
OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

Store Integration Framework
Data Integration Facility

Programming Guide

GA27-4309-01August 7, 2003

���

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

Store Integration Framework
Data Integration Facility

Programming Guide

GA27-4309-01August 7, 2003

���

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

August 7, 2003

ii Data Integration Facility User’s Guide

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

Contents

Figures . v

Chapter 1. Overview . 1-1
Technologies . 1-1
Data Integration Facility Runtime 1-2
Message formats . 1-4
Configuration of the DIF runtime 1-4

Chapter 2. Configuration and operation 2-1
System requirements . 2-1
Configuring the Data Integration Facility Runtime 2-1

1. Establish the Services to be started by DIF 2-1
2. Associate an Actor with each Service, as required by the Service 2-2
3. Configure detailed options for each Service and Actor 2-2
4. Configure JMS or MQSeries Everyplace connectivity. 2-2

Configuring the Director and Message Profile Ids 2-3
Actors, the Director, and faults 2-4
Logging Configuration . 2-5
Starting the Data Integration Facility Runtime 2-6

Chapter 3. Developing custom extensions 3-1
Writing a Service . 3-1

AbstractService . 3-1
AbstractInteractiveService 3-3
RunnableService . 3-4

Writing an Actor . 3-6
AbstractActor . 3-6
StreamActor . 3-9

Appendix A. Standard Actors & Services A-1
TCP/IP client Service . A-1
4690 pipes client Service . A-1
4690 DiskQ Service. A-2
ParserActor . A-3
TransformerActor. A-3
ParsingTransformerActor . A-3
MqeActor . A-4
JmsActor. A-6
WmqiRetailFormatActor . A-8
Abstract Services . A-9

MQe Listener Service . A-9
JMS Listener Service. A-10

Additional actors . A-10

Appendix B. Message formats B-1
Websphere MQSeries Integrator B-1
JMS Systems . B-1
Websphere MQSeries Everyplace B-1
MOM message body format for SOAP messages B-2
Examples . B-3

Single IXRetail transaction B-3
Multiple IXRetail transactions B-4

August 7, 2003

© Copyright IBM Corp. 2002, 2003 iii

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

Appendix C. Sample scenarios C-1
Enterprise-to-Store request/response using MQe and 4690 keyed kiles C-1

MQe setup . C-1
Keyed file creation . C-2

Store-to-enterprise request/response using SOAP over HTTP C-2
Enterprise-to-store: assured one-way messaging over MQe C-3

Appendix D. DiskQService bundling and pacing D-1
Bundling . D-1
Pacing . D-1

Default settings . D-2
Additional pacing policy properties D-4

Appendix E. 4690 disk queue facility E-1
Data Integration Facility support for DiskQ E-1
Comparing 4690 disk queue and Websphere MQSeries Everyplace E-1
Programming APIs . E-1
Disk queue maintenance and test programs E-2
DQCREATE - Disk Queue Creation Utility E-2
DQPEEK - Display the next message on the queue E-3
DQLIST - Display all of the messages on the Queue E-3
DQREMOVE - Remove the next message from the queue E-4
DQRESET - Resets a queue to an empty state E-4
DQSTATUS - Display the status of a queue E-5

August 7, 2003

iv Data Integration Facility User’s Guide

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

Figures

1-1. Flow of message processing . 1-3
1-2. Flow of message processing with clients. 1-3
1-3. Flow of message processing with Director . 1-4

August 7, 2003

© Copyright IBM Corp. 2002, 2003 v

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

August 7, 2003

vi Data Integration Facility User’s Guide

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

Chapter 1. Overview

The Data Integration Facility (DIF) of the IBM Store Integration Framework consists
of a programmer’s API and a runtime process. These tools enable the following
kinds of messaging:

v Intra-store “point-to-point” communication between applications

– Applications can exchange arbitrary data

– One application can query another and receive a response

v Once-only assured delivery of data from the store to the enterprise

– Send real-time sales and inventory data

– Adjust the rate of data flow to match network performance and capacity

v Respond to queries from remote systems, such as enterprise requests for
store-based data

v Enable legacy terminals and other in-store devices to communicate using XML,
SOAP, or Websphere MQ-based messaging

DIF “opens up the store” by providing Java and non-Java applications (including
CBASIC applications) easy-to-use interfaces for:

v Web services via HTTP

v Message-oriented-middleware (Websphere MQ, MQe, and other JMS-enabled
systems)

v Other applications that use the DI facility

Finally, DIF provides out-of-the-box support for transforming 4690 sales data into
standards-based XML. For example, transaction data (tlogs) can be converted from
native binary format to IXRetail-standard POSLog XML documents. Transactions
can “trickle” in real-time from the store to host systems.

Technologies
The Data Integration Facility of the Store Integration Framework uses many open
source technologies and standards as well as IBM software. The following table
serves as a quick reference for some of these tools:

Technology Use More information

Java Platform for DIF tools http://java.sun.com

Websphere
MQSeries
Everyplace (MQe)

Infrastructure for
non-persistent and
persistent messaging

http://www-3.ibm.com/software/
integration/appconn/wmqe/

Java Message
Service (JMS)

Standard Java API for
messaging; used to
support
MQSeries-based
message transfer

http://java.sun.com/products/jms

SOAP Standard Message
Definition

http://www.w3.org/TR/SOAP

SOAP-SAAJ Standard Java API for
SOAP messaging

http://java.sun.com/xml/saaj/index.html

IXRetail Standard XML
Definitions for Retail

http://www.ixretail.org

August 7, 2003

© Copyright IBM Corp. 2002, 2003 1-1

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

Technology Use More information

XSLT Standard data
mapping technology

http://www.w3.org/TR/xslt

Apache Xerces,
Xalan

Java Tools for XML
parsing and
processing

http://xml.apache.org

Apache Commons
Logging, Log4J

Standard Java API for
logging

http://www.jakarta.org

Data Integration Facility Runtime
The DIF Runtime is a Java-based background application that serves as a
messaging hub for the store. It allows non-Java applications, such as CBASIC or C
applications, to communicate with message systems like Websphere MQ or with
web servers using SOAP messages. Examples include:

v Integrating 4690 sales support/checkout support with Websphere MQ or
MQSeries Everyplace for trickling transaction data in real-time

v Allowing a CBASIC terminal application to send requests to the DIF runtime over
a 4690 pipe, which the DIF runtime converts to XML or SOAP for communication
with an application server

The DIF Runtime also allows external applications to communicate with the store.
For example, host systems can send queries to the store to retrieve store-based
data, such as data in 4690 keyed files.

The DIF Runtime is extendable because it can execute any number of Services and
Actors. Services and Actors are pluggable pieces of Java code that perform specific
tasks. The Data Integration Facility provides default Services and Actors for typical
store-based messaging, including support for 4690 pipe messaging, TCP/IP-based
socket messaging, JMS/MQ/MQe messaging, SOAP messaging, and transaction
log transformation into XML.

Users may write custom services and actors to extend the capabilities of the DIF
runtime.

Service
A Service is a pluggable component that represents an “execution thread”
within the DIF runtime. A Service is always active, waiting to perform work.
A Service usually acts as an entry point for messages that require
processing by DIF. For example, the DIF package contains services for
receiving messages sent over 4690 pipes or TCP/IP sockets. Services also
exist for retrieving messages from messaging systems such as Websphere
MQ. In each of these cases, the Service encapsulates one or more
“execution threads” that perform work.

Actor An Actor is a pluggable component that processes messages; Actors are
akin to “functions”. Every Actor is capable of producing an output message
for any given input message. One or more Actors can be linked together to
perform multiple tasks on a single message. Typically, a Service is
associated with one or more Actors that perform work on a message. This
way, a Service is responsible for managing the execution thread of a
message, but Actors are plugged in as necessary to perform customized
work. This allows DIF customers to modify existing Actors for their own use,
or they may build completely new Actors.

August 7, 2003

1-2 Data Integration Facility User’s Guide

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

Multiple services can be started at once within the DIF Runtime. For services that
interact with external applications via sockets or pipes, the diagram adds one or
more clients:

Finally, in order for Services to pass a message to more than one Actor for
processing, a special Actor called the Director must be used. The Director can
“chain” together multiple Actors to build a more complicated result. The Director
allows Actors to specialize on a particular task so that the Actor can be reused in
other scenarios.

The Director changes the diagram as follows:

Service

DIF Runtime

Actor

Figure 1-1. Flow of message processing

Service

Client

Client

Client
DIF Runtime

Actor

Figure 1-2. Flow of message processing with clients

August 7, 2003

Chapter 1. Overview 1-3

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

The Director routes inbound messages to one or more Actors in a sequence. The
routing is based on a property of the message called the message profile Id. The
profile of the message determines the sequence of Actors that will process it.

The Director is responsible for handing the message to each Actor in the sequence.
When the first Actor returns its response, the response is fed as input to the next
Actor, and so on. The response from the final Actor is returned back to the client
that sent the request. Customers can add their own Actors to perform customized
processing on a message.

Since the Director allows multiple Actors to be combined in a message flow,
powerful processing can be performed on inbound messages prior to delivery to
messaging systems or web services.

Message formats
The DIF Runtime and API expect messages that are either raw byte streams or
SOAP messages. In either case, a message always has a header that contains
zero or more property-value pairs. This allows contextual information to be passed
along with the payload of the message. If SOAP messaging is used, the headers
are MIME headers implemented by the javax.xml.soap.MimeHeaders class;
otherwise, for byte stream messages, the headers are implemented with the DIF
MessageHeaders class.

On output, the standard DIF Actors can write pure byte streams or SOAP
messages. SOAP messages may be written over HTTP or may be embedded within
JMS or Websphere MQe messages.

Configuration of the DIF runtime
The DIF Runtime is configured through a plain-text properties file that contains a
series of property/value pairs. These properties determine:

v which Services are executed

v which Actor is associated with each Service

v the sequence of Actors required to process a given message profile id

v connection parameters for remote JMS queue managers

v local parsing and transformation files for 4690 transaction processing

v target directories for error details and problematic messages

Figure 1-3. Flow of message processing with Director

August 7, 2003

1-4 Data Integration Facility User’s Guide

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

Each Actor and Service may have a collection of options that can be configured.
For the Actors and Services that are packaged with DIF, these options are detailed
in Appendix A, “Standard Actors & Services”.

August 7, 2003

Chapter 1. Overview 1-5

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

August 7, 2003

1-6 Data Integration Facility User’s Guide

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

Chapter 2. Configuration and operation

System requirements
The Java 2 Standard Runtime Environment (J2SE 1.3.x or later) is required.
Memory requirements vary by platform and depend on the Services and Actors
configured for execution.

v IBM 4690OS

– 16MB free memory required for DIF Runtime (no conversion)

– Minimum CPU: to be determined

– Disk space: to be determined

Configuring the Data Integration Facility Runtime
The DIF Runtime is configured through the properties file difsrvc.pro. Users
cannot modify this file. Instead, the custom property values should be added to
difuser.pro.

The following configuration steps should be performed:

1. Establish the Services to be started by DIF.

2. Associate an Actor with each Service, as required by the Service.

3. Configure detailed options for each Service and Actor.

4. Configure JMS or MQSeries Everyplace connectivity, if required.

1. Establish the Services to be started by DIF
Each Service must be given a unique, descriptive name that identifies the Service
throughout the properties file. The name can contain any characters except for
whitespace and is case-sensitive. The Services are declared by the following
property:
container.services=ServiceId1 ServiceId2 ServiceId3 ...

This property establishes the list of Services that are started by the DIF Runtime. It
can appear anywhere in the properties file. Note that the ServiceId names are not
necessarily Java class names; they can be any valid identifier that describes the
Service.

The Java class that implements the Service is given by the uri property, which is
required for any ServiceId listed in container.services and can also appear
anywhere in the properties file:
ServiceId.uri=valid-uri

For example, if a Service called DiskQService was defined in container.services,
the following property would be required:
DiskQService.uri=valid-uri

URI is a Uniform Resource Identifier. Some Services define special URIs that
embed configuration information; most URIs are simply the name of a local Java
class that implements the Service.

To specify that a named Service is implemented by a specific Java class, use the
local: URI notation. For example:
MySpecialService.uri=local:com.mycorp.dif.MySpecialService

August 7, 2003

© Copyright IBM Corp. 2002, 2003 2-1

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

The local: prefix indicates that the specified Java class can be found on the local
CLASSPATH, and that the class implements the DIF Service interface (ie., it is a
valid Service). Customers who write their own Services should place them in a file
called difuser.jar, which is always in the CLASSPATH.

Services that do not use the local: prefix are described in Appendix A, “Standard
Actors & Services”.

2. Associate an Actor with each Service, as required by the Service
Once each Service has been identified and its URI established, the Service should
be associated with a specific Actor. In some cases, Services do not require an
Actor; for those Services, this step can be skipped.

For most Services, however, an Actor must be specified. This is done with the
listener property:
ServiceId.listener=ActorId

Note that the Service’s unique Id must prefix the listener property. Also note that the
value of this property is a unique Actor identifier. This identifier has the same rules
as a Service identifier; any characters except for whitespace are allowed, and the
name is case-sensitive. Likewise, the name is not necessarily a Java classname; it
can be any descriptive name.

However, the ActorId must be associated with a URI somewhere else in the
properties file:
ActorId.uri=valid-uri

Just as with a Service, the Actor’s URI is an identifier that indicates which Java
class to associate with the Actor. This is commonly done with the local: prefix:
MySpecialActor.uri=local:com.mycorp.dif.MySpecialActor

The local: prefix indicates that the specified Java class can be found on the local
CLASSPATH, and that the class implements the DIF Actor interface (ie., it is a valid
Actor). Customers who write their own Actors should place them in a file called
difuser.jar, which is always in the CLASSPATH.

3. Configure detailed options for each Service and Actor
Each Actor and Service can be customized by setting additional properties. See
Appendix A, “Standard Actors & Services” for configuration options for each of the
pre-packaged Services and Actors.

In general, Services and Actors require their configuration properties to be prefixed
with the unique Id assigned to them in the previous steps. For example, if an Actor
requires a property called workDirectory, use the following complete property
name:
ActorId.workDirectory=C:/tmp

4. Configure JMS or MQSeries Everyplace connectivity
Messaging systems are typically configured independently from Services and
Actors. This section describes how to configure the most common messaging
systems: Websphere MQSeries Everyplace and Websphere MQSeries JMS.

August 7, 2003

2-2 Data Integration Facility User’s Guide

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

Websphere MQSeries Everyplace
For MQe-based messaging, the following properties are available or required:

Key Description Valid values

mqe.ini Required. Specifies the
complete path of the INI file
of the MQe queue manager
to use. Only one MQe queue
manager can be used for a
single instance of the DIF
Runtime.

Any valid filepath for the local
filesystem. The default is:

M:/MQe/StoreQM.ini

mqe.interface.uri Optional. Indicates whether
the MQe queue manager
should be executed in Server
or Client mode. By default,
Server mode is chosen.

v server

v client

Websphere MQSeries JMS
For WMQ JMS-based messaging, more than one remote queue manager can be
configured. Each queue manager is defined with a JMS profile, where each profile
has its own unique Id. For Websphere MQ, each profile may have the following
properties; substitute a unique profile Id where indicated:

Key Description Valid values

jms.profileId.hostname Required. Specifies the
remote hostname or IP
address of the machine on
which the queue manager is
running.

Any valid hostname or IP
address

jms.profileId.qmgr Required. Specifies the name
of the remote queue
manager to connect to for
this profile.

Any valid queue manager
name residing on the
machine given by the
hostname property

jms.profileId.channel Required. Specifies the name
of the MQSeries channel
definition to use when
connecting as a client.

Any valid “server connection”
channel established for the
named queue manager

jms.profileId.port Optional. Specifies the port
on which the named queue
manager is being served; if
not given, 1414 is assumed.

Any valid port number

Configuring the Director and Message Profile Ids
The Director is configured like any other Actor. It is conventionally given the unique
name Director and therefore requires the following entry in the configuration
properties file difsrvc.pro:
Director.uri=local:com.ibm.retail.di.services.director.Director

The uri of the Director must be specified as shown.

The Director is capable of passing messages from one Actor to another. This
process is called a message flow. In a message flow, the output from one Actor is
fed to the next Actor as input. The output of the final Actor in the sequence
represents the response returned by the Director.

August 7, 2003

Chapter 2. Configuration and operation 2-3

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

For maximum flexibility, most configured Services should associate themselves with
the Director; for example:
ServiceId.listener=Director

Any messages inbound to the Service (or produced by the Service) will be passed
to the Director for processing. Remember that the Director itself does not perform
any processing; it depends on a sequence of one or more Actors.

The Director defines one or more message flows. Each message flow is uniquely
associated with a specific message profile Id. A message profile Id is a name that is
associated with a type of message. These names are arbitrary and are assigned by
users of DIF. When a message is created, a message profile Id is associated with
that message. This Id is used by the Director to determine which message flow to
run in order to process the message.

A message flow is defined by listing a sequence of Actor names as defined in the
properties file. For example:
Director.MessageProfileId.actors=ActorId-1 ActorId-2 ActorId-3 ... ActorId-n

Each ActorId reference must have a corresponding uri property, as described
previously:
ActorId.uri= valid-uri

Note: Any required properties for the configured Actor must also be defined. These
properties vary by Actor; please see Appendix A, “Standard Actors &
Services” for details.

When the Director receives a message, it consults the configuration properties for
the actors list corresponding to the message profile Id of the message. If the actors
list is not defined, the message processing is aborted with a fault. (See “Actors, the
Director, and faults”.)

Processing proceeds as follows:

1. The message is handed to ActorId-1.

2. If no fault occurs, the output from ActorId-1 is passed to ActorId-2.

3. This process continues until ActorId-n.

4. The output of ActorId-n is returned by the Director.

Actors, the Director, and faults
If an Actor experiences an error while processing a message, it generates a fault. A
fault describes the error that occurred and is attached to the affected message.

When a fault occurs, processing of the message normally stops. If a message is
being processed under the guidance of the Director, no further Actors are called.
The message and its fault are returned immediately. The calling Service or client
can interrogate the message for detailed fault information.

Additionally, the Director can write fault information to disk into a special faults
directory. This feature must be enabled by adding properties to difuser.pro:
Director.faults.record=true | false
Director.faults.directory= valid-local-directory

August 7, 2003

2-4 Data Integration Facility User’s Guide

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

When enabled, the Director will write three files for each faulty message. The files
have the following extensions:

.req Contains the unaltered content of the message body

.hdr Contains all message header properties from the message

.err Contains the complete error text and stack trace

The base names of the three files are identical; the extensions distinguish the
content. The base name is the message profile ID of the message followed by a
unique number. (The unique number is the assurance ID of the message, if
available; otherwise, a unique number is generated). The filename has this format:
{MessageProfileId}{AssuranceId} or {MessageProfileId}NA{UniqueId}

Note: If files are written to the C:\ drive of a 4690 machine, the MessageProfileId is
dropped and the numeric portion of the filename is truncated to eight digits if
necessary.

Optionally, users may specify that the Director should ignore faults. When the
Director ignores faults, it stops processing the current message. The message is
immediately returned. However, it will not include fault information. The message
will appear to the calling Service as if no fault occurred.

When “ignore faults” is enabled, fault information will still be written to disk by the
Director as long as Director.faults.record is true. This feature can be useful for
testing; it allows many messages to flow through the system, with all faults
optionally recorded but not allowing those faults to suspend processing. To ignore
faults, use the following property of the configuration file:
Director.faults.ignore=true | false

Logging Configuration
Logging is provided by the Log4J facility. This is configured via the DIFLOG4J.PRO
file. The top of this file lists the level of logging and the desired outputs:
log4j.rootLogger=[debug | info] {, stdout} {, file}

Choose one of debug or info to determine the level of logging. Debug mode should
be used sparingly, as it produces a tremendous amount of output and significantly
slows processing.

Any combination of outputs can be specified; by default, two options are offered:
stdout and file. The stdout option forces all logging output to the screen; the file
option writes all logging output to a local file.

Note: If stdout is specified and the DIF Runtime is running as a background task,
no output is seen on the screen.

Logging output can be customized by setting the following properties, all of which
must be prefixed by log4j.appender:

Key Description Valid values

stdout.layout.
ConversionPattern

Required. Specifies the
format of log events written
to the screen.

*

August 7, 2003

Chapter 2. Configuration and operation 2-5

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

Key Description Valid values

file.File Required. Specifies the
complete path of the local
logging file.

Any valid local filename

file.MaxFileSize Required. Determines the
maximum size, in kilobytes,
of the logging file. The file will
wrap itself or spill into
another file if this size is
exceeded.

Example: 100KB
Note: “KB” must be used as
a suffix

file.MaxBackupIndex Required. Indicates the total
number of log files to be
saved other than the primary
log file. When the primary log
file is full, it will be backed up
if this value is greater than
zero. The backup file will
have the same name as the
original, with an integer suffix
appended.

Non-negative integer

file.ConversionPattern Required. Specifies the
format of log events written
to the screen.

*

* For available tokens for this pattern, refer to:
http://jakarta.apache.org/log4j/docs/api/org/apache/log4j/PatternLayout.html

Starting the Data Integration Facility Runtime
Start the task by executing the \adx_ipgm\difsrvc.bat file.

Note: The DIF Runtime can be run as a background task on a 4690 controller.
Specify the complete path to \adx_ipgm\difsrvc.bat as the Program Name,
and do not list any parameters.

August 7, 2003

2-6 Data Integration Facility User’s Guide

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

Chapter 3. Developing custom extensions

Note: This chapter assumes that the reader is an experienced Java programmer.

Users can create custom Actors and Services for use with the DIF Runtime. These
Actors and Services are specified in difuser.pro by associating the uri property
with a custom Java class.

For example:
MySpecialService.uri=local:com.mycorp.dif.MySpecialService
MySpecialActor.uri=local:com.mycorp.dif.MySpecialActor

When providing a custom Actor or Service, the Java class must implement the
corresponding DIF Java interface:

v An Actor must implement the com.ibm.retail.di.xml.messaging.service.Actor
interface.

v A Service must implement the com.ibm.retail.di.net.service.Service
interface.

Writing a Service
A DIF Service must define the following methods, which are described in detailed in
the javadoc provided with the product.

The com.ibm.retail.di.net.service.Service interface combines these interfaces:

v com.ibm.retail.di.naming.Named

v com.ibm.retail.di.net.service.Initializable

v com.ibm.retail.di.net.service.Startable

The required methods are:
public void init(Context context) throws RetailException;
public void close();
public boolean isInitialized();
public boolean isClosed();

public void start() throws RetailException;
public void stop();
public boolean isStopping();
public boolean isActive();

public String getName();
public void setName(String aName);

The implementation for these methods will be similar from one Service to another,
so the DIF API provides a common, tested implementation in class
com.ibm.retail.di.net.service.AbstractService.

AbstractService
(com.ibm.retail.di.net.service.AbstractService)

AbstractService provides implementations for the lifecycle methods required by the
Service interface. An AbstractService has these features:

v It is not associated with an Actor by default.

v It does not read any Context keys by default.

August 7, 2003

© Copyright IBM Corp. 2002, 2003 3-1

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

v It does not start any internal threads by default.

v It is the most trivial starting point for a user-defined Service.

Subclasses need only add their own specific background function, and must define
these abstract methods, all of which must return immediately:

doInit()
Reads configuration keys, determines viability of the service

doStart()
Starts any background processing of the service

doStop()
Stops any background processing of the service

Notes:

1. Do not perform long-running operations within any of the above methods. These
methods are called on the main DIF Runtime thread and any blockage of this
thread will affect all Services.

2. If any of these methods throws an exception, the DIF Runtime will stop all
Services and will terminate.

The following example is a MessageService that simply outputs a message to
standard output. The service remains in the started/active state until asked to stop.
The message is a required key retrieved from the Context (which is normally
represented by DIFUSER.PRO).
package examples.services;

import com.ibm.retail.di.net.service.AbstractService;
import com.ibm.retail.di.naming.Context;

public class MessageService extends AbstractService
{

private String message;

protected void doInit() throws Exception
{

message = getContextString ("message", Context.REQUIRED);
}

protected void doStart() throws Exception
{

System.out.println (message);
}

protected void doStop() throws Exception
{

; // do nothing
}

}

And here is a sample configuration for MessageService as would appear in the
services properties file:
container.services=MyMessageService

MyMessageService.uri=local:examples.services.MessageService
MyMessageService.message=Hello, world!

In general, when extending AbstractService, the following techniques should be
applied:

August 7, 2003

3-2 Data Integration Facility User’s Guide

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

v Verify dependencies and retrieve required properties from the Context in
doInit(), throwing an exception if necessary.

v Since doStart() must return immediately, any background processing performed
by the Service must be done on its own Thread; such a Thread should be started
within doStart().

v In doStop(), be sure to stop any spawned threads and interrupt any blocking I/O.

The AbstractService class provides a collection of utility methods for extracting
values from the Context: getContextBoolean(), getContextInt(),
getContextLong(), and getContextString(). Some of these methods throw an
exception automatically if the requested key is absent but is declared a required
key.

AbstractInteractiveService
(com.ibm.retail.di.net.service.interactive.AbstractInteractiveService)

An interactive Service is a Service that has an associated Actor (called a listener in
many of the API methods) that performs processing on behalf of the Service.
AbstractInteractiveService extends AbstractService.

An AbstractInteractiveService has the following features:

v It is associated with an Actor by default.

v It retrieves its Actor from the Context by looking for a key called
InteractiveListener.INTERACTIVE_LISTENER_CONTEXT_KEY, which must be
associated with an instance of the InteractiveListener interface. (All Actors are
instances of this interface.) By default, the DIF Runtime automatically instantiates
the Actor associated with this Service and sets this key in the Context, so
developers do not normally need to refer to this key.

v It does not start any internal threads by default.

v It establishes a SOAP MessageFactory so that the Service may generate SOAP
messages if necessary. The factory can be retrieved by calling
getMessageFactory().

v It is the most trivial starting point for a user-defined Service that must be
associated with an Actor.

Here is a variation of the MessageService example. In this version, a SOAPMessage
is generated and passed to the listener/Actor associated with the Service.
package examples.services;

import com.ibm.retail.di.net.service.AbstractInteractiveService;
import com.ibm.retail.di.naming.Context;
import com.ibm.retail.di.xml.messaging.soap.SoapUtil;

public class InteractiveMessageService extends AbstractInteractiveService
{

private String text;
private String msgProfId;

protected void doInit() throws Exception
{

super.doInit();
text = getContextString ("text", Context.REQUIRED);

aMsgProfId = getContextString ("mpid", Context.REQUIRED);
}

protected void doStart() throws Exception
{

August 7, 2003

Chapter 3. Developing custom extensions 3-3

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

SOAPMessage msg = SoapUtil.createSoapMessage (
getMessageFactory(),
msgProfId,
text);

doInteraction (msg); // pass to Actor (once, then done)
}

protected void doStop() throws Exception
{

; // do nothing
}

}

And here is a sample configuration for InteractiveMessageService as would appear
in the services properties file:
container.services=MyMessageService

MyMessageService.uri=local:examples.services.InteractiveMessageService
MyMessageService.text=Hello, world!
MyMessageService.mpid=HelloMessageType
MyMessageService.listener=MyFavoriteActor

Sample Actor Configuration
MyFavoriteActor.uri=local:examples.actors.MyFavoriteActor

Note that this service calls its Actor once, passing the generated SOAP message
whose attachment is a piece of text retrieved from the Context. The Actor is only
called once because the Service is started once by the DIF Runtime.

In general, when extending AbstractInteractiveService, the following techniques
should be applied:

v If overriding doInit(), care must be taken to first call super.doInit() in order to
preserve the base functionality of this class.

v To indicate that an associated Actor is not required for this service, override
isListenerRequired() and return false.

v To create a specialized SOAP message factory, override
createMessageFactory().

v To ask the base class to pass a message to the associated Actor, call
doInteraction().

RunnableService
(com.ibm.retail.di.net.service.interactive.RunnableService)

A runnable Service is a Service that has an associated Actor (called a listener in
many of the API methods) and also has a background thread that performs a task.
Often, the background thread generates or receives messages and passes those
messages to the associated Actor. RunnableService extends
AbstractInteractiveService.

A RunnableService has these features:

v It is associated with an Actor by default.

v It starts a single “work” thread by default, and subclasses must only define the
run() method of the thread.

v It establishes a SOAP MessageFactory so that the Service may generate SOAP
messages if necessary. The factory can be retrieved by calling
getMessageFactory().

August 7, 2003

3-4 Data Integration Facility User’s Guide

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

v It is a good starting point for a user-defined Service that would like to perform
work on a background thread, optionally calling an associated Actor.

Here is a final variation of the MessageService example. In this version, a
SOAPMessage is generated and passed to the listener/Actor associated with the
Service. The message is passed at a regular interval defined by the Context.
package examples.services;

import com.ibm.retail.di.net.service.AbstractService;
import com.ibm.retail.di.naming.Context;
import com.ibm.retail.di.xml.messaging.soap.SoapUtil;

public class InteractiveMessageService extends RunnableService
{

private String text;
private String msgProfId;
private int interval;

protected void doInit() throws Exception
{

super.doInit();
text = getContextString ("text", Context.REQUIRED);

aMsgProfId = getContextString ("mpid", Context.REQUIRED);
interval = getContextInt ("interval", 5000);

}

public void run() throws Exception
{

while (!isStopping()) {

SOAPMessage msg = SoapUtil.createSoapMessage (
getMessageFactory(),
msgProfId,
text);

doInteraction (msg); // pass to Actor

pause (interval);
}

} // service terminates here, DIF Runtime also terminates

// note: the base class provides implementations of
// doStart() and doStop(), so we do not need to provide
// those here

}

Note that the service retrieves an additional item from the Context: an interval
representing the time (in milliseconds) to wait between sending each new message
object. A default of 5000 is established if the key does not exist in the Context.

The base RunnableService class defines doStart() and doStop(), so these do not
need to be implemented unless additional function is required. The base class takes
care of setting up the thread and destroying it when the service stops.

In general, when extending RunnableService, the following techniques should be
applied:

v If overriding doInit(), doStart(), or doStop(), care must be taken to first call the
super implementation in order to preserve the base functionality of this class.
Failure to do this will cause the thread to not be started or stopped correctly!

v When the run() method ends, the service is automatically stopped, which forces
the DIF Runtime to terminate. Do not allow run() to terminate unless there is a
problem with the service, or unless isStopping() is true.

August 7, 2003

Chapter 3. Developing custom extensions 3-5

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

Note: Failure to consult isStopping() in a run() loop will likely result in
improper shutdown or hangs of the DIF Runtime.

v Do not perform unlimited blocking operations within run(). Always specify a
timeout on a blocking operation so that a prompt shutdown of the service can be
accomplished.

v To pause within run(), use the pause() method. It automatically interrupts itself if
a stop request is received.

v If necessary, the subclass can create the work Thread by overriding
createThread().

v If an associated Actor is not required by a subclass of RunnableService, override
isListenerRequired() to return false.

Writing an Actor
A DIF Actor must define the following methods, which are described in detailed in
the javadoc provided with the product.

The com.ibm.retail.di.xml.messaging.Actor interface combines these interfaces:

v com.ibm.retail.di.xml.Named

v com.ibm.retail.di.net.service.Initializable

v com.ibm.retail.di.net.service.interactive.InteractiveListener

v com.ibm.retail.di.xml.messaging.soap.ReqRespListener

The required methods are:
public void init(Context context) throws RetailException;
public void close();
public boolean isInitialized();
public boolean isClosed();

public String getName();
public void setName(String aName);

public Object onMessage(MessageHeaders theRequestHeaders,
Object theRequest,
MessageHeaders theResponseHeaders);

public SOAPMessage onMessage(SOAPMessage aMessage);

The implementation for most of these methods will be similar from one Actor to
another, so the DIF API provides a common, tested implementation in class
com.ibm.retail.di.xml.messaging.service.AbstractActor.

AbstractActor
(com.ibm.retail.di.xml.messaging.AbstractActor)

AbstractActor provides implementations for the lifecycle methods required by the
Actor interface and is able to distinguish between non-SOAP and SOAP messages.
By convention, an Actor must know how to cope with SOAP messages; it may
optionally accept non-SOAP messages. For more details, see “StreamActor” on
page 3-9.

An AbstractActor has these features:

v It rejects non-SOAP messages by default, generating a fault message.

v It automatically retrieves a SOAP MessageFactory from the associated Context,
or creates a new MessageFactory.

August 7, 2003

3-6 Data Integration Facility User’s Guide

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

v It provides support for user-defined message header properties.

v It provides support for message “breakpointing”, which is a mechanism for halting
the flow of a message through a Director’s message flow.

v It provides convenient methods for retrieving Context keys and for generating
fault messages.

The following Actor subclasses AbstractActor and generates a text message
response regardless of the input to the Actor:
package examples.actors;

import javax.xml.soap.SOAPException;
import javax.xml.soap.SOAPMessage;

import com.ibm.retail.di.naming.Context;
import com.ibm.retail.di.xml.messaging.service.AbstractActor;
import com.ibm.retail.di.xml.messaging.soap.SoapUtil;

public class TextMessageActor extends AbstractActor
{

private String text;

protected void doInit() throws Exception
{

super.doInit();
text = getContextString ("text", Context.REQUIRED);

}

public SOAPMessage onMessage(SOAPMessage aMessage)
{

SOAPMessage response = null;

try {
response = SoapUtil.createSoapMessage(
getMessageFactory(),
null, // no mpid is set
text);

}
catch (SOAPException soapE) {
response = createSoapFaultMessage (soapE);

}

return response;
}

}

This Actor always returns the same response message. The response is a SOAP
message that has a single attachment. The attachment is a text message whose
content is retrieved from the Context. Note that onMessage() cannot throw an
exception; it must return a response. Therefore, exceptions must be caught and
handled; a convenience method called createSoapFaultMessage() can encapsulate
the exception and report it as the response.

If a non-SOAP message is passed to this Actor, an exception is thrown
automatically by the superclass. This exception is then encapsulated into
MessageHeaders of the response and reported back to the caller, similar to the
SOAP fault message generated if the input is a SOAP message.

Note: The “fault” concept is defined by the SOAP specification. As such, when an
error occurs while processing a SOAP message, a special SOAP fault object
can be returned as the result. For non-SOAP messages, DIF attempts to
provide a similar mechanism. It does this by defining header properties

August 7, 2003

Chapter 3. Developing custom extensions 3-7

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

corresponding to a fault count and fault message. If an error occurs while
processing a non-SOAP message within DIF, these fault properties are set
on the response. The message body of the response is either the same as
the request, or null.

AbstractActor provides a method for implementing non-SOAP message responses:
processNonSoapRequest(). Override this method to provide a response to
non-SOAP messages; the default implementation simply throws an exception.
Consider this modified TextMessageActor:
package examples.actors;

import javax.xml.soap.SOAPException;
import javax.xml.soap.SOAPMessage;

import com.ibm.retail.di.naming.Context;
import com.ibm.retail.di.net.protocol.MessageHeaders;
import com.ibm.retail.di.xml.messaging.service.AbstractActor;
import com.ibm.retail.di.xml.messaging.soap.SoapUtil;

public class TextMessageActor extends AbstractActor
{

private String text;

protected void doInit() throws Exception
{

super.doInit();
text = getContextString ("text", Context.REQUIRED);

}

protected java.lang.Object processNonSoapRequest(
MessageHeaders theRequestHeaders,
java.lang.Object theRequest,
MessageHeaders theResponseHeaders)
throws Exception

{
byte[] b = text.getBytes();
return b;

}

public SOAPMessage onMessage(SOAPMessage aMessage)
{

SOAPMessage response = null;

try {
response = SoapUtil.createSoapMessage(

getMessageFactory(),
null, // no mpid is set
text);

}
catch (SOAPException soapE) {

response = createSoapFaultMessage (soapE);
}

return response;
}

}

Suppose that a subclass of AbstractActor is used in a Director’s message flow. In
some cases, an Actor may wish to filter inbound messages; for example, if the
inbound message has extraneous content or null content, or if the Actor has
determined that the message should not be processed for pacing or performance
reasons. In these cases, the Actor would like to return a response and indicate to

August 7, 2003

3-8 Data Integration Facility User’s Guide

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

the Director that no additional Actors should be called for the current message flow.
This action (called “breakpointing”) is not considered a failure, but rather is treated
as a successful return.

To breakpoint a message, call one of the following AbstractActor methods:
protected void setMessageBreakpoint(MessageHeaders theHeaders)
protected void setMessageBreakpoint(SOAPMessage aSoapMessage)

Use the first signature for non-SOAP messages; pass the response message
headers as an argument. Use the second signature for SOAP messages; pass the
SOAP response as an argument. The Director will return the response of this Actor
directly to the caller, ignoring any successive Actors in the flow.

To summarize, the following results are possible when calling a subclass of
AbstractActor:

v onMessage() or processNonSoapRequest() successfully return a result

v onMessage() returns a SOAP fault message, or processNonSoapRequest() throws
an exception, which results in fault headers being set: the message flow is
aborted

v onMessage() or processNonSoapRequest() calls setMessageBreakpoint(): the
associated response is returned as-is, ending the message flow

Note:

Whenever an Actor is involved in a Director’s message flow, the non-SOAP
response properties returned by the current Actor will serve as the inbound
request properties for the next Actor in the flow. This means that any of the
inbound request properties for the first Actor in the flow will be lost unless
the Actor explicitly copies those properties into its response message
headers. For example, suppose Actor A is the first actor in a flow, and is
followed by Actor B. Actor B depends on the presence of a request header
property called MessageFormat. If a request is inbound to Actor A, and the
request contains the MessageFormat request header property, this property
will be lost unless Actor A explicitly copies it to the response headers. The
response headers are used by the Director as input to Actor B. Hence, Actor
B will not see the MessageFormat header property unless Actor A preserves
the property. There are two exceptions to this rule:

v The MessageProfileId and AssuranceId properties are automatically
copied by the Director.

v Any property set using the AbstractActor’s setUserProperty() will be
copied automatically by the Director.

In general, when extending AbstractActor, the following techniques should be
applied:

v If overriding doInit() or doClose(), care must be taken to first call the super
implementation in order to preserve the base behavior.

v Handle non-SOAP requests by overriding processNonSoapRequest(); or use
StreamActor (see “StreamActor”).

v To ensure that a header property is passed from the current Actor to the next
Actor, copy the property to the response message headers; or, set the property
on the response headers using setUserProperty().

StreamActor
(com.ibm.retail.di.xml.messaging.StreamActor)

August 7, 2003

Chapter 3. Developing custom extensions 3-9

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

StreamActor extends AbstractActor and therefore inherits all of its capabilities.
However, a StreamActor specializes in processing a raw stream of data rather than
a SOAP message. As such, it is a good choice for non-SOAP input messages and
supports them easily. Likewise, inbound SOAP messages can be processed as
streams, but subclasses must determine how to convert the SOAP message or its
parts to a stream for processing. All stream processing is done by a single method,
regardless of the type of inbound message: doInteraction().

When writing an Actor, extend from StreamActor if:

v the actor must operate on one or more binary SOAP attachments

v the actor must operate on one or more SOAP body elements after they have
been converted to raw bytes

v the actor processes non-SOAP messages from a CBASIC or C client

v the actor produces a byte stream as its response

A StreamActor has these features:

v It passes non-SOAP messages directly to doInteraction() for processing.

v For SOAP messages, it provides two mechanisms for converting SOAP to a
stream and also allows subclasses to replace this function (see “SOAP
messages” on page 3-11).

v It provides an easy-to-use infrastructure for processing only the attachments of a
SOAP message.

When developing a subclass of StreamActor, determine whether it must handle
SOAP messages; if not, the implementation can be as trivial as the following
example which merely “echoes” its input:
package examples.actors;

import javax.xml.soap.SOAPException;
import javax.xml.soap.SOAPMessage;

import com.ibm.retail.di.naming.Context;
import com.ibm.retail.di.net.protocol.MessageHeaders;
import com.ibm.retail.di.xml.messaging.service.StreamActor;
import com.ibm.retail.di.xml.messaging.soap.SoapUtil;

import com.ibm.retail.di.util.ByteTools;

public class EchoActor extends StreamActor
{

protected byte[] doInteraction(
String aProfileId,

MessageHeaders theRequestHeaders,
InputStream theContent,
MessageHeaders theResponseHeaders)
throws Exception

{
byte[] b = ByteTools.getStreamAsBytes (theContent);
return b;

}

public SOAPMessage onMessage(SOAPMessage aMessage)
{

Exception e = new RetailException (
"SOAP messages not supported!");

SOAPMessage response = createSoapFaultMessage (e);

August 7, 2003

3-10 Data Integration Facility User’s Guide

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

return response;
}

}

Note the doInteraction() method. This method handles all stream processing for
the Actor, regardless of the type of the inbound message. In the example above, it
simply reads the inbound stream completely, converts it to a byte array, and returns
the result. (The ByteTools class provides some useful byte manipulation functions,
such as getStreamAsBytes().)

SOAP messages
Suppose that the Actor must support SOAP messages as well. The default
StreamActor handles SOAP messages in this way:

v If the SOAP message has no attachments, a MIME property called soap.content
is retrieved from the inbound message.

– If not defined, or if its value is “soap.default”, the entire SOAP message will
be serialized into a stream using ByteTools.getObjectAsStream(). This
stream is passed to doInteraction().

– If its value starts with soap.body:ElementName, an element of the SOAP
message body having the name ElementName is written to a stream; if no
such element exists, a fault is generated. This stream is passed to
doInteraction().

v If the SOAP message has at least one attachment, each attachment is
processed independently via the following sequence:

1. shouldProcessAttachment() returns a Boolean indicating whether the
attachment should be processed.

2. If true, the attachment is passed to getAttachmentContentAsStream(), which
returns a stream representing the attachment content.

3. The stream is passed to doInteraction() to generate a response; all MIME
headers are copied to the request headers passed to the method.

4. The value returned by doInteraction() is passed to
applyAttachmentResponse(), which by default adds the resulting byte array as
a binary attachment on the SOAP response message. All response properties
from doInteraction() are copied to the MIME headers of the resulting
attachment.

Note: If doInteraction() sets a message breakpoint for all attachments, the entire
SOAP request will be breakpointed.

The StreamActor provides a means to override all of this behavior for SOAP
messages. For SOAP messages without attachments, override processSoapBody().
For SOAP messages with attachments, override processSoapAttachments().

In general, when extending StreamActor, the following techniques should be
applied:

v If overriding doInit() or doClose(), care must be taken to first call the super
implementation to ensure that the base behavior is preserved.

v Note that passing a SOAP message with one or more binary attachments to the
Actor is roughly equivalent to passing those attachments as individual non-SOAP
messages, collecting the results, and adding the results as attachments to a new
SOAP message.

v By default, attachments are converted to input streams by calling
ByteTools.getObjectAsStream(). This convenience method will fail unless the

August 7, 2003

Chapter 3. Developing custom extensions 3-11

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

object is a byte array, stream, String, or SOAPMessage; therefore, if a custom
StreamActor must handle special Object types as attachments, the actor must
override getAttachmentContentAsStream() to correctly convert each attachment
to a stream.

v To change the way MIME headers are set on the SOAP response message with
attachments, override applyAttachmentResponse().

v To selectively filter specific attachments during processing of a SOAP message,
override shouldProcessAttachment() and return false; or, in doInteraction(),
call setMessageBreakpoint() on the response headers of the appropriate inbound
attachment.

August 7, 2003

3-12 Data Integration Facility User’s Guide

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

Appendix A. Standard Actors & Services

This appendix lists all Actors and Services pre-packaged with the Data Integration
Facility and describes the configuration properties associated with each. By default,
the configuration properties file is found in the config/ directory and is called
services.complete.properties. All of the keys listed in the following tables must be
prefixed with the unique name of the Service or Actor, unless noted. For example,
uri becomes ServiceId.uri, for a Service whose unique name is ServiceId.

TCP/IP client Service
(com.ibm.retail.di.service.soeps.SoepsTcpipService)

Listens to a local port for inbound requests from clients which communicate via the
SOEPS protocol. Inbound request messages are passed to the associated Actor for
processing. The response is passed back to the client through the established
TCP/IP socket connection, which is then closed.

Key Description Valid values

uri soeps{:port}

By default, listens on port
6696; or, specify another
port. For example,
soeps:9120.

Any available port

listener Required. Specifies the
ActorId of the actor that will
process inbound requests.
Usually this is the Director.

Any configured Actor

4690 pipes client Service
(com.ibm.retail.di.service.soep.SoepPipeService)

Listens to a local pipe for inbound requests from clients which communicate via the
SOEP protocol. Inbound request messages are passed to the associated Actor for
processing. The response is passed back to the client through a pipe named in the
request; the response pipe is then closed.

August 7, 2003

© Copyright IBM Corp. 2002, 2003 A-1

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

Key Description Valid values

uri soep{:prs-pipe} |
soep{:named-pipe

where prs-pipe is a single
alpha character representing
an available, valid PRS pipe
on the local machine, and
named-pipe is a valid named
pipe on the local machine
(which must be a controller).
The named-pipe has the
form: pi:name where name is
eight characters or less.

If only soep is specified, the
service listens to the local
Controller named pipe
pi:server.

Any valid local PRS or
named pipe

listener Required. Specifies the
ActorId of the actor that will
process inbound requests.
Usually this is the Director.

Any configured Actor

4690 DiskQ Service
(com.ibm.retail.di.service.diskq.PosDiskQService)

Reads 4690 transactions from the 4690 disk queue, which must be defined with the
logical name DIFQUEUE. Transactions must be prefixed with the DIF header (defined
in the appendix). Relevant data from the header is copied to the message header
properties and the header itself is removed from the data. The resulting message is
passed to the associated Actor.

Key Description Valid values

uri local:com.ibm.retail.di.
service.diskq.PosDiskQService

Fixed

listener Required. Specifies the
ActorId of the actor that will
process inbound requests.
Usually this is the Director.

Any configured Actor

message-profile-id Required. Specifies the
message profile Id to
associate with all messages
generated by this service.

Any unique Id

* Optional pacing/bundling
settings

The DiskQService offers the ability to bundle multiple diskq messages per outgoing
message, and can regulate the flow of messages using a built-in or custom pacing
algorithm. Refer to Appendix D, “DiskQService bundling and pacing” for details.

August 7, 2003

A-2 Data Integration Facility User’s Guide

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

ParserActor
(com.ibm.retail.di.transform.actor.ParserActor)

Parses the inbound request, which must be either a raw 4690 transaction or a
SOAP message whose attachments are each 4690 transactions. The resulting
message is an XML document whose structure is a one-to-one mapping of the
records and fields in the input transaction. This XML document can be used as
input to the TransformerActor to perform XSLT mapping to standard XML formats.

Key Description Valid values

ParserActor.parseFormatFile Specifies the complete path
and filename of the XML
document that defines the
inbound binary format.

The following specifications
are available, corresponding
to SA, GSA, and ACE
applications:

saspecs.xml
gsaspecs.xml
acespecs.xml

Any XML document adhering
to tlogschm.xsd

TransformerActor
(com.ibm.retail.di.transform.actor.TransformerActor)

Translates the inbound document by running an XSLT map. The input can be a
single piece of data or a multi-attachment SOAP message. Typically this actor is
used to transform a parsed retail transaction to an IXRetail POSLog document.
Note: Requires 32MB free RAM for GSA and SA, or 64MB free RAM for ACE.

Key Description Valid values

TransformerActor.
transformationFileName

Specifies the complete path
and filename of the XSL
mapping file to execute on
the parsed transaction data.

The following specifications
are available, corresponding
to SA/ACE and GSA
applications:

poslgace.xsl
poslggsa.xsl

Any valid XSL document
whose input is a parsed
transaction

ParsingTransformerActor
(com.ibm.retail.di.transform.actor.ParsingTransformerActor)

This actor is a combination of ParserActor and TransformerActor. Using
ParsingTransformerActor provides better performance than using ParserActor and
TransformerActor individually.

August 7, 2003

Appendix A. Standard Actors & Services A-3

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

Key Description Valid values

ParsingTransformerActor.
parseFormatFile

Specifies the complete path
and filename of the XML
document that defines the
inbound binary format.

The following specifications
are available, corresponding
to SA, GSA, and ACE
applications:

saspecs.xml
gsaspecs.xml
acespecs.xml

Any XML document adhering
to tlogschm.xsd

ParsingTransformerActor.
transformationFileName

Specifies the complete path
and filename of the XSL
mapping file to execute on
the parsed transaction data.

The following specifications
are available, corresponding
to SA/ACE and GSA
applications:

poslgace.xsl
poslggsa.xsl

Any valid XSL document
whose input is a parsed
transaction

MqeActor
(com.ibm.retail.di.service.mom.mqe.MqeActor)

Passes the inbound message to the local MQe queue manager for optional routing
to a remote queue, such as an MQSeries queue. The actor supports oneway
assured messages or simple request/reply messages. In either case, the target
queue manager and queue must be specified in the message’s header properties or
in the actor’s configuration. All messages are MQSeries-compatible.

Key Description Valid values

mpid.mom.target.qmgr Required for each unique
message profile Id (mpid).

Specifies the target queue
manager for all messages
having the given message
profile Id. The target queue
manager must be defined on
the local MQe queue
manager.

Any remote queue manager
defined as a Connection on
the local queue manager
instance.

August 7, 2003

A-4 Data Integration Facility User’s Guide

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

Key Description Valid values

mpid.mom.target.queue Required for each unique
message profile Id (mpid).

Specifies the target queue for
all messages having the
given profile Id. The target
queue must be defined on
the local MQe queue
manager and must belong to
the remote queue manager
named in
mpid.mom.target.qmgr.

Any remote queue
associated with the given
target queue manager, as
configured on the local MQe
queue manager instance.

mpid.mom.interaction.uri Required for each unique
message profile Id (mpid).

Specifies the style of
messaging to use for all
messages having the given
profile Id. The current options
are:

oneway
assured oneway
messaging

reqresp
request/response
messaging
(unassured)

If oneway is specified, the
message must also define an
assurance Id, which is a
unique value associated
exclusively with the message
and used to ensure that the
message is put only once. If
reqresp is specified, the
mom.replyto.qmgr and
mom.replyto.queue keys
must also be set in
configuration or on the
message.

One of these:

v oneway

v reqresp

mpid.mom.replyto.qmgr Required for each unique
message profile Id (mpid).

Specifies the queue manager
that owns the associated
reply queue for all messages
having the given message
profile Id. The replyto queue
manager must be defined on
the local MQe queue
manager.

Any local or remote queue
manager defined on the local
queue manager instance.

August 7, 2003

Appendix A. Standard Actors & Services A-5

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

Key Description Valid values

mpid.mom.replyto.queue Required for each unique
message profile Id (mpid).

Specifies the queue on which
replies will be placed for
reqresp interactions for all
messages having the given
message profile Id. The
replyto queue must be
defined on the local MQe
queue manager.

Any local or remote queue
associated with the given
replyto queue manager, as
configured on the local MQe
queue manager instance.

mpid.state.uri Optional for each unique
message profile Id (mpid).

Specifies the resource that
stores the persistent state
information for assured
messages having the given
message profile Id.

By default, the state is stored
in a local file called:

\adx_idt4\diftlog.mqe

file://complete-filepath

For example:

file://C:/adx_idt4/
diftlog.mqe

To distribute to alternate
controller:

posfile://C:/adx_idt4/
diftlog.mqe

mpid.state.backup.uri Optional for each unique
message profile ID. Specifies
the backup resource to
maintain for persistent state
information.

By default, a backup is not
created. A backup state
offers the most protection
against failures, including
corruption of the primary
state.

file://complete-filepath

For example:

file://C:/adx_idt4/
diftlog.mqe

To distribute to alternate
controller:

posfile://C:/adx_idt4/
diftlog.mqe

JmsActor
(com.ibm.retail.di.service.mom.jms.JmsActor)

Passes the inbound message to the JMS queue manager associated with this actor.
The actor supports one-way assured messages or simple request/reply messages.
In either case, the target queue manager and queue must be specified in the
message’s header properties or in the actor’s configuration. Each instance of
JmsActor is associated with a JMS profile, which defines the associated queue
manager. See Chapter 2, “Configuration and operation” for instructions for
configuring JMS profiles.

Note: For assured one-way messaging, a DI synchronization queue must be
created on the associated queue manager. The queue name must have the
form DI.SYNCQ.mpid, where mpid is a message profile ID that requires
assured messaging. One of these queues must be created for every
message profile ID that uses assured one-way messaging.

August 7, 2003

A-6 Data Integration Facility User’s Guide

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

Key Description Valid values

mpid.mom.target.qmgr Required for each unique
message profile Id (mpid).

Specifies the target queue
manager for all messages
having the given message
profile Id. This is usually the
queue manager associated
with the Actor.

Any queue manager
recognized by the associated
queue manager.

mpid.mom.target.queue Required for each unique
message profile Id (mpid).

Any queue recognized by the
associated queue manager.

mpid.mom.interaction.uri Required for each unique
message profile Id (mpid).

Specifies the style of
messaging to use for all
messages having the given
profile Id. The current options
are:

oneway
assured oneway
messaging to be
used for any style of
asynchronous puts,
including remote
MQe or MQSeries
target queues

reqresp
request/response
messaging
(unassured)

One of these:

v oneway

v reqresp

mpid.mom.replyto.qmgr Required for each unique
message profile Id (mpid).

Specifies the queue manager
that owns the associated
reply queue for all messages
having the given message
profile Id. This is usually the
associated queue manager.

Any queue manager
recognized by the associated
queue manager.

mpid.mom.replyto.queue Required for each unique
message profile Id (mpid).

Specifies the queue on which
replies will be placed for
reqresp interactions for all
messages having the given
message profile Id. The
replyto queue must be
defined on the associated
queue manager.

Any local or remote queue
associated with the given
replyto queue manager, as
recognized by the queue
manager associated with this
actor.

August 7, 2003

Appendix A. Standard Actors & Services A-7

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

Key Description Valid values

mpid.aos.queue Optional for each unique
message profile Id (mpid).

Specifies the queue of the
associated queue manager
that stores the persistent
state information for assured
messages having the given
message profile Id.

By default, the state is stored
in a local queue called
DI.SYNC.mpid, where mpid is
the message profile Id of the
message.

Any queue defined on the
associated queue manager;
the queue may not be used
by other message profile Ids.

mpid.aos.msgid Optional for each unique
message profile Id (mpid).

Specifies a String that is an
enterprise-wide unique
identifier for this message
type at this source location.

If not specified, the hostname
of the local machine is used.
On most 4690 systems, this
cannot be determined
automatically and therefore
this key must be defined.

In most cases it is sufficient
to use the store number,
unless multiple assured
oneway message types will
be sent from the same store;
in this case, the store
number plus a unique field
can be used, as in the
example S100TLOG.

Any string up to 24
characters in length.
(Example: S100TLOG)

WmqiRetailFormatActor
(com.ibm.retail.di.service.wmqi.WmqiRetailFormatActor)

Converts the inbound message to SOAP, if it is non-SOAP. Adds SOAP header
elements required for WMQI parsing, including store number and message profile
ID. Other elements can be added dynamically. This actor typically precedes the
JmsActor or MqeActor.

Key Description Valid values

uri local:com.ibm.retail.di.
service.wmqi.
WmqiRetailFormatActor

Fixed

August 7, 2003

A-8 Data Integration Facility User’s Guide

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

Key Description Valid values

header.localName Required. Specifies the name
of the DIF header element to
add to the SOAP header. By
convention, this is Header.

Header

header.prefix Required. Specifies the
element name prefix
(namespace) for the
elements to add to the SOAP
header. By convention, this is
dif.

dif

header.uri Required. Specifies the URI
of the namespace for the
named elements that are
added to the SOAP header.
By convention, this is
http://www.ibm.com/retail/
namespace/dif.

Fixed

mpid.header-
element.element-name

Optional. Names additional
elements to be added to the
DIF header per message
profile Id type. Elements will
have the name give by
element-name. The value of
the element is the text
assigned to this property.

Any text; associated with the
named element

WMQI will typically require these additional elements in the DIF header:
POSType=IBM ACE | IBM GSA | IBM SA
TlogFormat=Binary | XML | IXRetail

Abstract Services
The following list describes services that are provided as abstract base classes that
can be extended to provide customer-specific function. These services cannot be
executed directly.

MQe Listener Service
(com.ibm.retail.di.service.mom.mqe.MqeListenerService)

Registers as a listener of a specific local MQe queue and performs processing on
each inbound message as it appears.

Subclasses must minimally define:
onMessage(MQeMsgObject aMessage);

Key Description Valid values

uri local:com.ibm.retail.di.
service.mom.
MqeListenerService

Fixed

queue Required. Identifies the local
MQe queue whose
messages should be
processed by this service.

Any local MQe queue

August 7, 2003

Appendix A. Standard Actors & Services A-9

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

JMS Listener Service
(com.ibm.retail.di.service.mom.jms.JmsListenerService)

Registers as a listener of a specific JMS queue associated with this Service’s
queue manager, and performs processing on each inbound message as it appears.
The Service automatically handles error conditions by repairing the JMS connection
asynchronously as required.

Subclasses must minimally define:
onMessage(javax.jms.Message aMessage);

Key Description Valid values

uri local:com.ibm.retail.di.
service.mom.
MqeListenerService

Fixed

queue Required. Identifies the JMS
queue whose messages
should be processed by this
service; the queue must be
owned by the queue
manager associated with this
Service

Any local MQe queue

profile-id Required. Names the JMS
profile ID to use for this
Service; this determines the
queue manager that is used.

Any JMS profile Id defined in
the services properties file

Additional actors
The following actors are available for lower-level functions:

v SoapToBytesConversionActor

v BytesToSoapConversionActor

For details of these Actors, refer to the Javadoc.

August 7, 2003

A-10 Data Integration Facility User’s Guide

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

Appendix B. Message formats

This appendix describes the format of outbound messages generated by a
combination of the WmqiRetailFormatActor and one of the MOM actors: JmsActor or
MqeActor. Developers of host-side systems receiving messages from DIF should
use this appendix as a specification for the message structures received in the body
of the MOM message object.

Websphere MQSeries Integrator
For messages destined to Websphere MQSeries Integrator, a standard MQSeries
message object is created using the base WMQ Java API (com.ibm.mq.MQMessage).
The resulting message has a body whose content has leading MIME headers
followed by a “streamed” SOAP message. The SOAP message has a header and
one or more attachments.

The current implementation does not set any MQMD header fields, but the header
will be present with default values. The CCSID and encoding fields will be set
accordingly and should be used to interpret the leading MIME headers.

An RFH2 header is not present. In addition, attachments are never compressed.
See “MOM message body format for SOAP messages” on page B-2.

JMS Systems
DIF uses a JMS BytesMessage (javax.jms.BytesMessage) for messages destined to
JMS systems. This includes JMS messages sent to MQSeries queues. The payload
of the message is either a raw byte stream or a SOAP message. For a SOAP
message, the payload has leading MIME headers followed by a “streamed” SOAP
message.

The current implementation does not set any MQMD or RFH2 headers by default,
but can do so if configured appropriately. This will be customer-specific. The CCSID
and encoding fields of the MQMD header will be set accordingly and should be
used to interpret the leading MIME headers.

In an MQ-based JMS system, the resulting JMS BytesMessage can be made
compatible with WMQI and other non-JMS receivers by using the URI notation for
specifying the target queue; for example:
MyActor.mom.target.queue=queue:///Q.TARGET?targetClient=1

See “MOM message body format for SOAP messages” on page B-2 and the
WMQ/JMS documentation for details.

Websphere MQSeries Everyplace
By default, DIF creates an MQSeries-compatible message object
(com.ibm.mqemqmessage.MQeMQMsgObject). The resulting message is similar to a JMS
message, without an RFH2 header. The payload is either a raw byte stream or a
SOAP message. For a SOAP message, the payload has leading MIME headers
followed by a “streamed” SOAP message.

August 7, 2003

© Copyright IBM Corp. 2002, 2003 B-1

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

The current implementation does not set any MQMD headers by default, but can do
so if configured appropriately. This will be customer-specific. The CCSID and
encoding fields of the MQMD header will be set accordingly and should be used to
interpret the leading MIME headers.

A WMQe Gateway/Bridge at the host will convert the inbound message to a “native”
MQSeries message. This will be compatible with a WMQI input node. See “MOM
message body format for SOAP messages”.

MOM message body format for SOAP messages
For a SOAP message payload, a series of MIME headers precedes the SOAP
message stream. The first MIME header is always the MIME-Version header, whose
value is currently 1.0. In addition, the Content-Type given by the leading MIME
headers is always text/xml to represent a SOAP message.

As currently implemented, each attachment has the same Content-Type. The
possible options are:

text/plain
Non-SOAP XML document (typically IXRetail)

application/octet-stream
Raw binary data

For binary attachment data (application/octet-stream), the Content-Transfer-
Encoding MIME header may be set (per-attachment). If present, it indicates the
encoding used to represent the binary data. Currently, it has one of the following
values:

binary The data is not encoded; default.

base64
The data is encoded using Base64.

The message body has the following structure:
MIME-Version: 1.0

Content-Type: multipart/related; type="text/xml"; boundary=unique-boundary

Property: Value

--unique-boundary (indicates start of the SOAP message)
Content-Type: text/xml
<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:dif="http://www.ibm.com/retail/namespace/dif/">
<soap-env:Header> (DIF Header) </soap-env:Header>
<soap-env:Body/>
</soap-env:Envelope>

--unique-boundary (indicates end of SOAP body, start of attachment)

Content-Type: text/plain Additional MIME headers per attachment

Attachment Content

--unique-boundary (indicates end of previous attachment, start of attachment)

Content-Type: text/plain Additional MIME headers per attachment

August 7, 2003

B-2 Data Integration Facility User’s Guide

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

Attachment Content

--unique-boundary-- (indicates end of SOAP message)

The SOAP Header is given by the DIFMessage.xsd schema (see included file). The
following is an example:
<soap-env:Header>
<dif:Header>
<dif:MessageProfileId>Tlog</dif:MessageProfileId>
<dif:StoreNumber>112</dif:StoreNumber>
<dif:POSType>IBM GSA</dif:POSType>
<dif:TlogFormat>IXRetail</dif:TlogFormat>

</dif:Header>
</soap-env:Header>

Note: Content-Type is a required MIME header because it specifies a unique key
found in the boundary of the SOAP message and its attachments. This key
must match the boundaries found in the streamed SOAP message. In fact,
the SAAJ (SOAP with Attachments API for Java) requires that MIME headers
with an accurate Content-Type be supplied in order to rebuild a streamed
SOAP message.

Examples
The following examples illustrate message formats.

Single IXRetail transaction
The following is an example of a message created by DIF for a single IXRetail
transaction.
MIME-Version: 1.0
Content-Type: multipart/related; type="text/xml";
boundary=329832539.1052154477517.JavaMail.javamailuser.localhost
Content-Length: 2030
SOAPAction: ""
Assurance-Id: 10670
Content-Transfer-Size: 2030
Message-Profile-Id: TLOG
user.Store-Id: 1118
--329832539.1052154477517.JavaMail.javamailuser.localhost
Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:dif="http://www.ibm.com/retail/namespace/dif/"><soap-env:Header>
<dif:Header><dif:MessageProfileId>TLOG</dif:MessageProfileId>
<dif:StoreNumber>1118</dif:StoreNumber><dif:POSType>IBM GSA</dif:POSType>
<dif:TlogFormat>IXRetail</dif:TlogFormat></dif:Header></soap-env:Header>
<soap-env:Body/></soap-env:Envelope>
--329832539.1052154477517.JavaMail.javamailuser.localhost
Content-Type: text/plain
Assurance-Id: 10670
Store-Id: 1118

<?xml version="1.0" encoding="UTF-8"?>
<POSLog xmlns="http://www.nrf-arts.org/IXRetail/namespace/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:fo="http://www.w3.org/1999/XSL/Format"
xmlns:ace="Lookup table for taxes"
xmlns:sa="Lookup table for SA extensions"
xsi:schemaLocation="http://www.nrf-arts.org/IXRetail/namespace/
POSLogRetailTransactionIBMGrocery.xsd">
<Transaction xsi:type="POSLogRetailTransactionGSA" Version="1.0" CancelFlag="false"

August 7, 2003

Appendix B. Message formats B-3

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

TrainingModeFlag="false" OfflineFlag="false" OutsideSalesFlag="false"
SuspendFlag="false">
<RetailStoreID>Retail Store Solutions 123</RetailStoreID>
<WorkstationID>0008</WorkstationID>
<SequenceNumber>1</SequenceNumber>
<EndDateTime>2002-08-01T10:57:00</EndDateTime>
<OperatorID>00000000</OperatorID>
<CurrencyCode>USD</CurrencyCode>
<GSALineItem VoidFlag="false" EntryMethod="Keyed">
<SequenceNumber>10</SequenceNumber>
<EndDateTime>2002-08-01T10:57:00</EndDateTime>
<GSALogTimeAnalysis>
<GSAOperator>00000000</GSAOperator>
<GSATerminal>0008</GSATerminal>
<GSARingTime>0</GSARingTime>
<GSATenderTime>8</GSATenderTime>
<GSANonSalesTime>0</GSANonSalesTime>
<GSAInactiveTime>166</GSAInactiveTime>
<GSATime>1057</GSATime>
<GSADate>020801</GSADate>
</GSALogTimeAnalysis>
</GSALineItem>
</Transaction>
</POSLog>

--329832539.1052154477517.JavaMail.javamailuser.localhost—

Multiple IXRetail transactions
The following is an example of a message created by DIF for multiple IXRetail
transactions (bundling).
MIME-Version: 1.0
Content-Type: multipart/related; type="text/xml";
boundary=1190412550.1052157878298.JavaMail.javamailuser.localhost
Content-Length: 4944
SOAPAction: ""
Assurance-Id: 10750
Content-Transfer-Size: 4944
Fault-Count: 0
Message-Profile-Id: TLOG
user.Store-Id: 1118
--1190412550.1052157878298.JavaMail.javamailuser.localhost
Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:dif="http://www.ibm.com/retail/namespace/dif/"><soap-env:Header>
<dif:Header><dif:MessageProfileId>TLOG</dif:MessageProfileId>
<dif:StoreNumber>1118</dif:StoreNumber><dif:POSType>IBM GSA</dif:POSType>
<dif:TlogFormat>IXRetail</dif:TlogFormat></dif:Header></soap-env:Header>
<soap-env:Body/></soap-env:Envelope>
--1190412550.1052157878298.JavaMail.javamailuser.localhost
Content-Type: text/plain
Assurance-Id: 10730
Store-Id: 1118

<?xml version="1.0" encoding="UTF-8"?>
<POSLog xmlns="http://www.nrf-arts.org/IXRetail/namespace/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:fo="http://www.w3.org/1999/XSL/Format"
xmlns:ace="Lookup table for taxes" xmlns:sa="Lookup table for SA extensions"
xsi:schemaLocation="http://www.nrf-arts.org/IXRetail/namespace/
POSLogRetailTransactionIBMGrocery.xsd">
<Transaction xsi:type="POSLogRetailTransactionGSA" Version="1.0" CancelFlag="false"
TrainingModeFlag="false" OfflineFlag="false" OutsideSalesFlag="false"
SuspendFlag="false">

August 7, 2003

B-4 Data Integration Facility User’s Guide

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

<RetailStoreID>Retail Store Solutions 123</RetailStoreID>
<WorkstationID>0063</WorkstationID>
<SequenceNumber>1</SequenceNumber>
<EndDateTime>2002-08-01T10:57:00</EndDateTime>
<OperatorID>00000000</OperatorID>
<CurrencyCode>USD</CurrencyCode>
<GSALineItem VoidFlag="false" EntryMethod="Keyed">
<SequenceNumber>10</SequenceNumber>
<EndDateTime>2002-08-01T10:57:00</EndDateTime>
<GSALogTimeAnalysis>
<GSAOperator>00000000</GSAOperator>
<GSATerminal>0063</GSATerminal>
<GSARingTime>0</GSARingTime>
<GSATenderTime>20</GSATenderTime>
<GSANonSalesTime>0</GSANonSalesTime>
<GSAInactiveTime>410</GSAInactiveTime>
<GSATime>1057</GSATime>
<GSADate>020801</GSADate>
</GSALogTimeAnalysis>
</GSALineItem>
</Transaction>
</POSLog>

--1190412550.1052157878298.JavaMail.javamailuser.localhost
Content-Type: text/plain
Assurance-Id: 10740
Store-Id: 1118

<?xml version="1.0" encoding="UTF-8"?>
<POSLog xmlns="http://www.nrf-arts.org/IXRetail/namespace/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:fo="http://www.w3.org/1999/XSL/Format"
xmlns:ace="Lookup table for taxes" xmlns:sa="Lookup table for SA extensions"
xsi:schemaLocation="http://www.nrf-arts.org/IXRetail/namespace/
POSLogRetailTransactionIBMGrocery.xsd">
<Transaction xsi:type="POSLogRetailTransactionGSA" Version="1.0" CancelFlag="false"
TrainingModeFlag="false" OfflineFlag="false" OutsideSalesFlag="false"
SuspendFlag="false">
<RetailStoreID>Retail Store Solutions 123</RetailStoreID>
<WorkstationID>0036</WorkstationID>
<SequenceNumber>1</SequenceNumber>
<EndDateTime>2002-08-01T10:57:00</EndDateTime>
<OperatorID>00000000</OperatorID>
<CurrencyCode>USD</CurrencyCode>
<GSALineItem VoidFlag="false" EntryMethod="Keyed">
<SequenceNumber>10</SequenceNumber>
<EndDateTime>2002-08-01T10:57:00</EndDateTime>
<GSALogTimeAnalysis>
<GSAOperator>00000000</GSAOperator>
<GSATerminal>0036</GSATerminal>
<GSARingTime>0</GSARingTime>
<GSATenderTime>0</GSATenderTime>
<GSANonSalesTime>0</GSANonSalesTime>
<GSAInactiveTime>114</GSAInactiveTime>
<GSATime>1057</GSATime>
<GSADate>020801</GSADate>
</GSALogTimeAnalysis>
</GSALineItem>
</Transaction>
</POSLog>

--1190412550.1052157878298.JavaMail.javamailuser.localhost
Content-Type: text/plain
Assurance-Id: 10750
Store-Id: 1118

<?xml version="1.0" encoding="UTF-8"?>

August 7, 2003

Appendix B. Message formats B-5

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

<POSLog xmlns="http://www.nrf-arts.org/IXRetail/namespace/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:fo="http://www.w3.org/1999/XSL/Format"
xmlns:ace="Lookup table for taxes" xmlns:sa="Lookup table for SA extensions"
xsi:schemaLocation="http://www.nrf-arts.org/IXRetail/namespace/
POSLogRetailTransactionIBMGrocery.xsd">
<Transaction xsi:type="POSLogRetailTransactionGSA" Version="1.0" CancelFlag="false"
TrainingModeFlag="false" OfflineFlag="false" OutsideSalesFlag="false"
SuspendFlag="false">
<RetailStoreID>Retail Store Solutions 123</RetailStoreID>
<WorkstationID>0016</WorkstationID>
<SequenceNumber>1</SequenceNumber>
<EndDateTime>2002-08-01T10:57:00</EndDateTime>
<OperatorID>00000000</OperatorID>
<CurrencyCode>USD</CurrencyCode>
<GSALineItem VoidFlag="false" EntryMethod="Keyed">
<SequenceNumber>10</SequenceNumber>
<EndDateTime>2002-08-01T10:57:00</EndDateTime>
<GSALogTimeAnalysis>
<GSAOperator>00000000</GSAOperator>
<GSATerminal>0016</GSATerminal>
<GSARingTime>0</GSARingTime>
<GSATenderTime>0</GSATenderTime>
<GSANonSalesTime>0</GSANonSalesTime>
<GSAInactiveTime>7</GSAInactiveTime>
<GSATime>1057</GSATime>
<GSADate>020801</GSADate>
</GSALogTimeAnalysis>
</GSALineItem>
</Transaction>
</POSLog>

--1190412550.1052157878298.JavaMail.javamailuser.localhost--

August 7, 2003

B-6 Data Integration Facility User’s Guide

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

Appendix C. Sample scenarios

This appendix describes the sample code that is packaged with DIF. The sample
scenarios attempt to model common store integration tasks and can be extended to
support customized functions.

Enterprise-to-Store request/response using MQe and 4690 keyed kiles
Source code: examples/keyedfile

The keyed file example shows how DI can be used to perform a request/response
using a 4690 keyed file to look up the response.

The required setup is a 4690 machine with a keyed file with the desired records,
and a remote machine to perform the request for the keyed file records. After
setting up MQe and creating and populating the keyed file, start DI on the 4690
machine using the provided services.keyedfile.properties as difuser.pro. The
location of the keyed file as well as the MQe details must be provided in the
properties file; for help with MQe setup on both machines, see “MQe setup”.

Once DI is running on the 4690 machine, run the
examples.keyedfile.MqeKeyedFileClient program, using the correct parameters.
This will start MQe on the remote (requestor) machine, which will then forward the
request to 4690, where the key is looked up in the keyed file, and the associated
record is returned.

MQe setup
The MQe setup for this example is a bit complicated. On the 4690 machine, a local
queue must be created. This is the queue that incoming messages will arrive on,
and is the queue that the DI service will listen to. Also, a Connection and remote
queue are required. The Connection should point to the MQe queue manager on
the remote machine, where the response will be sent. The remote queue should
use this Connection and point to the remote machine’s local queue. The remote
machine needs two queues also. It needs a local queue for responses to arrive on;
this queue is what the 4690’s remote queue should point to. The remote machine
also needs a Connection and remote queue; the Connection should point to the
4690 machine’s queue manager, and the remote queue should point to the 4690’s
local queue. The remote machine will use this remote queue to send requests to
the 4690 machine’s local queue, which the DI service is listening to. For example,
the following commands will set up MQe on each machine.

Note: You may have to substitute difrun.bat for java in each of the following
commands. Also, the \ indicates the next line should be typed in on the same
line. The remote machine is called remote.machine and the 4690 machine is
called 4690.machine; you should substitute the actual names or IP
addresses.

On the 4690 machine:
java examples.administration.commandline.IniFileCreator \
./QM4690.ini QM4690 ./Registry Server 8085 1234567 MySecret default \
FileRegistry FastNetwork

java examples.install.SimpleCreateQM ./QM4690.ini ./Queues
java examples.administration.commandline.LocalQueueCreator \
Q.REQUEST null null null -1 -1 QM4690 ./QM4690.ini \
com.ibm.mqe.adapters.MQeDiskFieldsAdapter:./Qdir

August 7, 2003

© Copyright IBM Corp. 2002, 2003 C-1

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

java examples.administration.commandline.ConnectionCreator \
QMremote QM4690 FastNetwork:remote.machine:8082 DefaultChannel ./QM4690.ini

java examples.administration.commandline.RemoteQueueCreator \
Q.RESPONSE QMremote Synchronous null null null QM4690 ./QM4690

On the remote machine:
java examples.administration.commandline.IniFileCreator \
./QMremote.ini QMremote ./Registry Server 8082 1234567 MySecret default \
FileRegistry FastNetwork

java examples.install.SimpleCreateQM ./QMremote.ini ./Queues
java examples.administration.commandline.LocalQueueCreator \
Q.RESPONSE null null null -1 -1 QMremote ./QMremote.ini \
com.ibm.mqe.adapters.MQeDiskFieldsAdapter:./Qdir

java examples.administration.commandline.ConnectionCreator \
QM4690 QMremote FastNetwork:4690.machine:8085 DefaultChannel ./QMremote.ini

java examples.administration.commandline.RemoteQueueCreator \
Q.REQUEST QM4690 Synchronous null null null QMremote ./QMremote

To run the MqeKeyedFileClient program (use a valid key):
java examples.keyedfile.MqeKeyedFileClient \
./QMremote.ini QM4690 Q.REQUEST key QMremote Q.RESPONSE

The response will then appear on the Q.RESPONSE queue, if the record lookup
was successful.

Keyed file creation
In order to easily create a keyed file on 4690, the program
examples.keyedfile.MakeKeyedFile is provided. It will create and fill the specified
keyed file with some sample records. Refer to the source code of the class for
details on what records are used. The request from the remote machine must
specify a key that is contained in the keyed file. Note that keyed file keys are a
specific length, and are the first part of their associated record.

Store-to-enterprise request/response using SOAP over HTTP
Source code: examples/reqresp

The request/response example demonstrates how a reqest can be converted
between a byte[] and a SOAPMessage, using an arbitrary conversion pattern. It
also shows how a Tomcat server can be used to process and/or modify a
SOAPMessage.

The conversion between byte[] and SOAPMessage is done by the
SoapToBytesConversionActor and the BytesToSoapConversionActor. Both actors
extend the SoapStreamConversionActor, and simply provide functionality to enclose
a byte[] message inside a SOAPMessage, or remove that previously-encoded byte[]
from the SOAPMessage.

The Tomcat server must be set up to include the provided servlet. In the example,
JWDSP was used, it can be downloaded at:
http://java.sun.com/webservices/downloads/webservicespack.html

To add the servlet to JWSDP, create a directory in the top level of the JWDSP
directory; this example uses di. Place the provided di.war file in the di directory.
Place the provided di.xml file in the webapps directory. If you use a directory other
than di, you will need to modify the di.xml file. To start JWDSP, you must run the
bin/catalina script provided by JWDSP. The servlet will now be available at
http://localhost:8080/di/diservlet The logs from the servlet will be available in

August 7, 2003

C-2 Data Integration Facility User’s Guide

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

the logs/launcher.server.log file in the JWDSP installation. If you have configured
Tomcat and/or JWDSP on a different machine or using a different port, you should
substitute that in the URL above.

To use the example, start DI using the provided services.reqresp.properties file
as difuser.pro. This properties file is set up to convert byte[] input (ASCII) to
SOAP, then send that to the servlet, and convert the response back to a byte[]
(ASCII). You can send ASCII to DI using the examples.testing.SendFile class.

This example does not actually modify the message, besides the byte[] to SOAP
conversion. The original message will be restored by the SOAP to byte[]
conversion. The provided servlet, whose source is available in the di.war file,
simply passes the message back unmodified.

Enterprise-to-store: assured one-way messaging over MQe
Source code: examples/syncpointed

The setup requires two systems, one with a local queue and one with a remote
queue. For this example, the local queue system will be assumed to be a 4690
machine, and the remote queue system is the remote system. MQe setup in this
example is not difficult. The following examples will generate a working MQe setup.
The 4690 system is called 4690.machine, and the remote system is called
remote.machine; you should substitute the correct values. All files and directories
are placed in the current directory (using ./), which should be changed to whatever
directory is appropriate.

On the 4690 machine:
java examples.administration.commandline.IniFileCreator \
./QM4690.ini QM4690 ./Registry Server 8085 1234567 MySecret default \
FileRegistry FastNetwork

java examples.install.SimpleCreateQM ./QM4690.ini ./Queues
java examples.administration.commandline.LocalQueueCreator \
Q.REQUEST null null null -1 -1 QM4690 ./QM4690.ini \
com.ibm.mqe.adapters.MQeDiskFieldsAdapter:./Qdir

On the remote machine:
java examples.administration.commandline.IniFileCreator \
./QMremote.ini QMremote ./Registry Server 8082 1234567 MySecret default \
FileRegistry FastNetwork

java examples.install.SimpleCreateQM ./QMremote.ini ./Queues
java examples.administration.commandline.ConnectionCreator \
QM4690 QMremote FastNetwork:4690.machine:8085 DefaultChannel ./QMremote.ini

java examples.administration.commandline.RemoteQueueCreator \
Q.REQUEST QM4690 Synchronous null null null QMremote ./QMremote

Note that this MQe setup is a subset of the MQe setup for the keyed file example.

After setup, start DI on the 4690 machine using the provided
services.syncpointed.properties file as difuser.pro. Some parameters in the file
must be modified, such as the location of the fault directory, and the queue name.
Also, the examples.syncpointed.GenerateFaultActor has a property that must be
set defining whether or not to generate a fault when a message is processed. This
should be set to false to allow the message to pass through successfully, or true if
a fault should be generated so the message is saved to the faults directory.

To generate a message, use the examples.syncpointed.MqeClient or
examples.syncpointed.MqeSoapClient to generate either a byte[] message, or

August 7, 2003

Appendix C. Sample scenarios C-3

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

SOAPMessage, respectively. Both programs require the correct parameters. The
provided service and Actors do not actually process the data included with either
type of message.

August 7, 2003

C-4 Data Integration Facility User’s Guide

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

Appendix D. DiskQService bundling and pacing

Bundling
Message Bundling can be configured when running the DiskQService. The
Message Bundling property defines the number of messages that will be processed
together by the DiskQService.

When compression is activated, it may be desirable to enable Message Bundling.
This is because data compression algorithms are typically more effective when they
operate on blocks of data that have repeatable patterns, like Retail Transactions.

The setting for this configurable property depends on many factors such as:

v Whether Parsing and Transformation is configured to run in the store

v Available network bandwidth in the store

v Average size of a transaction

v Average rate of sale transactions

Key Description Valid values

DiskQService.MessageBundleCount Optional. Specifies the
number of Messages
(i.e., transactions) to
pull from the DiskQ and
process in a single
outbound message to
the host.

0 No bundling

>0 Number of
Messages
(transactions)
to process in a
single iteration
of the
DiskQService

Pacing
Message Pacing can be configured when running the DiskQService. Pacing should
be configured to limit the amount of network bandwidth that is used by the Data
Integration Messaging process.

The user can define a set of Pacing properties for up to three time periods. This
enables the user to have a better control of the amount of network bandwidth that is
used during periods of peak sales activity in the store.

For example, a store may wish to reduce the amount of network bandwidth used by
the Data Integration process during peak sales periods to ensure that sufficient
network bandwidth exists to process debit and credit approvals. The store can
likewise increase the amount of network bandwidth during periods of slower sales
activity when there may not be as much contention for the bandwidth.

The Pacing Policy is also useful when replaying a Tlog or when the network has
been down for an extended period of time and then comes back online. In these
cases the Pacing Policy ensures that the network is not flooded with the Messages
from the TLog data integration process.

The following properties can be set for each of the three time periods:

August 7, 2003

© Copyright IBM Corp. 2002, 2003 D-1

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

StartHour
The starting hour (0-23) for this pacing Policy Time Interval. Must be less
than the value of EndHour

EndHour
The ending hour (0-23) for this pacing Policy Time Interval.

BytesPerSecondRate
On Average, the Pacing Policy will limit the number of bytes processed to
the specified number of Bytes Per Second.

QueueDepthThreshold
The user specifies the allowable number of messages to build up on the
DiskQ before adjusting the Bytes Per Second rate.

QueueDepthAdjustment
This value is a percentage that is applied to the Bytes Per Second rate
when the QueueDepthThreshold is exceeded. The intent here is that the
Pacing Policy can allow the Data Integration process to “catch up” by
allowing more bytes to be processed.

Default settings
To better understand the operations of the Pacing Policy function it is helpful to look
at the default settings.

Note: These default settings are for illustration purposes only.
#
User can specify settings for up to 3 different hourly intervals
#
PacingPolicy.Interval1.StartHour=9
PacingPolicy.Interval1.EndHour=18
PacingPolicy.Interval1.BytesPerSecondRate=7168
PacingPolicy.Interval1.QueueDepthThreshold=15
PacingPolicy.Interval1.QueueDepthAdjustment=10
#
Hourly Interval 2 settings
#
PacingPolicy.Interval2.StartHour=19
PacingPolicy.Interval2.EndHour=23
PacingPolicy.Interval2.BytesPerSecondRate=7168
PacingPolicy.Interval2.QueueDepthThreshold=10
PacingPolicy.Interval2.QueueDepthAdjustment=20
#
Hourly Interval 3 settings
#
PacingPolicy.Interval3.StartHour=0
PacingPolicy.Interval3.EndHour=8
PacingPolicy.Interval3.BytesPerSecondRate=7168
PacingPolicy.Interval3.QueueDepthThreshold=5
PacingPolicy.Interval3.QueueDepthAdjustment=50

The defaults settings show that three intervals are specified:

v 9:00 a.m. through 6:00 p.m.

v 7:00 p.m. through midnight

v 0 hour (after midnight) through 8:00 a.m.

Interval 1: The base rate is 7168 bytes per second (56K bits per second) When
more than 15 transactions are placed in the DiskQ, then the base rate is increased
by 10% to allow 7885 bytes per second to be processed.

August 7, 2003

D-2 Data Integration Facility User’s Guide

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

Interval 2: The base rate is 7168 bytes per second (56K bits per second) When
more than 10 transactions are placed in the DiskQ, then the base rate is increased
by 20% to allow 8602 bytes per second to be processed. In this time period the
sales activity in the store is less and therefore the QueueDepthThreshold is lower
and the QueueDepthAdjustment is higher.

Interval 3: The base rate is 7168 bytes per second (56K bits per second) When
more than 5 transactions are placed in the DiskQ, then the base rate is increased
by 50% to allow 10752 bytes per second to be processed. In this time period the
sales activity in the store is the lowest and therefore the QueueDepthThreshold is
lowest and the QueueDepthAdjustment is highest.

The setting for the Pacing Policy configurable properties depends on many factors
such as:

v Whether Parsing and Transformation is configured to run in the store

v Available network bandwidth in the store

v Average size of a transaction

v Average rate of sale transactions

v Whether compression is enabled

Key Description Valid values

DiskQService.PacingPolicy.Enabled Optional. Used to
enable the Pacing
Policy.

true, false
(Default=false).

PacingPolicy.Intervaln.StartHour Starting Hour for
this Pacing Policy
Interval

0 - 23

PacingPolicy.Intervaln.EndHour Ending Hour for
this Pacing Policy
Interval

0 - 23

PacingPolicy.Intervaln.BytesPerSecondRate For this Pacing
Policy Period:
Bytes Per Second
allocated to Tlog
Data Integration.

Java integer

PacingPolicy.Intervaln.QueueDepthThreshold For this Pacing
Policy Period: The
limit of the number
of messages on
the DiskQ before
adjusting the
configured rate.

Java integer

PacingPolicy.Intervaln.QueueDepthAdjustment For this Pacing
Policy Period: This
is the percentage
adjustment made
to the rate when
the Queue Depth
threshold is
exceeded.

Java integer

Note: Values for the hours, rate, threshold, and adjustment are programmatically
converted to a Java int value. An exception is raised if the entry in the
properties file cannot be converted to an integer value and an error will be

August 7, 2003

Appendix D. DiskQService bundling and pacing D-3

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

logged. In addition to the integer validation, the hour values are also
validated to ensure that they are in the range of 0 through 23.

Additional pacing policy properties
Three additional Pacing Policy properties can be globally set. These properties are
strictly optional and are externalized for future enhancements and to assist in the
support of the product.

PacingPolicy.ClassName
Key PacingPolicy.ClassName

Value Any fully qualified class name that is a subclass of DiPacingPolicyImpl or
the fully qualified class name of a new Pacing Policy that implements the
DiPacingPolicyInterface. Default setting is
com.ibm.retail.di.service.policy.DiPacingPolicyImpl.

This property is provided as a means for IBM and/or third parties to extend the
functionality of the base Data Integration Pacing Policy. If the TLog Data Integration
function moves to another messaging based system there may be additional
attributes that are available to the application by the underlying message queuing
system. In this case, for example, the evaluateRules() method of the
DIPacingPolicyImpl could be subclassed and the support for the additional
attributes available from the underlying message queuing system could be factored
into the base pacing policy rule evaluation.

PacingPolicy.LogStatistics
Key PacingPolicy.LogStatistics

Value True or false. (Default = false.)

When enabled, on every hourly boundary of operation the Pacing Policy logs a set
of statistics. The statistics can be useful in monitoring the operation of the Pacing
Policy as well as providing information that may be useful in tuning the pacing
policy with the optimum set configuration parameters. When enabled, the data is
logged to a file with the following naming convention: C:\pacinglg.dat

Two levels of log information are maintained. Each level will contain up to 48 hours
of log information. The example shows the file name of the most current level of
logged statistics. The previous 48 hours of logged statistics (if available) are stored
in the file C:\pacinglp.dat, where lp indicates the previous set of logged statistics.

The following statistics are logged at each hourly boundary:

Timer Ticks
Amount of time (in seconds) that the pacing policy has been active

Bytes Total bytes processed

NumMsgs
Total messages processed

MinMsgSize
Size (in bytes) of the smallest message to process

MaxMsgSize
Size (in bytes) of the largest message to process

MinAdjustedMsgSize
Size (in bytes) of the smallest message after processing

August 7, 2003

D-4 Data Integration Facility User’s Guide

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

MaxAdjustedMsgSize
Size (in bytes) of the largest message after processing

MinArrivalTime
Shortest delay (in milliseconds) between arrival of messages

MaxArrivalTime
Longest delay (in milliseconds) between reception of messages

DepthOfQueueTotalCounter
Number of messages on the queue detected during all evaluations of the
pacing policy rules

MaxDepthOfQueue
Greatest queue size observed

QueueDepthThreshholdExceededCounter
Number of times the Queue Depth has exceeded the Threshold

QueueDepthThreshholdWrapCount
Number of times the depth of queue counter has wrapped

DepthOfQueueWrapCount
Number of times the depth of queue total counter has wrapped

TimerTicksWrapCount
Number of times the timer ticks counter has wrapped or been reset

ByteCounterWrapCount
Number of times the byte counter has wrapped or been reset

NumMsgsCounterWrapCount
Number of times the Number of Messages counter has wrapped

The following is an example of a logged entry from the pacing log file:
Fri Mar 07 12:14:34 EST 2003 :
Timer Ticks: 3600
Bytes 3176906
NumMsgs 252
MinMsgSize 1761
MaxMsgSize 19959
MinAdjustedMsgSize 0
MaxAdjustedMsgSize 0
MinArrivalTime 76
MaxArrivalTime 211089
DepthOfQueueTotalCounter 1921
MaxDepthOfQueue 16
QueueDepthThreshholdExceededCounter 2
QueueDepthThreshholdWrapCount 0
DepthOfQueueWrapCount 0
TimerTicksWrapCount 0
ByteCounterWrapCount 0
NumMsgsCounterWrapCount 0

Explanation: The Pacing policy has been running for one hour (3600 seconds) and
has processed 3,176,906 bytes. Therefore the average rate for this hour of
operation is 882 bytes per second and the disk queue was never holding more than
16 messages. The queue depth threshold counter was exceeded twice. (The other
values should be self-explanatory.)

Message compression
Key DiskQService.MessageCompression

Value True or false. (Default = false.)

August 7, 2003

Appendix D. DiskQService bundling and pacing D-5

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

This property must be set to true if compression is turned on in the underlying
message transport layer (i.e., Websphere MQe compression). This setting allows
the Pacing Policy to more accurately control the flow of data to the network when
compression is enabled.

Note: The Data Integration process does not currently have direct access to the
actual number of bytes that were sent for a message after data compression
has been applied to the message. A compression factor is applied to the size
of the original messages to determine the approximate size of the message
that has been compressed by the underlying message transport layer. Any
discrepancy between the statistics from the messaging system and the
statistics reported by the Pacing Policy can be attributed to this
approximation.

August 7, 2003

D-6 Data Integration Facility User’s Guide

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

Appendix E. 4690 disk queue facility

The 4690 disk queue facility (DiskQ for short) provides a robust mechanism through
which messages can be passed from one process to another within the 4690 store
environment. Unlike with pipes, PRS pipes, and similar in-memory techniques, the
messages in the disk queue persist across power failures or other traumas that
interrupt processing.

The disk queue uses a disk file to store messages. On the 4690, this file enjoys the
same protection and file distribution capabilities as any other file supported by the
4690 OS and its multiple controller feature. Messages in the queue are handled on
a first-in-first-out (FIFO) basis. Messages are added to the end or tail of the queue.
They are removed from the front or head of the queue. The user is not normally
concerned with the file’s internal structure, but the file is internally subdivided into
fixed length elements. One or more elements are allocated to each message as the
message is added to the queue. Message size is limited to the smaller of 32,767
bytes or 127 elements.

Data Integration Facility support for DiskQ
The Data Integration Facility supports disk queue functionality with its 4690
PosDiskQService. The DiskQService reads messages from the disk queue and
passes each message to an Actor (or the Director) for processing.

The disk queue is used to achieve maximum performance for the DIF tlog trickle
functionality. Messages flow from one of the POS applications (SA, GSA, ACE) to
the disk queue, then from the disk queue to the DIF Runtime process via a special
implementation of the DiskQService, called the PosDiskQService. This service
reads tlog transaction messages from the disk queue and assuredly delivers those
messages to an enterprise messaging Actor, such as the MqeActor or JmsActor.
Optionally, the transactions flow through a data transformer before being
transmitted.

Note: PosDiskQService requires the diskq file to be defined by the DIFQUEUE
logical name. Refer to the DiskQService documentation for information about
how to customize the service’s behavior through subclassing.

Comparing 4690 disk queue and Websphere MQSeries Everyplace
Both of these solutions provide disk-based storage for persistent messaging on the
4690. However, these products are targeted to solve different problems:

v Use the 4690 disk queue for high-performance assured message exchange
between applications running in the store, especially C and CBASIC applications

v Use Websphere MQe for exchanging assured messages with enterprise systems,
or for exchanging messages with Java-based applications in the store

Programming APIs
API’s for manipulating messages on a queue are available for BASIC (on 4690
systems) and C (on 4690, AIX, and NT systems). C programs using the C API have
access to more functions. The 4690 BASIC API contains sufficient function for 4690
BASIC applications to add messages to a queue. The BASIC API does not support
removing messages from a queue.

August 7, 2003

© Copyright IBM Corp. 2002, 2003 E-1

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

The disk queue can only be used in combination with the DIF tlog trickle function.
Documentation and support for custom projects using the disk queue are not
available as part of the DIF product. However, support can be purchased from the
IBM National Retail Services Center (NRSC).

Disk queue maintenance and test programs
Several utility programs are available to display and manipulate disk queues. On
the 4690 these utilities have names in the form DQPROG.286. On NT systems the
same utilities have names in the form dqprog.exe and on AIX systems they have
names in the form dqprog. They are all referred to in the form DQPROG in the
descriptions below.

Each of these utilities will display information describing the last time the utility was
updated and the version of the disk queue support used. This information can be
useful in investigating problems. It is displayed in the following format:
version 08/17/1999
using dq version V.04/20/2000

DQCREATE - Disk Queue Creation Utility
DQCREATE is used to create a disk queue file. It accepts the parameters used in
defining the disk queue and generates the initial empty queue file.

Note: The Data Integration Facility (DIF) provides an automated tool for creating a
disk queue when using the tlog trickle application. Please see Chapter 2,
“Configuration and operation”.

DQCREATE’s operation is modified by the following command line parameters:
DQCREATE -q difqueue -s nn -n nnnn [-x nnnn] [-X nn] [-t] [-N]

Parameter Description Default value

-q difqueue Specifies the name of the
queue file to be created.

None

-s nn nn specifies the size (in
bytes) of the elements on the
queue. (Each message on
the queue requires one or
more elements, depending
on the element and message
sizes.)

None

-n nnnn nnnn specifies the number of
elements to be allocated in
the queue.

None

-x nnnn Specifies that, if the queue
becomes full, it can be
automatically extended by
adding room for nnnn more
elements. This option is used
in conjunction with -X below.

0

-X nn specifies that, if the queue
becomes full, it can be
automatically extended nn
times. This option is used in
conjunction with -x above.

0

August 7, 2003

E-2 Data Integration Facility User’s Guide

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

Parameter Description Default value

-N Specifies that elements on
the queue are to be filled
with nulls as they are
removed.

Elements are not filled with
nulls

When creating a queue, it is important to consider the size messages expected to
be sent via the queue. Each message will require at least one element on the
queue. If the message is larger than the element size, as many elements will be
used as are required to contain the entire message. The maximum size of a
message is limited to 127 elements or 32,767 bytes, whichever is smaller.

In choosing an element size, a trade off is made between wasting space because
the elements are larger than most messages and excessive message segmentation
because most messages are larger than the element size. For example, assume
most messages are 100 bytes or less but some messages are 200 bytes. If we
choose an element size of 100, most messages will fit in one element, but a few
will require two. If we choose an element size of 200, all messages will fit in a
single element, but most will waste at least 100 bytes of the element.

The amount of message segmenting anticipated should also be considered in
choosing the number of elements to be allocated for the queue.

DQPEEK - Display the next message on the queue
DQPEEK can be used to display the messages on a queue. The messages are not
removed from the queue.

DQPEEK’s operation is specified by the following command line parameters:
DQPEEK -q difqueue [-v] [-d]

Parameter Description Default Value

-q difqueue Specifies the name of the
queue from which a message
is to be displayed

None

-v Specifies that contents of
messages are to be
displayed

Status messages are not
displayed

-d Specifies that debug
messages are to be
displayed

Debug messages are not
displayed

DQLIST - Display all of the messages on the Queue
DQLIST can be used to display the messages on a queue. The messages are not
removed from the queue.

DQLIST’s operation is specified by the following command line parameters:
DQLIST -q difqueue [-v] [-d]

August 7, 2003

Appendix E. 4690 disk queue facility E-3

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

Parameter Description Default value

-q difqueue Specifies the name of the
queue from which a
messages are to be
displayed.

None

-v Specifies that status
messages are to be
displayed

Status messages are not
displayed

-d Specifies that debug
messages are to be
displayed

Debug messages are not
displayed

DQREMOVE - Remove the next message from the queue
DQREMOVE can be used to remove the next message on a queue.

DQREMOVE’s operation is specified by the following command line parameters:
DQREMOVE -q difqueue [-v] [-d]

Parameter Description Default value

-q difqueue Specifies the name of the
queue from which a message
is to be removed.

None

-v Specifies that status
messages are to be
displayed

Status messages are not
displayed

-d Specifies that debug
messages are to be
displayed

Debug messages are not
displayed

DQRESET - Resets a queue to an empty state
CAUTION:
DQRESET will cause any data currently on the queue to be lost.

DQRESET can be used to reset a queue to an empty state. It updates the control
block in the queue to indicate that there are no messages on the queue. It does not
null or “blank out” the existing messages, but they will be overwritten as new
messages are added to the queue. This utility can be useful if it is necessary to
discard the contents of a queue without the time or overhead associated with
recreating the queue. It is not necessary to stop other processes accessing the
queue when DQRESET is run.

DQRESET’s operation is specified by the following command line parameters:
DQRESET -q difqueue [-v] [-d]

Parameter Description Default value

-q difqueue Specifies the name of the
queue that is to be reset.

None

-v Specifies that status
messages are to be
displayed

Status messages are not
displayed

August 7, 2003

E-4 Data Integration Facility User’s Guide

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

Parameter Description Default value

-d Specifies that debug
messages are to be
displayed

Debug messages are not
displayed

DQSTATUS - Display the status of a queue
DQSTATUS can be used to display the current status of a queue.

DQSTATUS’s operation is specified by the following command line parameters:
DQSTATUS -q difqueue [-v] [-d]

Parameter Description Default value

-q difqueue Specifies the name of the
queue for which the status is
to be displayed

None

-v Specifies that status
messages are to be
displayed

Status messages are not
displayed

-d Specifies that debug
messages are to be
displayed

Debug messages are not
displayed

The queue’s status is reported as follows:
version 08/17/1999
using dq version V.04/20/2000
--
DISK QUEUE NAME = DIFQUEUE
--
Created or reset at = 18:11:23 on 08/27/2003
Last modified at = 14:10:54 on 10/26/2003
Percent full = 0 percent
Current element count = 0
Current message count = 0
Element Size = 128
Element # for next add = 1
Element # for next get = 0
Initial Queue Size = 100
Current working Max element cnt = 100
Max Number of extends allowed = 5
Remaining extensions allowed = 5
Number of elements in extension = 1000
Null element on remove = OFF
--

August 7, 2003

Appendix E. 4690 disk queue facility E-5

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

August 7, 2003

E-6 Data Integration Facility User’s Guide

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

Readers’ Comments — We’d Like to Hear from You

Store Integration Framework
Data Integration Facility
Programming Guide

Publication No. GA27-4309-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

Readers’ Comments — We’d Like to Hear from You
GA27-4309-01

GA27-4309-01

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Design & Information Development
Dept. CJMA/Bldg. 645
PO Box 12195
Research Triangle Park, NC 27709-9990

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

OBSOLETE AFTER - 12/31/2003

IB
M

 P
ro

prie
ta

ry
 -

Dra
ft

����

Part Number: 03R5994

August 7, 2003
Printed in U.S.A.

GA27-4309-01

(1
P)

P/
N:

03
R5

99
4

	Contents
	Figures
	Chapter 1. Overview
	Technologies
	Data Integration Facility Runtime
	Message formats
	Configuration of the DIF runtime

	Chapter 2. Configuration and operation
	System requirements
	Configuring the Data Integration Facility Runtime
	1. Establish the Services to be started by DIF
	2. Associate an Actor with each Service, as required by the Service
	3. Configure detailed options for each Service and Actor
	4. Configure JMS or MQSeries Everyplace connectivity
	Websphere MQSeries Everyplace
	Websphere MQSeries JMS

	Configuring the Director and Message Profile Ids
	Actors, the Director, and faults
	Logging Configuration
	Starting the Data Integration Facility Runtime

	Chapter 3. Developing custom extensions
	Writing a Service
	AbstractService
	AbstractInteractiveService
	RunnableService

	Writing an Actor
	AbstractActor
	StreamActor
	SOAP messages

	Appendix A. Standard Actors & Services
	TCP/IP client Service
	4690 pipes client Service
	4690 DiskQ Service
	ParserActor
	TransformerActor
	ParsingTransformerActor
	MqeActor
	JmsActor
	WmqiRetailFormatActor
	Abstract Services
	MQe Listener Service
	JMS Listener Service

	Additional actors

	Appendix B. Message formats
	Websphere MQSeries Integrator
	JMS Systems
	Websphere MQSeries Everyplace
	MOM message body format for SOAP messages
	Examples
	Single IXRetail transaction
	Multiple IXRetail transactions

	Appendix C. Sample scenarios
	Enterprise-to-Store request/response using MQe and 4690 keyed kiles
	MQe setup
	Keyed file creation

	Store-to-enterprise request/response using SOAP over HTTP
	Enterprise-to-store: assured one-way messaging over MQe

	Appendix D. DiskQService bundling and pacing
	Bundling
	Pacing
	Default settings
	Additional pacing policy properties
	PacingPolicy.ClassName
	PacingPolicy.LogStatistics
	Message compression

	Appendix E. 4690 disk queue facility
	Data Integration Facility support for DiskQ
	Comparing 4690 disk queue and Websphere MQSeries Everyplace
	Programming APIs
	Disk queue maintenance and test programs
	DQCREATE - Disk Queue Creation Utility
	DQPEEK - Display the next message on the queue
	DQLIST - Display all of the messages on the Queue
	DQREMOVE - Remove the next message from the queue
	DQRESET - Resets a queue to an empty state
	DQSTATUS - Display the status of a queue

	Readers’ Comments — We'd Like to Hear from You

