm examples
	Add
	Change
	Create
	Delete
	Generate
	Generate and Transfer
	Generate, Transfer, and Receive
	Initialize
	Modify Settings
	Receive
	Show
	Transfer

	delete command
	delimiter command
	Delimiter Restrictions

	depend command
	diff command
	Compare
	Version Compare

	dir command
	edit command
	expand command
	export command
	finduse command
	folder command
	Compare Folders
	Copy Folder
	Create Folder
	Delete a Folder
	Find Uses of a Folder
	List Folders
	Modify Folders
	Show Folder Information

	folder Examples
	Compare Folders
	Copy Folders
	Create a Folder
	Delete a Folder
	Find Uses of a Folder
	List Folders
	Modify Folders
	Rename a Folder
	Show Folder Information

	folder_template command
	Create a Folder Template
	Modify Folder Templates
	Delete Folder Templates
	List Folder Templates
	Set Controlling Database for Folder Templates
	Show Detailed Properties of Folder Templates
	Show Specific Property of Folder Templates

	fs_check command
	groups command
	help command
	history command
	import command
	license command
	lmgr_status command
	ln command
	ls command
	merge command
	File Merge
	Directory Merge

	message command
	migrate command
	monitor command
	move command
	ps command
	process_rule command
	Add Folders and/or Folder Templates to a Process Rule
	Copy a Process Rule
	Compare Two Process Rules
	Delete Process Rules
	List Process Rules
	Modify a Process Rule
	Remove Folders and/or Folder Templates from a Process Rule
	Set the Controlling Database for a Process Rule
	Show Information about Process Rules

	process_rule examples
	Add Folder and/or Folder Templates
	Compare Two Process Rules
	Copy a Process Rule
	Delete Process Rules
	List Current Process Rules
	Modify a Process Rule
	Set the Controlling Database for Process Rules
	Show Information about Process Rules

	project_grouping command
	Add Tasks to the Update Properties of a Project Grouping
	Copy Tasks from One Project Grouping to Another Project Grouping
	Delete a Project Grouping and its Member Projects
	List Project Groupings
	Refresh the Baseline and Tasks of a Project Grouping
	Remove Tasks from the Update Properties of a Project Grouping
	Set the Auto-refresh Mode of a Project Grouping
	Show the Properties of a Project Grouping

	project_purpose command
	Create a Project Purpose
	Delete a Project Purpose
	Modify a Project Purpose
	Show a Project Purpose

	properties command
	Show Properties
	Show an Arbitrary Set of Attributes

	query command
	reconcile command
	reconfigure command
	reconfigure_properties command
	reconfigure_template command
	relate command
	release command
	Controlling Database
	Create
	Delete
	Delimiter
	List
	Modify
	Rename
	Show

	resync command
	set command
	show command
	soad command
	Preview / Create Object List
	Delete Using Object List
	Delete Using Scope

	soad_scope command
	Create Scope
	Edit Scope
	List Scopes
	Show Scope
	Delete Scope

	source command
	start command
	status command
	stop command
	sync command
	task command
	Assign a Task
	Associate a Task with Objects, Existing Tasks, or Change Requests
	Break a Relationship of a Task to Objects, Existing Tasks, or Change Requests
	Complete a Task
	Copy a Task
	Create a Task
	Fix a Task
	Modify Task
	Query for Tasks
	Relate a Task to Objects, Tasks
	Set or Clear the Current (Default) Task
	Show Task Information
	Transition a Task to a Different State
	Unrelate a Task from Objects, Tasks

	task examples
	Associate a Task
	Assign a Task
	Complete (Check In) a Task
	Copy a Task
	Create a Task
	Disassociate a Task from Objects
	Disassociate a Task from a Change Request
	Fix a Task
	Modify Task
	Query for Tasks
	Set or Clear the Current (Default) Task
	Show Task Information
	Transition a Task

	type command
	typedef command
	unalias command
	unrelate command
	undo_reconfigure command
	undo_update command
	unset command
	unuse command
	update command
	update_properties command
	Compare Update Properties
	Add Tasks and/or Folders
	Remove Tasks and/or Folders
	Show Baseline, Tasks, Folders, and/or Objects
	Show Update Properties
	Set the Update Method
	Set Baseline for Specific Project
	Refresh Update Properties
	Save Update Properties to Subprojects
	Show Valid Baseline Projects for a Specific Project

	update_properties examples
	Add Tasks and/or Folders
	Compare Update Properties
	Remove Tasks and/or Folders
	Show Information for Baseline, Tasks, and Folders
	Set the Update Method
	Show/Set Valid Baselines
	Show Baseline, Tasks, Folders, and/or Objects

	update_template command
	use command
	users command
	version command
	view command
	work_area command
	Show Work Area Options
	Change Work Area Options
	Find and Show All Projects with the Specified Character String in their Work Area Paths
	Find and Replace a Character String in a Work Area Path
	Identify and Show All of the Projects with the Specified Database Path
	Identify and Replace a Database Path
	Changing work area options
	Updating an obsolete work area path
	Updating an obsolete database path

	work_area examples
	Show Work Area Options
	Change Work Area Options
	Find and Replace a Character String in a Work Area Path
	Identify and Replace a Database Path

	wa_snapshot command

	Learn more about
	Conflict detection
	Parallel conflicts
	Missing changes

	Date formats
	Dates displayed by Rational Synergy
	Dates accepted as Input by Rational Synergy
	Setting environment variables
	General information
	Date formats using ISO 8601 format

	Defining the merge tool
	Prerequisites
	Command keywords
	Where to define the merge and compare commands

	Migration rules
	Migrating - Windows operating systems
	Migration rules files
	Auto-generated rules
	Rule syntax and meaning
	Map to TYPE
	Map to VERSION
	Map to IGNORE
	Map to COLLAPSE
	Map to ATTRIBUTE
	Migrating - UNIX operating systems
	Migration rules files
	Auto-generated rules
	Rule syntax and meaning
	Map to TYPE
	Map to VERSION
	Map to IGNORE
	Map to COLLAPSE
	Map to STATUS
	Map to ATTRIBUTE
	Rules file example
	Migrating binary archive files
	Troubleshooting the migration rules

	Query expressions
	Queries using attribute value clauses
	Queries using function test clauses
	Queries using both attribute value and function test clauses
	Queries using keywords
	Nested queries
	Functions
	Relative operators
	Logical operators
	Constants
	Grouping Query Clauses

	Relationships
	Shared projects
	Benefits of shared projects
	Limitations of shared projects
	Best-case scenarios for using shared projects
	Lifecycles
	Creating a shared project
	Working in a shared project
	Updating a shared project
	Concurrent parallel development
	Parallel development for different platforms or releases
	Directories containing incomplete changes
	Excessive busy state

	SOAD scopes
	Scope evaluation
	Global exclusions
	Keywords
	Expansion and exclusion rules
	Scope validation
	Predefined scopes
	Release-based scope
	Project hierarchy-based scope

	Triggers
	Using notification triggers
	Format and description of trigger definition files
	Programs
	Messages
	Examples

	Work area
	Updating copy-based work areas
	Updating link-based work areas
	Changing or recreating work areas
	Updating multiple work areas
	Absolute work areas
	Relative work areas
	Elements of a work area path
	Moving a work area
	Changing a database
	Security and visibility issues
	work_area command syntax
	Examples
	Regular expression examples

	Work area conflicts
	Conflict types
	How conflicts are resolved using batch mode
	Conflict resolution - update database from work area batch mode
	Conflict resolution - update work area from database batch mode
	Conflict resolution - manually selecting and resolving conflicts


	Links to all Rational Synergy help
	Notices

