
Tivoli® Directory Integrator

IBM Tivoli Directory Integrator 6.1:

Administrator Guide

SC32-2567-00

���

Tivoli® Directory Integrator

IBM Tivoli Directory Integrator 6.1:

Administrator Guide

SC32-2567-00

���

Note

Before using this information and the product it supports, read the general information under Appendix B,

“Notices,” on page 205.

First Edition (April 2006)

This edition applies to version 6.1 of the IBM Tivoli Directory Integrator and to all subsequent releases and

modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2003, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Preface

This document contains the information that you need to develop solutions using components

that are part of the IBM® Tivoli® Directory Integrator.

Who should read this book

This book is intended for those responsible for the development, installation and

administration of solutions with the IBM Tivoli Directory Integrator.

Tivoli Directory Integrator components are designed for network administrators who are

responsible for maintaining user directories and other resources. This document assumes that

you have practical experience installing and using both IBM Tivoli Directory Integrator and

The reader should be familiar with the concepts and the administration of the systems that

the developed solution will connect to. Depending on the solution, these could include, but

are not limited to, one or more of the following products, systems and concepts:

v IBM Directory Server

v IBM Tivoli Identity Manager

v IBM Java™ Runtime Environment (JRE) or Sun Java Runtime Environment

v Microsoft® Active Directory

v PC and UNIX® operating systems

v Security management

v Internet protocols, including HTTP, HTTPS and TCP/IP

v Lightweight Directory Access Protocol (LDAP) and directory services

v A supported user registry

v Authentication and authorization

v SAP R/3.

Publications

Read the descriptions of the IBM Tivoli Directory Integrator library and the related

publications to determine which publications you might find helpful. After you determine the

publications you need, refer to the instructions for accessing publications online.

IBM Tivoli Directory Integrator library

The publications in the IBM Tivoli Directory Integrator library are:

IBM Tivoli Directory Integrator 6.1: Getting Started

A brief tutorial and introduction to IBM Tivoli Directory Integrator 6.1.

© Copyright IBM Corp. 2003, 2006 iii

IBM Tivoli Directory Integrator 6.1: Administrator Guide

Includes complete information for installing the IBM Tivoli Directory Integrator.

Includes information about migrating from a previous version of IBM Tivoli Directory

Integrator. Includes information about configuring the logging functionality of IBM

Tivoli Directory Integrator. Also includes information about the security model

underlying the Remote Server API.

IBM Tivoli Directory Integrator 6.1: Users Guide

Contains information about using the IBM Tivoli Directory Integrator 6.1 tool.

Contains instructions for designing solutions using the IBM Tivoli Directory Integrator

tool (ibmditk) or running the ready-made solutions from the command line

(ibmdisrv). Also provides information about interfaces, concepts and

AssemblyLine/EventHandler creation and management. Includes examples to create

interaction and hands-on learning of IBM Tivoli Directory Integrator 6.1.

IBM Tivoli Directory Integrator 6.1: Reference Guide

Contains detailed information about the individual components of IBM Tivoli

Directory Integrator 6.1 AssemblyLine (Connectors, EventHandlers, Parsers, Plug-ins,

and so forth).

IBM Tivoli Directory Integrator 6.1: Problem Determination Guide

Provides information about IBM Tivoli Directory Integrator 6.1 tools, resources, and

techniques that can aid in the identification and resolution of problems.

IBM Tivoli Directory Integrator 6.1: Messages Guide

Provides a list of all informational, warning and error messages associated with the

IBM Tivoli Directory Integrator 6.1.

IBM Tivoli Directory Integrator 6.1: Password Synchronization Plug-ins Guide

Includes complete information for installing and configuring each of the four IBM

Password Synchronization Plug-ins: Windows Password Synchronizer, Sun ONE

Directory Server Password Synchronizer, IBM Directory Server Password

Synchronizer, Domino Password Synchronizer and Password Synchronizer for UNIX

and Linux®. Also provides configuration instructions for the LDAP Password Store

and MQe Password Store.

IBM Tivoli Directory Integrator 6.1: Release Notes

Describes new features and late-breaking information about IBM Tivoli Directory

Integrator 6.1 that did not get included in the documentation. IBM Tivoli Directory

Integrator 6.1.

Related publications

Information related to the IBM Tivoli Directory Integrator is available in the following

publications:

v IBM Tivoli Directory Integrator 6.1 uses the JNDI client from Sun Microsystems. For

information about the JNDI client, refer to the Java Naming and Directory Interface™ 1.2.1

Specification on the Sun Microsystems Web site at http://java.sun.com/products/jndi/1.2/
javadoc/index.html.

iv Administrator Guide

http://java.sun.com/products/jndi/1.2/javadoc/index.html
http://java.sun.com/products/jndi/1.2/javadoc/index.html

v The Tivoli Software Library provides a variety of Tivoli publications such as white papers,

datasheets, demonstrations, redbooks, and announcement letters. The Tivoli Software

Library is available on the Web at: http://www.ibm.com/software/tivoli/library/

v The Tivoli Software Glossary includes definitions for many of the technical terms related to

Tivoli software. The Tivoli Software Glossary is available, in English only, from the Glossary

link on the left side of the Tivoli Software Library Web page http://www.ibm.com/
software/tivoli/library/

Accessing publications online

The publications for this product are available online in Portable Document Format (PDF) or

Hypertext Markup Language (HTML) format, or both in the Tivoli software library:

http://www.ibm.com/software/tivoli/library.

To locate product publications in the library, click the Product manuals link on the left side of

the Library page. Then, locate and click the name of the product on the Tivoli software

information center page.

Information is organized by product and includes READMEs, installation guides, user’s

guides, administrator’s guides, and developer’s references as necessary.

Note: To ensure proper printing of PDF publications, select the Fit to page check box in the

Adobe Acrobat Print window (which is available when you click File->Print).

Accessibility

Accessibility features help a user who has a physical disability, such as restricted mobility or

limited vision, to use software products successfully. With this product, you can use assistive

technologies to hear and navigate the interface. After installation you also can use the

keyboard instead of the mouse to operate all features of the graphical user interface.

Contacting IBM Software support

Before contacting IBM Tivoli Software support with a problem, refer to IBM System

Management and Tivoli software Web site at:

http://www.ibm.com/software/sysmgmt/products/support/

If you need additional help, contact software support by using the methods described in the

IBM Software Support Guide at the following Web site:

http://techsupport.services.ibm.com/guides/handbook.html

The guide provides the following information:

v Registration and eligibility requirements for receiving support

Preface v

http://www.ibm.com/software/tivoli/library/
http://www.ibm.com/software/tivoli/library/
http://www.ibm.com/software/tivoli/library/
http://www.ibm.com/software/tivoli/library/
http://www.ibm.com/software/sysmgmt/products/support/
http://techsupport.services.ibm.com/guides/handbook.html

v Telephone numbers and e-mail addresses, depending on the country in which you are

located

v A list of information you must gather before contacting customer support

vi Administrator Guide

Contents

Preface iii

Who should read this book iii

Publications iii

IBM Tivoli Directory Integrator library . . iii

Related publications iv

Accessing publications online v

Accessibility v

Contacting IBM Software support v

Chapter 1. Introduction 1

Chapter 2. Installation instructions for IBM

Tivoli Directory Integrator 3

Before you install 3

Disk Space Requirements 3

Memory Requirements 3

Platform Requirements 4

Components in IBM Tivoli Directory

Integrator 4

Other requirements 7

Installing IBM Tivoli Directory Integrator . . 8

Launching the appropriate installer . . . 8

Using the platform-specific TDI installer . 11

Installing using the command line . . . 16

Performing a silent install 17

Installing local Help files 17

Uninstalling 19

Launching the uninstaller 19

Uninstalling individual TDI components 19

Uninstalling IBM Tivoli Directory

Integrator 20

Performing a silent uninstall 20

Default install locations 20

Distribution components 20

Root directory 20

Root directory/amc 21

Root directory/bin 21

Root directory/AppServer 24

Root directory/doc 24

Root directory/etc 24

Root directory/classes 25

Root directory/examples 25

Root directory/installLogs 26

Root directory/libs 26

Root directory/logs 26

Root directory/performance 26

Root directory/tools/CSMigration . . . 26

Root directory/XSLT/ConfigReports . . . 26

Root directory/_uninst 26

Root directory/jvm 27

Root directory/license 27

Root directory/ibm_help 27

Root directory/xsl 27

Root directory/serverapi 27

Root directory/win32_service 28

Root directory/jars 28

Solution Directory files 33

Example Property files 35

Chapter 3. Supported platforms 45

Chapter 4. Migrating from IBM Tivoli

Directory Integrator 6.0 to IBM Tivoli

Directory Integrator 6.1 47

Chapter 5. Security and TDI 49

Introduction 49

SSL Support 49

Server SSL configuration of TDI

components 50

Client SSL configuration of TDI

components 50

SSL client authentication 51

Self-signed vs. CA-signed certificates . . . 51

Keystore and truststore management . . . 51

SSL example 55

Server API Access Security 57

Server API access options 57

Server API SSL remote access 58

Server API authentication 59

Server API Authorization 67

TDI Server Instance Security 74

Stash File 74

Encryption Utility 74

Server Security Modes 76

Working with encrypted TDI configuration

files 76

Standard TDI encryption of

global.properties or solution.properties . . 77

© Copyright IBM Corp. 2003, 2006 vii

Encryption of properties in external

property files 78

Miscellaneous Config File features 78

The “password” configuration parameter

type 78

Component Password Protection 78

Protecting attributes from being printed in

clear text during tracing 80

Encryption of TDI Server Hooks 80

Remote Config Editor and SSL 80

Web Admin Console Security 81

Summary of configuration files and properties

dealing with security 81

Component specific basics 83

HTTP Basic Authentication 83

Lotus Domino SSL specifics 83

Certificates for the TDI Web Service Suite 83

MQe authentication with mini-certificates 84

Chapter 6. System Queue 85

System Queue Configuration 85

System Queue Configuration Example . . 86

Security and Authentication 87

MQe Configuration Utility 87

Authentication of the MQe messages to

provide MQe Queue Security 88

Support for DNS names in the

configuration of the MQe Queue 89

Configuration of High Availability for

MQe transport of password changes . . . 89

Providing remote configuration capabilities

in the MQe Configuration Utility 90

Chapter 7. Remote Server 91

Configuring the Server API 91

Remote Server API access on a Virtual

Private Network 92

Authentication 93

Authorization 93

Server User Registry 95

Encryption utility 98

Chapter 8. System Store 101

Configuring CloudScape Instances 102

Manage System Stores 102

View System Store 104

Network Server Settings 105

Backing up CloudScape databases 107

Troubleshooting CloudScape issues 107

Pre-6.0 (properties file) configuration of

CloudScape 109

See also 111

Chapter 9. Command Line Interface (CLI) 113

Command Line Interface – tdisrvctl utility 113

Command Line reference 113

Operations 114

Other points to note 122

Chapter 10. Logging and debugging . . . 125

Background 125

Logging 126

Log Levels 130

log4j default parameters 130

Creating your own log strategies 131

Chapter 11. Tracing and FFDC 133

Understanding Tracing 133

Configuring Tracing 134

Useful JLOG parameters 134

Chapter 12. Administration and

Monitoring Console (AMC) 137

Installation and Configuration 137

Installing AMC on Embedded WAS

Express 137

Installing AMC on an existing WAS 6.0 or

WAS 6.1 version 138

Installing AMC on WAS using the TDI 6.1

Installer 138

Installing AMC on WAS using the TDI 6.1

Scripts or WAS Commands 139

Starting and stopping AMC following

installation 139

Installing AMC on Tomcat 5.0.x 140

Configuration 141

Logs 142

AMC and AM Security 142

Introduction 142

AMC and SSL 143

AMC and Remote TDI Server 144

AMC and User/Group/Role

Management 145

AMC and LDAP as an Authentication

Store 145

AMC and Role Management 147

AMC and Passwords 148

AMC and Encrypted Configs 148

Action Manager and SSL 148

viii Administrator Guide

Logging into the console 149

Logging on to the console as the console

administrator 149

Console Layout 150

Logging off the console 151

Using AMC tables 151

Select action drop-down menu 152

Paging 152

Sorting 152

Finding 153

Filtering 153

Console Administration 154

Manage TDI Servers 154

Manage Console Properties 155

Config Administration 156

Create a Config View 156

Manage Config Views 157

Load/Reload Configurations 158

Config Report 158

Operation Status and AM 159

Monitor Status 159

Action Manager (AM) 162

Manage Property Stores 167

Select Config View 168

Solution Properties 168

Global Properties 168

Java Properties 168

System Properties 168

Password Store 168

User Property Store 168

Users and Groups 168

Add users 168

Manage Users 169

Add Group 169

Manage Group 169

Cleanup Logs 169

User Preferences 170

Change Password 170

Preferred Config Views 170

Chapter 13. Tombstone Manager 171

Introduction 171

Configuring Tombstones 171

Config Editor Configuration screen . . . 172

AssemblyLine Configuration screen . . . 172

The Tombstone Manager 174

Chapter 14. Multiple TDI services 177

IBM Tivoli Directory Integrator as Windows

Service 177

Introduction 177

Installing and uninstalling the service . . 178

Starting and stopping the service . . . 179

Logging 179

Configuring the service 179

IBM Tivoli Directory Integrator as

Linux/UNIX Service 180

Deployment methods 180

Tailoring /etc/inittab 181

Chapter 15. z/OS environment Support 183

Handling configuration and properties files 184

ASCII mode 185

Appendix A. Dictionary of terms 187

IBM Tivoli Directory Integrator terms . . . 187

Appendix B. Notices 205

Trademarks 207

Contents ix

x Administrator Guide

Chapter 1. Introduction

For an overview of the general concepts of the IBM Tivoli Directory Integrator 6.1, refer to

″IBM Tivoli Directory Integrator concepts,″ in IBM Tivoli Directory Integrator 6.1: Users Guide.

For more detailed information about IBM Tivoli Directory Integrator 6.1 concepts, see IBM

Tivoli Directory Integrator 6.1: Reference Guide.

© Copyright IBM Corp. 2003, 2006 1

2 Administrator Guide

Chapter 2. Installation instructions for IBM Tivoli Directory

Integrator

Before you install

Before you install, please read the following sections and make sure your system meets the

minimum requirements.

Disk Space Requirements

The IBM Tivoli Directory Integrator 6.1 Solution Installer requires 450 MB of temporary disk

space during installation, and additionally the following amount of diskspace for the TDI

components that will remain on the box after installation:

Disk space requirements by platform for a Typical installation:

v Windows (32 and 64bit): 341 MB

v Linux (32 and 64bit): 413 MB

v AIX: 342 MB

v Solaris: 453 MB

v HPUX: 562 MB

Disk space requirements by platform for a Custom installation in which all components are

selected:

v Windows (32 and 64bit): 564 MB

v Linux: (32 and 64bit) 643 MB

v AIX: 556 MB

v Solaris: 773 MB

v HPUX: 858 MB

The precise amount of required disk space depends on the components you choose to install.

To calculate precisely the necessary disk space, add together the disk space requirements for

each component you want to install. See “Components in IBM Tivoli Directory Integrator” on

page 4 for the required disk space for each TDI component.

Memory Requirements

The IBM Tivoli Directory Integrator 6.1 Installer requires 512 MB of memory. The precise

amount of required memory after installation depends on the components you choose to

install.

To calculate the necessary memory requirements, add together the memory requirements for

each component you want to install. See “Components in IBM Tivoli Directory Integrator” on

page 4 for the memory requirements of each TDI component.

© Copyright IBM Corp. 2003, 2006 3

Memory requirements for a Typical installation: 484 MB

Memory requirements for a Custom installation with all components: 868 MB

Platform Requirements

See Chapter 3, “Supported platforms,” on page 45

Components in IBM Tivoli Directory Integrator

The following components are available and selectable for installation as part of IBM Tivoli

Directory Integrator 6.1:

Runtime Server

A rules engine used to deploy and run TDI integration solutions.

v Disk space requirements: 25 MB

v Memory requirements: Each TDI server instance requires at least 256 MB. NOTE:

More RAM may be required depending on the size and complexity of the solution

being created.

Config Editor

A development environment for creating, debugging and enhancing TDI integration

solutions. If this component is selected, the Runtime Server is also selected by default.

v Disk space requirements: 2.5 MB

v Memory requirements: 128 MB.

Javadocs

Full HTML documentation of TDI internals. Essential reference material for scripting

in solutions, as well as for developing custom components.

v Disk space requirements: 59 MB

v Memory requirements: N/A

Examples

A series of short, illustrative example Configs that highlight specific TDI features or

components.

v Disk space requirements: 2.5 MB

v Memory requirements: N/A

IEHS v3.01 (local help)

You can install an IBM Eclipse Help System locally as an alternative to using the

global online help service. This option requires manual download and deployment of

the TDI help files after installation.

 Disk space requirements by platform:

v Windows (32 and 64bit): 21.2 MB

v Linux (32 and 64bit): 14.8 MB

v AIX: 14.7 MB

v Solaris: 14.8 MB

4 Administrator Guide

v HPUX: 14.7 MB

Memory requirements: 128 MB. 256 MB or more is recommended.

Note: You need to increase memory according to the size of the documentation

plug-ins. For example, if the size of the documentation is 100 MB, add at least

80 MB of additional RAM.
If your platform meets these requirements, you can proceed with the download and

install instructions documented in “Installing local Help files” on page 17.

AMC: Administration and Monitoring Console

A browser-based application for monitoring and managing running TDI Servers.

v Disk space requirements: 74 MB

v Memory requirements: 128 MB

Embedded version of WebSphere Express v6.0.2

A lightweight application server you can install as an alternative to deploying

Administration Monitoring Console (AMC) on an existing WAS installation. If this

component is selected AMC is also selected by default.

 Disk space requirements by platform:

v Windows (32 and 64bit): 172 MB

v Linux (32 and 64bit): 141 MB

v AIX: 125 MB

v Solaris: 231 MB

v HPUX: 207 MB

Memory requirements: 128 MB

Note: Embedded version of WebSphere Express v6.0.2 requires the use of ports. The

ports for the embedded version of WAS shipped with TDI are:

v HTTP – 13100

v HTTPS – 13101

v RMI – 13102

v SOAP - 13103

Additional components automatically installed that are not selectable:

JRE (Java Runtime Environment) 5.0 SR1

A subset of the Java Development Kit (JDK) that contains the core executables and

files that constitute the standard Java platform. The JRE includes the Java Virtual

Machine (JVM), core classes, and supporting files.

 Disk space requirements by platform:

v Windows: 60 MB

v Linux: 60 MB

Chapter 2. Installation instructions for IBM Tivoli Directory Integrator 5

v AIX: 60 MB

v Solaris: 120 MB

v HP: 100 MB

Memory requirements: N/A

Note: This package is installed automatically (one copy only) when any of the

following components are installed:

v Runtime Server

v Config Editor

v IEHS v.301

The JRE used for any of the installed TDI packages is independent of any

system-wide JRE or JDK you may have installed on your system.

TDI 6.1 License Package

The license files for IBM Tivoli Directory Integrator 6.1.

 Disk space requirements: 7KB

 Memory requirements: N/A

Note: This package is installed automatically (one time only) when any other

selectable TDI component is installed.

TDI 6.1 Uninstaller

The uninstaller program for TDI 6.1.

 Disk space requirements by platform:

v Windows: 73 MB

v Linux: 89 MB

v AIX: 73 MB

v Solaris: 98 MB

v HP: 167 MB

Memory requirements: N/A

Note: This package is installed automatically (one time only) when any other

selectable TDI component is installed.

SI (Solution Install) 1.2.1 FP 16

The IBM Tivoli Directory Integrator 6.1 Installer is built on top of the in IBM Solution

Install (SI) technology. SI is a platform neutral installation registry component. During

installation of TDI, IBM Solution install 1.2.1 FP 16 is installed and is used by other SI

based installers in the future.

 Disk space requirements by platform:

v Windows: 101 MB

6 Administrator Guide

v Linux: 157 MB

v AIX: 102 MB

v Solaris: 129 MB

v HP: 188 MB

Memory requirements: 100 MB

Note: This package is installed automatically (one time only) when any other

selectable TDI component is installed. Also, this component requires the use of

port 4130.

DEUI (Deployment Engine Update Installer) 1.2.1

The Deployment Engine Update Installer is an application that will be used to install

maintenance fixes for TDI 6.1 and other products whose installers are SI based.

 Disk space requirements:17 MB

 Memory requirements: N/A

Other requirements

Solution Install Considerations

You do not need to take any action in regard to the Solution Installer, but be aware of the

following issues before you run the TDI 6.1 Installer:

v SI will be installed during the initial portion of the installer if it does not exists or if your

box has an older version of SI currently installed. SI will remain on your box even if you

cancel out of the installer.

v Solution Install will not be removed from your box when IBM Tivoli Directory Integrator

6.1 is uninstalled because it is an install registry that is shared by other products.

v SI as an installation registry server on your machine will require the use of port 4130 to

receive requests. If you have a firewall on your machine you will need enable localhost

traffic on port 4130. If your firewall asks you to allow the TDI 6.1 installer/uninstaller to

contact an application running on port 4130 on localhost, you must allow it or the

installer/uninstaller will fail.

Note: The IBM Tivoli Directory Integrator 6.1 installer/uninstaller will only be making a

connection to your local box and nothing external.

Root or Administrator Privileges

On Windows platforms, the installer (by default) requires that the ID you use to install TDI be

the Administrator ID or a member of the Administrators group. On UNIX platforms, the

installer (by default) requires that you run as root, or are able to execute the sudo command.

The installer will fail if the user ID used to install TDI does not have these privileges.

Chapter 2. Installation instructions for IBM Tivoli Directory Integrator 7

We recommend that TDI is installed by an Administrator or root id, for respectively Windows

and UNIX platforms. However, in order for a non-admin user to install, you must use the

option -siinstall true on the command line. If you do not have admin privileges, you

cannot uninstall an admin installed TDI.

If you as a non-admin user are installing TDI, and SI has not been installed globally (by an

Administrator or root) then a local copy of SI will be created in your home directory. If SI has

been installed globally (by an admin) then the non-admin install will use the global SI.

Notes:

1. You must have the proper authority to write to the specified install directory, if you use

-siinstall true.

2. IBM Tivoli Directory Integrator 6.1 will not be seen or available to other users on the

machine unless a global SI is already installed on the Operating System.

Installing IBM Tivoli Directory Integrator

IBM Tivoli Directory Integrator 6.1 installer allows you to install all TDI components or only

those components you need. The following sections contain information about installing TDI.

Launching the appropriate installer

You can launch the IBM Tivoli Directory Integrator 6.1 Installer by using one of the following

methods:

Launch the installer from the Launchpad

The TDI Launchpad provides key getting started installation information and links to

more detailed information on various installation, migration, and post install topics. In

addition, it provides a mechanism to launch the TDI installer. To start Launchpad,

type the following at the command prompt:

1. Open the TDI Launchpad by typing the following at the command prompt:

v For Windows platforms, type:

Launchpad.bat

v For all other platforms, type:

Launchpad.sh

The menu on the left of the Launchpad allows you to navigate the Launchpad

panels. Click a menu item to view information about it. The following menu items

are available:

Welcome

The Welcome panel contains links to

v TDI Website

v 6.1 Documentation

v Support Web site

v TDI newsgroup

8 Administrator Guide

The choices on the left will choose TDI Launchpad panels:

Release Information

The Release Information panel contains a list of some of the new and

improved features available this release, as well as links to documentation

about the release.

Prerequisite Information

This panel contains links to information about platform support and

hardware requirements.

Installation scenarios

This panel contains a description of the TDI components available for

installation. You can install some or all of these components during

installation. This panel also contains a description of the Password

Synchronization Plugins components available for installation.

Chapter 2. Installation instructions for IBM Tivoli Directory Integrator 9

Migration Information

This panel contains a link to information about migrating from TDI 6.0 to

6.1. It also contains information about migrating the Cloudscape System

Store.

Install IBM Tivoli Directory Integrator

This panel contains links to the IBM Tivoli Directory Integrator Installer, as

well as links to installation, migration and supported platforms

documentation. See for instructions on how to use the IBM Tivoli

Directory Integrator Installer.

Install IBM Tivoli Directory Integrator Password Synchronization Plug-ins

This panel contains links to the IBM Tivoli Directory Integrator Password

Synchronizer Plug-ins Installer, as well as links to installation and

supported platforms documentation.

Note: This panel is not available on Linux PPC and Linux 390 platforms.

Exit Exits the Launchpad, without installing anything.
2. On the installation panel, click IBM Tivoli Directory Integrator Installer. This

launches the installer. See “Using the platform-specific TDI installer” on page 11

for instructions on how to use the installer.

Launch the installer directly

You can launch the installer directly using the installation executable:

1. Locate the install executable file for your platform in the tdi_installer directory

on the product CD (replace ".exe" to ".bin" on all other platforms than Windows):

Windows Intel

install_tdiv61_windows.exe

Windows AMD64/EM64T

install_tdiv61_amd64windows.exe

AIX install_tdiv61_aix.bin

Linux install_tdiv61_linux..bin

Linux AMD 64

install_tdiv61_amd64linux.bin

Power PC Linux

install_tdiv61_ppclinux.bin

zOS Linux

install_tdiv61_zlinux.bin

Solaris

install_tdiv61_solaris.bin

HPUX install_tdiv61_hpux.bin

10 Administrator Guide

2. Double-click the executable, or type the executable name at the command prompt.

This launches the installer. See “Using the platform-specific TDI installer” for

information on how to use the installer.

Once you have launched the installer (using the Launchpad or by starting the

platform-dependent installer directly), you are ready to begin the process of installing TDI.

Note: The default for installing the product, requires Administrator privilege.

Using the platform-specific TDI installer

 1. If a version of TDI 6.1 is detected, you are given the option to install a copy of TDI 6.1 to

a new location, or to update an existing copy of TDI 6.1.

Notes:

a. Note that the button which is pre-selected is the Update option.

b. You can also install an entirely new copy of TDI 6.1.

 Select the radio button next to the option you want to use and click Next.

If there is no copy of TDI 6.1 installed, you will bypass this screen and get the "Welcome"

panel of the platform-specific installer:

Chapter 2. Installation instructions for IBM Tivoli Directory Integrator 11

2. The "Welcome" panel of the TDI Installer provides you with information about IBM

Tivoli Directory Integrator version 6.1. Click Next to continue.

 3. After reading the Software license agreement, select I accept the terms in the license

agreement if you accept its terms. Click Next to continue.

 4. The following step is contingent upon a copy of TDI 6.0 installed. If this is the case , you

will be presented by a screen in which the "Install TDI version 6.1 to a new location"

radio button is pre-selected:

12 Administrator Guide

Select the radio button next to the option you want to use and click Next. However, if

you select the option to "Upgrade one of the following TDI installations to version 6.1",

the screen changes as follows:

Chapter 2. Installation instructions for IBM Tivoli Directory Integrator 13

Note: There is no version detection and automated upgrade for versions prior to TDI 6.0.

 5. Select the installation type you prefer:

v Select Typical to install the TDI Server, Config Editor, JavaDocs and Examples. This

option does not give you the opportunity to install individual features.

v Select Custom to choose individual features to install.
 6. Click Next.

 7. Select a directory where the product will be installed and click Next.

Note: This panel is not displayed if you selected to upgrade by installing TDI 6.1 on top

of TDI 6.0.

 8. If you are performing a custom installation, select the TDI components you want to

install. See “Components in IBM Tivoli Directory Integrator” on page 4 for a list and

descriptions of components available for installation. When you have finished making

your selections, click Next.

 9. If you are performing a typical installation, or if you selected to install the Runtime

Server, you must select a Solutions directory. The Solutions directory is where the TDI

Server and Config Editor locate your solutions, like Config files and properties files. Do

the following:

a. Select one of the following options:

14 Administrator Guide

v Use a TDI subdirectory under my home directory. This creates a subdirectory

under your home directory (in the rest of this documentation called the solution

directory); for example for Windows:

C:\Documents and Settings\<username>\My Documents\TDI

v Use Install Directory. This is the directory you specified in step 7 on page 14.

v Select a directory to use. Browse to or type the name of a directory. Any directory

reachable on the local machine can be established as the default Solution Directory.

v Do not specify. Use the current working directory at startup time.
b. Click Next.

Note: This panel is not displayed if you selected to upgrade by installing TDI 6.1 on top

of TDI 6.0.

10. If you are performing a custom installation and you selected to install the

Administration and Monitoring Console (AMC), but did not elect to install the embedded

version of WebSphere, you must select a WebSphere Application server and profile:

a. Select the WebSphere Application Server into which you want to load AMC.

v You can select a currently installed WebSphere Application Servers, if any are

detected, by selecting the Detected WebSphere Application Server radio button

and selecting the desired server from the drop-down menu.

v You can create a custom location for the WebSphere Application Server by selecting

the Custom location of WebSphere Application Server. Use the Browse button to

navigate to the desired location.

v To manually deploy AMC at a later time, select the Do not specify. I will manually

deploy AMC at a later time.

b. Click Next.

c. Select a profile in which to deploy AMC from the drop-down menu. If you selected to

install the AMC, select a WebSphere Application Server into which to AMC.

Note: This panel does not display if you did not specify a WebSphere Application

server in step 10a.

d. Click Next.
11. If you selected to upgrade by installing TDI 6.1 on top of TDI 6.0, and have used a

Cloudscape database as a System Store in the context of TDI 6.0, an information panel

appears with the following message: "The Cloudscape system store data will be migrated

to Cloudscape v10.1 to make it compliant with IBM Tivoli Directory Integrator 6.1". No

action is required. Click Next.

12. Review the installation information you have selected. Click Back to make any changes.

When you are ready to begin installation, click Install.

13. When product finishes installing, click Next.

14. Click Finish to complete the installation process.

Chapter 2. Installation instructions for IBM Tivoli Directory Integrator 15

Installing using the command line

The following command line options are supported by the TDI 6.1 installer:

-console:

Specifies to use the console interface mode, where messages during installation are

displayed on the Java console and the wizard is run in console mode.

<Install Wizard>/install_tdiv61_windows.exe –console

(Note: This has not been implemented yet.)

-options-record

Specifies that the TDI Install Wizard should automatically generate a response file for

the project after the completion of the installation/uninstallation.

<Install Wizard>/install_tdiv61_windows.exe –options-record <Response File Name>

-options

Specifies that a response file be used to execute the installation/uninstallation of TDI.

A response file is usually used when a silent installation is run (see the next option).

<Install Wizard>/install_tdiv61_windows.exe –options <Response File Name>

-silent Specifies to install or uninstall the product in silent mode, where the

installation/uninstallation is performed with no user interaction. The –options

command line option is used here to specify what response file to use.

<Install Wizard>/install_tdiv61_windows.exe –silent –options <Response File Name>

<Install Location>/_uninst/uninstaller.exe -silent -options <Uninstall Response>

-is:javahome <java home directory>

Specifically tells the launcher the home directory location of the JVM to use. The JVM

that is specified must be at the 1.4.2 level (currently we are bundling 1.5 SR1).

 <Install Wizard>/install_tdiv61_windows.exe –is:javahome c:\Java142

-is:log <filename>

This option is useful for setup launchers that hide the Java console because it logs the

detailed information about the launcher’s processing, including the actual Java

commands that were used to start the Java program, to the specified fileName. This

includes all of the ″std out″ and ″std err″ messages from the Java process.

<Install Wizard>/install_tdiv61_windows.exe –is:log c:\temp\Log.txt

-is:silent

Prevents the display of the Launcher UI to the end user. This does not launch the

application in silent mode (prevent the display of the wizard). Use the -silent option

to run in silent mode.

-is:tempdir <directory>

Sets the path to the temporary directory to which the launcher should write its

temporary files. If the specified directory does not exist or is not a directory, the

launcher will use the system temp directory instead, and no error message is

provided.

16 Administrator Guide

<Install Wizard>/install_tdiv61_windows.exe –is:tempdir c:\privateTemp

The following command line options are unique to the TDI Install Wizard:

-siinstall <true>

Specifies whether you are required to have administrative (root) authority. When set

to “true” administrative authority is not required, and non-administrative users will

be allowed to install TDI; however, the directory in which TDI is installed must be

writable for the person performing the install. For example:

 <Install Wizard>/install_tdiv61_windows.exe –siinstall true

Note: Your must have the proper authority to write to the install directory specified

in the Installer.

-V TDI_BackupAMC

This parameter should only be passed in on an uninstall. This parameter is provided

for future migration considerations.

<Install Location>/_uninst/uninstaller.exe –V TDI_BackupAMC=true

Performing a silent install

To perform a silent installation you must first generate a response file. To generate this file,

perform a non-silent install with the -options-record option specified; for example:

<Install Wizard>/install_tdiv61_windows.exe –options-record <Response File Name>

The response file is created in the directory that you specify during installation. Once the

response file is created, you can install silently using the following command:

<Install Wizard>/install_tdiv61_windows.exe –silent –options <Response File Name>

Note: The examples use the Windows platform install executable. See “Launching the

appropriate installer” on page 8 for a list of executable names for each supported

platform.

Note: On Windows, a shortcut to the Config Editor is created on the desktop.

Installing local Help files

As the IBM Tivoli Directory Integrator installer does not contain any user documentation,

other than the Javadocs API documentation (which can be displayed by selecting the

Help>Low Level API menu in the Config Editor). IBM provides the user documentation in

online form in an Infocenter, at http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/
topic/com.ibm.IBMDI.doc_6.1/welcome.htm

IBM Tivoli Directory Integrator is equipped with code1 to provide you with

context-dependent online Help that you can launch from the Config Editor (CE). By default,

1. The help system is powered by Eclipse technology. (http://www.eclipse.org)

Chapter 2. Installation instructions for IBM Tivoli Directory Integrator 17

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.IBMDI.doc_6.1/welcome.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.IBMDI.doc_6.1/welcome.htm
http://www.eclipse.org

this code will resolve the documentation from the online Infocenter as referenced above. You

can, however, install the documentation locally, such that you are not dependent upon the

Internet to be able to read it.

These are the steps you must take to install documentation locally:

v All the manuals are bundled together in one zipped directory, which when unzipped will

contain an Eclipse Document plugin.

v Download the manuals, in their zipped form, from the IBM TDI documentation site, at

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.IBMDI.doc_6.1/
welcome.htm

v Un-zip the documentation package, di_plugins-6.1.zip into the right place:

installation_directory/ibm_help/eclipse/plugins folder (or unzip somewhere else, and move into

the right place). The package contains the actual TDI documentation in

com.ibm.IBMDI.doc_6.1, alongside a number of other directories whose names end in .doc –

all those directories should be at the same aforementioned plugins level.

v The location of the documentation that the CE tries to access is set in the

global.properties file, which resides at the root level of the installation directory of IBM

Tivoli Directory Integrator, or solutions.properties in the Solution Directory. By default,

this points to the Online Infocenter, but if you comment the line

Name of help server, comment out if you want local help system

com.ibm.di.helpHost=publib.boulder.ibm.com/infocenter/tiv2help/index.jsp?topic=

such that it reads

Name of help server, comment out if you want local help system

#com.ibm.di.helpHost=publib.boulder.ibm.com/infocenter/tiv2help/index.jsp?topic=

then next time you run the CE and launch Help, it will start a local task to serve the

documentation, from the content in the plugins directory.

v The location of the documentation server that AMC tries to access is set in AMC’s web.xml

file. Open the web.xml file which will be located in the WEB-INF folder of tdiamc webapp

and mention the help server’s IP address (or hostname) and port for both occurrences of

the following attributes: InfocenterHostName and InfocenterPort.

After you install the documentation in the plugins directory as outlined above, you can also

decide to host the documentation on that machine for other installations of IBM Tivoli

Directory Integrator in your neighborhood. In the installation_directory/ibm_help directory there

are a number of .bat files (Windows) or .sh files (Unix/Linux) that enable you to do this.

IC_start.bat or IC_start.sh

If you run this script, this will start an Infocenter on http://your_IP_address:8888

 By editing this file, you can change the port number from the default, 8888; if you

want to change this, to for example 80, change "-port 8888" to "-port 80" instead of

-port 8888. On those clients that are trying to access this Infocenter, the port must

match another property in the global.properties or solution.properties file,

com.ibm.di.helpPort – its default is set to 80. Also, the com.ibm.di.helpHost property

18 Administrator Guide

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.IBMDI.doc_6.1/welcome.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.IBMDI.doc_6.1/welcome.htm

should read something like infocenter_IP_address/help, where infocenter_IP_address

is the address of your local Infocenter.In addition, in order for AMC to find this

Infocenter, you need to update the parameters InfoCenterHostname and

InfoCenterPort attributes in AMC's configuration file, web.xml, to match the values

above.

IC_stop.bat or IC_stop.sh

Stops the help system, a Java program, that serves the local Infocenter.

help_start.bat or help_start.sh

Similar to IC_start, except the port used will be a random one, and it will also launch

a local browser showing the start page. As the port is random, unsuitable for use

other than on the local machine.

help_stop.bat or help_stop.sh

Stop the local Java task that was started by WebSphere_help_start.

Uninstalling

You can uninstall TDI in its entirety, or uninstall only certain components.

Launching the uninstaller

To uninstall IBM Tivoli Directory Integrator, you must first launch the uninstaller:

1. Navigate to the TDI _uninst directory, for example:

<install_path>/_uninst

2. Launch the uninstaller by executing the uninstall executable.

For Windows platforms, the uninstall executable is called uninstaller.exe. For all other

platforms, the uninstall executable is called uninstaller.bin.

Note: On Windows platforms, you can also uninstall using the Add/Remove programs

Control Panel.

Uninstalling individual TDI components

To uninstall certain TDI components:

1. On the "Welcome" panel, select the Remove Features radio button

2. Click Next.

3. Installed features are indicated by check marks. To uninstall a feature, click the check mark

to deselect it. The check mark will be removed.

4. Click Next.

5. Verify the list of features to be removed under Features to Remove.

6. Click Back to make any changes. When you are ready to uninstall, Click Uninstall.

7. When the uninstall completes, click Finish.

Chapter 2. Installation instructions for IBM Tivoli Directory Integrator 19

Uninstalling IBM Tivoli Directory Integrator

To uninstall all IBM Tivoli Directory Integrator components:

1. On the "Welcome" panel, select the Remove radio button

2. Click Next.

3. Verify that you want to uninstall IBM Tivoli Directory Integrator.

4. Click Back to make any changes. When you are ready to uninstall, click Uninstall.

5. When the uninstall completes, click Finish.

Performing a silent uninstall

To perform a silent uninstall of IBM Tivoli Directory Integrator you must first generate a

response file. To generate this file, you must perform a full GUI uninstall with the

-options-record option specified; for example:

<install_path>/_uninst/uninstaller.exe –options-record <UninstallResponseFileName>

The response file is created in the directory that you specify during uninstallation. Once the

response file is created, you can uninstall silently using the following command:

<install_path>/_uninst/uninstaller.exe -silent -options <UninstallResponseFileName>

Note: The examples use the Windows platform uninstall executable.

Default install locations

IBM Tivoli Directory Integrator installs to the following default locations:

Windows platforms

c:\Program Files\IBM\TDI\V6.1

Linux and UNIX platforms (AIX, HPUX, Solaris)

/opt/IBM/TDI/V6.1

Distribution components

Here is the list of components (.jar and .dll files) installed on your computer with IBM Tivoli

Directory Integrator.

.jar files are found in the jars/ subdirectory. Connectors, EventHandlers, Function

Components and Parsers are found in separate subdirectories and not described here.

Root directory

The Root directory is the directory where TDI 6.1 is installed, see also “Default install

locations.”

IDILoader.jar

TDI classloader.

20 Administrator Guide

ibmditk

Executable file for graphical user interface (GUI), also known as Config Editor (CE).

Non-Windows platforms only.

Note: The PATH system variable is not set during installation. Set the path so

commands such as ibmditk can work in a directory other than the IBM Tivoli

Directory Integrator root directory.

ibmditk.bat

Like ibmditk above, except for Windows® platforms.

ibmdisrv

Executable file for the TDI server (non-Windows platforms only).

Note: The PATH system variable is not set during installation. Set the path so

commands such as ibmdisrv can work in a directory other than the IBM Tivoli

Directory Integrator root directory.

ibmdisrv.bat

Like ibmdisrv above, except for Windows platforms.

ibmdicwd.bat

Necessary on Windows to change the working directory to the value of the first

parameter.

testserver.der

Exported sample server certificate, ready to be imported in a truststore.

testserver.jks

Sample server keystore and truststore. This file is referenced as an example in .

Root directory/amc

This folder contains only one file, tdiamc.war. This folder is created only if the AMC option is

selected during the TDI Installation process. This WAR file is placed so that administrators

can choose to deploy this file on any J2EE compliant Web container like IBM WebSphere

Application Server, Tomcat, etc.

Root directory/bin

This folder contains various utility scripts for TDI. The list of various files is:

collect.bat(sh)

This script collects serviceability info.

createstash.bat(sh)

A command line utility for creating a stash file

dirlist.txt

List of directories that will be backed up by the collect script

filelist.txt

List of files that will be backed up by the collect script

Chapter 2. Installation instructions for IBM Tivoli Directory Integrator 21

logcmd.bat(sh)

Utility to configure JLog trace properties dynamically

tdisrvctl.bat(sh)

Remote command line interface to manage TDI Configs and AssemblyLines.

Root directory/bin/amc

This folder contains scripts for AMC and Action Manager. This folder will be created only if

the AMC option is selected during the TDI 6.1 Installation process.

backupamc.bat(sh)

Backup script for storing AMC data and configuration files.

createProfile.bat(sh

Wrapper script over wasprofile.bat(sh) for creating a WAS profile.

deleteProfile.bat(sh)

Wrapper script over wasprofile.bat(sh) for deleting a WAS profile.

install.bat(sh)

Wrapper script over wsadmin command for installing AMC into amcprofile. Modify

the APPSRV_INSTALLROOT variable to point to custom WAS install location and

AMC_PROFILE variable to point to custom profile if you wish to install AMC on a

different WAS server instance and profile.

migrateamc.bat(sh)

Wrapper script which internally calls backupamc, uninstall, stopServer, install,

restoreamc and startServer to perform a migration of amc. You can instead also

choose to run each of these commands individually for better control and debugging.

reinstall.bat(sh)

Wrapper script which internally calls uninstall, stopServer, install, startServr to

perform a re-installation of AMC. Users can instead also choose to run each of these

commands individually for better control and debugging.

restoreamc.bat(sh)

Script for restoring contents of AMC backed up by the backupamc script.

start_tdiamc.bat(sh)

Script for starting AMC on WAS. This is a wrapper script which calls startServer.

Modify the APPSRV_INSTALLROOT variable to point to custom WAS install location

and AMC_PROFILE variable to point to custom profile if you wish to start AMC on a

different WAS server instance and profile.

startAM.bat(sh)

Script for starting Action Manager.

stop_tdiamc.bat(sh)

Script for stopping AMC on WAS. This is a wrapper script which calls stopServer.

22 Administrator Guide

Modify the APPSRV_INSTALLROOT variable to point to custom WAS install location

and AMC_PROFILE variable to point to custom profile if you wish to stop AMC on a

different WAS server instance and profile.

stopNetworkServer.bat(sh)

Script for stopping Cloudscape Network Server. Both Action Manager and AMC talk

to Cloudscape database in network mode. When Action Manager is started, it

attempts to connect to AMC DB in network mode. If the AMC DB is not started, then

it starts the network server. But, on termination of Action Manager, the network

server is not stopped – since there may be AMC already connected to Cloudscape. For

this reason, when administrators wish to stop the cloudscape network server, they can

use this utility. Note: This utility stops any Cloudscape network server running on

localhost and port 1527. If you have modified AMC and Action Manager to use a

Cloudscape Network Server on a different port, then modify this script before running

the script.

uninstall.bat(sh)

Wrapper script over the wsadmin script for uninstalling AMC from WAS. Note: It is

mandatory for the WAS server to be running for being able to uninstall any Web

Application.

Root directory/bin/amc/ActionManager: This folder contains all configuration files, log files

and jars for running Action Manager.

am_config.properties

Action Manager configuration file.

am_logging.properties

The Action Manager logging configuration file.

logs/ folder

This folder will contain the logs for every run of Action Manager.

jars/ folder

This folder contains the jar files necessary for ActionManager to run. List of jar files in

this folder are:

action_manager.jar

db2jcc.jar

db2jcc_license_c.jar

derby.jar

derbyclient.jar

derbyLocale_de_DE.jar

derbyLocale_es.jar

derbyLocale_fr.jar

derbyLocale_it.jar

derbyLocale_ja_JP.jar

derbyLocale_ko_KR.jar

derbyLocale_pt_BR.jar

Chapter 2. Installation instructions for IBM Tivoli Directory Integrator 23

derbyLocale_zh_CN.jar

derbyLocale_zh_TW.jar

derbynet.jar

derbytools.jar

diserverapi.jar

diserverapirmi.jar

icu4j_3_4_1.jar

log4j-1.2.8.jar

miconfig.jar

miserver.jar

mmconfig.jar

tdiresource.jar

Root directory/AppServer

This folder is created by the TDI 6.1 installer only if the option of installing Embedded WAS

Express 6.0.2 is chosen during installation. This folder contains the Embedded WAS Express

image, and can be used to run AMC. The TDI 6.1 installer can automatically deploy AMC on

this image. AMC is installed on the following location in such a case: AppServer/profiles/
amcprofile/installedApps/DefaultNode/tdiamc.war.ear/tdiamc.war/

Root directory/doc

This folder is created by the TDI 6.1 installer only if the option of installing Java Docs is

chosen. This folder contains the low level Java documentation of the various classes and

methods in TDI 6.1. For viewing the Java documentation point your browser to the

docs/api/index.html file (or select Help->Low Level API from the CE.)

Root directory/etc

This folder contains all the configuration files for the TDI 6.1 Server and its components like

the Config Editor and CLI.

build.properties

Contains the TDI Build information, build date, version, etc.

ce-log4j.properties

A log4j properties file for controlling the logs generated by the TDI 6.1 Config Editor

(ibmditk).

CSServersInfo.xml

An XML repository file for storing multiple System Store configuration details.

derby.properties

The default configuration file for Cloudscape System Store shipped with TDI 6.1. For

more details on this file refer the Cloudscape v10 documentation on the IBM Website .

executetask.properties

This file controls the logging strategy of the TDI server (ibmdisrv) when started from

Configuration Editor (ibmditk). This is a log4j configuration file.

global.properties

This file is the main configuration file for TDI 6.1.

24 Administrator Guide

global.properties.v61

This is a placeholder for a sample file of TDI 6.1. This file is non-empty only if you

have chosen to upgrade from previous versions of TDI to TDI 6.1. In such cases, since

the file is a migrated file, it would be helpful for you to compare your migrated file to

.v61 to see how it is different from doing a clean install. This file can be a helpful

reference.

ibmdi.ico

The icon file for TDI 6.1.

ITDIJ060100.sys

This is product signature (license) file used by the ITLM agent to recognize TDI.

jlog.properties

The JLog configuration file for TDI 6.1

log4j.properties

The Log4j configuration file for controlling theTDI 6.1 Server (ibmdisrv) logging.

reconnect.rules

A text file where you can define reconnect rules on how reconnect exceptions should

be handled by TDI.

tdisrvctl-log4j.properties

The Log4j configuration file for controlling the log traces generated by the tdisrvctl

command line utility.

Root directory/classes

This folder is intended to contain user-provided class files that are loaded by the system class

loader. This folder can be used for specifying custom classes which must be loaded by the

system class loader.

For example, in order to use SSL with Domino and the Domino Connectors (IIOP Session) one

needs to put a Domino-generated class in this folder.

In order for a class file to be loaded by the system class loader, the class file needs to be

copied to this folder. If the class is inside a Java package, then the class file must be put in the

corresponding folder under the “classes” folder. For example, if a class file is contained in a

Java package named “com.ibm.di.classes”, then the class file must be put inside the

“<TDI_Install_Folder>/classes/com/ibm/di/classes” folder.

Only the class files in the “classes” folder are loaded. That means that if a jar file is located in

this folder, it will not be loaded at all. If the classes are packed in a jar file, then these classes

need to be extracted from the jar file into the “classes” folder. After TDI installation this folder

is empty.

Root directory/examples

This folder contains TDI examples. Each example is in a separate folder. Every example

contains a “readme.txt” file with additional details about how to setup and run the example.

Chapter 2. Installation instructions for IBM Tivoli Directory Integrator 25

Root directory/installLogs

This folder will contain the AMC installation logs if AMC is chosen to be installed during TDI

6.1 installation.

Root directory/libs

On the Windows platform, this folder contains DLL files for a few of the TDI 6.1 components.

The list of installed files is: COMProxy.dll, domchdet.dll, NTEventLogAppender.dll,

WindowsUsers.dll.

Root directory/logs

The logs generated by TDI Server, Config Editor and Command Line Interface(tdisrvctl) go

into this folder. The Server logs by default are ibmdi.log, Config Editor logs are ibmditk.log,

and tdisrvctl logs are tdisrvctl.log.

Root directory/performance

Utilities for Unix platforms. Not installed on Windows.

benchmark.properties

Configuration file for specifying benchmark and throughput properties.

ibmdibenchmark.sh

Runs the benchmark utility.

ibmdisrvtp.sh

Runs the throughput utility.

tdiperfhead.sh

Common script used by ibmdibenchmark.sh and ibmdisrvtp.sh.

Root directory/tools/CSMigration

Contains Cloudscape v5 to Cloudscape v10 migration utility. You can use this utility to

automatically migrate your Cloudscape system store of TDI 6.0 to TDI 6.1. This folder

contains two files:

migrateCS.bat(sh)

The script to run for migration

migratetoderby.jar

Library jar file used by the migrateCS script.

Root directory/XSLT/ConfigReports

Contain XSL files, images and translation folder. These are used to generate the various

Config Reports for an AssemblyLine. The Config Report option is shown to the user when he

right clicks on an AssemblyLine in the pop-up context menu.

Root directory/_uninst

This directory contains the uninstaller executable for the application and other related files the

uninstaller executable depends on.

26 Administrator Guide

jvm/ folder – This is the JRE 1.4.2 SR4 folder used by the installer tools. It contains a doc folder,

a jre folder and a COPYRIGHT file. This jvm folder is unrelated to the “Root directory/jvm”

folder of the actual TDI 6.1 installation.

Root directory/jvm

This is the IBM JRE 1.5.0 SR1 folder used by TDI 6.1. It contains a doc folder, a jre folder and

a COPYRIGHT file.

Root directory/license

This folder contains TDI 6.1 License files and notices.

Root directory/ibm_help

This folder contains the IBM Eclipse Help System. This gets installed only if the IBM Eclipse

Help System (IEHS) option is chosen during TDI Installation. This help system can be used to

host TDI 6.1 documentation locally. See also “Installing local Help files” on page 17.

IC_start.bat(sh)

Script to start the Info Center. This InfoCenter will start an Embedded

Application/WebServer and listen for Browser requests (HTTP) on the port specified

by the –p option of the script.

IC_end.bat(sh)

Script to stop the Info Center.

help_start.bat(sh)

Script to start the Help System locally on a randomly generated port.

help_end.bat(sh)

Script to stop the local Help System.

eclipse/

Contains the Eclipse binaries for running the Help System. The TDI Documentation

plugin must be placed in the eclipse/plugin folder for it to show up in the IBM

InfoCenter Welcome Page.

Root directory/xsl

XSL files that are part of the IBM Tivoli Directory Integrator 6.1 Component Suite for SAP

R/3.

Root directory/serverapi

This folder contains several files used by the Server API.

v cryptoutils.bat – Command line utility used for encrypting/decrypting TDI configurations

and user registry.

v registry.enc - Encrypted version of the “registry.txt”.

v registry.txt - Example for a Server API user registry file.

v testadmin.der – Exported certificate from “testadmin.jks”.

v testadmin.jks - Example keystore/truststore file for a Server API remote client.

Chapter 2. Installation instructions for IBM Tivoli Directory Integrator 27

Root directory/win32_service

This folder contains files needed to run TDI as a Windows service.

v ibmdiservice.exe – Windows service implementation.

v ibmdiservice.props – Windows service configuration file.

Root directory/jars

 Table 1.

Location Filename Description

jars\3rdparty\IBM auibase.jar AUIML Library

jars\3rdparty\IBM com.ibm.mqjms.jar WebSphere MQ classes for Java

Message Service

jars\3rdparty\IBM db2jcc.jar IBM Cloudscape

jars\3rdparty\IBM db2jcc_license_c.jar IBM Cloudscape

jars\3rdparty\IBM derby.jar IBM Cloudscape

jars\3rdparty\IBM derbyclient.jar IBM Cloudscape

jars\3rdparty\IBM derbyLocale_de_DE.jar IBM Cloudscape

jars\3rdparty\IBM derbyLocale_es.jar IBM Cloudscape

jars\3rdparty\IBM derbyLocale_fr.jar IBM Cloudscape

jars\3rdparty\IBM derbyLocale_it.jar IBM Cloudscape

jars\3rdparty\IBM derbyLocale_ja_JP.jar IBM Cloudscape

jars\3rdparty\IBM derbyLocale_ko_KR.jar IBM Cloudscape

jars\3rdparty\IBM derbyLocale_pt_BR.jar IBM Cloudscape

jars\3rdparty\IBM derbyLocale_zh_CN.jar IBM Cloudscape

jars\3rdparty\IBM derbyLocale_zh_TW.jar IBM Cloudscape

jars\3rdparty\IBM derbynet.jar IBM Cloudscape

jars\3rdparty\IBM derbytools.jar IBM Cloudscape

jars\3rdparty\IBM dsml.jar ITDS DSML Library

jars\3rdparty\IBM enroleagent.jar ITIM DAML Library

jars\3rdparty\IBM help.jar IBM Eclipse-based Help System (IEHS)

jars\3rdparty\IBM ibmjms.jar JMS interfaces

jars\3rdparty\IBM ibmjs.jar IBM Script Engine

jars\3rdparty\IBM IBMLDAPJavaBer.jar IBMLDAPJavaBer

jars\3rdparty\IBM icu4j_3_4_1.jar ICU4J

jars\3rdparty\IBM ITLMToolkit.jar IBM Tivoli License Manager toolkit

jars\3rdparty\IBM jffdc.jar JFFDC

28 Administrator Guide

Table 1. (continued)

Location Filename Description

jars\3rdparty\IBM jlog.jar JLOG

jars\3rdparty\IBM MQeBase.jar MQ Everyplace

jars\3rdparty\IBM MQeJMS.jar MQ Everyplace

jars\3rdparty\IBM MQeSecurity.jar MQ Everyplace

jars\3rdparty\IBM regex4j.jar Regular Expression Library

jars\3rdparty\IBM remoteaccess.jar RXA (IBM Tivoli Remote Execution and

Access)

jars\3rdparty\IBM remoteaccess-as400.jar RXA (IBM Tivoli Remote Execution and

Access)

jars\3rdparty\IBM snmp.jar SNMP Library

jars\3rdparty\IBM ssh.jar RXA (IBM Tivoli Remote Execution and

Access)

jars\3rdparty\IBM viewer.jar Logxml Libraries

jars\3rdparty\IBM wsdl4j-1.5.1.jar Apache Axis

jars\3rdparty\others activation.jar JavaBeans Activation Framework

jars\3rdparty\others axis.jar Apache Axis

jars\3rdparty\others axis-ant.jar Apache Axis

jars\3rdparty\others axis-schema.jar Apache Axis

jars\3rdparty\others commons-discovery-0.2.jar Apache Axis

jars\3rdparty\others commons-logging-1.0.4.jar Apache Axis

jars\3rdparty\others hl14.jar TPTP Platform

jars\3rdparty\others hlcbe101.jar TPTP Platform

jars\3rdparty\others hlcore.jar TPTP Platform

jars\3rdparty\others jaxrpc.jar Java API for XML-Based RPC

(JAX-RPC)

jars\3rdparty\others jlanclient.jar RXA (IBM Tivoli Remote Execution and

Access)

jars\3rdparty\others log4j-1.2.8.jar LOG4J

jars\3rdparty\others mail.jar Sun library for POP/IMAP

jars\3rdparty\others saaj.jar SOAP with Attachments API for Java

(SAAJ)

jars\3rdparty\others\
emf

org.eclipse.emf.common_2.1.0.jar Eclipse Modeling Framework (EMF)

jars\3rdparty\others\
emf

org.eclipse.emf.commonj.sdo_2.1.0.jar Eclipse Modeling Framework (EMF)

Chapter 2. Installation instructions for IBM Tivoli Directory Integrator 29

Table 1. (continued)

Location Filename Description

jars\3rdparty\others\
emf

org.eclipse.emf.ecore.change_2.1.0.jar Eclipse Modeling Framework (EMF)

jars\3rdparty\others\
emf

org.eclipse.emf.ecore.sdo_2.1.1.jar Eclipse Modeling Framework (EMF)

jars\3rdparty\others\
emf

org.eclipse.emf.ecore.xmi_2.1.0.jar Eclipse Modeling Framework (EMF)

jars\3rdparty\others\
emf

org.eclipse.emf.ecore_2.1.0.jar Eclipse Modeling Framework (EMF)

jars\3rdparty\others\
emf

org.eclipse.xsd_2.1.1.jar Eclipse Modeling Framework (EMF)

jars\ce miadmin.jar TDI Config Editor

jars\common cli.jar Command Line Utility

jars\common diserverapi.jar Server API

jars\common diserverapirmi.jar Server API

jars\common EmfUtil.jar EMF Functional Components shared lib

jars\common ldapAuthModule.jar Server API

jars\common miconfig.jar Configuration interfaces

jars\common miserver.jar TDI Server

jars\common mmconfig.jar Configuration implementation

jars\common tdiresource.jar Server TMS implementation

jars\common WebServiceUtil.jar Web Services shared lib

jars\common wsprov.jar Web Services Provsioning

jars\common wstrust.jar Web Services Trust

jars\connectors ADChangelogConnector.jar Active Directory Changelog Connector

jars\connectors ADChangelogv2Connector.jar Active Directory Changelog (v.2)

Connector

jars\connectors ALConnector.jar AssemblyLine (Iterator) Connector

jars\connectors AxisEasyWSServerConnector.jar Axis Easy Web Service Server

Connector

jars\connectors BTreeObjectDBConnector.jar Btree Object DB Connector

jars\connectors CommandLineConnector.jar Command line Connector

jars\connectors DBChangelogConnector.jar RDBMS Changelog Connector

jars\connectors DominoChangeDetectionConnector.jar Domino Change Detection Connector

jars\connectors DominoUsersConnector.jar Domino Users Connector

30 Administrator Guide

Table 1. (continued)

Location Filename Description

jars\connectors DSMLv2SOAPConnector.jar DSMLv2 SOAP Connector

jars\connectors DSMLv2SOAPServerConnector.jar DSMLv2 SOAP Server Connector

jars\connectors ExchangeChangelogConnector.jar Exchange Changelog Connector

jars\connectors FileSystemConnector.jar File system Connector

jars\connectors FTPClientConnector.jar FTP Client Connector

jars\connectors HTTPClientConnector.jar HTTP Client Connector

jars\connectors HTTPServerConnector.jar HTTP Server Connector

jars\connectors IBMMQConnector.jar IBM MQ Connector

jars\connectors IDSChangelogConnector.jar IBM Directory Server Changelog

Connector

jars\connectors ITIMAgentConnector.jar ITIM Agent Connector

jars\connectors JDBCConnector.jar JDBC Connector

jars\connectors JMSConnector.jar JMS Connector

jars\connectors JMXConnector.jar JMX Connector

jars\connectors JNDIConnector.jar JNDI Connector

jars\connectors LDAPConnector.jar LDAP Connector

jars\connectors LDAPServerConnector.jar LDAP Server Connector

jars\connectors MailboxConnector.jar Mailbox Connector

jars\connectors MailboxConnectorUtils.jar Mailbox Connector shared lib

jars\connectors MemoryStreamConnector.jar Memory Stream Connector

jars\connectors MemQConnector.jar Memory Queue Connector

jars\connectors MQePasswordStoreConnector.jar MQe Password Store Connector

jars\connectors NetscapeChangelogConnector.jar Netscape/iPlanet Changelog Connector

jars\connectors NotesConnector.jar Lotus Notes Connector

jars\connectors OldHTTPClientConnector.jar Old HTTP Client Connector

jars\connectors OldHTTPServerConnector.jar Old HTTP Server Connector

jars\connectors PropertiesConnector.jar Properties Connector

jars\connectors SapR3BorConnector.jar Human Resources/Business Object

Repository Connector for SAP R/3

jars\connectors SapR3UserRegConnector.jar User Registry Connector for SAP R/3

jars\connectors ScriptConnector.jar Script Connector

jars\connectors ServerNotificationsConnector.jar Server Notifications Connector

jars\connectors SNMPConnector.jar SNMP Connector

Chapter 2. Installation instructions for IBM Tivoli Directory Integrator 31

Table 1. (continued)

Location Filename Description

jars\connectors SNMPServerConnector.jar SNMP Server Connector

jars\connectors SystemQueueConnector.jar System Queue Connector

jars\connectors SystemStoreConnector.jar System Store Connector

jars\connectors TCPConnector.jar TCP Connector

jars\connectors TCPServerConnector.jar TCP Server Connector

jars\connectors TimerConnector.jar Timer Connector

jars\connectors URLConnector.jar URL Connector

jars\connectors WindowsUsersGroupsConnector.jar Windows Users and Groups Connector

jars\connectors WSReceiverServerConnector.jar Web Service Receiver Server Connector

jars\connectors zOSChangelogConnector.jar z/OS Changelog Connector

jars\eventhandlers ADLDAPSwitchboardEventHandler.jar Active Directory Changelog

EventHandler

jars\eventhandlers ConnectorEventHandler.jar Connector EventHandler

jars\eventhandlers DSMLv2EventHandler.jar DSMLv2 EventHandler

jars\eventhandlers ExchangeLDAPSwitchboardEventHandler.jar Exchange Changelog EventHandler

jars\eventhandlers GenericThreadEventHandler.jar Generic thread (primitive

EventHandler)

jars\eventhandlers HTTPEventHandler.jar HTTP EventHandler

jars\eventhandlers LDAPDEventHandler.jar LDAP Server EventHandler

jars\eventhandlers LDAPEventHandler.jar LDAP EventHandler

jars\eventhandlers MailboxEventHandler.jar Mailbox EventHandler

jars\eventhandlers SecureWayEventHandler.jar IBM Directory Server EventHandler

jars\eventhandlers SNMPEventHandler.jar SNMP EventHandler

jars\eventhandlers TCPEventHandler.jar TCP Port EventHandler

jars\eventhandlers TimerEventHandler.jar Timer EventHandler (primitive

EventHandler)

jars\eventhandlers zOSLDAPEventHandler.jar zOS LDAP Changelog EventHandler

jars\functions AssemblyLineFC.jar AssemblyLine FC

jars\functions AxisEasyInvokeSoapWSFC.jar Axis EasyInvoke Soap WS FC

jars\functions AxisJavaToSoapFC.jar Axis Java To Soap FC

jars\functions AxisSoapToJavaFC.jar Axis Soap To Java FC

jars\functions CBEGeneratorFC.jar CBE Generator Function Component

jars\functions ComplexTypesGeneratorFC.jar Complex Types Generator FC

32 Administrator Guide

Table 1. (continued)

Location Filename Description

jars\functions EmfSdoToXmlFC.jar SDOToXML FC

jars\functions EmfXmlToSdoFC.jar XMLToSDO FC

jars\functions InvokeSoapWSFC.jar InvokeSoap WS FC

jars\functions JavaClassFC.jar Java Class Function Component

jars\functions MemBufferQFC.jar Memory Queue FC

jars\functions ParserFC.jar Parser FC

jars\functions RemoteCmdLineFC.jar Remote Command Line FC

jars\functions SapR3RfcFC.jar Function Component For SAP R/3

jars\functions ScriptedFC.jar Scripted FC

jars\functions SendEMailFC.jar SendEMail Function Component

jars\functions WrapSoapFC.jar WrapSoap FC

jars\functions zOSTSOCommandLineFC.jar z/OS TSO/E Command Line FC

jars\parsers CSVParser.jar CSV Parser

jars\parsers DSMLParser.jar DSML Parser

jars\parsers DSMLv2Parser.jar DSMLv2 Parser

jars\parsers FixedParser.jar Fixed Parser

jars\parsers HTTPParser.jar HTTP Parser

jars\parsers LDIFParser.jar LDIF Parser

jars\parsers LineReaderParser.jar Line Reader Parser

jars\parsers ScriptParser.jar Script Parser

jars\parsers SimpleParser.jar Simple Parser

jars\parsers SOAPParser.jar SOAP Parser

jars\parsers XMLParser.jar XML Parser

jars\parsers XMLSaxParser.jar XML SAX Parser

jars\parsers XSLbasedXMLParser.jar XSL based XML parser

jars\plugins idipwcrypto.jar Plugin crypto utility

jars\plugins mqeconfig.bat MQe configuration utility script

jars\plugins mqeconfig.jar MQe configuration utility

jars\plugins mqeconfig.props MQe sample setup configuration

Solution Directory files

The following is a list of Solution Directory files: these files are automatically copied to the

solution directory the first time the TDI server uses this solution directory.

Chapter 2. Installation instructions for IBM Tivoli Directory Integrator 33

Table 2.

File Description

idisrv.sth the TDI server stash file; it is a binary file, which contains the encrypted

password for the sample server keystore file (“testserver.jks”).

solution.properties this file is a writable copy of the “global.properties” file and is used when

the server is started from the solution directory; it is a text file; by default

the file is in the platform native encoding.

testserver.jks a binary file which contains the sample server certificate.

etc/build.properties this file contains the TDI Build information, build date, version, etc.; it is a

text file, by default the file is in the platform native encoding.

etc/CSServersInfo.xml an XML repository file for storing System Store configuration details.

etc/derby.properties a text file, by default the file is in the platform native encoding. The default

configuration file for the System Store shipped with TDI 6.1. For more

details on this file refer to the Cloudscape™ v10 documentation.

etc/
executetask.properties

this file controls the logging strategy of the TDI server (ibmdisrv) when

started from the Config Editor (ibmditk). This is a log4j configuration file.

etc/global.properties this file is a copy of the main configuration property file for TDI 6.1. This

file is not used by TDI itself.

etc/global.properties.v61 this is a placeholder for a sample file of TDI 6.1. This file is non-empty only

if you have chosen to upgrade from previous versions of TDI to TDI 6.1. In

such cases, since the file is a migrated file, it would be helpful for you to

compare your migrated file to .v61 to see how it is different from doing a

clean install. This file can be a helpful reference.

etc/ibmdi.ico the icon file for TDI 6.1; it is a binary file.

etc/ITDIJ060100.sys this is a product signature (license) file used by the ITLM agent to recognize

TDI 6.1.

etc/jlog.properties the default JLog configuration file for TDI 6.1. By default the jlog.properties

file in the install folder is used. However, the JLog configuration file can be

specified with the “jlog.configuration” system property. This property can be

set in solution.properties, for example. That is why in order to use the

jlog.properties in the solution folder, the “jlog.configuration” property in

solution.properties must be set accordingly.

etc/log4j.properties the Log4j configuration file for controlling the TDI 6.1 Server (ibmdisrv)

logging. The configuration file can be specified with the

“log4j.configuration” system property from the java command line in the

TDI startup script.

etc/reconnect.rules a text file (UTF-8 encoded) where you can define reconnect rules on how

reconnect exceptions should be handled by TDI. Note that this file may

contain language-specific characters. That is why it is important to keep this

file UTF-8 encoded.

etc/tdisrvctl-
log4j.properties

the Log4j configuration file for controlling the log traces generated by the

tdisrvctl command line utility.

34 Administrator Guide

Table 2. (continued)

File Description

serverapi/cryptoutils.sh

or serverapi/
cryptoutils.bat

a command line utility (shell script) used for encrypting/decrypting TDI

configurations and the user registry file.

serverapi/registry.txt an example of a Server API user registry file; it is a text file in the platform

native encoding.

serverapi/registry.enc an encrypted version of the ″registry.txt″ (user registry); it is a binary file.

serverapi/testadmin.der the exported certificate from ″testadmin.jks″; it is a binary file.

serverapi/testadmin.jks an example keystore/truststore file for a Server API remote client; it is a

binary file.

Example Property files

An installation of IBM Tivoli Directory Integrator is to a large extent customized by means of

a set of text files containing one of more properties, usually in the form of a keyword or

identifier followed by a value. The following global property text files can be found at the

root/etc level of the IBM Tivoli Directory Integrator installation directory:

v “log4j.properties” on page 36

v “ce-log4j.properties” on page 37

v “executetask.properties” on page 38

v “jlog.properties” on page 38

v “db2j.properties” on page 40

v “global.properties” on page 40

Properties set in any of those files form a baseline for the entire IBM Tivoli Directory

Integrator installation for all users on that machine. However, if your Solution Directory is

different from the installation directory, you can have a set of text files in your Solutions

Directory that mirror their counterparts in the installation directory. A property listed in any

of those files will override anything set in any of the global installation property files

mentioned above. Futhermore, a Java property set inside a Config file takes the highest

precedence, and overrides anything in a global property file or the property files in the

Solution Directory.

You can specify the Solution Directory in multiple ways:

v By setting the environment variable TDI_SOLDIR before starting the Config Editor or the

Server

v By specifying the -s parameter to the ibmditk script or the ibmdisrv script to start

respectively the Config Editor or the Server. This will take precedence over setting

TDI_SOLDIR.

Chapter 2. Installation instructions for IBM Tivoli Directory Integrator 35

If TDI_SOLDIR equals the installation directory, the behavior will be like in older versions of

TDI: all property files will be read from there, and the remarks about property files in the

Solutions Directory do not apply.

In any other case, the first time you run the TDI Server, it will make a copy of all the property

files into your Solutions Directory (it will not overwrite these files if they already exist). You

can now tailor these files to your particular needs, without affecting the property files in the

installation directory.

Note: The file global.properties will be copied to a file called solutions.properties in your

Solutions Directory. Other files, like log4j.properties and the files in the amc and

serverapi folders will be copied under their own name.

log4j.properties

This file sets a baseline for the log-strategy for the server (ibmdisrv). See

“executetask.properties” on page 38 for behavior of AssemblyLines run from the Config

Editor (ibmditk) console, and “ce-log4j.properties” on page 37 for logging behavior of the

Config Editor itself.

Log options configured in the Logging tab in the Config Editor are written into the Config

file, and are supplementary to or supersede the following:

This file controls the logging strategy for the server (ibmdisrv) when started

from the command line.

Look at executetask.properties for the logging strategy of the server when started

from the Configuration Editor (ibmditk).

Look at ce-log4j.properties for the logging behavior of the Configuration Editor (ibmditk).

You will normally configure the logging strategy of the server by adding appenders

using the Configuration Editor (ibmditk). This file only defines the baseline

that is independent of the configuration files you are using.

See the IDI documentation for more information on the contents of this file.

log4j.rootCategory=INFO, Default

This is the default logger, you will see that it logs to ibmdi.log

log4j.appender.Default=org.apache.log4j.FileAppender

log4j.appender.Default.file=ibmdi.log

log4j.appender.Default.layout=org.apache.log4j.PatternLayout

log4j.appender.Default.layout.ConversionPattern=%d{ISO8601} %-5p [%c] - %m%n

log4j.appender.Default.append=false

You may change the logging category of these subsystems to DEBUG

if you want to investigate particular problems. This may

generate a lot of output.

...com.ibm.di.config describes the loading of the configuration file (.xml),

and how the internal configuration structure is built.

...com.ibm.di.loader gives information about jar files, and where classes are found.

It also loads idi.inf files, which provides Connectors/Parsers/EH information

for the Configuration Editor.

log4j.logger.com.ibm.di.config=WARN

log4j.logger.com.ibm.di.loader=WARN

36 Administrator Guide

Uncomment the lines below to activate them

Here is an example on how to make a logger that logs to the console

#log4j.appender.CONSOLE=org.apache.log4j.ConsoleAppender

#log4j.appender.CONSOLE.layout=org.apache.log4j.PatternLayout

#log4j.appender.CONSOLE.layout.ConversionPattern=%d [%t] %-5p - %m%n0

Here is an example that logs to myFile.log

#log4j.appender.fileLOG=org.apache.log4j.FileAppender

#log4j.appender.fileLOG.file=myFILE.log

#log4j.appender.fileLOG.layout=org.apache.log4j.PatternLayout

#log4j.appender.fileLOG.layout.ConversionPattern=%d{ISO8601} %-5p [%c] - %m%n

#log4j.appender.fileLOG.append=false

Finally, make use of the loggers defined above:

Tell AssemblyLines myAL to log using CONSOLE logger defined above.

log4j.logger.AssemblyLine.myAL=INFO, CONSOLE

Or you could log to myFile.log

log4j.logger.AssemblyLine.myAL=INFO, fileLOG

Finally, make EventHandler myEH log to myFile.log

log4j.logger.EventHandler.myEH=INFO, fileLOG

ce-log4j.properties

This file sets a baseline for the log-strategy for the Config Editor (ibmditk). See

“executetask.properties” on page 38 for behavior of AssemblyLines run from the Config

Editor (ibmditk) console.

This file controls the logging strategy for the Configuration Editor (ibmditk)

Look at log4j.properties for the logging strategy of the server when started from the command line.

See the TDI documentation for more information on the contents of this file.

log4j.rootCategory=INFO, Default

This is the default logger, you will see that it logs to ibmditk.log

log4j.appender.Default=org.apache.log4j.FileAppender

log4j.appender.Default.file=ibmditk.log

log4j.appender.Default.layout=org.apache.log4j.PatternLayout

log4j.appender.Default.layout.ConversionPattern=%d{ISO8601} %-5p [%c] - %m%n

log4j.appender.Default.append=false

You may change the logging category of these subsystems to DEBUG

if you want to investigate particular problems. This may

generate a lot of output.

...com.ibm.di.admin gives logging from the Configuration Editor itself.

...com.ibm.di.config describes the loading of the configuration file (.xml),

and how the internal configuration structure is built.

...com.ibm.di.loader gives information about jar files, and where classes are found.

It also loads idi.inf files, which provides Connectors/Parsers/EH information

for the Configuration Editor.

Chapter 2. Installation instructions for IBM Tivoli Directory Integrator 37

log4j.logger.com.ibm.di.admin=INFO

log4j.logger.com.ibm.di.config=WARN

log4j.logger.com.ibm.di.loader=WARN

executetask.properties

This file controls the log-strategy for the Config Editor (ibmditk) console. See

“log4j.properties” on page 36 for behavior of the server (ibmdisrv).

You will normally configure the logging strategy of the server by adding appenders

using the Configuration Editor (ibmditk). This file only defines the baseline

that is independent of the configuration files you are using.

See the TDI documentation for more information on the contents of this file.

log4j.rootCategory=INFO, Default

log4j.appender.Default=org.apache.log4j.ConsoleAppender

log4j.appender.Default.layout=org.apache.log4j.PatternLayout

log4j.appender.Default.layout.ConversionPattern=%d{HH:mm:ss} %m%n

log4j.logger.com.ibm.di.config=ERROR

log4j.logger.com.ibm.di.loader=ERROR

jlog.properties

This file configures the JLOG-based tracing and FFDC functionality of the TDI server. These

values can be modified dynamically (during Server execution) using the LogCmd script if the

property jlog.noLogCmd was set to false when the Server started.

Note: You would normally use log4j to trace execution flow in your solution; the JLOG-based

tracing and FFDC is meant to aid IBM Support should you have problems with IBM

Tivoli Directory Integrator.

This file controls the tracing and First Failure Data Capture (FFDC) strategy for ITDI 6.0

See the IDI documentation for more information on the contents of this file.

#--

Enable the JLOG’s command server

If the jlog.noLogCmd is set to false, then the JLOG LogManager will listen on the

default port (9992) for JLOG log commands.

Setting this property to false will enable you to modify the JLOG properties dynamically,

using the logcmd scripts. The logcmd scripts are placed in the TDI_HOME directory.

The default value is set to true.

#--

jlog.noLogCmd=true

#--

Configure Jlog FileHandler for tracing into a file.

By default the FileHandler is not attached to the Jlog Logger.

Uncomment the properties with the prefix jlog.filehandler below to configure a FileHandler.

After uncommenting this you need to add the filehandler to the logger’s listeners names as shown

below

e.g: jlog.logger.listenerNames=jlog.snapmemory jlog.snaphandler jlog.filehandler

#--

#jlog.filehandler.className=com.ibm.log.FileHandler

#jlog.filehandler.description=JLOG File Handler for Logging and Tracing

#jlog.filehandler.encoding=UTF8

#jlog.filehandler.maxFiles=10

#jlog.filehandler.maxFileSize=2048

38 Administrator Guide

#jlog.filehandler.appending=true

#jlog.filehandler.fileDir=logs/

#jlog.filehandler.trace.fileName=trace.log

#---

#---

create a level filter.

The level filter is used to define the level at which JFFDC action will be triggered.

For JFFDC to be meaningful this should be set to either FATAL or ERROR (case-insensitive).

NOTE: Setting the trigger level to other levels such as DEBUG_MIN will trigger unwanted JFFDC

action causing a performance drop.

#---

jlog.levelflt.className=com.ibm.log.LevelFilter

jlog.levelflt.level=FATAL

#---

Configure the SnapMemoryHandler for tracing into a memory buffer.

The SnapMemoryHandler traces into a memory buffer and dumps the contents of the memory to a file on

trigger of a event (as defined by the level filter above) and writes the content to the specified

file

Properties:

jlog.snapmemory.queueCapacity : Sets the nnumber of LogEvents that can be buffered in the memory

jlog.snapmemory.snapFile : name of the file to which the contents of the memory will be dumped

jlog.snapmemory.baseDir : The directory where the snapFile is placed.

daily subdirectories will be created under this base directory, as:

[baseDir]/[YYYY-MM-DD]/

Note: MS-DOS style path names need to be be escaped with backslashes

eg: c:\\CTGI\\FFDC

jlog.snapmemory.userSnapFile : The name of the file to which the user initiated (from logcmd) dumps

will be written to.

jlog.snapmemory.userSnapDir : The directory where the userSnapfile is placed.

jlog.snapmemory.msgIds : The list of TMS IDs

jlog.snapmemory.msgIDRepeatTime : The minimum time, in milliseconds, after passing a log event with a

given TMS message id, before another log event with the same id can

be passed.

#---

jlog.snapmemory.className=com.tivoli.log.SnapMemoryHandler

jlog.snapmemory.description=Memory handler used to trace to memory

jlog.snapmemory.queueCapacity=10000

jlog.snapmemory.dumpEvents=true

jlog.snapmemory.snapFile=trace.log

jlog.snapmemory.baseDir=CTGDI/FFDC/

jlog.snapmemory.userSnapFile=userTrace.log

jlog.snapmemory.userSnapDir=CTGDI/FFDC/user/

jlog.snapmemory.triggerFilter=jlog.levelflt

jlog.snapmemory.msgIds=*E

jlog.snapmemory.msgIDRepeatTime=10000

#---

Configure the JLogSnapHandler taking a snapshot of the SnapMemoryHanlders buffer

The JLogSnapHanlder takes a snapshot of the associated SnapMemoryBuffer.

#---

jlog.snaphandler.className=com.tivoli.log.JLogSnapHandler

jlog.snaphandler.description=snaphandler to dump the memory trace

jlog.snaphandler.baseDir=CTGDI/FFDC/

jlog.snaphandler.snapMemoryHandler=jlog.snapmemory

jlog.snaphandler.triggerFilter=jlog.levelflt

#---

Configure the PDLogger (Problem Determination) Object and attach the Listeners to it.

jlog.logger.level can be FATAL | ERROR | WARNING | INFO | DEBUG_MIN | DEBUG_MID | DEBUG_MAX

The heirarchy of the log levels is from the most severe (FATAL) to the least severe (DEBUG_MAX)

The value for this property is case-insensitive

#---

jlog.logger.level=DEBUG_MIN

jlog.logger.listenerNames=jlog.snapmemory jlog.snaphandler

jlog.logger.className=com.ibm.log.PDLogger

Chapter 2. Installation instructions for IBM Tivoli Directory Integrator 39

db2j.properties

This file contains some defaults for Cloudscape in networked mode. Most TDI-related

Cloudscape parameters are not maintained here but in global.properties and

solution.properties. More information about these parameters can be obtained from the

Cloudscape documentation.

This is a sample properties file provided to show the proper format.

We’re also setting one property which will make sure that

Cloudscape adds to the error log instead of overwriting it.

This mode is useful for development.

db2j.drda.logConnections=true

db2j.drda.maxThreads=0

db2j.drda.portNumber=1527

db2j.drda.traceAll=true

db2j.drda.loadSYSIBM=true

db2j.drda.timeSlice=0

db2j.drda.traceDirectory=/trace

db2j.drda.sendLongVarcharAsClob=false

db2j.drda.sendLongBitVaryingAsBlob=false

db2j.connection.requireAuthentication=true

db2j.authentication.provider=BUILTIN

#db2j.database.propertiesOnly=false

db2j.database.defaultConnectionMode=fullAccess

db2j.user.sa=test123

db2j.user.APP=APP

db2j.user.Karthik=sec007ret

db2j.database.fullAccessUsers=APP

global.properties

This file is read by ibmditk and ibmdisrv on startup. This file is read and applied before a file

called solution.properties from your Solution Directory is read (Note that the rendition

here, due to extremely long linelengths, may not be complete. Refer to an actual file instead):

This file is read by ibmditk/ibmdisrv on startup

Enter <name>=<value> to set system properties.

Enter !include <file | url> to include other files

com.metamerge.securityTransformation=DES/ECB/NoPadding

Modify the line below to add your own jar/zip files.

The property may specify several directories or jar files, separated by the Java Property "path.separator",

which is ":" on Linux and ";" on Windows

Directories will be searched recursively by the TDILoader for jar files containing classes and resources.

Only files with a ".zip" or ".jar" extension are searched.

com.ibm.di.loader.userjars=c:\myjars

Custom class for ibmjs options to let us choose regex library

ibmjs.options=com.ibm.di.script.ScriptEngineOptions

Regex library selection (java or jakarta). Using jakarta requires the Jakarta regex library (not included)

com.ibm.di.scriptengine.regex=java

Modify the line below to enable the config autoload feature. When this property is defined, the "ibmdisrv -d" command

line will look for *.xml files in the directory specified by this property and start each one.

com.ibm.di.server.autoload=autoload.tdi

Modify the line below to specify the location of the Library Resources.

The default value is <HOMEDIR>/tdilibrary

com.ibm.di.admin.library.dir=

40 Administrator Guide

http://publib.boulder.ibm.com/infocenter/cscv/v10r1/index.jsp

SYSTEM STORE

Location of the database (embedded mode) - Cloudscape 10

com.ibm.di.store.database=TDISysStore

com.ibm.di.store.jdbc.driver=org.apache.derby.jdbc.EmbeddedDriver

com.ibm.di.store.jdbc.urlprefix=jdbc:derby:

#com.ibm.di.store.jdbc.user=APP

#{protect}-com.ibm.di.store.jdbc.password=APP

Location of the database to connect (networked mode) - Cloudscape 10 - DerbyClient driver

#com.ibm.di.store.database=jdbc:derby://localhost:1527/d:\dev\di61_060521a\TDISysStore;create=true

#com.ibm.di.store.jdbc.driver=org.apache.derby.jdbc.ClientDriver

#com.ibm.di.store.jdbc.urlprefix=jdbc:derby:

#com.ibm.di.store.jdbc.user=APP

#{protect}-com.ibm.di.store.jdbc.password=APP

Details for starting Cloudscape in network mode.

Note: If the com.ibm.di.store.hostname is set to localhost then remote connections will not be allowed.

If it is set to the IP address of the local machine - then remote clients can access this Cloudscape

instance by mentioning the IP address. The network server can only be started for the local machine.

#com.ibm.di.store.start.mode=automatic

#com.ibm.di.store.hostname=localhost

#com.ibm.di.store.port=1527

#com.ibm.di.store.sysibm=true

the varchar(length) for the ID columns used in system store and pes connector tables

com.ibm.di.store.varchar.length=512

create statements for system store tables (CloudScape 5.1)

#com.ibm.di.store.create.delta.systable=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH) NOT NULL, SEQUENCEID int, VERSION int)

#com.ibm.di.store.create.delta.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH) NOT NULL, SEQUENCEID int, ENTRY long varbinary)

#com.ibm.di.store.create.property.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH) NOT NULL, ENTRY long varbinary)

#com.ibm.di.store.create.checkpoint.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH) NOT NULL, ALSTATE long varbinary, ENTRY long varbinary, TCB long varbinary)

#com.ibm.di.store.create.sandbox.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH) NOT NULL, ENTRY long varbinary)

create statements for system store tables (CloudScape 10)

com.ibm.di.store.create.delta.systable=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH) NOT NULL, SEQUENCEID int, VERSION int)

com.ibm.di.store.create.delta.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH) NOT NULL, SEQUENCEID int, ENTRY BLOB)

com.ibm.di.store.create.property.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH) NOT NULL, ENTRY BLOB)

com.ibm.di.store.create.checkpoint.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH) NOT NULL, ALSTATE BLOB, ENTRY BLOB, TCB BLOB)

com.ibm.di.store.create.sandbox.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH) NOT NULL, ENTRY BLOB)

com.ibm.di.store.create.recal.conops=CREATE TABLE {0} (METHOD varchar(VARCHAR_LENGTH), RESULT BLOB, ERROR BLOB)

Set a customized SQL statement for creation of the Tombstone Manager table. Keep the same table and field names.

#com.ibm.di.store.create.tombstones=CREATE TABLE IDI_TOMBSTONE (ID INT GENERATED ALWAYS AS IDENTITY, COMPONENT_TYPE_ID INT, EVENT_TYPE_ID INT, START_TIME TIMESTAMP, CREATED_ON TIMESTAMP, COMPONENT_NAME VARCHAR(1024), CONFIGURATION VARCHAR(1024), E

the ibmsnap_commitseq column name used by the RDBMS changelog connector

com.ibm.di.conn.rdbmschlog.cdcolname=ibmsnap_commitseq

server authentication

example

javax.net.ssl.trustStore=d:\test\KeyRings\namtp2.jks

javax.net.ssl.trustStorePassword=secret

javax.net.ssl.trustStoreType=jks

javax.net.ssl.trustStore=

{protect}-javax.net.ssl.trustStorePassword=

javax.net.ssl.trustStoreType=

client authentication

example

javax.net.ssl.keyStore=d:\test\KeyRings\namtp2.jks

javax.net.ssl.keyStorePassword=secret

javax.net.ssl.keyStoreType=jks

javax.net.ssl.keyStore=

{protect}-javax.net.ssl.keyStorePassword=

javax.net.ssl.keyStoreType=

Chapter 2. Installation instructions for IBM Tivoli Directory Integrator 41

Turns on java debug

javax.net.debug=true

java interpreter override

com.ibm.di.javacmd=

com.ibm.di.installdir=

Location of directory where the JRE TDI will use is installed

com.ibm.di.jvmdir=d:\dev\di61_060521a/jvm

Limits the number of threads IDI uses

Must be set higher than 3 to have any effect

com.ibm.di.server.maxThreadsRunning=500

com.ibm.di.server.securemode=false

com.ibm.di.server.keystore=testserver.jks

com.ibm.di.server.key.alias=server

Server API properties

api.on=true

api.user.registry=serverapi/registry.txt

api.user.registry.encryption.on=false

api.remote.on=false

api.remote.ssl.on=true

api.remote.ssl.client.auth.on=true

api.remote.naming.port=1099

api.truststore=testserver.jks

{protect}-api.truststore.pass={encr}NwaeJUBh9iGPMZLVhRc5Dcvr4TnueFA6+zdOrXlghCqMUtubox56ePFEQcEmtehyw/ZY5X7Wgg0DfETwHOBpw0iEnxsUg8qzNazCK0Jd0Sj5sHHomamTFE0pcuV6deeTyFFtBFF4aNZmBiHVS+Vr11jcp/wCzexw6XFPr83kIjA=

Specifies a list of IP addresses to accept non SSL connections from (host names are not accepted).

Use space, comma or semicolon as delimiter between IP addresses. This property is only taken into account

when api.remote.ssl.on is set to false.

api.remote.nonssl.hosts=

api.jmx.on=false

api.jmx.remote.on=false

The configuration files placed in this folder can be edited through the Server API.

Configuration files placed in other folders cannot be edited through the Server API.

api.config.folder=d:\dev\di61_060521a\configs

Timeout in minutes for configuration locks. A value of 0 means no timeout.

api.config.lock.timeout=0

Specifies if the Server API methods for custom method invocation (Session.invokeCustom(...)) are allowed to be used.

When api.custom.method.invoke.on is set to false and the Server API methods for custom method invocation are used,

then an exception will be thrown.

Only classes listed in api.custom.method.invoke.allowed.classes are allowed to be directly invoked.

The default value is false.

api.custom.method.invoke.on=false

Specifies the list of classes which can be directly invoked by the Server API methods for custom

method invocation (Session.invokeCustom(...)).

This property is only taken into account if api.custom.method.invoke.on is set to true.

The classes in this list must be separated by a space, a comma or a semicolon.

Example:

api.custom.method.invoke.allowed.classes=com.ibm.MyClass,com.ibm.MyOtherClass

In the above example only methods from the com.ibm.MyClass and com.ibm.MyOtherClass classes are

allowed to be directly invoked.

api.custom.method.invoke.allowed.classes=

api.custom.authentication points to a JavaScript text file that contains custom authentication code.

For example: api.custom.authentication=ldap_auth.js.

To enable the built-in LDAP Authentication mechanism, set this property to "[ldap]".

For example: api.custom.authentication=[ldap]

##api.custom.authentication=[ldap]

LDAP Authnetication properties

42 Administrator Guide

If this parameter is set to "true" and the LDAP Authnetication initialization fails, the whole Server API will not be started.

If this parameter is missing or is set to "false" any LDAP Authentication initialization errors will be logged and the Server API will be started.

api.custom.authentication.ldap.critical=false

LDAP Server hostname.

api.custom.authentication.ldap.hostname=

LDAP server port number. For example, 389 for non-SSL or 636 for SSL.

api.custom.authentication.ldap.port=

Specifies whether SSL is used to communicate with the LDAP Server.

When set to "true" SSL will be used, otherwise SSL will not be used.

api.custom.authentication.ldap.ssl=

Specifies the LDAP directory location where user searches will be preformed.

When this property is not specified user searches will not be performed.

api.custom.authentication.ldap.searchbase=

Specifies the user id attribute to be used in searches.

When this property is not specified user searches will not be performed.

api.custom.authentication.ldap.userattribute=

Specifies an LDAP Server administrator distinguished name that will be used for user searches.

When this property is not specified anonymous bind will be used for user searches.

api.custom.authentication.ldap.admindn=

Password for the LDAP Server administrator distinguished name.

{protect}-api.custom.authentication.ldap.adminpassword=

Tombstone Manager properties

com.ibm.di.tm.on=false

com.ibm.di.tm.autodel.age=0

com.ibm.di.tm.autodel.records.trigger.on=10000

com.ibm.di.tm.autodel.records.max=5000

com.ibm.di.tm.create.all=false

Help system properties

Name of help server, comment out if you want local help system

The Tivoli library is at the following URL:

http://publib.boulder.ibm.com/infocenter/tiv2help/index.jsp?toc=/com.ibm.IBMDI.doc_6.1/toc.xml

com.ibm.di.helpHost=lgeneva.in.ibm.com/help/topic

Port for help system

com.ibm.di.helpPort=80

--

AssemblyLinePool: Connector pooling defaults

--

Note! These settings are only used when an AssemblyLine uses

an AssemblyLinePool in combination with a Server mode connector.

The number of seconds before a pooled connector times (e.g. is closed and no longer reused)

Less than zero means disable connector pooling

Zero means never timeout

Greater than zero sets the number of seconds before a connector is closed

com.ibm.di.server.connectorpooltimeout=42

Comma separated list of connector interfaces that we never pool

com.ibm.di.server.connectorpoolexclude=com.ibm.di.connector.FileConnector,com.ibm.di.connector.ScriptConnector

Properties for Windows IPv6 communications.

Uncomment these properties for Windows IPv6 communication only.

These properties will not affect IPv4 communication or IPv6 communication on Unices.

#java.net.preferIPv4Stack=false

#java.net.preferIPv6Addresses=true

Chapter 2. Installation instructions for IBM Tivoli Directory Integrator 43

--

Performance settings

--

Enable/Disable performance logging

com.ibm.di.server.perfStats=false

--

Used by Config Report

###---

set this is you want to override the local language for Config Reports

com.ibm.di.admin.configreport.translation=en

##----------------------

System Queue settings

##----------------------

If set to "true" the System Queue is initialized on startup and can be used;

otherwise the System Queue is not initialized and cannot be used.

systemqueue.on=false

Specifies the fully qualified name of the class that will be used as a JMS Driver.

systemqueue.jmsdriver.name=com.ibm.di.systemqueue.driver.IBMMQ

systemqueue.jmsdriver.name=com.ibm.di.systemqueue.driver.JMSScriptDriver

systemqueue.jmsdriver.name=com.ibm.di.systemqueue.driver.IBMMQe

MQe JMS driver initialization properties

Specifies the location of the MQe initialization file.

This file is used to initialize MQe on TDI server startup.

systemqueue.jmsdriver.param.mqe.file.ini=d:\dev\di61_060521a\MQePWStore\pwstore_server.ini

MQ JMS driver initialization properties

systemqueue.jmsdriver.param.jms.broker=<host:port>

systemqueue.jmsdriver.param.jms.serverChannel=<channel_name>

systemqueue.jmsdriver.param.jms.qManager=<queuemanger_name>

systemqueue.jmsdriver.param.jms.sslCipher=<cipherSuite_name>

systemqueue.jmsdriver.param.jms.sslUseFlag=false

JMS Javascript driver initialization properties

Specifies the location of the script file

systemqueue.jmsdriver.param.js.jsfile=driver.js

This is the place to put any JMS provider specific properties needed by a JMS Driver,

which connects to a 3rd party JMS system.

All JMS Driver properties should begin with the ’systemqueue.jmsdriver.param.’ prefix.

All properties having this prefix are passes to the JMS Driver on initialization after

removing the ’systemqueue.jmsdriver.param.’ prefix from the property name.

systemqueue.jmsdriver.param.user.param1=value1

systemqueue.jmsdriver.param.user.param2=value2

...

Credentials used for authenticating to the target JMS system

{protect}-systemqueue.auth.username=<username>

{protect}-systemqueue.auth.password=<password>

44 Administrator Guide

Chapter 3. Supported platforms

The following are the platforms supported for IBM Tivoli Directory Integrator 6.1. For the

latest list of platforms supported see: http://www-1.ibm.com/support/docview.wss?rs=697
&uid=swg24012241.

This URL can also be used to see the platform supported by the TDI plugins and the bit

support per platform.

Note: On all 64-bit operating systems, the TDI Server and CE run in 32-bit tolerance mode

because it ships and uses a 32-bit JRE. This would be 31-bit tolerance on native zOS or

zSeries Linux.

v Microsoft Windows Intel IA32

– Windows 2000 Professional (supported for application design, development, and testing

only; no support for production use) (32bit supported)

– Windows 2000 Server (32bit supported)

– Windows 2000 Advanced Server (32bit supported)

– Windows XP Pro (supported for application design, development, and testing only; no

support for production use) (32bit supported)

– Windows 2003 Standard Edition (32bit supported)

– Windows 2003 Enterprise Edition (32bit supported)
v Microsoft Windows AMD64/EMT64

– Windows Server 2003 Standard Edition (64bit supported)

– Windows Server 2003 Enterprise Edition (64bit supported)
v AIX

– AIX 5L 5.2 (32/64bit supported) (Recommended Maintenance package 5200-08 is

required)

– AIX 5L 5.3 (32/64bit supported) (Recommended Maintenance package 5300-03 is

required)
v Sun Solaris SPARC

– Solaris 9 (32/64bit supported)

– Solaris 10 (32/64bit supported)
v HP-UX PA-RISC

– HP-UX11iv2 (11.23) (32/64bit supported)
v Linux Intel IA32

– RedHat Enterprise Linux ES/AS 3.0 (32bit supported)

– RedHat Enterprise Linux ES/AS 4.0 (32bit supported)

© Copyright IBM Corp. 2003, 2006 45

 http://www-1.ibm.com/support/docview.wss?rs=697&uid=swg24012241
 http://www-1.ibm.com/support/docview.wss?rs=697&uid=swg24012241

– SLES 9 (32bit supported)

– Red Flag Data Center 5.0 SP1 / Asianix 2.0 SP1 (32bit supported)

Note: A prerequisite on RedHat Enterprise Linux AS / ES and Red Flag Data Center 5.0

SP1 is that library package compat-libstdc++-296-2.96-132.7.2 or above is installed for

the Installer to work.

v Linux AMD64/EMT64

– RedHat Enterprise Linux ES/AS 4.0 (64bit supported)

– SLES 9 (64bit supported)
v Linux on Power (pSeries, iSeries, OpenPower and JS20 Blades)

– RedHat Enterprise Linux ES/AS 3.0 (64bit supported)

– RedHat Enterprise Linux ES/AS 4.0 (64bit supported)

– SLES 9 (64bit supported)

Note: A prerequisite on RedHat Enterprise Linux AS / ES for this architecture is that

library package compat-libstdc++-296-2.96-132.7.2 or above is installed for the

Installer to work.

v Linux s/390 and zSeries®

– RedHat Enterprise Linux ES/AS 3.0 (31bit supported)

– RedHat Enterprise Linux ES/AS 4.0 (64bit supported)

– SLES 9 (64bit supported)
v • Native s/390 and zSeries –

– z/OS 1.6 and 1.7 (with limitations; refer to Chapter 15, “z/OS environment Support,” on

page 183)

46 Administrator Guide

Chapter 4. Migrating from IBM Tivoli Directory Integrator

6.0 to IBM Tivoli Directory Integrator 6.1

Do the following to migrate an IBM Tivoli Directory Integrator 6.0 system to IBM Tivoli

Directory Integrator 6.1:

 1. Save any configuration files created by IBM Tivoli Directory Integrator.

Note: Sandbox data is version-specific; data recorded under any previous version will

not play in version 6.1.

 2. If you have installed IBM Tivoli Directory Integrator 6.0 as a Windows Service, uninstall

the Service first.

 3. Uninstall IBM Tivoli Directory Integrator 6.0

 4. Install IBM Tivoli Directory Integrator 6.1

 5. Copy your Config files and any other custom files, including CloudScape databases from

your old installation directory to the new installation directory. Version 6.1 supports a

Solution Directory, and you may decide to copy the aforementioned Config files,

property files, CloudScape databases, etc. to this instead of to the installation directory of

TDI version 6.1.

Note: Optionally, you might decide to move the way your Delta information is

maintained from the old Btree objects to Delta Tables in the System Store. The best

strategy for doing this is engineering a situation where your Delta information is

empty (for example, establishing a new baseline) and then switch from the Btree

objects to the CloudScape Delta Tables. Note that the parameter that used to hold

the filename of the Btree objects now indicates a table name in a database, so some

editing of this value might be required.

 6. You can now safely remove the old installation directory.

 7. EventHandlers are deprecated, and will be removed in a future version of IBM Tivoli

Directory Integrator. They should be migrated to Server Mode Connectors; please see the

section named "Migration from ChangeLog EventHandlers to ChangeLog Connectors" in

IBM Tivoli Directory Integrator 6.1: Reference Guide for more information.

 8. If you have used the ITIM Agent Connector in a previous version of TDI, you may need

to change the way you configure SSL connections. The ITIM Agent Connector in TDI

version 6.1 uses JSSE (Java based key store/trust store) for SSL authentication, and this

requires that you configure the SSL related certificate details in the global.properties or

solution.properties file; instead of mentioning the certificate name in the old ITIM

Agent Connector’s ″CA Certificate File″ Parameter. These are the steps involved:

a. Import the TIM Agent’s certificate that was previously mentioned in the ″CA

Certificate File″ parameter into the TDI Trust store with for example keytool (iKeyman

can be used too):

© Copyright IBM Corp. 2003, 2006 47

keytool –import –file servercertificate.der –keystore tim.jks

In this example the truststore is stored in the file tim.jks.

b. Configure this truststore in the ″server authentiication″ section of the

global.properties or solution.properties file:

server authentication

javax.net.ssl.trustStore=E:\IBMDirectoryIntegrator\tim.jks

{protect}-javax.net.ssl.trustStorePassword=<jks_keystore_password>

javax.net.ssl.trustStoreType=jks

Now, the ITIM Agent Connector will use the same JSSE-based secure communications

architecture as the rest of TDI.

 9. If you have used any of the Castor-based Function Components in your Configs, you will

need to remove those and port their usage to the new SDO-based ones. A few words on

this migration can be found in the IBM Tivoli Directory Integrator 6.1: Reference Guide, in

the section "Function Components>XMLTOSDO FC>Migration".

10. Determine if multiple instances of AssemblyLines in different Java VMs attempt to use

the same System Store, either for Checkpoint/Restart information or for Persistent

Objects like Delta Tables. If so, configure the System Store (CloudScape) for network

access, as outlined in Chapter 8, “System Store,” on page 101.

11. IBM Tivoli Directory Integrator now requires and includes a J2SE version 1.5 compliant

JVM (J2SE version 1.5 SR1). If you have developed your own code in Java, linked this

code against the JVM libraries and integrated this with your IBM Tivoli Directory

Integrator solution, you might need to recompile and re-link your code.

12. Previous versions of TDI used the (MY)CLASSPATH variable in the ibmditk and

ibmdisrv command line scripts; the current version has the required path information

built in and does not require this variable anymore. If you had tailored the

aforementioned scripts before to include some libraries of your own, you don’t need to

do anything with the CLASSPATH variable; just make sure your library is in the correct

place (typically in the jars/ directory) so it will be found by TDI. Alternatively, use the

com.ibm.di.loader.userjars property in global.properties to point to your own

directory to be included in the loader path.

13. Test your solution with the new version.

14. If required, install the Windows Service.

48 Administrator Guide

Chapter 5. Security and TDI

Introduction

Security features are found throughout IBM Tivoli Directory Integrator (TDI). Some features

secure access into remote systems from TDI, others protect access into TDI from remote

systems, and yet others provide mechanisms to secure data, such as user credentials into

remote systems.

Many of the features described in this chapter are not necessary when running TDI in a

stand-alone mode in a secured environment. However, the features come in handy when

other systems need to communicate with TDI, such as through the remote Web Admin

Console (AMC) management tool or the TDI Remote Server API. Furthermore, if multiple

people have access to the TDI server it could be necessary to protect access to confidential

data, as well as maintain the integrity of the integration rules that TDI executes.

This chapter will explain the following features:

1. “SSL Support”

2. “Server API Access Security” on page 57

3. “TDI Server Instance Security” on page 74

4. “Miscellaneous Config File features” on page 78

5. “Web Admin Console Security” on page 81

6. “Summary of configuration files and properties dealing with security” on page 81

7. “Component specific basics” on page 83

This guide does not describe all the security capabilities of the individual TDI Components.

Some common elements are described in “Component specific basics” on page 83, however

for individual elements of security configuration in the individual TDI components, consult

the IBM Tivoli Directory Integrator 6.1: Reference Guide.

SSL Support

As you will see in this section, SSL is an important foundation for many of the security

features. A working level knowledge of SSL should be acquired to fully exploit the capabilities

in TDI. We will also

SSL provides for encryption and authentication of network traffic between two remote

communicating parties. Most production deployments of TDI make use of SSL. That is why

SSL support is one of the major security features of TDI. More information on SSL as well as

information on using SSL in Java programs from a development point of view can be found at

http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html

© Copyright IBM Corp. 2003, 2006 49

http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html

TDI can be used as a client, as a server or as both at the same time. Configuring TDI for SSL

when used as a client is different from configuring TDI when used as a server. That is why

this section has been divided in two sub-sections – SSL for the server side and SSL for the

client side.

Server SSL configuration of TDI components

When a TDI component is used as a server (for example a Server mode Connector) SSL

mandates that a keystore to be used by TDI must be defined. For information on keystores

and truststores please see the guide at http://java.sun.com/j2se/1.5.0/docs/guide/security/
jsse/JSSERefGuide.html. The following properties in global.properties or

solution.properties specify the default keystore for the TDI server and the TDI components

running inside the TDI server:

javax.net.ssl.keyStore=d:\test\KeyRings\namtp2.jks

javax.net.ssl.keyStorePassword=secret

javax.net.ssl.keyStoreType=jks

Notes:

1. The TDI server does not manage the keystores/truststores. All that the TDI server

provides to the TDI components in terms of keystore support is the global.properties or

solution.properties files, in which the standard Java keystore/truststore properties can

be specified.

2. A TDI component can choose to use the default configured keystore/truststore in

global.properties or solution.properties or it can choose to implement its own

handling of SSL sockets (for example implementing a custom SSLServerSocket Java class)

so that it can use keystores/truststores different from the default.

3. If TDI needs to use both a client and a server certificate only the default certificate

configured in global.properties or solution.properties is used, then this must be the

same certificate. An alternative would be to write a custom implementation of the

SSLSocket or the SSLServerSocket Java class and make it use a certificate different from

the default.

4. See section “Certificates for the TDI Web Service Suite” on page 83 for specifics on the

certificates for TDI Web Service components.

Client SSL configuration of TDI components

When a TDI component is used as a client (for example the LDAP Connector) SSL mandates

that a truststore to be used by TDI must be defined. For information on keystores and

truststores please see the guide at http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/
JSSERefGuide.html. The following properties in global.properties or solution.properties

specify the default truststore for the TDI server and the TDI components running inside the

TDI server:

javax.net.ssl.trustStore=d:\test\KeyRings\ibmdi.jks

javax.net.ssl.trustStorePassword=secret

javax.net.ssl.trustStoreType=jks

50 Administrator Guide

http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html

Note: TDI truststore and keystore do not play any part in SSL configuration for the Domino

Change Detection connector. See section “Lotus Domino SSL specifics” on page 83 for

more information.

SSL client authentication

If a TDI component is used as a client and the server with which it communicates requires

SSL client authentication, then apart from a truststore TDI will need a keystore as well. In this

case the keystore can be defined just like it is defined when TDI is used a server – please see

the ““Server SSL configuration of TDI components” on page 50” section.

Note: Client TDI components which support SSL client authentication do not normally need a

“SSL client authentication” check-box as do TDI server components. All such a client

TDI component needs in order to prove its identity to the server is to have its keystore

generated and configured in global.properties or solution.properties. If the server

requires an SSL client certificate then the client SSL library will automatically send the

client’s certificate from the keystore configured in global.properties or

solution.properties.

Self-signed vs. CA-signed certificates

CA-signed certificates

Typically there is a local certification authority (CA), i.e. the certificates will not come from

any of the well known CAs like VeriSign, etc. The local CA itself should have a root certificate

issued by a well known CA, but even this is not always true. If the local CA’s root certificate

is self-signed, you must import it into the trust store of each server or client that is using SSL.

Please see section “Keystore and truststore management” on information how to do this. Each

server for an SSL connection and each client doing PKI authentication must then issue a

request for a certificate to the local CA, and must add the resulting certificate into its keystore.

Self-signed certificates

In this case, each server for an SSL connection, and each client doing PKI authentication,

generates its own self-signed certificate. It is then necessary to export the certificate to a file

and to import it into various trust stores. If a client C connects to a server S, C must have S’s

self-signed certificate in its trust store. If a client C does PKI authentication (symmetric SSL) to

a server S, S must have C’s self-signed certificate in its trust store. Note: Self-signed

certificates can be used for either a client or a server certificate.

Keystore and truststore management

Keystore and truststore management In order to create, edit, export and overall manage

keystores and truststores the “iKeyman” GUI utility or the “keytool” command line utility can

be used. The executables for these two utilities can be found in the

“<TDI_INSTALL_FOLDER>” folder.

Managing a CA-signed certificate using keytool

Normally the process of acquiring and using CA-signed certificates goes like this: First a key

pair is generated. After that a certificate for the public key is requested from a Certification

Chapter 5. Security and TDI 51

Authority. When the Certification Authority sends back the signed certificate, the certificate is

imported into the appropriate truststore. Below is an example of this process using the keytool

Java utility:

1. keytool -genkey -dname cn=<server_ip_address> -keystore server.jks -storepass

secret -keypass secret

This command creates a private/public key pair and stores it into the ‘server.jks’ keystore

file.

2. keytool –certreq –file myRequest.csr –keystore server.jks –storepass secret

–keypass secret

This command creates a Certificate Signing Request in the ‘myRequest.csr’ file for the

public key created in step 1. The created Certificate Signing Request now can be sent to a

Certification Authority.

3. keytool -import -trustcacerts -file server.cer -keystore mytruststore.jks

-storepass secret

This command reads the certificate (public key) stored in the ‘server.cer’ certificate file

(possibly the response of a Certificate Signing Request) and imports it into the

‘mytruststore.jks’ keystore file.

After these steps are executed, the keystore ‘server.jks’ contains the created public/private key

pair. On the other hand, the ‘mytruststore.jks’ keystore represents a truststore which trusts the

public key.

Creating a self-signed certificate using keytool

The standard Java utility keytool can be used to create self-signed certificates. The following

commands can be entered at the command prompt in the JVM bin directory:

1. keytool -genkey -dname cn=server_ip_address -validity 18263 -keystore server.jks

-storepass secret -keypass secret

This command creates a private/public key pair and stores it into the //server.jks

keystore file.

2. keytool -export -alias mykey -file server.cer -keystore server.jks -storepass

secret

This command extracts the public key (certificate) from the server.jks //keystore file and

stores it into the server.cer certificate file.

3. keytool -import -trustcacerts -file server.cer -keystore server.jks -storepass

secret -alias mytrustedkey

This command reads the certificate (public key) stored in the server.cer //certificate file

and imports it into the server.jks keystore file.

Answer "yes" and press Enter to the ″Certificate already exists in keystore under alias

<mykey> Do you still want to add it? [no]:″ question.

Note: The number 18263 is the validity period of the certificate in days (18263 days is roughly

equal to 50 years).
After these steps are executed a server.jks keystore file is created which contains a key for the

52 Administrator Guide

server. This file is also a truststore which contains the server public key, i.e. trusts the server

key. In this way this server.jks file can be used as both the server keystore and client truststore

file.

Creating a self-signed certificate using iKeyman

iKeyman provides a graphical user interface for managing keystores and truststores. The

iKeyman tool can be launched from within the TDI Config Editor by choosing “KeyManager”

from the “Tools” menu. In order to create a keystore which contains a self-signed certificate

you have to follow these steps:

 1. Start the iKeyman GUI tool

 2. From the Key Database File menu click New....

 3. In the New dialog box:

a. set the Key database type to JKS (the default)

b. set the File Name to server.jks

c. set the Location to the appropriate value
 4. In the Password Prompt dialog box:

a. enter the keystore password you have chosen

b. confirm the password value

c. click OK

 5. From the Create menu, click New Self-Signed Certificate....

 6. In the Create New Self-Signed Certificate dialog box:

a. Set the Key Label to a name (label) that is used to identify the key and certificate in

the database, for example, my self-signed certificate

b. Set the Key Size

c. Set the Common Name to the fully qualified host name of the server as the common

name, for example, www.myserver.com

d. Set the Organization to your organization’s name

e. Fill in any of the optional fields if you need to

f. Specify the Country or region

g. Specify the Validity Period in days.

h. Click OK

 7. Click the Extract Certificate... button.

 8. In the Extract Certificate to a File dialog box:

a. Set the Data type to Base64-encoded ASCII data (the default)

b. Set the Certificate file name to server.arm

c. Set the “Location” to the appropriate value.

d. Click OK

 9. From the drop down list select Signer Certificates

10. Click the Add... button.

Chapter 5. Security and TDI 53

11. In the Add CA’s Certificate from a File dialog box:

a. For the Data Type select Base64-encoded ASCII data

b. Set the Certificate file name to server.arm

c. Input the Location.

d. Click OK.

After these steps are executed a server.jks keystore file is created which contains a key for the

server. This file is also a truststore which contains the server public key, i.e. trusts the server

key. In this way this server.jks file can be used as both the server keystore and client truststore

file.

Exporting a key from a keystore to a PKCS#12 file using iKeyman

1. Start the iKeyman GUI tool

2. From the Key Database File menu click Open....

3. In the Open dialog select the path to the keystore. Make sure the Key database type is set

properly.

4. In the combo box in the Key database content section select Personal Certificates.

5. Now all keys available in the keystore should be displayed in the Key database content

section.

6. Select one of them and click the Export/Import... button.

7. In the Export/Import... dialog box:

a. Select the Export Key radio button.

b. Select PKCS12 in the Key file type combo box.

c. Enter file name and location where the PKCS12 file will be created.

d. Click OK.

Importing a key from a PKCS#12 file into a keystore using iKeyman

1. Start the iKeyman GUI tool

2. From the Key Database File menu click Open...

3. In the Open dialog select the path to the keystore. Make sure the Key database type is set

properly.

4. In the combo box in the Key database content section select Personal Certificates.

5. Now all keys available in the keystore should be displayed in the Key database content

section.

6. Click the Export/Import... button.

7. In the Export/Import... dialog box:

a. Select the Import Key radio button.

b. Select PKCS12 in the Key file type combo box.

c. Enter file name and location of the PKCS12 file, which contains the key to be imported.

d. Click OK.

54 Administrator Guide

SSL example

In order to demonstrate how TDI can be configured for SSL when used as a server and also

when used as a client, two examples are provided – one deploying the LDAP Server

Connector and one deploying the LDAP Connector.

TDI component as a server

This example uses the LDAP Server Connector. The LDAP Server Connector listens for LDAP

requests. When an LDAP request arrives the Connector parses the request and provides the

request data to the hosting AssemblyLine. The AssemblyLine then processes the request and

provides the data for the response to the LDAP Server Connector, so that it can build the

LDAP response and send it back to the LDAP client. What follows is a step by step guide

how to configure TDI for SSL when the LDAP Server Connector is used:

Chapter 5. Security and TDI 55

1. Obtain the server keystore either requesting it from a Certification Authority (CA) or

creating a self-signed certificate as explained in either the““Creating a self-signed

certificate using keytool” on page 52” section or the ““Creating a self-signed certificate

using iKeyman” on page 53” section.

2. Set the keystore details in global.properties or solution.properties as described in the

““Server SSL configuration of TDI components” on page 50” section.

3. Check the “Use SSL” check-box on the Connector GUI configuration panel.

TDI component as a client

This example uses the LDAP Connector. The LDAP Connector connects to an LDAP Server

and sends an LDAP request. After the Server returns the LDAP response the LDAP Connector

provides that response to the AssemblyLine for further processing. What follows is a step by

step guide how to configure TDI for SSL when the LDAP Connector is used:

1. Generate the client truststore.

2. Import the LDAP server certificate into the client truststore.

3. Set the truststore details in global.properties or solution.properties as described in the

““Client SSL configuration of TDI components” on page 50” section.

The following command line imports an existing certificate into a keystore (the keystore is

created if not already existing):

keytool -import -trustcacerts -file myLDAPServerCert.cer -keystore myClientTruststore.jks -storepass

myclientTruststorePassword -alias myTrustedLDAPServerAlias

56 Administrator Guide

This command line imports a the myLDAPServerCert.cer certificate under alias

myTrustedLDAPServerAlias into the myClientTruststore.jks keystore. The password to access

the keystore is myclientTruststorePassword.

Server API Access Security

This section does not cover securing an instance of a TDI (remote) server; this is discussed in

“TDI Server Instance Security” on page 74. Instead, this section discusses how client

applications can contact a server.

The Server API provides a number of security-related features (which both TDI Solution-based

clients as well other client applications have to deal with). But we will first go through the

available Server API access options. There are three aspects to Server API Access Security:

1. “Server API SSL remote access” on page 58 (which secures the transport channel to a

remote TDI Server),

2. “Server API authentication” on page 59 (which handles the client authentication to a TDI

Server),

3. “Server API Authorization” on page 67 (which handles the client authorization to a TDI

Server, i.e. what the client is allowed to do once authenticated).

Server API access options

The Server API can be used in a variety of ways:

v Access the Server API from a Java application running on a remote machine (remote Server

API access)

v Access the Server API from TDI components running in a remote TDI server (remote Server

API access); examples of such components would be:

– System Queue Connector

– Server Notifications Connector

– etc.
v Access the Server API from the Remote Config Editor (remote Server API access)

v Access the Server API from the same Java Virtual Machine of the TDI Server (local Server

API access); in this case a few sub-options are available:

– Access from JavaScript™ in hooks or from the Script Component

– Access from TDI components – examples would be:

- System Queue Connector

- Server Notifications Connector

- etc.

Note: The Java system properties that the Server API uses for its configuration are the same,

regardless of whether the client is a Java program or a different instance of the TDI

server. What should be noted though is that the way these Java system properties are

set might be different. In TDI these properties are normally set by editing the system

Chapter 5. Security and TDI 57

properties files, whereas in a Java program they can be specified either at the command

line using the -D Java command line switch or by using Java code within the Java

program using the java.lang.System.setProperty(key,value) standard Java method.

Server API SSL remote access

The Server API provides two sets of interfaces – local and remote. It is only the remote

interfaces that can use SSL. The local interfaces do not use SSL as the access is within the

boundaries of the Java Virtual Machine. TDI can act as a server, as a client; as well as both as

a client and as a server in a Server API access scenario. When SSL is used with the Server API

then a keystore and a truststore need to be configured. There are two options for configuring

these. Which of them will be used depends on whether the Java System property

api.client.ssl.custom.properties.on exists and on its value.

Using Server API specific SSL properties

When the Java System property api.client.ssl.custom.properties.on is set to “true”, then SSL is

configured through the following TDI Server API-specific Java System properties:

v api.client.keystore – specifies the keystore file containing the client certificate

v api.client.keystore.pass – specifies the password of the keystore file specified by

api.client.keystore

v api.client.key.pass – the password of the private key stored in keystore file specified by

api.client.keystore; if this property is missing, the password specified by

api.client.keystore.pass is used instead.

v api.truststore – specifies the keystore file containing the TDI Server public certificate.

v api.truststore.pass – specifies the password for the keystore file specified by api.truststore.

Using the Server API specific SSL properties is convenient when your client application is

using the standard Java SSL properties for configuration of another SSL channel used by the

same application.

You can specify these properties as JVM arguments on the command line, for example:

java MyTDIServerAPIClientApp

 -Dapi.client.ssl.custom.properties.on=true

 -Dapi.truststore=C:\TDI\serverapi\testadmin.jks

 -Dapi.truststore.pass=administrator

 -Dapi.client.keystore=C:\TDI\serverapi\testadmin.jks

 -Dapi.client.keystore.pass=administrator

This example refers to the sample “testadmin.jks” keystore file shipped with TDI. Note that it

contains both the client private key and also the public key of the TDI Server, so we use it

both as a keystore and truststore.

Also these properties can be specified in global.properties or solution.properties when the

client is a TDI server.

58 Administrator Guide

Using the standard SSL Java System properties

When the Java System property api.client.ssl.custom.properties.on is missing or when it is set

to “false”, then the standard JSSE system properties are used for configuring the SSL channel.

Follow the standard JSSE procedure for configuring the keystore and truststore used by the

client application.

You can specify these properties as JVM arguments on the command line, for example:

java MyTDIServerAPIClientApp

 -Djavax.net.ssl.keyStore=C:\TDI\serverapi\testadmin.jks

 -Djavax.net.ssl.keyStorePassword=administrator

 -Djavax.net.ssl.trustStore=C:\TDI\serverapi\testadmin.jks

 -Djavax.net.ssl.trustStorePassword=administrator

Also these properties can be specified in global.properties or solution.properties when the

client is a TDI server.

Server API authentication

Server API authentication is usually referred to in the context of a remote Server API client

establishing a Server API session. This scenario represents the substance of the Server API

authentication logic as the Server API provides several different kinds of client authentication.

But before diving into the different authentication mechanisms let us discuss the scenario in

which a local client establishes a local Server API session.

Local client session

A local client session is a session established by a client which runs in the same Java Virtual

Machine as the TDI server. Examples of such sessions are local sessions for access to the local

Server API established from JavaScript code in hooks or in a Script component, from

Connectors and Function Components which are executed as part of an AssemblyLine which

runs in the same TDI server, etc. When a local client establishes a local Server API session, the

client has two options:

v Do not provide a username/password pair – in this case the local Server API session is

established and the client is authorized as having the ‘admin’ role. For more information

about Server API roles please see the “Server API Authorization” section.

v Provide a username/password pair – in this case the Server API session is established only

after the ‘username’ supplied in the username/password pair is authorized according to the

Server API Authorization logic described in the “Server API Authorization” section. This

option would normally be used when a specific user ID is needed for authentication – for

demos, prototyping, etc.

SSL-based authentication

This is the only authentication mechanism available in TDI 6.0. The rest of the authentication

mechanisms have been introduced in TDI 6.1. SSL-based authentication is based on a

two-stage verification of the client’s credentials.

1. First the TDI server verifies that a client (represented by its SSL certificate) has the right to

access the TDI server by checking whether the client’s SSL certificate is contained in the

Chapter 5. Security and TDI 59

TDI server’s truststore, i.e. checks whether the TDI server trusts this client. Checking

whether the client’s certificate is contained in the server’s truststore is part of the SSL

handshake sequence.

2. If the truststore check is successful then the server verifies that the client SSL certificate

distinguished name (DN) matches a user ID in the Server API User registry file. For more

information on the Server API User registry file please see the “Server API User Registry”

section. If the client certificate’s DN does not match any of the user IDs in the Server API

User registry file the connection request from the client is denied. This second step could

be regarded as part of the authorization sequence as well.

The SSL-based authentication mechanism can be switched off in TDI 6.1. A new property is

introduced to the TDI Server configuration file global.properties or solution.properties:

api.remote.ssl.client.auth.on. When this property is set to “true”, the TDI Server will require

client authentication within the SSL handshake (the TDI 6.0 mechanism for SSL-based

authentication). SSL client authentication for TDI Server API does not depend on whether a

username/password pair is supplied. This means that if no username/password pair is

supplied, the TDI 6.0 mechanism for SSL-based authentication will be used. And if a

username/password pair is supplied then the client will still need to send its SSL certificate

for authentication, but the User ID for authentication (and at a later step authorization) will

be taken from the username supplied.

When api.remote.ssl.client.auth.on is set to “false”, SSL-based authentication cannot be used.

When the property is not specified a value of “false” is assumed.

Username/password based authentication

In TDI 6.1 a new authentication method is introduced – username/password based

authentication. This new mechanism requires a client to supply a username and password on

the opening of his Server API connection to the TDI server. In order to configure this new

authentication method an authentication hook is used – please see the “Authentication hook”

section.

Authentication hook: An authentication hook at the Server level is introduced in TDI 6.1. It

will allow hooking of custom JavaScript code that performs username/password based

authentication. This hook allows bundlers/deployers to write customized JavaScript code,

which given a username/password pair determines whether the authentication should

succeed or not.

A new property is introduced in the TDI Server configuration file global.properties or

solution.properties: api.custom.authentication. The api.custom.authentication property

points to a JavaScript text file on the disk that contains custom authentication code. If this

property is not specified then the TDI 6.0 SSL-based authentication mechanism is used. When

the api.custom.authentication property is specified, the JavaScript code contained in the

specified file will be executed for each username/password based authentication request.

The authentication script will have access to the predefined script object userdata. This object

provides the following two public members:

60 Administrator Guide

v userdata.username – will contain the name of the user requesting authentication

v userdata.password – will contain the password provided by the user

The script is free to perform whatever checks and authentication actions it needs. It will have

to return whether the authentication is successful through the ret object:

v set ret.auth = true to specify that the authentication is successful

v set ret.auth = false to specify that the authentication is not successful; in this case the

authentication script can provide additional information for why the authentication failed

through the ret.errordescr attribute (for example ret.errordescr = ”Invalid user name”) and

ret.errorcode (for example ret.errorcode = 1).

The description and error code fields will be provided by the AuthenticationException thrown

by the ServerAPI on unsuccessful authentication.

The authentication script will have access to the main script object. It can be used for logging

custom messages in the TDI Server log file (for example main.logmsg(“Authentication failed

for user : “ + userdata.username)).

An example authentication hook: An example authentication hook JavaScript file is available in

order to demonstrate what the JavaScript of an authentication hook looks like. This example

JavaScript can also be used as the basis of real-world TDI authentication hooks. This example

JavaScript demonstrates how an authentication hook can use an LDAP server (Tivoli Directory

Server, Active Directory, etc.) for authenticating client requests.

The JavaScript file is named “ldap_auth.js” and is installed in the “examples/auth_ldap” TDI

Server folder. To deploy this sample LDAP authentication mechanism users can copy that file

to the TDI solution folder and specify api.custom.authentication=ldap_auth.js in

global.properties or solution.properties. The JavaScript code in “ldap_auth.js” will try to

bind to an LDAP Server with the specified username and password. If the bind operation is

successful the script will indicate a successful authentication, otherwise the authentication will

be rejected. The details for connecting to the LDAP Server like the server URL are specified in

the “ldap_auth.js” script – this means that users will have to edit this file and set the proper

connection parameters before using the script. Here is the sample “ldap_auth.js” script:

env = new Packages.java.util.Hashtable();

env.put("java.naming.factory.initial", "com.sun.jndi.ldap.LdapCtxFactory");

env.put("java.naming.provider.url", "ldap://192.168.113.54:389");

env.put("java.naming.security.principal", userdata.username);

env.put("java.naming.security.credentials", userdata.password);

env.put(Packages.javax.naming.Context.SECURITY_AUTHENTICATION, "simple");

main.logmsg("Authentication request for user: " + userdata.username);

try

{

 mCtx = new Packages.javax.naming.directory.InitialDirContext(env);

 ret.auth = true;

}

catch(e)

{

Chapter 5. Security and TDI 61

ret.auth = false;

 ret.errordescr = e.toString();

// ret.errorcode = "49";

}

LDAP Authentication support

The TDI Server API provides support for LDAP Authentication. This allows customers to

leverage their existing LDAP infrastructures which already hold their User IDs and

Passwords.

LDAP Authentication Configuration: In order to use LDAP authentication the appropriate

properties must be configured in global.properties or solution.properties. The list of these

properties along with their descriptions follows:

api.custom.authentication

This is the same property used for username/password authentication. For more

information on username/password authentication please see the

“Username/password based authentication” section. This property points to a

JavaScript text file on the disk that contains custom authentication code. The user may

not specify this property in which case he will only be able to use the TDI 6.0

SSL-based authentication mechanism and the TDI 6.1 username/password

authentication will not work. Set this property to “[ldap]” to enable the TDI 6.1

built-in LDAP Authentication mechanism, like this: api.custom.authentication=[ldap]

All properties starting with “api.custom.authentication.ldap.” will only be taken into

account when api.custom.authentication is set to [ldap].

api.custom.authentication.ldap.critical

This parameter specifies the Server API behavior when the LDAP Authentication

module cannot be initialized on startup. If this parameter is set to “true” the Server

API initialization will fail and the Server API will not be started.

 If this parameter is missing or is set to “false” the Server API will log the LDAP

Authentication initialization error but the Server API will be started. An attempt to

initialize the LDAP Authentication module will be made on each authentication

request received by the Server API until the LDAP Authentication module is

initialized.

api.custom.authentication.ldap.hostname

The LDAP Server hostname. If LDAP custom authentication is used, this is a required

property.

api.custom.authentication.ldap.port

The LDAP Server port number. For example, 389 for non-SSL or 636 for SSL. If LDAP

custom authentication is used, this is a required property.

api.custom.authentication.ldap.ssl

Specifies whether SSL is used to communicate with the LDAP Server. When set to

“true” SSL will be used, otherwise SSL will not be used.

62 Administrator Guide

api.custom.authentication.ldap.searchbase

Specifies the LDAP directory location where user searches will be preformed. When

this property is not specified user searches will not be performed.

api.custom.authentication.ldap.admindn

Specifies an LDAP Server administrator distinguished name that will be used for user

searches. When this property is not specified anonymous bind will be used for user

searches.

api.custom.authentication.ldap.adminpassword

Password for the LDAP Server administrator distinguished name.

api.custom.authentication.ldap.userattribute

Specifies the user id attribute to be used in searches. When this property is not

specified user searches will not be performed. An example setting of this property

would be: api.custom.authentication.ldap.userattribute=cn

If a required property is missing an exception will be thrown on initialization.

If the value of either api.custom.authentication.ldap.searchbase or

api.custom.authentication.ldap.userattribute is missing no search context will be initialized

and no searches will be performed during the actual user authentication. (No search means

that the bind to the LDAP Server will be attempted directly with the username and password

provided for authentication.)

When api.custom.authentication.ldap.admindn is provided a search context will be created

using “simple” authentication. If an error occurs during the search context initialization, the

initialization of the LDAP Authentication module will fail and an exception will be thrown.

When api.custom.authentication.ldap.admindn is not provided a JNDI search context will be

created using JNDI “anonymous” bind.

Note: If the search context cannot be initialized using

api.custom.authentication.ldap.admindn, authentication fails directly – no anonymous

bind is attempted.

LDAP Authentication Logic: On each attempt to authenticate a user the LDAP

Authentication module is passed the username and the password for the user to be

authenticated. The following authentication paths are possible:

v Both api.custom.authentication.ldap.searchbase and

api.custom.authentication.ldap.userattribute properties are specified :

– If the username given for authentication ends with the value of the

api.custom.authentication.ldap.searchbase property it is assumed that a full

distinguished name is provided and no user search is performed. A bind to the LDAP

Server is attempted directly with the username and password provided for

authentication. If the bind succeeds the authentication is considered successful, otherwise

the authentication is considered failed.

Chapter 5. Security and TDI 63

– If the username does not end with the value of the

api.custom.authentication.ldap.searchbase property, a search with a subtree search scope

is executed against the search context created on initialization. The search query used is

“(<LDAPUserIDAttribute>=<username>)” where LDAPUserIDAttribute is the value of the

api.custom.authentication.ldap.userattribute property and username is the username

given for authentication. If exactly one search result is returned, a bind to the LDAP

Server will be performed with the distinguished name of the returned entry and the

password provided for authentication. The authentication will succeed only if the bind to

the LDAP Server is successful. In all other cases it is considered that the authentication

has failed. If multiple search results are returned, authentication fails.
v At least one of api.custom.authentication.ldap.searchbase or

api.custom.authentication.ldap.userattribute properties is not specified.

In this case no searches are performed and a bind to the LDAP Server is attempted directly

with the username and password provided for authentication. If the bind succeeds the

authentication is considered successful, otherwise it is considered that the authentication

failed.

Host based authentication

Host based authentication is used, when SSL is turned off by specifying api.remote.ssl.on=false

in global.properties or solution.properties files. Host based authentication is configured

using the api.remote.nonssl.hosts property. This property specifies the list of host IP addresses

from which remote Server API clients can use the Server API without specifying a

username/password.

The syntax of this list of hosts is: a list of IP addresses (host names are not accepted); use a

space, a comma or a semicolon as a delimiter between IP addresses. An example value of this

property would be:

api.remote.nonssl.hosts=192.168.111.222, 192.168.112.158

When a client using host based authentication is successfully authenticated, then the client is

granted admin authorization authority. That is why adding IP addresses to this list must be

done with great care. It is not advisable to use host based authentication in production

environment because of its security issues. Host based authentication would normally be used

while developing a solution or when doing a demo.

Summary of Server API Authentication options

The following authentication options are available:

SSL-based authentication (the mechanism available in TDI 6.0)

Only works when api.remote.ssl.client.auth.on=true (you will also need api.on=true,

api.remote.on=true, api.remote.ssl.on=true). The user is authorized as per the rights

assigned to the SSL certificate user ID in the Server API User Registry.

Note: When SSL is used and the remote client application uses Server API listener

objects, then the client application must have its own certificate that is trusted

by the TDI Server (this is analogous to the setup for SSL client authentication).

64 Administrator Guide

If there is no client certificate trusted by the TDI Server, the listener objects will

not work and the remote client application will not be able to receive

notifications from the TDI Server.

Username/password based authentication

Only works when api.custom.authentication is set to a JavaScript authentication file.

This authentication method works regardless of whether SSL is used and whether SSL

client authentication is used. The user is authorized as per the rights assigned to the

username user in the Server API User Registry.

LDAP authentication

Please see section ““LDAP Authentication support” on page 62” for more information

on LDAP authentication support.

Host-based authentication

Only works when api.remote.ssl.on=false. Then opening of Server API sessions without

username/password supplied from all hosts specified by the api.remote.nonssl.hosts

property are successfully authenticated and granted admin authority. The

api.remote.nonssl.hosts property can be specified in the global.properties or

solution.properties files.

Server API JMX layer does not support username/password authentication

The remote JMX layer of the Server API does not support username/password based

authentication. It ignores the api.custom.authentication property. Regardless of the value of this

property and whether custom authentication is enabled or not for the Server API, the remote

JMX layer performs the following authentication:

v If SSL is turned on and SSL client authentication is turned on, the remote JMX layer

performs SSL-based authentication (as in TDI 6.0).

v If SSL is turned on and SSL client authentication is turned off, the remote JMX layer does

not work.

v If SSL is turned off, the remote JMX client is successfully authenticated only if its host is

specified on the api.remote.nonssl.hosts property, i.e. host-based authentication is assumed.

In this case the client is granted admin authority.

The Server API JMX layer does not support username/password authentication:

Server API authentication setup examples

Authentication configuration examples:

1. Non-SSL configuration & custom authentication:

api.remote.ssl.on=false

api.remote.nonssl.hosts=192.168.113.51, 192.168.113.52

api.custom.authentication=ldap_auth.js

SSL is not used.

v Authentication requests with no username/password supplied will only succeed if they

are invoked from the localhost or from 192.168.113.51 or 192.168.113.52.

Chapter 5. Security and TDI 65

v Authentication requests with username/password supplied will only succeed if the

ldap_auth.js successfully authenticates the user specified with the username and

password parameters.

v Remote JMX clients will be authenticated only when the request comes from the

localhost or from 192.168.113.51 or 192.168.113.52.
2. SSL (without client authentication) & custom authentication:

api.remote.ssl.on=true

api.remote.ssl.client.auth.on=false

api.custom.authentication=ldap_auth.js

SSL is used for remote Server API communication.

v Authentication requests with no username/password supplied will fail because neither

SSL client authentication, nor host-based authentication is switched on.

v Authentication requests with username/password supplied will only succeed if the

ldap_auth.js successfully authenticates the user specified with the username and

password parameters.

v Host-based authentication is not available in this case regardless of the value of the

api.remote.nonssl.hosts parameter, because api.remote.ssl.on is set to true.

v The remote JMX layer will not be accessible. This is because SSL is turned on but SSL

client authentication is not used.
3. SSL with client authentication & custom authentication:

api.remote.ssl.on=true

api.remote.ssl.client.auth.on=true

api.custom.authentication=ldap_auth.js

SSL is used for remote Server API communication and the Server requires SSL client

authentication.

v Authentication requests with no username/password supplied will succeed when the

SSL certificate of the client is present in the Server’s trust store (or verifiable using the

certificates in the trust store).

v Authentication requests with username/password supplied will only succeed when the

SSL client authentication is successful (the SSL certificate of the client is present in the

Server’s trust store) and the ldap_auth.js script successfully authenticates the user

specified with the username and password parameters. In this case authorization will be

performed based on the username parameter from the username/password supplied

and not with the user identity from the SSL client certificate.

v Host-based authentication is not available in this case regardless of the value of the

api.remote.nonssl.hosts parameter, because api.remote.ssl.on is set to true.

v Remote JMX clients will be authenticated when the SSL certificate of the client is present

in the Server’s trust store (or verifiable using the certificates in the trust store).
4. SSL with client authentication & no custom authentication:

66 Administrator Guide

api.remote.ssl.on=true

api.remote.ssl.client.auth.on=true

api.custom.authentication=

(as an alternative, the “api.custom.authentication” property may be missing entirely)

SSL is used for remote Server API communication and the Server requires SSL client

authentication.

v Authentication requests with no username/password supplied will succeed when the

SSL certificate of the client is present in the Server’s trust store (or verifiable using the

certificates in the trust store).

v Authentication requests with username/password supplied will not succeed because

custom authentication is not configured.

v Host-based authentication is not available in this case regardless of the value of the

api.remote.nonssl.hosts parameter, because api.remote.ssl.on is set to true.

v Remote JMX clients will be authenticated successfully only when the SSL certificate of

the client is present in the Server’s trust store.

Server API Authorization

After a client Server API session request is authenticated it needs to be authorized.

Authorization is based on the user id. Depending on the authentication mechanism used the

user id is retrieved in a different way:

v SSL based authentication – the user id is the distinguished name (DN) of the client’s SSL

certificate.

v Username/password based authentication – the user id is the username supplied in the

username/password pair.

v Host based authentication – no user id can be retrieved from the client using this

authentication mechanism; in this case the client session is authorized with the admin role.

Authorization roles

Users of the Remote API are assigned roles; a role defines a list of Server API calls that can be

executed by the user and also defines in what context these calls can be invoked. For

example, a role can grant the user rights to invoke only specific AssemblyLines from a specific

configuration. Please see the ““Server API User Registry” on page 69” section for details on

how to create the file that holds these user rights.

Several roles can be assigned to a user, including assigning the same role several times with

different parameters. A Server API method can be invoked if there is at least one role assigned

to the user that allows the execution of this method in the context the user tries to execute it.

There are no deny semantics – actions cannot be explicitly forbidden. The following roles

apply to the Server API security model:

Read role: The syntax of the Read role is:

read [list_of(configuration)]

Chapter 5. Security and TDI 67

For example:

[ROLE]:read

 [CONFIG]:*

The read role allows the user to read data from the Server’s configuration(s). If no list of

configurations are specified or the list is empty, the user is not allowed to read any

configuration.

A special value * (asterisk) can be specified for the list of configurations and this means that

the user is allowed to read (through Server API calls) all configurations currently loaded by

the Server. When the list of configurations is not null/empty and does not specify * the user

is allowed to read only the configurations specified.

The read role does not grant permission to start processes (AssemblyLines, EventHandlers) or

apply any changes to the Server and its configurations.

Execute role: The syntax of the Execute role is:

execute [list_of(configuration [list_of(AssemblyLines), list_of(EventHandlers)])]

For example

[ROLE]:execute

 [CONFIG]:C:/ITDI/rs.xml

 [AL]:*

 [EH]:*

 [CONFIG]:C:/ITDI/prototype.xml

 [AL]:TestAssemblyLine

The execute role gives the user permissions to execute AssemblyLines and EventHandlers. If

no list of configurations is specified or the list is empty, the user is not allowed to execute any

AssemblyLine or EventHandler from any configuration.

A special value * (asterisk) can be specified for the list of configurations and this means that

the user is allowed to execute all AssemblyLines and all EventHandlers from all

configurations. When the list of configurations is present and does not specify * the user is

only allowed to start the processes from the configurations specified in the list.

For each configuration specified in the list:

v If a list of AssemblyLines is not specified the user is not allowed to execute any

AssemblyLine from this configuration.

v A special value * (asterisk) can be specified for the list of AssemblyLines and this means the

user is allowed to execute all AssemblyLines from this configuration.

v If the list of AssemblyLines is present and does not specify * the user is allowed to execute

only the AssemblyLines specified in the list.

v If a list of EventHandlers is not specified the user is not allowed to execute any

EventHandler from this configuration.

68 Administrator Guide

v A special value * (asterisk) can be specified for the list of EventHandlers and this means the

user is allowed to execute all EventHandlers from this configuration.

v If the list of EventHandlers is present and does not specify * the user is allowed to execute

only the EventHandlers specified in the list.

Admin role: The syntax of the admin role is:

admin

For example:

[ROLE]:admin

The admin role allows the user to execute any Server API call in any possible context. A user

with admin role is allowed to read and modify configurations, to load new configurations, to

execute AssemblyLines and EventHandlers, to read and modify server parameters.

Server API User Registry

The User Registry, identified by the api.user.registry property in the global.properties or

solution.properties file is a text file that maintains the information about all the users of the

API and their roles. This file is encrypted with the Server’s certificate specified by the

com.ibm.di.server.key.alias property from the keystore specified by the com.ibm.di.server.keystore

property. The encryption algorithm employed is Asymmetric RSA encryption/decryption; that

is why the Server certificate file must be created specifying the RSA algorithm, which is the

default algorithm. On startup the Server API engine decrypts and reads this file into its

memory structures.

Notes:

1. The entire user registry file is encrypted as it is, block by block, in a straightforward

manner using the RSA algorithm and the server public key. A digital signature or some

sort of hashing is not utilized.

2. The authorization against the user registry is not optional. Currently TDI Server has no

concept of pluggable authorization.

Example: The following command line creates a self-signed server certificate in the keystore

named “MyServerKeyStore.jks”.

keytool -alias MyServerCertAlias -keyalg RSA -genkey -dname cn=<server_ip_address> -validity 365 -keystore MyServerKeyStore.jks -storepass mystorepass -keypass mykeypass

The alias of the created certificate is “MyServerCertAlias”. The RSA algorithm is used to

create the key pair. The distinguished name of the certificate is the IP of the server. The

certificate is valid for 365 days (one year). The password of the keystore is “mystorepass”. The

password of the created private key is “mykeypass”. The created certificate can then be

configured for use by setting the following properties in the global.properties or

solution.properties file:

com.ibm.di.server.key.alias=MyServerCertAlias

com.ibm.di.server.keystore=MyServerKeyStore.jks

Chapter 5. Security and TDI 69

The content of the User Registry text file is structured as follows:

[USER]

[ID]:<user_identifier>

[ROLE]:<role_identifier>

 [CONFIG]:<config_id>

 [AL]:<assembly_line_name>

 [AL]:<assembly_line_name>

 [EH]:<assembly_line_name>

 ...

 [CONFIG]:<config_id>

 ...

[ROLE]:<role_identifier>

 ...

[ROLE]:<role_identifier>

 ...

[ENDUSER]

[USER]

[ID]:<user_identifier>

[ROLE]:<role_identifier>

...

[ENDUSER]

...

Each tag must span a single line and each tag must be on a separate line. Tabs and spaces do

not matter. Empty lines may appear anywhere. The tags in the Identity Registry file and their

arguments are as follows:

[USER]

No arguments; this tag serves as an opening bracket for the tags below; a [USER] and

[ENDUSER] pair of tags each placed on a single line wrap the definition of a single

user in the registry file. There can be multiple such pairs, each of which specifies a

user of the Server API.

[ID]:<user_identifier>

This tag is the first tag after the [USER] tag and its argument <user_identifier> is the

unique identifier of the user of the Server API. This ID value is the principal’s subject

DN from the trust store file. The tag and the argument of the tag are placed on a

single line, and there can be only one [ID]: tag included in a [USER] and [ENDUSER]

pair.

[ROLE]:<role_identifier>

One of read, execute or admin. This tag specifies a role for the user; everything after

the [ROLE]: tag and its argument and before another [ROLE]: tag or an [ENDUSER]

tag (whichever comes first) specifies details of this user role. The tag and the

argument of the tag are placed on a single line, and there can be multiple [ROLE]:

tags included in a [USER] and [ENDUSER] pair, specifying multiple roles for that

user.

[CONFIG]:<config_id>

Specifies the identifier of a TDI configuration, the absolute file path of the

70 Administrator Guide

configuration. Relative file paths will not be recognized. This tag is subordinate to a

[ROLE]: tag, and therefore the tag specifies a configuration for the role specified by

that [ROLE]: tag. Also this tag and its argument are placed on a single line, and there

can be multiple [CONFIG]: tags, all belonging to the superior [ROLE]: tag. If no

[CONFIG]: tag is associated with a [ROLE]: tag this means that the list of

configurations for the corresponding role definition is empty.

[AL]:<assembly_line_name>

Specifies the name of an AssemblyLine. This tag is subordinate to a [CONFIG]: tag.

The tag and its argument are placed on a single line, and there can be multiple [AL]:

tags, all belonging to the superior [CONFIG]: tag. If no [AL]: tag is associated with a

[CONFIG]: tag this means that the list of AssemblyLines for the corresponding

configuration ID is empty.

[EH]:<eventhandler_name>

Specifies the name of an EventHandler. This tag is subordinate to a [CONFIG]: tag.

The tag and its argument are placed on a single line, and there can be multiple [EH]:

tags, all belonging to the superior [CONFIG]: tag. If no [EH]: tag is associated with a

[CONFIG]: tag this means that the list of EventHandlers for the corresponding

configuration ID is empty.

The following is an example of a User Registry file:

USER]

[ID]:CN=Tim, OU=ITDI, O=IBM, C=US

[ROLE]:admin

[ENDUSER]

[USER]

[ID]:CN=John, OU=ITDI, O=IBM, C=US

[ROLE]:read

 [CONFIG]:*

[ROLE]:execute

 [CONFIG]:C:/ITDI/rs.xml

 [AL]:*

 [EH]:*

 [CONFIG]:C:/ITDI/prototype.xml

 [AL]:TestAssemblyLine

[ENDUSER]

[USER]

[ID]:CN=Peter, OU=ITDI, O=IBM, C=US

[ROLE]:execute

 [CONFIG]:C:/ITDI/rs.xml

 [AL]:*

 [EH]:IDSChangelog

 [EH]:ADChangelog

[ENDUSER]

This set of User Registry entries implies the following:

v This registry file specifies that user ″Tim″ is an administrator and is allowed to perform

each and every Server API operation.

Chapter 5. Security and TDI 71

v John is allowed to read all configurations loaded on the Server, but can only execute

processes from two configurations: from ″rs.xml″ he can execute all AssemblyLines and

EventHandlers, from ″prototype.xml″ he is only allowed to execute the AssemblyLine

named ″TestAssemblyLine″.

v Peter is only allowed to execute all AssemblyLines and the ″IDSChangelog″ and

″ADChangelog″ EventHandlers from the ″rs.xml″ configuration.

Note: The User registry is not involved in the authentication process – it is used only for

authorization. Consequently the user registry does not store passwords along with the

user names.

The keytool and/or the iKeyman utility can be used to obtain the user ID from the trust store

file. The following command line will print all users from the trust store file:

keytool -v -list -keystore <trust_store_file> -storepass <trust_store_pass>

where trust_store_file is the keystore file that contains the certificates of all trusted users and

trust_store_pass is the password for this keystore file. This command line will print something

like the text below for each user certificate:

Owner: CN=Tim, OU=ITDI, O=IBM, C=US

Issuer: CN=Tim, OU=ITDI, O=IBM, C=US

Serial number: 408f6a34

Valid from: 4/28/04 11:24 AM until: 7/27/04 11:24 AM

Certificate fingerprints:

 MD5: F6:EF:81:8B:4C:0F:10:E4:A0:16:99:AB:42:29:70:8B

 SHA1: FE:37:62:8B:42:2F:54:F8:F6:F3:FC:A1:DD:7D:2A:51:9A:85:09:02

The value of the Owner field must be specified as value for the [ID]: tag in the User Registry

as is, including all white space and commas. For this example, the line with the ID tag will

look like:

[ID]:CN=Tim, OU=ITDI, O=IBM, C=US

An alternative way to obtain the user ID from the trust store file is to use iKeyman in the

following way:

1. Start iKeyman.

2. From the Key Database File menu click Open....

3. In the Open dialog box set the appropriate values and click OK.

4. In the Password dialog box enter the password for the truststore file.

5. Click on the certificate you are interested in.

6. Click the View/Edit... button. This will popup a dialog box, which contains information on

the subject’s DN (user ID).

72 Administrator Guide

Chapter 5. Security and TDI 73

Local client session

A local client session is a session established by a client which runs in the same Java Virtual

Machine as the TDI server. For more information on how authorization works when a local

Server API session is established by a local Server API client please see the subordinate

““Local client session” on page 59” section, part of the Server API Authentication section.

TDI Server Instance Security

This section does not deal with the specifics of client (TDI-based or other) access to a TDI

Server, this is discussed in “Server API Access Security” on page 57.

The TDI Server requires a keystore containing both its private key and associated

certificate/public key that is used for PKI encryption of Config Files, properties in Properties

files, Server User registry files and other objects (using the RSA algorithm) as well as being

used for SSL communication.

The system properties com.ibm.di.server.keystore and com.ibm.di.server.key.alias specify the

keystore and the key alias of the Server’s certificate/key within the keystore. The password of

the keystore and the password of the key itself (if different from the keystore password) are

specified in the Server’s stash file. (Access to a keystore is guarded by a password, defined at

the time the keystore is created, by the person who creates the keystore, and changeable only

when providing the current password. In addition, each private key in a keystore can be

guarded by its own password.) For more information on the server’s stash file please see the

““Stash File”” section.

Stash File

The Server stash file is named ″idisrv.sth″ (the name is not configurable) and it is loaded by

the Server from the Solution Folder. The stash file contains the Server keystore password

values encrypted with AES128 with a fixed key. A command line utility for creating a stash

file is available in the TDI bin folder: createstash.bat or createstash.sh:

createstash <keyStorePassword> [<keyPassword>]

where keyStorePassword is the password of the key store file specified by the

com.ibm.di.server.keystore system property and <keyPassword> is the password of the Server’s

private key specified by the com.ibm.di.server.key.alias system property. keyPassword is an

optional parameter – if not specified it is assumed that the Server’s private key password is

the same as the keystore’s password. The utility creates a stash file named “idisrv.sth” with

the specified password(s) in the current directory.

Encryption Utility

In the “<TDI_INSTALL_FOLDER>/serverapi/” folder you can find a utility (cryptoutils)

which will enable you to decrypt and encrypt the User Registry file such that you can edit the

file manually. It is used as follows:

cryptoutils <inputFile><outputFile> <”encrypt”|”decrypt”|”encrypt_config”|”decrypt_config”> <keyStore><certificateAlias> <stashFile>

where

74 Administrator Guide

inputFile

This is the file to be encrypted or decrypted.

outputFile

This is the new file that will be created with the resulting data after the encryption or

decryption is done.

"encrypt”|”decrypt”|”encrypt_config”|”decrypt_config”

Specify either ″encrypt″ or ″decrypt″ to correspondingly encrypt or decrypt the input

file. If you wish to encrypt or decrypt a configuration XML file, you must use the

”encrypt_config” or ”decrypt_config” option: Configuration files are encrypted by the

TDI Server in a different way than the User Registry is encrypted.

keyStore

Specifiy the Server’s keystore .

certificateAlias

Specify the alias of the Server’s certificate within the keystore.

stashFile

Specify the Server’s stash file that contains the password values for the Server’s

keystore (idisrv.sth).

Examples:

v This creates a stashFile:

cryptoutils registry.txt registry_encr.txt encrypt ..\testserver.jks server ..\idisrv.sth

v And the following is an example of using cryptoutils on configuration files:

cryptoutils myconfig.xml mynewconfig_enc.xml encrypt_config ..\testserver.jks server ..\idisrv.sth

v This command encrypts the “myconfig.xml” configuration file and saves it as

“mynewconfig_enc.xml”. Now the encrypted file can be used by a TDI Server which is

running in secure mode

cryptoutils myconfig.xml mynewconfig_enc.xml encrypt_config ..\testserver.jks server ..\idisrv.sth

v This command decrypts the “myconfig_enc.xml” configuration file (possibly created by a

TDI Server, which runs in secure mode). Now the decrypted configuration “myconfig.xml”

can be easily modified using the Config Editor. After modifying the configuration, it can be

encrypted again, so that a TDI Server in secure mode can read it.

cryptoutils myconfig_enc.xml myconfig.xml decrypt_config ..\testserver.jks server ..\idisrv.sth

Note: the cryptoutils tool can be used to encrypt/decrypt files as a whole. This makes it

suitable for working with the User Registry, configuration files (see the ““Server

Security Modes” on page 76” section for details how the server treats encrypted

configurations) and encrypted server hooks. However, the cryptoutils tool should not

be used to encrypt any of the TDI properties files. The reason is that TDI properties

files are never encrypted/decrypted as a whole by the server. Only particular property

values are being encrypted (see section ““Standard TDI encryption of global.properties

or solution.properties” on page 77” for more information).

Chapter 5. Security and TDI 75

Server Security Modes

The TDI Server can run in two modes: standard and secure.

Standard mode

When run in standard mode the Server will not PKI encrypt configurations saved on

disk, unless a specific Server API call that requests PKI encryption is invoked. When

in this mode the Server is able to read both encrypted and unencrypted

configurations.

Secure mode

When run in secure mode the Server will encrypt all configurations it saves on the

disk using PKI encryption. In secure mode the Server will only be able to read and

load encrypted configurations. When the system property com.ibm.di.server.securemode

is set to “true”, the Server will run in secure mode. (A system property for the use of

the TDI Server can be set by adding it in the global.properties or

solution.properties file or directly specify it on the java command line when

starting the TDI server: -Dcom.ibm.di.server.securemode=true)

 If the command line option -e is specified on the java command line when starting the

Server, it will run in secure mode regardless of the value of the

com.ibm.di.server.securemode system property.

Note: Pre-TDI 6.0 password-based encryption of configuration files is supported for backward

compatibility. Password-based encryption is used when the user specifies a password

when creating the configuration. Pre-TDI 6.0 password-based configuration encryption

cannot be combined with the new PKI encryption. If you specify a password when the

Server is run in secure mode, an error message will be displayed.

Working with encrypted TDI configuration files

Creating a PKI-encrypted TDI configuration file from scratch

There are two alternative ways to create an encrypted TDI configuration file from scratch.

Using a local server in secure mode:

1. At the command prompt, run the ibmdisrv command to start a local ("remote") server

instance

ibmdisrv -d -e

This will start a server on your own machine.

2. At the command prompt, run the ibmditk command to start the CE.

3. In the Config Editor, click Remote->New Remote to create a new configuration on the

local TDI server running in secure mode.

4. Enter the IP address of the remote server (it runs on the local machine so enter the

localhost IP address - 127.0.0.1) and a name for the new configuration. Click OK.

5. Now the new remote configuration is open in the Config Editor and can be edited.

76 Administrator Guide

6. When you are done editing the new configuration, click File->Save. This will cause the

local server to save the new configuration to an encrypted file.

7. Verify that the .xml file which the server just created is encrypted (the new configuration

file will be created in the ″configs″ folder in the TDI working folder of the server).

Using the cryptoutils command line tool:

1. Create a normal un-encrypted TDI configuration file using the Config Editor.

2. Use the cryptoutils command line tool to encrypt this configuration file as described in

the ““Encryption Utility” on page 74” section.

3. In order to run this encrypted configuration file you need to start the TDI server in secure

mode as described in the “Server Security Modes” section.

4. In order to edit this encrypted configuration file you can use one of two options described

in the ““Editing an encrypted TDI configuration file”” section.

Editing an encrypted TDI configuration file

There are two alternative options for editing an encrypted TDI configuration file.

v You can first decrypt the encrypted configuration file using the cryptoutils command line

tool as described in the ““Encryption Utility” on page 74” section. Then you can edit the

decrypted configuration using the Config Editor and finally you can encrypt back the

modified configuration file using the cryptoutils tool.

v You can use the Remote Config Editor to edit an encrypted configuration on a TDI server

running in secure mode.

Encrypting/decrypting an existing TDI configuration file

The cryptoutils command line tool must be used in order to encrypt or decrypt an existing

TDI configuration file. For more information as well as examples please see the ““Encryption

Utility” on page 74” section.

Standard TDI encryption of global.properties or solution.properties

The global.properties and solution.properties store a number of properties, some of which

can represent sensitive data such as passwords. In order to protect this sensitive data TDI 6.1

is capable of encrypting this data. Here is how this works.

All properties whose names are prefixed with {protect}- will be PKI encrypted by the Server

using the Server’s public key. The Server’s key is specified by the com.ibm.di.server.key.alias

property from the keystore specified by the com.ibm.di.server.keystore property. For example, if

you want to encrypt a property com.ibm.di.any.property you can add the following line in the

global.properties or solution.properties file:

{protect}-com.ibm.di.any.property=some_value

The next time the Server runs it will detect that this property has to be encrypted and it will

immediately overwrite the file, writing the plain text value ″some_value″ in encrypted form.

Chapter 5. Security and TDI 77

Note: On some operating systems (z/OS, Linux/UNIX systems if so configured) the file

might not be accessible for writing. In this case the server outputs a warning message

that the file has not been written/encrypted.

Apart from the properties for which {protect}- has been specified, the TDI Server encrypts the

following properties as well:

v com.ibm.di.store.jdbc.password

v javax.net.ssl.trustStorePassword

v javax.net.ssl.keyStorePassword

v api.truststore.pass

Whenever the Server loads the properties file and detects that any of the predefined set of

properties is not encrypted, it will rewrite the file, saving all properties from the predefined

set in encrypted form.

Protecting the properties in global.properties or solution.properties is also accessible from

the “Global-Properties” and “Solution-Properties” Property Stores accessible from the

“Properties” folder in the Config Editor GUI.

Encryption of properties in external property files

Properties stored in external property files can be protected by encryption in just the same

way as properties in the global.properties or solution.properties can. For more

information on encrypting properties stored in global.properties or solution.properties

please see the ““Standard TDI encryption of global.properties or solution.properties” on page

77” section. The syntax of properties in an external property file is as follows:

[{protect}-]keyword <colon | equals> [{encr}][{java}]value

v The optional {protect}- prefix signals that the value either is or should be encrypted. When

the value starts with the character sequence {encr} it means that the value is already

encrypted.

v The optional {java} value prefix signals that the value is a serialized java object. The value

must be b64-encoded For example:

{protect}-api.truststore.pass={encr}J8AKimpEutu3BblOVg55F/5d5vO2kXWcNUWnCq3vINUc6K0719z9dEk3H43Ot2iTT1dZTI6FSSVin9KsCyBLmgv+n84w7HelKl3ro2dFmZbTYKMXuxGoqN9nL2VOvZoptNqzoWvs6IN/p3

Miscellaneous Config File features

The “password” configuration parameter type

The configuration parameters of a TDI component can be “string”, “number”, “boolean”, etc.

One of the available types is “password”. If a configuration parameter is of type password,

then the Config Editor shows its value in the component configuration panel as a sequence of

‘*’ characters – both when typing in a new password and when opening a new configuration

for editing/running.

Component Password Protection

TDI saves configuration information in an XML file which contains clear text for all

configuration values. This includes sensitive information like passwords. TDI supports

78 Administrator Guide

encryption of the entire configuration file but does not encrypt or protect sensitive

information when the configuration file is saved in clear text.

TDI provides a way to better protect passwords which are needed for its various components.

TDI hides the passwords in a clear text configuration and provides default security for

passwords that are stored in there. In order to do this component passwords are defined

(stored and retrieved) in a default property store, instead of in the configuration file. In TDI

6.1, a user defined property store can be any system for which there is a connector, and the

default property store most likely be an external properties file. All component passwords will

by default go to this default property store, instead of in the configuration file (as it is in TDI

6.0). Thus, passwords can be isolated from the configuration file unless explicitly overridden

by the user (may be appropriate for initial development).

Saving passwords to configured Properties

The password protection mechanism is directly related to the configuration panels offered to

the user. The configuration panels, or forms, contain descriptions of each parameter and its

syntax. One type of syntax is password which causes the Config Editor to use a password text

field for editing. Whenever the value for a password syntax component parameter is changed,

the value of the password is saved in an external repository, called the Password Store. This

external repository for passwords is configured in the Properties page in the configuration

editor (Password-Store) and is specified in the configuration file for the current TDI solution. If

no such property store is configured the password will be saved in clear text in the

configuration file.

If a default password store is configured, a unique property name is generated the first time a

protected/password parameter is saved. This key will be used as the key in the password

store. The same property name is written to the configuration file as a standard property

reference. When the value is later retrieved, standard property resolution takes place to

retrieve the actual value from the password store.

If a Password Store is specified, a unique key is generated for the password and the password

is saved encrypted in the Password Store under that key. In the configuration file, the

password is referenced only by that key.

If no Password Store is specified, the password appears in plain text in the configuration file.

For example:

1. Create a new solution from the TDI Config Editor

2. From the “Properties” tab of the Config Editor insert a new Property Store called

“MyProps”.

3. From the “Connector” tab of the newly created Property Store, type in

“MyProps.properties” in the “Collection Path/URL” field.

4. Specify that the new Property Store will be used as the Password Property Store (in the

“Password store:” combo box on the “Properties” tab of the Config Editor select

“MyProps”).

Chapter 5. Security and TDI 79

5. Add a new assembly line with a FTP Client Connector.

6. Enter a password in the “Login Password” field of the FTP Client Connector.

7. Save the solution and close the Config Editor.

After the above procedure, in the configuration file of the created solution will contain lines

that resemble the following:

<parameter name="ftpPass">@SUBSTITUTE{property.MyProps:ftpPass-38ae53e8779cfd65}</parameter>

<PasswordStore>MyProps</PasswordStore>

...and in the “MyProperties.properties” file there will be a line like the following:

{protect}-ftpPass-38ae53e8779cfd65={encr}GVJC0lA7VUiW=

This means that the FTP password configuration in the solution file references an encrypted

property from the current Password Store - “MyProps”. The property key used is

“ftpPass-38ae53e8779cfd65”.

Protecting attributes from being printed in clear text during tracing

TDI solution builders need a way to protect sensitive data, such as passwords, from being

printed in clear text when tracing on the solution is needed. Therefore in TDI 6.1 some of the

methods dealing with the Attribute class have been enhanced to say whether an attribute is

protected or not. If the attribute is marked as protected and tracing is on, a fixed number of

stars ‘*’ will be output instead of the actual value.

When connection parameters are found in the TaskCallBlock (TCB), the values will never be

logged directly by TDI. The fact that parameters were given will be logged, but not the values

themselves. If the solution needs to be debugged, those values can be dumped manually, for

example using scripting.

Encryption of TDI Server Hooks

Server Hook scripts are defined and made available by creating files in the “serverhooks”

subdirectory of the solution directory. Scripts that contain sensitive information should be

encrypted with the Server API before adding it to the directory. Scripts can be encrypted by

using the “serverapi/cryptoutils” script. Please note that the TDI server will only decrypt

script files which have the “.jse” filename extension. The ″.jse″ extenstion indicates to the TDI

server that the script file is encrypted. That is why after encrypting a Server Hook script file

make sure to change its filename extension to “.jse”.

Remote Config Editor and SSL

The TDI 6.1 Remote Config Editor is capable of starting AssemblyLines and EventHandlers in

configurations opened for editing. The Remote Config Editor is a client of the Server API of

the remote TDI Server. Consequently the Remote Config Editor is authenticated as a client of

the Server API. In order for this to work when SSL is used:

1. The server to which the Remote Config Editor connects must be configured to require SSL

client authentication. This is a configuration of the Server API – for details see the

““SSL-based authentication” on page 59” section.

80 Administrator Guide

2. The Remote Config Editor TDI instance must be configured to supply SSL client

authentication. This is configured in a uniform way for all SSL TDI clients.

This SSL client authentication is needed because the Remote Config Editor uses listener

objects so that it can be notified when an AssemblyLine or an EventHandler has terminated

and for this to work with SSL both the client must trust the server identity and server must

trust the client identity.

Web Admin Console Security

See “AMC and AM Security” on page 142.

Summary of configuration files and properties dealing with security

 Table 3. The table of configuration files that were discussed above and what is contained in each.

Configuration file Location Description

global.properties <ITDI_home> /etc Main Server configuration file

solution.properties Solution folder Copy of global.properties used by the

current solution

registry.txt <ITDI_home>/serverapi User registry for Server API – defined by

“api.user.registry” property in

Note: registry.txt can be encrypted/decrypted using the TDI cryptoutil tool. The cryptoutil

tool should not be applied on global.properties or solution.properties - individual

property values can be encrypted but not the whole properties file.

 Table 4. The table of java properties that are referenced above, characteristics about them, what file

they show up in, what they do, what their value can be, what they are used for.

Name Where found Possible values Description

com.ibm.di.server.securemode true/false Switch on/off secure

mode

com.ibm.di.server.keystore file name Keystore used by server

com.ibm.di.server.key.alias Key alias Alias for key from

keystore

api.on true/false Switch on/off Server

API

api.user.registry file name Server API users

registry file

api.user.registry.encryption.on true/false Indicates whether user

registry is encrypted or

not

Chapter 5. Security and TDI 81

Table 4. The table of java properties that are referenced above, characteristics about them, what file

they show up in, what they do, what their value can be, what they are used for. (continued)

Name Where found Possible values Description

api.remote.on true/false Switch on/off remote

Server API

api.remote.ssl.on true/false Switch on/off SSL for

remote Server API

api.remote.ssl.client.auth.on true/false Switch on/off SSL client

authentication for

remote Server API

api.truststore file name Truststore used by

Server

api.truststore.pass * Password for truststore

api.remote.nonssl.hosts Specifies a list of IP

addresses to accept non

SSL connections from.

api.custom.method.invoke.on true/false Specifies if the Server

API methods for

custom method

invocation are allowed

to be used.

api.custom.method.invoke.allowed.classes Specifies the list of

classes which can be

directly invoked by the

Server API methods for

custommethod

invocation

api.custom.authentication Script file name or

“[ldap]” for built in

LDAP Authentication

Specifies custom

authentication method

api.custom.authentication.ldap.* Set of properties for

LDAP authentication

configuration

javax.net.ssl.* Standard JSSE set of

properties for keystore,

truststore and their

passwords

Note: All properties listed in the above table can be protected by encryption using the

{protect}- suffix (see section ““Standard TDI encryption of global.properties or

solution.properties” on page 77” for details).

82 Administrator Guide

Component specific basics

HTTP Basic Authentication

Some TDI components give you the opportunity to use HTTP Basic Authentication as

authentication mechanism. As the name says it is basic (simple) authentication. HTTP Basic

Authentication should not be considered secure for any particularly rigorous definition of

secure, because the credentials are base64 encoded and they can be easily decoded by

someone. You should use more complex schemes to protect their data (for example a

combination of turned on SSL and HTTP Basic Authentication). If the component supports

HTTP Basic Authentication, then you will see the following parameter:

authenticationMethod

Specifies the type of HTTP authentication. If the type of HTTP authentication is set to

Anonymous, then no authentication is performed. If HTTP basic authentication is

specified, HTTP basic authentication is used with user name and password as

specified by the username and password parameters.

Lotus Domino SSL specifics

The Domino APIs for SSL do not use JSSE, and are instead Domino-specific. This means that

the TDI truststore and keystore (see section “Client SSL configuration of TDI components” on

page 50) do not play any part in SSL configuration for the Domino Change Detection

connector. For SSL configuration of the Domino Change Detection connector, a

TrustedCerts.class file is used. This file is generated every time the DIIOP process starts (in

the Domino Server) and must be in the classpath of TDI (i.e. the ibmdisrv or ibmditk shell

scripts which start the TDI server and TDI Config Editor respectively). The user must copy

the TrustedCerts.class to a local path included in the CLASSPATH or have the

Lotus\Domino\Data\Domino\Java of your Domino installation in the classpath. Whether the

TDI truststore or keystore are set or not in global.properties or solution.properties is of no

consequence to this connector.

Note: Note: The above is related to the configuration of SSL for the Notes Connector and the

Domino Change Detection Connector since they use SSL over IIOP.

Certificates for the TDI Web Service Suite

The cn= portion of the distinguished name (dn) of a certificate to be used with the TDI Web

Services Server Connectors must match the DNS name or IP address of the host computer on

which TDI is running. Otherwise an Exception is thrown, because the client will not be able to

establish an SSL connection to the TDI Web Services Server Connector. An example of the cn=

portion of the distinguished name of a certificate follows: cn=www.myserver.com. (This

constraint about the distinguished name in the server’s certificate comes from the HTTPS

protocol – see rfc2818 “HTTP over TLS”.) Note: If TDI needs to use both a client and a server

certificate only the default certificate configured in global.properties or solution.properties

is used, then this must be the same certificate. An alternative would be to write a custom

implementation of the SSLSocket or the SSLServerSocket Java class and make it use a

certificate different from the default.

Chapter 5. Security and TDI 83

MQe authentication with mini-certificates

Tivoli Directory Integrator MQe components can be deployed to take advantage of MQe

Mini-Certificate authenticated access. To use these MQe features, it is necessary to download

and install Websphere MQ Everyplace version 2.0.1.7 and WebSphere MQ Everyplace Server

Support ES06. Use of certificate authenticated access prevents an anonymous MQe client

Queue Manager and/or application submitting a change password request to the MQe

Password Store Connector.

For more information on configuring MQe authentication with Mini-Certificates, please see

the “Authenticated MQe Access” section in Chapter 8 “MQ Everyplace Password Store” of the

IBM Tivoli Directory Integrator 6.1: Password Synchronization Plug-ins Guide.

84 Administrator Guide

Chapter 6. System Queue

The System Queue is a TDI JMS messaging subsystem similar to the TDI System Store. It

facilitates the storing and forwarding of messages between TDI Servers and AssemblyLines.

The System Queue simplifies the development of TDI solutions in which asynchronous

communication is required to share work amongst multiple AssemblyLines. The System

Queue can utilize either the IBM WebSphere MQ or IBM WebSphere® MQ Everyplace® as its

underlying JMS messaging system.

System Queue Configuration

The System Queue is configured using the following Java properties specified in the TDI

Properties Store:

systemqueue.on

This parameter specifies whether the System Queue is to be started and initialized on

TDI Server startup. The valid values are true and false. The default value is false.

systemqueue.jmsdriver.name

This parameter specifies the fully qualified name of the Java class to be used as a JMS

Driver for the System Queue. This value can be the name of a user-provided class or

one of the three standard TDI 6.1 JMS Driver implementations:

v com.ibm.di.systemqueue.driver.IBMMQe

v com.ibm.di.systemqueue.driver.IBMMQ

v com.ibm.di.systemqueue.driver.JMSScriptDriver

The default value is com.ibm.di.systemqueue.driver.IBMMQe.

systemqueue.jmsdriver.param.mqe.file.ini

This is an MQe-specific parameter that specifies the absolute file system file name of

the MQe initialization file. This property is required and takes effect only if the MQe

JMS driver is specified in the systemqueue.jmsdriver.name property. The default value

is <TDI_install_folder>/MQePWStore/pwstore_server.ini. This is the default value for

the MQe initialization file created by the “MQe Configuration Utility” on page 87.

WebSphere MQ parameters

v systemqueue.jmsdriver.param.jms.broker

v systemqueue.jmsdriver.param.jms.serverChannel

v systemqueue.jmsdriver.param.jms.qManager

v systemqueue.jmsdriver.param.jms.sslCipher

v systemqueue.jmsdriver.param.jms.sslUseFlag

These are WebSphere MQ-specific parameters; for more information about these

parameters please see the MQ JMS diver initialization properties in the “System

© Copyright IBM Corp. 2003, 2006 85

Queue Configuration Example” section. Please note that the names of the Java

properties do not have the systemqueue.jmsdriver.param. prefix.

systemqueue.jmsdriver.param.js.jsfile

This is a JMS Script Driver specific parameter that a specifies the name of the file that

contains the user-supplied JavaScript code. For more information about this parameter

please see the JMS driver settings in the “System Queue Configuration Example”

section. Please note that the names of the Java properties do not have the

systemqueue.jmsdriver.param. prefix.

systemqueue.jmsdriver.param.user.xxxxx

These are user-defined properties which are passed by the System Queue to the

configured JMS Driver implementation. For example if the following property is set:

systemqueue.jmsdriver.param.user.my.prop1=myvalue1

the configured JMS Driver will get a property with a name of user.my.prop1 and a

value of myvalue1.

systemqueue.auth.username

This is the user name used by the System Queue for authentication to the configured

JMS system. If this parameter has not been set then the System Queue does not use

authentication to the configured JMS system.

systemqueue.auth.password

This is the password used by the System Queue for authentication to the configured

JMS system. This parameter is only used when the systemqueue.auth.username

parameter has been specified.

System Queue Configuration Example

##----------------------

System Queue settings

##----------------------

If set to "true" the System Queue is initialized on startup and can be used;

otherwise the System Queue is not initialized and cannot be used.

systemqueue.on=true

Specifies the fully qualified name of the class that will be used as a JMS Driver.

systemqueue.jmsdriver.name=com.ibm.di.systemqueue.driver.JMSScriptDriver

systemqueue.jmsdriver.name=com.ibm.di.systemqueue.driver.IBMMQe

systemqueue.jmsdriver.name=com.ibm.di.systemqueue.driver.IBMMQ

MQe JMS driver initialization properties

Specifies the location of the MQe initialization file.

This file is used to initialize MQe on TDI server startup.

systemqueue.jmsdriver.param.mqe.file.ini=$change$/MQePWStore/pwstore_server.ini

MQ JMS driver initialization properties

systemqueue.jmsdriver.param.jms.broker=192.168.113.54:1414

systemqueue.jmsdriver.param.jms.serverChannel=S_s04win

systemqueue.jmsdriver.param.jms.qManager=QM_s04win

systemqueue.jmsdriver.param.jms.sslCipher=SSL_RSA_WITH_RC4128_MD5

systemqueue.jmsdriver.param.jms.sslUseFlag=true

86 Administrator Guide

JMS JavaScript driver initialization properties

Specifies the location of the script file

systemqueue.jmsdriver.param.js.jsfile=driver.js

This is the place to put any JMS provider specific properties needed by a JMS Driver,

which connects to a 3rd party JMS system.

All JMS Driver properties should begin with the ’systemqueue.jmsdriver.param.’ prefix.

All properties having this prefix are passes to the JMS Driver on initialization after

removing the ’systemqueue.jmsdriver.param.’ prefix from the property name.

systemqueue.jmsdriver.param.user.param1=value1

systemqueue.jmsdriver.param.user.param2=value2

...

Credentials used for authenticating to the target JMS system

{protect}-systemqueue.auth.username=<username>

{protect}-systemqueue.auth.password=<password>

Security and Authentication

Encryption

Of the standard JMS Drivers, only the driver for MQ supports SSL. The MQe JMS Driver

works only with a local Queue Manager – this is mandated by the MQe architecture. The JMS

Script Driver is a generic driver which supports whatever the corresponding user-provided

JavaScript supports.

Authentication

Some JMS systems, such as WebSphere MQ, can use or even require the use of user name and

password authentication. The System Queue provides two standard properties in

global.properties or solution.properties which can be used to configure and supply a user

name and password to the System Queue. These properties are systemqueue.auth.username

and systemqueue.auth.password. These two properties are protected by the standard TDI

server encrypting of properties which are marked as {protect}-. In this way after these

properties are set and the TDI server is started the properties’ values get encrypted. For more

information about these two properties please see the “System Queue Configuration” on page

85 section.

MQe Configuration Utility

The TDI 6.1 MQe Configuration Utility (a command line utility) creates a default MQe Queue

when initially setting up the MQe Queue Manager. This default MQe Queue is named

“_default”. This default Queue is created for convenience only – so that a user can use the

MQe Configuration Utility to set up MQe (using the appropriate MQe Configuration Utility

command) and then start using the System Queue and the System Queue Connector right

away.

IBM Tivoli Directory Integrator 6.1 provides a default configuration file, in

<TDI_install_folder>/MQePWStore/pwstore_server.ini, the configured parameters of which will

be used unless you modify them by using this utility.

Chapter 6. System Queue 87

Additionally the TDI 6.1 MQe Configuration Utility can be used to create and delete user

MQe Queues to be used by the System Queue and the System Queue Connector.

Creating an MQe Queue using the MQe Configuration Utility

Typing the following command line will create an MQe Queue named “queue_name”

using the mqeconfig.props configuration file:

mqeconfig mqeconfig.props create queue queue_name

Deleting an MQe Queue using the MQe Configuration Utility

Typing the following command line will delete the MQe Queue named “queue_name”

using the mqeconfig.props configuration file:

mqeconfig mqeconfig.props delete queue queue_name

Authentication of the MQe messages to provide MQe Queue Security

In TDI 6.1 access to MQe can be secured by means of authentication using the MQe

Mini-Certificate Server to issue certificates to be used for authentication. For that purpose

several additional properties available in TDI 6.1 need to be added to the mqeconfig.props

properties file, which contains the configuration properties of the MQe Configuration Utility.

For more information on these additional properties see the “Installation/Uninstallation”

section.

The certificates issued by the MQe Mini-Certificate server have a configurable validity period.

The default validity period is 12 months. The MQe documentation states that issued

certificates should be renewed before the period expires. To enable this, the MQe

configuration utility will include an option to renew certificates. Typing the following

command will renew the certificates:

mqeconfig mqeconfig.props renewcert {client | server}

1. When the last command option is “client”, the following values will need to be set in the

mqeconfig.props file:

v clientRootFolder - The directory where MQe configuration instance is located.

v certServerReqPin - This value is used as a one time authentication PIN for the given

authenticatable entity when requesting certificate renewal from the MQe Mini-Certificate

server.

v certServerIPAndPort - This value is used as the destination address for MQe

Mini-Certificate server requests. The format of the value is

″FastNetwork::<host>:<port>″, where host must be the machine name or TCP IP address

or hostname where the MQe Mini-Certificate server is running.

v certRenewalEntityName - The MQe authenticatable entity name requiring certificate

renewal. Typical entity names include those belo;, however, any entity name configured

in the MQe Mini-Certificate may be used assuming the entity does indeed exist in the

queue manager registry referred to by the value of “clientRootFolder”:

– PWStoreClient – client side MQe queue manager

– PWStoreServer+passwords – remote queue proxy on the client side.
2. When the last command option is “server”, the following values will need to be set in the

mqeconfig.props file:

88 Administrator Guide

v serverRootFolder - The directory where MQe configuration instance is located.

v certServerReqPin - This value is used as a one time authentication PIN for the given

authenticatable entity when requesting certificate renewal from the MQe Mini-Certificate

server.

v certServerIPAndPort - This value is used as the destination address for MQe

Mini-Certificate server requests. The format of the value is

″FastNetwork:<host>:<port>″, where host must be the machine name or TCP IP address

or hostname where the MQe Mini-Certificate server is running.

v certRenewalEntityName - The MQe authenticatable entity name requiring certificate

renewal. Typical entity names include those below, however, any entity name configured

in the MQe Mini-Certificate may be used assuming the entity does indeed exist in the

queue manager registry referred to by the value of “serverRootFolder”:

– PWStoreServer – server side MQe queue manager

– PWStoreServer+passwords – real queue on the server side.

Support for DNS names in the configuration of the MQe Queue

There is no additional coding required to support this feature. It should be noted that DNS

support is really an MQe feature, since the TDI component implementations simply pass the

configuration properties from mqeconfig.props through to the MQe APIs.

The mqeconfig.props properties which can accept DNS name or IP address values are:

v serverIP

v certServerIPAndPort

Configuration of High Availability for MQe transport of password changes

To support high availability deployments, you have the possibility to deploy and configure

multiple instances of the TDI MQe components. In some deployments, it may be necessary to

configure multiple TDI MQe Password Store components. For example, if password change

plugins have been configured for multiple Windows Domain Controllers—in this case, it is

likely that there will separate instances of MQe client side Queue Managers with the name

″PWStoreClient″. Additionally, for each of the client Queue Managers, there will be a remote

queue proxy connection to the MQe server side Queue Manager queue used by the TDI MQe

Password Connector. The remote queue proxy name is ″PWStoreServer+passwords″. When

you use this type of deployment scenario, the authentication certificates associated with these

two MQe entities (i.e. ″PWStoreClient″, ″PWStoreServer+passwords″) will be requested and

issued multiple times. This happens each time the mqeconfig utility is executed. Before

executing the second and each subsequent instances of the mqeconfig utility, it will necessary

to re-enable certificate issue for each of the MQe entities mentioned above.

For some deployments, may prefer to configure the TDI MQe Password Connector, such that

it supports a particular high availability requirement. You may expect that an implementation

supporting this type of requirement would employ multiple instances of the TDI MQe

Password Connector, each with its own associated MQe Queue Manager configuration. In this

case you would deploy multiple identical MQe server side configurations, allowing a network

load balancer to route requests from the TDI MQe Password Store client to an available server

instance. Each MQe Queue Manager on the server side will be configured using the

Chapter 6. System Queue 89

mqeconfig utility. When this utility executes it will automatically request authentication

certificates from the MQe Mini-Certificate server for the entities named ″PWStoreServer″ and

″PWStoreServer+passwords″. These represent the Queue Manager and Queue names

respectively. Before executing the second and each subsequent instance of the mqeconfig

utility, it will necessary to re-enable certificate issue for the two MQe entities mentioned

above.

Providing remote configuration capabilities in the MQe Configuration Utility

Creating a remote MQe Queue using the MQe Configuration Utility

Typing the following command line will create a remote MQe Queue named

“queue_name” using the mqeconfig.props configuration file:

mqeconfig mqeconfig.props create remotequeue queue_name targetQMname [QM_ip_or hostname comm_port]

In the above command line QM_ip_or_hostname and comm_port parameters are

optional; if they are missing only a remote queue definition will be created. If ypu

provide these two parameters Connection definition will also be created before

creating the remote queue definition.

Note: A remote queue is not usable without a Connection definition. In addition

several remote queues can be defined to share a single Connection. The

targetQMname parameter specifies the name of the remote MQe Queue

Manager.

Deleting a remote MQe Queue using the MQe Configuration Utility

Typing the following command line will delete a remote MQe Queue named

“queue_name” using the mqeconfig.props configuration file:

mqeconfig mqeconfig.props delete remotequeue queue_name targetQMname

In the above command line the targetQMname parameter specifies the name of the

remote MQe Queue Manager.

90 Administrator Guide

Chapter 7. Remote Server

IBM Tivoli Directory Integrator supports the concept of a Remote API (also known as Server

API), where client tasks can invoke tasks on a remote TDI Server by means of an access layer

called RMI. This concept introduces a set of API calls addressing the following areas:

v getting Server information

v getting information for components installed on the Server

v reading and writing to configuration(s) loaded by the Server

v loading new configurations into the Server

v starting, querying and stopping AssemblyLines and EventHandlers

v cycling through AssemblyLines

Security of the remote access to the API is addressed through securing the communication

channel, authentication and authorization.

The Remote API itself is documented in the TDI Javadocs (<ITDI_installation_directory/docs/
api; you can launch a browser to display this documentation by selecting Help>Low Level

API in the CE).

The Config Editor uses the Remote API to implement the concept of a Remote Config Editor,

which provides support for platforms with no native Config Editor. It can be used to

read/write/execute a configuration on a remote Server. The basic idea is to provide a uniform

interface for both remote and local Config files.

Configuring the Server API

The Server API is configured through a set of system properties. These properties are

specified in the configuration file of the TDI Server. Some of the properties, in turn, point to

additional configuration files and keystore files.

The relevant properties are:

 Property Description

api.on if set to true the Server API is initialized on startup and can be used;

otherwise the Server API is not initialized and cannot be used. All other

properties whose names start with ″api.″ are only taken into account if

api.on is set to true.

api.user.registry specifies the Server User Registry file name.

api.user.registry.encryption.on if set to true the Server API will decrypt the Server User Registry file on

startup.

© Copyright IBM Corp. 2003, 2006 91

Property Description

api.remote.on if set to true the remote RMI part of the Server API is initialized and can

be used; otherwise the remote RMI part of the Server API is not

initialized and cannot be used.

api.remote.ssl.on if set to true SSL with client and server authentication will be used on

RMI connections of the Server API and its JMX layer; the Server API will

use the Server certificate and private key (the one specified through the

com.ibm.di.server.keystore and com.ibm.di.server.key.alias

properties) for SSL connections. RMI clients need to trust that certificate.

If set to false no SSL is used for client connections and no authentication

and authorization is performed; connections are accepted from the local

host and from hosts listed in the api.remote.nonssl.hosts property; if

api.remote.nonssl.hosts is empty only connections from the local host

are accepted.

api.remote.nonssl.hosts specifies a list of IP addresses to accept non SSL connections from (host

names are not accepted). Use space, comma or semicolon as delimiter

between IP addresses. This property is only taken into account when

api.remote.ssl.on is set to false.

api.remote.naming.port the port on which the RMI registry listens for requests.

api.truststore specifies the keystore file that contains the public certificates of all

remote users of the Server API.

api.truststore.pass the password for the keystore file specified through the

api.remote.server.truststore property.

api.jmx.on if set to true the JMX layer of the Server API is initialized on startup and

can be used; otherwise the JMX layer is not initialized and cannot be

used.

api.jmx.remote.on if set to true the remote JMX interface (as defined by JSR160) is

initialized and can be used; otherwise the remote JMX interface is not

initialized and cannot be used.

Note: All other properties whose names start with ″api.″ are only taken into account if api.on

is set to true.

Remote Server API access on a Virtual Private Network

When the Remote Server API is accessed from a client on a Virtual Private Network (VPN),

the VPN assigns an IP address to the Server API client machine. This VPN-assigned IP

address needs to be specified in an RMI Java system property. If the Server API client is the

Remote Config Editor, then this property can be set in global.properties or

solution.properties by adding the following line to the properties files:

java.rmi.server.hostname=<IP_address>

Where IP_address is the VPN-assigned IP address.

92 Administrator Guide

If the Server API client is a custom Java program, then this property can be set from within

the Java code in the following way:

java.lang.System.setProperty("java.rmi.server.hostname", "IP_Address");

Where IP_address is the VPN-assigned IP address.

Please note that the RMI Java system property needs to be set before any Server API related

RMI code.

Authentication

The Server maintains a User Registry that is used to authenticate and authorize remote clients.

A remote client needs an entry in the User Registry in order to access the Server.

When a remote client uses the RMI layer to access the Server API, the identity of the client is

determined through the client certificate the client uses to establish the SSL connection.

Note: A client certificate example, corresponding to the Server certificate example in file

testserver.jks is provided in file serverapi/testadmin.jks; the certificate’s password

is ″administrator″. As with all default security parameters you should not rely upon

these and generate your own client/server certificates and specify these in the

properties files.

For each user that is allowed access to the Server API, the Server keeps: (1) a certificate for

this user in its trust store; and (2) identification of that user in the Server’s registry of

identities and rights granted to them (so that the Server can find the user in the registry of

identities given the information from the SSL session).

The trust store is kept in the file indicated by the api.truststore property.

Authorization

Users of the Remote API can be assigned roles; a role defines a list of Server API calls that can

be executed by the user and also defines in what context these calls can be executed. For

example, a role can grant the user rights to execute only specific AssemblyLines from a

specific configuration. Refer to “Server User Registry” on page 95 for details on how to create

the file that holds these user rights.

Several roles can be assigned to a user, including assigning the same role several times with

different parameters. A Server API method can be executed if there is at least one role

assigned to the user that allows the execution of this method in the context the user tries to

execute it.

Chapter 7. Remote Server 93

The following roles apply to the Server API security model:

 Read role: read

[list_of(configuration)]

The read role allows the user read data from the Server’s

configuration(s).

If no list of configurations is specified or the list is empy, the user is

not allowed to read any configuration.

A special value * (asterisk) can be specified for the list of

configurations and this means that the user is allowed to read

(through Server API calls) all configurations currently loaded by the

Server.

When the list of configurations is not null/empty and does not

specify * the user is allowed to read only the configurations

specified.

The read role does not grant permission to start processes

(AssemblyLines, EventHandlers) or apply any changes to the Server

and its configurations.

94 Administrator Guide

Execute role: execute [

list_of(configuration

[list_of(AssemblyLines),

list_of(EventHandlers)])]

The execute role gives the user permissions to execute AssemblyLines

and EventHandlers.

If no list of configurations is specified or the list is empty, the user is

not allowed to execute any AssemblyLine or EventHandler from any

configuration.

A special value * (asterisk) can be specified for the list of

configurations and this means that the user is allowed to execute all

AssemblyLines and all EventHandlers from all configurations.

When the list of configurations is present and does not specify * the

user is only allowed to start the processes from the configurations

specified in the list. For each configuration specified in the list:

v If a list of AssemblyLines is not specified the user is not allowed

to execute any AssemblyLine from this configuration.

v A special value * (asterisk) can be specified for the list of

AssemblyLines and this means the user is allowed to execute all

AssemblyLines from this configuration.

v If the list of AssemblyLines is present and does not specify * the

user is allowed to execute only the AssemblyLines specified in the

list.

v If a list of EventHandlers is not specified the user is not allowed

to execute any EventHandler from this configuration.

v A special value * (asterisk) can be specified for the list of

EventHandlers and this means the user is allowed to execute all

EventHandlers from this configuration.

v If the list of EventHandlers is present and does not specify * the

user is allowed to execute only the EventHandlers specified in the

list.

Admin role: admin The admin role allows the user to execute all Server API calls in

every possible context.

A user with admin role is allowed to read and modify configurations,

to load new configurations, to execute AssemblyLines and

EventHandlers, to read and modify server parameters.

Server User Registry

The Identity Registry, identified by the api.user.registry parameter in the ″″ file is a text file that

maintains the information about all the users of the API and their roles. This file is encrypted

with the Server’s certificate in the file indicated by the com.ibm.di.server.keystore property. The

algorithm deployed is Asymmetric RSA encryption/decryption; you must create the Server

certificate file (using the relevant utility) specifying the RSA algorithm.

On startup the Server API engine decrypts and reads this file into its memory structures.

The contents of the Identity Registry text file is structured as follows:

Chapter 7. Remote Server 95

[USER]

[ID]:<user_identifier>

[ROLE]:<role_identifier>

 [CONFIG]:<config_identifier>

 [AL]:<assembly_line_name>

 [AL]:<assembly_line_name>

 [EH]:<event_handler_name>

 ...

 [CONFIG]:<config_id>

 ...

[ROLE]:<role_identifier>

 ...

[ROLE]:<role_identifier>

 ...

[ENDUSER]

[USER]

[ID]:<user_identifier>

[ROLE]:<role_identifier>

...

[ENDUSER]

...

The tags in the Identity Registry file and their arguments are as follows:

 Tag Argument

[USER] No arguments; this tag serves as an opening bracket for the tags

below; a [USER] and [ENDUSER] pair of tags each placed on a

single line wrap the definition of a single user in the registry file.

There can be multiple such pairs, each of which specify a user of the

Server API.

[ID]:<user_identifier> This tag is the first tag after the [USER] tag and its argument

<user_identifier> is the unique identifier of the user of the Server API.

This ID value is the principal’s subject DN from the trust store file.

The tag and the argument of the tag are placed on a single line, and

there can be only one [ID]: tag included in a [USER] and

[ENDUSER] pair.

[ROLE]:<role_identifier> One of read, execute or admin. This tag specifies a role for the user;

everything after the [ROLE]: tag and its argument and before another

[ROLE]: tag or an [ENDUSER] tag (whichever comes first) specifies

details of this user role. The tag and the argument of the tag are

placed on a single line, and there can be multiple [ROLE]: tags

included in a [USER] and [ENDUSER] pair, specifying multiple roles

for that user.

96 Administrator Guide

Tag Argument

[CONFIG]:<config_id> Specifies the identifier of a TDI configuration, the absolute file path of

the configuration. Relative file paths will not be recognized. This tag

is subordinate to a [ROLE]: tag, and therefore the tag specifies a

configuration for the role specified by that [ROLE]: tag. Also this tag

and its argument are placed on a single line, and there can be

multiple [CONFIG]: tags, all belonging to the superior [ROLE]: tag.

If no [CONFIG]: tag is associated with a [ROLE]: tag this means that

the list of configurations for the corresponding role definition is

empty.

[AL]:<assembly_line_name> Specifies the name of an AssemblyLine. This tag is subordinate to a

[CONFIG]: tag. The tag and its argument are placed on a single line,

and there can be multiple [AL]: tags, all belonging to the superior

[CONFIG]: tag.

If no [AL]: tag is associated with a [CONFIG]: tag this means that the

list of AssemblyLines for the corresponding configuration ID is

empty.

[EH]:<eventhandler_name> Specifies the name of an EventHandler. This tag is subordinate to a

[CONFIG]: tag. The tag and its argument are placed on a single line,

and there can be multiple [EH]: tags, all belonging to the superior

[CONFIG]: tag.

If no [EH]: tag is associated with a [CONFIG]: tag this means that the

list of EventHandlers for the corresponding configuration ID is empty.

The following is an example of an Identity Registry file:

USER]

[ID]:CN=Stan, OU=ITDI, O=IBM, C=US

[ROLE]:admin

[ENDUSER]

[USER]

[ID]:CN=John, OU=ITDI, O=IBM, C=US

[ROLE]:read

 [CONFIG]:*

[ROLE]:execute

 [CONFIG]:C:/ITDI/rs.xml

 [AL]:*

 [EH]:*

 [CONFIG]:C:/ITDI/prototype.xml

 [AL]:TestAssemblyLine

[ENDUSER]

[USER]

[ID]:CN=Peter, OU=ITDI, O=IBM, C=US

[ROLE]:execute

 [CONFIG]:C:/ITDI/rs.xml

Chapter 7. Remote Server 97

[AL]:*

 [EH]:IDSChangelog

 [EH]:ADChangelog

[ENDUSER]

This set of Identity Registry entries implies the following:

v This registry file specifies that user ″Stan″ is an administrator and is allowed to perform

each and every Server API operation.

v John is allowed to read all configurations loaded on the Server, but can only execute

processes from two configurations: from ″rs.xml″ he can execute all AssemblyLines and

EventHandlers, from ″prototype.xml″ he is only allowed to execute the AssemblyLine

named ″TestAssemblyLine″.

v Peter is only allowed to execute all AssemblyLines and the ″IDSChangelog″ and

″ADChangelog″ EventHandlers from the ″rs.xml″ configuration.

Note: The keytool and/or the IKeyman utility can be used to obtain the user ID from the

trust store file. The following command line will print all users from the trust store file:

keytool -v -list -keystore <trust_store_file> -storepass <trust_store_pass>

where <trust_store_file> is the keystore file that contains the certificates of all trusted

users and <trust_store_pass> is the password for this keystore file. This command line

will print something like the text below for each user certificate:

Owner: CN=Stan, OU=ITDI, O=IBM, C=US

Issuer: CN=Stan, OU=ITDI, O=IBM, C=US

Serial number: 408f6a34

Valid from: 4/28/04 11:24 AM until: 7/27/04 11:24 AM

Certificate fingerprints:

 MD5: F6:EF:81:8B:4C:0F:10:E4:A0:16:99:AB:42:29:70:8B

 SHA1: FE:37:62:8B:42:2F:54:F8:F6:F3:FC:A1:DD:7D:2A:51:9A:85:09:02

The value of the Owner field must be specified as value for the [ID]: tag in the Identity

Registry as is, including all white space and commas. For this example, the line with

the ID tag will look like:

[ID]:CN=Stan, OU=ITDI, O=IBM, C=US

Encryption utility

In the TDI_installation_directory/serverapi you will find a utility (cryptoutils) which will

enable you to decrypt and re-encrypt the Identity Registry file such that you can edit the file

manually. It is used as follows:

cryptoutils <inputFile> <outputFile> <mode: encrypt|decrypt> <keyStore> <certificateAlias> <stashFile>

where

<inputFile>

This is the file to be encrypted or decrypted.

98 Administrator Guide

<outputFile>

This is the new file that will created with the resulting data after the encryption or

decryption is done.

<mode: encrypt|decrypt>

Specify either ″encrypt″ or ″decrypt″ to correspondingly encrypt or decrypt the input

file.

<keyStore>

Specifiy the Server’s keystore .

<certificateAlias>

Specify the alias of the Server’s certificate.

<stashFile>

Specify the Server’s stash file that contains the password values for the Server’s

keystore.

Example:

cryptoutils registry.txt registry_encr.txt encrypt ..\testserver.jks server ..\idisrv.sth

Chapter 7. Remote Server 99

100 Administrator Guide

Chapter 8. System Store

IBM Tivoli Directory Integrator supports persistent storage (that is, storage of objects that

survive across JVM restarts), by means of a relational database, the System Store.

The product deployed by default to implement the system store is IBM DB2® for Java, also

known as CloudScape.

The System Store can also be configured to use other multi-user RDBMS systems, like Oracle

and MS SQL*Server. Specifically, for IBM DB2 some default parameters are provided with

TDI. The remainder of this chapter will discuss the operational aspects of using CloudScape,

in particular in conjunction with using CloudScape to hold your System Store.

Note: With regards to 3rd party RDMSs, in order to hold encrypted password values you

may need to dimension the fields that hold them quite large. A typical small password

might use as much as 178 characters. It depends on both your server’s key, and the

length of the unencrypted data you try to store (in bytes). Since this is a blocked

encoding a larger password might use the same space, or double or triple that amount.

Also, the size of the block depends on the server’s key. One way to find the size you

need, is to store the password (protected) to a file first, and then look at that file to see

how many characters were used.

CloudScape can run in either of two modes: embedded and networked. By default, as

specified in the global.properties or solution.properties file, CloudScape is configured to

run in embedded mode, and as such runs as a separate thread within the JVM when required.

Startup and shutdown of CloudScape are automatic in embedded mode. However, when run

this way, this CloudScape thread claims exclusive access to the database files. This can become

problematic when different JVMs, each with their own CloudScape thread, try to access the

same System Store.

The following causes a new, independent JVM to be started, triggering an access conflict

when more than one JVM is active at any given time:

v A command line invocation of the IBM Tivoli Directory Integrator Server with a config file,

causing one or more AssemblyLines to run or one or more EventHandlers to be activated

v Startup of the Config Editor (GUI)

v Startup of an AssemblyLine or EventHandler from within the Config Editor

None of these actions by themselves will cause the CloudScape thread to start. However, the

CloudScape thread does start if access to any of the objects in the System Store is required (for

example, Objects supported by the System Store such as Checkpoint/Restart info, Delta Tables

and the User Property Store).

© Copyright IBM Corp. 2003, 2006 101

The solution to the access conflicts as outlined previously is to run CloudScape in networked

mode, which enables concurrent access to the System Store.

Also, when configured in networked mode, you can work with multiple instances of

CloudScape databases booted as System Stores. However, you will have to ensure that the

CloudScape server is started before using it. You can also configure a CloudScape instance to

work with a specific Configuration file instance.

Configuring CloudScape Instances

To configure and manage multiple CloudScape instances and to provide facilities to start, stop

and restart CloudScape servers in networked mode a menu option called Store is provided in

the TDI Config Editor. Many of the configuration options listed here take default values from

the global.properties or solution.properties file, which was the configuration base for

previous versions if TDI; now, additional System Store parameters are contained in the

CSServerInfo.xml file.

The Store menu option also provides ways to configure the System Store to use IBM DB2 as

the backend RDBMS. It has the following options:

v “Manage System Stores”

v “View System Store” on page 104

v “Network Server Settings” on page 105

Manage System Stores

The manage System Stores panel provides the options to configure and manage multiple

CloudScape network server instances. It also provides option to configure and use other

RDBMS as the System Store by exposing the create table syntax for the internal tables used by

System Store.

Servers

The Servers group box will be enabled only if CloudScape is configured to run in

networked mode. If CloudScape is configured in embedded mode or if another

RDBMS like IBM DB2 is configured as System Store then this group is disabled.

Load SYSIBM

If this check box is selected then the CloudScape server checks whether the SYSIBM

schema exists while booting each database and loads the schema if it does not exist.

You should select this option if you want to access databases created by an embedded

CloudScape server.

Hostname

Specify the hostname or the IP address of the CloudScape network server. This drop

down also will have the list of all the servers that you would have configured or used

before. The default hostname is localhost.

Port The port number of the CloudScape networked server. The default port number is

1527.

102 Administrator Guide

Start Start an instance of the CloudScape network server on the specified port. The default

port 1527 is used if the port is not specified explicitly.

Note: You can start the network server only on your local machine.

Stop Stop an instance of the CloudScape networked server running on the specified

Hostname and Port. The default hostname and port numbers are used if you do not

specify these values.

Restart

Restart a CloudScape networked server running on the local machine.

Note: Restart functionality, like the start server functionality, will work only on the

local machine.

Start Mode

This specifies the start mode of the CloudScape networked server. If the mode is set

to manual, then you will have to start the server manually. If the mode is set to

automatic then the CloudScape networked server will automatically be started when

the CE is launched or when you run the ibmdisrv command from the command line.

Connection Properties

This group contains the properties needed to make a connection to the specified

database.

Database

Specify the database name or the URL to make a connection to. The value of the

com.ibm.di.store.database property set in the global.properties or

solution.properties file is shown by default. If the CloudScape server is configured

to run in networked mode then by selecting the hostname and the port number you

will be able to get a list of databases to specific to that server. The list of databases

will be for the selected CloudScape server instance.

Open Open and view the selected database. The selected database can be viewed in a

separate tab and multiple databases can be viewed at the same time.

URL Prefix

Specify the JDBC URL prefix. The value of the com.ibm.di.store.jdbc.urlprefix

property set in the global.properties or solution.properties file is pre-filled by

default.

Username

The JDBC user name to connect to the specified database.

Password

The JDBC password to connect to the specified database. The password field is

masked.

JDBC Driver

The JDBC driver class name. If this is set to com.ibm.db2.jcc.DB2Driver then the

elements under the Server group will be enabled.

Chapter 8. System Store 103

Create table statements

You can specify the syntax of the system tables the System Store needs. These values

can also be set in the global.properties or solution.properties files. You need to

enter the syntax of the tables corresponding to the RDBMS that you choose as the

System Store.

Systable

The create table statement for the IDI_SYSTABLE. By default the value of the

com.ibm.di.store.create.delta.systable property set in the global.properties or

solution.properties file is displayed.

Delta table

The create table statement for the Delta Store tables. By default the value of the

com.ibm.di.store.create.delta.store property set in the global.properties or

solution.properties file is displayed.

Checkpoint Restart

The create table statement for the Checkpoint/Restart tables. By default the value of

the com.ibm.di.store.create.checkpoint.store property set in the

global.properties or solution.properties file is displayed.

Property Store

The create table statement for the Property Store tables. By default the value of the

com.ibm.di.store.create.property.store property set in the global.properties or

solution.properties file is displayed.

Sandbox

The create table statement for the Sandbox Store tables. By default the value of the

com.ibm.di.store.create.sandbox.store property set in the global.properties or

solution.properties file is displayed.

Add Server

The information regarding CloudScape networked server is stored in the

CSServerInfo.xml file. This file can be found under the TDI installation directory. The

Add server buttons adds the current configuration of the server and the databases to

the CSServerInfo.xml file.

Delete Server

Delete the currently selected CloudScape networked server from the CSServerInfo.xml

file. If the selected CloudScape network server has more than one database configured

than only the selected database will be deleted from the CSServerInfo.xml file. If the

selected CloudScape networked server has just one database then the server

information (hostname and port) will be deleted along with the selected database.

Set This sets the create table statements. The value is set in the system properties.

View System Store

The View System Store panel provides the means to open and view the default System Store.

104 Administrator Guide

Database

The value of the com.ibm.di.store.database property set in the global.properties or

solution.properties file is shown by default.

Open When the Open button is clicked, the System Store Browser displays three items, one

for each type of persistent store (Delta, CPR and Property Store). You can use this

window to examine the contents of the System Store.

Close Close the currently opened database.

Delete Table

Delete the selected table in the tree.

Network Server Settings

This panel allows you to set the properties of the CloudScape network server. To set the

properties on a CloudScape networked server the server should be running. The panel also

provides a way to check if the server is already running on the specified hostname and port.

You can also view the currently set properties in the CloudScape networked server. You can

also set these properties in the db2j.properties file. This file can be found under the TDI

installation directory.

Servers

Groups the network servers already configured in the CSServerInfo.xml file.

Hostname

Specify the hostname or the IP address of the CloudScape network server. This drop

down also will have the list of all the servers that you would have configured or used

before. The default hostname is localhost.

Port The port number of the CloudScape networked server. The default port number is

1527.

Test Connection

Check if the network server is already running on the specified hostname and the

port. To set the properties of the network server the server has to be running.

Start Start an instance of the CloudScape network server on the specified port. The default

port 1527 is used if the port is not specified explicitly.

Note: You can start the network server only on your local machine using this

mechanism. The reason that you can specify the Hostname is because if the

Cloudscape Server is started with the value ″localhost″ then it disallows any

remote machine to connect to this Cloudscape server. Conversely, if the

Cloudscape Server is started with the actual, real address of the local machine

in the Hostname parameter, then remote connections will be allowed to this

Cloudscape Server.

Stop Stop an instance of the CloudScape networked server running on the specified

Hostname and the Port. The default hostname and port numbers (that is, localhost and

1527) are used if you do not specify these values.

Chapter 8. System Store 105

Restart

Restart a CloudScape networked server running on the local machine.

Note: Restart functionality, like the start server functionality, will work only on the

local machine.

System Directory

You define the system directory when Cloudscape starts up by specifying a Java

system property called db2j.system.home. If you do not specify the system directory

when starting up Cloudscape, the current directory becomes the system directory.

Log Connections

This indicates whether to log the connections and disconnections. This corresponds to

setting the db2j.drda.logConnections property in the db2j.property file.

Max Threads

The maximum number of threads used for connections. A value of 0 indicates that

there are no limits on the number of threads for connections. 0 is set as the default

value. The maximum value that you can set is 2147483647 (maximum integer).

However the practical maximum value that you can set is limited by the system

configuration. The corresponding property in the db2j.properties file is

db2j.drda.maxthreads.

Time Slice

Specify the time that a connection thread should work on one session’s request. A

value of 0 milliseconds indicates that the thread will not give up working on the

session until the session ends. The maximum number of milliseconds that can be

specified is 2147483647 (maximum integer).

Trace All

If this is set, then tracing will be turned on for all sessions. The corresponding

property in the db2j.properties file is db2j.drda.traceAll = [true|false].

Trace Directory

Indicates the location of the trace files. If this value is not specified then the

db2j.system.home property’s value will be used as the location for the trace files. The

corresponding value in the db2j.properties is db2j.drda.traceDirectory.

Sysinfo

You can get information about the Network Server such as version and current

property values, Java information, and Cloudscape database server information by

using the Sysinfo button.

Set Set the specified properties on the CloudScape network server. This does not set the

values in the db2j.propeties file but sets the network server properties directly on a

running instance of the CloudScape networked server.

106 Administrator Guide

Backing up CloudScape databases

Another matter that needs to be given some thought is backup of the data contained in a

CloudScape database. The recommended (and simplest) way of doing this is to

v Shutdown the CloudScape database (if running in embedded mode, shut down all TDI

instances and Config Editor instances)

v Copy the entire CloudScape directory in your TDI home directory (or whatever CloudScape

directory your global.properties file, solution.properties file or CSServerInfo.xml file is

pointing to) to a different location, and ensure that this data is safe

v Restart the CloudScape database (if running in networked mode).

To restore a database, reverse source and destination of the copy operation in the above list of

steps.

Troubleshooting CloudScape issues

This section does not attempt to be a comprehensive Troubleshooting Guide for CloudScape,

but there are a number of symptoms that are observed sometimes in the context of usage of

CloudScape as the underlying database in TDI. These are:

Schema ’SYSIBM’ does not exist error

 Question:

 I’m trying to use Cloudscape in networked mode and having issues. I’ve figured out

how to start it up and I’m able to query it with sysinfo and testconnection, but when I

run TDI and try to open the system store I get an error stating:

[com.ibm.db2.jcc.a.SQLException: Schema ’SYSIBM’ does not exist]

How do I fix this?

 Explanation:

 The reason you get this error is because you are trying to boot a database that was

created in embedded mode into a networked mode server without starting the server

using the -ld flag. Please note that for a networked mode CloudScape server to open

an embedded mode database, the SYSIBM schema MUST be loaded. The SYSIBM

schema is a special schema loaded by the CloudScape server. The SYSIBM contains

stored prepared statements that return result sets to determine metadata information.

 Corrective action:

 To solve this problem start the CloudScape networked server with the ″-ld″ flag, like:

./dbserver start -p 1527 -ld

Chapter 8. System Store 107

Another Instance of CloudScape may already be booted

You may get the following error sometimes, especially when using CloudScape in

embedded mode:

[ERROR XSDB6: Another instance of Cloudscape may have already booted the database D:\tdi60\CloudScape.]

 Explanation:

 CloudScape will try to prevent two instances of CloudScape from booting the same

database (in this case D:\tdi60\CloudScape). This can happen if you are running two

AssemblyLines which are trying to update the same CloudScape database running in

embedded mode. This error might also crop up if you have an unclosed connection to

the database.

 Corrective Action:

1. If you want two AssemblyLines to update the same CloudScape database, then the

correct mode of CloudScape should be networked mode. Please configure the

CloudScape server to run in networked mode since this mode of operation does

not have that limitation.

2. You can work around this by closing the database using the Store>View System

Store and then clicking on the close button. Even if the database is not open, just

opening and closing again through the Store>View System Store option will help

solve this problem.

Future versions of TDI will attempt to handle this situation automatically, and stop

and start CloudScape as required.

Can I use DB2 as a system store?

In TDI it is possible to use DB2 as a system store, instead of the bundled CloudScape

database system. However, some modification of system properties files will be

required for this to function correctly. You will need to replace the section on

CloudScape networked mode with a section similar to the following (insert the correct

parameters for your installation.

 If you look at the global.properties file, there are some CREATE_TABLE statements

for using and setting up the system store. If you use the right syntax, you can use

non-ClousScape databases as system store. DB2 has been tested, but no other RDBMS

has for the time being. Here is the DB2 syntax:

Location of the DB2 database (networked mode)

com.ibm.di.store.database=jdbc:db2://168.199.48.4:3700/tdidb

com.ibm.di.store.jdbc.driver=com.ibm.db2.jcc.DB2Driver

com.ibm.di.store.jdbc.urlprefix=jdbc:db2:

com.ibm.di.store.jdbc.user=db2inst1

com.ibm.di.store.jdbc.password=******

com.ibm.di.store.start.mode=automatic

com.ibm.di.store.port=3700

com.ibm.di.store.sysibm=true

the varchar(length) for the ID columns used in system store and PES Connector tables

com.ibm.di.store.varchar.length=512

108 Administrator Guide

create statements for DB2 system store tables

com.ibm.di.store.create.delta.systable=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH)

 NOT NULL, SEQUENCEID int, VERSION int)

com.ibm.di.store.create.delta.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH)

 NOT NULL, SEQUENCEID int, ENTRY BLOB)

com.ibm.di.store.create.property.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH)

 NOT NULL, ENTRY BLOB)

com.ibm.di.store.create.checkpoint.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH)

 NOT NULL, ALSTATE BLOB, ENTRY BLOB, TCB BLOB)

com.ibm.di.store.create.sandbox.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH)

 NOT NULL, ENTRY BLOB)

Note: Each com.ibm.di.store.create.xxx statement must be specified on one line,

even though they are broken up in this example for illustration purposes.

Why can’t remote connections be made to my Cloudscape network server?

This may be because the Cloudscape Server has been started by passing ″localhost″ as

the hostname. This disallows any remote connections to be made to Cloudscape. Stop

the Cloudscape server and start it with hostname parameter specified as the

machine’s IP address. This can be done by going to the Config Editor’s Store ->

Network Server Settings panel.

 For more details, check http://publib.boulder.ibm.com/infocenter/cldscp10/topic/
com.ibm.cloudscape.doc/hubprnt22.htm

Pre-6.0 (properties file) configuration of CloudScape

Previous versions of TDI configured the System Store using CloudScape by means of a set of

properties in the file, and version 6.0 still derives its base configuration from there. You

should migrate any non-standard installations of CloudScape configuration to the methods

described in the previous chapter, “Configuring CloudScape Instances” on page 102.

In the global.properties file in the installation directory, there are two sections that are

concerned with the configuration of the System Store:

v The first section (enabled by default) deals with running CloudScape in embedded

(dedicated), non-shared mode.

v The second section (commented out by default) deals with CloudScape in networked or

shared mode. If you determine that you must use networked mode, comment the first

section and uncomment the second.

However, when deploying this networked or shared mode, startup of the CloudScape

database thread is no longer automatic. You must start a CloudScape instance before you start

your first AssemblyLine or EventHandler, and shut down the instance when you are finished

with your last AssemblyLine and the last EventHandler has shut down.

To make working with the CloudScape database more convenient, consider creating a script

(″dbserver″) with the following line (this example is for Unix/Linux):

Chapter 8. System Store 109

http://publib.boulder.ibm.com/infocenter/cldscp10/topic/com.ibm.cloudscape.doc/hubprnt22.htm
http://publib.boulder.ibm.com/infocenter/cldscp10/topic/com.ibm.cloudscape.doc/hubprnt22.htm

export DB_JAR_DIR=jars/3rdparty/IBM

export DB_CLASSPATH=$DB_JAR_DIR/derby.jar:$DB_JAR_DIR/derbyclient.jar:\

$DB_JAR_DIR/derbynet.jar:$DB_JAR_DIR/derbytools.jar

java -classpath $DB_CLASSPATH org.apache.derby.drda.NetworkServerControl "$@"

You may need to join the last two lines together at the "\" point.

The equivalent dbserver.bat file for Windows would be:

set DB_JAR_DIR=jars/3rdparty/IBM

set DB_CLASSPATH=%DB_JAR_DIR%\derby.jar;%DB_JAR_DIR%\derbyclient.jar;\

%DB_JAR_DIR%\derbynet.jar;%DB_JAR_DIR%\derbytools.jar;

java -classpath %DB_CLASSPATH% org.apache.derby.drda.NetworkServerControl %*

Note: The script must be started from within the IBM Tivoli Directory Integrator installation

path as the working directory, as the following classpath is relative to this directory.

The following is an example of usage of this utility script:

Show all available commands: ./dbserver

Start DBServer ./dbserver start -p 1527

Start Database instance ./dbserver dbstart /home/stadheim/DI52/CloudScape

Stop Database instance ./dbserver dbshutdown /home/stadheim/DI52/CloudScape

Stop DBServer ./dbserver shutdown

The full list of sub-commands that you can specify to the dbserver script, and which are sent

to CloudScape is:

v start -p portnumber [-ld]

v shutdown [-h host][-p portnumber]

v dbstart databaseDirectory [-b bootPassword][-ld][-ea encryptionAlgorithm] [-ep

encryptionProvider] [-u user password][-h host][-p portnumber]

v dbshutdown databaseDirectory [-h host][-p portnumber]

v testconnection [-d databaseDirectory] [-u user password] [-h host] [-p portnumber]

v sysinfo [-h host][-p portnumber]

v conpool min max [-d databaseDirectory][-h host][-p portnumber]

v logconnections {on|off}[-h host][-p portnumber]

v maxthreads max[-h host][-p portnumber]

v timeslice milliseconds[-h host][-p portnumber]

v trace {on|off} [-s session id][-h host][-p portnumber]

v tracedirectory traceDirectory[-h host][-p portnumber]

110 Administrator Guide

When running in networked mode, the CloudScape database is of course reachable over the

network, not only by IBM Tivoli Directory Integrator instances but also by other applications

using the appropriate drivers. The credentials required for such access are defined in the file,

and might need to be tailored for your particular site needs. Pay particular attention to the

username and password parameters as these govern integrity and security of the data.

If you often alternate between running CloudScape in dedicated mode and in networked

mode, consider having two different ″prototype″ files on your file system, one each with the

correct set of parameters for each of the two modes. Just before starting a server instance,

copy in place the appropriate file, according to your needs. Alternatively, use separate

Solution Directories.

See also

The official CloudScape home at http://www-3.ibm.com/software/data/cloudscape,

documentation at http://www-306.ibm.com/software/data/cloudscape/pubs/collateral.html.

Chapter 8. System Store 111

http://www-3.ibm.com/software/data/cloudscape
http://publib.boulder.ibm.com/infocenter/cscv/v10r1/index.jsp

112 Administrator Guide

Chapter 9. Command Line Interface (CLI)

Command Line Interface – tdisrvctl utility

The Command Line Interface (CLI) to TDI, called the tdisrvctl utility, is designed for remotely

managing Configs, AssemblyLines, etc. This utility connects to a remote TDI server using the

TDI Remote Server API, and performs the requested operations. As it is a client application

interfacing to a Remote Server, it is subject to the same connection, authentication and

authorization issues described in Chapter 5, “Security and TDI,” on page 49.

It exposes various command line options for the following functions:

 1. Start/stop/reload TDI Configs.

 2. Start/Stop Assembly Lines/Event Handlers in a particular config.

 3. Display a list of configs loaded on the server.

 4. Shutdown server.

 5. Display config report.

 6. Manage config properties through TDI-p, the TDI properties framework

 7. Send custom notification events.

 8. View exposed AL Operations.

 9. View tombstones for terminated Configs, AssemblyLines or Event Handlers.

10. View TDI Server details.

Notes:

1. The command line utility is shipped in the <TDI_Install_Dir>/bin folder.

2. For any remote server API client (including the CLI) the property api.remote.on should be

set to true and the client’s IP address must be mentioned in the property

api.remote.nonssl.hosts in the global.properties or solution.properties file of the

remote TDI Server (if non-SSL mode is being used).

3. The remote TDI server must be running (ibmdisrv –d)

Command Line reference

The command has the following usage:

tdisrvctl [general_options] –op operation [operation_specific_options]

where general_options can be:

 -h host remote server IP address or hostname (default is localhost)

-K keystore name of the SSL key database file

-p port port number (default is 1099)

© Copyright IBM Corp. 2003, 2006 113

-P key_pwd key file password

-T truststore name of the SSL trust store database file

-u userID username (for custom authentication)

-v run in verbose mode

-w user_pwd user password (for custom authentication)

-W trust_pwd trust file password

-? display command usage

And operation can be:

 event send custom notification events

prop manage Config properties

queryop query for the AL operations

reload reload running Configs

report generate Config report or list Configs on remote server

shutdown shutdown the server

srvinfo view TDI server information

status view status of Configs or ALs or EHs

start start specific Config or ALs or EHs

stop stop specific Config or ALs or EHs

tombstone view tombstone entries for specific Config or AL or EH

You can display help for any particular option like this:

tdisrvctl –op operation -?

Operations

event This option can be used to send custom notification events to a particular server. All

listeners registered for the particular event will receive this notification. This will

allow TDI administrators to trigger listener applications based on planned custom

events.

 The usage for the event operation is:

 tdisrvctl [general_options] –op event –e event_name [-s source] [-d data]

 where:

 -e event_name the name of the event to send

-s source the name of the source invoking the event (default “tdisrvctl”)

-d data the data to be passed to an event listener (default is null)

Example:

 To send an event “user.process.X.completed” from “admin”.

tdisrvctl –h itditest –op event –e “process.X.completed” –s admin –d “Admin triggered event”

Note: All events sent from tdisrvctl using the –e option will be prefixed by “user.”

114 Administrator Guide

prop The “prop” option exposes the properties of a config via the TDI-p. It allows the user

to get / set / view the properties of a particular config.

 The usage for the prop operation is:

tdisrvctl [general_options] –op prop –c config_name

 [[-l] |

 [-o property_store]

 [-g key | all] |

 [-s key=value] [-e] |

 [-d key]]

where:

 -c config_name the name of the config to work with

-l list all the property stores configured

-o property_store name of the property store to work with

-g key get the value of the specified key (or keyword ‘all’ implying get all

keys)

-s key=value set the ‘key’ to the specified ‘value’

-e encrypt the value when putting in the store (can be used with –s

option only)

-d key delete the specified ‘key’ from the store.

Notes:

1. The ‘-l’, ‘-g’, ‘-s’, ‘-d’ option are mutually exclusive, and cannot be used together.

2. The ‘-e’ option can only be used with ‘-s’ option.

3. Managing properties stored in the password store is NOT supported.

4. While specifying the “-c” option specify the COMPLETE configuration file path on

the remote server, or give a path relative to the “configs” folder. To see the relative

paths use the “report” option of tdisrvctl:

tdisrvctl –op report –l

Examples:

 To see a list of all the property stores for config C1.xml

tdisrvctl –op prop –c C1.xml –l

To get a list of all the properties for config C1.xml

tdisrvctl –op prop –c C1.xml –g all

To get a list of all the properties for config C1.xml from store MyStore

tdisrvctl –op prop –c C1.xml –o MyStore –g all

Chapter 9. Command Line Interface (CLI) 115

To set a property MY_PROP to value MY_VALUE for config C1.xml in store MyStore

and mark it as protected:

tdisrvctl –op prop –c C1.xml –o MyStore –s MY_PROP=MY_VALUE –e

queryop

The queryop option returns the list of AL operations exposed in an AssemblyLine.

 The usage for the queryop operation is:

tdisrvctl [general_options] -op queryop -c <configFile> -r <ALname>

where

 configFile Config file name

ALName Name of the AssemblyLine

Note: While specifying the “-c” option specify the COMPLETE configuration file path

on the remote server, or give a path relative to the “configs” folder. To see the

relative paths use the “report” option of tdisrvctl:

tdisrvctl –op report –l

Examples:

 To query for operations exposed in an AL:

tdisrvctl –h itditest –T trust.kdb –W secret –op queryop –c examples/ADCustomConnector.xml –r ADAssemblyLine

reload This option can be used to reload running Configs on a particular server.

 The usage for reload operation is:

tdisrvctl [general_options] -op reload -c [config_list]

where:

 config_list comma separated list of Configs to reload

Note: While specifying the “-c” option specify the COMPLETE configuration file path

on the remote server, or give a path relative to the “configs” folder. To see the

relative paths use the “report” option of tdisrvctl:

tdisrvctl –op report –l

Example:

 To reload Configs C1.xml, C2.xml and C3.xml on remote host itditest:

tdisrvctl –h itditest –T trust.kdb –W secret –op reload –c C1.xml,C2.xml,C3.xml

report This option can be used for generating a report for a particular config or for listing

the configs available on the remote server’s config folder.

116 Administrator Guide

The config report will basically list out details of the particular config. The details will

be Assembly Lines, Connectors in each assembly line, Connector library, Parser

library, Script library, Function Library, Event Handlers, etc. This option will give a

one shot view off all the details of a particular config.

 The config listing option helps the user in finding out the list of configs available on

the remote server and what their exact names are. Of course, only those configs can

be seen which are in the “config” folder of the remote server (see file for property

api.config.folder). This command cannot obtain list of configs located “anywhere” on

the system.

 The usage for report operation is:

tdisrvctl [general_options] -op report [-c config | -l]

where:

 -c config name of the Config whose report is to be generated

-l the Configs in the remote server’s config folder

Notes:

1. The specified config must be already loaded on the remote server. -

2. Only one of the ’-c’ or ’-l’ option is allowed. Not both. -

3. While specifying the “-c” option specify the COMPLETE configuration file path on

the remote server, or give a path relative to the “configs” folder. To see the relative

paths use the “report” option of tdisrvctl:

tdisrvctl –op report –l

Examples:

 To get a complete listing of the details of C1.xml on remote server:

tdisrvctl –h remoteserver –op report –c C1.xml

To get a list of the configs available in the “config” folder of the remote server:

tdisrvctl –h remoteserver –op report –l

shutdown

This option can be used to shutdown the TDI server.

 The format for this command is:

tdisrvctl [general_options] –op shutdown [–o return_code]

where:

 -o return_code The return code with which the remote TDI server should exit.

Examples:

Chapter 9. Command Line Interface (CLI) 117

To shutdown the local TDI server:

tdisrvctl –op shutdown

To shutdown the server running on remote host itditest which is configured for SSL

(server-auth only)

tdisrvctl –h itditest –T trust.kdb –W secret –op shutdown

srvinfo

This option is used to display the information of a TDI server.

 The format of the command is:

tdisrvctl [general_options] –op srvinfo

Example:

 To view the srvInfo for a TDI server running on localhost

tdisrvctl -h localhost –op srvInfo

status This option can be used to view status of assembly lines/ event handlers.

 The usage for status operation is:

tdisrvctl [general_options] -op status -c [config_list | all]

 -r [AL_list | all]

 -t [EH_list | all]

where:

 config_list comma separated list of Configs or keyword ’all’

AL_list comma separated list of ALs or keyword ’all’

EH_list comma separated list of EHs or keyword ’all’

Notes:

1. At least one of the options (’-c’,’-r’ or ’-t’) must be specified. -

2. The keyword ’all’ indicates all configs or AssemblyLines or Event Handlers. -

3. While specifying the “-c” option specify the COMPLETE configuration file path on

the remote server, or give a path relative to the “configs” folder. To see the relative

paths use the “report” option of tdisrvctl:

tdisrvctl –op report –l

Examples:

 To see the status of all configs, ALs and EHs

tdisrvctl [general_options] -op status -c all -r all -t all

You could also write

118 Administrator Guide

tdisrvctl [general_options] –op status

To see the status of AL1, AL2 and all event handlers:

tdisrvctl –h itditest –op status –c c1.xml –r AL1,AL2 –t all

Output:

 (Component Type # Component Name # RUNNING / STOPPED # Statistics):

1 # AL1 # RUNNING # [get:571] [add:571] [del:3] [requests:2333]....

1 # AL2 # STOPPED #

2 # EH1 # STOPPED #

2 # EH2 # RUNNING #

The Component Types are:

v 0 for Config

v 1 for Assembly line

v 2 for Event handler

The Statistics will contain following details (valid for assembly lines only):

v Attribute ″add″ – total number of “add” operations performed

v Attribute ″mod″ – total number of “modify” operations performed

v Attribute ″del″ – total number of “delete” operations performed

v Attribute ″get″ – total number of “getNext” (Iterations) performed

v Attribute ″request” – total number of requests accepted when there is a Server

mode Connector in the AssemblyLine.

v Attribute ″callReply″ – total number of “callReply” operations performed

v Attribute ″err″ – total number of errors encountered

v Attribute ″skip″ – total number of ‘skip’ operations performed

v Attribute ″lookup″ – total number of “lookup” operations performed

v Attribute ″ignore″ – total number of “ignore” operations performed

v Attribute ″reconnect″ – total number of “reconnect” operations performed

v Attribute ″exception″ – the exception text if the component terminated with an

exception

To see the details of Configs (running and stopped) on a particular server:

tdisrvctl –h itditest –op status –c all

start This option can be used to start a config / assembly lines / event handlers.

 The usage for the start operation is:

tdisrvctl [general_options] -op start -c [config]

 -e [password]

Chapter 9. Command Line Interface (CLI) 119

-r [AL_list | all] -alop <alop_Name> [{attr1:value1; attr2:value2;attrn:valuen}] |

 [-f filename

 -t [EH_list | all]

where

 -c config name of config to start

-e password password of config file if it is encrypted

-r AL_list comma separated list of ALs to start or keyword ’all’

-t EH_list comma separated list of EHs to start or keyword ’all’

-alop operName the specific AL operation and list of list required attributes for the

specified operation

-f filename the name of the file where the input attributes and their values are

configured for the operation

Notes:

1. The ’-c’ option is mandatory. -

2. The keyword ’all’ indicates all AssemblyLines or Event Handlers. -

3. Required attributes list is mandatory with alop option. -

4. -alop option cannot be used with –r all option. It works only with a specific AL. -

5. While specifying the “-c” option specify the COMPLETE configuration file path on

the remote server, or give a path relative to the “configs” folder. To see the relative

paths use the “report” option of tdisrvctl:

tdisrvctl –op report –l

Examples:

1. To start assembly line AL1 and AL2, and event handler E1 of config C1 on remote

server itditest:

tdisrvctl –h itditest –T trust.kdb –W secret –op start –c C1.xml –r AL1,Al2 –t EH1

The –r and –t option require that –c option should also be specified. This is

because the assembly lines or event handlers mentioned in the command must

belong to one of the Configs in the –c option.

2. To start assembly line AL1 on remote server itditest with AL operation:

tdisrvctl –h itditest –T trust.kdb –W secret –op start

 –c examples/ADCustomConnector.xml –r ADAssemblyLine

 –alop myoperation “{ ldapserver:9.182.186.190; suffix:o=ibm,c=us }”

stop The usage for the stop operation is:

tdisrvctl [general_options] -op stop -c [config]

 -r [AL_list | all]

 -t [EH_list | all]

120 Administrator Guide

where:

 -c config name of Config

-r AL_list comma separated list of ALs to stop or keyword ’all’

-t EH_list comma separated list of EHs to stop or keyword ’all’

Notes:

1. The ’-c’ option is mandatory.

2. While specifying the “-c” option specify the COMPLETE configuration file path on

the remote server, or give a path relative to the “configs” folder. To see the relative

paths use the “report” option of tdisrvctl:

tdisrvctl –op report –l

3. The keyword ’all’ indicates all AssemblyLines or Event Handlers.

4. The –r and –t option require that –c option should also be specified. This is

because the assembly lines or event handlers mentioned in the command must

belong to one of the Configs in the –c option.

Example:

 To stop assembly line AL1 and AL2, and event handler E1 of config C1 on remote

server itditest:

tdisrvctl –h itditest –T trust.kdb –W secret –op stop –c C1.xml –r AL1,Al2 –t EH1

tombstone

This option can be used to view tombstone details of previously run configs/

assembly lines/ event handlers.

 The usage for tombstone operation is:

tdisrvctl [general_options] -op tombstone -c [config]

 [-r [AL_name] | -t [EH_name]]

 [-age n]

 [[attribute_list] | all]

where:

 -age n display tombstone record for the last ’n’ days (default is 1 day)

-c config name of Config

-r AL_name name of AssemblyLine

-t EH_name name of EventHandler

all show all tombstone attributes

attribute_list:

 -ct component type

-cn component name

Chapter 9. Command Line Interface (CLI) 121

-guid tombstone entry’s guid

-et event type

-ex exit code

-stime component’s start time

-ctime tombstone create time

-desc error description

-um user message

-stat statistics (valid for ALs only)

Notes:

1. The ’-c’ option is mandatory. -

2. While specifying the “-c” option specify the COMPLETE configuration file path on

the remote server, or give a path relative to the “configs” folder. To see the relative

paths use the “report” option of tdisrvctl:

tdisrvctl –op report –l

3. Only one of the ’-r’ or ’-t’ options is allowed. Not both.

Examples:

1. To see the last 2 days tombstone entries (all attributes) for config C1.xml

tdisrvctl [general_options] -op tombstone -c C1.xml -age 2 all

2. To see tombstone entries for config C1 for the past 3 days:

tdisrvctl –h itdiserver –op tombstone –c C1 –age 3 all

3. To see tombstone entries for config C1 for the last 24 hours (specific attributes):

tdisrvctl –h itdiserver –op tombstone –c C1 –ct –ctime –cn –um

4. To see the tombstone entry for AL1 of “rs.xml”

tdisrvctl –h itdiserver –op tombstone –c C1 –r AL1

 Other points to note

v If the user specifies the –T option or the –K option, it means the command line utility must

use SSL

v If no –h (host) option is specified, the command line interface searches for the environment

variable TDI_RSRV. If TDI_RSRV is not set or empty, then it uses “localhost” as default.

Same is the case for –p (port) option. If –p is not specified then it searches for TDI_RPORT,

and if that is also not specified then it uses default of “1099”.

v The command will return “0” indicating that the command completed successfully without

any errors. A “-1” is returned otherwise. For instance a command asking for starting 3

assembly lines will return 0 only if all 3 assembly lines started successfully, otherwise it will

return -1.

v The tdisrvctl command line utility will use log4j logging APIs for logging error messages.

The log4j configuration file is specified in the startup script (the bat or sh) file. By default

the logs are written to <TDI_Install_Dir>/logs/tdisrvctl.log file.

122 Administrator Guide

v All reported error and warning messages are displayed with an error code prefix. This error

code can be used to search the TDI 6.1 message guide for an explanation of the error

message and operator response.

Chapter 9. Command Line Interface (CLI) 123

124 Administrator Guide

Chapter 10. Logging and debugging

IBM Tivoli Directory Integrator relies on log4j as a logging engine. It is a very flexible

framework that lets you log to file, eventlog, syslog and more, and can be tuned so it suits

most needs. It can be a great help when you want to troubleshoot or debug your solution.

TDI version 6.0 has additional tracing facilities (discussed in Chapter 11, “Tracing and FFDC,”

on page 133), though in most cases, the logging functionality described here will suffice.

Some TDI components may have very specific troubleshooting guidelines; always check the

particular component’s section in the IBM Tivoli Directory Integrator 6.1: Reference Guide for

more information.

The log scheme for the server (ibmdisrv) is described by the file log4j.properties and

elements of the Config file, while the console window you get when running from the Config

Editor (ibmditk) is governed by the parameters set in executetask.properties (see “log4j

default parameters” on page 130). Logging for the Config Editor program itself is configured

in the file ce-log4j.properties.

Note: Any of the aforementioned properties files can be located in the Solutions Directory, in

which case the properties listed in these files override the values in the file in the

installation directory.

You can create your own appenders to be used by the log4j logging engine by defining them

in the log4j.properties file. You can use drivers built-in to log4j like the default one, which

is defined with the statement:

log4j.appender.Default=org.apache.log4j.FileAppender

The phrase org.apache.log4j.FileAppender defines this appender to use the FileAppender

class. Additional log4j compliant drivers are available on the Internet, for example drivers that

can log using JMS or JDBC. In order to use those, they need to be installed into the IBM Tivoli

Directory Integrator installation jars directory after which appenders can be defined using

those additional drivers in log4j.properties. For more information, refer to the log4j project

documentation.

In addition to the IBM Tivoli Directory Integrator built-in logging, you can log by adding

script code in your AssemblyLine. This is described in much more detail in the IBM Tivoli

Directory Integrator 6.1: Users Guide.

Background

Logging and debugging is mainly done through the Task object.

© Copyright IBM Corp. 2003, 2006 125

http://jakarta.apache.org/log4j/docs
http://jakarta.apache.org/log4j/docs

Note: The logmsg() calls available to the user (task & main) can have an optional string

parameter indicating the log4j level at which the messages are to be logged. Default is

INFO. If the log-level given by the user is invalid for log4j, the message is logged at

DEBUG level. Levels include DEBUG, INFO, WARN, ERROR, FATAL.

Logging

Configuring the logging of IBM Tivoli Directory Integrator is done globally (using the files

log4j.properties which specifies global defaults for Server tasks and

executetask.properties which specifies defaults for tasks run from the Config Editor) or

specifically, using the ibmditk tool, for each AssemblyLine, EventHandler or Config File as a

whole. To provide this level of flexibility and customization, the Java Log4J API is used.

Only the parameters that describe how messages are logged are described here.

All log configuration windows operate in the same way: For each one you can set up one or

more log schemes. These are active at the same time, in addition to whatever defaults are set

in the log4j.properties and executetask.properties files.

Many (but not all) loggers support a Character Encoding option, to control what character set

the log files are written in. There are many different character sets; for an informal overview

check http://czyborra.com/charsets/iso8859.html#ISO-8859-1.

The possible log schemes are as follows:

IDIFileRoller

Sometimes, you want to log to file but keep a limited number of files, as they can fill

your disks. IDIFileRoller generates a new file for each run of the Server. The system

saves only the specified number of previous logs. If your log is called mylog.txt, and

you ask for 2 generations, then after 3 runs you have a mylog.txt (last run) as well as

the files mylog.txt.1 and mylog.txt.2, where mylog.txt.2 is the oldest log. From this

point, you do not get more files, only newer versions with the same name. Keep two

generations of backup files.

 IDIFileRoller has the following parameters:

File Path

The name of the file to log to. The path is relative to where you installed IBM

Tivoli Directory Integrator The special macro {0} used in filenames is replaced

by the name of the Server. Similarly, {1} used in filenames is replaced by a

unique identifier generated by the system for you. The {1} macro has no

relevance for the special case where you use IDIFileRoller, but is important

where you want unique file names.

Number of backup files

If your File Path was mylog.txt, and you select 2 backup-files, the two

previous runs have their files renamed to mylog.txt.1 and mylog.txt.2 when

you run a third time.

126 Administrator Guide

http://czyborra.com/charsets/iso8859.html#ISO-8859-1

Layout

Determines the format of the log message. Options are:

v Pattern (used if you want to customize the way the messages are logged)

v Simple (format containing just the loglevel and the message)

v HTML (creates an HTML file containing some (relative) time info, thread

info, loglevel, category, and message)

v XML (similar to HTML, but generates an XML file (using namespace-prefix

log4j))

Pattern

Only used when Layout is Pattern. See “Creating your own log strategies” on

page 131.

Log level

Severity level of the log messages. Options are (from maximum to minimum

information):

v DEBUG

v INFO

v WARN

v ERROR

v FATAL

Character Encoding

Character Encoding to be used; like Cp1252, ISO-8859-1, etc.

Log Enabled

Click to enable the use of this Appender.

Console

Logs to the console (standard output). This is in the window where you started the

server (ibmdisrv) or the execute task-window in the Config Editor (ibmditk). Console

has the following parameters:

Layout

See IDIFileRoller, previous.

Pattern

See IDIFileRoller, previous.

Log level

See IDIFileRoller, previous.

Log Enabled

See IDIFileRoller, previous.

File Logs to a file. File has the following parameters:

File Path

See IDIFileRoller, previous.

Chapter 10. Logging and debugging 127

Append to file

Click to append log information to file. If this is not checked, the file is

overwritten.

Layout

See IDIFileRoller, previous.

Pattern

See IDIFileRoller, previous.

Log level

See IDIFileRoller, previous.

Character Encoding

Character Encoding to be used; like Cp1252, ISO-8859-1, etc.

Log Enabled

See IDIFileRoller, previous.

Syslog

Enables IBM Tivoli Directory Integrator to log on UNIX Syslog. Syslog has the

following parameters:

Host name/IP Address

Host to log to.

Syslog Facility

Legal facilities found in the drop-down. Must be supported by the host you

are logging to.

Print Facility String

If set, the printed message includes the facility name of the application.

Layout

See IDIFileRoller, previous.

Pattern

See IDIFileRoller, previous.

Log level

See IDIFileRoller, previous.

Log Enabled

See IDIFileRoller, previous.

NTEventLog

Enables applications to log using the Windows NT® EventHandler (on Windows

platforms). NTEventLog has the following parameters:

Layout

See IDIFileRoller, previous.

Pattern

See IDIFileRoller, previous.

128 Administrator Guide

Log level

See IDIFileRoller, previous.

Log Enabled

See IDIFileRoller, previous.

DailyRollingFile

DailyRollingFile saves old files with a datestamp in their names. It usually is used

with the Append to file parameter set to true. DailyRollingFile has the following

parameters:

File Path

See IDIFileRoller, previous.

Append to file

Create new file or append to existing file, depending on whether this is

checked. You usually want this on when using the DailyRollingFile.

Date Pattern

How often the file is rotated. Use the drop-down to choose resolution from

minutes to months. For example, if the File Path is set to example.log and the

DatePattern set to ’.’yyyy-MM-dd, on 2003-10-31 at midnight, the logging file

example.log is copied to example.log.2003-10-31. Logging for 2003-11-01

continues in example.log until it rolls over the next day.

Layout

See IDIFileRoller, previous.

Pattern

See IDIFileRoller, previous.

Log level

See IDIFileRoller, previous.

Character Encoding

Character Encoding to be used; like Cp1252, ISO-8859-1, etc.

Log Enabled

See IDIFileRoller, previous.

SystemLog

This Appender creates log files in a catalog hierarchy under

<TDI_installation_directory>/system_logs. For each Config File, there will be a

corresponding directory with logfiles named AL_xxx or EH_xxx, where xxx is the

name of the AssemblyLine or EventHandler being run.

 This Appender has the following parameters:

Pattern

Specifies the format of the log as defined by LOG4J. The default value is:

"%d{ISO8601} %-5p [%c] - %m%n"

Chapter 10. Logging and debugging 129

Additional values available in the field are:

"%d{HH:mm:ss} %p [%t] - %m%n"

"%p [%t] %c %d{HH:mm:ss,SSS} - %m%n"

Log level

See IDIFileRoller, previous.

Character Encoding

Character Encoding to be used; like Cp1252, ISO-8859-1, etc.

Log Enabled

See IDIFileRoller, previous.

Log Levels

Log levels can be

v ALL

v DEBUG

v INFO

v WARN

v ERROR

v FATAL

v OFF

ALL logs everything. DEBUG, INFO, WARN, ERROR and FATAL have increasing levels of

message filtration. Nothing is logged on OFF.

Note that the IBM Tivoli Directory Integrator logmsg() calls log on INFO level by default. This

means that setting loglevel to WARN or lower silences your logmsg as well as all Detailed

Log settings. However, the logmsg() call also has a level parameter (as described in the

Javadocs) that can be used to override the log level for individual logmsg() calls.

log4j default parameters

These are some of the parameters you find in the files log4j.properties (for ibmdisrv and

ibmditk) and executetask.properties (for the Execute Task window that you see in the Config

Editor when you run an AssemblyLine from it).

Full documentation can be found at the Apache log4j Project.

log4j.rootCategory= DEBUG, Default

DEBUG is the loglevel for the named Appender (log4j term called Default). If you set

this to OFF or level above INFO you do not get output from your script logmessages

(see following):

130 Administrator Guide

http://jakarta.apache.org/log4j/docs

log4j.appender.Default

Defines what type of Appender the named appender Default is. It can be one of the

following:

v IDIFileRoller (generates a new file for each run of the Server)

v Console (log to console)

v File (log to file)

v Syslog (log to UNIX Syslog)

v NTEventLog (log to Windows NT EventLog)

v DailyRollingFile (saves old files with a datestamp in their names)

v SystemLog (In a folder structure under root_directory/system_logs)

log4j.appender.Default.file

Default log file for File Appender, relative to your installation directory (default

ibmdi.log).

log4j.logger.com.ibm.di.*

Log level of various IBM Tivoli Directory Integrator components. Note that, for

example, ibmditk shows the log level of the IBM Tivoli Directory Integrator Config

Editor itself (not the processes you are running inside it). Do not change these.

Creating your own log strategies

You can use this framework to differentiate how the different AssemblyLines and

EventHandler log.

Note: This information is intended for users who want to continue using file to customize

logging output. You can customize logging output through the Config Editor (ibmditk).

The following section defines a log scheme called CONSOLE, and that can later be used by

specific AssemblyLines or EventHandlers:

log4j.appender.CONSOLE=org.apache.log4j.ConsoleAppender

log4j.appender.CONSOLE.layout=org.apache.log4j.PatternLayout

log4j.appender.CONSOLE.layout.ConversionPattern=%d [%t] %-5p - %m%n0

Now in order to have the AssemblyLines and EventHandler myAL and myEH, you need the

lines:

log4j.logger.AssemblyLine.myAL=INFO, CONSOLE

log4j.logger.EventHandler.myEH=INFO, CONSOLE

Refer to the full log4j (version 1.2) documentation for description of the ConversionPattern

parameters. Here are some parameters:

%d Date/time depending on format.

%p Priority.

%c Category.

Chapter 10. Logging and debugging 131

Note: this is typically in the form Type.alName.xxx. Type can be EventHandler or

AssemblyLine, alName is the name of the AssemblyLine (or EventHandler as

name by the creator), and xxx is a unique ID for the thread. %c{2} outputs

alName.

%m Message.

%n Newline.

%t Threadname.

132 Administrator Guide

Chapter 11. Tracing and FFDC

In addition to the user-configurable logging functionality described in Chapter 10, “Logging

and debugging,” on page 125, IBM Tivoli Directory Integrator is instrumented throughout its

code with tracing statements, using the JLOG framework, a logging library similar to log4j,

but which is used inside TDI specifically for tracing and First Failure Data Capture (FFDC).

To which extent this becomes visible to you, the end user, depends on a number of

configuration options in the global configuration file jlog.properties, and the Server

command line option -T.

Note: Normally, you should be able to troubleshoot, debug and support your solution using

the logging options described in the chapter, Chapter 10, “Logging and debugging,” on

page 125. However, when you contact IBM Support for whatever reason, they may ask

you to change some parameters related to the tracing functionality described here to

aid the support process.

Understanding Tracing

Tracing is done in TDI’s code using JLOG’s PDLogger object. PDLogger or the Problem

Determination Logger logs messages in Logxml format (a Tivoli standard), which IBM

Support understands and for which they have processing tools.

The basic level of information traced, as handled by the PDLogger APIs, is:

Date | Time | ClassName | methodName | MachineName | IP | {Entry/Exit/Exception} | [Parameter]

(The ″|″ character serves a documentation purpose only, it is not part of the actual log.)

Tracing is not performed using log4j Appenders for the following reasons:

1. Trace is always to be enabled

2. You wouldn’t want multiple traces enabled in the server (could be several for each AL if

Appenders were used).

The PDLogger is attached to the JLOG SnapMemory handler and the JlogSnapHandler.

The SnapMemory Handler logs trace messages to memory. On the trigger of a LogEvent (eg:

occurrence of a specific Log level Trace message, as defined by the jlog.levelflt.level filter,

or an application crash or on the occurrence of a specific TMS XML messageID) the Trace

memory buffer is written to a file by the JlogSnapHandler.

To make Tracing and Log messages in TDI unique across all IBM products, they are prefixed

with a unique Message Prefix: CTGDI.

© Copyright IBM Corp. 2003, 2006 133

All error messages are prefixed with a unique TMSXML messageID which indicates the cause

of the error and an operator response.

All info messages are also prefixed with a unique TMSXML messageID which may or may

not provide the operator response.

Configuring Tracing

The jlog.logger.level property in the jlog.properties file can be used to set the desired trace

level. The trace level can be set to any of the following JLOG log levels: (Hierarchy, from most

severe to least severe)

v FATAL

v ERROR

v WARNING

v INFO

v DEBUG_MIN

v DEBUG_MID

v DEBUG_MAX

The default level is DEBUG_MIN.

The trace level and other properties can be changed by dynamically setting the right Java

property from scripts within TDI. The script LogCmd.bat (Windows) and LogCmd.sh (Unix),

present in the installation directory, can be used to set trace properties dynamically.

Note: The JLOG logger starts a command server on port 9992 (default) to listen to log

commands sent by the LogCmd command line utility. For the logcmd scripts to work,

the command server needs to be started first; this is controlled by the jlo.noLogCmd

property in jlog.properties. By default (for security reasons), in TDI 6.0 the command

server is disabled, that is, the jlog.noLogCmd property is set to true. To use the logcmd

scripts you need to first set the jlog.noLogCmd=false in the jlog.properties file, and

restart the Server. However, even with the command server running and listening, it

will only answer requests issued from the local machine.

Refer to the comments in the jlog.properties file for further guidance on JLOG

configuration options.

Useful JLOG parameters

 Property Value Description

jlog.snapmemory.queueCapacity Default 10000 The number of logevents that can be stored in the

snapmemory handlers queue.

jlog.snapmemory.dumpEvents true If set to true, the handler will immediately send

all the queued events to its output listeners. The

property will then be reset to false.

134 Administrator Guide

Property Value Description

jlog.snapmemory.userSnapDir CTGDI/FFDC/user/ The directory to place the trace dump file when a

user triggers an FFDC action by using the logcmd

scripts.

jlog.snapmemory.isSync Default false If ″true″ log events will be dumped to the snap

shot file synchronously. This does not spawn a

new thread, and causes the logger to block until

the snapshot is complete.

jlog.snapmemory.userSnapFile userTrace.log

jlog.snapmemory.triggerFilter jlog.levelflt The level filter to be used to take JFFDC action.

jlog.snapmemory.msgIds *E The TMSXML message filter to be used for JFFDC

action.

jlog.snapmemory.mode PASSTHRU or BLOCK.

Default is PASSTHRU.

Indicates whether to pass the listed Ids under the

msgIDs property to the filter or block them.

Jlog.snapmemory.msgIDRepeatTime 10000 (in milliseconds) The minimum time in milliseconds, after passing

a logEvent with a given TMS message ID, before

another logEvent with the same id can be passed.

The default value for jlog.snapmemory.triggerFilter sets up a trigger filter named jlog.levelflt.

An attribute of such a filter is the message severity, which takes one of the JLOG Log values

as described above. By default, the entries

jlog.levelflt.className=com.ibm.log.LevelFilter

jlog.levelflt.level=FATAL

will set up the FFDC code to cause the memory buffer to be dumped to the trace log when a

trace message of severity FATAL occurs. The jlog.levelflt.level property can take any of the

other Log level values as well, but only values of ERROR or FATAL will make much sense as

otherwise the amount of FFDC dumping will be very high, causing huge slowdowns of the

TDI Server.

Chapter 11. Tracing and FFDC 135

136 Administrator Guide

Chapter 12. Administration and Monitoring Console (AMC)

IBM Tivoli Directory Integrator (TDI) 6.1 introduces a new, fully supported, Web-based

Administration and Monitoring Application (AMC). The AMC can be used to remotely start,

stop and manage TDI Configs and AssemblyLines.

IBM Tivoli Directory Integrator 6.1 also ships an Action Manager (AM) with the AMC. The

Action Manager is a stand-alone Java application that interacts with the AMC database and

uses the TDI Remote Server API to manage remote AssemblyLines.

The Administration and Monitoring Console is comprised of a Java WAR file (tdiamc.war)

that can be deployed on any J2EE compliant Web Server.

Installation and Configuration

Installing AMC on Embedded WAS Express

Note: These instructions require that you be familiar with theIBM Tivoli Directory Integrator

6.1 Installation procedures. See “Using the platform-specific TDI installer” on page 11

for information about TDI Installation.

IBM Tivoli Directory Integrator 6.1 ships a lightweight version of WebSphere Application

Server (WAS) Express.

The TDI Installer automatically installs Embedded WebSphere Application Server Express and

deploys AMC on it if you select those options during IBM Tivoli Directory Integrator 6.1

installation.

To install and deploy the Administration and Monitoring Console on the Embedded

WebSphere Application Server Express:

1. Invoke the TDI 6.1 installer.

2. During installation, select the Custom install. (Typical installation does not offer AMC

option.)

3. On the "Select Features" panel of the installation, select AMC: Administration and

Monitoring Console and Embedded version of WebSphere Express v6.0.2 .

4. Finish installing TDI 6.1.

Selecting the AMC with embedded Websphere option installs WAS, creates a profile called

amcprofile and deploys the tdiamc.war file into this profile.

© Copyright IBM Corp. 2003, 2006 137

Note: There is a problem with embedded WAS on installation and post installation due to

issues with the JRE shipped with embedded WAS. If installing AMC and the embedded

WAS RHEL 3 on zLinux, then the JIT needs to be disabled before running the installer

from the command line:

export JAVA_COMPILER=NONE

In the same command line window, execute the installer and perform a normal

installation. Next, download and apply the JRE SR4-1 update available at

http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg24012074. This should

be applied to the JRE in the embedded WAS located at <TDI__Install_Dir>/AppServer/
java/jre . After this point, the JIT no longer needs to be disabled.

The default location of the AMC is:

<TDI_Install_Dir>/AppServer/profiles/amcprofile/installedApps/DefaultNode/tdiamc.war.ear/tdiamc.war/

Deploying AMC as a Windows Service by means of WASService.exe

WAS provides a command called WASService.exe in the ″bin″ directory which allows you to

create a windows service for any profile.

With regards to AMC, the command to run AMC as a windows service (automatically) would

be (run this command from the <TDI_install>/AppServer/bin directory):

WASService.exe -add "MyServiceName" -servername server1 -profilePath "..\profiles\amcprofile" -startType automatic

For full details on this command, see http://publib.boulder.ibm.com/infocenter/wasinfo/
v6r0/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/rins_wasservice.html

Installing AMC on an existing WAS 6.0 or WAS 6.1 version

To install the Administration and Monitoring Console on an existing WAS setup:

1. Obtain the tdiamc.war file.

2. Choose the WAS profile into which AMC must be deployed, or create a new one.

3. Deploy the tdiamc.war file to the chosen profile.

4. Start the profile.

The IBM Tivoli Directory Integrator 6.1 installer can be used to deploy AMC on an existing

WAS instance automatically, or you can choose to deploy AMC manually using the scripts

shipped with TDI 6.1 or the command line utilities shipped with WAS or using the WAS

Application deployment tool.

Installing AMC on WAS using the TDI 6.1 Installer

1. Invoke the IBM Tivoli Directory Integrator 6.1 installer.

2. Select the Custom install. Typical installation does not offer AMC option.

3. On the "Select Features" panel:

v Select AMC: Administration and Monitoring Console.

v Do not select Embedded version of WebSphere Express v6.0.2.

138 Administrator Guide

http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg24012074
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/rins_wasservice.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/rins_wasservice.html

4. Because the Embedded version of WebSphere Express option was not selected, the

WebServer selection panel is shown. This panel automatically detects existing WAS

instances. Select one of the following options:

v You can select a currently installed WebSphere Application Servers, if any are detected,

by selecting the Detected WebSphere Application Server radio button and selecting the

desired server from the drop-down menu.

v You can create a custom location for the WebSphere Application Server by selecting the

Custom location of WebSphere Application Server. Use the Browse button to navigate

to the desired location.

v To manually deploy AMC at a later time, select Do not specify. I will manually deploy

AMC at a later time.

5. After having selected the WAS instance to install, the "Profile Selection" panel is shown,

displaying various existing WAS profiles. Select the profile into which you want the AMC

installed.

6. Finish the installation. Administration and Monitoring Console is installed on the selected

WAS instance and profile.

Installing AMC on WAS using the TDI 6.1 Scripts or WAS Commands

1. Invoke the IBM Tivoli Directory Integrator 6.1 installer.

2. Select the Custom install. Typical installation does not offer an AMC option.

3. On the "Select Features" panel:

v Select AMC: Administration and Monitoring Console.

v Do not select Embedded version of WebSphere Express v6.0.2.
4. Because you did not select the embedded version of WAS Express, the "WebServer

Selection" panel will be shown. This panel automatically detects existing WAS instances.

Select I will manually deploy AMC at a later time.

5. Finish the installation. The installer places the tdiamc.war file in the <TDI_Install_Dir>/
amc directory and the AMC scripts in the <TDI_Install_Dir>/bin/amc directory.

6. If you wish to create a new profile in WAS, execute the createProfile command in the

<TDI_Install_Dir>/bin/amc/ folder.

You must modify this script to specify the WAS install location and the WAS profile name

to create: Set the APPSRV_INSTALLROOT variable to the WAS install location, and AMC_PROFILE

to the profile name. This is a wrapper script that calls the wasprofile command of WAS to

create a profile.

7. To deploy the tdiamc.war file in WAS, you must edit the install script in the

<TDI_Install_Dir>/bin/amc folder. Specify your WAS install location and the WAS profile

name to deploy AMC into. Set the APPSRV_INSTALLROOT variable to the WAS install

location, and AMC_PROFILE variable to the profile. This is a wrapper script which calls the

wsadmin command of WAS.

Starting and stopping AMC following installation

To start the Administration and Monitoring Console:

Chapter 12. Administration and Monitoring Console (AMC) 139

v If you installed AMC using the embedded WAS Express, invoke the following command

from the <TDI_Install_Dir>/AppServer/bin directory:

startServer server1 –profileName amcprofile

v If you installed AMC using an existing WAS 6.0 or 6.1, invoke the following command

from the <WAS_Install_Dir>/bin directory:

startServer server1 –profileName <selectedProfile>

Note:

You can also start and stop the AMC by running the following scripts shipped in

<TDI_Install_Dir>/bin/amc folder:

v To start AMC, run the start_tdiamc script.

v To stop AMC, run the stop_tdiamc script.

Once the Administration and Monitoring Console is started, you can access it from the

following URL: http://localhost:<port>/tdiamc

If you installed AMC using an existing WAS 6.0 or 6.1, stop the AMC by running the

following command from the <WAS_Install_Dir>/ bin directory:

stopServer server1

If you installed AMC using Embedded WAS Express, stop the AMC by running the following

command from the <TDI_Install_Dir>/AppServer/bin directory:

stopServer server1

Installing AMC on Tomcat 5.0.x

To install the Administration and Monitoring Console on Tomcat 5.0.x, download and install

Tomcat 5.0.x from http://jakarta.apache.org.

Ensure that tomcat has been successfully installed by pointing your browser to

http://localhost:<port>/

To install the AMC on Tomcat all that is required is the tdiamc.war file that is shipped with

TDI 6.1 in the <TDI_Install_Dir>/amc folder.

Copy the tdiamc.war file and drop it into the <Tomcat_Install_Dir>/webapps folder and restart

Tomcat.

AMC will automatically be deployed and installed when Tomcat is started.

The URL that launches the Administration and Monitoring Console is: http://
localhost:<port>/tdiamc

140 Administrator Guide

http://jakarta.apache.org

Notes:

1. The tdiamc.war file will be placed into the folder by the installer only if you chose a

Custom install option during installation, and selected the AMC: Administration and

Monitoring Console option on the "Select Features" panel.

2. In <Tomcat_Install_Dir>/common/endorsed/ the xercesImpl.jar must be replaced by IBM

JVM’s xml.jar. This file can be found in your TDI installation at the following location:

<TDI_Install>/jvm/jre/lib/xml.jar. This is necessary since the TDI Server API uses the

IBM XML parser which must be present at the client end for being able to correctly

serialize data. Do not delete the xercesImpl.jar but back it up in a safe location.

Note:

Configuration

The configuration file for the Administration and Monitoring Console is the amc.properties

file that is located in the tdiamc/ directory at the same level as the WEB-INF directory. This file

contains the AMC’s database configuration properties, LDAP properties, SSL related

properties and help server details.

The Administration and Monitoring Console makes use of Cloudscape version 10 to store

data. When AMC is started for the first time, AMC creates a tdiamcdb folder inside the Web

Server directory and creates the tables needed for AMC to function. The Cloudscape database

can be accessed in either the network mode or embedded mode. By default, AMC is shipped

with Cloudscape configured in network mode. The following properties in amc.properties are

an indication of Cloudscape configured for network mode:

com.ibm.di.amc.jdbc.database=jdbc:derby://localhost:1527/tdiamcdb;create=true

com.ibm.di.amc.jdbc.driver=org.apache.derby.jdbc.ClientDriver

com.ibm.di.amc.jdbc.urlprefix=jdbc:derby:

com.ibm.di.amc.jdbc.user=APP

com.ibm.di.amc.jdbc.password=APP

com.ibm.di.amc.jdbc.start.mode=automatic

com.ibm.di.amc.jdbc.host=localhost

com.ibm.di.amc.jdbc.port=1527

com.ibm.di.amc.jdbc.sysibm=true

The property com.ibm.di.amc.jdbc.database points to Cloudscape in network mode, running

on localhost:1527. The database name being accessed is tdiamcdb, and create=true, indicating

that AMC will create the database if not found. It is recommended that the create=true be set

to false later, so that in case the database path gets modified, AMC does not re-create the

database, but instead throws a database not found exception. It is also suggested, that

database be set to an absolute path to avoid any confusion about the database path later.

The Administration and Monitoring Console will automatically attempt to start the

Cloudscape server in network mode, by reading the com.ibm.di.amc.jdbc.host and

com.ibm.di.amc.jdbc.port property. Specify localhost if you do not want any remote

connections to be allowed to this database, otherwise specify the IP address of the local

machine.

Chapter 12. Administration and Monitoring Console (AMC) 141

Note: Sometimes AMC cannot start the Cloudscape database in network mode because of

security restrictions by the WAS container. For example, in WAS 6.1, there is a

startNetworkServer script in the “derby” folder that must be run before starting AMC.

In that case the tdiamcdb database must be in the same directory where the

startNetworkServer script is located.

The Administration and Monitoring Console can also be configured to connect to the

Cloudscape database in Embedded Mode. In this case, the Action Manager (a separate

application that also talks to AMC database) will be unable to connect to AMC’s database.

This is because in Embedded Mode, only one JVM at a time is allowed to connect to Derby

database. If Action Manager is not needed, then it is recommended to run AMC’s Cloudscape

database in Embedded Mode. The following example shows the amc.properties file with

Cloudscape configured for embedded mode:

##Location of the database (embedded mode)

com.ibm.di.amc.jdbc.database=tdiamcdb

com.ibm.di.amc.jdbc.driver=org.apache.derby.jdbc.EmbeddedDriver

com.ibm.di.amc.jdbc.urlprefix=jdbc:derby:

com.ibm.di.amc.jdbc.user=APP

com.ibm.di.amc.jdbc.password=APP

The com.ibm.di.amc.jdbc.database property points to the location of the AMC database. It is

suggested, that this value be set to an absolute path to avoid any confusion about the

database path later.

Logs

The Administration and Monitoring Console logs are stored in the auiml/logs directory inside

the Web container. The AMC.log.0 file contains the most recent logs.

The configuration of AMC logs can be done by modifying the WEB-INF/classes/
logging.properties file. AMC logging follows the Java logging standard (java.util.logging).

The logs can be viewed from within Administration and Monitoring Console by clicking the

Logs link on the top right hand corner of any AMC panel.

AMC and AM Security

Introduction

AMC is a web based application for monitoring and managing remote TDI solutions. AMC

makes use of the TDI Remote Server API to communicate with TDI. For this reason, all the

security restrictions and configuration settings that are applicable to TDI Remote Server API

clients (as mentioned in previous sections) are valid for AMC too. Besides those, AMC also

provides certain in-built security features.

Action Manager is a stand alone Java application that gets installed along with AMC. Action

Manager configures itself and behaves based on rules set in AMC DB by AMC Users. To

142 Administrator Guide

monitor remote ALs and to take action based on configured rules, Action Manager, just like

AMC, makes use of TDI Remote Server API to communicate with TDI servers.

AMC and SSL

Multiple TDI Servers can be registered with AMC. Each TDI server may be configured

differently; one TDI server could be running with SSL off, one with SSL on, one with Custom

Authentication on and SSL on – and various other combinations. AMC can be used to connect

and administer any of these servers simultaneously. As mentioned earlier, to configure TDI to

run in SSL mode the api.remote.ssl.on property should be set to true in global.properties or

solution.properties.

AMC being a web application running inside a Web Container – automatically will inherit

some properties and security restrictions from the Web Container. For instance, if the Web

Container has an SSL key store or SSL trust store configured, then that would be

automatically applicable to AMC. But AMC can also override that – and specify its own key

store and trust store.

For being able to communicate with TDI Remote Server API running on SSL, AMC must have

a key store configured which contains the certificate that is trusted by the TDI remote Server

API (i.e it must be present in TDI’s trust store’s trusted certificates section) and AMC must

have a trust store configured which contains the certificate that is sent by the TDI remote

Server API. In other words – the certificate that is present in TDI server’s key store must be

present in AMC’s trust store and the certificate that is present in TDI trust store must be

present in AMC’s key store.

For example, the default installation of TDI is shipped with certain stores (jks files). When you

run TDI in SSL mode, then to connect to AMC its key store and trust store must both be set to

the same value: <TDI_installation_directory>/serverapi/testadmin.jks and the password being

“administrator”. Since testadmin.jks contains both trusted certificates and signer certificates –

a connection gets established. It is recommended to use your own SSL key stores and trust

stores.

In AMC, the path of the Trust Store and Key store can be set by logging into AMC as

“superadmin” (Console Administrator) and navigating to the following panel: Console

Administration->Manage Console Properties->SSL settings. The settings for trust store and

key store get written to amc.properties file inside the tdiamc folder in Web Container. You can

alternatively choose to edit the amc.properties file directly.

For each TDI server running over SSL that you wish to register with AMC, you must import

the necessary certificate into AMC’s trust store and the necessary AMC’s key certificate into

TDI’s trust store. The idea here is that AMC must trust TDI and TDI must trust AMC to be

able to make a secured two-way SSL connection.

Since AMC runs inside a Web Container, the URL for AMC will be http://hostname:port/
tdiamc

Chapter 12. Administration and Monitoring Console (AMC) 143

This indicates that AMC is running on HTTP. If you wish to run AMC on Secured HTTP

(HTTPS), then your Web Container (WebSphere, Tomcat, etc) must be configured to open an

SSL port for web communication. See the Web Server’s documentation on how to configure it

for SSL. In that case, AMC’s url will change to: https://hostname:secured_port/tdiamc

AMC and Remote TDI Server

AMC can connect to multiple TDI Server’s remotely. Each TDI Server could be configured in

one of the following ways:

v Non SSL

v SSL

v Custom Authentication with Non-SSL

v Custom Authentication with SSL

Let's discuss each of these cases in detail.

When a remote TDI server is configured for Non SSL (i.e api.remote.ssl.on=false) then the key

store or trust stores of AMC do not come into play, even if correctly configured – since no SSL

connection is being attempted. In this case the AMC Server’s machine IP address must be

registered with the TDI server. This is done by editing the global.properties or

solution.properties file. The property to update is: api.remote.nonssl.hosts. Once the AMC

machine’s IP address is entered in the file of the remote TDI server, AMC will be able to

connect to that particular server. It’s a way of saying – I trust remote server connections

(AMC connections) from only those machines whose IP addresses I have mentioned in my

api.remote.nonssl.hosts property.

Note: If the TDI server is running on the same machine as AMC, then editing this property is

not required.
When a remote TDI server is configured for SSL (i.e api.remote.ssl.on=true), then the SSL key

store and trust store for AMC must be setup appropriately.

For details on this, see the previous section on AMC and SSL. In addition to being configured

for SSL or Non-SSL, a remote TDI server may also require Custom Authentication – in which

a username and password need to be passed while making a connection to the remote TDI

server. The remote TDI server will validate this user name and password against some 3rd

party repository like LDAP, file, database, script, etc and then make a decision on whether to

allow the Server API client to make a connection or not. In such cases, while registering a

server with AMC (Manage TDI Servers->Add / Edit TDI Server) in the Authentication Mode

panel – select “Custom or LDAP Authentication” and mention the Username and Password

which AMC must pass every time it attempts to connect to the specified remote TDI Server.

Note: If the Username/Password (in case of custom authentication) or SSL key stores/trust

stores (in case of SSL) are not set up correctly, then AMC will be unable to connect to

the remote TDI Server and show that server as “Stopped” or “Not running”.

144 Administrator Guide

AMC and User/Group/Role Management

The Console Administrator (also called superadmin) is the administrator for AMC. This user

has complete privilege over AMC and has access to all functions of AMC. Much like the root

user of an OS. By default, when AMC is installed for the first time, this is the only user that

exists. Default password for “superadmin” user is “secret”. It is recommended to change this

password on first login. To change the password, go to the User Preferences->Change

Password panel of AMC. The console administrator’s password is stored in a file called the

console_passwd in the tdiamc/WEB-INF/classes/security folder. This file only contains no

other information except the Console Administrators login credentials (encrypted).

AMC allows the superadmin user to add users and groups to AMC. By default, AMC comes

configured for Cloudscape Database as the storage repository for users and groups. To add

users to AMC, login in as superadmin, and go to the Users and Groups section of the

navigation area. For instance, if you add a user called “test” with password “sec123”, then

you can use this user name and password to login into AMC.

Note: The console administrator has no restrictions whatsoever while working with AMC.

But if any other user logs in (besides superadmin) then the following functionality is

NOT available:

v Manage Console Properties

v Create Config View

v Users and Groups (Add/Edit/View/Manage)

Just like Users can be added to the AMC’s database, Groups can also be created by

superadmin. Once a group is created, to add users to that group, the console administrator

needs to “Edit” that group to be able to Add or Remove members to that group.

AMC and LDAP as an Authentication Store

Instead of using AMC’s database as an authentication repository for AMC, users can also use

any third party LDAP Server (like IBM Tivoli Directory Server, Active Directory, etc) as an

authentication repository. In this case, whenever a user attempts to login into AMC (except

the superadmin), AMC will attempt to construct the user’s DN based on the configured

search scope for AMC and then using the DN and password provided attempt to bind to the

LDAP Server. If the bind succeeds, user will be logged into AMC, if not, then a login failure

message will be shown to the user.

Note: AMC will not modify or update the 3rd party LDAP Server repository in any way. This

means that AMC treats the LDAP repository only as a lookup for authentication and

treats it as read-only. Users can specify appropriate Bind DN for AMC in the AMC

LDAP configuration settings – such that the DN has read-only permissions on the

LDAP Server. Because of this security restriction, AMC does not allow User Addition,

User Modification, Password Change, Group Addition and Group Modification via

AMC – when AMC is configured for LDAP Server as an authentication store.
Steps needed for configuring AMC to use LDAP as an authentication store:

 1. Start AMC.

Chapter 12. Administration and Monitoring Console (AMC) 145

2. Login as console administrator (superadmin).

 3. Go to Console Administration->Manage Console Properties->General panel.

 4. Set the Authentication Mode dropdown to “LDAP” – indicating that the Authentication

repository must be treated as LDAP instead of Database (default).

 5. Go to Console Administration->Manage Console Properties->LDAP Properties panel.

 6. Select the “SSL Enabled” check box if LDAP Server is running in SSL Mode. In this case

you must ensure that appropriate certificates are imported into AMC’s trust store and

into LDAP Servers trust store. AMC’s trust store and key store settings can be viewed,

edited from “SSL Settings” panel on the same screen.

 7. Enter the LDAP Server hostname or IP address (example: lookup.in.ibm.com)

 8. Enter the port on which the LDAP Server is listening (example: 389)

 9. Enter the Bind ID and Bind Password with which AMC will bind with the remote TDI

Server. AMC uses these credentials to obtain a list of authorized AMC users and groups.

This ID can have read-only privilege on the LDAP Server, since AMC does not need any

write permission on LDAP Server (example cn=amc,cn=admin,o=ibm,c=us).

10. Enter the suffix DN. All AMC users and groups will be searched for under this suffix

(example: o=ibm,c=us).

11. Enter the LDAP user prefix (example: cn)

12. Enter the LDAP user suffix (example: ou=AMCUsers)

13. Enter the LDAP Group Prefix (example: cn)

14. Enter the LDAP Group Suffix (example: ou=AMCGroups)

15. Enter the LDAP User Object class (example: inetOrgPerson)

16. Enter the LDAP Group Object class (example: groupOfNames)

17. Enter the LDAP Group Member (example: member)

18. Enter the LDAP Search timeout – in seconds (example: 120)

19. Click OK.

20. Restart AMC.

With this, AMC will be setup to allow only those users who

v have DN ending with ou=AMCUser, o=ibm, c=us

v have prefix as “cn=”,

v have objectclass as “inetOrgPerson”

So, cn=Test, ou=AMCUser, o=ibm, c=us is a valid user; whereas uid=Test, ou=AMCUser,

o=ibm, c=us is an invalid user (since it does not have “cn” as prefix). While logging in the

user id entered must be only “Test” – and AMC will automatically construct the above DN

and attempt to bind with the user supplied password.

Similarly, with the above given example values, AMC will be setup to show only those

groups which

v have DN ending with ou=AMCGroups, o=ibm, c=us

146 Administrator Guide

v have prefix as “cn=”

v have objectclass as “groupOfNames”

v Valid members will be the ones mentioned in the “members” attribute of this objectclass.

Notes:

1. 1. All these properties are stored in the amc.properties file.

2. The property – Admin UID, Admin Password, Server Type, LDAP User filter, LDAP

Group Filter and LDAP Ignore Case are not being used currently and can be set to any

value. They are put there for later use depending on future requirements.

AMC and Role Management

Every user (or group) in AMC can be assigned one of the following roles in AMC for a

particular Config View. This role assignment can be done in the Config Administration-
>Manage Config View panel by selecting a particular Config View and clicking on

“Configure ACLs” button. The available roles are:

v Read

v Execute

v Admin

v Config Admin

These roles are in increasing order of privilege – indicating that Config Admin is the highest

privilege and Read is the lowest. Any functionality that is available to a user with “Read” role

for a Config View, will definitely be available to a user with “Execute” privilege on that

Config View. Any functionality that is available to a user with “Execute” privilege on a Config

View, will be available to a user with “Admin” privilege, and so on.

The following is the meaning of these roles

Read This means that this user can only read the “details” of this Config View – such as

what are the ALs inside this view, what are properties inside this view, what is the

status of these ALs, etc. This user cannot modify, start, stop, or change any detail of

this config view. Execute: This is essentially a Read user with one extra privilege – the

ability to Start and Stop Assembly Lines.

Execute

This is essentially a Read user with one extra privilege – the ability to Start and Stop

Assembly Lines.

Admin

This user can administer the config view, without being able to modify the config

view itself. This user can do everything that the “Execute” privelige user can do, and

additonally he can modify properties, delete logs, configure AM rules, etc for this

config view.

Config_Admin

This user can virtually do anything to the config view – including modifying the view

Chapter 12. Administration and Monitoring Console (AMC) 147

itself, modifying the permissions of other users on this view, etc. This is the highest

privilege that can be given to a user for a particular config view.

The above roles can be assigned to any Group too. Therefore, if a user “test” and “tdi” are

part of the “DBAdmin” group, and the “DBAdmin” group is given “ConfigAdmin” privilege

over a config view “SynchDatabase”, then both “test” and “tdi” will automatically get

ConfigAdmin privilege over the “SynchDatabase” config view.

Notes:

1. If the “test” user is explicitly given “read” privilege for the same config view, then “Read”

will get precedence over the privilege he gets from being part of the “DBAdmin” group.

This is done so that “specific” role assignment gets priority over role assignment from

groups. This allows people to restrict or give higher access to individuals – without

worrying about inherited access from being part of some groups.

2. If the “test” user is part of two Groups – where Group1 has “read” access and Group2 has

“admin” access over the same Config View – then in this case the test user will get the

higher of the two privilege – in this case being “admin”, unless a specific role is already

assigned to “test” for the same config view – in which case the specific role assigned to

“test” will be given precedence [point 1 above].

AMC and Passwords

Any password field that is stored in amc.properties file, such as LDAP Bind password, key

store password, etc are all encrypted before being written to amc.properties file. Also, AMC

never displays any Password fields or protected fields on console. All such fields are masked

out.

Users can change their login password (if the backend repository is not LDAP) by going to

the User Preferences->Change Password panel.

AMC and Encrypted Configs

AMC allows users to load and connect to password protected configs. On the Load Reload

panel of AMC, a password text box has been provided – where the users need to enter the

password of the config they are attempting to start before clicking “Start”. Similarly, in the

AM Configuration Screen – for the Start AssemblyLine action, a password field has been

provided where the user can enter the password of the config. Action Manager will pass this

password while attempting to start the Config.

Note: AMC cannot detect that the remote config being started is a password protected config.

For this reason, if the password is not specified or incorrectly specified, then the user

will just see an error message saying – “Unable to start the config”. The user can see

the TDI Server logs where an exact message will be provided.

Action Manager and SSL

Action Manager monitors running configs andAssemblyLines on remote TDI Servers based on

rules configured in AMC. Action Manager uses the same key store and trust store to connect

to remote TDI server which AMC users. For this reason, the reference to amc.properties is

148 Administrator Guide

mentioned in the am_config.properties. See details on how to configure AMC for SSL in

previous sections – the same is applicable for Action Manager.

Logging into the console

Open a Web browser and type the following address:

http://localhost:<port>/tdiamc

Where port is 13100 if you installed Embedded WAS Express 6.0.2 using the TDI Installer,

otherwise it should be the port where your web server is running.

The IBM Tivoli Directory Integrator Administration and Monitoring Console login page panel

is displayed.

Logging on to the console as the console administrator

The console administrator is a user who can:

v Configure the properties required for the AMC

v Set the authentication mechanism used for AMC logins

v Add new users and configure users' roles

At the IBM Tivoli Directory Integrator Administration and Monitoring Console login page, log

in as Console Admin:

1. If the default user name has not been changed, type superadmin in the User ID field,

2. If the default password has not been changed, type secret in the Password field.

3. Click Log In. The TDI Administration and Monitoring Console is displayed.

Chapter 12. Administration and Monitoring Console (AMC) 149

Console Layout

The IBM Tivoli Directory Integrator Administration and Monitoring Console includes the

following components:

Navigation Area

The Navigation area provides a tree view that allows users to navigate through the

tasks available to the user in the console. You can open and close folders in the

navigation area and select tasks (non-folders) to launch in the Work Area of the

console framework.

Work Area

The Work Area contains the necessary information and input fields to complete the

task you are currently working on.

Server Status Area

The Server Status Area contains the name and status of the TDI Server you are

currently administering. The server status information is automatically refreshed when

a task is launched in the work area. This area also contains a ? button for launching

the Eclipse help for TDI AMC.

150 Administrator Guide

Logging off the console

To log off of the console, click Logout in the navigation area.

Using AMC tables

The IBM Tivoli Directory Integrator Administration and Monitoring Console displays certain

information, such as lists of attributes and entries, in tables. Tables contain several utilities

that allow you to search for, organize and perform actions on these table items.

IBM Tivoli Directory Integrator Administration and Monitoring Console tables provide icons

to help you organize and find information in the table. Some icons appear on some tables and

not on others, depending on the current task. The following is a comprehensive list of the

icons you might encounter:

v Click the Show Filter Row icon to display filter rows for every column in the table. See

Filtering for more information about filtering.

v Click the Hide Filter Row icon to hide filter rows for every column in the table. See

“Filtering” on page 153 for more information.

v Click the Clear all filters icon clear all filters set for the table. See “Filtering” on page 153

for more information.

Chapter 12. Administration and Monitoring Console (AMC) 151

v Click the Edit sort icon to sort the information in the table. See Sorting for more

information about “Sorting.”

v Click the Clear all sorts icon to clear all sorts set for the table. See Sorting for more

information about “Sorting.”

v Click the Collapse table icon to hide the table data.

v Click the Expand table icon to display the table data.

v Click the Select all icon to select all items in the table.

v Click the Deselect all icon to deselect all selected items in the table.

Select action drop-down menu

The Select action drop-down menu contains a comprehensive list of all available actions for a

selected table. For example, instead of using the icons to display and hide sorts and filters,

you can use the Select action drop-down menu. You can also use the Select action

drop-down menu to perform operations on the table contents; for example, on the Manage

attributes panel, actions such as View, Add, Edit, Copy and Delete appear not only as

buttons on the toolbar, but also in the Select action drop-down menu. If the table supports it,

you can also display or hide the Show find toolbar using the Select action drop-down menu.

See Finding for more information on finding table items.

To perform an action using the Select action menu:

1. If necessary, select an item from the table.

2. Click the Select action drop-down menu.

3. Select the action you want to perform; for example Shutdown server.

4. Click Go.

Paging

To view different table pages, use the navigation controls at the bottom of the table. You can

enter a specific page number into the navigation field and click Go to display a certain page.

You can also use the Next and Previous arrows to move from page to page.

Sorting

To change the way items in a table are sorted:

1. Do one of the following:

v Click the Edit sort icon on the table.

v Click the Select action drop-down menu, select Edit sort and click Go.

A sorting drop-down menu appears for every column in the table.

2. From the first sort drop-down menu, select the column on which you’d like to sort. Do the

same for any of the other sortable columns on which you’d like to sort.

3. Select whether to sort in ascending or descending order by selecting Ascending/

Descending from the drop-down menu. Ascending is the default sort order. You can also

sort using column headers. On every column is a small arrow. An arrow pointing up

152 Administrator Guide

means that column is sorted in ascending order. An arrow pointing down means that

column is sorted in descending order. To change the sort order, simply click on the column

header.

4. When you are ready to sort, click Sort.

To clear all the sorts, click the Clear all sorts icon.

Finding

To find a specific item or items in a table:

Note: The Show find toolbar option is available on some tables and not on others, depending

on the current task.

1. Select Show find toolbar from the Select action drop-down menu and click Go.

2. Enter your search criteria in the Search for field.

3. If desired, select a condition upon which to search from the Conditions drop-down menu.

The options for this menu are:

v Contains

v Starts with

v Ends with

v Exact match

4. Select the column upon which you want to base the search from the Column drop-down

menu.

5. Select whether to display results in descending or ascending order from the Direction

drop-down menu. Select Down to display results in descending order. Select Up to display

results in ascending order.

6. Select the Match case check box if you want search results to match the upper and lower

case criteria in the Search for field.

7. When you have entered the desired criteria, click Find to search for the attributes.

Filtering

To filter items in a table, do the following:

1. Do one of the following:

v Click the Show filter row icon. Click the Select action drop-down menu, select Show

filter row and click Go.
2. Filter buttons appear above each column. Click Filter above the column on which you

want to filter.

3. Select one of the following conditions from the Conditions drop-down menu:

v Contains

v Starts with

v Ends with
4. Enter the text you want to filter on in the field; for example, if you selected Starts with,

you might enter C.

Chapter 12. Administration and Monitoring Console (AMC) 153

5. If you want to match case (upper case text or lower case text) select the Match case check

box.

6. When you are ready to filter the attributes, click OK.

7. Repeat the above steps 2-6 for every column on which you want to filter.

To clear all the filters, click the Clear all filters icon.

To hide the filter rows, click the Show filter icon again.

Console Administration

If you have not done so already, expand the Console Administration category in the

navigation area of the Administration and Monitoring Console.

Do one of the following:

v To add and edit Tivoli Directory Integrator servers, click Manage TDI Servers .

v To set general, LDAP, SSL and miscellaneous console settings, click Manage Console

Properties .

Manage TDI Servers

This panel allows you to view the registered server. Additionally, the Console Administrator

can add, edit, delete and shut down IBM Tivoli Directory Integrator servers from this panel.

You can choose the operations you want to perform from the tool bar at the top of the table

or using the Select action drop-down menu, such as:

Add click the Add button on the toolbar.

Delete Select the radio button next to the server you want to delete and click the Delete

button on the toolbar.

Edit Select the server you want to edit and click the Edit button on the toolbar.

Shutdown server

Select the server you want to shut down and click the Shutdown Server button on the

toolbar.

Add a server

This panel allows you to add an IBM Tivoli Directory Integrator server to the Administration

and Monitoring Console (AMC). Once you have added a IBM Tivoli Directory Integrator

server to the AMC, you can then utilize features on other AMC panels to add Config Views to

the TDI server and to create and define views for the Config Views associated with the IBM

Tivoli Directory Integrator server.

To add a new TDI server:

1. Enter a name for the IBM Tivoli Directory Integrator server in the Name field.

154 Administrator Guide

2. Enter the host name or IP address of the computer on which the IBM Tivoli Directory

Integrator is running in the Hostname field.

3. Enter the port number on which the IBM Tivoli Directory Integrator server is configured

to run.

4. Select the desired authentication mode. If you selected the Custom or LDAP authentication

authentication method, enter the username and password to be used for authentication.

5. Click OK.

Edit a server

This panel allows you to edit an existing IBM Tivoli Directory Integrator server. To edit an

existing server:

1. Enter the host name or IP address of the computer on which the IBM Tivoli Directory

Integrator server is running in the Hostname field.

2. Enter the port number on which the IBM Tivoli Directory Integrator server is configured

to run.

3. Select the desired authentication mode. If you selected the Custom or LDAP authentication

authentication method, enter the username and password to be used for authentication.

4. Click Cancel to exit the panel without making any changes, or click OK to save the

changes.

Manage Console Properties

From these panels, you can set General, LDAP, SSL and Miscellaneous console settings.

General

This panel allows you set general properties such as refresh rates and session timeouts for the

Administration and Monitoring Console. From this panel you can:

v Set the ″Monitor Status″ panel as the default panel that appears after logging on to the

Administration and Monitoring Console.

v Set the monitor screen refresh rate in minutes

v Set the frequency (in days) at which Action Manager logs are rotated.

v Set the Administration and Monitoring Console session timeout in minutes.

LDAP

The Administration and Monitoring Console provides a way for you to authenticate users to

an LDAP backend.. If LDAP authentication is enabled, you must configure the properties of

the LDAP server to which you want to authenticate.

SSL

This panel allows you to set up the console so that it can communicate with other directory

servers using the Secure Sockets Layer (SSL) encryption, if necessary. .

Chapter 12. Administration and Monitoring Console (AMC) 155

Miscellaneous

JDBC properties are used to define the connections settings to the CloudScape database. The

CloudScape database is used to store the Administration and Monitoring Console’s

configuration information, connection details, and Action Manager rules and results.

From this panel you can:

v Enter the JDBC URL in the JDBC URL field.

v Enter the desired user name in the Username field.

v Enter the password for the user in the Password field.

v Enter the JDBC driver class name in the JDBC driver field.

Config Administration

If you have not done so already, expand the Config Administration category in the navigation

area of the Administration and Monitoring Console.

Do one of the following:

v To create a Config View, click Create Config Views.

v To view, add, delete and edit Config Views, click Manage Config Views.

v To load or reload a Config, click Load/Reload Config.

v To view a Config View’s details, click Config Report.

Create a Config View

The purpose of a Config View is to give users access to information in the configuration file

without granting them the ability to edit the configuration file directly. Administrators can use

a Config View to filter a configuration file for specific information so that only certain

information within the configuration file is displayed. You can create multiple Config Views

for each Config, with each view exposing different information contained in the configuration

file.

If you have not done so already, expand Config Administration in the Administration and

Monitoring Console navigation area. Click Create Config Views in the expanded list.

To create a Config View:

1. Enter view details:

a. Enter a name for the Config View in the Name field.

b. Enter a description of the Config View in the Description field.

c. Click Next.
2. Select the server and configuration file you want to use to create a Config View:

v From the Server drop-down menu, select the IBM Tivoli Directory Integrator server

containing the configuration file you want to use to create a Config View. This menu

will be empty if no IBM Tivoli Directory Integrator servers have been added to the

Administration and Monitoring Console.

156 Administrator Guide

v Select the configuration file you want to use to create a Config View from the Configs

drop-down menu. The menu contains all currently loaded Configs.

v Click Next.
3. Select the AssemblyLines you want to associate with the selected Config View and click

Next.

4. Select the configuration properties you want to make available for viewing and/or

modification.

Note: Depending on what property store is exposed for the selected Config file you can

select Global, Solution, Java, System, Password or User properties.

a. Select the desired property store from Select property store drop-down menu.

b. Select the desired property or properties you want to add to the Config View from the

Select Properties table

c. Click Next.
5. Select the Health AssemblyLine you want to monitor from the Select Health

AssemblyLine table. If you do not wish to monitor heartbeats, select the None check box.

6. Click Finish.

Manage Config Views

To view, add, delete and edit Config Views, click Manage Config Views:

v To add a Config View, click the Add button on the toolbar.

v To modify an existing Config View, select the property you want to edit and click the Edit

button on the toolbar.

v To configure ACLs for a Config View, select the Config View for which you want to

configure ACLs and click the Configure ACLs button on the toolbar.

v To delete an existing Config View, select the property you want to delete and click the

Delete button on the toolbar.

Configure ACLS

From this panel you can set the Access Control Lists (ACLs) for a user and associate that user

with a specific Config View.

v To configure a user or users, select the user or users you want to configure and click the

Configure users button on the toolbar.

1. Select the user you want assign a role to from the User ID drop-down menu.

2. Select the radio button next to the role or roles you want to assign the selected user:

– Reader - Allows the user to read Config View details.

– Execute - Allows the user to read and start/stop AssemblyLines

– Admin - Grants the user Reader and Execute roles. This role also allows the user to

load and unload the Config associated with the selected Config View.

– Config Admin - Grants the user the ability to start and stop a Config, modify the

Config View, and assign and modify ACLs for other users.

Chapter 12. Administration and Monitoring Console (AMC) 157

3. Click Apply.
v To configure a group, select the property you want to edit from the table and click the Edit

button on the toolbar.

– Select the group you want assign a role to from the User ID drop-down menu.

– Select the radio button next to the role or roles you want to assign the selected group:

- Reader - Allows the group to read Config View details.

- Execute - Allows the group to read and start/stop AssemblyLines

- Admin - Grants the group Reader and Execute roles. This role also allows the group

to load and unload the Config associated with the selected Config View.
– Config Admin - Grants the group the ability to start and stop a Config, modify the

Config View, and assign and modify ACLs for other groups.
v To delete an existing property select the property you want to delete from the table and

click Remove.

When you are finished making changes, click Apply.

Load/Reload Configurations

This panel displays loaded Configs and the Configs in the configs folder of the remote IBM

Tivoli Directory Integrator server. Only those configs ending in .xml or .cfg in the remote

configs folder are available from this panel.

From this panel you can load, unload and reload a Config onto a server.

Note: You must have superadmin or config admin privileges to perform these actions.

v To load a configuration, select the configuration you want to load and click Start.

v To unload a configuration, select the configuration you want to unload and click Stop.

Note: Loading a server does not automatically start the AssemblyLines associated with the

selected Config. Only those AssemblyLines designated as AutoStart will start upon

loading.

v To reload a Config, select the configuration you want to reload and do one of the following

and click Reload

v To refresh a Config, select the configuration you want to reload and do one of the following

and click Refresh

Click Close when you are finished making changes.

Config Report

This panel displays the Config Views for which you have at least Reader access.

v To view a Config View select the desired Config View from the Select Config View

drop-down menu and click Show Report.

v To view the AssemblyLines Connectors, select the radio button next to the AssemblyLine

with Connectors you want to view and click View Connectors.

158 Administrator Guide

v To start an AssemblyLine select the radio button next to the AssemblyLine you want to

start and click Start AL.

v To stop an AssemblyLine, select the radio button next to the AssemblyLine you want to

stop and click Stop AL .

.

Operation Status and AM

If you have not done so already, expand the Operation Status category in the navigation area

of the Administration and Monitoring Console.

Do one of the following:

v To view information about each preferred Config View, such as AM Status, Health Check

Result and Health Check Status, click Monitor Status.

v To add, edit or delete configuration rules, click AM Configuration.

Monitor Status

This panel displays the views selected on the ″Preferred Views″ panel accessed from User

Preferences in the Administration and Monitoring Console navigation area. It displays high

level information about each preferred Config View, such as:

AM Status

Displays the status of the Action Manager rules for the selected Config View: A green

check mark indicates that no Action Manager rules have been triggered recently. An

orange triangle containing an exclamation mark indicates that an Action Manager rule

has been triggered recently.

Health Check Result

Displays the health check result obtained from the healthAL.result attribute in the

Config View’s Health AssemblyLine. This value is displayed as text.

Health Check Status

Displays the health check status obtained from the healthAL.status attribute in the

Config View’s Health AssemblyLine.

 Additionally, if you have designated a .gif file with the same name as the returned

status value in the Administration and Monitoring Console’s resources/amc_images/
healthALdirectory, the .gif image will also be displayed in this column. For example,

if the healthAL.result is returned as ″Error″, and you have created an ″Error.gif″ in the

above mentioned directory, the Error.gif image displays in the table column.

From this panel you can:

v View Config View details - To view the details of a specific Config View, select the desired

Config View and click Config View Details

v View TDI Server Information - To view the details of the server to which the Config View

belongs, click TDI Server Information.

Chapter 12. Administration and Monitoring Console (AMC) 159

v Show Preferred Config Views - Click Show Preferred Config Views to view preferred

Config Views. This button is visible only if Preferred Config Views are defined. You can

define preferred Config Views on the ″Preferred Config Views″ panel under User

Preferences.

Config View Details

This panel contains two tables. The top table displays the AssemblyLines associated with the

selected Config View and the status of each Config View. The bottom table displays

information about recently triggered Action Manager rules.

When you are through making changes, click Close.

Config View Details Table:

Columns: The Config View Details table contains the following columns:

Select Select the radio button next to the AssemblyLine on which you want to perform an

action.

AssemblyLines

Displays the name of the AssemblyLine.

Status Displays the AssemblyLine’s status; for example, Running or Stopped.

Started/Stopped

If the status of the AssemblyLine is Stopped, the time and date in this column reflect

the time that AssemblyLine was stopped. If the status is Running, the time and date

in this column reflect the time at which the Assembly line was started.

Statistics

Displays the current statistics of the running AssemblyLine.

Actions: You can choose the operations you want to perform from the tool bar at the top of

the table or using the Select action drop-down menu, such as:

v View AL Tombstones - Select the AssemblyLine you want to view and click the View AL

Tombstones button

v View AL Logs - Select the AssemblyLine you want to view and do one of the following:

– Click the View AL Logs button on the toolbar.

– Select View AL Logs from the Select action drop-down menu and click Go.
v Manage Properties - Select the radio button next to the AssemblyLine with properties you

want to manage and Click the Manage Properties button on the toolbar.

v Start AL -

1. Select the AssemblyLine you want to start

2. Click the View pop-up button

3. Click Start AL.
v Stop AL - Select the AssemblyLine you want to stop and do one of the following:

160 Administrator Guide

1. Select the AssemblyLine you want to stop

2. Click the View pop-up button

3. Click Stop AL.

View Tombstones: If you have tombstones enabled on the remote IBM Tivoli Directory

Integrator server, the Administration and Monitoring Console can display the tombstone

entries for terminated AssemblyLines. This panel displays useful information about tombstone

entries, such as when the entry was changed to the tombstone state.

View AL Logs: To view the list of log files for the selected AssemblyLine, click the radio

button next to the log you want to view and click View AL Logs.

Note: In order to view an AssemblyLine log in the Administration and Monitoring Console,

the AssemblyLine must log using the SystemLog logger.

AM results table: When a rule set in the Action Manager is triggered, information about the

violation is logged, such as the source of the violation, a description of the error and the time

at which the violation occurred. These details are displayed in the AM Results table.

The following sections contain information about the AM Results table columns and how to

perform operations on AM Results.

Columns: The AM Results table contains the following columns:

Select Select the radio button next to the message on which you want to perform an action.

Source

Displays the name of the Action Manager rule that was .

Severity

Displays the severity of the message.

Message

Displays the message associated with the AM action.

Description

 Displays additional information about the message.

Timestamp

 Displays the time at which the Action Manager rule was triggered and the message

was generated.

Actions: Select the result or results you want to delete and click Delete.

TDI Server Information

This panel displays the IBM Tivoli Directory Integrator server information of the server to

which the currently selected Config View belongs. The information on this panel is read-only,

although administrators have the capability to shut the server down from this panel.

Chapter 12. Administration and Monitoring Console (AMC) 161

Show Preferred Config Views

Preferred Config Views are the default Config Views that are displayed on ″Monitor Status″

panel.

Action Manager (AM)

The Action Manager is a standalone Java application whose job is to execute AM rules

configured in AMC. The Action Manager replaces Fail Over Service (FOS).

The Administration and Monitoring Console has an AM Configuration panel that allows users

to configure various Action Manager Rules.

A rule is a combination of a Trigger type and a set of associated actions. A rule specifies that

if the specified Triggering condition is detected, an associated set of actions are executed.

Example of triggers are On AL Termination and On Server API failure. Examples of Actions

are Start AL on a particular Server and Send an event notification.

The rules that are configured for Config views in AMC, are stored in the AMC’s Cloudscape

Database. When the Action Manager is run, it connects to the AMC database in network

mode, reads the Action Manage- related tables, and creates threads in memory for every AM

rule specified. Each of these threads listens/polls for its respective triggering conditions. The

moment any thread detects the occurrence of its respective triggering condition, it queries the

database for the set of actions associated with the rule, and executes them sequentially.

The Action Manager also updates the AMC database with its run details. Whenever an Action

Manager rule gets triggered, Action Manager logs an entry into the AMC database, registering

the rule name that got triggered, and the triggering time. Also, if any AM Log action is

configured for the AM rule, then that also gets logged into the AMC database. These database

entries are used to show appropriate status in Monitor Panels of AMC.

Additionally, the Action Manager also starts a separate Health AssemblyLine thread to

periodically trigger the Health ALs for querying the status of the solutions, and logging the

status back into AMC database. The health AL must store the status in “healthAL.result” and

“healthAL.status” attributes of their final work entry.

There is also another database listener thread that continuously monitors addition,

modification or deletion of rules, and whenever any changes in the rules are detected, the AM

threads are added/ recreated appropriately at runtime.

Configuring the Action Manager

The Action Manager is installed in <TDI_Install_Dir>/bin/amc/ ActionManager folder. It

contains the following files:

v am_logging.properties – This file controls Action Manager logging properties. Just like

AMC, it also follows the java.util.logging logging standard.

v am_config.properties – This is the configuration file for the Action Manager.

162 Administrator Guide

The Action Manager connects to AMC’s Cloudscape database using the Network Mode driver.

The following properties must point to the Administration and Monitoring Console's

database.

com.ibm.di.amc.am.jdbc.database=jdbc:derby://localhost:1527/tdiamcdb;create=false

com.ibm.di.amc.am.jdbc.driver=org.apache.derby.jdbc.ClientDriver

com.ibm.di.amc.am.jdbc.urlprefix=jdbc:derby:

com.ibm.di.amc.am.jdbc.user=APP

com.ibm.di.amc.am.jdbc.password=APP

com.ibm.di.amc.am.jdbc.start.mode=automatic

com.ibm.di.amc.am.jdbc.sysibm=true

com.ibm.di.amc.am.jdbc.networkserver.host=localhost

com.ibm.di.amc.am.jdbc.networkserver.port=1527

The com.ibm.di.amc.properties.file.location must point to the amc.properties file. Action

Manager refers to the amc.properties file to obtain the SSL related properties.

To start the Action Manager, run the startAM script stored in the <TDI_Install_Dir>/bin/amc

folder. When the Action Manager is started, it attempts to connect to AMC’s database and

searches for the amc.properties file. If it fails in performing either of these tasks, it will exit

with an exception message. Check the am_config.properties file to ensure it points to the

correct database and amc.properties file path.

Add/Edit configuration rules

Using the settings on this panel you can create an Action Manager rule for the current Config

View.

A rule consists of two parts:

v The condition under which the rule is to be invoked, called a ″trigger.″

v Some examples of triggers are Server API failure, AssemblyLine failure, or failure of the

AssemblyLine to run at the specified intervals. A set of alternate actions to be performed

when the trigger is encountered.

This panel is concerned with the first part of the rule: defining triggers.

From this panel you can select a name, description, and trigger type.

Configuration rules settings

Name

Enter a name for the rule. If you are adding a rule, this field is required.

Description

Enter an optional description of the rule.

Trigger type

The trigger type defines the conditions under which a rule is invoked. From the

drop-down menu, select a trigger type:

Chapter 12. Administration and Monitoring Console (AMC) 163

No trigger

Rule has no triggering condition.

On AL termination

Rule is triggered when the specified AssemblyLine is terminated.

Time since last execution

Rule is triggered when the specified AssemblyLine has not run for the

determined period of time.

On Query result

Rule is triggered when the last ″work″ entry of the specified AssemblyLine

contains an attribute matching a given condition and value.

On server API failure

Rule is triggered when the Action Manager is unable to connect to the remote

server using the Server API. This rule is triggered only once. The rule resets

when it detects that it can reconnect to the server using the Server API.

On received Event

Rule is triggered when the Action Manager receives an event that meets the

criteria specified in the Event type, Event Source and Event Data fields.

On Property

Rule is triggered when the specified property meets the determined Property

name, Condition and Value specifications.

Configure trigger: Each trigger type has a different selection of settings. If you do not see

some of the fields listed below on your panel, it is because the trigger type you currently have

selected does not support them.

Source

Enter the source you want to monitor.

Data Enter the data you want to monitor.

Property name

From the drop-down menu, select the property name you want to monitor.

Condition

Select the condition you want to use to compare the property and value. Possible

options are:

v equals

v not equals

v greater than

v less than

Value Enter the value you want to monitor.

Configured actions: From this table you can add, delete and edit actions. You can also move

actions up and down in the table:

164 Administrator Guide

v To add an action, click the Add button.

v To delete an action, select the action you want to delete and click the Delete button.

v To edit an action, select the action you want to edit and click the Edit button.

v To move an action up one position in the table, select the action you want to move and

click Move Up.

v To move an action down one position in the table, select the action you want to move and

click Move Down.

Add/Edit Action

When a rule is triggered, the Action Manager executes the actions associated with the rule.

This panel allows you to specify the actions you want Action Manager to take when the rule

is triggered.

You can select actions from the list below. Click OK when you are finished.

Start AssemblyLine

This action starts an AssemblyLine. To add this action to the rule, select the Start

AssemblyLine check box. If you select this action, you must specify the name of the

AssemblyLine you want to start and its associated Config.

AssemblyLine

Enter the name of the AssemblyLine you want Action Manager to start when the rule

is invoked. This field is required.

Of configuration

Enter the Config to which the AssemblyLine in the AssemblyLine field belongs. This

field is required.

On server

Select the server on which the Config in the Of configuration field resides.

Config password

If required, enter the Config password.

Stop AssemblyLine

This action stops an AssemblyLine. To add this action to the rule, select the Stop

AssemblyLine check box. If you select this action, you must specify the name of

AssemblyLine you want to stop and its associated Config.

AssemblyLine

Enter the name of the AssemblyLine you want the Action Manager to stop when the

rule is invoked. This field is required.

Of configuration

Enter the name of the Config to which the AssemblyLine in the AssemblyLine field

belongs.

Chapter 12. Administration and Monitoring Console (AMC) 165

On server

Optionally, select the server to which the Config in the Of Configuration field

belongs from the drop-down menu.

Enable/Disable AM Rule

Select the Enable/Disable AM Rule check box to enable or disable an Action Manager

rule.

Rule name

Select the name you want to enable or disable from the drop-down menu.

State Select the desired state from the drop-down menu. If you want to enable the rule in

the Rule name field, select Enabled. If you want to disable the rule, the select

Disable.

Execute AM Rule

This action causes the Action Manager to execute the specified rule. Action Manager

then executes the actions associated with the specified rule. To add this action to the

rule, select the Execute AM rule check box.

Rule name

Select the name of the rule you want the Execute AM rule to execute from the

drop-down menu.

Notify Event

This action causes the Action Manager to send an event with the specified details to

the IBM Tivoli Directory Integrator server associated with the current Config View. To

add this action to the rule, select the Notify event check box. If you select this action,

you must specify an event type.

Event type

Enter an event type. This field is required.

Source

Enter a source for the event type.

Data Enter data for the event type.

Modify property

This action causes the Action Manager to modify a property based on a specific

operation and value. To add this action to the rule, select the Modify property check

box. If you select this action, you must also select a value.

Property name

Select the property you want to modify from the drop-down menu.

Operation

From the drop-down menu, select the operation you want to use to modify the

property. Possible options are:

v Set

v Increment

166 Administrator Guide

v Decrement

Value Enter the desired value. This is a required field.

Copy property value

This action causes the Action Manager to copy the value of the source property to the

destination property. To add this action to the rule, select the Copy property value

check box.

From property

From the drop-down menu, select the property you want to copy from.

To property

From the drop-down menu, select the property you want to copy to.

Write to log

This action creates a log of the Action Manager rules that have been invoked,

according to the specified severity, message and description. This log can be viewed

under Monitor Status, on the ″Config View Details″ panel in the AM results table.

Having at least one log action for every rule is recommended. To add this action to

the rule, select the Write to log check box. If you select this action, you must enter a

message in the Message field.

Severity

Select the desired severity from the drop-down menu. Possible options are:

v Severe

v Warning

v Info

v Fine

Message

Enter the desired message.

Description

Optionally, enter a description.

View Current Configuration

To view the current Action Manager configuration for the selected AssemblyLine, click View

Current Configuration. The table lists all the defined rules, triggers and actions associated

with the Config View. When you are done viewing, click Close.

Manage Property Stores

If you have not done so already, expand the Property Stores category in the navigation area

of the Administration and Monitoring Console. To add Java, Solutions, Global, System, User

Property and Password Store properties, click Manage Property Stores.

When you are done entering the desired the property values, click OK to save your changes.

Chapter 12. Administration and Monitoring Console (AMC) 167

Select Config View

This panel allows you select a Config View. Once you have selected a view, click Set. After

you select a Config View, you can manage properties by clicking on the other property tabs,

such as Solution Properties and Global Properties.

Solution Properties

This panel allows you to add, edit and delete properties in the Solution Properties list.

Global Properties

This panel allows you to add, edit and delete Global properties.

Java Properties

This panel allows you to add, edit and delete Java properties.

System Properties

This panel allows you to add, edit and delete System properties.

Password Store

This panel allows you to add, edit and delete properties in the Password Store.

User Property Store

This panel allows you to add, edit and delete properties in the Use Property Stores list.

The Property Stores drop-down menu contains a list of property stores configured by the user.

Global, Solution, Java and Password Stores properties are not included. From the drop-down

menu select the property store whose associated properties you wish to view, add, edit or

delete.

Users and Groups

If you have not done so already, expand the Users and Groups category in the navigation area

of the Administration and Monitoring Console. Do one of the following:

v To add a user, click Add Users.

v To view, add, delete and edit users, click Manage Users.

v To add a group, click Add Group.

v To view, add, delete and edit groups, click Manage Groups.

Add users

From this panel you can add a user to the Administration and Monitoring Console.

To add a user:

1. Enter a user ID in the User ID field.

2. Enter a password for the user in the Password field and confirm it in the Confirm

password field.

3. Enter a description of the user in the Description field.

168 Administrator Guide

4. Enter the user’s email address in the Email address field.

5. Click OK to add the user, or click Cancel to return to the ″Manage Users″ panel without

making any changes.

Manage Users

This panel allows you to add, edit and delete users.

Keep in mind that if you delete a user, the deleted user will be removed from all config views

the user is associated with.

Add Group

This panel allows you to create a group. After entering a name and description, click OK to

add the group.

Manage Group

This panel allows you to add, edit and delete groups.

Keep in mind that if you delete a group, it will be removed from all config views the group is

associated with.

Cleanup Logs

If you have not done so already, expand the Logs category in the navigation area of the

Administration and Monitoring Console. To delete log files for all AssemblyLines, for a

particular AssemblyLine, or to delete by date, click Cleanup Logs.

This panel allows you remove older log files associated with specific AssemblyLines. You can

choose to delete log files for all AssemblyLines, or for a particular AssemblyLine. You can also

specify logs to delete by date. To clean up logs:

1. Select the Config View with logs you want to clean up from the Config View drop-down

menu.

2. Do one of the following:

v Select the All assembly lines radio button to delete the logs of all AssemblyLines

within the selected Config View.

v Select the Specific assembly line radio button to delete only those logs associated with

a specific AssemblyLine.
3. If your selected Specific assembly line, select the AssemblyLine with logs you want to

delete from the drop-down menu.

4. Do one of the following:

v To delete logs older than a certain date, select the Older than (yyyy-MM-dd) radio

button. Enter the desired date in the date field. All logs older than the date specified

will be deleted.

Chapter 12. Administration and Monitoring Console (AMC) 169

v To preserve more recent logs, select the Keep most recent radio button. Enter the

number of recent logs you want to save. For example, if you enter the number 10, the

10 most recent logs will be saved.
5. Click Cleanup to remove the specified logs or click Cancel to exit this panel without

making any changes.

User Preferences

If you have not done so already, expand the User Preferences category in the navigation area

of the Administration and Monitoring Console. Do one of the following:

v To change your user password, click Change Password.

v To designate preferred Config Views, click Preferred Config Views

Change Password

This panel allows you to change your login password.

To change your password:

1. Enter your current password in the Current password field.

2. Enter your new password in the New password field.

3. Confirm your new password by entering it in the Confirm password field.

4. Click OK to save your changes.

Preferred Config Views

This panel displays a table containing a list of Config Views.

Select those Config Views you want to designate as preferred. When you have selected the

desired Config Views from the table, click OK.

Preferred Config Views are the default Config Views that are displayed on ″Monitor Status″

panel.

170 Administrator Guide

Chapter 13. Tombstone Manager

Introduction

TDI 6.1 can keep track of configurations or AssemblyLines that have terminated. This way,

you can tell when your AssemblyLines last ran, without going into the log of each one.

This is accomplished by TDI’s ″Tombstone Manager″ that creates ″tombstones″ for each

AssemblyLine and configuration as they terminate, that contain exit status and other

information that later can be requested through the Server API. This also enables:

v A status screen in AMC which displays status of an entire TDI configuration

v Functionality within Action Manager to ensure repeated runs of AssemblyLines, for

example every 24 hours

v Provision of status information to Server API clients about AssemblyLines that they run

asynchronously.

The Tombstone Manager API is documented in the TDI JavaDocs; look for class

com.ibm.di.api.Tombstone .

Configuring Tombstones

The creation of Tombstones for AssemblyLines, EventHandlers and Config Instances is

configured by means of checkboxes in a number of screens in the Config Editor (CE), as well

as a number of options in the global.properties or solution.properties files.

Once configured, your Config will contain the following switches:

At the configuration level:

v Config switch: specifies whether tombstones will be created or not for the Config

Instance itself

v All AssemblyLines switch: specifies whether tombstones will be created for all

AssemblyLines from this configuration

v All EventHandlers switch: specifies whether tombstones will be created for all

EventHandlers from this configuration

At the AssemblyLine level:

A switch that specifies whether tombstones will be created for that particular

AssemblyLine. This switch is only taken into account when the ″All AssemblyLines

switch″ at the configuration level is switched off.

There are no individual switches for EventHandlers. All switches are turned off by default.

© Copyright IBM Corp. 2003, 2006 171

Config Editor Configuration screen

You can configure Tombstones for this Config Instance by checking the appropriate options in

this screen. These switches act as master switches for their respective categories:

Configuration, AssemblyLines and EventHandlers.

 Tombstone creation for Configuration/All AssemblyLines/All EventHandlers is turned on

when the corresponding check box is checked.

AssemblyLine Configuration screen

When AssemblyLine Tombstones are disabled using the Configuration option shown above,

Tombstone generation can still be enabled individually per AssemblyLine by using the

appropriate option in the AssemblyLine configuration screen: Create Tombstones, as shown

in the screen below:

172 Administrator Guide

Checking Create Tombstones will cause Tombstones to be generated for this AssemblyLine

when it is run, even when the master switch for AssemblyLines is disabled.

Note: There is no Tombstone option in the EventHandler configuration screen. EventHandler

Tombstones are configured using the master switch only, and are thus generated either

for all EventHandlers activated in a Config, or for none at all.

A sample Tombstone record could look like this:

 Table 5.

Field Name Value

Component Type ID 1

Event Type ID 0

StartTime 11.11.2005 11:11:54

TombstoneCreateTime 11.11.2005 17:22:45

Component Name ″ActiveDirectoryChangeLogSynchronizer″

Configuration ″C:\ITDI_SOL_DIR\rs.xml″

Chapter 13. Tombstone Manager 173

Table 5. (continued)

Field Name Value

Exit Code 0

Error Description ″″

GUID ″432640786324026346432″

Statistics [get:571]

[add:571]

[err:0]

The Tombstone Manager

The Tombstone Manager will monitor the number of tombstone records at runtime and delete

old records as per the values of the com.ibm.di.tm.autodel.age,

com.ibm.di.tm.autodel.records.trigger.on, com.ibm.di.tm.autodel.records.max

configuration properties (see “Tombstone Manager Configuration”).

v The Tombstone Manager tracks Config Instances, AssemblyLines and EventHandlers stop

events.

v The Tombstone Manager uses the local Server API calls for registering for event

notifications and receiving stop events for Config Instances, AssemblyLines and

EventHandlers.

v The Tombstone Manager uses the TDI System Store for data persistence.

v The Server API (documented in the JavaDocs) interfaces contain calls for querying the

Tombstone Manager for various data, like AssemblyLine, EventHandler and Config

Instance Tombstones.

v The Tombstone Manager provides options for deleting old tombstone records.

A possible AssemblyLine tombstone lifecycle could look like:

v The Tombstone Manager receives a Server API event that an AssemblyLine has terminated

(this assumes the Server API and the Tombstone Manager are turned on and the

configuration file specifies that tombstones are created for this AssemblyLine)

v The Tombstone Manager extracts the required data from the Server API event and creates a

corresponding database tombstone record in the System Store.

v While the tombstone record is available in the System Store queries can be execute through

the Server API calls that provide all the information contained in the tombstone record.

v The tombstone record will be deleted from the System Store either when an explicit cleanup

Server API call is executed that deletes it or the logic for automatic deletion of old

tombstone records collects it. Neither of these is required to happen so theoretically the

tombstone record may live forever.

Tombstone Manager Configuration

The Tombstone Manager task is configured by means of properties in the global.properties

or solution.properties file for your Config instance.

174 Administrator Guide

Note: In order for the Tombstone Manager to function, the Server API must be switched on;

that is, the property api.on must be set to true.
The relevant properties are:

com.ibm.di.tm.on

Master switch for the Tombstone Manager. Values are on and off - if set to off, no

Tombstones are generated even if specified in the Config file; neither are they

managed (nor can they be queried using the Server API, or AMC).

 The default value for this property is false.

com.ibm.di.tm.autodel.age

The number of days a Tombstone will live. When this property is present and

contains an integer value greater than 0 the Tombstone Manager will automatically

delete all tombstone records that are older than the specified number of days.

 The logic for tombstone record deletion is triggered on TDI Server startup and once a

day on a long running TDI Server.

 The default value for this property is 0.

com.ibm.di.tm.autodel.records.trigger.on

Specifies the total number of tombstone records that will trigger the logic for

trimming the number of tombstone records to a certain number.

 The default value for this property is 10000.

com.ibm.di.tm.autodel.records.max

The number of Tombstones to be retained once the trigger specified by the previous

parameter, com.ibm.di.tm.autodel.records.trigger.on is exceeded.

 The default value for this property is 5000.

com.ibm.di.tm.create.all

This property acts as an override switch for the values specified in the Config files.

When this property is set to true, Tombstone Manager will create Tombstones for

every AssemblyLine, EventHandler and Config Instance regardless of the values

specified in the configurations. This is useful to turn on Tombstone creation for pre-6.1

configurations that do not have tombstone values without modifying the

configurations.

The automatic cleanup logic determined by the com.ibm.di.tm.autodel.age property is

independent of the automatic cleanup logic determined by the

com.ibm.di.tm.autodel.records.trigger.on and com.ibm.di.tm.autodel.records.max

properties.

The Tombstone Manager uses the TDI logging framework and logs its messages in the TDI

Server main log.

An example section in the global.properties or solution.properties file could look like:

Chapter 13. Tombstone Manager 175

com.ibm.di.tm.on=true

com.ibm.di.tm.autodel.age=90

com.ibm.di.tm.autodel.records.trigger.on=50000

com.ibm.di.tm.autodel.records.max=25000

com.ibm.di.tm.create.all=false

This set of configuration properties specifies that: The Tombstone Manager is turned on.

Tombstones older than 90 days will be automatically deleted. Also when the total number of

tombstone records reaches 50000, the oldest 25000 tombstone records will be automatically

deleted.

176 Administrator Guide

Chapter 14. Multiple TDI services

IBM Tivoli Directory Integrator as Windows Service

Introduction

In IBM Tivoli Directory Integrator 6.1 there is a mechanism that allows multiple TDI server

instances to be registered as Windows services. Each instance requires a separate solution

directory. After creating a solution directory, a utility program should be copied in it. The

name of the program is “ibmdiservice.exe”. The configuration of the utility program and the

Windows service is made with a properties file named “ibmdiservice.props”. Each solution

directory should contain a configuration properties file.

The IBM Tivoli Directory Integrator can be registered and run as a Windows Service on the

following Windows Platforms:

v Windows 2000 Server

v Windows 2000 Advanced Server

v Windows XP Pro

v Windows 2003 Std. Ed.

v Windows 2003 Enterprise Ed.

Each Windows service must have a different name. A property called “servicename” in the

property file specifies a name that is used in creation of the Windows service name and the

Windows service display name. The Windows service name is formed by prefixing the value

of the “servicename” property with the “ibmdisrv-“ prefix. The Windows service display

name is formed by inserting the value of the “servicename” property between the brackets of

“IBM Tivoli Directory Integrator ()”. For example if the “servicename” property is set to “test”

the Windows service name will be “ibmdisrv-test” and the Windows service display name

will be “IBM Tivoli Directory Integrator (test)”. If the “servicename” property is not present or

has no value default names are used. The default names for the Windows service name and

the Windows service display name are “ibmdisrv” and “IBM Tivoli Directory Integrator”.

A property exists so it can be configured whether the Windows service is started

automatically on Windows startup or has to be started manually. The name of the property is

“autostart” and the valid values for it are “true” and “false”.

Note: This property is used during installation and uninstallation as well as while the service

is running. That is why the property value must not be changed after the Windows

service has been installed.

For more information about the TDI Windows service configuration properties file see the

"“Configuring the service” on page 179" section.

© Copyright IBM Corp. 2003, 2006 177

Installing and uninstalling the service

Installing the service

Do the following to install the IBM Tivoli Directory Integrator service:

1. Make sure the IBM Tivoli Directory Integrator is installed. The install folder of the IBM

Tivoli Directory Integrator is referred to as root_directory. See 10.

2. Choose a solution folder that will be used by IBM Tivoli Directory Integrator when it is

started as a Windows service - this can be any folder of your choice. Once IBM Tivoli

Directory Integrator is installed as a service the solution folder used by the service cannot

be changed until it is uninstalled as a service. Note that choosing the solution folder for

the Windows service does not prevent from running IBM Tivoli Directory Integrator from

the command line with any other solution folder.

3. Once the solution folder is chosen copy into that folder all files from the

root_directory/win32_service folder: these are ″ibmdiservice.exe″, ″ibmdiservice.props″

and ″log4j.properties″.

4. Execute the following command from the solution folder chosen for the Windows Service:

ibmdiservice.exe -i

Uninstalling the service

Note: In order to use the TDI 6.1 version of the “ibmdiservice.exe” utility program any

registered pre-TDI 6.1 Windows service must be uninstalled and then the TDI 6.1

windows service must be installed. This is necessary because the TDI 6.1 windows

service uses a different default name for the Windows service name – “ibmdisrv” as

opposed to the pre-TDI 6.1 default name of “IBM Tivoli Directory Integrator”.
Do the following to uninstall the IBM Tivoli Directory Integrator service:

1. Make sure the IBM Tivoli Directory Integrator service is stopped.

2. Execute the following command from the solution folder chosen when installing the

service:

ibmdiservice.exe -u

Notes:

1. Uninstalling the IBM Tivoli Directory Integrator service does not uninstall the IBM Tivoli

Directory Integrator itself. You can still use the IBM Tivoli Directory Integrator but it is not

registered and run as a Windows service. You can install IBM Tivoli Directory Integrator

service again later.

2. If the IBM Tivoli Directory Integrator service is installed and you wish to completely

uninstall the IBM Tivoli Directory Integrator (not just the service), do the following:

a. Uninstall the Windows service.

b. Uninstall the IBM Tivoli Directory Integrator (Refer to Uninstalling on Windows).

178 Administrator Guide

Starting and stopping the service

The IBM Tivoli Directory Integrator service automatically starts the IBM Tivoli Directory

Integrator at system boot. The IBM Tivoli Directory Integrator is not, however, automatically

started when the service is installed. After installing the service you have two options to start

the service:

v Reboot the machine.

v Start the IBM Tivoli Directory Integrator service from the Windows Services panel.

Manual start and stop

You can manually start and stop the IBM Tivoli Directory Integrator service from the

Windows Services panel.

In the Services panel you must select the service IBM Tivoli Directory Integrator and,

depending on the Windows version, either click the Start/Stop button, or right-click on the

service name and select Start/Stop.

Changing service startup type

By default, the IBM Tivoli Directory Integrator service is configured to start automatically on

system boot.

You can manually change the service startup mode from the Windows Services panel to

Manual or Disabled.

Logging

The IBM Tivoli Directory Integrator service logs all messages (error, info and debug) in the

Application Windows system log. You can view these messages with the Windows Event

Viewer.

Configuring the service

The IBM Tivoli Directory Integrator service is configured through the ibmdiservice.props file

placed in the solution folder chosen during the installing the service.

Note: Before running the service, make sure this file is properly configured as described in

this section. The service might fail if the file contains incorrect values.
The following properties are specified in the ibmdiservice.props file:

path Specifies the PATH environment variable used for running the IBM Tivoli Directory

Integrator process (this property is usually the same as the PATH variable from

ibmdisrv.bat, but you can change it). This is an optional property.

ibmdiroot

Specifies the root folder of the IBM Tivoli Directory Integrator (for example,

C:\Program Files\IBM\IBMDirectoryIntegrator). This is a required property.

configfile

Specifies the file path to the IBM Tivoli Directory Integrator configuration file. This is

an optional property.

Chapter 14. Multiple TDI services 179

assemblylines

Specifies in a comma-delimited format the AssemblyLines that are started

automatically when the IBM Tivoli Directory Integrator service is started. This is an

optional property.

eventhandlers

Specifies in a comma-delimited format the EventHandlers that are started

automatically when the IBM Tivoli Directory Integrator service is started. This is an

optional property.

cmdoptions

Specifies other command line options that are directly passed to the IBM Tivoli

Directory Integrator on service startup (see ″IBM Tivoli Directory Integrator command

line options″ in IBM Tivoli Directory Integrator 6.1: Users Guide for the full list of IBM

Tivoli Directory Integrator command line options).

 One such option could be the -c option; here you could specify multiple config files

(separated by commas), something which is not allowed by the configfile

parameter.This is an optional property.

debug Specifies true or false to correspondingly turn debug information on or off. When

debug information is turned on, detailed trace messages are dumped in the

Application Windows system log. This is an optional property.

Note: When specifying properties in the configuration file, specify each property on a single

line and use the following format:

<property_name>=<property_value>

There must be no spaces around the equals (=) sign.

An example of a completed ibmdiservice.props file looks like the following:

path=C:\Program Files\IBM\IBMDirectoryIntegrator_jvm\jre\bin;

C:\Program Files\IBM\IBMDirectoryIntegrator\libs;

ibmdiroot=C:\Program Files\IBM\IBMDirectoryIntegrator

configfile=rs.xml

assemblylines=AssemblyLine1,AssemblyLine2

eventhandlers=EventHandler1,EventHandler2

cmdoptions=-d

debug=false

Note: If you change any of the properties in ibmdiservice.props, you must restart the service

for the changes to take effect.

IBM Tivoli Directory Integrator as Linux/UNIX Service

Deployment methods

On Linux and UNIX platforms, there are two different ways of ensuring that certain system

jobs or 'daemons' start and stop at respectively system initiation and system termination:

180 Administrator Guide

1. Using a script in /etc/init.d containing the logic to start and stop the daemons you are

interested in. This script you then (hard)link to scripts in /etc/rc3.d: their names beginning

with SXX... and KXX... - the XX being a numeral which causing the files to show up in

the right sequence in the /etc/rc3.d directory. The scripts starting with S are called when

the system reaches run phase 3 at system startup, and the scripts starting with K are called

when the system terminates.

2. By editing the /etc/inittab file.

The latter process is what we will describe here. Some of the information presented could be

used to construct scripts utilizing the first deployment manner.

Tailoring /etc/inittab

In order to start up TDI daemon processes when the UNIX/Linux OS starts appropriate

entrees must be added to the /etc/inittab file. Thus the registering of TDI as a windows service

on Windows translates to adding a line of text to the /etc/inittab file on UNIX/Linux. The

un-installation of the TDI windows service on Windows translates to removing the

corresponding entries from the /etc/inittab file. For each TDI daemon process that needs to be

started on system startup one line of text must be added to the /etc/inittab file. The format and

meaning of the entries in this file is described below. Each entry in the /etc/inittab file has the

following format:

Identifier:RunLevel:Action:Command

A description of each of these fields is as follows:

v The Identifier field is a string (at least a single character in length) that uniquely identifies

an object. This string is used to uniquely identify the corresponding command line.

v The RunLevel field is the run-level in which this entry can be processed. Run-levels

effectively correspond to a configuration of processes in the system. Each process started by

the init command is assigned one or more run-levels in which it can exist. A run-level is

represented by the numbers 0 through N, where N is a positive integer different for the

different UNIX/Linux operating Systems (for example on some AIX machines N is 9, on

RedHat Linux N is 6, etc.). If the OS is running in run-level 3, for example, then only

processes specified for run-level 3 are started.

The RunLevel field can define multiple run-levels for a process by selecting more than one

run-level in any combination from 0 through N. For example, if TDI needs to run in

run-level 3 and 6, then the run-level must be specified as “36”. If no run-level is specified,

the process is assumed to be valid at all run-levels.

It is recommended that no run-level numbers are specified, unless the specific TDI solution

specifically needs to.

v The Action field is a value from a set of predefined actions which tells the init command

how to treat the process specified in the Command field. There are many actions

recognized by the init command, but for running the TDI server as a daemon process it is

recommended that the once action be used. The semantics of the once action are:

Chapter 14. Multiple TDI services 181

When the init command enters a run-level that matches the entry’s run level, start the

process, and do not wait for its termination. When it dies, do not restart the process. When

the system enters a new run level, and the process is still running from a previous run level

change, the program will not be restarted. All subsequent reads of the /etc/inittab file

while the init command is in the same run level will cause the init command to ignore this

entry.

v The Command field specifies the shell command to execute.

Here are three example TDI-related entries in /et/inittab:

tdi1::once:/opt/IBM/ITDI61_1/ibmdisrv –c “/opt/IBM/ITDI61_1/myconfigs/rs1.xml” –r “testAL1”

tdi2::once:/opt/IBM/ITDI61_2/ibmdisrv –c “/opt/IBM/ITDI61_2/myconfigs/rs2.xml” –r “testAL2”

tdi3::once:/opt/IBM/ITDI61_3/ibmdisrv –c “/opt/IBM/ITDI61_3/myconfigs/rs3.xml” –r “testAL3”

This example starts three TDI server instances which are installed in different folders.

Note: There are some differences in the different UNIX/Linux operating systems in regard to

system startup. That is why the information provided here covers the main issues of

starting TDI on a UNIX/Linux system and does not refer to any specific UNIX/Linux

system.

As an example of an /etc/inittab file, detailed information about the /etc/inittab

configuration file for an AIX system can be found at http://publib16.boulder.ibm.com/
pseries/en_US/files/aixfiles/inittab.htm

182 Administrator Guide

http://publib16.boulder.ibm.com/pseries/en_US/files/aixfiles/inittab.htm
http://publib16.boulder.ibm.com/pseries/en_US/files/aixfiles/inittab.htm

Chapter 15. z/OS environment Support

A subset of IBM Tivoli Directory Integrator is available in the native z/OS environment

(version v1.5 and v1.6), with IBM JVM 1.5. You can start an instance of the Server by

executing the startup shell script usr/lpp/idti/ibmdisrv residing under the Unix System

Services.

The user whose identity the TDI Server will run under needs an OMVS segment definition in

his profile specifying that at least 200MB operating memory is available.

The available TDI components are:

v AssemblyLine Connector

v File System Connector

v LDAP Connector

v LDAP Server Connector

v IDS Changelog Connector

v System Store Connector

v Timer Server Connector

v HTTP Client Connector

v HTTP Server Connector

v JDBC Connector

v JMS Connector

v JMX Connector

v RDBMS Changelog Connector

v Server Notifications Connector

v SNMP Connector

v SNMP Server Connector

v System Queue Connector

v TCP Connector TCP Server Connector

v zOS Changelog Connector

v Web Service Receiver Server Connector

v Axis Easy Web Service Server Connector

v Simple Parser

v CVS Parser

v DSMLv2 Parser

v XML Parser

© Copyright IBM Corp. 2003, 2006 183

v XML SAX Parser

v HTTP Parser

v LDIF Parser

v DSMLv2 EventHandler

v IDS EventHandler

v HTTP EventHandler

v AssemblyLine Function Component

v Axis Java To Soap Function Component

v CBE Generator Function Component

v WrapSoap Function Component

v InvokeSoap WS Function Component

v Axis Soap To Java Function Component

v Axis EasyInvoke Soap WS Function Component

v Complex Types Generator Function Component

v EMF XMLToSDO Function Component

v EMF SDOToXML Function Component

v Java Class Function Component

v SendEMail Function Component

v z/OS TSO Command Line Function Component

In addition, the System Store (using CloudScape, or configured to use DB2) is supported on

z/OS.

The z/OS TSO Command Line Function Component is of particular relevance for the z/OS

environment. It is able to execute privileged z/OS TSO Commands. This component

addresses the need to manage RACF, TopSecret and ACF2 users – this can be achieved by

executing TSO commands.

The Config Editor and AMC, however, are not supported natively on Z/OS; instead, you

should use remote management options, like

v The Remote Config Editor. Run the Config Editor on a supported platform, and access

Config files on z/OS using a configured Config Instance on z/OS.

v The Administration and Monitor Console

v Applications that use the remote TDI Server API.

Handling configuration and properties files

Handling of configuration and properties files is important because of the specific default

encoding used on z/OS (EBCDIC), which is not compatible with UTF-8 usually used on other

platforms.

184 Administrator Guide

The TDI Server can read configuration files in any encoding that is supported by the JVM;

TDI Configuration files are read with the encoding specified in the header of the XML file. If

no encoding is specified in the header of the configuration file, UTF-8 is used.

The TDI Server can write configuration files in any encoding that is supported by the JVM.

v If the -n <encoding> command line switch is used when starting the TDI Server the

encoding specified by <encoding> will be used for writing configuration files.

v If the -n command line switch is not specified and the system property

com.ibm.di.config.encoding is non-null then the value of this property is used as encoding

when writing configuration files.

v If neither of the -n command line switch nor the com.ibm.di.config.encoding system

properties are specified, then UTF-8 is used for writing configuration files.

In all cases the encoding used for saving the XML configuration file is written in the header

of the XML file.

This strategy for reading and writing configurations assumes that it is usually the UTF-8

encoding that will be used on z/OS for configuration files. If however you want to use a

different encoding (for example the system default so that the configuration file can be

opened by a text editor like vi) then you are provided with a mechanism that can be used to

create and use configuration files with an arbitrary encoding.

You should pay attention on the encoding used whenever you operate with text files on the

z/OS system. For example when a file is read with the FileSystem Connector the Character

Encoding parameter of the Parser used should specify the encoding of the file or should be

left empty when the file uses the default EBCDIC encoding.

All *.properties files (e.g. , log4j.properties, etc.) in the installation directory and/or Solution

Directory are read with the system default encoding. This makes it convenient for you to open

and edit the properties files directly on the z/OS system.

ASCII mode

The ibmdisrv startup script starts the TDI server without altering its default encoding, which

on z/OS is EBCDIC (IBM1047). In order to run the TDI server on z/OS in ASCII mode you

need to start it using the ibmdisrv_ascii startup script. This script starts the TDI server with

its default encoding set to ASCII (ISO-8859-1)

Note: In ASCII mode, the TDI server ignores the /etcglobal.properties file. Only the

solution.properties file in your Solutions Directory is used, and this file needs to be

encoded in the ASCII character set. For an overview of files in the Solution Directory,

see “Solution Directory files” on page 33.

Encoding of solution.properties

Altering the default encoding of the TDI server affects how the solution.properties

file is read. That is why the encoding of the solution.properties file in your Solution

Chapter 15. z/OS environment Support 185

Directory must be changed to ASCII before starting the TDI server in ASCII mode.

The location of the solution.properties file is

″<YOUR_SOLUTION_DIRECTORY>solution.properties″.

Changing the encoding of a text file on z/OS

The standard iconv utility available on z/OS can be used to convert the encoding of a

text file. Starting the iconv utility with no parameters on the z/OS command line

prints usage information.

The global.properties file

When the TDI Server on z/OS is run in ASCII mode the global.properties file is

ignored and only the solution.properties file in your Solution Directory is read.

That is why you need to have all the required properties for your solution in the

solution.properties file in your Solution Directory.

Log files

When the TDI Server on z/OS is run in ASCII mode the server log files are encoded

in ASCII when being written to the file system. That is why in order to read these

ASCII log files you might need to first convert their encoding to the native encoding

on z/OS, which is EBCDIC (IBM1047).

Console output

When the TDI Server on z/OS is run in ASCII mode any text output to the z/OS

console by the server appears garbled. This is caused by the output text being

encoded in ASCII while the console expects the text to be encoded in EBCDIC. In

order to read the server output to the console, the server output can be redirected

from the console to a file and then this file can be converted from ASCII encoding to

native encoding on z/OS (EBCDIC).

186 Administrator Guide

Appendix A. Dictionary of terms

IBM Tivoli Directory Integrator terms

Action Manager (AM)

Action Manager is a stand-alone Java application used to configure failure-response

behavior for TDI 6.1 solutions. AM executes rules defined with AMC v.3. An AM rule

consists of one or more triggers that define a "failure" situation – such as the

termination of an AL that should not stop running, or if an AL has not been executed

within a given time period, etc. Furthermore, each rule also defines actions to be

carried out in case of this "failure". Actions include operations like sending events or

email, starting ALs (locally or remote) and changing configuration settings. Action

Manager requires TDI 6.1 and AMC v.3.

Accumulator

A special object that can be set in a Task Call Block (TCB) for use when starting

another AssemblyLine either via a scripted call, or a component like the

AssemblyLine Connector or the AssemblyLine FC. The Accumulator is either a

collection of Work Entry objects handled by the called AL, or it is a component that is

called to output each Entry. Accumulator handling is done at the end of each

AssemblyLine Cycle.

Adapter

Adapter is a word is used in many contexts and with different meanings. A TDI

Adapter refers to an AssemblyLine that is "packaged" as a single Connector. Creating a

TDI Adapter requires setting up an AssemblyLine that is written to perform (and

expose) one or more business related tasks. Each task is defined as an AssemblyLine

Operation (for example, ‘EnableAccount’, or ‘ReturnGroupMembers’). This AL can

then be published for sharing, and can be leveraged by the AssemblyLine Connector

which offers mode settings reflecting these operations2.

AL Shorthand for AssemblyLine.

Administration and Management Console (AMC)

AMC is an browser-based console for managing and monitoring TDI solutions.

Version 3, which is part of the TDI 6.1 release, runs on the WebSphere Application

Server (enterprise and express versions), as well as Tomcat. Each AMC version is

designed to work with a specific release of TDI and is incompatible with other

versions. AMC v.3 is designed for TDI 6.1, AMC v.2 works with TDI 6.0 and AMC v.1

runs with TDI 5.2.

API Application Program Interface. A way of programmatically (local or networked) call

another application, as opposed to using a command line or a shell script.

2. AL Operations are also accessible via the AssemblyLine FC.

© Copyright IBM Corp. 2003, 2006 187

Appender

Appender is a log4j term (a third party Java library) for a module that directs

log-messages to a certain device or repository. In IBM Tivoli Directory Integrator you

control logging for your AssemblyLines by creating and configuring Appenders, either

under the Logging tab of a specific AL, or under Config -> Logging in the Config

Browser to control how all AssemblyLines in the Config do their logging.

AssemblyLine (AL)

The basic unit-of-work in a TDI solution. Each AL runs as a JVM thread in the Server

and is made up of a series of AssemblyLine components (one or more Connectors,

Functions, Scripts, Attribute Maps and Branches) linked together and driven by the

built-in workflow of the AssemblyLine.

AssemblyLine Component

This term denotes an TDI component used to construct AssemblyLines. The possible

Components are:

v Connectors

v Function Components

v Script Component

v Attribute Map Component

v Branches (including Loops and Switches)

The components list in an AssemblyLine is divided into two sections: Feeds where the

Work Entry for each AL cycle is created from input data by a Connector in Iterator or

Server mode, and the Flow section that holds the Connectors (in any mode except

Server), Functions, Attribute Maps and Scripts providing the additional data access

and processing.

AssemblyLine Operation

A business task that is implemented by an AssemblyLine and published via its

Operations tab. Each Operation can have its own Input and Output Attributes Maps

for defining the parameters expected when this Operation is invoked (Input Map), as

well as those returned (Output Map). This is also called the Schema of the Operation.

AssemblyLine Phases

An AssemblyLine goes through three phases:

Initialization

At this point the TDI Server uses the "blueprint" for the AssemblyLine in the

Config to create the various components as well as set up the AL

environment, including processing the TCB, starting the AL's script engine

and invoking the AssemblyLine's Prolog Hooks. All components that are

configured for Initialization At Startup are initialized at this point causing

their Prolog Hooks to get run as well.

Cycling

Now the AL workflow drives each of its components in turn, starting each

cycle by invoking the On Start of Cycle Hook. Then the currently active Feeds

188 Administrator Guide

Connector reads in data, creates the Work Entry and passes it to the Flow

section. The Work Entry is passed from component to component until the

end of Flow is reached, at which time control is returned to the start of the

AssemblyLine again3. Cycling continues until an unhandled error occurs or

there is no more data available (for example, the Iterator reaches End-of-Data).

Shutdown

When cycling stops then the AssemblyLine goes into Shutdown phase: Epilog

Hooks are called and all initialized components are closed down (which

flushes output buffers and executes their Epilog Hooks as well). Finally the

AssemblyLine closes down its environment and its thread terminates.

AssemblyLine Pool

Actually a collection of AL Flow sections that can be configured to allow a Server

mode Connector to service more clients. Available for ALs that use Server mode

Connectors and set up in the AssemblyLine's Config tab.

Attribute

Part of the TDI Entry data model. Attributes are carried by Entry objects (Java

"buckets", like the Work Entry) and they can hold zero or more values. These values are

the actual data values read from, or written to connected systems, and are represented

in TDI as Java objects.

Attribute Map (AttMap)

An Attribute Map is a list of rules (individual Attribute mapping instructions) for

creating or modifying Attributes in an Entry object typically based on the values of

Attributes found in another Entry object. Components like Functions and Connectors

have an Input Map for taking data read into local cache (the conn Entry) and use this

to define Attributes in the Work Entry. These components also have an Output Map

that takes Attributes carried by the AssemblyLine (in its Work Entry) and use this to

set up the conn Entry that will be used by the component's output operation.

Attribute Map components use the Work Entry as both the source and target of the

mappings.

 Attributes can be mapped in one of three ways: Simply (copying values between

Attributes), Advanced (using a snippet of JavaScript) or with a TDI Expression.I

Attribute Map component

A free-standing list of individual Attribute mappings that take values from the Work

Entry and use them to create and update other Attributes in the Work Entry. They can

be tied to Connector and Functions to define their Input or Output Maps. Note that

Input and Output Maps can be copied to the library as AttMap components for reuse.

Best Practices

Recommended methodology and techniques for working with TDI. These include the

ABCs: Automation, Brevity and Clarity:

3. If the current cycle was fed by a Server mode Connector, then the reply is created by the Server mode Connector's

Output Map and sent to the client.

Appendix A. Dictionary of terms 189

Automation

Use the automated features of TDI in preference to your own custom scripted

logic whenever possible – for example, using Branches/Loops instead of

extensive scripting in Hooks. Not only will this make your solution easier to

read and maintain (and step through with the AL Debugger!), but your

solution will benefit directly as built-in logic is strengthened and extended

with each new release.

Brevity

Keep your AssemblyLines as short and simple as possible, as well as your

script snippets. Break complex logic into simpler patterns that can be tested

individually and reused in other solution.

Clarity

Choose legibility over elegance. Write solutions for others to read and

maintain.

Branches

A construct used to control the flow of logic in an AssemblyLine. TDI 6.1 provides

three types of Branches:

v Simple Branches (IF, ELSE-IF and ELSE)

v Loops (Connector-based, Attribute-based or Conditional)

v Switches (for example, switching on the Work Entry delta operation code, or the

Operation an AL is called with).

CBE Common Base Event. A term used in the Common Base Infrastructure. See "Common

Base Event" in the chapter about the CBE Generator Function Component in the IBM

Tivoli Directory Integrator 6.1: Reference Guide.

CEI The IBM Common Event Infrastructure. See "The Common Event Infrastructure", in

IBM Tivoli Directory Integrator 6.1: Reference Guide.

Change Detection Connector (CDC)

A Connector that returns changes made in the connected system. Typically, a CDC can

be configured to return only a subset of Entries: new, modified, deleted, unchanged or

a combination of these. Some CDC's provide only the changed Attributes in the case

of a modified Entry, while other return them all. Change Detection Connectors also

tag the data with special delta operation codes to indicate what has changed, and how.4.

CloudScape (Derby)

A free, Java-based Relational Database, akin to IBM DB2, that is bundled with TDI as

the default repository for the System Store.

CLI Command Line Interface, such as the (such as the tdisrvctl utility)

4. For LDAP there is also a special kind of modify operation where the directory entry has beeen moved in the tree:

modrdn, i.e. a "renamed" entry.

190 Administrator Guide

Components

The architecture of IBM Tivoli Directory Integrator is divided into two parts: generic

functionality and technology-specific features. Generic functionality is provided by the

TDI kernel which provides automated behaviors to simplify building integration

solutions. The kernel also lets you extend or override these behaviors as desired, as

well as doing the housekeeping for your solution: logging/tracing, hooks for error

handling, API and CLI access, etc. Technology-specific "intelligence" is handled by

helper objects called components, such as Connectors, Functions, Branches, Scripts and

Attribute Map components. Components provide a consistent and predictable way to

access heterogeneous systems and platforms, and the kernel lets you "click" together

components to build AssemblyLines.

Compute Changes

A special feature of the Connector Update mode that instructs the Connector to

compare the Attributes about to be written to the connected system with those that

exist in this data source already – in other words, it compare the value of each

Attribute in the conn Entry (the result of the Output Map) with the corresponding

ones found during the Update mode lookup operation (which is stored in the current

Entry).

Config or Config File

A collection of AssemblyLines and components that comprise a solution. A Config is

stored in XML format, typically in a Config file and is written, tested and maintained

using the Config Editor.

Config Browser

This is the tree-view window at the top left-hand part of the Config Editor screen. It

gives you access to Config-wide settings, the AssemblyLines and components that

make up the Config, as well as Properties, included Configs and custom Java libraries

that are to be loaded and made available to your scripts.

Config Editor (CE)

The graphical development environment used to write, test and maintain Configs.

Configs are stored in XML format and are deployed by assigning them to one or more

IBM Tivoli Directory Integrator Servers to execute.

Config Instance

A copy of a TDI Config that is running on a Server. Typically loaded only once on a

given Server, TDI allows you to start the same Config multiple times if desired. Each

running copy is given its own context and can be accessed individually through the

API.

Config View

This term is used in the context of AMC to describe how a particular Config appears

in the management screens of AMC. A Config View is a selection of the

AssemblyLines and properties that are to be visible onscreen (user/roll based),

providing solution-oriented Config administration and management. Config Views

can be combined to define a Monitoring View in AMC.

Appendix A. Dictionary of terms 191

conn Entry

This is the local Entry object maintained by a Connector or Function. The conn Entry

is used as a local cache for read and write operations, and data is moved between this

cache and the AssemblyLine's Work Entry via Attribute Maps (specifically, Input and

Output Maps).

Connector

One of the component types available in TDI to build AssemblyLines. Connectors are

used to abstract away the technical details of a specific data store, API, protocol or

transport, providing a common methodology for accessing diverse technologies and

platforms.

 Unlike the other components, Connectors can perform different tasks based on their

mode setting (for example, Iterate, Delete, Server and Lookup). Modes are provided by

the AssemblyLine component part of the Connector, however the list of modes

supported is dependent on the Connector Interface.

Connector Interface

When a component is used in an AssemblyLine, a distinction must be made between

the Connector Interface (CI), containing the "intelligence" for working with a connected

system (e.g. LDAP, JDBC, Notes, etc.), and the AssemblyLine Connector.

5. This latter

object is the "AL wrapper" that allows the CI to be plugged into an AssemblyLine and

provides them with a consistent set of generic features, like Input/Output maps, Link

Criteria, Hooks and the Delta Engine. See ″Objects″ in IBM Tivoli Directory Integrator

6.1: Reference Guide for more information. See also ″Connectors″ in IBM Tivoli Directory

Integrator 6.1: Reference Guide.

Connector Pool

Unlike the AssemblyLine Pool feature available to ALs using Server mode Connectors,

a Connector Pool is a global collection of pre-initialized Connectors that can be used

in multiple ALs. Note that the Connector Initialization setting "Initialize and terminate

every time it is used" means that no AssemblyLine gains exclusive rights to a pooled

Connector, giving you detailed control over resources used by your solution.

current Entry

This Entry object is local to a Connector Interface (just like the conn Entry) and

contains the Attributes read in from a lookup operation (for example, as carried out by

Lookup, Update and Delete modes). It is used to provide the Compute Changes

feature.

Delta Engine

Available for Connectors in Iterator mode, the Delta Engine provides functionality for

detecting changes in data sources that do not offer any changelog or change

notification features. See Delta Operation Codes, as well as ″Deltas and compute

changes″ in IBM Tivoli Directory Integrator 6.1: Users Guide for more information.

5. Functions are similar to Connectors in that they are divided into two parts: the Function Interface and the

AssemblyLine Function. Unlike Connectors, Functions have no mode setting.

192 Administrator Guide

Delta mode (for Connectors)

This Connector mode is used to the apply changes specified with delta operation

codes in the Work Entry, and to do so as efficiently as possible by performing

incremental modifications. Note that Delta mode is only available for the LDAP and

JDBC Connectors, and will not work with Entries without a valid delta operation

code. See ″Deltas and compute changes″ in IBM Tivoli Directory Integrator 6.1: Users

Guide.

Delta Operation Codes

These are special values assigned to Entries, Attributes and their values to reflect

change information detected in some data source. An Entry that has delta codes

assigned is called a Delta Entry, and these are only returned by a limited set of

components: Change Detection Connectors, the Delta Engine and the DSML and LDIF

Parsers6. Delta Operation Codes can be queried and used in Branch Conditions or

your own JavaScript code, and are used by Delta mode to apply all types of changes

to target systems as efficiently as possible.

 See also ″Deltas and compute changes″ in IBM Tivoli Directory Integrator 6.1: Users

Guide.

Derby CloudScape v10, also known as Apache Derby is a small footprint relational database

implemented entirely in Java. Cloudscape is shipped as the default system store for

TDI.

Distinguished Name (DN)

An LDAP term that refers to the fully qualified name of an object in the directory,

representing the path from the root to this node in the directory information tree

(DIT). It is usually written in a format known as the User Friendly Name (UFN). The

dn is a sequence of relative distinguished names (RDNs) separated by a single comma (,

).

Entry An Entry is a TDI object used to carry data, and forms the core of the TDI Entry

model. The Entry object can be thought of as a "Java bucket" that can hold any

number of Attributes, which in turn carry the actual data values read from, or written

to connected systems. Each Entry corresponds to a single row in a database

table/view, a record from a file or an entry in a directory (or similar unit of data), and

there are a number of named Entry objects available in the system. The Work Entry

and conn Entry are the most commonly used ones, but there is also a current Entry

available in some Connector modes, an error Entry that contains the details of the last

exception that occurred, and an Operation Entry (Op-Entry) for accessing details of an

AL operation.

Epilog A set of Hooks that, if enabled, are run during the AssemblyLine Shutdown phase.

Note that the shutdown of components occurs between the two AL Epilog Hooks,

which means that the Epilog Hooks of these components are all completed before the

AssemblyLine Epilog - After Close Hook is called.

6. Note that these Parsers only return Delta Entries if the DSML or LDIF entries read contain change information.

Appendix A. Dictionary of terms 193

Error Entry

An Entry object that is created by an AssemblyLine during initialization, and contains

Attributes like "status", "connectorname" (applies for all types of components) and

"exception"7. See also Error Handling.

Error Handling

Error Handling in TDI is based on the concept of exceptions. Exceptions are a feature

of a programming language, like Java, C and C++, that let's you build error handling

like a wall around your program. It also lets you fortify smaller parts within any wall,

so you can add specific handling where necessary. TDI leverages the power of

exception handling so that you can design the error handling in your solution the

same way.

 First you have the AssemblyLine's On Failure Hook which is called if the AL stops

due to an unhandled exception8. This is the outer line of defence9. The next level is a

component, given that it provides Error Hooks. Connectors actually provide two

levels of handling: the mode-specific Error Hook, as well as the Default On Error

(same goes for Success Hooks as well).

 Finally, in your JavaScript code you can do exception handling yourself use the

try-catch statement, for example:

try {

 myObj = someFunctionCallThatCanThrowAnException();

} catch (excptThrown) {

 task.logmsg("**ERROR - The call failed: " + excptThrown);

}

ERP Enterprise Resource Planning, usually meant to mean a software suit of programs that

aims to manage enterprise resources, usually after heavy customization by the

software vendor.

EventHandler

EventHandlers are components that reside outside of AssemblyLines, but that were

used in older versions of TDI to "listen" for a specific event, and then dispatch this

event data to one or more ALs. Each event (like a received DSML message, or a new

changelog entry) resulted in a new AssemblyLine being launched, including the

setting up and breaking down of all connections—which was quite resource-intensive.

The functionality provided by EventHandlers is now handled using Connectors in

Iterator or Server mode.

7. The "exception" Attribute holds the actual Java exception object, in the case of an error – in which case the "status"

Attribute would also be changed from a value of "ok" to "error" and "message" would contain the error text.

8. An "unhandled" error is one that has been caught in an enabled Error Hook (no actual script code is necessary). If

you wish to escalate an error to the next level of error handling logic, you need to re-throw the exception:

throw error.getObject("exception");

9. If you want to share this logic (or that in any Hook) between AssemblyLines, implement it as a function stored

inScript and then including them as a Global Prolog for the AL.

194 Administrator Guide

Note: EventHandlers are deprecated as of the TDI 6.1 release, although they are still

supported for pre-6.1 Configs. Please use Connectors in Server and Iterator

Modes instead.

Exception

See Error Handling.

External Properties

A type of Property Store that uses a flat file for storing configuration settings (like

passwords and other component parameter settings) outside the Config itself.

Feeds This is the first section of an AssemblyLine and can only hold Iterator and Server

mode Connectors. The Feeds section is where the Work Entry is created from data

retrieved from a connected system or client. The Feeds section is like a built-in Loop

that drives the Flow section components list, once for each Entry read.

Flow This is the second (and usually the main) section of an AssemblyLine and holds a list

of components; any type, except Connectors in Server mode. The Flow section

receives a Work Entry from the currently active Feeds Connector and passes it from

component to component for processing.

Function component (FC)

One of the component types available in TDI to build AssemblyLines. Functions are

used to abstract away the technical details of a specific service or method call. Typical

examples are the AssemblyLine FC used to execute ALs and the Java Class FC that

lets you browse jar files and call class methods. Unlike Connectors, FCs do not have

mode settings.

Global Prolog

This is a Script component that is defined in the "Scripts" library folder of the Config

Browser, and which is configured to be executed when an AssemblyLine starts up.

The simplest way to do this is to select which Scripts to use with the "Include

Addition Prologs - Select" button. Note that Global Prologs are executed before the

AssemblyLine's own Prolog Hooks.

GUI (ibmditk or ibmditk.bat)

The term "TDI GUI" is sometimes used to refer to the Config Editor.

Hook This is a waypoint in the built-in workflow of the AssemblyLine, or of a Connector or

Function, where you can customize behavior by writing JavaScript. In a Connector,

the Hooks available are also dependent on the mode setting.

HTML

HyperText Markup Language. a more or less standardized way of describing and

formatting a page of text on the WordWide Web. Different manufacturer's

interpretations of the standard are often the cause of Web Browser's different

renderings of a given page.

HTTP HyperText Transfer Protocol. The protocol in use for the WorldWide Web, another

protocol on top of TCP.

Appendix A. Dictionary of terms 195

IEHS IBM Eclipse Help System. Used to host the TDI documentation locally. The

documentation hosted by IBM in the Documentation Library also uses IEHS.

Initial Work Entry (IWE)

This is an Entry that is passed into an AssemblyLine by the process that called it (for

example, an AssemblyLine Connector or Function, or by using script calls like

main.startAL(). Note that the presence of an IWE will cause any Iterators in the Flow

section to skip on this cycle.

Iterator

A Connector mode10 that first creates a data result set (for example, by issuing a SQL

SELECT statement, a LDAP search operation, opening a file for input, etc.) and then

returns one Entry at a time to the AL for processing. Iterators can reside in the

AssemblyLine Feeds section where they drive data to Flow components. If they are

placed in the Flow section then they still retrieve the next Entry from their result set

for each AL cycle, but they do not drive AL cycling in this case.

IU Installation Unit. A term specific to Solution Install (SI). Each major component of the

product is broken into separate IUs - for ease of maintenance, installation and

updates.

Java VM or JVM

Java Virtual Machine. IBM Tivoli Directory Integrator runs inside what is known as a

Java Virtual Machine. It has its own memory management and is in most respects a

Machine within the Machine.

Javadocs

A set of low-level API documentation, embedded in the product’s source code and

extracted by means of a special process during the product’s build. In IBM Tivoli

Directory Integrator the Javadocs can be viewed by selecting Help>Low Level API

from the Config Editor.

JavaScript

The language you can use to fine tune the behavior of your AssemblyLines. TDI 6.1

uses the IBM JSEngine.

JMS Java Messaging Service. A standard protocol used to perform guaranteed delivery of

messages between two systems.

JNDI Java Naming and Directory Interface. See "JNDI Connector", in the IBM Tivoli

Directory Integrator 6.1: Reference Guide.

Link Criteria

Link Criteria represent the matching rules defined for a Connector in Update, Lookup

or Delete, and they must result in a single entry match in the connected system;

10. Connectors running in Iterator mode are often referred to as "Iterators".

196 Administrator Guide

otherwise either an Not Found or Multiple Found exception occurs11 is an efficient

way of dealing with lookup operations where no match (or multiple matches) are

expected.

LDAP Lightweight Directory Access Protocol. An easier way of accessing (using TCP) a

name services directory than the older Directory Access Protocol. Used in for example

querying the IBM Directory Server.

Memory Queue (MemQ)

The MemQ is a TDI object that lets you pass any type of Java object (like Entries)

between AssemblyLines running on the same Server. This feature is usually accessed

through the MemQueue Connector (or the deprecated Memory Queue FC). See also

System Queue for more on how to pass data between running ALs.

Message Prefix

All error messages and Info messages in IBM Tivoli Directory Integrator are prefixed

with a unique Message Prefix. The prefix assigned to TDI is CTGDI.

Mode Connectors have a mode setting that determines how this component will participate

in AssemblyLine processing. In addition to the custom modes (implemented through

Adapters) there is a set of standard modes:

v Iterator

v AddOnly

v Lookup

v Update

v Delete

v CallReply

v Server

v Delta

Dependent on the features provided by the underlying system or functionality built

into the Connector, the list of modes supported by the different Connectors will vary.

See ″Connectors″ in IBM Tivoli Directory Integrator 6.1: Reference Guide for more

information about Connector modes.

Null Value Behavior

This term refers to how TDI will deal with Attribute mappings that result in "null"

values. Null Behavior configuration can be done for a Server by setting

Global/Solution properties. These Server-level settings can be overridden for an

Attribute Map by pressing the Null button in the button bar at the top of the map; or

for a specific Attribute via the Null button in the Details Window for its mapping.

 TDI lets you both configure what constitutes a "null" value situation (for example,

missing values, empty string or a specific value) as well as how to handle this.

11. Note that a Lookup Connector tied to a Loop

Appendix A. Dictionary of terms 197

Op-Entry (Operation Entry)

An entry which contains information about the Operation for the currently executing

AL. An Op-Entry persists its value over successive cycles for the same AL run and is

available for scripting via the task.getOpEntry() method.

Parameter Substitution

A way of specifying patterns based on Java MessageFormat class - for

simpler/quicker editing. Available in various places in TDI'.

Parser TDI components used to interpret or generate the structure for a byte stream. Parsers

are used by attaching them to a Connector that reads/writes byte streams, or to a

Function component like the Parser FC which is used to parse data in the Work Entry.

Persistent Object Store

See System Store.

Persistent Parameter Store

See Property Store.

Prolog A set of Hooks that, if enabled, are run during the AssemblyLine Initialization phase.

You can also define Global Prologs: Scripts that are run before either of the AL Prolog

Hooks. Note that the "At Startup" initialization of components occurs between the two

AL Prolog Hooks, which means that the Prolog Hooks of these components are all

completed before the AssemblyLine Prolog - After Initialization Hook is called. See

also Epilog.

Properties

This term refers to values maintained in a Property Store and used to configure

AssemblyLine and Component settings at run-time12.

Property Store

This a feature for reading and writing all types of properties. This includes:

v Java-Properties, which are settings of the JVM

v Global-Properties, TDI Server settings that are kept in a file called

global.properties the "etc" folder of your installation directory.

v Solution-Properties, which typically override Global-Properties and are found in a

file in your solution directory called solution.properties.

v System-Properties, for keeping custom property settings (uses the System Store).

In addition, you can define your own Property Stores using a Connector. The Property

Store feature also lets you designate one of your Property-Stores as a Password Store,

giving you automatic protection of sensitive configuration details.

12. Note that an Entry object can also hold properties (in addition to Attributes and delta operation codes) and these

can be accessed via the getProperty() and setProperty() methods of the Entry class.

198 Administrator Guide

Raw Connector

Deprecated term; this is now called the Connector Interface and refers to the part of

an AL Connector that contains the logic needed to access a specific API, protocol or

transport.

Relative Distinguished Name (RDN™)

In LDAP terms the name of an object that is unique relative to its siblings. RDNs have

the form attribute name=attribute value.

cn=John Doe

Resource Library

A simple method for sharing AssemblyLines and components between Configs. In the

Config Editor, the “Resources” navigator appears just below the Config Browser.

RMI Remote Method Invocation; a way of making procedure or method calls on a remote

system using a network communication channel. In TDI, used by the Remote API

functionality.

Sandbox

The feature of the IBM Tivoli Directory Integrator that enables you to record

AssemblyLine operations for later playback without any of the data sources being

present. See ″Sandbox″ in IBM Tivoli Directory Integrator 6.1: Users Guide.

SAP Used to stand for "Systeme, Anwendungen, Produkte" (Systems, Applications,

Products) but today, the abbreviation just stands for itself. A large, German provider

of an integrated suite of ERP applications. Mostly known for its R/3 distributed ERP

software suite, but also known for its mainframe-based R/2 software.

Script component (SC)

A Script is a block of JavaScript that is stored as a single component in TDI. In

addition to appearing in the Scripts library folder of the Config Browser13, Scripts can

be dropped anywhere in the Flow section of an AssemblyLine.

Script Engine

The component that interprets the Java scripts written inside a TDI Config. The IBM

jsEngine is used by TDI 6.1, which replaces Rhino from the previous releases.

Schema

The word ’Schema’, unfortunately, can mean different although related things,

depending on context. In a relational database context, a schema is the collection of

tables and objects a user has defined and owns (including content); and each table in

a schema is described by a Data Definition. In an LDAP context, the Schema is the

actual layout of the LDAP database, with its attributes and objects.

 In addition, Connectors and Functions can have Input and Output schemas that

represent the data model discovered in a connected system. Furthermore, an

AssemblyLine Operation can have an Input and Output schema as well.

13. In order to be used as Global Prologs (which are executed at the very start of Assemblyline Initialization) the

Script must be in the Scripts library folder and selected for inclusion in the Config tab of an AssemblyLine.

Appendix A. Dictionary of terms 199

In a product like TDI, which with equal ease can access both relational databases as

well as LDAP databases, the word Schema can therefore mean different things,

depending on where it is used.

Script Connector

A Script Connector is a Connector where you write the Interface functionality yourself:

It is empty in the sense that, in contrast to an already-existing Connector, the Script

Connector does not have the base methods getNextEntry(), findEntry() and so forth

implemented. Not to be confused with the Script Component.

Server (ibmdisrv or ibmdisrv.bat)

This is the part of the TDI product that is used to deploy and execute Configs.

Server (mode)

This is a Connector mode used for providing a request/response service (like an

HTTP server). This mode also provides an AssemblyLine Pool feature to enable

support for more connections/traffic.

Solution Directory

The directory in which you store your Config files, CloudScape databases, properties

files, keystores and so forth. The solution directory is selected when you install TDI,

and the filepaths used in your solution can be relative to this folder. The solution

directory can be explicitly specified when you start the Config Editor or Server using

the -s commandline option. Note that the counterpart of global.properties is kept in

this folder and called solution.properties—unless, of course, your solution directory

is the same as your installation directory.

SI Solution Installer. A common IBM utility for installation of many IBM products. The

TDI installer is one such product.

SSL Secure Socket Layer; a protocol used in Internet communications to encrypt data such

that if someone where to eavesdrop on the packets going back and forth he would not

be able to see what the packets contain. The protocol was invented by Netscape; and

you can see if a Web page uses the SSL protocol to talk to the Web server if it has the

'https//' prefix instead of 'http'. SSL is by no means limited to Web pages; in fact, TDI

uses it (if configured that way) to talk between differentTDI Servers and

AssemblyLines if network access is called for.

State Defines the level of participation for an AssemblyLine component. It can be in either

Enabled State, which means it will participate in AL processing, or Disabled in which

case the component is not used in any way.

 Connectors and Functions can be set to a third State: Passive. Passive State causes the

component to be initialized and closed during the Assemblyline Initialization and

Shutdown phases, but never used during AL cycling. However, you can drive these

component manually through script calls.

System Queue

A built-in queue infrastructure to facilitate the guaranteed delivery of messages

between AssemblyLines, even running on different TDI Servers. By default, the

200 Administrator Guide

System Queue uses the bundled MQe (WebSphere MQ Everyplace), but can be

configured to leverage other JMS-compliant messaging systems. TDI provides a

SystemQueue Connector to help you leverage this feature.

System Store

Called the Persistent Object Store, or POS in older TDI versions, the System Store is a

relational database used to store state information, like Delta Tables (used by the Delta

Engine) or Iterator state for Change Detection Connectors. It also provides the User

Property Store which is accessible through the system.setPersistentObject(),

system.getPersistentObject() and system.deletePersistentObject() methods. In

the current implementation, the IBM DB2 for Java product (also known as

CloudScape) is used. See http://www-3.ibm.com/software/data/cloudscape for more

details.

Task By convention, all threads (AssemblyLines, EventHandlers and so forth) are referred

to as tasks and are accessible from script code via the pre-registered task variable.

Task Call Block

A Java structure used to pass parameters to and from AssemblyLines. Often referred

to by its abbreviation: TCB.

TCP Transmission Control Protocol, a level 4 (transmission integrity) protocol usually seen

in combination with its layer 3 (routing) Internet Protocol as in TCP/IP. A stack of

protocols designed to achieve a standardized way of communicating across a network,

be it local (as in on the premises) or over long distances. Originally invented and

specified by DARPA, the (US) Defense Advanced Research Projects Agency. Successor

to ARPANET, which was a network of a (small) number of universities and the US

Department of Desfense, the civil side of which was managed by the Stanford

Research Institute (SRI). TCP is related to UDP.

TDI Unofficial monicker for this product, IBM Tivoli Directory Integrator.

TMS XML

Tivoli Message Standard XML. A Tivoli standardized way of formatting messages.

Each message is prefixed by a unique TMS code, which can be looked up in the

Message Guide for explanation and user response. If the code ends in ″E″ - it

indicates an Error, ″W″ indicates a warning and ″I″ indicates an Information message.

All Tivoli messages issued by TDI start with this product's unique identifier, which is

"CTGDI".

Tombstone

A record or trace showing that an AssemblyLine has terminated. Configured through

the Tombstone Manager in the CE. The trace includes a timestamp and the AL exit

status.

TWiki TWiki as a piece of software is a flexible and easy to use enterprise collaboration

system. Its structure is similar to the WikiPedia, except that is not linked into that. it

is rather meant as an independent community resource for a group of people with

common interest. There is one for IBM Tivoli Directory Integrator as well, at

http://www.tdi-users.org.

Appendix A. Dictionary of terms 201

http://www-3.ibm.com/software/data/cloudscape
http://www.tdi-users.org

Note: The TWiki site is a volunteer effort, and is not an official Tivoli support forum.

If you need immediate assistance please contact your local Tivoli support

organization.

Update

One of the standard Connector modes. Update mode causes the Connector to first

perform a lookup for the entry you want to update14, and if found it modifies this

entry. If no match is found then a new entry is added instead. See also Computed

Changes.

UDP User Datagram Protocol. A protocol use on top of the Internet Protocol (IP) which,

unlike TCP does not guarantee that the packet of data sent with it reaches the other

end. Also see TCP.

URL Unified Resource Locator. A way of defining where a resource is, be it an fileserver or

a HTML page on the WordlWide Web.

User Property Store

See Property Stores in the IBM Tivoli Directory Integrator 6.1: Users Guide.

Value (data values and types)

See Entries, and Attribute.

WikiPedia

A web-based world-wide encyclopedia, where (registered) users can add articles or

pictures, edit them, browse them, search for applicable content, etc. For TDI there is

one that similar in functionality but not linked into the WikiPedia, a "TWiki" at

http://www.tdi-users.org. The TWiki is a groupware product.

Work Entry

An Entry object that is used by the AssemblyLine to carry data from component to

component15. This object can be accessed in script code via the pre-defined variable

work. The Work Entry is typically built by a Server or Iterator mode Connector in the

Feeds section before being passed to the AL Flow section. You can also have an Initial

Work Entry (IWE) passed in if the AL was called from another process; or you can

create it in the Prolog by using task.setWork():

init_work = system.newEntry(); // Create a new Entry object

init_work.setAttribute("uid", "cchateauvieux"); // populate it

task.setWork(init_work); // make it known as "work" to the Connectors

Note that an Iterator in the Feeds section will not return any data if the Work Entry is

already defined at this point in the AL. So if an IWE is passed into an AssemblyLine,

any Iterators in the Feeds section will simply pass control to the next component in

14. Data is read into both the conn and current Entry objects. After the Output Map, the contents of conn are now the

Attributes to be written. The original entry data is still available in current.

15. Note that the "Work Entry" window shown in the Config Editor is actually a list of all Attributes that appear in

Input Maps or in the Loop Attribute field of Loops in the AssemblyLine.

202 Administrator Guide

http://www.tdi-users.org
http://www.tdi-users.org

line. It is also the reason why multiple Iterators in the Feeds section run sequentially,

one starting up when the previous one reaches End-of-Data.

XML TheXtensible Markup Language. A general purpose markup language (See also

HTML) for creating special-purpose markup languages, and also capable of describing

many types of data.IBM Tivoli Directory Integrator uses XML to store Config files.

Appendix A. Dictionary of terms 203

204 Administrator Guide

Appendix B. Notices

This information was developed for products and services offered in the U.S.A. IBM might

not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently

available in your area. Any reference to an IBM product, program, or service is not intended

to state or imply that only that IBM product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe any IBM

intellectual property right may be used instead. However, it is the user’s responsibility to

evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in this

document. The furnishing of this document does not give you any license to these patents.

You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual

Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country

where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS

MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not

allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are

periodically made to the information herein; these changes will be incorporated in new

editions of the information. IBM may make improvements and/or changes in the product(s)

and/or the program(s) described in this information at any time without notice.

© Copyright IBM Corp. 2003, 2006 205

Any references in this information to non-IBM Web sites are provided for convenience only

and do not in any manner serve as an endorsement of those Web sites. The materials at those

Web sites are not part of the materials for this IBM product and use of those Web sites is at

your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling:

(i) the exchange of information between independently created programs and other programs

(including this one) and (ii) the mutual use of the information which has been exchanged,

should contact:

IBM Corporation

Department MU5A46

11301 Burnet Road

Austin, TX 78758

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in

some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are

provided by IBM under terms of the IBM Customer Agreement, IBM International Program

License Agreement, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment.

Therefore, the results obtained in other operating environments may vary significantly. Some

measurements may have been made on development-level systems and there is no guarantee

that these measurements will be the same on generally available systems. Furthermore, some

measurement may have been estimated through extrapolation. Actual results may vary. Users

of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products,

their published announcements or other publicly available sources. IBM has not tested those

products and cannot confirm the accuracy of performance, compatibility or any other claims

related to non-IBM products. Questions on the capabilities of non-IBM products should be

addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To

illustrate them as completely as possible, the examples include the names of individuals,

companies, brands, and products. All of these names are fictitious and any similarity to the

names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

206 Administrator Guide

This information contains sample application programs in source language, which illustrate

programming techniques on various operating platforms. You may copy, modify, and

distribute these sample programs in any form without payment to IBM, for the purposes of

developing, using, marketing or distributing application programs conforming to the

application programming interface for the operating platform for which the sample programs

are written. These examples have not been thoroughly tested under all conditions. IBM,

therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

You may copy, modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application programs

conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must include a

copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample

Programs. © Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not

appear.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the

United States, or other countries, or both:

 IBM Tivoli AIX® Lotus®

Notes® pSeries® DB2 WebSphere

OS/390® Domino® iNotes Cloudscape

Java, JavaScript and all Java-based trademarks and logos are trademarks or registered

trademarks of Sun Microsystems, Inc. in the United States and other countries.

Microsoft, Windows NT and Windows are registered trademarks of Microsoft Corporation.

Intel™ is a trademark of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the U.S., other countries, or both.

This product includes software developed by the Apache Software Foundation

(http://www.apache.org/).

Other company, product, and service names may be trademarks or service marks of others.

Appendix B. Notices 207

208 Administrator Guide

����

Printed in USA

SC32-2567-00

	Preface
	Who should read this book
	Publications
	IBM Tivoli Directory Integrator library
	Related publications
	Accessing publications online

	Accessibility
	Contacting IBM Software support

	Contents
	Chapter 1. Introduction
	Chapter 2. Installation instructions for IBM Tivoli Directory Integrator
	Before you install
	Disk Space Requirements
	Memory Requirements
	Platform Requirements
	Components in IBM Tivoli Directory Integrator
	Other requirements
	Solution Install Considerations
	Root or Administrator Privileges

	Installing IBM Tivoli Directory Integrator
	Launching the appropriate installer
	Using the platform-specific TDI installer
	Installing using the command line
	Performing a silent install

	Installing local Help files
	Uninstalling
	Launching the uninstaller
	Uninstalling individual TDI components
	Uninstalling IBM Tivoli Directory Integrator
	Performing a silent uninstall

	Default install locations
	Distribution components
	Root directory
	Root directory/amc
	Root directory/bin
	Root directory/bin/amc

	Root directory/AppServer
	Root directory/doc
	Root directory/etc
	Root directory/classes
	Root directory/examples
	Root directory/installLogs
	Root directory/libs
	Root directory/logs
	Root directory/performance
	Root directory/tools/CSMigration
	Root directory/XSLT/ConfigReports
	Root directory/_uninst
	Root directory/jvm
	Root directory/license
	Root directory/ibm_help
	Root directory/xsl
	Root directory/serverapi
	Root directory/win32_service
	Root directory/jars
	Solution Directory files
	Example Property files
	log4j.properties
	ce-log4j.properties
	executetask.properties
	jlog.properties
	db2j.properties
	global.properties

	Chapter 3. Supported platforms
	Chapter 4. Migrating from IBM Tivoli Directory Integrator 6.0 to IBM Tivoli Directory Integrator 6.1
	Chapter 5. Security and TDI
	Introduction
	SSL Support
	Server SSL configuration of TDI components
	Client SSL configuration of TDI components
	SSL client authentication
	Self-signed vs. CA-signed certificates
	CA-signed certificates
	Self-signed certificates

	Keystore and truststore management
	Managing a CA-signed certificate using keytool
	Creating a self-signed certificate using keytool
	Creating a self-signed certificate using iKeyman
	Exporting a key from a keystore to a PKCS#12 file using iKeyman
	Importing a key from a PKCS#12 file into a keystore using iKeyman

	SSL example
	TDI component as a server
	TDI component as a client

	Server API Access Security
	Server API access options
	Server API SSL remote access
	Using Server API specific SSL properties
	Using the standard SSL Java System properties

	Server API authentication
	Local client session
	SSL-based authentication
	Username/password based authentication
	LDAP Authentication support
	Host based authentication
	Summary of Server API Authentication options
	Server API JMX layer does not support username/password authentication
	Server API authentication setup examples

	Server API Authorization
	Authorization roles
	Server API User Registry
	Local client session

	TDI Server Instance Security
	Stash File
	Encryption Utility
	Server Security Modes
	Working with encrypted TDI configuration files
	Creating a PKI-encrypted TDI configuration file from scratch
	Editing an encrypted TDI configuration file
	Encrypting/decrypting an existing TDI configuration file

	Standard TDI encryption of global.properties or solution.properties
	Encryption of properties in external property files

	Miscellaneous Config File features
	The “password” configuration parameter type
	Component Password Protection
	Saving passwords to configured Properties

	Protecting attributes from being printed in clear text during tracing
	Encryption of TDI Server Hooks
	Remote Config Editor and SSL

	Web Admin Console Security
	Summary of configuration files and properties dealing with security
	Component specific basics
	HTTP Basic Authentication
	Lotus Domino SSL specifics
	Certificates for the TDI Web Service Suite
	MQe authentication with mini-certificates

	Chapter 6. System Queue
	System Queue Configuration
	System Queue Configuration Example
	Security and Authentication
	Encryption
	Authentication

	MQe Configuration Utility
	Authentication of the MQe messages to provide MQe Queue Security
	Support for DNS names in the configuration of the MQe Queue
	Configuration of High Availability for MQe transport of password changes
	Providing remote configuration capabilities in the MQe Configuration Utility

	Chapter 7. Remote Server
	Configuring the Server API
	Remote Server API access on a Virtual Private Network

	Authentication
	Authorization
	Server User Registry
	Encryption utility

	Chapter 8. System Store
	Configuring CloudScape Instances
	Manage System Stores
	View System Store
	Network Server Settings

	Backing up CloudScape databases
	Troubleshooting CloudScape issues
	Pre-6.0 (properties file) configuration of CloudScape
	See also

	Chapter 9. Command Line Interface (CLI)
	Command Line Interface – tdisrvctl utility
	Command Line reference
	Operations
	Other points to note

	Chapter 10. Logging and debugging
	Background
	Logging
	Log Levels
	log4j default parameters
	Creating your own log strategies

	Chapter 11. Tracing and FFDC
	Understanding Tracing
	Configuring Tracing
	Useful JLOG parameters

	Chapter 12. Administration and Monitoring Console (AMC)
	Installation and Configuration
	Installing AMC on Embedded WAS Express
	Deploying AMC as a Windows Service by means of WASService.exe

	Installing AMC on an existing WAS 6.0 or WAS 6.1 version
	Installing AMC on WAS using the TDI 6.1 Installer
	Installing AMC on WAS using the TDI 6.1 Scripts or WAS Commands
	Starting and stopping AMC following installation
	Installing AMC on Tomcat 5.0.x
	Configuration

	Logs
	AMC and AM Security
	Introduction
	AMC and SSL
	AMC and Remote TDI Server
	AMC and User/Group/Role Management
	AMC and LDAP as an Authentication Store
	AMC and Role Management
	AMC and Passwords
	AMC and Encrypted Configs
	Action Manager and SSL

	Logging into the console
	Logging on to the console as the console administrator

	Console Layout
	Logging off the console
	Using AMC tables
	Select action drop-down menu
	Paging
	Sorting
	Finding
	Filtering

	Console Administration
	Manage TDI Servers
	Add a server
	Edit a server

	Manage Console Properties
	General
	LDAP
	SSL
	Miscellaneous

	Config Administration
	Create a Config View
	Manage Config Views
	Configure ACLS

	Load/Reload Configurations
	Config Report

	Operation Status and AM
	Monitor Status
	Config View Details
	TDI Server Information
	Show Preferred Config Views

	Action Manager (AM)
	Configuring the Action Manager
	Add/Edit configuration rules
	Add/Edit Action
	View Current Configuration

	Manage Property Stores
	Select Config View
	Solution Properties
	Global Properties
	Java Properties
	System Properties
	Password Store
	User Property Store

	Users and Groups
	Add users
	Manage Users
	Add Group
	Manage Group

	Cleanup Logs
	User Preferences
	Change Password
	Preferred Config Views

	Chapter 13. Tombstone Manager
	Introduction
	Configuring Tombstones
	Config Editor Configuration screen
	AssemblyLine Configuration screen
	The Tombstone Manager
	Tombstone Manager Configuration

	Chapter 14. Multiple TDI services
	IBM Tivoli Directory Integrator as Windows Service
	Introduction
	Installing and uninstalling the service
	Installing the service
	Uninstalling the service

	Starting and stopping the service
	Manual start and stop
	Changing service startup type

	Logging
	Configuring the service

	IBM Tivoli Directory Integrator as Linux/UNIX Service
	Deployment methods

	Tailoring /etc/inittab

	Chapter 15. z/OS environment Support
	Handling configuration and properties files
	ASCII mode

	Appendix A. Dictionary of terms
	IBM Tivoli Directory Integrator terms

	Appendix B. Notices
	Trademarks

