
Tivoli® Directory Integrator

IBM Tivoli Directory Integrator 6.1.1:

Reference Guide

SC32-2566-01

���

Tivoli® Directory Integrator

IBM Tivoli Directory Integrator 6.1.1:

Reference Guide

SC32-2566-01

���

Note

Note: Before using this information and the product it supports, read the general information under Appendix E, “Notices,”

on page 519.

Second Edition (February 2007)

This edition applies to version 6.1.1 of the IBM Tivoli Directory Integrator and to all subsequent releases and

modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2003, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Preface

This document contains the information that you need to develop solutions using components that are

part of the IBM® Tivoli® Directory Integrator.

Who should read this book

This book is intended for those responsible for the development, installation and administration of

solutions with the IBM Tivoli Directory Integrator.

IBM Tivoli Directory Integrator components are designed for network administrators who are responsible

for maintaining user directories and other resources. This document assumes that you have practical

experience installing and using both IBM Tivoli Directory Integrator, and the reader should be familiar

with the concepts and the administration of the systems that the developed solution will connect to.

Depending on the solution, these could include, but are not limited to, one or more of the following

products, systems and concepts:

v IBM Directory Server

v IBM Tivoli Identity Manager

v IBM Java™ Runtime Environment (JRE) or Sun Java Runtime Environment

v Microsoft® Active Directory

v PC and UNIX® operating systems

v Security management

v Internet protocols, including HTTP, HTTPS and TCP/IP

v Lightweight Directory Access Protocol (LDAP) and directory services

v A supported user registry

v Authentication and authorization

v SAP R/3.

Publications

Read the descriptions of the IBM Tivoli Directory Integrator library and the related publications to

determine which publications you might find helpful. After you determine the publications you need,

refer to the instructions for accessing publications online.

IBM Tivoli Directory Integrator library

The publications in the IBM Tivoli Directory Integrator library are:

IBM Tivoli Directory Integrator 6.1.1: Getting Started

A brief tutorial and introduction to IBM Tivoli Directory Integrator 6.1.1.

IBM Tivoli Directory Integrator 6.1.1: Administrator Guide

Includes complete information for installing the IBM Tivoli Directory Integrator. Includes

information about migrating from a previous version of IBM Tivoli Directory Integrator. Includes

information about configuring the logging functionality of IBM Tivoli Directory Integrator. Also

includes information about the security model underlying the Remote Server API.

IBM Tivoli Directory Integrator 6.1.1: Users Guide

Contains information about using the IBM Tivoli Directory Integrator 6.1.1 tool. Contains

instructions for designing solutions using the IBM Tivoli Directory Integrator tool (ibmditk) or

running the ready-made solutions from the command line (ibmdisrv). Also provides information

© Copyright IBM Corp. 2003, 2007 iii

about interfaces, concepts and AssemblyLine/EventHandler creation and management. Includes

examples to create interaction and hands-on learning of IBM Tivoli Directory Integrator 6.1.1.

IBM Tivoli Directory Integrator 6.1.1: Reference Guide

Contains detailed information about the individual components of IBM Tivoli Directory Integrator

6.1.1 AssemblyLine (Connectors, EventHandlers, Parsers, Plug-ins, and so forth).

IBM Tivoli Directory Integrator 6.1.1: Problem Determination Guide

Provides information about IBM Tivoli Directory Integrator 6.1.1 tools, resources, and techniques

that can aid in the identification and resolution of problems.

IBM Tivoli Directory Integrator 6.1.1: Messages Guide

Provides a list of all informational, warning and error messages associated with the IBM Tivoli

Directory Integrator 6.1.1.

IBM Tivoli Directory Integrator 6.1.1: Password Synchronization Plug-ins Guide

Includes complete information for installing and configuring each of the five IBM Password

Synchronization Plug-ins: Windows Password Synchronizer, Sun ONE Directory Server Password

Synchronizer, IBM Directory Server Password Synchronizer, Domino Password Synchronizer and

Password Synchronizer for UNIX and Linux®. Also provides configuration instructions for the

LDAP Password Store and MQe Password Store.

IBM Tivoli Directory Integrator 6.1.1: Release Notes

Describes new features and late-breaking information about IBM Tivoli Directory Integrator 6.1.1

that did not get included in the documentation.

Related publications

Information related to the IBM Tivoli Directory Integrator is available in the following publications:

v IBM Tivoli Directory Integrator 6.1.1 uses the JNDI client from Sun Microsystems. For information

about the JNDI client, refer to the Java Naming and Directory Interface™ 1.2.1 Specification on the Sun

Microsystems Web site at http://java.sun.com/products/jndi/1.2/javadoc/index.html.

v The Tivoli Software Library provides a variety of Tivoli publications such as white papers, datasheets,

demonstrations, redbooks, and announcement letters. The Tivoli Software Library is available on the

Web at: http://www.ibm.com/software/tivoli/library/

v The Tivoli Software Glossary includes definitions for many of the technical terms related to Tivoli

software. The Tivoli Software Glossary is available on the World-Wide Web, in English only,

athttp://publib.boulder.ibm.com/tividd/glossary/tivoliglossarymst.htm

Accessing publications online

The publications for this product are available online in Portable Document Format (PDF) or Hypertext

Markup Language (HTML) format, or both in the Tivoli software library: http://www.ibm.com/
software/tivoli/library.

To locate product publications in the library, click the Product manuals link on the left side of the Library

page. Then, locate and click the name of the product on the Tivoli software information center page.

Information is organized by product and includes READMEs, installation guides, user’s guides,

administrator’s guides, and developer’s references as necessary.

Note: To ensure proper printing of PDF publications, select the Fit to page check box in the Adobe

Acrobat Print window (which is available when you click File->Print).

iv Reference Guide

http://java.sun.com/products/jndi/1.2/javadoc/index.html
http://www.ibm.com/software/tivoli/library/
http://publib.boulder.ibm.com/tividd/glossary/tivoliglossarymst.htm
http://www.ibm.com/software/tivoli/library/
http://www.ibm.com/software/tivoli/library/

Accessibility

Accessibility features help a user who has a physical disability, such as restricted mobility or limited

vision, to use information technology products successfully. With TDI 6.1.1, you can use assistive

technologies to hear and navigate the interface. After installation you also can use the keyboard instead

of the mouse to operate all features of the graphical user interface.

Accessibility features

The following list includes the major accessibility features in TDI 6.1.1:

v Supports keyboard-only operation.

v Supports interfaces commonly used by screen readers.

v Discerns keys as tactually separate, and does not activate keys just by touching them.

v Avoids the use of color as the only way to communicate status and information.

v Provides accessible documentation.

Keyboard navigation

This product uses standard MicrosoftWindows® navigation keys for common Windows actions such as

access to the File menu, copy, paste, and delete. Actions that are unique to TDI use TDI keyboard

shortcuts. Keyboard shortcuts have been provided wherever needed for all actions.

Interface Information

The following points include accessibility features of the TDI 6.1.1 user interface and documentation:

v Steps for changing fonts, colors, and contrast settings in the Config Editor (CE):

1. Type Alt-F to access the CE File menu. Using the downward arrow, select Edit Preferences and

press Enter.

2. Under the Appearance tab, select Theme settings to change the font.

3. Under Theme Colors, select the colors for the CE, and by selecting colors, you can also change the

contrast.
v The TDI 6.1.1 Information Center and its related publications are accessibility-enabled for the JAWS

screen reader and the IBM Home Page Reader. You can operate all documentation features using the

keyboard instead of the mouse.

Vendor software

The IBM Tivoli Directory Integrator installer uses the FLEXnet Publisher Installation Module (FNPIM).

Related accessibility information

Visit the IBM Accessibility Center at http://www.ibm.com/able for more information about IBM’s

commitment to accessibility.

Contacting IBM Software support

Before contacting IBM Tivoli Software support with a problem, refer to IBM System Management and

Tivoli software Web site at:

http://www.ibm.com/software/sysmgmt/products/support/

If you need additional help, contact software support by using the methods described in the IBM Software

Support Handbook at the following Web site:

http://techsupport.services.ibm.com/guides/handbook.html

Preface v

http://www.ibm.com/able
http://www.ibm.com/software/sysmgmt/products/support/
http://techsupport.services.ibm.com/guides/handbook.html

The guide provides the following information:

v Registration and eligibility requirements for receiving support

v Telephone numbers and e-mail addresses, depending on the country in which you are located

v A list of information you must gather before contacting customer support

vi Reference Guide

Contents

Preface iii

Who should read this book iii

Publications iii

IBM Tivoli Directory Integrator library iii

Related publications iv

Accessing publications online iv

Accessibility v

Accessibility features v

Keyboard navigation v

Interface Information v

Vendor software v

Related accessibility information v

Contacting IBM Software support v

Chapter 1. Introduction 1

Chapter 2. Connectors 3

Connector availability and reference 3

Connector Interfaces 3

Script-based Connectors 6

Configurations 6

Connector re-use 6

ACT Connector 9

Introduction 9

Configuration 9

Using the Connector 11

Sending a notification from a rule 11

Programmatic Interface (API) 12

See Also 12

Active Directory Changelog (v.2) Connector . . . 13

Tracking changes in Active Directory 13

Behavior 15

Using the Active Directory Changelog V2

Connector 16

Configuration 16

Migration from Active Directory Changelog

EventHandler to Active Directory Changelog (v.2)

Connector 18

See also 18

AssemblyLine Connector 19

Configuration 19

Using the Connector 20

Axis Easy Web Service Server Connector 21

Hosting a WSDL file 22

Configuration 22

Connector Operation 24

See also 24

Btree Object DB Connector 25

Configuration 25

Btree object 25

Command line Connector 26

Native-encoded output on some operating

systems 26

Some words on quoting 26

Configuration 27

Examples 27

See also 27

Direct TCP /URL scripting 29

TCP 29

URL 29

Domino/Lotus Notes Connectors 31

Session types 31

Java Class loader issue 33

Supported versions of Lotus Notes and Lotus

Domino 33

Native API call threading 33

The ncso.jar file 33

Domino Change Detection Connector 35

Domino Users Connector 45

Lotus Notes Connector 57

ITIM DSMLv2 Connector 61

Using the Connector with ITIM Server 61

HTTPS (SSL) Support 61

Configuration 62

See also 62

DSMLv2 SOAP Connector 63

Supported Connector Modes 63

Extended Operations 63

Configuration 64

DSMLv2 SOAP Server Connector 67

Extended operations 67

Configuration 68

Exchange Changelog Connector 71

Behavior 71

Using the Exchange Changelog Connector . . . 71

The Is-Deleted attribute in Exchange 72

Accessing the USN synchronization values in the

User Property Store 73

Accessing the runtime Connector’s USN

synchronization values 74

Configuration 74

Migration 76

See Also 76

File system Connector 77

Configuration 77

See also 77

FTP Client Connector 79

Configuration 79

See also 79

GLA Connector 80

Introduction 80

Configuration 80

Configuring the TDIOutputter 80

Using the Connector 81

Schema 81

See Also 82

HTTP Client Connector 83

Modes 83

Special attributes 84

Configuration 84

Examples 85

© Copyright IBM Corp. 2003, 2007 vii

See also 85

Old HTTP Client Connector 87

Modes 87

Special attributes 87

Configuration 88

Examples 88

See also 89

HTTP Server Connector 91

Connector structure and workflow 91

Connector Client Authentication 92

Chunked Transfer Encoding 92

Configuration 92

Connector Schema 94

See also 94

Old HTTP Server Connector 95

Configuration 95

See also 95

IBM Directory Server Changelog Connector . . . 97

Configuration 97

See also 98

ITIM Agent Connector 100

Setting up SSL for the ITIM Agent Connector 100

Configuration 100

Known Issues 101

See also 101

JDBC Connector 103

Connector structure and workflow 103

Understanding JDBC Drivers 103

Specifying ODBC database paths 107

Configuration 108

Customizing select, insert, update and delete

statements 110

Additional JDBC Connector functions 111

Timestamps 112

Calling Stored Procedures 112

SQL Databases: column names with special

characters 113

Using prepared statements 113

On Multiple Entries 114

JMS Connector 115

Introduction 115

JMS message flow 115

WebSphere MQ and JMS/non-JMS consumers of

messages 116

JMS message types 116

Iterator mode 118

Lookup mode 118

Add Only mode 118

Call/Reply mode 118

JMS headers and properties 119

Configuration 120

Examples 122

External System Configuration 122

JMX Connector 125

Connector Schema 125

Configuration 126

JNDI Connector 129

Configuration 129

Setting the Modify operation 130

See also 132

LDAP Connector 133

Configuration 134

Virtual List View Control 136

Handling memory problems in the LDAP

Connector 137

LDAP Connector methods (API) 137

See also 139

LDAP Server Connector 141

Scripting 141

Returning the LDAP message returned values 141

Error handling 141

Configuration 142

See also 142

Lotus Notes Connector 143

Mailbox Connector 145

Configuration 145

Predefined properties and attributes 146

See also 147

Memory Queue Connector 149

Memory queue components 149

High level workflow 150

Configuration 150

Accessing the Memory Queue programmatically 151

Memory Stream Connector 153

Configuration 153

MQe Password Store Connector 155

PKCS7 Encryption support 156

MQe Password Store Connector Entry structure 158

Configuration 158

See Also 159

Netscape/iPlanet/Sun Directory Changelog

Connector 161

Configuration 161

See also 163

Properties Connector 165

Configuration 165

Server Notifications Connector 167

Encryption and Cryptography 167

Authentication 167

Configuration 167

System Queue Connector 171

Introduction 171

Configuration 171

Security, Authentication and Authorization . . 172

MQe Initialization 173

Windows Users and Groups Connector 175

Preconditions 175

Character sets 178

Examples 178

Windows Users and Groups Connector

functional specifications and software

requirements 178

System Store Connector 179

Configuration 180

Using the Connector 181

See also 182

RAC Connector 183

Introduction 183

Configuration 184

Using the Connector 184

See Also 186

RDBMS Changelog Connector 187

viii Reference Guide

Configuration 187

Change table format 189

Creating change tables in DB2 189

Creating change tables in Oracle 190

Creating Change table and triggers in MS SQL 191

Creating change table and triggers in Informix 193

Creating change table and trigger for SYBASE 196

runtime-provided Connector 199

Configuration 199

See also 199

Script Connector 201

Predefined script objects 201

Functions 201

Configuration 203

Examples 203

See also 203

SNMP Connector 205

Configuration 205

Examples 205

SNMP Server Connector 207

Connector Schema 207

Configuration 208

TAM Connector 209

Introduction 209

Connector Modes 209

Configuration 209

Using the Connector 211

Troubleshooting 217

Connector Input Attribute Details 217

TCP Connector 221

Iterator Mode 221

AddOnly Mode 221

Configuration 221

See also 222

TCP Server Connector 223

Configuration 223

Connector Schema 223

See Also 224

Timer Connector 225

Configuration 225

URL Connector 227

Configuration 227

Supported URL protocol 227

See also 227

Web Service Receiver Server Connector 229

Hosting a WSDL file 229

Configuration 230

Connector Operation 231

See also 231

z/OS Changelog Connector 233

Configuration 233

See also 234

Chapter 3. EventHandlers 235

Migration from ChangeLog EventHandlers to

ChangeLog Connectors 235

EventHandler types 235

When are they started? 236

What do they do? 236

Data flow 236

Passing input/output file names to an

AssemblyLine 236

EventHandler availability 237

Migration of Changelog EventHandlers 237

Active Directory Changelog EventHandler . . . 239

Behavior 239

Access to the USN synchronization values in the

User Property Store 239

Access to the runtime EventHandler’s USN

synchronization values 240

Configuration 240

See also 241

Connector EventHandler 243

Configuration 243

Objects/properties/attributes 243

See also 243

DSMLv2 EventHandler 245

Transportation (binding) 245

EventHandler Workflow 245

Operations 245

Configuration 245

Exchange Changelog EventHandler 249

Behavior 249

Access to the USN synchronization values in the

User Property Store 249

Access to the runtime EventHandler’s USN

synchronization values 250

Configuration 250

See also 251

HTTP EventHandler 253

Example 253

Configuration 253

See also 254

IBM Directory Server EventHandler 255

Configuration 256

See also 257

LDAP EventHandler 259

Object Added (_objAdded) 259

Object Rename (_objRenamed) 259

Object Modified (_objModified) 260

Object Removed (_objRemoved) 260

Error Encountered (_handleError) 260

Configuration 260

See also 261

LDAP Server EventHandler 263

Scripting 263

Returning the LDAP message returned values 263

Error handling 263

Configuration 263

Mailbox EventHandler 265

Configuration 265

Objects/properties/attributes 265

Examples 266

See also 266

SNMP EventHandler 267

Scripting the desired action 267

Error handling 268

Returning the SNMP packet returned values 268

Configuration 268

TCP Port EventHandler 269

Configuration 269

Contents ix

Objects/properties/attributes 269

Examples 269

See also 270

Generic thread (primitive EventHandler) 271

Configuration 271

See also 271

Timer EventHandler (primitive EventHandler) . . 273

Configuration 273

Examples 273

z/OS LDAP Changelog EventHandler 275

Configuration 275

Polling logic 276

See also 276

Chapter 4. Parsers 277

Base Parsers 277

Character Encoding conversion 277

Availability 277

CSV Parser 279

Configuration 279

DSML Parser 281

Configuration 281

Examples 281

See also 282

DSMLv2 Parser 283

Modes 283

Operations 283

Binary and non-String Attributes 289

Optional Attributes 289

Setting result code and result description . . . 290

Multiple Attribute modifications 290

Configuration 290

Examples 291

Fixed Parser 295

Configuration 295

HTTP Parser 297

Configuration 297

Attributes or properties 297

Character sets/Encoding 298

See also 299

LDIF Parser 301

Configuration 301

See also 302

Line Reader Parser 303

Configuration 303

Script Parser 305

Objects 305

Functions (methods) 306

Configuration 306

Example 307

See also 307

Simple Parser 309

Configuration 309

SOAP Parser 311

Example Entry 311

Example SOAP document 311

Configuration 311

Parser-specific calls 312

Examples 312

XML Parser 313

Configuration 313

Character Encoding in the XML Parser 314

Examples 314

Additional Examples 316

See also 316

XML SAX Parser 317

Configuration 318

See also 318

XSL based XML parser 319

Introduction 319

Configuration 319

Using the Parser 319

See also 321

User-defined parsers 323

Chapter 5. Function Components . . . 325

Castor Java to XML FC 327

Castor Overview 327

Configuration 327

Using the FC 328

Castor XML to Java FC 329

Configuration 329

Using the FC 330

XMLToSDO FC 331

Example 331

Configuration 332

Migration 332

SDOToXML FC 335

Configuration 336

Using the FC 336

Migration 336

AssemblyLine FC 339

Configuration 339

Using the FC 339

Java Class Function Component 341

Schema 341

Configuration 341

Parser FC 343

Configuration 343

Using the FC 343

Scripted FC 345

Configuration 345

Using the FC 345

See also 345

CBE Generator Function Component 347

Common Base Event (CBE) 347

The Common Event Infrastructure (CEI) . . . 347

CBE FC Configuration 347

Input and Output Map Attributes 347

Function Component API 349

Generating a CBE Log XML 350

See also 350

SendEMail Function Component 351

Configuration 351

Memory Queue FC 353

Configuration 353

Using the FC 353

See also 354

Axis Java To Soap FC 355

Configuration 355

Using the FC 356

WrapSoap FC 359

x Reference Guide

Configuration 359

Using the FC 360

InvokeSoap WS FC 361

Introduction 361

Authentication 361

Configuration 361

Using the FC 362

See also 363

Axis Soap To Java FC 365

Configuration 365

Using the FC 365

Axis EasyInvoke Soap WS FC 367

Authentication 367

Configuration 367

Using the FC 368

See also 369

Complex Types Generator FC 371

Configuration 371

Function Component Input and Output . . . 371

Troubleshooting 372

Remote Command Line FC 373

Configuration 373

Function Component Input 374

Function Component Output 375

Using the FC 375

See also 376

z/OS TSO/E Command Line FC 377

Configuration 377

Using the FC 377

Setting up the native part of the FC 378

See also 379

Chapter 6. SAP R/3 Component Suite 381

Who should read this chapter 381

Component Suite Installation 381

Software Requirements 381

Verifying the Component Suite for SAP R/3 . . 382

Checking the Version Numbers 383

Uninstallation 383

Function Component For SAP R/3 385

Function Component Introduction 385

Configuration 385

Using the Function Component 387

User Registry Connector for SAP R/3 389

Introduction 389

Configuration 390

Using the User Registry Connector for SAP R/3 393

Human Resources/Business Object Repository

Connector for SAP R/3 397

Introduction 397

Configuration 399

Using the Human Resources Connector for SAP

R/3 402

ALE Intermediate Document (IDOC) Connector for

SAP R/3 and SAP ERP 407

Introduction 407

Configuration 408

Using the SAP ALE IDOC Connector 410

Troubleshooting the SAP R/3 Component Suite 419

Supplemental information for the SAP R/3

Component Suite 421

Example User Registry Connector XML Instance

Document 421

XSchema for User Registry Connector XML . . 422

Chapter 7. Script languages 433

JavaScript 433

Java and JavaScript 433

Chapter 8. Objects 435

The AssemblyLine Connector object 435

The attribute object 435

Examples 435

See also 436

The Connector Interface object 436

Methods 436

The Entry object 436

Global Entry instances available in scripting . . 437

See also 437

The FTP object 437

Example 437

Main object 438

The Search (criteria) object 438

Operands 438

Example 438

The shellCommand object 438

The status object 439

The system object 439

The task object 439

Appendix A. Password

Synchronization plug-ins 441

Appendix B. AssemblyLine and

Connector mode flowcharts 443

AssemblyLine flow 444

Connector initialization 445

Close flow 446

AddOnly mode 447

Call/Reply mode 448

Delete mode 449

Delta Mode 451

Iterator mode 455

Lookup mode 456

Server Mode 457

Update mode 459

End-of-flow for all modes 462

Connector Reconnect 463

Function Components 464

Appendix C. Server API 465

Overview 465

Sample use case 466

Local and Remote Server API interfaces 466

Server API structure 467

Security 467

Configuring the Server API 468

Configuring the Server API properties 468

Setting up the User Registry 468

Remote client configuration 468

Contents xi

Using the Server API 470

Creating a local Session 470

Creating a remote Session 470

Working with Config Instances 470

Working with AssemblyLines 471

Working with EventHandlers 474

Editing configurations 474

Working with the System Queue 477

Working with the Tombstone Manager 478

Working with TDI Properties 482

Registering for Server API event notifications 482

Getting access to log files 484

Server Info 485

Using the Security Registry 486

Custom Method Invocation 486

The JMX layer 488

Local access to the JMX layer 488

Remote access to the JMX layer 489

MBeans and Server API objects 489

JMX notifications 490

JMX Example - TDI 6.1.1 and MC4J

configuration 490

Backward compatibility 493

Scenarios overview 493

Server API changes in TDI 6.1.1 496

Known issues 500

Appendix D. Implementing your own

Components 503

Support materials for Component development 503

Developing a Connector 503

Implementing the Connector's Java source code 503

Building the Connector's source code 509

Implementing the Connector's GUI

configuration form 509

Packaging and deploying the Connector . . . 516

Developing a Function Component 516

Implementing Function Component Java source

code 516

Building the Function Component source code 517

Implementing the Function Component GUI

configuration form 517

Packaging and deploying the Function

Component 518

See also 518

Appendix E. Notices 519

Third-Party Statements 520

ICU License - ICU 1.8.1 and later 520

Trademarks 521

xii Reference Guide

Chapter 1. Introduction

To work with examples complementing this manual, you must refer back to the installation package to

download the necessary files.

To access these example files, go to the root_directory/examples directory in the installation directories.

© Copyright IBM Corp. 2003, 2007 1

2 Reference Guide

Chapter 2. Connectors

Connector availability and reference

The following is a list of all Connector Interfaces included with the IBM Tivoli Directory Integrator. The

Connector Interface is the part of the Connector that implements the actual logic to communicate with

the Data Source it is supposed to handle.

You can also make your own Connector Interfaces if needed (the AssemblyLine wraps them so they are

available as AssemblyLine Connectors).

All following AssemblyLine Connectors have access to the methods described in the

com.ibm.di.server.AssemblyLineComponent in addition to the methods and properties of the Connector

Interface. For documentation of the methods, see the Javadocs (from the CE, choose Help>Low Level

API.)

Connector Interfaces

For a list of Supported Modes, see “Legend for the Supported Mode columns” on page 6.

For each Connector Interface listed, see the documentation outlined in this chapter.

“ACT Connector” on page 9

A

“Active Directory Changelog (v.2) Connector” on page 13

I

“AssemblyLine Connector” on page 19

I

“Axis Easy Web Service Server Connector” on page 21

S

“Btree Object DB Connector” on page 25

A D I L U

“Command line Connector” on page 26

A I C

“Direct TCP /URL scripting” on page 29

custom

“Domino Change Detection Connector” on page 35

I

“Domino Users Connector” on page 45

A D I L U

“DSMLv2 SOAP Connector” on page 63

A D I L U C ∆

“DSMLv2 SOAP Server Connector” on page 67

S

“Exchange Changelog Connector” on page 71

I

“File system Connector” on page 77

A I

© Copyright IBM Corp. 2003, 2007 3

“FTP Client Connector” on page 79

A I

“GLA Connector” on page 80

I

“Old HTTP Client Connector” on page 87

A D I L U C ∆ S

“HTTP Client Connector” on page 83

A I L C

“Old HTTP Server Connector” on page 95

A I

“HTTP Server Connector” on page 91

I S

“Human Resources/Business Object Repository Connector for SAP R/3” on page 397

A D I L U

“IBM Directory Server Changelog Connector” on page 97

I

IBM MQ Connector

A I L C

“JDBC Connector” on page 103

A D I L U ∆

“JMS Connector” on page 115

A I L C

“JMX Connector” on page 125

I

“JNDI Connector” on page 129

A D I L U ∆

“LDAP Connector” on page 133

A D I L U ∆

“LDAP Server Connector” on page 141

S

“Lotus Notes Connector” on page 57

A D I L U

“Mailbox Connector” on page 145

I L D

“Memory Queue Connector” on page 149

A I

“Memory Stream Connector” on page 153

A I

“MQe Password Store Connector” on page 155

I

“Netscape/iPlanet/Sun Directory Changelog Connector” on page 161

I

“System Store Connector” on page 179

A D I L U

4 Reference Guide

“RAC Connector” on page 183

A I

“RDBMS Changelog Connector” on page 187

I

“runtime-provided Connector” on page 199

A D I L U C ∆ S

 A runtime provided Connector is a Connector sent to the AssemblyLine as a parameter when the

AssemblyLine is started. We cannot say in advance what modes that Connector supports since

you wrote it and the available modes are not visible to TDI. Also see “runtime-provided

Connector” on page 199.

“Script Connector” on page 201

custom

 You write the Script Connector yourself, and it provides the modes you write into it.

“Server Notifications Connector” on page 167

A I

“SNMP Connector” on page 205

A I L

“SNMP Server Connector” on page 207

S

“Properties Connector” on page 165

A I U L D

“System Queue Connector” on page 171

A I

“TAM Connector” on page 209

A I D L U

“TCP Connector” on page 221

A I

“TCP Server Connector” on page 223

I S

“ITIM Agent Connector” on page 100

A D I L U

“ITIM DSMLv2 Connector” on page 61

A D I L U

“Timer Connector” on page 225

I

“URL Connector” on page 227

A I

“User Registry Connector for SAP R/3” on page 389

A D I L U

“Web Service Receiver Server Connector” on page 229

S

“Windows Users and Groups Connector” on page 175

A D I L U

“z/OS Changelog Connector” on page 233

I

Chapter 2. Connectors 5

Legend for the Supported Mode columns

v A–AddOnly

v D–Delete

v I–Iterator

v L–Lookup

v U–Update

v ∆–Delta

v C–Call/Reply

v S–Server

v +–Newer version support exists

Script-based Connectors

A potential source of problems exists if you made direct Java calls into the same libraries as IBM Tivoli

Directory Integrator. A new version of IBM Tivoli Directory Integrator might have updated libraries (with

different semantics), or you might have upgraded your libraries since the last time you used your

Connector.

For a list of Supported Modes, see “Legend for the Supported Mode columns.” The Script Connector

enables you to write your own Connector in JavaScript™.

Generic Connector

custom

 You write the Script Connector yourself in JavaScript, and it provides the modes you write into it.

See ″JavaScript Connector″ in IBM Tivoli Directory Integrator 6.1.1: Users Guide.

Configurations

For a list of Supported Modes, see “Legend for the Supported Mode columns.”

Connector re-use

When a Connector is instantiated, usually it allocates a certain amount of resources to communicate with

a particular system (connection objects, session objects, result sets ...). When multiple Connectors of the

same type are connected to the same system, often it is reasonable to share the underlying resources. This

means that a single connection to the given system will be re-used by multiple Connectors.

TDI allows Connector re-use to happen within an AssemblyLine. For a given AssemblyLine the you have

the option to re-use an already configured Connector from the same AssemblyLine.

With regards to the TDI Server, when re-using a Connector, a single physical Connector object is

instantiated and a number of logical Connectors share it.

With regards to configuration, Connector re-using is a master-slave relation: the re-used ("master")

Connector has a full connection and parser configuration and all re-using Connectors have references to

the master Connector. All re-using Connectors share the connection and parser settings of the Connector

they re-use. Although connection and parser settings are fixed for re-using Connectors, certain other

features are configured separately (if any parameter is not configured separately, it is inherited from the

master Connector):

v Input/Output Map

v Link Criteria

v Hooks

v Delta settings

v Reconnect settings

6 Reference Guide

Generally, a Connector can be re-used in the same mode (except for Iterator and Server) without any

problem. This means that, for example, you can safely re-use a Connector in Lookup mode as many times

as you wish.

A problem can potentially arise when a Connector is re-used in different modes. The shared physical

Connector object is initialized and terminated only once. So the Connector’s initialization and termination

procedure must be common for all supported modes.

The following is a list of TDI Connectors which can be re-used in different modes:

v Domino Users Connector

v DSMLv2 SOAP Connector

v HTTP Client Connector

v IBM MQ Connector

v ITIM Agent Connector

v JDBC Connector

v JMS Connector

v JNDI Connector

v LDAP Connector

v Lotus Notes Connector

v Mailbox Connector

v Properties Connector

v SAP R/3 Business Object Repository Connector

v SAP R/3 User Registry Connector

v Script Connector (depends on the user-supplied Javascript)

v SNMP Connector

v System Queue Connector

v System Store Connector

v TAM Connector

v TCP Connector

v ITIM DSMLv2 Connector

v URL Connector

v Windows Users and Groups Connector

Any Connector not in this list can not be re-used in the same AssemblyLine; either because it makes no

sense, or because the Connector's internal logic does not allow it.

For configuring a Connector for re-use in an AssemblyLine, refer to IBM Tivoli Directory Integrator 6.1.1:

Users Guide. In the configured AssemblyLine, the re-used Connectors will show up with their name

prepended with '@'.

Chapter 2. Connectors 7

8 Reference Guide

ACT Connector

Introduction

The execution of assembly lines on a TDI server may produce some events. Events can also be produced

by other sources. external to TDI.

An mechanism which can process these events is available in the TDI Server. When an event pattern is

matched, the engine will fire a TDI server event, thus notifying any listeners. Events can then be caught

using the “Server Notifications Connector” on page 167, for example and then further processed.

ACT (Active Correlation Technology) is a technology designed to build and execute rules for correlation

of events, and especially the events conforming to the Common Base Events (CBE) specification. This

technology provides a toolkit (in the form of an Eclipse plug-in) for rule creation and compilation. It also

provides a Java software component, the ACT Engine.

Note: Only the ACT Engine, wrapped in a TDI module, is proved with TDI. In order to meaningfully

deploy, and be able to define rules, you need to license the IBM Autonomic Computing Toolkit,

and be provided with the Active Correlation Technology package.

In TDI, the ACT Engine has been integrated in the TDI Server. The ACT Engine has the following

characteristics:

v The engine can be fed with events through the Server API (for example by a script component in an

AssemblyLine) and will act according to its configured rules. Each rule is able to send a TDI Server

notifications

v From an architectural point of view it is a sibling of the System Queue and the Tombstone Manager. It

lives in the same JVM as the TDI Server.

The ACT Engine provides a programming interface through the Server API. The Server API is accessed

through a network connection, using the RMI protocol.

The ACT Engine will consume events, and interested parties can pass events to this engine through the

Server API. The engine will then match these events against the configured matching rules. From time to

time some of these events will trigger a matching rule which will result in a TDI server event being fired.

This event can, for example, be caught using the “Server Notifications Connector” on page 167 and then

processed further.

ACT Engine processing rules are defined by means of an Eclipse plug-in, part of the Autonomic

Computing Toolkit. For more information, refer to the Developer's Guide at http://www-128.ibm.com/
developerworks/autonomic/books/fpy0mst.htm#ToC_91.

To ease the use of the ACT engine, a Connector, which operates in AddOnly mode is provided – the ACT

Connector.

Configuration

The Connector’s title is “Active Correlation Technology Connector”. Its parameters are:

Connection Type

This parameter determines whether the ACT Connector will send events to the local or a remote

ACT engine. The available values for this parameter are “remote” and “local”.

local The Connector will send events to the ACT engine in the local TDI server

remote

The Connector will connect to a remote TDI Server system and send events its ACT

engine.

Chapter 2. Connectors 9

http://www-128.ibm.com/developerworks/autonomic/library/ac-acact/
www.ibm.com/developerworks/autonomic/overview.html
http://www-128.ibm.com/developerworks/autonomic/books/fpy0mst.htm#ToC_91
http://www-128.ibm.com/developerworks/autonomic/books/fpy0mst.htm#ToC_91

Default value is "local".

RMI URL

This parameter is only taken into account if the Connection Type parameter is set to “remote”.

This is the RMI URL used to connect to the remote TDI Server..

 Default value is "rmi://127.0.0.1:1099/SessionFactory".

Username

This parameter is only taken into account if the Connection Type parameter is set to “remote”.

This is the username parameter is used to authenticate to the TDI server (using Remote API

authentication).

Password

This parameter is only taken into account if the Connection Type parameter is set to “remote”.

This is the password parameter used to authenticate to the TDI server.

Detailed Log

If checked, more log messages will be generated.

In order for an instance of an ACT Connector to talk to a TDI Server's ACT Engine, that TDI Server must

have its ACT Engine enabled and configured. This is done by setting system properties in

global.properties and/or solution.properties:

act.engine.on

This is a boolean property (true/false) which enables/disables the ACT Engine.

act.engine.rule.set.file

This contains the path of the rule file, which will be used by the ACT engine; the rule file must

be COMPILED (with the “ACT Rule Builder” Eclipse plugin – the Rule Builder can compile rule

sets).

For example, if you want to enable the ACT feature of TDI and set the ACT engine to use the rules in the

“myrules.acts” file, you can specify the following properties in global.properties/solution.properties:

act.engine.on=true

act.engine.rule.set.file=myrules.acts

ACT Rule Builder

The rules files themselves are created by means of an Eclipse plug-in, part of the Active Correlation

Technology technology. The Eclipse version on which to install it has to match specific requirements, and

the software has to be installed as recommended in the ACT documentation. The document called

Developer’s Guide for Active Correlation Technology V0[1].1.doc, in sections 15.1 through 15.3, describes how

to complete these steps. Part 15.1 describes the prerequisites, and the 15.2.3 part describes the process for

the installation of the plug-in itself.

After having installed the ACT Rule Builder software, Eclipse allows the creation of a Rule Set file within

an Eclipse project. When trying to create a new component in a project, only the most common types

(Class, Interface,...) appear. Choose “Other” in this menu. This opens the exhaustive list of component

types. In this list, choose “Active Correlation Technology > Rule Set File”.

The created component then appears in the project. A rule set comprises several rule blocks, and each

rule block gathers rules. The UI of the plug-in allows you to easily create a new rule block and a rule

inside this block, by right-clicking in the outline panel.

The document called “Rule Writer’s Guide and Reference” describes the possibilities of the ACT Rule

Builder software in detail.

10 Reference Guide

http://www-128.ibm.com/developerworks/autonomic/library/ac-acact/
http://www-128.ibm.com/developerworks/autonomic/library/ac-acact/

Using the Connector

This Connector can feed events to a TDI Server's ACT Engine for processing. The Connector uses the

Server API to send events to the ACT engine; it operates in AddOnly mode. The Connector works

synchronously – that is each output operation returns only after the event has been completely processed

by the target ACT engine.

Currently only Common Base Events are supported. A CommonBaseEvent can be passed to the ACT

Connector either as a raw Java object or as a set of work Entry attributes.

The Connector embeds the “CBE Generator Function Component” on page 347 to help with the

conversion of the work Entry attributes into a CommonBaseEvent object, if required.

A CommonBaseEvent in the form of a raw Java object is supplied to the Connector as an optional work

Entry attribute:

$rawCBE

optional attribute; must be of type org.eclipse.hyades.logging.events.cbe.CommonBaseEvent; if

this attribute is provided, all other attributes are ignored and the Connector operates on the CBE,

which is the attribute’s value

If the $rawCBE attribute is missing, a set of attributes which describe a CommonBaseEvent is expected.

For this Connector, only Output Map attributes are applicable.

Sending a notification from a rule

In this section we will focus on the definition and the usage of a simple filter rule. This case is sufficient

to describe how to send a notification to the Server API when a rule is matched. All the template rules

proposed by the ACT Rule Builder are a priori usable.

The ACT compiler of the ACT Rule Builder must be set in order to recognize the TDIFunctions interface.

For that, we have to open the panel accessible via “Window > Preferences...”. If the installation of the

plugin was done correctly, an “Active Correlation Technology” option should be accessible in the left side

bar. Click on the underlying “compiler” option. This opens a panel where we can add JAR file paths.

Then add the file containing the interface TDIFunctions and its implementation – diserverapi.jar.

Then, create a rule set file, a rule block, a “filter” rule and open it. A specific editor should be associated.

Several panels are accessible. The document about rule writing indicates how to fill the required

parameters, depending on the aim wished by the developer for his rule. In case of a filter rule it is rather

simple, we just have to specify the single event that will trigger the rule.

We will focus here on the “Rules responses” panel, which is the most relevant in our case. This is where

the action to be triggered is defined.

Here we can write pieces of code that will be executed when the rule is triggered. In most cases, the rule

designer will only have to write this piece of code:

com.ibm.di.api.act.TDIFunctions util = (com.ibm.di.api.act.TDIFunctions)

 act_lib.getExternalContext("TDIFunctions");

util.sendNotification("myevent", "myid", act_event);

The first line shows the method to invoke in order to get a TDIFunctions instance. Then the

sendNotification invocation fires a TDI server notification The issued notification will be of type

“user.act.myevent” (after the TDIFunctions implementation and the Server API add their prefixes).

The sendNotification call passes the current event, which triggered the rule (act_event) as user data of the

notification.

Chapter 2. Connectors 11

The rule writer must keep in mind that the ACT engine and the listeners of server notifications execute in

different threads. So the code in the rules should not pass as notification’s user data some of the internal

objects, which the ACT engine may modify (for example act_lib). If passing such an object is necessary,

the rule writer may create a deep clone of the object and pass the clone as user data. In this way race

conditions between the ACT engine and notification listeners will be safely avoided.

Programmatic Interface (API)

Events can be passed to the ACT engine of TDI through the Server API. A method is available in both the

local and the remote Server API session interfaces:

/**

 * Processes an event by the Active Correlation Technology engine of the TDI server.

 * The method returns when the engine has completely processed the event.

 */

 public void sendEventToACT(Serializable event)

Currently the method operates only on events of type org.eclipse.hyades.logging.events.cbe.CommonBaseEvent.

See Also

An example demonstrating the use of the ACT Connector, in folder <TDI_installation_folder>/examples/
ACT,

“CBE Generator Function Component” on page 347,

“GLA Connector” on page 80

12 Reference Guide

Active Directory Changelog (v.2) Connector

The Active Directory Changelog (v.2) Connector (hereafter referred to as ADCLV2) is a specialized

instance of the LDAP Connector. It reports changed Active Directory objects so that other repositories can

be synchronized with Active Directory.

The LDAP protocol is used for retrieving changed objects.

When run the Connector reports the object changes necessary to synchronize other repositories with

Active Directory regardless of whether these changes occurred while the Connector has been offline or

they are happening as the Connector is online and operating.

This connector also supports Delta Tagging, at the Entry level only.

The ADCLV2 Connector operates in Iterator mode.

Notes:

1. This Connector is a replacement for the Active Directory Changelog Connector; usage of the latter is

deprecated.

2. This version of the Connector is able to process huge AD Servers (millions of entries) regardless of the

administrative time limit for executing a query on AD (the MaxQueryDuration setting). In comparison

the old version of the Connector could fail with TimeLimitExceeded error when run against big AD

Servers.

3. It uses a simpler algorithm for retrieving changes and uses only one USN number to represent the

synchronization state. In comparison the old Connector uses 4 USN numbers and a fairly complex

algorithm.

4. It does not distinguish between ″add″ and ″modify″ operations - both are reported as ″modify″; delete

operations are reported as ″delete″. Not being able to distinguish between ″add″ and ″modify″ is not a

serious restriction because the TDI Update Connector mode natively handles ″add″ and ″modify″

operations.

5. It might report ″delete″ operations for entries that have not been added to the repository being

synchronized with AD (this will happen when an entry is added and deleted in AD while the

Connector has been offline). It is something to be aware of, but it is not a serious restriction because

TDI Delete Connector mode first checks if the entry to be deleted exists and if it does not exist, the

″On No Match″ hook is called - this is where you can place code to handle/ignore such unnecessary

deletes.

6. The parameter Page Size specifies the size of the pages AD will return entries on (default value is

500).

Tracking changes in Active Directory

Active Directory does not provide a Changelog as IBM Directory Server and some other LDAP Servers

do.

The ADCLV2 Connector uses the uSNChanged Active Directory attribute to detect changed objects.

Each Active Directory object has an uSNChanged attribute that corresponds to a directory-global USN

(Update Sequence Number) object. Whenever an Active Directory object is created, modified or deleted,

the global sequence object value is increased, and the new value is assigned to the object’s uSNChanged

attribute.

On each AssemblyLine iteration (each call of the getNextEntry() Connector’s method) it delivers a single

object that has changed in Active Directory. It delivers the changed Active Directory objects as they are,

Chapter 2. Connectors 13

with all their current attributes and also reports the type of object change – whether the object was

updated (added or modified) or deleted. The Connector does not report which attributes have changed in

this object and the type of attribute change.

Synchronization state is kept by the Connector and saved in the User Property Store – after each reported

changed object the Connector saves the USN number necessary to continue from the correct place in case

of interruption and restart; when started, the ADCLV2 Connector reads from the IBM Tivoli Directory

Integrator’s User Property Store this USN value stored from the most recent ADCLV2 Connector session.

Deleted objects in Active Directory

When an object is deleted from the directory, Active Directory performs the following steps:

v The object’s isDeleted attribute is set to TRUE. Objects where isDeleted==TRUE are known as

tombstones (not related to TDI tombstones).

v All attributes that are not needed by Active Directory are removed. A few key attributes, including

objectGUID, objectSID, nTSecurityDescriptor, and uSNChanged are preserved.

v Moves the tombstone to the Deleted Objects container, which is a hidden container within the directory

partition.

Tombstones or deleted objects are garbage collected some time after the deletion takes place. Two settings

on the ″cn=Directory Service,cn=Windows NT,cn=Service,cn=Configuration,dc=ForestRootDomain″ object

determine when and which tombstones are deleted:

v The ″garbage collection interval″ determines the number of hours between garbage collection on a

domain controller. The default setting is 12 hours, and the minimum setting is 1 hour.

v The ″tombstone lifetime″ determines the number of days that tombstones persist before they are

vulnerable to garbage collection. The default setting is 60 days, and the minimum setting is 2 days.

The above specifics imply the following requirements for synchronization processes that have to handle

deleted objects:

v Synchronization has to be run on intervals shorter than the ″tombstone lifetime″ Active Directory

setting.

v The objectGUID attribute has to be used for object identifier during synchronization. The object’s

distinguishedName attribute which uniquely identifies the position of an object in the directory tree,

cannot be used because after the object is deleted it changes its place in the directory tree – it is moved

in the Deleted Objects container and its old distinguished name is irrevocably lost. The objectGUID

attribute is however never changed. When a deleted object is found during synchronization, a search in

the other repository for an object with the same objectGUID should be made and the found object

should be deleted.

Moved objects in Active Directory

When an object is moved from one location of the Active Directory tree to another, its

distinguishedName attribute changes. When this object change is detected based on the new increased

value of the object’s uSNChanged attribute, this change looks like any other modify operation - there is

no information about the object’s old distinguished name.

A synchronization process that has to handle moved objects properly should use the objectGUID

attribute – it doesn’t change when objects are moved. A search by the objectGUID attribute in the

repository which is synchronized will locate the proper object and then the old and new distinguished

names can be compared to check if the object has been moved.

Use objectGUID as the object identifier

When tracking changes in Active Directory the objectGUID attribute should be used for object identifier

and not the LDAP distinguished name. This is so because the distinguished name is lost when an object

is deleted or moved in Active Directory. The objectGUID attribute is always preserved, it never changes

and can be used to identify an object.

14 Reference Guide

When the ADCLV2 Connector reports that an entry is changed, a search by objectGUID value should be

performed in the other repository to locate the object that has to be modified or deleted. This means that

the objectGUID attribute should be synchronized and stored into the other repository.

Behavior

The ADCLV2 Connector detects and reports changed objects following the chronology of the

uSNChanged attribute values: changed objects with lower uSNChanged values will be reported before

changed objects with higher uSNChanged values.

The Connector executes an LDAP query of type (usnChanged>=X) where X is the USN number that

represents the current synchronization state. Sort and Page LDAP v3 controls are used with the search

operation and provide for chronology of changes and ability to process large result sets. The Show

Deleted LDAP v3 request control (OID ″1.2.840.113556.1.4.417″) is used to specify that search results

should include deleted objects as well.

The Connector might report ″delete″ operations for entries that have not been added to the repository

being synchronized with Active Directory - this will happen when an entry is added and deleted in

Active Directory while the Connector has been offline. This is not a serious restriction because IBM Tivoli

Directory Integrator’s Delete Connector mode first checks if the entry to be deleted exists and if it does

not exist, the ″On No Match″ hook is called - this is where you can place code to handle/ignore such

unnecessary deletes.

The ADCLV2 Connector consecutively reports all changed objects regardless of interruptions, regardless

of when it is started and stopped and whether the changes happened while the Connector was online or

offline. Synchronization state is kept by the Connector and saved in the User Property Store – after each

reported changed object the Connector saves the USN number necessary to continue from the correct

place in case of interruption and restart.

The Connector will signal end of data and stop (according to the timeout value) when there are no more

changes to report.

When there are no more changed Active Directory objects to retrieve, the Active Directory Connector

cycles, waiting for a new object change in Active Directory. The Sleep Interval parameter specifies the

number of seconds between two successive polls when the Connector waits for new changes. The

Connector loops until a new Active Directory object is retrieved or the timeout (specified by the Timeout

parameter) expires. If the timeout expires, the Active Directory Connector returns a null Entry, indicating

there are no more Entries to return. If a new Active Directory object is retrieved, it is processed as

previously described, and the new Entry is returned by the Active Directory Connector.

The ADCLV2 Connector delivers changed Active Directory objects as they are, with all their current

attributes. It does not determine which object attributes have changed, nor how many times an object has

been modified. All intermediate changes to an object are irrevocably lost. Each object reported by the

Active Directory Connector represents the cumulative effect of all changes performed to that object. The

Active Directory Connector, however, recognizes the type of object change that has to be performed on

the replicated data source and reports whether the object must be updated or deleted in the replicated

data source.

Note: You can retrieve only objects and attributes that you have permission to read. The Connector does

not retrieve an object or an attribute that you do not have permission to read, even if it exists in

Active Directory. In such a case the ADCLV2 Connector acts as if the object or the attribute does

not exist in Active Directory.

Chapter 2. Connectors 15

Using the Active Directory Changelog V2 Connector

Each delivered entry by the Connector contains the changeType attribute whose value is either ″update″

(for newly created and modified objects) or ″delete″ (for deleted Active Directory objects). Each entry also

contains 2 attributes that represent the objectGUID value:

v attribute objectGUID – contains a 16-byte byte array that represents the 128-bit objectGUID of the

corresponding Active Directory object.

v attribute objectGUIDStr – contains the string representation of the hexadecimal value of the 128-bit

objectGUID. It is delivered in the format {xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}, where each x

represents a hexadecimal digit.

If you need to detect and handle moved or deleted objects, you must use the objectGUID value as object

identifier instead of the LDAP distinguished name. The LDAP distinguished name changes when an

object is moved or deleted, while the objectGUID attribute always remains unchanged. Store the objects’

objectGUID attribute in the replicated data source and search by this attribute to locate objects.

Note: Deleted objects in Active Directory live for a configurable period of time (60 days by default), after

which they are completely removed. To avoid missing deletions, perform incremental

synchronizations more frequently.

The ADCLV2 Connector can be interrupted any time during the synchronization process. It saves the

state of the synchronization process in the User Property Store of the IBM Tivoli Directory Integrator

(after each Entry retrieval), and the next time the Active Directory Connector is started, it successfully

continues the synchronization from the point the Active Directory Connector was interrupted.

This Connector supports the IBM Tivoli Directory Integrator 6.1.1 Checkpoint/Restart functionality. When

a restart is requested and restart data is passed, the Connector retrieves the USN number from the restart

data and starts synchronization from this USN number.

Configuration

The Connector needs the following parameters:

LDAP URL

The LDAP URL of the Active Directory service you want to access. The LDAP URL has the form

ldap://hostname:port or ldap://server_IP_address:port. For example, ldap://localhost:389

Note: The default LDAP port number is 389. When using SSL, the default LDAP port number is

636.

Login username

The distinguished name used for authentication to the service. For example,

cn=administrator,cn=users,dc=your_domain,dc=com.

Note: If you use Anonymous authentication, you must leave this parameter blank.

Login password

The credentials (password).

Note: If you use Anonymous authentication, you must leave this parameter blank.

Authentication Method

The authentication method to be used. Possible values are:

v Anonymous (use no authentication)

v Simple (use weak authentication (cleartext password))

Use SSL

Specifies whether to use Secure Sockets Layer for LDAP communication with Active Directory.

16 Reference Guide

Extra Provider Parameters

Allows you to pass a number of extra parameters to the JNDI layer. It is specified as name:value

pairs, one pair per line.

Binary Attributes

Specifies a list of parameters that are to be interpreted as binary values instead of strings. The

default value for this parameter is objectGUID objectSid.

LDAP Search Base

The Active Directory sub-tree that is polled for changes. The search base should be an Active

Directory Naming Context if detection of deleted objects is required. For example,

dc=your_domain,dc=com.

Page Size

Specifies the size of the pages AD will return entries on (default value is 500).

Iterator State Key

Specifies the name of the parameter that stores the current synchronization state in the User

Property Store of the IBM Tivoli Directory Integrator. This must be a unique name for all

parameters stored in one instance of the IBM Tivoli Directory Integrator User Property Store.

Start at

Specifies either EOD or 0. EOD means report only changes that occur after the Connector is

started. 0 means perform full synchronization, that is, report all objects available in Active

Directory Service. This parameter is taken into account only when the parameter specified by the

Iterator State Key parameter is not found in the User Property Store.

State Key Persistence

Governs the method used for saving the Connector’s state to the System Store. The default is End

of Cycle, and the choices are:

After read

Updates the System Store when you read an entry from the Active Directory change log,

before you continue with the rest of the AssemblyLine.

End of cycle

Updates the System Store with the change log number when all Connectors and other

components in the AssemblyLine have been evaluated and executed.

Manual

Switches off the automatic updating of the System Store with this Connector’s state

information; instead, you will need to save the state by manually calling the ADCLV2

Connector’s saveStateKey() method, somewhere in your AssemblyLine.

Use Change Notifications

Specifies whether to use notification when waiting for new changes in Active Directory. If not

enabled, the Connector will poll for new changes. If enabled, the Connector will not sleep or

timeout but instead wait for a Change Notification event (Server Search Notification Control (OID

1.2.840.113556.1.4.528)) from the Active Directory server.

Timeout

Specifies the maximum number of seconds the Connector waits for the next changed Active

Directory object. If this parameter is 0, then the Connector waits forever. If the Connector has not

retrieved the next changed Active Directory object within timeout seconds, then it returns an

empty (null) Entry, indicating that there are no more Entries to return. The default is 5.

Sleep Interval

Specifies the number of seconds the Connector sleeps between successive polls.

Detailed Log

If this field is checked, additional log messages are generated.

Chapter 2. Connectors 17

Comment

Your comments here.

Migration from Active Directory Changelog EventHandler to Active

Directory Changelog (v.2) Connector

You need to do the following to reproduce an old EventHandler’s configuration into an ADCLv2

Connector’s implementation:

1. Create a new AssemblyLine and insert the Active Directory Changelog(v.2) Connector in it.

2. Set the ldapUrl, ldapUsername, ldapPassword, ldapAuthenticationMethod, ldapUseSSL,

ldapSearchBase and Debug Connector parameters to the values of the corresponding EventHandler

parameters.

3. Set the iteratorStateKey Connector parameter to the value of the persistentParameterName

EventHandler parameter.

4. Set the useNotifications Connector parameter to “true”.

5. When implementing the AssemblyLine flow consider that the Connector reports newly added entries

as modify.

See also

“LDAP Connector” on page 133,

“Exchange Changelog Connector” on page 71

“Netscape/iPlanet/Sun Directory Changelog Connector” on page 161,

“IBM Directory Server Changelog Connector” on page 97

“z/OS Changelog Connector” on page 233.

18 Reference Guide

AssemblyLine Connector

AssemblyLines are often called as compound functions from other AssemblyLines and EventHandlers.

Setting up a call to perform a specific task and mapping in and out parameters can be tedious in a

scripting environment. To ease the integration of AssemblyLines into a work flow, the AssemblyLine

Connector provides a standard and familiar way of doing this; it wraps much of the scripting involved to

execute an AssemblyLine. The AssemblyLine connector uses the AssemblyLine manual cycle mode for

inline execution.

The AssemblyLine Connector supports Iterator mode only, except when calling another AssemblyLine

which supports AssemblyLine Operations. See "AssemblyLine Operations" in IBM Tivoli Directory

Integrator 6.1.1: Users Guide for more information.

The server-server capability addresses security concerns when managers want TDI developers to access

connected systems, but not to access the operational parameters of the Connector – or to impact its

availability by deploying the new function on the same physical server.

Note: The return signature of previous versions of TDI is different, hence it is not possible to call

AssemblyLines on a remote server from this version (TDI 6.1.1) to previous versions, like TDI 6.0.

Configuration

The Connector needs the following parameters:

AssemblyLine

The name of the AssemblyLine to be executed from this Connector. Choose from the drop-down

list or enter the name.

Remote Server

The TDI server on which to run the AssemblyLine. Use blank for local instance or host[:port].

Config Instance

The config instance ID or URL on the remote server.

Keystores

Check this box to use the custom api.remote.server. java properties instead of standard

javax.net.ssl. properties for keystore configuration.If you do so, the following properties from

global.properties become relevant (see also "global.properties" in IBM Tivoli Directory Integrator

6.1.1: Administrator Guide):

api.client.keystore

Specifies the keystore file containing the client certificate

api.client.keystore.pass

Specifies the password of the keystore file specified by api.client.keystore

api.client.key.pass

The password of the private key stored in keystore file specified by api.client.keystore;

if this property is missing, the password specified by api.client.keystore.pass is used

instead.

api.truststore

Specifies the keystore file containing the TDI Server public certificate.

api.truststore.pass

Specifies the password for the keystore file specified by api.truststore.

Detailed log

If this field is checked, additional log messages are generated.

Chapter 2. Connectors 19

Using the Connector

The AssemblyLine Connector iterates on the result set from the target AssemblyLine which is always run

synchronously in manual cycle mode by the AssemblyLine Connector. The target AssemblyLine can be

local to the thread or on a remote server by use of the Server API.

Attribute Mapping

The AssemblyLine Connector’s input attribute map provides the returned attribute(s) from the target

AssemblyLine; those returned attributes are set up in the Call/Return section of the target AssemblyLine.

You can retrieve those attributes by means of the Query Schema button in the Input Map section; also, a

value of ″*″ will map all attributes.

AssemblyLine Parameters

The target AssemblyLine can be passed a Task Control Block (TCB) as a parameter. This parameter is

runtime generated and the AssemblyLine Connector will use this to pass parameters to the target

AssemblyLine.

20 Reference Guide

Axis Easy Web Service Server Connector

The Axis Easy Web Service Server Connector is part of the TDI Web Services suite. It is a simplified

version of the “Web Service Receiver Server Connector” on page 229 in that it internally instantiates,

configures and uses the AxisSoapToJava and AxisJavaToSoap FCs.

The functionality provided is the same as if you chain and configure these FCs in an AssemblyLine

which hosts the “Web Service Receiver Server Connector” on page 229. When using this Connector you

forgo the possibility of hooking custom processing before parsing the SOAP request and after serializing

the SOAP response, that is, you are tied to the processing and binding provided by Axis, but you gain

simplicity of setup and use.

The Axis Easy Web Service Server Connector operates in Server mode only.

AssemblyLines support an Operation Entry (op-entry). The op-entry has an attribute $operation that

contains the name of the current operation executed by the AssemblyLine. In order to process different

web service operations easier, the Axis Easy Web Service Server Connector will set the $operation attribute

of the op-entry.

The Axis Easy Web Service Server Connector supports generation of a WSDL file according to the input

and output schema of the AssemblyLine. As in TDI 6.1.1 AssemblyLines support multiple operations, the

WSDL generation can result in a web service definition with multiple operations. There are some rules

about naming the operations:

v Pre-6.1 TDI configuration files contain only one input and one output schema referred to as default

operation schemas. When a pre-6.1 TDI configuration is used the only operation generated is named as

the name of the AssemblyLine as in TDI 6.0.

v In TDI 6.1.1 configurations if there is an operation named “Default”, the corresponding operation in

the WSDL file is named as the name of the AssemblyLine.

v In TDI 6.1.1 configurations if there is an operation named “Default” and there is also an operation with

a name as the name of the AssemblyLine, both operations preserve their names in the WSDL file.

v In all other cases the operations appear in the WSDL file as they are named in the AssemblyLine

configuration.

This Connector’s configuration is relatively simple. The Connector parses the incoming SOAP request,

stores it (along with HTTP specific data) into the event Entry and then presents this Entry to the

AssemblyLine for Attribute mapping. When the work Entry (now storing the Java representation of the

SOAP response) is returned to the Connector in the Response phase, the Connector serializes the

response and returns it to the Web Service client.

When this Connector receives a SOAP request, the connector parses it and sets the $operation attribute of

the op-entry. The name of the operation is determined by the name of the element nested in the Body

element of the SOAP envelope. For parsing the SOAP messages, a SAX parser is used, which compared

to a DOM parser adds less performance overhead.

There are several types of SOAP messages:

v When using RPC-style SOAP messages the name of the element is the same as the name of the

operation.

v When using Document-style SOAP messages there are two scenarios:

– Using Wrapped Document-style SOAP messages – in this case the body of the SOAP message looks

like it is an RPC-style SOAP message; this is achieved by wrapping the contents of the SOAP Body

in an element nested in the SOAP Body Element; the name of this element is the name of the SOAP

operation.

– Using ordinary, or unwrapped Document-style SOAP messages – in this case the notion of SOAP

operation is not defined: the SOAP message is part of some SOAP message exchange. In this case,

Chapter 2. Connectors 21

the Connectors would set the $operation attribute of the op-entry to the name of the element nested

in the SOAP Body element and it is the responsibility of you as the TDI developer/deployer to

make sure that a TDI solution handles this correctly. When using ordinary or unwrapped

Document-style SOAP messages, it is best not to depend on the value of the $operation attribute of

the op-entry.

Hosting a WSDL file

The Axis Easy Web Service Server Connector provides the ″wsdlRequested″ Connector Attribute to the

AssemblyLine.

If an HTTP request arrives and the requested HTTP resource ends with ″?WSDL″ then the Connector sets

the value of the ″wsdlRequested″ Attribute to true and reads the contents of the file specified by the WSDL

File parameter into the ″soapResponse″ Connector Attribute; otherwise the value of this Attribute is set to

false.

This Attribute’s value thus allows you to distinguish between pure SOAP requests and HTTP requests for

the WSDL file. The AssemblyLine can use a Branch Component to execute only the appropriate piece of

logic – (1) when a request for the WSDL file has been received, then the AssemblyLine could perform

some optional logic or read a different WSDL file and send it back to the web service client, or just rely

on default processing; (2) when a SOAP request has been received the AssemblyLine will handle the

SOAP request. Alternatively, you could program the system.skipEntry(); call at an appropriate place (in

a script component, in a hook in the first Connector in the AssemblyLine, etc.) to skip further processing

and go directly to the Response channel processing.

It is the responsibility of the AssemblyLine to provide the necessary response to a SOAP request.

The Connector implements a public method:

public String readFile (String aFileName) throws IOException;

This method can be used from TDI JavaScript in a script component to read the contents of a WSDL file

on the local file system. The AssemblyLine can then return the contents of the WSDL in the

″soapResponse″ Attrribute, and thus to the web service client in case a request for the WSDL was received.

Configuration

Parameters

TCP Port

The port number the service is running (listening) on.

Connection Backlog

This represents the maximum queue length for incoming connection indications (a request to

connect). If a connection indication arrives when the queue is full, the connection is refused.

WSDL File

This parameter is required; its type is string. The value of this parameter must be the complete

file system path to the WSDL document.

SOAP Operation

The name of the SOAP operation as described in the WSDL file.

Complex Types

This parameter is not required, but if specified it is a list of fully qualified Java class names

(including the package name), where the different elements (Java classes) of this list are separated

by one or more of the following: a comma, a semicolon, a space, a carriage return or a new line.

Tag Op-Entry

When this parameter is checked (that is, “true”) the Connector will tag the op-entry only when

22 Reference Guide

the executed operation is on the list of exposed operations in the AssemblyLine/WSDL. If the

operation cannot be found in the WSDL then a SOAP Fault message will be generated and

returned to the client.

Note: In TDI 6.0 the AxisEasyWSServerConnector required the Soap Operation parameter to be

set. In TDI 6.1.1 when the Tag Op-Entry parameter is set to “true” the

AxisEasyWSServerConnector will use the extracted operation name instead of the name

specified with the Soap Operationparameter. In this case the Soap Operation parameter is

not a required parameter, it can be left blank.

Use SSL

If checked the server will only accept SSL (https) connections. The SSL parameters (keystore, etc.)

are specified as values of Java system properties in the global.properties file located in the TDI

installation folder.

Require Client Authentication

Specifies whether this Connector will require clients to authenticate with client SSL certificates. If

the value of this parameter is true (that is, checked) and the client does not authenticate with a

client SSL certificate, then the Connector will drop the client connection. If the value of this

parameter is true and the client does authenticate with a client SSL certificate, then the Connector

will continue processing the client request. If the value of this parameter is false, then the

Connector will process the client request regardless of whether the client authenticates with a

client SSL certificate.

Auth Realm

This is the basic-realm sent to the client in case authentication is requested. The default is "IBM

Tivoli Directory Integrator".

Use HTTP Basic Authentication

This connector supports HTTP basic authentication. To activate, check the “Use HTTP Basic

Authentication” checkbox. If activated, the server checks if any credentials are already sent and if

not, the server sends authorization request to client. After the client sends the needed credentials,

the Connector then sets two attributes: “http.username” and “http.password”. These two

attributes contain the username and password of the client. It is responsibility of the

AssemblyLine to check if this pair of username and password is valid. If the client is authorized

successfully then “http.credentialsValid” work Entry Attribute must be set to true. If the client is

not authorized then “http.credentialsValid” work Entry Attribute must be set to false. If the client

is not authorized then the server sends a “Not Authorized” HTTP message.

Comment

Your own comments go here.

Detailed Log

If checked, will generate additional log messages.

WSDL Output to Filename

The name of the WSDL file to be generated when the ″Generate WSDL″ button is clicked. This

parameter is only used by the WSDL Generation Utility – this parameter is not used during the

Connector execution.

Web Service provider URL

The address on which web service clients will send web service requests. Also this parameter is

only used by the WSDL Generation Utility – this parameter is not used during the Connector

execution.

 The Generate WSDL button runs the WSDL generation utility.

The WSDL Generation utility takes as input the name of the WSDL file to generate and the URL of the

provider of the web service (the web service location). This utility extracts the input and output

parameters of the AssemblyLine in which the Connector is embedded and uses that information to

Chapter 2. Connectors 23

generate the WSDL parts of the input and output WSDL messages. It is mandatory that for each Entry

Attribute in the ″Initial Work Entry″ and ″Result Entry″ Schema the ″Native Syntax″ column be filled in

with the Java type of the Attribute (for example, ″java.lang.String″). The WSDL file generated by this

utility can then be manually edited.

The operation style of the SOAP Operation defined in the generated WSDL is ″rpc″.

The WSDL generation utility cannot generate a <types...>...</types> section for complex types in the

WSDL.

Connector Operation

The Axis Easy Web Service Server Connector stores the following information from the HTTP/SOAP

request into Connector Attributes, available to be mapped in (that is, if the request is a SOAP request):

v The name of the host to which the request is sent (the local host) – stored into the ″host″ Attribute.

v The requested HTTP resource – stored into the ″requestedResource″ Attribute.

v The value of the ″soapAction″ HTTP header – stored into the ″soapAction″ Attribute.

v The SOAP request message itself in text XML form – stored into the ″soapRequest″ Attribute.

v Whether the WSDL file was requested – in the ″wsdlRequested″ Attribute. In this case, the WSDL file is

stored in the ″soapResponse″ Attribute, and none of the other Attributes are set.

v The parsed representation of the SOAP request in the ″requestObjArray″ Attribute.

This Connector parses the incoming SOAP request message and stores the Java representation of the

SOAP request in the ″requestObjArray″ Connector Attribute. The Connector is capable of parsing both

Document-style and RPC-style SOAP messages as well as generating (a) Document-style SOAP response

messages, (b) RPC-style SOAP response messages and (c) SOAP Fault response messages. The style of the

message generated is determined by the WSDL specified by the WSDL File Connector parameter.

The Connector is capable of parsing SOAP request messages and generating SOAP response messages

which contain values of complex types which are defined in the <types> section of the WSDL document.

In order to do that this Connector requires that (1) the Complex Types Connector parameter contains the

names of all Java classes that implement the complex types used as request and response parameters to

the SOAP operation and that (2) these Java classes’ class files are located in the Java class path of TDI.

If during parsing the SOAP request an Exception is thrown by the parsing code, then the Connector

generates a SOAP Fault Object (org.apache.axis.AxisFault) and stores it in the ″soapFault″ Connector

Attribute.

This Connector is capable of parsing and generating SOAP response messages encoded using both

″literal″ encoding and SOAP Section 5 encoding. The encoding of the SOAP response message generated

is determined by the WSDL specified by the WSDL File Connector parameter.

At the end of AssemblyLine processing in the Response channel phase, this Connector requires the Java

representation (Object[]) of the SOAP response message from the ″responseObjArray″ Attribute of the work

Entry to be mapped out. The Connector then serializes the SOAP response message, wraps it into an

HTTP response and returns it to the web service client.

See also

“Web Service Receiver Server Connector” on page 229.

24 Reference Guide

Btree Object DB Connector

The Btree Connector is a simple database capable of storing Java objects. Each object is uniquely

identified by a value called the key. The Connector uses an underlying Btree implementation to store

AssemblyLine Entry objects. This enables the user to store the conn and work entries using a unique key.

This Connector is also used by the AssemblyLine’s Delta feature, although in version 5.2 and later of the

product the usage of the System Store is recommended for this purpose.

If you want to use the Btree implementation directly to store a Java object other than AssemblyLine

entries, you must first get the Btree object and then use its methods directly.

Notes:

1. The “Btree Object DB Connector” is deprecated with this release of IBM Tivoli Directory Integrator,

and will be removed in a future version. Use the “System Store Connector” on page 179 instead, even

for small data sets.

2. The “Btree Object DB Connector” creates a new Btree database if one does not exist. However, if you

iterate on a non-existing database, it is created and the Iterator returns no values.

3. The Btree Connector excels at small, quick jobs, but because the Btree Connector does not

automatically balance its data structures, it degrades significantly when sorted lists are entered

containing a few thousand entries. For randomly-ordered data sets the limits are somewhat higher.

For larger data sets, consider using the “System Store Connector” on page 179, or the bundled

CloudScape™ database using a “JDBC Connector” on page 103 (also see ″Using CloudScape database″

in IBM Tivoli Directory Integrator 6.1.1: Users Guide).

Configuration

The Connector needs the following parameters:

DB Filename

The file path where the Btree data is stored.

Key Attribute Name

The attribute name giving the unique value for the entry.

Selection Mode

Specify All, Existing or Deleted. In order to use the Existing and Deleted keywords, the

Connector (database) must have been used by an AssemblyLine with the delta enabled. When

Delta is enabled on an Iterator using the Btree method, the AssemblyLine stores a sequence

property in the database and also adds a sequence number to each entry read from the source.

Detailed Log

If this field is checked, additional log messages are generated.

Btree object

The getDatabase() method returns the underlying Btree object. This object can be used to store other Java

objects than AssemblyLine entries. The following snippet shows how you can insert, search and replace

objects in the database:

var bt = system.getConnector("btreedb");

bt.initialze (null);

var db = bt.getDatabase();

db.insert ("my key", new java.lang.String("my value"));

var value = db.search ("my key");

value = value + " - modified";

db.replace ("my key", value);

Note: The BTree Connector lets you Lookup or Update on the keyAttribute only. Also, the BTree

Connector does not support the Advanced Link Criteria (see ″Advanced link criteria″ in IBM Tivoli

Directory Integrator 6.1.1: Users Guide).

Chapter 2. Connectors 25

Command line Connector

The command line Connector enables you to read the output from a command line or pipe data to a

command line’s standard input. Every command argument is separated by a space character, and quotes

are ignored. The command is executed on the local machine.

Note: You do not get a separate shell, so redirection characters (| > and so forth) do not work. To use

redirection, make a shell-script (UNIX) or batch command (DOS) with a suitable set of parameters.

For example, on a Windows system, type

cmd /c dir

to list the contents of a directory.

The Connector supports Iterator and AddOnly mode, as well as CallReply mode.

In Iterator and AddOnly mode, the command specified by the Command Line parameter is issued to the

target system during Connector initialization, which implies it will only be issued once for the whole

AssemblyLine lifetime.

However, in CallReply mode, the command is issued to the target system on each iteration of the

AssemblyLine, after Output Attribute Mapping (call phase), and before Input Attribute Mapping (reply

phase). In this mode, you must provide the command to be executed in an attribute called

command.line; after it has executed you will find the output result in an attribute called

command.output.

If a Parser is attached to the Command Line Connector, the output result will be parsed.

Native-encoded output on some operating systems

When you use the Command Line Connector to run a program on a Windows operating system, the

output from the program might be encoded using a DOS code page. This can cause unexpected results,

because Windows programs usually use a Windows code page. Because a DOS code page is different

from a Windows code page, it might be necessary to set the Character Encoding in the Command Line

Connector’s Parser to the correct DOS code page for your region; for example: cp850.

The same issue may arise on for example i5/OS®; here the output from commands is usually encoded in

the IBM037 character set; and on z/OS® it could be EBCDIC.

Also see “Character Encoding conversion” on page 277.

Some words on quoting

On Linux/Unix systems, this Connector has the capability to attempt to deal with the quoting of

parameters that may contain lexically important characters. When the parameter Use sh is checked, TDI

uses the sh program (e.g. the standard Linux shell) to run the command line, and sh will handle quoting

as you expect. If you do not have sh on your operating system, do not check this box.

Without using sh, when the Command Line Connector is run on a Unix/Linux platform, it does not

handle a command line with a parameter in quotes correctly. For example, the command:

Report -view fileView -raw -where "releaseName = ’ibmdi_60’ and nuPathName like ’src/com/ibm/di%’ "

This command should have the phrase "releaseName = ’ibmdi_60’ and nuPathName like

’src/com/ibm/di%’ " as one parameter, but it does not. The reason is that TDI uses the Java Runtime

exec() method, which splits all commands at spaces, and ignores all quoting. We would have liked this to

be split according to the quotes. Checking Use sh (when possible) solves this problem.

26 Reference Guide

Configuration

The Connector needs the following parameters:

Command Line

The command line to run. Used for Iterator and AddOnly modes only.

Use sh

If enabled (by default it is not), will instruct the Connector to use sh-like parsing. Specifically,

when this parameter is set to true the Connector is able to correctly parse quoted (using

double-quotation marks) command line arguments which contain spaces.

 This feature is only available on operating systems which provide the “sh” shell command

interpreter (usually UNIX-like operating systems).

Detailed Log

If this field is checked, additional log messages are generated.

Parser The Parser responsible for interpreting or generating entries.

Examples

Refer to the root_directory/examples/commandLine_connector directory of your IBM Tivoli Directory

Integrator installation.

See also

“Remote Command Line FC” on page 373,

“z/OS TSO/E Command Line FC” on page 377

Chapter 2. Connectors 27

28 Reference Guide

Direct TCP /URL scripting

You might want to access URL objects or TCP ports directly, not using the Connectors. The following is

example code that can be put in your Prolog:

TCP

// This example creates a TCP connection to www.example_page_only.com

 and asks for a bad page

var tcp = new java.net.Socket ("www.example_page_only.com", 80);

var inp = new java.io.BufferedReader (new java.io.InputStreamReader

 (tcp.getInputStream()));

var out = new java.io.BufferedWriter (new java.io.OutputStreamWriter

 (tcp.getOutputStream()));

task.logmsg ("Connected to server");

// Ask for a bad page

out.write ("GET /smucky\r\n");

out.write ("\r\n");

// When using buffered writers always call flush to make sure data

 is sent on connection

out.flush ();

task.logmsg ("Wait for response");

var response = inp.readLine ();

task.logmsg ("Server said: " + response);

URL

// This example uses the java.net.URL object instead of the raw

 TCP socket object

var url = new java.net.URL("http://www.example_page_only.com");

var obj = url.getContent();

var inp = new java.io.BufferedReader (new java.io.InputStreamReader

 (obj));

while ((str = inp.readLine()) != null) {

task.logmsg (str);

}

Chapter 2. Connectors 29

30 Reference Guide

Domino/Lotus Notes Connectors

In order to connect to a Domino Server or a Lotus Notes system, a discussion on what types of

connections ("Session types" in Lotus Notes terminology) are possible, is appropriate. For these

Connectors to operate, you will need to install a Domino/Lotus Notes client library, and the decision on

which client library to install hinges on which Session Type is required.

Session types

Local Client Session

Local client session calls to the Domino Server are based on Notes user ID.

 A Notes client must be installed locally. This session type requires Notes.jar file to be present in

the <TDI_install_folder>/jars/3rdparty/IBM folder and that the local client binaries are specified

in the PATH system environment variable.

Local Server Session (Domino Local Session)

When creating this type of session, the ID file of the local server is used.

 The host parameter in the Notes API method for creating session must be null. A reference to the

current server such as a null server parameter in the session creation method means the local

Domino environment is indicated. If a Local Client session is to be created, the user parameter is

also required to be null which indicates to use the Notes user ID.

 The local server is used only to create a session. However, servers connected to the local

environment can still be accessed by specifying their names. The name is pointed as first

parameter of the “getDatabase” methods of the lotus.domino.Session class.

 For “Local Server” sessions you need to install Lotus Domino Server on the machine where TDI

is installed.

IIOP Session and the IOR Parameter

An IIOP Session is a network based session, where the remote Domino server handles the client

requests.

 When an IIOP session is specified the Connector uses a Domino User Name and the Internet

password of this user for authentication. The users’ User Name and Internet password are

parameters of the Connector. It is not necessarily the same user as the system local user ID. There

are two approaches for the creation of an IIOP Session:

Provide the IOR String explicitly

 The IOR is a text string required by the Domino Java API in order to establish an IIOP

session to the Domino Server. The TDI 6.0 Domino Change Detection Connector uses a

session creation method which obtains the IOR string from the Domino HTTP task. In

TDI 6.1.1 Domino/Lotus Connectors the parameter “IOR String” is externalized. This

parameter is optional. If this parameter is missing or has no value, IIOP sessions will be

created as they used to in TDI 6.0. If this parameter is present in the Connector

configuration the following methods from the Domino Java API will be used for session

creation:

static public Session createSessionWithIOR(String IOR,

 String user, String passwd)

 throws NotesException

 static public Session createSessionWithIOR(String IOR,

 String args[], String user, String passwd)

 throws NotesException

Providing this Connector parameter improves the Connectors in two ways:

Chapter 2. Connectors 31

v It is no longer required that the Domino HTTP task be running in order for the

Connector to function, thus lowering the Connector setup requirements.

v The Connector will be able to function when the Domino HTTP task is configured to

use the SSL port only.

Get the IOR String from the HTTP task.

In this case, the HTTP Port parameter is used by the Connector to get the IOR String

from the Domino Server using its HTTP task. If the Connector is to use the local client so

as to create a session to the Domino Server, this port is not taken into account.

 When creating an IIOP session SSL could be used. The Connector first tries to create a

session using the value of the IOR parameter. If SSL is to be used, the Connector uses the

session creation method that accepts an array of strings as a parameter. The HTTP Port

parameter is used only when the IOR parameter is empty.

 If SSL is used, the Connector tries to create a session using the following method:

 static public Session createSession(String host, String args[],

 String user, String password)

 throws NotesException

In this case the value of the HTTP Port parameter is appended to the host. This method

tries to get the IOR string from the Domino HTTP task that should run on this port. The

task must not use this port to run SSL on it.

 If SSL is not used, the Connector tries to create a session using the following method:

 static public Session createSessionWithIOR(String host,

 String user, String passwd)

 throws NotesException

The port is appended to the host. The Domino HTTP task must run on this port without

using SSL. The method will try to get the IOR string from the HTTP task and create an

IIOP session.

 These session types require ncso.jar file to be present in the <TDI_install_folder>/jars/3rdparty/
IBM folder and that the local server binaries are specified in the PATH system environment

variable.

Supported session types by Connector

 Table 1. Supported Domino/Lotus Notes Session types, per Connector

Supported Sessions �

Connectors �

Local Client Session Local Server Session IIOP session

Domino Change Detection

Connector

Yes No Yes*

Domino Users Connector Yes Yes No

Lotus Notes Connector Yes Yes Yes

*) The IIOP session connection type for the Domino Change Detection Connector is deprecated

for this release, and may be removed in future versions of TDI.

Note: The Domino APIs for SSL are not JSSE compliant, and are instead Domino specific. This

means that the TDI truststore and keystore do not play any part in SSL configuration for

the Domino Change Detection Connector. For SSL configuration of the Domino Change

Detection Connector, the TrustedCerts.class file that is generated every time the DIIOP

process starts (in the Domino Server) must be in the classpath of TDI (ibmditk or

ibmdisrv). You must copy the TrustedCerts.class to a local path included in the

CLASSPATH or have the Lotus\Domino\Data\Domino\Java of your Domino installation

32 Reference Guide

in the CLASSPATH. Whether the TDI Truststore or Keystore are set or not in the

global.properties (or solution.properties) is of no consequence to this Connector.

Java Class loader issue

Some of the classes in both the “Notes.jar” and “ncso.jar” libraries have exactly the same fully qualified

Java class names. That is why if both jar files are in the Java class path, only one of them is loaded by the

Java class loader. Since it is undefined which one will be loaded, one normally removes one of the jar

files from the class path and leaves only the needed one. In this way only one type of Notes/Domino

application session can be used at a time from a TDI component, because switching the type of the

application session supported requires stopping the TDI server, changing the jar file and then starting the

TDI server again.

The Domino Users Connector uses only the “Notes.jar” library as it does not create IIOP sessions. That is

why the “ncso.jar” library must not be in the Java class path. Thus other TDI components which need the

“ncso.jar” library in order to establish an IIOP session cannot run while the Domino Users Connector is

running.

Correspondingly when the Connector runs with IIOP sessions only “ncso.jar” must be presented in

classpath and “Notes.jar” must be removed from it.

Supported versions of Lotus Notes and Lotus Domino

These Connectors are supported on Domino R6, Domino R6.5 and Domino R7

Native API call threading

When an AssemblyLine (containing Connectors) is executed by the TDI Server it runs in a single thread

and it is only the AssemblyLine thread that accesses the AssemblyLine Connectors. The initializating

Notes API, selecting entries, iterating through the entries and the termination of the Connector is

performed by one worker thread.

A requirement of the Notes API is that when a local session is used each thread that executes Notes API

functions must initialize the NotesThread object, before calling any Notes API functions. The Config

Editor GUI threads do not initialize the NotesThread object and this causes a Notes exception.

There are several ways to initialize the NotesThread object. The way the Connectors use is to call the

NotesThread.sinitThread method when a local session is created.

That is why the Domino Change Detection Connector and Domino Users Connector use their own

internal thread to initialize the Notes runtime and to call all the Notes API functions. The internal thread

is created and started on Connector initialization and is stopped when the Connector is terminated. The

Connector delegates the execution of all native Notes API calls to this internal thread. The internal thread

itself waits for and executes requests for native Notes API calls sent by other threads.

This implementation makes Connectors support the Config Editor GUI functionality and multithread

access in general. The Lotus Notes Connector initializes the Notes runtime if local session is created.

The ncso.jar file

In order to use IIOP sessions, the TDI Lotus Notes/Domino components require the presence of the

“ncso.jar” file.

From IBM Tivoli Directory Integrator 6.1.1, “ncso.jar” will no longer be shipped with the TDI product.

You need to manually provide this file in order for the TDI Lotus/Domino components to function

properly.

Chapter 2. Connectors 33

However, the “ncso.jar” file is shipped with the Domino Server. This file can be taken from the Domino

installation (usually "<Domino_root>>\Data\domino\java\ncso.jar" on Windows platforms) and place it

in the TDI_root\jars\3rdparty\IBM folder, so that the TDI Server will load it on initialization. Since the

“ncso.jar” will not be provided as part of the IBM Tivoli Directory Integrator 6.1.1 installation, some

existing TDI 6.0 functionalities will change as follows.

TDI Server

The “-v” command-line option: The TDI Server provides the “-v” command-line option which displays

the versions of all TDI components. Since the “ncso.jar” file will not be provided as part of the TDI

installation, if “ncso.jar” is not taken from the Domino server or Lotus Notes installation, messages like

the following will be displayed (The components which do not rely on the “ncso.jar” have their versions

displayed properly):

ibmdi.DominoUsersConnector:

com.ibm.di.connector.dominoUsers.DominoUsersConnector:

2006-03-03: CTGDIS001E The version number of the Connector is undefined

The Server API getServerInfo method: The Server API provides a method to request version

information about TDI components (Session.getServerInfo). If version information is requested via the

Server API about any of the Connectors which rely on “ncso.jar” and if this jar is not taken from the

Domino server or Lotus Notes installation, an error is thrown. For example if the local Server API is

accessed through a script like this:

session.getServerInfo().getInstalledConnectors()

the following error is displayed:

18:16:12 CTGDKD258E Could not retrieve version info for class

’com.ibm.di.connector.DominoChangeDetectionConnector’.:

java.lang.NoClassDefFoundError: lotus.domino.NotesException

Running an AssemblyLine, IIOP Session

AssemblyLines which use a Connector (which uses an IIOP session) will fail to execute with a

NoClassDefFoundError exception, if the “ncso.jar” file is not taken from the Domino Server or Lotus

Notes installation.

TDI Config Editor Aspects

Component version table: This is the table with the versions of all installed TDI components (available

from menu ″Help″->″About IBM Tivoli Directory Integrator Components″). This table will fail to display

component versions for any of the Notes/Domino Connectors if neither the Notes.jar nor the ncso.jar is

taken from the Domino/Notes installation

Connector mode combo box: The Connector mode combo box will display all existing TDI Connector

modes (not only the supported ones) for the Notes/Domino Connectors, if neither the Notes.jar nor the

ncso.jar is taken from the Domino/Notes installation.

“Input Map” connection to the data source: Attempting a connection to the data source from the “Input

Map” tab for any of the Notes/Domino Connectors will display an error that the Connector could not be

loaded, if the jar library is not taken from the Notes/Domino installation, whatever session is created.

34 Reference Guide

Domino Change Detection Connector

The Domino Change Detection Connector enables IBM Tivoli Directory Integrator 6.1.1 to detect when

changes have occurred to a database maintained on a Lotus Domino server. The Domino Change

Detection Connector retrieves changes that occur in a database (NSF file) on a Domino Server. It reports

changed Domino documents so that other repositories can be synchronized with Lotus Domino.

Note: Refer to Supported session types by Connector for an overview of which session types are possible

with this Connector.

When running the Connector reports the object changes necessary to synchronize other repositories with

a Domino database, regardless of whether these changes have occurred while the Connector has been

offline or they are happening while it runs.

The Domino Change Detection Connector operates in Iterator mode, and reports document changes at

the Entry level only.

On each AssemblyLine iteration the Domino Change Detection Connector delivers a single document

object which has changed in the Domino database. The Connector delivers the changed Domino

document objects as they are, with all their current items and also reports the type of object change -

whether the document was added, modified or deleted. The Connector does not report which items have

changed in this document or the type of item change. After the Connector retrieves a document change, it

parses it and copies all the document items to a new Entry object as Entry Attributes. This Entry object is

then returned by the Connector.

This connector supports Delta Tagging at the Entry level only.

This Connector can be used in conjunction with the IBM Password Synchronization plug-ins. For more

information about installing and configuring the IBM Password Synchronization plug-ins, please see the

IBM Tivoli Directory Integrator 6.1.1: Password Synchronization Plug-ins Guide.

The Connector stores locally, on the IBM Tivoli Directory Integrator 6.1.1 machine, the state of the

synchronization. When started it continues from the last synchronization point and reports all changes

after this point, including these changes that happened while the Connector was offline.

Note: Changed documents are not delivered in chronological order or in any other particular order,

unless you check the "Deliver Sorted" checkbox in the configuration screen. Refer to “Sorting” on

page 38 for more information. Without using this option, it means that documents changed later

can be delivered before documents changed earlier and vice versa.

The Connector will signal end of data and stop when there are no more changes to report. It can however

be configured not to exit when all changes have been reported, but stay alive and repeatedly poll

Domino for changes.

Using the Connector

Document identification: The Domino Change Detection Connector retrieves the Universal ID (UnID) of

Domino documents. Use the UnID value to track document changes reported by the Connector.

For example, when a deleted document is reported, use its UnID value to lookup the object that has to be

deleted in the repository you are synchronizing with. If you are synchronizing Domino users (Person

documents), then you might need to find out when a user is renamed. When a user is renamed (the

FullName item of the Person document is changed), the Connector will report this as a ″modify″

operation. When you lookup objects in the other repository by UnID, you will be able to find the original

object, read its old FullName attribute, compare it against the new FullName value and determine that

the user has been renamed.

Chapter 2. Connectors 35

Deleted documents: Documents that are deleted from a Domino database can be tracked by ″deletion

stub″ objects. Deletion stubs provide the Universal ID and Note ID of the deleted document, but nothing

more. That is why when the Connector comes across a deleted document, it returns an Entry which does

not contain any document items, but only the following Entry Attributes added by the Connector itself:

v ″$$UNID″

v ″$$NoteID″

v ″$$ChangeType″

Minimal synchronization interval: There is a parameter for each database called ″Remove documents

not modified in the last x days″. Deletion stubs older than this value will be removed. If you are

interested in processing deleted documents, you must synchronize (run the Connector) on intervals

shorter than the value of this parameter.

On both Domino R6, Domino R6.5 and Domino R7, this parameter can be accessed from the Lotus

Domino Administrator: open the database, then choose from the menu File|Replication|Settings..., select

Space Savers – the parameter is called Remove documents not modified in the last x days.

The default value of this parameter is 90 days both on Domino R6, Domino R6.5 and Domino R7.

Switching to a database replica: UnIDs are the same across replicas of the same database. This allows

you to switch to another replica of the Domino database in case the original database is corrupted or not

available.

Document timestamps, however, are different for the different replicas. That is why when a switch to a

replica is done, you must perform a full synchronization (use a new key for ″Iterator State Key″ and set

the ″Start At″ parameter to ″Start Of Data″). This will possibly report a lot of document additions and

deletions which have already been applied to the other repository, but will guarantee that no updates are

missed.

The password prompt: A password prompt blocks the Connector (and thus the AssemblyLine) until the

password of the local Notes ID file is typed in.

Note: If the ID file has no password, then no password prompt is displayed. Thus it is possible to run an

AssemblyLine that contains the Domino Change Detection Connector from within the Config

Editor (without the password prompt blocking it).

Structure of the Entries returned by the Connector: All items contained in a document are mapped to

Entry Attributes with their original item names.

All date values are returned as java.util.Date objects.

The following Entry Attributes are added by the Connector itself (their values are not available as

document items):

v $$UNID – the Universal ID of the document (see ″The $$UNID and $$NoteID Attributes″)

v $$NoteID – the Note ID of the document (see ″The $$UNID and $$NoteID Attributes″)

v $$ChangeType – the type of document modification (see ″The $$ChangeType Attribute″)

v $$DateCreated – a java.util.Date object representing the time this document was created (this Attribute

is available for non-deleted documents only).

v $$DateModified - a java.util.Date object representing the time of the last modification of this document

(this Attribute is available for non-deleted documents only).

The $$UNID and $$NoteID Attributes: The Universal ID (UnID) is the value that uniquely identifies a

Domino document. All replicas of the document have the same UnID and the UnID is not changed when

the document is modified. This value should be used for tracking objects during synchronization. The

36 Reference Guide

Universal ID value is mapped to the $$UNID Attribute of Entry objects delivered by the Connector. The

value of the $$UNID Attribute is a string of 32 characters, each one representing a hexadecimal digit (0-9,

A-F).

The Connector also returns the NoteID document values. This value is unique only in the context of the

current database (a replica of this document will in general have a different NoteID). The Connector

delivers the NoteID through the $$NoteID Entry’s Attribute. The value of this Attribute is a string

containing up to 8 hexadecimal characters.

The $$ChangeType Attribute: An Attribute named $$ChangeType is added to all Entries returned by

the Domino Change Detection Connector.

The value of the $$ChangeType Attribute can be one of:

v add – means that the document reported is a newly added document in the Domino database

v modify – means that the document reported is an already existing document that has been modified

v delete – means that the document reported has been deleted from the Domino database

Synchronization state values: Several values are saved into the System Store and represent the current

synchronization state. The Connector reads these values on startup and continues reporting changes from

the right place.

Regardless of the mode in which the Connector is run two synchronization state values are stored in the

User Property Store. These two values a stored in an Entry object as Attributes with the following names

and meaning:

v SYNC_TIME – this Attribute is a java.util.Date object representing the ″since″ value for the next poll of

the Connector, that is, the next Connector’s poll will return only database modifications that occurred

at or after this time. In the special case when Start Of Data is used as a start condition, the

java.lang.String value ″NULL_DATE″ is stored.

v SYNC_CHECK_DOCS – this Attribute is a java.lang.Boolean object, which indicates whether the

Connector must check for already processed documents in the Connector-specific System Store table

(see below). This Attribute is only used when the Connector State Key Persistence parameter is set to

After read. When the Connector State Key Persistence parameter is set to End of cycle the value of this

Attribute is always false.

When the Connector is run, in addition to storing values in the User Property Store it creates (if not

already created) a Connector-specific table in the System Store. The name of this table is the

concatenation of ″domch_″ and the value of the Iterator State Key Connector parameter. This

Connector-specific table stores values with the following characteristics:

v The keys are the UnIDs of already delivered changed documents as java.lang.String objects

v The values are java.util.Date object representing the datetime for the next poll as it was at the time this

document was delivered by the Connector; if however the UnID corresponds to a deleted document,

the java.lang.String constant ″NULL_DATE″ is stored instead.

The Connector-specific table is cleared each time the Connector successfully completes a synchronization

session.

For each instance of the Domino Change Detection Connector executed on the same IBM Tivoli Directory

Integrator Server there is a different Connector-specific table in the System Store.

Accessing the Connector synchronization state: While the Connector is offline you can access the

″since″ datetime that will be used on the next Connector run. This datetime is stored in the User Property

Store.

This is how you can get the datetime value for the next synchronization:

Chapter 2. Connectors 37

var syncTime = system.getPersistentObject("dcd_sync");

var sinceDateTimeAttribute = syncTime.getAttribute("SYNC_TIME");

var sinceDateTime = sinceDateTimeAttribute.getValue(0);

if (sinceDateTime.getClass().getName().equals("java.util.Date")) {

main.logmsg("Start date: " + sinceDateTime);

}

else {

main.logmsg("Start date: Start Of Data");

}

″dcd_sync″ is the value specified by the Iterator Store Key Connector parameter.

This is how you can set a start datetime for the next synchronization:

var syncTime = system.newEntry();

syncTime.setAttribute("SYNC_TIME", new java.util.Date()); //current time

syncTime.setAttribute("SYNC_CHECK_DOCS", new java.lang.Boolean("false"));

system.setPersistentObject("dcd_sync", syncTime);

Filtering entries: No filtering of documents is performed in this version of the Connector. All database

documents that have been created, modified or deleted are reported by the Connector.

If you need filtering you must do this yourself by scripting in the Connector hooks.

Sorting: The changed documents can be delivered sorted by the date they were last modified on. This is

done by checking the checkbox “Deliver Sorted” in the configuration screen.

Note: Using sorting comes with a performance penalty, in terms of memory usage and CPU time. That is

why you should consider carefully whether you really need sorting.

Running from the Administration and Monitor Console (AMC): When an AssemblyLine that contains

the Domino Change Detection Connector is started from AMC it displays the Lotus Notes password

prompt on the console of the IBM Tivoli Directory Integrator (TDI) Server. Since generally AMC and the

TDI Server run on different machines, the AMC operator will not see this password prompt on the

machine he or she works on. That is why the AMC operator might be tricked into thinking that the

AssemblyLine is running properly, while at the same time it is waiting for the User ID password to be

manually entered on the Server machine. Also, that is why when starting an AssemblyLine (that contains

a Domino Change Detection Connector) from AMC, the AMC operator must see to it that the User ID

password be manually entered on the IBM Tivoli Directory Integrator Server machine for the

AssemblyLine to execute properly.

Domino Server system time is used: The Domino Change Detection Connector uses the timestamp of

last modification for detecting changes in a Domino database. The Connector state includes timestamp

values read by the Domino Server system clock. That is why changing the Domino Server system time

while the Connector is running or between Connector runs might result in incorrect Connector operation

– changes missed or repeated, incorrect change type reported, etc.

Processing very large Domino databases (.nsf files): The Connector could need a bigger amount of

physical memory – for example, when working on very large databases containing 1,000,000 documents

or more, especially when performing a full synchronization. This is caused by the Connector keeping all

retrieved document UnIDs in memory for the duration of the synchronization session. For example, 512

MB of physical memory should be enough for processing a database that contains about 1,000,000

changed documents (provided that no other memory consuming processes are running). If this amount of

memory is unavailable, then you can increase the memory available to IBM Tivoli Directory Integrator.

Also, be mindful of the "Deliver Sorted" parameter - enabling this could have a major performance

impact.

38 Reference Guide

Checkpoint/Restart support: The Domino Change Detection Connector supports the TDI

Checkpoint/Restart functionality only when the State Key Persistence is set to "After Read". In this mode

the Connector keeps track of the complete state of the synchronization process and is therefore able to

restart the synchronization process if interrupted, that is, when run in this mode the Connector is capable

of checkpoint/restart.

Required Setup of the IBM Tivoli Directory Integrator

See the section, Supported session types by Connector and the sections below about the issue of required

libraries, and possible library conflicts.

Required Domino Setup

Required Domino Server tasks: The Connector requires that the following Domino Server tasks be

started on the Domino Server:

v HTTP Web Server

v DIIOP Server

If these Domino Server tasks are not started on the server the Connector will fail.

Required user privileges: The Domino Change Detection Connector creates two sessions to the Domino

Server – a session through the local Notes client code using the local User ID file and a remote IIOP

session using an internet user account (the same Domino user can be used for establishing both sessions

but this is not required). The accounts used for these sessions must have the following privileges:

The account of the local User ID

The Domino user whose User ID file is deployed locally needs at least the ″Reader″ Access

configured in the Access Control List (ACL) of the Domino database that is polled for changes.

You can configure this from the ″Files″ tab of the Lotus Domino Administrator: right click on the

database which will be polled for changes, select ″Access Control -> Manage...″. If you don’t see

the user name associated with this User ID file listed, click the ″Add...″ button and add this user

name to the list. Select this user name in the list and make sure that the Access is set to ″Reader″

or higher (that is, ″Reader″, ″Author″, ″Editor″, ″Designer″ or ″Manager″) for this user.

The internet account for the IIOP session

 The Connector needs the username and password of a Lotus Domino Internet user for creating

the IIOP session. The Internet user must have at least the ″Reader″ Access configured in the

Access Control List (ACL) of the Domino database that is polled for changes.

 You can configure this from the ″Files″ tab of the Lotus Domino Administrator: right click on the

database which will be polled for changes, select ″Access Control -> Manage...″. If you don’t see

the Internet user listed, click the ″Add...″ button and add the Internet user to the list. Select the

Internet user name in the list and make sure that the Access is set to ″Reader″ or higher (that is,

″Reader″, ″Author″, ″Editor″, ″Designer″ or ″Manager″) for this user.

Configuration

The Domino Change Detection Connector provides the following parameters:

Session Type

Specifies whether the Connector will create an IIOP session or performs Local Client calls. This is

a drop-down list; the default value is "IIOP". Note that the IIOP session connection type for this

Connector is deprecated; future version of TDI will only support Local Client calls, at which time

this parameter will be removed.

Domino Server IP Address

The IP address of the Domino Server where the database that will be polled for changes resides.

IOR String

The IOR string used to create the IIOP session.

Chapter 2. Connectors 39

HTTP Port

The port on which the HTTP task of the Domino Server is running. The default value is 80.

User Name

The name of the user used for the Java IIOP session authentication as specified by the first value

of the User name field of the user’s Person document.

Internet Password

The password of the user used for the Java IIOP session authentication as specified in the

″Internet password″ field of the user’s Person document.

Database

The filename of the Domino database which will be polled for changes, for example ″names.nsf″.

Iterator State Key

Specifies the name of the parameter that stores the current synchronization state in the User

Property Store of the IBM Tivoli Directory Integrator. This should be a unique name for all

parameters stored in one instance of the IBM Tivoli Directory Integrator’s User Property Store.

 The Delete button clears all synchronization state associated with the value of this parameter.

When clicked, the Delete button deletes the key-value pair from the User Property Store as well

as the Connector-specific table from the System Store.

Start At

The type of starting condition. Can be one of:

Start Of Data

Performs a full synchronization retrieving all documents from the database.

End Of Data

Retrieve future changes only (changes that are done after the connector is run once.)

Specific date

Retrieve changes that occurred at or after the value specified by the Start Date parameter.

The default value is "Start Of Data".

Note: This parameter is taken into account only when the persistent parameter specified by

Iterator State Key is not found in the User Property Store.

Start Date

The Connector will retrieve documents which have been changed at or after this date/time. This

parameter accepts the following date/time formats:

v yyyy-MM-dd HH:mm:ss.SSS — for example: 2002-05-23 16:39:07.628 (that is 4-digit year,

2-digit month, 2-digit day, 2-digit 24-hour hour, 2-digit minutes, 2-digit seconds and 3-digit

milliseconds). Please note that the actual precision of Lotus Notes date/times is 10

milliseconds.

v yyyy-MM-dd HH:mm:ss — for example: 2002-05-23 16:39:07

v yyyy-MM-dd — for example: 2002-05-23

It is only taken into account when the persistent parameter specified by ″Iterator State Key″ is

not found in the System Store and the ″Start At″ parameter is set to ″Specific Date″.

State Key Persistence

Governs the method used for saving the Connector’s state to the System Store. The default is End

of Cycle, and choices are:

After Read

Updates the System Store when you read an entry from the Domino change log, just

before you continue with the rest of the AssemblyLine. This mode of operation was called

"Assured once and only once delivery" in older versions of TDI.

40 Reference Guide

End of Cycle

Updates the System Store when all Connectors and other components in the

AssemblyLine have been evaluated and executed.

Manual

Switches off the automatic updating of the System Store with this Connector’s state

information; instead, you will need to save the state by manually calling the Domino

Change Detection Connector’s saveStateKey() method, at a suitable place at your discretion

in your AssemblyLine.

Timeout

Specifies the maximum number of seconds the Connector waits for the next changed document.

If this parameter is 0, then the Connector waits forever. If the Connector has not retrieved the

next changed document object within timeout seconds from the beginning of the waiting, then it

returns a NULL Entry, indicating that there are no more Entries to return.

Sleep Interval

Specifies the number of seconds the Connector sleeps between successive polls for changes.

Use SSL

Enables encrypted communications with the Domino server, using client-side certificates. The

parameter is relevant only for IIOP Sessions.

Deliver Sorted

If checked, the changed documents are delivered sorted by the date they were last modified on;

otherwise the changed documents are delivered in random order.

Detailed Log

Check for additional log messages.

Troubleshooting the Domino Change Detection Connector

1. Problem: When you run an AssemblyLine that uses the Domino Change Detection Connector, just

after you enter the User ID password at the password prompt the AssemblyLine fails with the

following exception: NotesException: Could not get IOR from Domino Server: ... where

<domino_server_ip> is the IP address of the Domino Server you are trying to access, that is, the value

of the Domino Server IP address Connector parameter.

Solution: This exception indicates that the HTTP Web Server task on the Domino Server is not

running. Start the HTTP Web Server task on the Domino Server you are trying to access and then

start your AssemblyLine again.

2. Problem: When you run an AssemblyLine that uses the Domino Change Detection Connector, just

after you enter the User ID password at the password prompt the AssemblyLine fails with the

following exception: NotesException: Could not open Notes session: org.omg.CORBA.COMM_FAILURE:

java.net.ConnectException: Connection refused: connect Host: <domino_server_ip> Port: XXXXX vmcid: 0x0

minor code: 1 completed: No where <domino_server_ip> is the IP address of the Domino Server you are

trying to access, that is, the value of the Domino Server IP address Connector parameter.

Solution: This exception indicates that the DIIOP Server task on the Domino Server is not running.

Start the DIIOP Server task on the Domino Server you are trying to access and then start your

AssemblyLine again.

3. Problem: While the Domino Change Detection Connector is retrieving changes the following

exception occurs: Exception in thread ″main″ java.lang.OutOfMemoryError

Solution: This exception indicates that the memory available to the IBM Tivoli Directory Integrator

Java Virtual Machine (the JVM maximum heap size) is insufficient. In general the Java Virtual

Machine does not use all the available memory. You can increase the memory available to the IBM

Tivoli Directory Integrator JVM by doing the following:

Chapter 2. Connectors 41

Windows platforms

Edit ibmdisrv.bat in the IBM Tivoli Directory Integrator install directory to adjust the existing

-Xms16m option to -Xms254m -Xmx1024m in the next to last line of the file (i.e. the line that

invokes java).

Note: -Xms is the initial heap size in bytes and -Xmx is the maximum heap size in bytes. You

can set these values according to your needs.

This will have no effect if you are trying to run an AssemblyLine with a memory problem

from the Config Editor (ibmditk), as the Config Editor starts a new instance of the JVM to run

the AssemblyLine; with default parameters. In order to accommodate this situation, you need

to do the following:

a. Edit the global.properties or solution.properties file to alter the settings of

com.ibm.di.javacmd to refer to a batch file. (for example, com.ibm.di.javacmd=c:\Program

Files\IBM\TDI\V6.1\myjava.bat)

b. Create a command file (the aforementioned c:\Program Files\IBM\TDI\V6.1\myjava.bat)

containing the appropriate Java invocation command, like "javaw" -Xms254m -Xmx1024M %*

Now the CE will use the modified JVM invocation, with increased heap size.

Unix/Linux platforms

Edit ibmdisrv in the IBM Tivoli Directory Integrator install directory to adjust the existing

-Xms16m option to -Xms254m -Xmx1024m in the last line of the file (i.e. the line that invokes

java).

Note: -Xms is the initial heap size in bytes and -Xmx is the maximum heap size in bytes. You

can set these values according to your needs.

This will have no effect if you are trying to run an AssemblyLine with a memory problem

from the Config Editor (ibmditk), as the Config Editor starts a new instance of the JVM to run

the AssemblyLine; with default parameters. In order to accommodate this situation, you need

to do the following:

a. Edit the global.properties or solution.properties file to alter the settings of

com.ibm.di.javacmd to refer to a batch file. (for example, com.ibm.di.javacmd=/opt/IBM/
TDI/V6.1/myjava.bat)

b. Create a command file (the aforementioned /opt/IBM/TDI/V6.1/myjava.bat) containing

the appropriate Java invocation command, like "java" -Xms254m -Xmx1024M $*

Now the CE will use the modified JVM invocation, with increased heap size.
4. Problem: The Connector reports all database documents as deleted although they are not deleted.

Solution: The user of the local User ID file is not given the necessary privileges on the database

polled for changes. Give the necessary user rights as described in the ″Required user privileges″

section.

5. Problem: When you run an AssemblyLine that uses the Domino Change Detection Connector, the

following exception occurs: java.lang.UnsatisfiedLinkError: <TDI_install_folder>\libs\domchdet.dll: Can’t

find dependent libraries where <TDI_install_folder> is the folder where IBM Tivoli Directory Integrator is

installed.

Note: If you run the Integrator Server from the command prompt, then before this exception message

is printed, a popup dialog box appears saying ″This application has failed to start because

nNOTES.dll was not found. Re-installing the application may fix this problem.″

Solution: This exception message as well as the popup dialog box are displayed because the

Connector is unable to locate the Lotus Notes dynamic-link libraries. Most probably the path to the

Lotus Notes directory specified in ibmditk.bat or in ibmdisrv.bat is either incorrect or not specified at

all. That is why you should verify that the Lotus Notes directory specified in the PATH environment

42 Reference Guide

variable in both ibmditk.bat and ibmdisrv.bat is correct. For more information please see the

″Required Setup of the IBM Tivoli Directory Integrator″ section.

Compatibilty: Refer to the section on Supported session types by Connector on how this connector

should be set up with the necessary libraries, and about incompatibilities with other Domino®/Lotus

Notes® Connectors.

Chapter 2. Connectors 43

44 Reference Guide

Domino Users Connector

The Domino Users Connector provides access to Lotus® Domino user accounts and means for managing

them. With it, you can do the following:

v Retrieve users documents and their items from the Name and Address Book

v Create and register Domino users

v Initiate Domino users deletion (through the Domino Administration Process) by posting administration

requests to the Administration Requests Database

v Modify users by modifying their Person documents in the Name and Address Book

v Perform users’ “disabling/enabling” by adding/removing users’ names to/from a “Deny Access

Group”

v Perform ″lookup″ of Domino users.

Currently, the Connector does not support the process of Users recertifying.

The Domino Server accessed can be on a remote server, or on the local machine.

It operates in Iterator, Lookup, AddOnly, Update and Delete modes, and enables the following operations

to be performed:

Iterator

Iterate over all (or a filtered subset of) Person documents from the Name and Address Book.

 The Connector iterates through the Person documents of the ‘Name and Address Book’ database.

All Person documents (matching the filter, if filter is set) are delivered as Entry objects, and all

document items, except attachments, are transformed into Entry Attributes.

 Along with the Attributes corresponding to the Person document items, the Entry returned by the

Connector will contain some extra Attributes, created by the Connector itself. The table below

describes these Attributes. Their names will be prefixed with “DER_” to indicate that they have

been derived by the Connector, and they are not “native” Domino Attributes):

 Table 2. Derived Attributes

Attribute Name Type Value

DER_IsEnabled Boolean true – if the user does not belong to a “Deny List only” group;

false – if the user belongs to at least one group of type “Deny List only”.

Lookup

Search for and retrieve Person documents that match some criteria.

 In Lookup mode, the Connector will perform different type of searches, depending on the value

of the “useFTSearch” parameter:

v “useFTSearch” = “true”: The Connector will perform a full-text search in the “People” view.

Note: “Full-text search” will work both with full-text indexed and not full-text indexed

databases; however, the search will be less efficient if the database is not full-text

indexed.

It is also possible that the database full-text index will not be updated, in which case the

search results would not match the actual database content.

v “useFTSearch” = “false”: the Connector will perform a regular database search using Lotus

formula. The element (Form = “Person”) will be automatically added to the formula by the

Connector, so the search will be limited to user documents only.

AddOnly

Register new users in Domino Server and create their Person documents. When doing so, you

Chapter 2. Connectors 45

have the option to specify a mail template when registering users. If a template is not specified

the Connector will continue to work as the TDI 6.0 version of the Connector (that is, use the

default template).

Update

Modify users’ Person documents; Enable/disable users; Register existing (internet) users, as well

as “disabling/enabling” by adding/removing users’ names to/from a “Deny Access Group”.

Delete Post requests for user deletion in the Domino Server Administration Requests Database.

This Connector can be used in conjunction with the IBM Password Synchronization plug-ins. For more

information about installing and configuring the IBM Password Synchronization plug-ins, please see the

IBM Tivoli Directory Integrator 6.1.1: Password Synchronization Plug-ins Guide.

Note: Domino Users Connector requires Lotus Notes to be release 6.0 or 6.5; and Lotus Domino Server

version 6.0 and 6.5..

Deployment and connection to Domino server

Refer to the section, Supported session types by Connector for more information about required libraries

setup, and possible library conflicts.

Deploying on a Domino Server machine

When the Domino Users Connector is deployed on a machine where a Domino Server is installed

you can use both Authentication mechanisms supported – Internet Password authentication and

Notes ID File authentication.

Deploying on a Notes client machine

When the Domino Users Connector is deployed on a machine where a Notes client is installed

you can only use Notes ID File authentication.

To authenticate the local server connection, Domino requires the user’s short name and internet password

(these are Connector’s parameters).

Configuration

The Connector needs the following parameters:

Domino Server IP Address

The IP Address of the Domino Server, which hosts the ’Name and Address Book’ Database.

 If this parameter is missing or empty, the local machine is used. This behavior ensures backward

compatibility with pre-6.1 TDI configuration files.

Name and Address Book Database

The name of the Domino Directory database (previously known as the “Name and Address

Book” database). Usually it is “names.nsf” (default)

Authentication Mechanism

Specifies the authentication mechanism used by the Connector.

 When “Internet pasword” authentication is selected, the userName Connector parameter must set

to the Domino user’s Short Name and the password Connector parameter must be set to the

Domino user’s Internet password.

 When “Notes ID File” authentication is selected, the userName Connector parameter is ignored,

because the Domino user to be used is unambiguously identified by the currently configured

default Notes ID file. When “Notes ID File” authentication is selected, the password Connector

parameter must be set to the password of the currently configured default Notes ID file.

 For more information about the two supported authentication mechanism, please see the

“Authentication” section.

46 Reference Guide

Username

The user name used for log in or authentication to the Domino Server. Ignored if “Notes ID File”

authentication is selected. See “Authentication” on page 48 for more details.

Password

The password for the Username, or password associated with the Notes ID File if that type of

authentication is used. See “Authentication” on page 48 for more details.

Use full-text search

If checked, the Connector accesses user documents through the People view and full-text

searches. If not checked, the Connector uses regular database searches. In this case the Connector

automatically narrows the database search to user documents only, by accessing only documents

for which Form item value is Person. This parameter affects the Iterator and Lookup modes only.

Full-text filter

This value is taken into account only when Use full-text search is enabled. This parameter

contains full-text query that filters the user documents returned by the Connector in Iterator

mode. If null or empty string, no filtering is performed. Default value is ″ ″.

Formula filter

This value is taken into account only when Use full-text search is not enabled. This parameter

contains a formula that filters the users returned by the Connector in Iterator mode. The

Connector automatically adds the following to this formula:

"& Form = "Person""

which limits the search to user documents only. Default value is ″ ″.

Detailed Log

If this parameter is checked, more detailed log messages are generated.

Security

To have the IBM Tivoli Directory Integrator access the Domino Server, you might have to enable it

through Domino Administrator -> Configuration -> Current Server Document -> Security -> Java/COM

Restrictions. The user account you have configured the IBM Tivoli Directory Integrator to use must

belong to a group listed under Run restricted Java/Javascript/COM and Run unrestricted

Java/Javascript/COM.

Configuring encryption between the Domino Server and a client: When the Domino Users Connector

is running on a Notes client machine, there is communication going on between the Notes client machine

and the Domino Server machine.

Port encryption in Domino and/or Notes can be used to encrypt this communication. Two options are

available:

Encrypt Domino Server communication ports

This is easier to setup (the Server settings only are configured), but this affects the

communication with all clients including regular users using Lotus Notes clients.

1. In Lotus Domino Administrator select Configuration.

2. Select Server/Server Ports... from the right-side panel.

3. For each communication port in use, select the port in the Communication ports list and

check the Encrypt network data option.

4. Click OK.

5. Restart the Domino Server for changes to take effect.

Encrypt Lotus Notes communication ports

This does not affect other Notes clients if encryption is not necessary for them.

1. In Lotus Notes go to File->Preferences->User Preferences...

2. Select Ports from the left navigation panel.

Chapter 2. Connectors 47

3. For each communication port in use, select the port in the Communication ports list and

check the Encrypt network data option.

4. Click OK.

5. Restart Lotus Notes for changes to take effect.

Authentication: The Domino Users Connector impersonates as a Domino user in order to access the

Domino Directory (Names and Address Book database).

The Domino Users Connector supports two authentication mechanisms – Internet Password

authentication and Notes ID file based authentication.

Internet Password Authentication

This authentication mechanism uses the Domino user’s Short Name and Internet password. The

Domino user’s Short Name and Internet password must be supplied as Connector configuration

parameters Username and Password.

 The Domino Users Connector uses this mechanism in order to create an Internet Session object

for making local calls based on the Domino Directory. This authentication mechanism requires

that a Domino Server is installed on the local machine.

Notes ID File Authentication

This authentication mechanism uses the currently configured default Notes ID file along with its

password.

 The currently configured default Notes ID file is a part of the Notes client configuration.

Normally the Notes client stores the path to the currently configured default Notes ID file in the

notes.ini file, so that when the next time Notes client starts it will use this Notes ID file by

default.

 The password of the Notes ID file must be supplied as a Connector configuration parameter

Password.

 The Domino Users Connector uses this authentication mechanism in order to create a Session

object for making local calls based on the Notes user ID. A Domino server or Notes client must

be installed locally.

 This authentication mechanism can be used both on a Notes client machine and on a Domino

Server machine. When this mechanism is used on a Domino Server machine the Server ID file is

used. Normally Server ID files do not have passwords or have empty passwords; that is why you

would normally leave the Password Connector configuration parameter blank. If, however, the

Server ID file does have a password you should specify that password as the value for the

Password Connector configuration parameter.

Authorization: The Domino Server uses the Access Control Lists of the Domino Directory (Names and

Address Book database) to verify that the Domino user which the Connector uses has actually the right

to access the required database, document or field.

If the Connector is used to change the FirstName or LastName or both of a Domino user, then the Access

Control Lists of databases to which the user used to have access before the renaming occurred must be

updated manually, so that the new user name would be recognized.

Using the Domino Connector

Iterator mode: The Connector iterates through the Person documents of the Name and Address Book

database. All Person documents (matching the filter, if filter is set) are delivered as Entry objects, and all

document items, except attachments, are transformed into Entry attributes.

48 Reference Guide

Along with the attributes corresponding to the Person document items, the Entry returned by the

Connector contains some extra (derived) attributes for which values are calculated by the Connector. Here

is the list of the derived attributes:

DER_IsEnabled

(Boolean) Specifies whether the user is enabled/disabled:

v true - if the user does not belong to a Deny List only group

v false - if the user belongs to at least one Deny List only group

Lookup mode: In Lookup mode, the Connector performs searches for user documents, and the type of

search depends on the value of the Use full-text search parameter:

v Use full-text search = true: The Connector performs a full-text search in the People view. Full-text

searches work both with full-text indexed and not full-text indexed databases. However, the search is

less efficient if the database is not full-text indexed. It is also possible that the database full-text index

is not updated, in which case the search results do not match the actual database content.

v Use full-text search = false: The Connector performs a regular database search using Lotus formula.

The element (Form = ″Person″) is automatically added to the formula by the Connector, so the search is

limited to user documents only.

When simple link criteria are used, you can use both canonical (CN=UserName/O=Org) and abbreviated

(UserName/Org) name values to specify the user’s FullName. The Connector automatically processes and

converts the value you specified, if necessary.

When advanced link criteria is used, you must be careful and specify the user’s FullName in the correct

format, which is:

v for full-text search: use abbreviated names (UserName/Org)

v for regular database search: use canonical names (CN=UserName/O=Org)

AddOnly mode: The AddOnly mode always adds a new Person document in the Name and Address

Book database. The add process accepts whatever attributes are provided by the Attribute Mapping,

however to have correct user processing by Domino, the attribute names must match the Item names

Domino operates with. As the Connector operates with users only, it always sets the attributes Type and

Form to the value of Person, thus overriding any values set to these attributes during the Attribute

Mapping process. The LastName Domino user attribute is required for successful creation of a Person

document. The HTTPPassword attribute is not required, but if present its value is automatically hashed

by the Connector.

Depending on a fixed schema of attributes, the Connector can register the new user. The table below

specifies these attributes and the Connector behavior according to their presence or absence in the conn

Entry, and their values:

Attribute name Type

Required for

registration? Value

REG_Perform Boolean Yes If set to true the Connector performs user

registration. If this attribute is missing, or its value

is false, the Connector does not perform user

registration, regardless of the presence and the

values of the other REG_ Attributes.

REG_IdFile String Yes Contains the full path of the ID file to be

registered. For example,

c:\\newuserdata

\\newuser.id

REG_UserPw String No The user’s password.

REG_CertifierIDFile String Yes The full file path to the certifier ID file.

Chapter 2. Connectors 49

Attribute name Type

Required for

registration? Value

REG_CertPassword String Yes The password for the certifier ID file.

Note: If the certifier password is wrong when

registering users, a popup window is displayed.

Ensure that the Certifier password is correctly

specified.

REG_Server String No The name of the server containing the user’s mail

file. If this attribute is missing, the value is

obtained from the Connector’s Domino Session

object.

REG_CreateMailDb Boolean/String No true - Creates a mail database false - Does not

create a mail database; it is created during setup. If

this attribute is missing, a default value of false is

assumed. If this attribute is true, the MailFile

attribute must be mapped to a valid path.

REG_Expiration Date No The expiration date to use when creating the ID

file. If the attribute is missing, or its value is null, a

default value of the current date + 2 years is used.

REG_IDType Integer/String No The type of ID file to create: 0 - create a flat ID 1 -

create a hierarchical ID 2 - create an ID that

depends on whether the certifier ID is flat or

hierarchical. If the attribute is missing, a default

value of 2 is used.

REG_Is

NorthAmerican

Boolean/String No true - the ID file is North American false - the ID

file is not North American. If this attribute is

missing, a default value of true is used.

REG_OrgUnit String No The organizational unit to use when creating the

ID file. If this attribute is missing, a default value

of ″ ″ is used.

REG_RegistrationLog String No The log file to use when creating the ID file. If this

attribute is missing, a default value of ″ ″ is used.

REG_StoreID

InAddressBook

Boolean/String No true - stores the ID file in the server’s Domino

Directory false - does not store the ID file in the

server’s Domino Directory. If this attribute is

missing, a default value of false is used.

REG_Registration

Server

String No The server to use when creating the ID file. This

attribute is used only when the created ID is stored

in the server Domino Directory, or when a mail

database is created for the new user.

REG_MinPassword

Length

Integer/String No The REG_MinPassword

Length value defines the minimum password

length required for subsequent changes to the

password by the user. The password used when

the user registers is not restricted by the

REG_MinPassword

Length value. If this attribute is missing, a default

value of 0 is used.

REG_Forward String No The forwarding domain for the user’s mail file.

REG_AltOrgUnit Vector of <String> No Alternate names for the organizational unit to use

when creating ID file.

50 Reference Guide

Attribute name Type

Required for

registration? Value

REG_AltOrgUnit

Lang

Vector of <String> No Alternate language names for the organizational

unit to use when creating ID file.

The attributes for which the Required for registration field is set to Yes are required for successful user

registration. Along with these REG_ Attributes, the LastName Domino user attribute is also required for

successful user registration.

If REG_Perform is set to true and any of the other attributes required for registration are missing, the

Connector throws an Exception with a message explaining the problem.

Update mode: In Update mode, the following happens:

1. A search for the Entry to be updated is performed in Domino.

2. If an Entry is not found, an AddOnly operation is performed as described in the AddOnly mode

(including user registration if the necessary REG_ Attributes are supplied).

3. If the Entry is found, a modify operation is performed.

When modifying a user, the Domino Users Connector always modifies its Person document in the Name

and Address Book database with the attributes provided. The modify process accepts whatever

Attributes are provided by the Attribute Mapping, however to have correct user processing by Domino,

the Attribute names must match the Item names Domino operates with. See “List of Domino user

attributes (or Person document items)” on page 54 for a (possibly not full) list of Domino user properties.

As the Connector operates with users only, it does not modify the attributes Type and Form (their value

must be Person) regardless of the Attribute Mapping process. If the HTTPPassword attribute is specified,

its value is automatically hashed by the Connector.

In the process of modifying users, the Domino Users Connector provides the options to disable and

enable users. A user is disabled by adding his name into a specified Deny List only group (consult the

Domino documentation for information on Deny List only groups. Go to http://www.lotus.com/
products/domdoc.nsf, and click the Lotus Domino Document Manager 3.5 link). A user is enabled by

removing his name from all Deny List only groups.

The Connector performs user disabling or enabling depending on the presence in the conn Entry, and the

values of the following Entry attributes:

ACC_SetType

(Integer/String) If this attribute is missing, no actions are performed and the user keeps its

current disable/enable status. If this Attribute is provided, its value is inspected:

v 0 - The Connector performs the operation disable user (the user’s name is placed in the group

specified by the ACC_DenyGroupName attribute).

v 1 - The Connector performs the operation enable user (any other value results in Exception).

ACC_DenyGroupName

(String) The name of the Deny List only group where the user’s name is added when disabling

the user. When the value of ACC_SetType is 0, the ACC_DenyGroupName attribute is required.

If it is missing or its value specifies a non-existing Deny List only group, an Exception is thrown.

When the ACC_SetType attribute is missing, or its value is 1, the ACC_DenyGroupName

attribute is not required and its value is ignored.

 The Connector can perform user registration on modify too. To determine whether or not to perform

registration, the same rules apply as in the AddOnly mode. The same schema of attributes is used and all

REG_ Attributes have the same meaning.

Chapter 2. Connectors 51

If the REG_ Attributes determine that registration is performed, the following cases might happen:

v The user has not yet been registered (for example, this can be an internet or Web user that you want to

register and enable to log on and work through a Notes client). The user is then registered, a new ID

file is created, and so forth.

v The user has already been registered. In this case the user is re-registered, for example, the Domino

registration values are reset with the new values provided. A new ID file is also created.

Notes:

1. When registering users on modify, turn off the Compute Changes Connector option. When turned on,

the Compute Changes function might clear attributes required in certain variants of user registration,

and this results in registration failure.

2. When registering users on modify, you must know beforehand what is the user’s FullName after

registration, and you must provide the attribute FullName in the conn Entry with this value (which is

probably constructed by scripting). This is not very convenient and requires deep knowledge of the

Domino registration process. Without setting the expected user’s FullName beforehand, however, you

risk registering a new user instead of the existing one.

3. When registering users on modify, you must provide the attribute FirstName in the conn Entry with

the value of the FirstName of the user you need to register. If the FirstName attribute is not provided,

you risk creating a new user.

Delete mode: For user deletion, the Connector uses the Domino Administration Process.

The Connector posts Delete in Address Book requests in the Administration Requests Database . Each

request of type Delete in Address Book, when processed by the Domino Administration Process, triggers

the whole chain of posting and processing administration requests and actions performed by the

Administration Process to delete a user. The result of posting a Delete in Address Book administration

request is the same as manually deleting a user through the Domino Administrator. In particular:

v The time of processing the administration requests depends on the Domino Server configuration.

v Depending on the type of deletion requested, the chain of administration requests can include requests

that require Administrator’s approval (for example, the Approve File Deletion request for deleting the

user’s mail file).

The Connector enables tuning of each single user deletion it initiates. The parameters that can be

configured are:

Delete mail file

You can specify one of the following options:

v Don’t delete mail file.

v Delete just the mail file specified in Person document.

v Delete mail file specified in Person document and all replicas.

Add to group

Specifies if the user’s name must be placed in a group when deleting the user, and if yes,

specifies the name of the group too. This option is usually used to add the user in a Deny List

only group when deleting the user; thus the user is denied access to the servers.

The delete parameters described previous, have default values that can also be changed through APIs

provided by the Domino Users Connector. Each time an instance of the Domino Users Connector is

created (in particular on each AssemblyLine start), the parameters have the following default values:

Delete mail file

Don’t delete mail file.

Add to group

On deletion, do not add the user’s name in any group.

52 Reference Guide

If the default values fit the type of deletion you want, then no special configuration for the deletion is

needed. You must specify the correct link criteria in the Delete Connector.

You can however use the APIs provided by the Domino Users Connector, to change these default values

at runtime (using scripting):

int getDeleteMailFile()

Returns the code of the default value for the Delete mail file parameter:

v 0 - Don’t delete mail file.

v 1 - Delete just the mail file specified in Person document.

v 2 - Delete mail file specified in Person document and all replicas.

void setDeleteMailFile (int deleteType)

Sets the default value for the Delete mail file parameter. The deleteType method’s parameter

must contain the code of the desired value (the codes are as described for getDeleteMailFile()).

String getDeleteGroupName()

Returns the default value for the Add to group parameter:

v NULL - Means Do not add the user’s name in any group.

v Non-NULL value - The name of the Group where the user’s name is added.

void setDeleteGroupName (String groupName)

Sets the default value for the Add to group parameter:

v NULL - Specifies that the user’s name must not be added in any group on deletion.

v Non-NULL String value - Specifies the name of the group where the user’s name is added on

deletion.

 The default values for the delete parameters are used in all deletions performed by the Connector, until

another change in their values is made, or the Connector instance (object) is destroyed.

The following are possible scenarios that use these methods:

v Script code in the Before Delete hook checks the values of the work and conn objects (and everything

else it needs to check), and depending on the specific decision logic uses the setDeleteMailFile and

setDeleteGroupName to tune each particular user deletion.

v If all users for deletion must be deleted using one pattern (and there is no need to tune each particular

user deletion), script code in the AssemblyLine Prolog can use the setDeleteMailFile and

setDeleteGroupName methods and set the desired values for the whole process.

Another method to manipulate the delete parameters, is to provide the following attributes in the conn

Entry:

DEL_DeleteMailFile

(Integer/String)

 If this attribute is missing in the conn Entry, the default value for Delete mail file is used.

 If this attribute is provided in the conn Entry, its value determines the value for the Delete mail

file parameter for the current deletion only:

v 0 - Don’t delete mail file.

v 1 - Delete just the mail file specified in Person document.

v 2 - Delete mail file specified in Person document and all replicas.

DEL_DeleteGroupName

(String)

 If this attribute is missing in the conn Entry, the default value for Add to group is used.

Chapter 2. Connectors 53

If this attribute is provided in the conn Entry, its value determines the value for the Add to

group parameter for the current deletion only:

v NULL - Specifies that the user’s name must not be added in any group.

v Non-NULL String value - Specifies the name of the group where the user’s name is added.

 The use of the DEL_DeleteMailFile and DEL_DeleteGroupName attributes in the conn Entry overrides

the default values of the corresponding delete parameters for the current deletion only.

Setting the DEL_DeleteMailFile and DEL_DeleteGroupName attributes in the conn Entry can be done

through scripting in the Before Delete hook. Adding attributes by scripting might not be very

convenient, so you might prefer to use the default delete parameters values and the APIs that change

them.

List of Domino user attributes (or Person document items)

The following is a list (possibly not full) of Domino user document items, which are understood or

processed by Domino when the server operates with users. For more information on these Items consult

the Lotus Domino documentation. Go to http://www.lotus.com/products/domdoc.nsf, and click the

Lotus Domino Document Manager 3.5 link.

The same names must be used for Entry attribute names when performing Add, Modify, Delete or

Lookup operations with the Connector.

v AltFullName

v AltFullNameLanguage

v AltFullNameSort

v Assistant

v AvailableForDirSync

v CalendarDomain

v CellPhoneNumber

v CcMailUserName

v Certificate

v CheckPassword

v Children

v City

v ClientType

v Comment

v CompanyName

v country

v Department

v DocumentAccess

v EmployeeID

v EncryptIncomingMail

v FirstName

v Form

v FullName

v HomeFAXPhoneNumber

v HTTPPassword

v InternetAddress

v JobTitle

v LastName

54 Reference Guide

http://www.lotus.com/products/domdoc.nsf

v Level0

v Level0_1

v Level0_2

v Level0_3

v Level1

v Level1_1

v Level1_2

v Level1_3

v Level2

v Level2_1

v Level2_2

v Level2_3

v Level3

v Level3_1

v Level3_2

v Level3_3

v Level4

v Level4_1

v Level4_2

v Level4_3

v Level5

v Level5_1

v Level5_2

v Level5_3

v Level6

v Level6_1

v Level6_2

v Level6_3

v LocalAdmin

v Location

v MailAddress

v MailDomain

v MailFile

v MailServer

v MailSystem

v Manager

v MessageStorage

v MiddleInitial

v NetUserName

v NoteID

v OfficeCity

v OfficeCountry

v OfficeFAXPhoneNumber

v OfficeNumber

v OfficePhoneNumber

Chapter 2. Connectors 55

v OfficeState

v OfficeStreetAddress

v OfficeZIP

v Owner

v PasswordChangeDate

v PasswordChangeInterval

v PasswordGracePeriod

v PersonalID

v PhoneNumber

v PhoneNumber_6

v SametimeServer

v ShortName

v Spouse

v State

v StreetAddress

v Suffix

v Title

v Type

v WebSite

v x400Address

v Zip

Domino Server 6.0 for AIX/Linux/Solaris

For Domino Users Connector with Domino Server 6.0 for AIX/Linux/Solaris, you must update the

ibmditk and ibmdisrv scripts. Add the following two lines in the script, after the PATH definition and

before the startup line:

LD_LIBRARY_PATH=Domino_binary_folder

export LD_LIBRARY_PATH

where Domino_binary_folder is the folder containing Domino native libraries, for example,

/opt/lotus/notes/latest/sunspa for Solaris, and /opt/lotus/notes/latest/linux for Linux.

Start IBM Tivoli Directory Integrator with the Domino user (do not use root). The Domino user is called

notes unless it is changed during the installation of the Domino Server.

Examples

Go to the root_directory/examples/dominoUsersConnector directory of your IBM Tivoli Directory

Integrator installation.

See also

“Lotus Notes Connector” on page 57.

56 Reference Guide

Lotus Notes Connector

The Lotus Notes Connector provides access to Lotus Domino databases.

The Lotus Notes Connector reads, writes and deletes records in any Notes database, and is therefore not

limited to the Domino directory. Managing users in Lotus Notes requires modifying certificates, ACLs

and mailboxes. This must be done manually or using the Config Editor. Users can be provisioned in and

out of Notes by applying staging databases and integrating with Config Editor through Notes scripting.

Note: Lotus Notes Connector requires Lotus Notes to be release 5.0.8 or higher.

Known limitations

For Notes Connector using Local Client or Local Server modes only: You might not be able to use the

IBM Tivoli Directory Integrator Config Editor to connect to your Notes database. Sometimes, the Notes

Connector prompts the user for a password even though the Notes Connector provides it to the Notes

APIs. The prompt is written to standard-output, and input from the user is read from standard-input.

This prompting is performed by the Notes API and is outside the control of IBM Tivoli Directory

Integrator.

When you run the IBM Tivoli Directory Integrator Server, both standard input and output are connected

to the console which enables the user to see the prompt and enter a password. The Notes Connector

regains control and continues execution. This means the Connector works as expected.

When you run the IBM Tivoli Directory Integrator Config Editor, the standard input and output are

disconnected from the console so the user cannot see or type anything in response. A connect operation

can hang indefinitely waiting for user input.

When the Session Type is LocalClient, you can start your Notes or Designer client and permit other

applications to use its connection by setting a flag in the File–>Tools–>UserID panel. The checkbox is

labeled Don’t prompt for a password from other Notes-based programs. (Share this user ID password

with these Notes add-ins). In this case, the Notes Connector (that is, the Notes API) ignores the provided

password and reuses the current session established by the Notes or Designer client. The Notes or

Designer client must be running to enable IBM Tivoli Directory Integrator to reuse its session.

Note: You can switch to using DIIOP mode to configure your AssemblyLines and switch back to Local

Client or Local Server mode when you run the AssemblyLine through IBM Tivoli Directory

Integrator Server.

Session types

The following session types are supported (also refer to Supported session types by Connector for more

information regarding libraries, setups and incompatibilities with other Domino Connectors):

IIOP This session type uses a TCP connection to the Domino server. The Lotus Notes Connector uses

HTTP and IIOP to access the Domino server, so make sure these services are started and

accessible from the host where you are running the Lotus Notes Connector.

LocalClient

This session type uses a local installation of Lotus Notes or Designer. The Lotus Notes Connector

uses the ID file in use by the local client.

 With this session type, the Username parameter (dominoLogin) is ignored. The Password

(dominoPassword) must match the password in the ID file used or the local Notes client prompts

for a password.

Note: This can be difficult, for example, when you run an AssemblyLine with standard input or

output detached from the console. Always try to run an AssemblyLine in a command line

window to detect whether the local client is prompting for the password. Testing shows

Chapter 2. Connectors 57

that the local client ignores the correct Password parameter and always prompts for a

password. One way of making sure the prompt is avoided is to do the following:

1. Start the Notes or Designer client.

2. Go to the File->Tools->UserID menu.

3. Check Don’t prompt for a password for other Notes programs.

LocalServer

Same as for LocalClient but uses the local Domino server installation. One difference is that you

can specify a valid Username and matching Password.

Connecting with IIOP

The Connector can use IIOP to communicate with a Domino server. To establish an IIOP session with a

Domino server, the Connector needs the IOR string that locates the IIOP process on the server.

When you configure the Notes Connector, specify a hostname and, optionally, a port number where the

server is located. This hostname:port string is in reality the address to the Domino server’s http service

from which the Connector retrieves the IOR string. The IOR string is then used to create the IIOP session

with the server’s IIOP service (diiop). The need for the http service is only for the discovery of the IOR

string. This operation is very simple. The Connector requests a document called /diiop_ior.txt from the

domino http server that is expected to contain the IOR string. You can replace the hostname:port

specification with this string and bypass the first step and also the dependency of the http server. The

diio_ior.txt file is typically located in the data/domino/html directory in your Domino server installation

directory. Check the Web configuration in the Lotus Administrator for the exact location.

To verify the first step, go to the following URL: http://hostname:port/diiop_ior.txt where hostname is the

hostname, and port is the port number of your domino server. You receive a document that says IOR:

numbers. If you get a response similar to this, the first step is verified. If this fails, you must check both

the HTTP configuration on the server that it enables anonymous access, and verify that the process is

running.

Configuration

The Connector needs the following parameters:

Hostname

The IP hostname or address of the Domino server. You can also specify the IOR:<xxx> string to

circumvent automatic discovery of this via HTTP. See the section about the IOR string for more

information.

HTTP port

This parameter is used by the Connector to get the IOR string from the Domino HTTP task so as

to create an IIOP session.

Username

The username used for IIOP sessions and Local Server sessions. Ignored if you use Session type

LocalClient.

Password

Internet password for IIOP sessions and Local Server sessions. Notes ID file password for Local

Client sessions.

Session Type

Can be one of IIOP, LocalClient or LocalServer. See “Session types” on page 57.

Use SSL

Checking this flag causes the Connector to request an encrypted IIOP connection. This flag has

meaning when the session type is IIOP only. One of the requirements for using SSL is that the

TrustedCerts.class file that is generated every time the DIIOP process starts must be in the

classpath. You must copy the TrustedCerts.class to a local path included in the CLASSPATH or

have the \Lotus\Domino\Data\Domino\Java of your Domino installation in the classpath.

58 Reference Guide

Server The name of the server where Database is found. Leave blank to use the server you are

connecting to (Host Name).

Database

The name of the database to use.

Document Selection

The selection used when iterating the data source. You must use valid Lotus Notes select

statements. To select entries from the name and address book use the following select statement:

Select Form="Person"

Always use Formula Search

This flag is used when View is not set and the database accessed is full-text indexed. If you check

this flag, the Connector uses Formula statements regardless of whether the database is indexed or

not. When a view is specified, full-text searches are always used because View does not support

Formula search statements.

Database View

The database view to use.

Detailed Log

If this parameter is checked, more detailed log messages are generated.

Security

To have IBM Tivoli Directory Integrator access your Domino server, you must enable it through Domino

Administrator -> Security -> IIOP restriction. The user account you configured for the IBM Tivoli

Directory Integrator to use must belong to a group listed under Run restricted Java/Javascript and Run

unrestricted Java/Javascript.

The Domino Web server must be configured to enable anonymous access. If not, the current version of

the Notes Connector cannot connect to the Domino IIOP server.

Note: If you want to encrypt the HTTPPassword field of a Notes Address Book, add the following code

to your AssemblyLine:

var pwd = "Mypassword";

var v = dom.connector.getDominoSession().evaluate

("@Password(\"" + pwd + "\")") ;

ret.value = v.elementAt(0);

This code uses Domino’s password encryption routines to encrypt the variable pwd. It can be used

anywhere that you want to encrypt a string using the @Password function that Domino provides.

A good place to use this code is in the Output Map for the HTTPPassword attribute.

Chapter 2. Connectors 59

60 Reference Guide

ITIM DSMLv2 Connector

This Connector is used in solutions which require communication with IBM Tivoli Identity Manager

(ITIM).

The ITIM server provides a communication interface which uses a ITIM-proprietary version of DSMLv2.

This ITIM-proprietary version of DSMLv2 doesn’t fully comply with the DSMLv2 specification. Hence the

Connector name – ITIM DSMLv2 Connector.

This Connector is used for both:

v retrieving provisioning data, and

v feeding provisioning data

using the ITIM-proprietary DSMLv2 communication interface.

The version of ITIM supported is 4.5 and higher.

The Directory Services Markup Language v1.0 (DSMLv1) enables the representation of directory

structural information as an XML document. DSMLv2 goes further, providing a method for expressing

directory queries and updates (and the results of these operations) as XML documents.

Note: This Connector is specially designed for use with ITIM; for generic use, use the DSMLv2Soap

Connector and/or the DSMLv2SoapServer Connector instead.

The ITIM DSMLv2 Connector which connects to a IBM Tivoli Identity Manager Server repository using

DSML over HTTP.

The Connector connects to the DSMLv2 ITIM event handler (introduced in ITIM 4.5) that allows the

import of data into ITIM with ITIM acting as a DSMLv2 server. Therefore, only ITIM Server 4.5 and

above is supported. The ITIM DSMLv2 Connector uses the ITIM DSML JNDI driver ″dsml2.jar″, to

connect to and interact with the ITIM Server. Deployment of the DSMLv2 Connector uses JNDI queries to

interact with the ITIM repository.

The Connector supports the AddOnly, Delete, Iterator, Lookup and Update modes.

Using the Connector with ITIM Server

When connecting to a ITIM Server the following URL should be specified in the ITIM DSMLv2

Connector: http://<ITIM_Server_host:ITIM_Server_port>/enrole/dsml2_event_handler; for example,

"http://192.168.113.12:9080/enrole/dsml2_event_handler".

The following limitations apply to ITIM DSMLv2 Connector modes when interacting with ITIM Server:

v Iterator mode – will only work if the JNDI filter specified matches exactly one Entry; if the filter

matches more than one Entry, no Entries will be returned.

v Lookup, Update and Delete – will only work correctly if the link criteria specified result in finding

exactly one Entry; if the link criteria match more than one Entry, the Connector will act as if the link

criteria matched no Entries.

When interacting with ITIM Server, all JNDI queries and filters, used either from the GUI or in scripting

(in Advance Search Criteria, for example) must be enclosed in brackets, for example ″(uid=user1)″.

HTTPS (SSL) Support

In order to use a secure HTTPS connection to the DSMLv2 Server, the provider URL specified must begin

with ″https://″ and the server’s certificate must be included in TDI’s trust store.

Chapter 2. Connectors 61

Configuration

The ITIM DSMLv2 Connector needs the following parameters:

Provider URL

The URL for the connection.

Referrals

Specifies how referrals encountered by the LDAP server are to be processed. The possible values

are:

v follow - Follow referrals automatically.

v ignore - Ignore referrals

v throw - Throw a ReferralException when a referral is encountered. You need to handle this in

an error Hook.

Authentication Method

The authentication method.

Login username

The principal name (for example, username).

Login password

The credentials (for example, password).

Name parameter

Specify which parameter in the AssemblyLine entry is used for naming the entry. This is used

during add, modify and delete operations and returned during read or search operations. If not

specified, ″$dn″ is used.

Provider Params

A list of extra provider parameters you want to pass to the provider. Specify each

"parameter:value" on a separate line.

Search Base

The search base to be used when iterating the directory. Specify a distinguished name. Some

directories allow you to specify a blank string which defaults to whatever the server is configured

to do. Other directory services require this to be a valid distinguished name in the directory.

Search Filter

The search filter to be used when iterating the directory.

Search Scope

The search scope to be used when iterating the data source. Possible values are:

v subtree - search all levels from search base and below

v onelevel - search only immediate children of search base

Detailed Log

If this parameter is checked, more detailed log messages are generated.

See also

“ITIM Agent Connector” on page 100

62 Reference Guide

DSMLv2 SOAP Connector

The DSMLv2 SOAP Connector implements the DSMLv2 standard. The Connector is able to:

v Execute DSMLv2 requests against a DSML Server.

v Provide the option to use DSML SOAP binding.

v Internally instantiate, configure and use the HTTP Parser to create HTTP requests and parse HTTP

responses.

v Internally instantiate, configure and use the DSMLv2 Parser to create DSMLv2 request messages and

parse DSMLv2 response messages.

Supported Connector Modes

The Connector mode determines the type of DSML operation the Connector requests. The DSMLv2 SOAP

Connector supports the following modes:

AddOnly

The DSMLv2 SOAP Connector sends DSMLv2 addRequest and receives a DSMLv2 addResponse

message.

Iterator

The DSMLv2 SOAP Connector sends a DSMLv2 searchRequest operation with a Search Base,

Search Filter and Search Scope taken from the current Connector configuration. The DSML server

returns a DSMLv2 searchResponse message with multiple searchResultEntry elements. The

Connector cycles through the DSML searchResultEntry elements and delivers each one in a

separate AssemblyLine iteration.

Lookup

The DSMLv2 SOAP Connector sends a DSMLv2 searchRequest with a Search Filter constructed

from the Connector’s Link Criteria. The DSML server returns a DSMLv2 searchResponse message

that is returned as the Entry found. If there are multiple searchResultEntry elements in the

searchResponse message, you must process them in an On Multiple Entries hook.

Delete The Connector creates and sends a DSML deleteRequest as per the Link Criteria. The DSML

server returns a deleteResponse message.

Update

If the $dn Attribute in the work Entry is equal to the $dn Attribute of the Entry to be updated, the

Connector sends a modifyRequest DSMLv2 request and receives a modifyResponse response;

otherwise a modDnRequest request is sent to the DSML server and a modDnResponse response

is received.

Delta In Delta mode, it is the AssemblyLine that, depending on the Entry tagging, decides which

Connector method to invoke and what DSMLv2 request will be sent. Delta tagging at the

Attribute level is handled by the DSMLv2 Parser and delta information is incorporated into the

resulting DSMLv2 request.

CallReply

In CallReply mode, the Connector provides the work Entry to the DSMLv2 Parser and sends the

DSMLv2 message produced by the DSMLv2 Parser. The response from the DSMLv2 Server is

passed directly to the DSMLv2 Parser, and the Entry produced is returned by the Connector. You

must assign the correct request type, because the Connector will not automatically set any

DSMLv2 element. In particular, the CallReply mode can be used to send DSMLv2 extended

operations. See “Extended Operations” for more information.

Extended Operations

In CallReply mode, the DSMLv2 SOAP Connector can send DSMLv2 extended operations. Extended

operations are identified by their Operation Identifier (OIDs). For example, the OID of the extended

operation for retrieving a part of the log file of the IBM Tivoli Directory Server is 1.3.18.0.2.12.22.

Chapter 2. Connectors 63

Extended operations can also have a value property, which is a data structure containing input data for

the corresponding operation. The value property of the extended operation must be Basic Encoding Rules

(BER) encoded and then base-64 encoded in the DSMLv2 message. The user of the DSMLv2 SOAP

Connector is responsible only for BER encoding the value property. The Connector will automatically

base-64 encode the data when creating the DSMLv2 message.

Two classes are used for BER encoding and decoding: BEREncoder and BERDecoder, located in

thecom.ibm.asn1 package.

The following example illustrates sending a DSMLv2 extended operation request and the processing of

the response:

1. Place the following script code in Output Map for attribute dsml.extended.requestvalue:

enc = new Packages.com.ibm.asn1.BEREncoder();

serverFile = 1; //slapdErrors log file

nFirstLine = new java.lang.Integer(7200);

nLastLine = new java.lang.Integer(7220);

seq_nr = enc.encodeSequence();

enc.encodeEnumeration(serverFile);

enc.encodeInteger(nFirstLine);

enc.encodeInteger(nLastLine);

enc.endOf(seq_nr);

var myByte = enc.toByteArray();

ret.value = myByte;

2. Place the following script code in the After CallReply hook of the Connector:

var ba = conn.getAttribute("dsml.response").getValue(0);

bd = new Packages.com.ibm.asn1.BERDecoder(ba);

main.logmsg("SLAPD log file:");

main.logmsg(new java.lang.String(bd.decodeOctetString()));

Configuration

The DSMLv2 SOAP Connector uses the following parameters:

DSMLv2 Server URL

Specifies the URL of the DSMLv2 Server.

Authentication Method

Specifies the type of HTTP authentication. If the type of HTTP authentication is set to Anonymous,

then no authentication is performed. If HTTP basic authentication is specified, HTTP basic

authentication is used with user name and password as specified by the username and password

parameters.

Username

The user name used for HTTP basic authentication.

Password

The password used for HTTP basic authentication.

Binary Attributes

Specifies a comma-delimited list of attributes that will be treated by the Connector as binary

attributes. This parameter has the following default list of attributes that you can change:

v photo

v personalSignature

v audio

64 Reference Guide

v jpegPhoto

v javaSerializedData

v thumbnailPhoto

v thumbnailLogo

v userPassword

v userCertificate

v authorityRevocationList

v certificateRevocationList

v crossCertificatePair

v x500UniqueIdentifier

v objectGUID

v objectSid

Search Base

Specifies the starting point for searches when iterating.

Search Filter

Specifies the LDAP filter used when iterating.

Search Scope

The search scope to be used when iterating. Possible values are:

v subtree

v onelevel

The default is subtree.

Soap Binding

When this parameter is enabled, the Connector sends and receives SOAP DSML messages.

Otherwise, the DSML messages are not wrapped in SOAP.

Detailed Log

Turns on debug messages. This parameter is common to all TDI components.

Chapter 2. Connectors 65

66 Reference Guide

DSMLv2 SOAP Server Connector

The DSMLv2 SOAP Server Connector listens for DSMLv2 requests over HTTP. Once it receives the

request, the Connector parses the request and sends the parsed request to the AssemblyLine workflow for

processing. The result is sent back to the client over HTTP.

The DSMLv2 SOAP Server Connector is able to:

v Execute DSMLv2 requests against a DSML Server.

v Provide the option to use DSML SOAP binding.

v Internally instantiate, configure and use the HTTP Parser to create HTTP requests and parse HTTP

responses.

v Internally instantiate, configure and use the DSMLv2 Parser to create DSMLv2 request messages and

parse DSMLv2 response messages.

v Process each event in a separate thread, allowing the Connector to process several DSMLv2 events in

parallel.

The DSMLv2 SOAP Connector supports Server mode.

Note: The DSMLv2 SOAP Server Connector is not designed as a replacement of the “DSMLv2

EventHandler” on page 245. The Connector provides a generic functionality for processing

DSMLv2 requests.

Extended operations

DSMLv2 SOAP Server Connector supports extended operations. The value property of the extended

operation is automatically base-64 decoded from the DSMLv2 message. You must then properly Basic

Encoding Rules (BER) decode this value. You must also BER encode the responseValue property

represented by the dsml.response Entry Attribute. The Connector will automatically base-64 encode the

data when creating and sending the DSMLv2 response.

You can use the following two helper classes to BER encode and decode data:

v com.ibm.asn1.BEREncoder

v com.ibm.asn1.BERDecoder

Note: The schema of the extended operations cannot be automatically determined by the Connector.

There is no metadata that describes the structure of an extended operation request.

The following example illustrates an extended operation request to return a part of the IBM Tivoli

Directory Server log:

var name = work.getString("dsml.extended.requestname");

 var ba = work.getAttribute("dsml.extended.requestvalue").getValue(0);

decoder = new Packages.com.ibm.asn1.BERDecoder(ba);

iSecuence = decoder.decodeSequence();

fileNumber = decoder.decodeEnumeration();

firstLine = decoder.decodeIntegerAsInt();

lastLine = decoder.decodeIntegerAsInt();

main.logmsg("Operation: " + name);

main.logmsg("File: " + fileNumber);

main.logmsg("First line: " + firstLine);

main.logmsg("Last line: " + lastLine);

// send the response, assuming this sample string is the log file content

var str = new java.lang.String("Apr 13 16:18:18 2005 Entry cn=chavdar kovachev,o=ibm,c=us already exists.");

enc = new Packages.com.ibm.asn1.BEREncoder();

Chapter 2. Connectors 67

enc.encodeOctetString(str.getBytes());

myByte = enc.toByteArray();

work.setAttribute("dsml.response", myByte);

work.setAttribute("dsml.responseName", "1.3.18.0.2.12.23");

work.setAttribute("dsml.resultdescr", "success");

Configuration

The DSMLv2 SOAP Server Connector uses the following parameters:

Dsml Port

Specifies the TCP port on which the DSMLv2 SOAP Server Connector is listening.

Connection Backlog

Specifies the maximum queue length for incoming connections. If a connection request arrives

when the queue is full, the connection will be refused.

HTTP Basic Authentication

Determines if clients must provide HTTP basic authentication.

Auth Realm

Specifies the authentication realm sent to the client when requesting HTTP Basic authentication

Binary Attributes

Specifies a comma-delimited list of attributes that will be treated by the Connector as binary

attributes.

 This parameter has the following default list of attributes that you can change:

v photo

v personalSignature

v audio

v jpegPhoto

v javaSerializedData

v thumbnailPhoto

v thumbnailLogo

v userPassword

v userCertificate

v authorityRevocationList

v certificateRevocationList

v crossCertificatePair

v x500UniqueIdentifier

v objectGUID

v objectSid

Use SSL

If checked, Secure Sockets Layer (SSL) will be used while initializing the connector.

Require Client Authentication

If checked, the connector will require client authentication using SSL.

Chunked Transfer Encoding

If checked, the HTTP body of the response message is transferred as a series of chunks.

Soap Binding

If checked, the Connector sends and receives SOAP DSML messages. Otherwise, the DSML

messages are not wrapped in SOAP.

68 Reference Guide

Detailed Log

Turns on debug messages. This parameter is common to all TDI components.

Chapter 2. Connectors 69

70 Reference Guide

Exchange Changelog Connector

The Exchange Changelog Connector is a specialized instance of the LDAP Connector. The Exchange

Connector contains logic to poll Exchange for changed objects using the uSNChanged mechanism.

The Exchange Changelog Connector operates in Iterator mode.

Notes:

1. Microsoft dropped the extended support for Exchange 5.5 at the end of 2005. As TDI 6.1 does not

support NT4, the Exchange Changelog Connector is deprecated along with the Exchange Changelog

EventHandler in TDI 6.1.1.

2. The Exchange Changelog Connector connects to Microsoft Exchange Server 5.5; . Microsoft Exchange

is usually used with Windows NT4. Users of Windows 2000 Server with Exchange 2000 and above

would normally use Active Directory As a result the Exchange Changelog Connector is only

applicable in Windows NT4 environment.

3. The Exchange 5.5 Service Pack 4 must be installed on the Exchange Server.

Behavior

When started, the Exchange Changelog Connector reads from the IBM Tivoli Directory Integrator User

Property Store the USN values stored from the most recent Exchange Connector’s session. The Exchange

Connector first retrieves the newly added Exchange objects, then the modified and deleted Exchange

objects. After an Exchange object is retrieved, it is parsed and its attributes and attribute values are

copied to a new Entry object. This Entry object is then returned by the Exchange Connector. When there

are no more changed objects to retrieve, the Exchange Connector cycles, waiting for a new change to

happen. The Sleep Interval parameter specifies the number of seconds the Exchange Connector sleeps

between successive polls when waiting for new changes. The Exchange Connector loops until either a

new change is retrieved or the timeout expires. If the timeout expires, the Exchange Connector returns a

null Entry, indicating that there are no more Entries to return. If a changed object is retrieved, it is

processed, and the new Entry is returned by the Exchange Connector.

The Exchange Changelog Connector delivers changed Exchange objects as they are, with all their current

attributes. It does not determine which object attributes have changed, nor how many times an object has

been modified. All intermediate changes to an object are irrevocably lost. Exchange does not have a

changelog, it only stamps an object when it is changed. Each object reported by the Exchange Connector

represents the cumulative effect of all changes performed to that object. The Exchange Connector,

however, recognizes the type of object change that must be performed on the replicated data source, and

reports whether the object has to be added, modified or deleted in the replicated data source.

Note: You can retrieve only objects and attributes that you have permission to read. The Exchange

Connector does not retrieve an object or an attribute which you don’t have permission to read,

even if it exists in Exchange. In such a case the Exchange Connector acts as if the object or the

attribute does not exist in Exchange.

Using the Exchange Changelog Connector

The Exchange Changelog Connector adds the changeType attribute to every Entry returned. The possible

values of the changeType attribute are add, modify and delete. These are used to represent new, changed

and deleted objects respectively.

When an object is deleted in the Exchange Server, it is marked as tombstone and its ″Is-Deleted″

attribute is set to true. The object, however, is not moved to other container (like in the Active Directory

Connector), and keeps its distinguishedName attribute. Exchange objects cannot be moved. As a result,

the distinguishedName attribute never changes in Exchange and can be used safely for object identifier

when synchronizing.

Chapter 2. Connectors 71

Note: Deleted objects in Exchange live for a configurable period of time (30 days by default), after which

they are completely removed. To avoid missing deletions, perform incremental synchronizations

more frequently.

It is possible for an object to be reported as modified, even though the object’s contents have not changed

since it was reported as a new object. This happens when the object has been created before the current

Exchange Connector session has started and is later modified after the current Exchange Connector

session has started but before the Exchange Connector has actually retrieved the object. In such a case the

Exchange Connector retrieves the object’s modified contents and reports it as a new object. After a short

period of time (during the same session) the Exchange Connector reports the same object as modified and

retrieves the same changed and already reported object’s contents. Do not be concerned about this

behavior since it neither hurts the synchronization process, nor has it any significant performance

overhead.

It is also possible for an already deleted object to be reported as a new object and later reported as a

deleted object during the same Exchange Connector session. This happens when the object has been

created before the current Exchange Connector session has started and is later deleted after the current

Exchange Connector session has started, but before the Exchange Connector has actually retrieved it. In

this case the Exchange Connector retrieves the object’s deleted state and reports it as a new object. After a

short period of time (during the same session) the Connector reports the same object as deleted. The

addition of an already deleted object can be recognized by checking for the ″Is-Deleted″ attribute. If the

object is present and has a value of true, the object is already deleted.

The Exchange Changelog Connector can be interrupted any time during the synchronization process. It

saves the state of the synchronization process in the User Property Store of the IBM Tivoli Directory

Integrator (after each Entry retrieval) and the next time the Connector is started it successfully continues

the synchronization from the point the Exchange Changelog Connector was interrupted.

The Exchange Changelog Connector supports the IBM Tivoli Directory Integrator 6.1.1

Checkpoint/Restart functionality.

The Is-Deleted attribute in Exchange

By default, Exchange does not expose the Is-Deleted object attribute through LDAP. However, the

Is-Deleted attribute can be used in LDAP search queries when it is not returned as part of the returned

Exchange object. That is why the Exchange Connector properly detects the type of change even if the

Is-Deleted attribute is not visible through LDAP. If the Is-Deleted attribute is visible through LDAP, then

the Exchange Connector can retrieve changes quicker if you set the ″Is-Deleted″ Attribute Visible

parameter to TRUE. The Connector uses the returned Is-Deleted attribute and completes the work faster.

Note: If the server does expose the Is-Deleted attribute, but ″Is-Deleted″ Attribute Visible is set to false,

then the Connector still works properly, but you can accelerate the Exchange Connector by setting

″Is-Deleted″ Attribute Visible to true. If the server does not expose the Is-Deleted attribute, but

″Is-Deleted″ Attribute Visible is set to true, then the Connector cannot distinguish between

modify and delete and reports modify for both modify and delete operations.

To expose the Is-Deleted attribute you must obtain Exchange server administrator privileges and do the

following:

1. Start the Exchange Administration program admin.exe in RAW mode (admin /r).

2. Select View->Raw Directory from the menu.

3. Select Schema from the window on the left.

4. Double-click Is-Deleted from the window on the right.

5. A message box is displayed, informing you that only raw properties are displayed. This message box

asks if you want to view these raw properties. Click Yes.

72 Reference Guide

6. Select the Heuristics property. You can see the current property value on the right. You can also edit

the property value.

7. To decide what value to set the Heuristics property to, please refer to the following. The heuristic

property is a bit mask, which is interpreted as follows:

Bit 0

v 0: Replicate between sites

v 1: Do not replicate between sites

Bit 1

v 0: Attribute is not visible through LDAP

v 1: Attribute is visible to anonymous and authenticated LDAP clients

Bit 2

v 0: Attribute is not accessible by authenticated clients

v 1: Attribute is accessible to authenticated clients but not anonymous clients

Bit 3

v 0: Attribute is not an operational attribute

v 1: Attribute is an operational attribute

Bit 4

v 0: Attribute is not visible in Config Editor (Attributes page of DS Site Configuration object)

v 1: Attribute is visible in Config Editor (Attributes page of DS Site Configuration object)

 By taking note of heuristics, you can determine the visibility of particular attributes. For example, a

heuristic value of 3 means the attribute is not replicated between sites and is visible by anonymous

LDAP clients. A heuristic value of 11 means the attribute is an operational attribute and is visible to

authenticated LDAP clients.

As can be seen from the table, bit 1 of the heuristics value determines whether an object is visible

through LDAP. That is why you need to set bit 1 to make the attribute visible through LDAP.

Another important property of an Exchange object or an Exchange object attribute is the Description

property. It determines the LDAP name of the attribute or object.

Note: Changing the LDAP name might cause interoperability problems.

Accessing the USN synchronization values in the User Property Store

The state of synchronization at any time is represented by 4 USN numbers:

v START_USN

v END_USN

v CURRENT_USN_CREATED

v CURRENT_USN_CHANGED

These values are packed and stored in the User Property Store. Do not change these values manually. You

might want to archive the numbers corresponding to a certain stage of synchronization and later use

these numbers to replay synchronization from that stage.

The following script code can be used in the IBM Tivoli Directory Integrator to get USN values stored in

the User Property Store:

// Retrieve USN values from User Property Store

var usn = system.getPersistentObject("exchange_sync");

var startUsn = usn.getString("START_USN");

var endUsn = usn.getString("END_USN");

Chapter 2. Connectors 73

var currentUsnCreated = usn.getString("CURRENT_USN_CREATED");

var currentUsnChanged = usn.getString("CURRENT_USN_CHANGED");

main.logmsg("START_USN: " + startUsn);

main.logmsg("END_USN: " + endUsn);

main.logmsg("CURRENT_USN_CREATED: " + currentUsnCreated);

main.logmsg("CURRENT_USN_CHANGED: " + currentUsnChanged);

"exchange_sync" is the name of a parameter already stored in the User Property Store. The Iterator State

Key parameter specifies this value. The above example just dumps the values to the screen, but you may

do whatever you want with them - for example save them in a file and backup this file.

The next script code example shows how the USN values can be stored in the User Property Store:

// Store USN values in the User Property Store

var usn = system.newEntry();

usn.setAttribute("START_USN", startUsn);

usn.setAttribute("END_USN", endUsn);

usn.setAttribute("CURRENT_USN_CREATED", currentUsnCreated);

usn.setAttribute("CURRENT_USN_CHANGED", currentUsnChanged);

system.setPersistentObject("exchange_sync", usn);

This code assumes that the variables startUsn, endUsn, currentUsnCreated and currentUsnChanged contain

the USN numbers as strings. This example saves the USN values under the "exchange_sync" parameter,

so exchange_sync must be specified in the Iterator State Key parameter to continue synchronization from

the desired point.

Accessing the runtime Connector’s USN synchronization values

The Exchange Changelog Connector provides the following public methods for access to its current USN

values:

public Entry getUsnValues ();

Returns an Entry object with the following attributes:

v START_USN

v END_USN

v CURRENT_USN_CREATED

v CURRENT_USN_CHANGED

The value of each of the attributes is of type java.lang.Integer and represents the corresponding

Connector’s USN value.

public void setUsnValues (Entry usnEntry);

Sets the Exchange Connector’s current USN synchronization values to the values specified in the

usnEntry parameter. The structure of the usnEntry parameter must be the same as the structure

of the Entry returned by getUsnValues(). The values of the usnEntry attributes must be either

java.lang.Integer or the String representations of the corresponding numbers.

Note: Be careful when changing the USN values at runtime. Specifying inconsistent values can result in

improper synchronization.

Configuration

The Connector needs the following parameters:

LDAP URL

The LDAP URL of the Exchange server you want to access. The LDAP URL has the form

ldap://hostname:port or ldap://server_IP_address:port. For example, ldap://localhost:389

Note: The default LDAP port number is 389. When using SSL, the default LDAP port number is

636.

74 Reference Guide

Login username

The distinguished name used for authentication to the service. For example,

cn=administrator,ou=domain_name,o=organization_name.

Note: If you use Anonymous authentication, you must leave this parameter blank.

Login password

The credentials (password).

Note: If you use Anonymous authentication, you must leave this parameter blank.

Authentication Method

The authentication method to be used. Possible values are:

v Anonymous (use no authentication)

v Simple (use weak authentication (cleartext password))

Use SSL

Specifies whether to use Secure Sockets Layer for LDAP communication with Exchange Server.

LDAP Search Base

The specified Exchange sub-tree which is polled for changes. For example,

cn=recipients,ou=domain_name,o=organization_name.

USN Filename

Specifies the name of the text file where the most recent Connector session USN values are

stored. If the file does not exist or is not in the correct format, the Connector performs a full

synchronization with Exchange. The file must not be read-only, as the Connector writes the

updated USN values each time it retrieves an Entry.

Note: The use of a separate USN file by means of this parameter is deprecated. Use the Iterator

State Key parameter instead.

If you change the search base or the server or both, you might want to change or edit the USN

file as well, because the stored USN values might be invalid in regard to the new search base or

server.

Iterator State Key

Specifies the name of the parameter that stores the current synchronization state in the User

Property Store of the IBM Tivoli Directory Integrator. This must be a unique name for all

parameters stored in one instance of the IBM Tivoli Directory Integrator User Property Store.

Start at

Specifies a start USN number from which synchronization must start. EOD means report only

changes that happen after the Connector has started.

″Is-Deleted″ Attribute visible

Specifies whether the Exchange server exposes the Is-Deleted object attribute through LDAP.

Note: If the server does expose the Is-Deleted attribute, but ″Is-Deleted″ Attribute visible is set

to false, then the Connector still works properly. You can accelerate the Connector by

setting ″Is-Deleted″ Attribute visible to true. If the server does not expose the Is-Deleted

attribute, but ″Is-Deleted″ Attribute visible is set to true, then the Connector cannot tell

the difference between a modified object and a deleted object and reports all deletions as

modify change operations.

Timeout

 Specifies the number of seconds the Connector searches for a new change. Regardless of the

value of this parameter, the Connector does not timeout until it has scanned every change that

has happened before the current Connector session has started.

Chapter 2. Connectors 75

If this parameter is 0, then the Connector waits indefinitely for the next change.

 When the Connector times out, it returns an empty (null) Entry, thus indicating that there are no

more Entries to return.

Sleep Interval

Specifies the number of seconds the Connector sleeps between successive polls for changes.

Detailed Log

If this parameter is checked, more detailed log messages are generated.

Comment

Your comments here.

Migration

For IBM Tivoli Directory Integrator 6.1.1, the Exchange Changelog Connector stores the USN

synchronization values into the User Property Store of the IBM Tivoli Directory Integrator. Older versions

(pre-6.0) of the Exchange Changelog Connector store the USN values in a text file.

Do the following to migrate a pre-6.0 IBM Tivoli Directory Integrator configuration:

1. Open the pre-6.0 configuration and set a value for the Iterator State Store parameter.

2. Run the AssemblyLine. The Exchange Connector reads the start USN values from the text file, but

stores the updated USN values both in the text file and in the User Property Store.

3. Stop the AssemblyLine.

4. Clear the value of the USN Filename parameter and save the configuration. The Connector reads and

stores the USN synchronization values in the User Property Store and no text file is used.

See Also

“LDAP Connector” on page 133

“Active Directory Changelog (v.2) Connector” on page 13,

“Netscape/iPlanet/Sun Directory Changelog Connector” on page 161,

“IBM Directory Server Changelog Connector” on page 97.

“z/OS Changelog Connector” on page 233.

76 Reference Guide

File system Connector

The file system Connector is a transport Connector that requires a Parser to operate. The file system

Connector reads and writes files available on the system it runs on. Concurrent usage of a file can be

controlled by means of a locking mechanism.

Note: This Connector can only be used in Iterator or AddOnly mode, or for the equivalent operations in

Passive state.

Configuration

The Connector needs the following parameters:

File Path

The name of the file to read or write.

Timeout (in seconds)

When this parameter is specified as a positive number, the Connector waits for available data

when reading from a file. Specify 0 (zero) to wait forever, or any other number which specifies

the number of seconds to wait before signalling end of file. Setting this parameter to 0 (zero)

causes the Connector to simulate the UNIX-style tail -f command.

 If you have requested a lock on the file (using the Lock File parameter), the Timeout parameter

instead specifies how long to wait to acquire the lock. An unspecified or negative number means

wait forever.

Append on Output

If set, the Connector appends instead of overwriting when the file is opened for writing.

Lock file

When writing, acquire an exclusive lock on the file being written. When reading, acquire a shared

lock.

 The lock is acquired when the Connector is initialized, and released when the Connector is

closed.

 If one Connector (A) has acquired an exclusive lock on a file, and another Connector (B) tries to

open it, then Connector B will either wait for he lock to be released, or an error will be thrown. If

Connector B has checked the exclusive Lock parameter, it will wait; if Connector B has not

checked the exclusive Lock parameter, an error will be thrown.

 The locking mechanism is Operating System dependent. Note that file locking can cause

deadlocks, especially if more than one file is locked per AssemblyLine.

 For more information, see http://java.sun.com/j2se/1.5.0/docs/api/java/nio/channels/
FileChannel.html#lock()

Detailed Log

If this parameter is checked, more detailed log messages are generated.

Parser In the Parser tab, you can configure the name of a Parser to access the contents of the file by

selecting a Parser in the ″Inherit from:″ button.

See also

“URL Connector” on page 227.

Chapter 2. Connectors 77

http://java.sun.com/j2se/1.5.0/docs/api/java/nio/channels/FileChannel.html#lock()
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/channels/FileChannel.html#lock()

78 Reference Guide

FTP Client Connector

The FTP Client Connector is a transport Connector that requires a Parser to operate. The Connector reads

or writes a data stream that can either be a file or a directory listing. Think of the FTP Client Connector

as a remote read/write facility, not something you use to transfer files.

This Connector supports FTP Passive Mode, as per RFC959. Passive Mode reverses who initiates the data

connection in a file transfer. Normally the server initiates a data connection to the client (after a

command from the client), whereas passive mode enables the client to initiate the data connection. This

makes it easier to transfer files when the client is behind a firewall.

Notes:

1. Iterator mode supports the operations get and list; AddOnly supports put.

2. This Connector is not intended for transferring binary files.

3. The FTP Client in AddOnly mode with Save Connector Restart Info does not support

Checkpoint/Restart.

Configuration

The Connector needs the following parameters:

FTP Hostname

The hostname on which the FTP Server resides that the Connector will connect to.

FTP Port

The FTP TCP port (defaults to 21).

Login User

The login username.

Login Password

The login password.

Operation

The intended operation. Specify get to read a file (Iterator), put to write a file (Add Only), or list

to do a directory listing (Iterator).

Remote Path

Initial remote directory (for list) or file (for get/put) to access.

Transfer Mode

ASCII or Binary. ASCII is the only supported mode.

Passive Mode

When this checkbox is enabled, specifies that the FTP Client Connector will connect to the FTP

Server in passive mode instead of active mode. This parameter is ignored on an IPv6 connection,

since IPv6 always uses passive mode.

Detailed Log

If this parameter is checked, more detailed log messages are generated.

 From the Parser pane, you select the mandatory Parser. For example, Line Reader is a useful parser for

list, or if you simply want to copy one file. The select dialog is activated by pressing the bottom-right

Inherit From: button.

See also

“The FTP object” on page 437,

“URL Connector” on page 227,

“Old HTTP Client Connector” on page 87,

“Old HTTP Server Connector” on page 95.

Chapter 2. Connectors 79

GLA Connector

Introduction

The GLA Connector processes log files and transforms them to Common Base Event (CBE) objects, which

are then fed into the AssemblyLine.

It uses Generic Log Adapter (GLA) technology, part of IBM's Autonomic Computing Toolkit, to process

log files and transform their contents into Common Base Event format. The Autonomic Computing

Toolkit website contains (in addition to general information and documentation) a variety of

downloadable software, including the Eclipse plug-in to edit GLA configuration files.

Adapter configuration file

An adapter configuration file, prepared externally using the Adapter Configuration Editor Eclipse plug-in

is used in conjunction with the GLA Connector. It provides the tooling to create the specific parser rules

that are used by the GLA Connector at runtime to create Common Base Event objects, that is, the

configuration file contains information about the log file which will be processed. From this file all the

CBE objects will be later created. The logic for parsing the objects is also implemented in the adapter

configuration file. In the Eclipse GLA plug-in there are several examples of such configuration files, made

to process some well known application log files. You can also create your own configuration files using

the Eclipse’s user interface.

In both cases, either using an already created configuration file or creating a new configuration file, you

should note that a specially made outputter called TDIOutputter needs to be configured. This should be

done because when the CBE objects are created, the TDIOutputter sends these CBE objects to the GLA

Connector (which can then send them into the AssemblyLine using the ordinary mapping mechanism).

Using more than one outputter in the configuration file

It is not possible to use more than one TDIOutputter. If two or more TDIOutputters are configured in the

adapter configuration file an Exception will be thrown when the GLA Connector tries to get the

correlation ID from the TDIOutputter. When there is more than one TDIOutputter configured, the GLA

Connector which uses the configuration file does not know which of the multiple TDIOutputters to use—

it is not possible to get the CBE Objects from the correct TDIOutputter.

However, it is possible to define more than one outputter as long as it is not a TDIOutputter. For

example, you could combine the TDIOutputter with a FileOutputter. This will cause all CBE objects to be

sent (and saved) both to a file and to the GLA Connector.

Configuration

To configure the GLA Connector you must have a valid adapter configuration file. The path to the file

must be set in the Connector Config File Path parameter. The configuration file is being checked for

validity and if this is not a valid adapter configuration file an Exception will be thrown.

Config File Path

Determines where the adapter configuration file is located. The configuration file contains the

entire information about the log file and how it will be processed.

Debug

Checking this parameter causes more information to be logged.

Configuring the TDIOutputter

In order to configure the adapter file to use the TDIOutputter you use Eclipse’s GLA user interface (the

Eclipse GLA plug-in). Below a description of how to configure the outputter using the Eclipse user

interface:

 1. Open the adapter configuration file for editing. Now the Eclipse plug-in is showing the contents of

the configuration file.

80 Reference Guide

http://www-128.ibm.com/developerworks/autonomic/probdet.html
http://www-128.ibm.com/developerworks/autonomic/probdet.html

2. Go to Adapter -> Configuration -> Context Instance.

 3. Right click on Context Instance.

 4. Choose Add -> Logging Agent Outputter. Now you are able to see and configure the outputter.

 5. For the outputter type choose undeclared.

 6. Type a description of your choosing in the Description field.

 7. Right click on the Outputter and choose Add -> Property.

 8. Name the property “tdi_correlation_id”.

 9. For the value of this property use an arbitrary and unique value which will become the correlation

ID of the GLA Connector using this configuration file.

10. If no value is filled the TDIOutputter will use a default value and will register any Connector which

attempts to start its adapter configuration file.

11. Go to Adapter -> Contexts -> Basic Context Implementation and right click over it.

12. Choose add -> Logging Agent Outputter.

13. Fill the name and description fields.

14. In the Executable Class field enter “com.ibm.di.connector.gla.TDIOutputter”.

15. Make sure the role is set to outputter.

16. In the Role version field add a number (for example: 1.0.0).

17. For the unique ID click browse and choose the outputter you just made in steps 2 – 7.

18. Now you have configured the outputter and you are ready to use this adapter configuration file

with the GLA Connector.

Using the Connector

To configure the GLA Connector you must have a valid adapter configuration file. The path to the file

must be set in the Connector Config File Path parameter.

When the GLA Connector starts, a GLA instance is started in a separate thread inside the Connector.

Starting the adapter in a separate thread makes it possible to start iterating through the entries before

GLA has completed processing the entire log file. When the Connector receives CBE objects it stores them

into a queue, which orders the elements in FIFO (first-in-first-out) manner. When there are no elements in

the queue and the Connector wants to take an element from it, it will not return null value but will wait

until an element is available (that is, it blocks). On the other side of the queue when it is full and an

element needs to be added to it, it will block until there is available space in the queue.

Conditions like end-of-data, GLA adapter errors etc. are handled by special messages in the queue,

enabling the Connector to work in the manner expected of a TDI Connector.

When iterating, CBE objects are read one by one from the queue, and delivered to the GLA Connector.

The CBE object itself is stored into an Attribute called “rawCBEObject” of the work Entry. The CBE

attributes are also set in the work Entry.

In order to be able to handle the situation when more than one Connector instance is running

simultaneously a mechanism to send the correct CBE objects to the correct GLA Connector is required.

This is achieved by using a unique correlation ID parameter in the TDIOutputter configuration. Before a

GLA Connector starts the adapter configuration file it gets the correlation ID from the TDIOutputter

configuration (the Connector actually parses the adapter configuration file). Then it registers it in an

internal TDIOutputter table. When the TDIOutputter is ready to send the generated CBE object it gets its

correlation ID and takes the GLA Connector which is registered with this ID in the table.

Schema

The unprocessed, raw CBE object read from the TDIoutputter queue object is available in the following

attribute, ready to be mapped into the work entry:

Chapter 2. Connectors 81

Table 3.

Attribute Name Description

$rawCBE This attribute holds a single CBE object which is a result of the processed application log file.

The number of the CBE objects depends on the configuration of the parser in the adapter

configuration file.

The remaining attributes follow the specification as outlined in the output map schema definition in the

documentation for the “CBE Generator Function Component” on page 347.

See Also

The example demonstrating the processing of a DB2 log file, in the <TDI _install_directory>/examples/
glaconnector directory,

“RAC Connector” on page 183,

“CBE Generator Function Component” on page 347.

82 Reference Guide

HTTP Client Connector

The HTTP Client Connector enables greater control on HTTP sessions than the URL Connector provides.

With the HTTP Connector you can set HTTP headers and body using predefined attributes. Also, any

request to a server that returns data is available for the user as attributes.

This Connector supports secure connections using the SSL protocol when so requested by the server, for

example when accessing a server using the ’https://’ prefix in an URL. If client-side certificates are

required by the server, you will need to add these to the TDI truststore, and configure the truststore in

global.properties or solution.properties. More information about this can be found in the IBM Tivoli

Directory Integrator 6.1.1: Administrator Guide, in the section named "Client SSL configuration of TDI

components".

Note: The HTTP Client Connector does not support the Advanced Link Criteria (see ″Advanced link

criteria″ in IBM Tivoli Directory Integrator 6.1.1: Users Guide).

Modes

The HTTP client Connector can be used in four different AssemblyLine modes. These are:

Iterator

Each call to the Connector requests the same URL configured for the Connector. This causes the

Connector to run forever requesting the same page unless you include a Parser in the Connector’s

configuration. If you include a Parser, the Parser notifies when the last entry has been read from

the connection and the Connector eventually causes an AssemblyLine to stop.

Lookup

In this mode the Connector requests a page every time the Lookup function is called. In your

search criteria you can specify the page or URL to request, or include any number of parameters

all of which are appended to the base URL as request parameters.

AddOnly

In this mode the Connector request is performed much like the Iterator mode.

Call/Reply

In this mode the Connector has two attribute maps, Input and Output. When the AssemblyLine

invokes the Connector, an Output map operation is performed, followed by an Input map

operation.

Lookup Mode

In Lookup mode you can dynamically change the request URL by setting the search criteria as follows:

v If you have only one criteria and the attribute is named url, then the value specified in the criteria is

used as the request URL.

 url equals $url

v If you have more than one criteria or the only criteria is anything but url, then all attribute names and

values are appended to the URL given by the Connector configuration as the request URL.

Base URL: http://www.example_page_only.com/lookup.cgi

Search Criteria:

name equals john

mail equals doe.com

Resulting URL: http://www.example_page_only.com/lookup.cgi?name=john&mail=doe.com

v The Lookup function ignores the operand. So if you specify contains instead of equals the Connector

still constructs the URL as if equals where used.

Chapter 2. Connectors 83

Special attributes

When using the Connector in Iterator or Lookup mode the following set of attributes or properties is

returned in the Connector (″conn″) entry:

http.responseCode

The HTTP response code as an Integer object.

 200 OK —-> 200

http.responseMsg

The HTTP response message as a String object.

 200 OK —-> OK

http.content-type

The content type for the returned http.body (if any).

http.content-encoding

The encoding of the returned http.body (if any).

http.content-length

The number of bytes in http.body.

http.body

This object is an instance/subclass of java.io.InputStream class that can be used to read bytes of

the returned body.

var body = conn.getObject ("http.body");

var ch;

while ((ch = body.read()) != -1) {

 task.logmsg ("Next character: " + ch);

}

Consult the Javadocs for the InputStream classes and their methods.

http.body.response

When the Connector operates in AddOnly mode, responses from the server http.body part will be

made available in this Attribute; and the http.body Attribute as it was on the outbound call will

be unmodified. If on the outbound call you did not specify a value in the http.body Attribute,

then on return from the server the http.body Attribute will be identical to the http.body.response

Attribute.

http.text-body

If the http.content-type starts with the sequence text/, the Connector assumes the body is textual

data and reads the http.body stream object into this attribute.

 When using the Connector in AddOnly mode the Connector transmits any attribute named http. as a

header. Thus, to set the content type for a request name the attribute http.content-type and provide the

value as usual. One special attribute is http.body that can contain a string or any java.io.InputStream or

java.io.Reader subclass.

For all modes the Connector always sets the http.responseCode and http.responseMsg attributes. In

AddOnly mode this is special because the conn object being passed to the Connector is the object being

populated with these attributes. To access these you must obtain the value in the Connector’s After Add

hook.

Configuration

The Connector has the following parameters:

HTTP URL

The HTTP page to request.

84 Reference Guide

Note: If you use an https:// address, you might need to import a certificate as well.

Request Method

The HTTP method to use when requesting the page. See http://www.w3.org/Protocols/HTTP/
Methods.html for more information

Username

If set the HTTP Authorization header is set using this parameter along with the Password

parameter.

Password

Used if Username is specified.

Proxy If specified, connect to a proxy server rather than directly to the host specified in the URL. The

format is proxyhost:port (for example, proxy:8080), where proxy is the name of the proxyhost, and

8080 is the port number to use.

File to HTTP Body

The full path of the file. The file contents are copied as HTTP body in the HTTP message. This

overrides any possible Parser processing.

Content Type

If set, this will be used as the http.content-type for the file sent as specified by the File to HTTP

Body parameter, or other HTTP Body Attribute that may be present in the Entry (see the HTTP

Attributes described above).

File from Response HTTP Body

The full path of the file. The body of the response HTTP message is copied to the file.

Detailed Log

If this parameter is checked, more detailed log messages are generated.

 You select a Parser from the Parser pane; select the parser by clicking the bottom-right Inherit From:

button. If specified, this Parser is used to generate the http.body content when sending data. The parser

gets an entry with those attributes where the name does not begin with http. Also, this Parser (if

specified) gets the http.body for additional parsing when receiving data. However, do not specify

system:/Parsers/ibmdi.HTTP, because a message body does not contain another message.

Examples

In your attribute map you can use the following assignment to post the contents of a file to the HTTP

server:

// Attribute assignment for "http.body"

ret.value = new java.io.FileInputStream ("myfile.txt");

// Attribute assignment for "http.content-type"

ret.value = "text/plain";

The Connector computes the http.content-length attribute for you. There is no need to specify this

attribute.

See also

“URL Connector” on page 227,

“HTTP Server Connector” on page 91,

“HTTP Parser” on page 297.

Chapter 2. Connectors 85

86 Reference Guide

Old HTTP Client Connector

Note: This Connector is kept for legacy purposes only. If you are setting up a new Connector, please use

the HTTP Client Connector instead.

The Old HTTP Client Connector enables greater control on HTTP sessions than the URL Connector

provides. With the HTTP Connector you can set HTTP headers and body using predefined attributes.

Also, any request to a server that returns data is available for the user as attributes.

Note: The Old HTTP Client Connector does not support the Advanced Link Criteria (see ″Advanced link

criteria″ in IBM Tivoli Directory Integrator 6.1.1: Users Guide).

Modes

The Old HTTP Client Connector can be used in three different AssemblyLine modes. These are:

Iterator

Each call to the Connector requests the same URL configured for the Connector. This causes the

Connector to run forever requesting the same page unless you include a Parser in the Connector’s

configuration. If you include a Parser, the Parser notifies when the last entry has been read from

the connection and the Connector eventually causes an AssemblyLine to stop.

Lookup

In this mode the Connector requests a page every time the Lookup function is called. In your

search criteria you can specify the page or URL to request, and include any number of

parameters all of which are appended to the base URL as request parameters.

AddOnly

In this mode the Connector request is performed much like the Iterator mode.

Lookup Mode

In Lookup mode you can dynamically change the request URL by setting the search criteria as follows:

v If you have one and only one criteria and the attribute is named url then the value specified in the

criteria is used as the request URL.

 url equals $url

v If you have more than one or the only criteria is anything but url, then all attribute names and values

are appended to the URL given by the Connector configuration as the request URL.

Base URL: http://www.example_name.com/lookup.cgi

Search Criteria:

name equals john

mail equals doe.com

Resulting URL: http://www.example_name.com/lookup.cgi?name=john&mail=doe.comThe Lookup

function ignores the operand. So if you specify contains instead of equals the Connector still constructs

the URL as if equals where used.

Special attributes

When using the Connector in Iterator or Lookup mode the following set of attributes or properties is

returned in the Connector entry:

http.responseCode

The HTTP response code as an Integer object.

 200 OK —-> 200

http.responseMsg

The HTTP response message as a String object.

Chapter 2. Connectors 87

200 OK —-> OK

http.content-type

The content type for the returned http.body (if any).

http.content-encoding

The encoding of the returned http.body (if any).

http.content-length

The number of bytes in http.body.

http.body

This object is an instance/subclass of java.io.InputStream class that can be used to read bytes of

the returned body.

var body = conn.getObject ("http.body");

var ch;

while ((ch = body.read()) != -1) {

 task.logmsg ("Next character: " + ch);

}

Consult the Javadocs for the InputStream classes and their methods.

http.text-body

If the http.content-type starts with the sequence text/, the Connector assumes the body is textual

data and reads the http.body stream object into this attribute.

 When using the Connector in AddOnly mode the Connector transmits any attribute named http. as a

header. Thus, to set the content type for a request, name the attribute http.content-type and provide the

value as usual. One special attribute is http.body that can contain a string or any java.io.InputStream or

java.io.Reader subclass.

For all modes the Connector always sets the http.responseCode and http.responseMsg attributes. In

AddOnly mode this is a bit special since the conn object being passed to the Connector is the object

being populated with these attributes. To access these you must obtain the value in the Connector’s After

Add hook.

Configuration

The Connector has the following parameters:

HTTP URL

The HTTP page to request.

Request Method

The HTTP method to use when requesting the page. See http://www.w3.org/Protocols/HTTP/
Methods.html for more information.

Username

If set, the HTTP Authorization header uses this parameter along with the Password parameter.

Password

Used if Username is specified.

Detailed Log

If this parameter is checked, more detailed log messages are generated.

Parser If specified, this Parser is used to generate the posted data for an Add operation.

Examples

In your attribute map you can use the following assignment to post the contents of a file to the HTTP

server:

88 Reference Guide

// Attribute assignment for "http.body"

ret.value = new java.io.FileInputStream ("myfile.txt");

// Attribute assignment for "http.content-type"

ret.value = "text/plain";

The Connector computes the http.content-length attribute for you. There is no need to specify this

attribute.

See also

“URL Connector” on page 227,

“Old HTTP Server Connector” on page 95,

“HTTP Client Connector” on page 83.

Chapter 2. Connectors 89

90 Reference Guide

HTTP Server Connector

IBM Tivoli Directory Integrator provides a HTTP server Connector that listens for incoming HTTP

connections and acts like a HTTP server. Once it receives the request, it parses the request and sends the

parsed request to the AssemblyLine workflow to process it. The result is sent back to the HTTP client. By

default, the returned result has a content-type of "text/html".

If a Parser is specified then the Connectors process post requests and parse the contents using the

specified Parser. get requests do not use the Parser. If a post request is received and no Parser is specified

the contents of the post data is returned as an attribute (postdata) in the returned entry.

The HTTP Server Connector uses ibmdi.HTTP as internal Parser if no Parser is specified.

The HTTP Server Connector supports Server mode only.

The Connector parses URL requests and populates an entry in the following manner:

http://localhost:8888/path?p1=v1&p2=v2

http.method : ’GET’

http.Host : ’localhost:8888’

http.base : ’/path’

http.qs.p1 : ’v1’

http.qs.p2 : ’v2’

http://localhost:8888/?p1=v1&p2=v2

http.method : ’GET’

http.Host : ’localhost:8888’

http.base : ’/’

http.qs.p1 : ’v1’

http.qs.p2 : ’v2’

If a post request is used then it is expected that the requestor is sending data on the connection as well.

Depending on the value for the Parser parameter the Connector does the following:

Parser present

Instantiates the Parser with the HTTP input stream. Connector delegates getNext to the Parser’s

getEntry and returns whatever the Parser returns.

Parser not present

Puts contents of post data in a Connector attribute called http.body.

 The session with the HTTP client is closed when the Connector receives a getNext request from the

AssemblyLine and there is no more data to fetch. For example, if the Parser has returned a null value, or

on the second call to getNext if no Parser is present.

Connector structure and workflow

The HTTP Server Connector receives HTTP requests from HTTP clients and sends HTTP responses back.

As mentioned above, the default content-type header is set to "text/html"; you can override that by

setting the Entry attribute http.content-type to the appropriate value before the Connector returns the

result to the client.

After the AssemblyLine initializes the HTTP Server Connector, it calls the getNextClient() method of the

Connector. This method blocks until a client request arrives. When a request is received, the Connector

creates a new instance of itself, which is handed over to the AssemblyLine that spawns a new

AssemblyLine thread for that Connector instance. This design feature provides the ability to process each

Event in a separate thread, which allows the HTTP Server Connector to process several HTTP events in

parallel. The AssemblyLine then calls the getNextEntry() method on this new Connector instance in the

new thread. Each Entry returned by the getNextEntry() call represents an individual HTTP request from

Chapter 2. Connectors 91

the HTTP client. The Connector’s replyEntry(Entry conn) method is called for each Entry returned from

getNextEntry() to send to the client the corresponding HTTP response.

Connector Client Authentication

The parameter HTTP Basic Authentication governs whether client authentication will be mandated for

HTTP clients accessing this connector over the network.

There are two different ways to implement HTTP Basic Authentication with the HTTP Server Connector:

1. Using an Authentication Connector

This is a mechanism for backward compatibility with the deprecated HTTP EventHandler. A

connector parameter Auth Connector specifies a TDI Connector that will be used in Lookup Mode,

with the username and password for the HTTP Basic Authentication data specified as the Link

Criteria:

v If the lookup returns an Entry, the authentication is considered successful and the HTTP Server

Connector proceeds with processing the client’s request.

v If the lookup cannot find an Entry, the client is not authenticated and the request will not be

processed.
2. Script authentication

This mechanism requires a certain amount of coding, but provides more power and lets you

implement authentication through your own scripting. It can only be used when the Auth Connector

parameter is NULL or empty.

The Connector will make available to you the username and password values in the “After Accepting

connection” Hook through the getUserName() and getPassword() public Connector methods. It is now

your responsibility to implement the authentication mechanism. You should call the Connector’s

rejectClientAuthentication() method from the AssemblyLine hook if authentication is not

successful. Consider the following example authentication script code:

var httpServerConn = conn.getAttribute("connectorInterface").getValue(0);

var username = httpServerConn.getUserName();

var password = httpServerConn.getPassword();

//perform verification here

successful = true;

if (!successful) {

 httpServerConn.rejectClientAuthentication();

}

Chunked Transfer Encoding

When the parameter Chunked Transfer Encoding is enabled, the Connector will write the HTTP body as

series of chunks.

When chunked encoding is used, the user is responsible for calling the Connector’s putEntry(entry)

method for each chunk – the value of the ”http.body” Attribute of the Entry provided will be sent as an

HTTP chunk. The replyEntry(entry) Connector’s method is automatically called by the AssemblyLine at

the end of the iteration – it will write the last chunk of data (if the “http.body” Attribute is present) and

close the chunk sequence.

When a Parser is specified to the HTTP Server Connector, it will be the stream returned by the Parser

that will be sent as a HTTP chunk on each putEntry(entry) or replyEntry(entry) call.

Configuration

The Connector needs the following parameters:

TCP Port

The TCP port to listen for incoming requests (the default port is 80).

92 Reference Guide

Connection Backlog

This represents the maximum queue length for incoming connection indications (a request to

connect). If a connection indication arrives when the queue is full, the connection is refused.

Content Type

The default HTTP content type to use for outbound data. This value is overridden by the

″http.content-type″ Attribute of the work object. The default is text/html.

TCP Data as Properties

If the check box is checked (default), the TCP connection properties are accessed through the

getProperty() method of the work Entry object. If unchecked, the TCP connection properties

appear as Entry Attributes.

HTTP Headers as Properties

If the check box is checked (default), all HTTP headers are accessible using the getProperty()

method of the work Entry object. If unchecked, all HTTP headers appear as Entry Attributes.

HTTP Basic Authentication

If enabled (by default it is not), clients will be challenged for HTTP Basic authentication.

Auth Realm

The authentication realm sent to the client when requesting HTTP Basic authentication. The

default is ″IBM Tivoli Directory Integrator″.

Auth Connector

This drop-down list specifies an Authenticator Connector. If a Connector is specified it must exist

in the Connector library and be configured for Lookup mode.

 When this parameter is specified, the HTTP Server Connector will issue authentication requests to

any client (e.g., a Web browser) that tries to access this service and does not provide

authentication data. When the client provides the username/password the HTTP Server

Connector will call the Authenticator Connector’s lookup method providing the username and

password attributes. Hence, the authentication Connector must be configured using a Link

Criteria where the $username and $password attributes are used. A typical link criteria would be:

username equals $username

password equals $password

If the search fails, the HTTP Server Connector denies the request and sends an authentication

request back to the client. If the search succeeds, the HTTP Server Connector processes the

request.

 The entry returned by the authenticator Connector can be accessed through the ″auth.entry″

Property of the event Entry.

 For more details on client authentication, and for an alternative method to using an Auth

Connector, see “Connector Client Authentication” on page 92.

Use SSL

If enabled (by default it is not), then the Connector will require clients to use SSL; non-SSL

connection requests will fail.

 When SSL is used, the Connector will use the default TDI Server SSL settings – certificates,

keystore and truststore.

Require Client Authentication

If enabled (by default it is not), the Connector mandates client authentication when using SSL.

This means that the Connector will require clients to supply client-side SSL certificates that can be

matched to the configured TDI trust store. This parameter is only taken into account if the

previous parameter (Use SSL) is enabled as well.

Chapter 2. Connectors 93

Chunked Transfer Encoding

If checked, the HTTP body of the message is transferred as a series of chunks; see “Chunked

Transfer Encoding” on page 92.

Detailed Log

If this parameter is checked, more detailed log messages are generated.

Note: You can select a Parser from the Parser configuration pane; click on the Inherit from: button in the

bottom right corner when the Parser pane is active.

Connector Schema

Listed below are all the Attributes supported by the HTTP Server Connector.

Input Attributes

v http.* - Any HTTP header.

v http.Authorization - The type of http authorization.

v http.base - HTTP base parameter.

v http.body - The body of HTTP request.

v http.content-length - The number of bytes in http.body.

v http.content-type - The type of HTTP content, for example text/plain, text/xml, etc.

v http.method - HTTP method type. Valid values are: GET/POST/PUT

v http.qs.* - Query string parameter.

v http.remote-pass - The remote user password.

v http.remote-user - The remote username.

v auth.entry - The entry returned by the authenticator Connector.

v tcp.inputstream - Socket input stream.

v tcp.outputstream - Socket output stream.

v tcp.remoteIP - Remote IP address.

v tcp.remotePort - Remote port.

v tcp.remoteHost - Remote host name.

v tcp.localIP - Local IP address.

v tcp.localPort - Local port.

v tcp.localHost - Local host name.

v tcp.socket - Raw socket object.

Output Attributes

v http.body - The body of HTTP response.

v http.content-type - The type of HTTP content.

v http.redirect - Redirect client to specified location.

v http.status - Status code of returned operation.

See also

“URL Connector” on page 227,

“HTTP Client Connector” on page 83,

“HTTP Parser” on page 297.

94 Reference Guide

Old HTTP Server Connector

Note: This Connector is kept for legacy purposes only. If you are creating a new Connector, please use

HTTP Server Connector instead.

The Old HTTP Server Connector listens for incoming HTTP connections and returns the get parameters

as an entry. If a Parser is specified then the Connectors process post requests and parse the contents

using the specified Parser. get requests do not use the Parser. If a post request is received and no Parser

is specified, the contents of the post data are returned as an attribute (postdata) in the returned entry.

The Connector parses URL requests and populates an entry in the following manner:

http://host/path?p1=v1&p2=v2

entry.path = "/path"

entry.p1="v1"

entry.p2="v2"

http://host?p1=v1&p2=v2

entry.path="/"

entry.p1="v1"

entry.p2="v2"

If a POST request is used then it is expected that the requestor is sending data on the connection as well.

Depending on the value for the Parser parameter the Connector does the following:

Parser present

Instantiates the Parser with the HTTP input stream. Connector delegates getNext to the Parser’s

getEntry and returns whatever the Parser returns.

Parser not present

Puts contents of post data in an attribute called postdata.

entry.postdata = "postdata"

 The session with the HTTP client is closed when the Connector receives a getNext request from the

AssemblyLine and there is no more data to retrieve. For example, if the Parser has returned a null value,

or on the second call to getNext no Parser is present. If you call getNext (for example, iterate) after

having received a null from the Connector.

Configuration

The Connector needs the following parameters:

TCP Port

The TCP port to listen to (the default port is 80).

Detailed Log

If this parameter is checked, more detailed log messages are generated.

Parser The name of a Parser to handle the contents of post requests.

See also

“URL Connector” on page 227,

“HTTP Server Connector” on page 91.

Chapter 2. Connectors 95

96 Reference Guide

IBM Directory Server Changelog Connector

The IBM Directory Server Changelog Connector is a specialized instance of the LDAP Connector. The

IBM Directory Server Changelog Connector contains logic to iterate the Changelog. It returns various

attributes, including the changes attribute. The Connector returns changes as something that looks like a

standard attribute, but it is in fact of the Entry class.

The Connector can be used in batch-oriented runs where it starts at a specific change number and stops

after the last Changelog entry. It can also be run in continuous mode where you specify the timer values

for periodically checking for the next Changelog entry.

The Connector reads Changelog entries and automatically increases the Changelog counter by one for

each iteration. When the Connector tries to read a non-existing Changelog entry, the Connector goes to

sleep for a period of time (Sleep Interval). If the total time the Connector is waiting for a new entry

exceeds the Timeout value, then the Connector returns to the caller with a null value (end of iteration).

This connector also exposes a “Use Notifications” option which specifies whether the Connector will use

a polling or a notification mechanism to retrieve new IDS changes. If set to “false” the Connector will

operate as in TDI 6.0 and will poll for new changes. If this parameter is set to “true” then after

processing all existing changes the Connector will block and wait for an unsolicited event notification

from the IBM Directory Server. The Connector will not sleep and timeout when the notification

mechanism is used.

This connector also supports Delta Tagging, at the Entry level, the Attribute level and the Attribute Value

level. It is the LDIF Parser that provides Delta support at the Attribute and Attribute Value levels.

Configuration

The Connector needs the following parameters:

LDAP URL

The LDAP URL for the connection (ldap://host:port).

Login username

The LDAP distinguished name used for authentication to the server. Leave blank for anonymous

access.

Login password

The credentials (password).

Authentication Method

The authentication method. Possible values are:

v CRAM-MD5 (use the CRAM-MD5 (RFC-2195) SASL mechanism).

v none (use no authentication (anonymous)).

v simple (use weak authentication (cleartext password)).

v If not specified, default (simple) is used. If Login username and Login password are blank,

then anonymous is used.

Use SSL

If Use SSL is true (that is, checked), the Connector uses SSL to connect to the LDAP server. Note

that the port number might need to be changed accordingly.

ChangeLog Base

The search base where the Changelog is kept. The standard DN for this is cn=changelog.

Extra Provider Parameters

Allows you to pass a number of extra parameters to the JNDI layer. It is specified as name:value

pairs, one pair per line.

Chapter 2. Connectors 97

Iterator State Key

Specifies the name of the parameter that stores the current synchronization state in the User

Property Store of the IBM Tivoli Directory Integrator. This must be a unique name for all

parameters stored in one instance of the IBM Tivoli Directory Integrator User Property Store.

Start at changenumber

Specifies the starting changenumber. Each Changelog entry is named changenumber=intvalue

and the Connector starts at the number specified by this parameter and automatically increases

by one. The special value EOD means start at the end of the Changelog.

State Key Persistence

Governs the method used for saving the Connector’s state to the System Store. The default is End

of Cycle, and choices are:

After read

Updates the System Store when you read an entry from the directory server’s change log,

before you continue with the rest of the AssemblyLine.

End of cycle

Updates the System Store with the change log number when all Connectors and other

components in the AssemblyLine have been evaluated and executed.

Manual

Switches off the automatic updating of the System Store with this Connector’s state

information; instead, you will need to save the state by manually calling the IBM

Directory Server Changelog Connector’s saveStateKey() method, somewhere in your

AssemblyLine.

Use Notifications

Specifies whether to use notification when waiting for new changes in IBM Directory Server. If

enabled, the Connector will not sleep or timeout, but instead wait for a Notification event from

the IBM Directory Server.

Batch retrieval

Specifies how searches are performed in IDS changelog. When unchecked, the Connector will

perform incremental lookups (backward compatible mode). When checked, and the server

supports ″Sort Control″, searches will be preformed with query ’changenumber>=some_value’,

corresponding to the last retrieval you made; this works in conjunction with the next parameter,

Page Size. By default, this option is unchecked.

Page Size

Specifies the size of the pages IDS will return entries on (default value is 500). It is used only

when Batch retrieval is set to true, i.e, checked.

Timeout

Specifies the number of seconds the Connector waits for the next Changelog entry. The default is

0, which means wait forever.

Sleep Interval

Specifies the number of seconds the Connector sleeps between each poll. The default is 60.

Detailed Log

If this field is checked, additional log messages are generated.

See also

“LDAP Connector” on page 133,

“Active Directory Changelog (v.2) Connector” on page 13,

“Exchange Changelog Connector” on page 71

“Netscape/iPlanet/Sun Directory Changelog Connector” on page 161,

“z/OS Changelog Connector” on page 233.

98 Reference Guide

Chapter 2. Connectors 99

ITIM Agent Connector

The ITIM Agent Connector uses the IBM Tivoli Identity Manager’s JNDI driver to connect to ITIM Agents

(the JNDI driver uses the DAML protocol). Thus the ITIM Agent Connector is able to connect to all ITIM

Agents that support the DAML protocol.

The Connector itself does not understand the particular schema of the ITIM Agent it is connected to – it

provides the basic functionality to create, read, update and delete JNDI entries.

The ITIM Agent Connector supports the Iterator, Lookup, AddOnly, Update and Delete modes.

This Connector uses the client library enroleagent.jar from the ITIM 4.6 release.

Setting up SSL for the ITIM Agent Connector

Since the enroleagent.jar client library uses JSSE (Java based keystore/truststore) for SSL authentication,

you are now required to mention the SSL-related certificate details in the global.properties/
solution.properties; previous versions of the ITIM Agent Connector required you to specify the certificate

name in the ″CA Certificate File″ parameter. You need to first import the ITIM Agent’s certificate into the

TDI truststore.

For example, with the following command you import the servercertificate.der file into tim.jks.

keytool –import –file servercertificate.der –keystore tim.jks

After you import the certificate, you need to mention this truststore in the ″server authentication″ section

of the global.properties /solution.properties file.

server authentication

javax.net.ssl.trustStore=E:\IBMDirectoryIntegrator\tim.jks

{protect}-javax.net.ssl.trustStorePassword=<jks_keystore_password>

javax.net.ssl.trustStoreType=jks

Note: The ″CA Certificate File″ property of the ITIM Agent Connector is no longer present, since now the

certificates mentioned in the JKS trust store in global.properties or solution.properties are being

used.

Configuration

The Connector needs the following parameters:

Agent URL

The URL used to connect to the ITIM Agent, in the form ″https://<agent_ip_address>:<port>″,

for example ″https://localhost:45580″

UserName

The username specified in the configuration of the ITIM Agent – used by the Connector to

authenticate to the ITIM Agent.

Password

The password specified in the configuration of the ITIM Agent – used by the Connector to

authenticate to the ITIM Agent.

Connection Retry Count

Specifies how many times to retry a failed connection (including initial connection attempt). If no

value is specified the ITIM JNDI driver uses a default value of 3.

Search Filter

Filter expression to use in Iterator mode. If no value is specified a default filter of ″(objectclass=*)″

is used to return all Entries.

100 Reference Guide

Detailed Log

Checking this parameter generates extra log messages.

Known Issues

The Connector has been briefly tested with a few ITIM Agents. Some lookup issues have been detected

that result from constraints of the underlying Agents implementation:

Sometimes simple JNDI searches might not return the expected results. For example, if you are using the

Windows 2000 Agent, the JNDI search for the Guest user account ″(eruid=Guest)″ might return more than

one Entries; or when you are using the Red Hat Linux Agent the search for the ″root″ group

″(erLinuxGroupName=root)″ returns an empty result set.

A work-around for these cases is to use an extended search filter where the object class is specified:

″(&(eruid=)(objectclass=<classname>))″. So for the Windows 2000 Agent the search would look like

″(&(eruid=Guest)(objectclass=erW2KAccount))″ and for the Red Hat Linux Agent the search filter should

be ″(&(eruid=root)(objectclass=erLinuxGroup))″.

This work-around does not work for all lookup issues, for example the search for the Windows

″Administrators″ group (Windows 2000 Agent) – ″(erW2KGroupName=Administrators)″ returns an

empty result set. The extended search filter ″(&(eruid=Administrators)(objectclass=erW2KGroup))″ returns

an empty result set too.

When you encounter a lookup problem:

1. 1. Make sure you are using the latest version of the Agent.

2. 2. Try the work-around described above.

3. 3. If the work-around doesn’t work, examine the schema of the Agent for other attributes that can be

used for Entry identification.

Here are a few examples for how other attributes from the Agent schema can be used for Entry

identification:

v In the search for the Windows ″Administrators″ group mentioned above, instead of

″erW2KGroupName″ attribute, the attribute ″erW2KGroupCommonName″ could be used. The filter

″(erW2KGroupCommonName=Administrators)″ works fine and you will get the ″Administrators″

group Entry.

v For the LDAP-X Agent, searches for LDAP users (″erXLdapAccount″ class) with the default ″eruid″

attribute might fail – in this case you can use the ″cn″ attribute for Entry identification.

See also

“ITIM DSMLv2 Connector” on page 61

Chapter 2. Connectors 101

102 Reference Guide

JDBC Connector

The JDBC Connector provides database access to a variety of systems. To reach a system using JDBC you

need a JDBC driver from the system provider. This provider is typically delivered with the product in a

jar or zip file. These files must be in your path or copied to the jars/ directory of your TDI installation;

otherwise you may get cryptic messages like ″Unable to load T2 native library″, indicating that the driver

was not found on the classpath.

You will also need to find out which of the classes in this jar or zip file implements the JDBC driver; this

information goes into the JDBC Driver parameter.

The JDBC Connector also provides multi-line input fields for the SELECT, INSERT, UPDATE and

DELETE statements. When configured, the JDBC connector will use the value for any of these instead of

its own auto-generated statement. The value is a template expanded by the parameter substitution

module that yields a complete SQL statement. The template has access to the connector configuration as

well as the searchcriteria and conn objects. The work object is not available for substitution, since the

connector does not know what work contains. Additional provider parameters are also supported in the

connector configuration.

The JDBC Connector supports the following modes: AddOnly, Update, Delete, Lookup, Iterator, Delta.

This Connector in principle can handle secure connections using the SSL protocol; but it may require

driver-specific configuration steps in order to set up the SSL support. Refer to the manufacturer’s driver

documentation for details.

Connector structure and workflow

The JDBC connector makes a connection to the specified data sources during the connector initialization.

While making a connection to the specified data source extra provider parameters are checked for, and

set if they are specified. The auto-commit flag setting is also handled and set during connection

initialization.

The JDBC connector builds SQL statements internally using a predefined mapping table. The connector

flow behaves the same way as other connectors in AddOnly, Update, Delete, Iterator and Lookup modes.

In addition, this Connector supports Delta mode; the delta functionality for the JDBC connector is

handled by the ALComponent (a generic building block common to all Connectors). The ALComponent

will do a lookup and apply the delta Entry to a target Entry before doing an update, and then decide

what the correct database operation must be. The Connector will then use the SQL statements for add,

modify or delete, corresponding to what the operation is.

Understanding JDBC Drivers

In order for the JDBC Connector to access a relational database, it needs to access a driver, a set of

subroutines or methods contained in a Java classlibrary. This library must be present in the classpath of

TDI, otherwise TDI will not be able to load the library when initializing the Connector, and hence be

unable to talk to the Relational Database (RDBMS). A good way to install a JDBC driver library such that

TDI can use it is to copy it into the <TDI_HOME>/jars directory.

There are 4 fundamental ways of accessing an RDBMS through JDBC (these are often referred to as driver

types):

1. Drivers that implement the JDBC API as a mapping to another data access API, such as Open

Database Connectivity (ODBC). Drivers of this type are generally dependent on a native library,

which limits their portability. The JDBC-ODBC Bridge driver is an example of a Type 1 driver; this

driver is generally part of the JVM, so it does not need to be specified separately on the TDI

classpath.

Chapter 2. Connectors 103

To configure ODBC, see “Specifying ODBC database paths” on page 107.

Note: The JDBC-ODBC bridge may be present in any of the different platform-dependent JVM's that

IBM ships with the product. However, IBM supports the JDBC-ODBC bridge on Windows

platforms only. In addition, performance is likely to be sub-optimal compared to a dedicated,

native ("Type 4") driver. Commercial ODBC/JDBC bridges are available. If you need an

JDBC-ODBC bridge, consider purchasing a commercially available bridge; see also the

JDBC-ODBC bridge drivers discussion at http://java.sun.com/products/jdbc/drivers.html..

2. Drivers that are written partly in the Java programming language and partly in native code. The

drivers use a native client library specific to the data source to which they connect. Again, because of

the native code, their portability is limited.

3. Drivers that use a pure Java client and communicate with a middleware server using a

database-independent protocol. The middleware server then communicates the client’s requests to the

data source.

4. Drivers that are pure Java and implement the network protocol for a specific data source. The client

connects directly to the data source.

With the exception of the JDBC-ODBC bridge on Windows, we only use Type 4 drivers with IBM Tivoli

Directory Integrator. We will discuss other types as well—in the context of each of the supported

databases—for a better understanding.

JDBC Type 3 and Type 4 drivers use a network protocol to communicate to their back-ends. This usually

implies a TCP/IP connection; this will either be a straight TCP/IP socket, but if the driver supports it, it

can be a Secure Socket Layer (SSL) connection.

Connecting to DB2

The IBM driver for JDBC and SQLJ bundled with TDI was be obtained from http://www-306.ibm.com/
software/data/db2/java. It is JDBC 1.2, JDBC 2.0, JDBC 2.1 and JDBC 3.0 compliant.

Information about the JDBC driver for IBM DB2® is available online; a starting point and example for

configuration purposes is the section on "Connecting to database servers in JDBC applications" in the DB2

Developer documentation. This driver may or may not suit your purpose.

Driver Licensing

This driver does not need further licensing for Cloudscape and other DB2 database systems (that is,

the appropriate license files, db2jcc_license_c.jar and db2jcc_license_cu.jar are already

included), except DB2 for z/Series and iSeries. In order for the driver to be able to communicate

with the latter two systems you would need to obtain the DB2 Connect product, and copy its license

file, db2jcc_license_cisuz.jar, to the jars/3rdparty/IBM directory.

 Based on the JDBC driver architecture DB2 JDBC drivers are divided into four types.

1. DB2 JDBC Type 1

This is an DB2 ODBC (not JDBC) driver, that you connect to using a JDBC-ODBC bridge driver. This

driver is essentially not used anymore.

A JDBC Type 1 driver can be used by JDBC 1.2 JDBC 2.0, and JDBC 2.1.

To configure ODBC, see “Specifying ODBC database paths” on page 107.

2. DB2 JDBC Type 2

The DB2JDBC Type 2 driver is quite popular and is often referred to as the app driver. The app driver

name comes from the notion that this driver will perform a native connect through a local DB2 client

to a remote database, and from its package name (COM.ibm.db2.jdbc.app.*).

104 Reference Guide

http://java.sun.com/products/jdbc/drivers.html
http://www-306.ibm.com/software/data/db2/java
http://www-306.ibm.com/software/data/db2/java
http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.apdv.java.doc/doc/tjvjcccn.htm
http://www-306.ibm.com/software/data/db2/db2connect/

In other words, you have to have a DB2 client installed on the machine where the application that is

making the JDBC calls runs. The JDBC Type 2 driver is a combination of Java and native code, and

will therefore usually yield better performance than a Java-only Type 3 or Type 4 implementation.

This driver’s implementation uses a Java layer that is bound to the native platform C libraries.

Programmers using the J2EE programming model will gravitate to the Type 2 driver as it provides

top performance and complete function. It is also certified for use on J2EE servers.

The implementation class name for this type of driver is com.ibm.db2.jdbc.app.DB2Driver.

The JDBC Type 2 drivers can be used to support JDBC 1.2, JDBC 2.0, and JDBC 2.1.

3. DB2 JDBC Type 3

The JDBC Type 3 driver is a pure Java implementation that must talk to middleware that provides a

DB2 JDBC Applet Server. This driver was designed to enable Java applets to access DB2 data sources.

An application using this driver can talk to another machine where a DB2 client has been installed.

The JDBC Type 3 driver is often referred to as the net driver, appropriately named after its package

name (COM.ibm.db2.jdbc.net.*).

The implementation class name for this type of driver is com.ibm.db2.jdbc.net.DB2Driver.

The JDBC Type 3 driver can be used with JDBC 1.2, JDBC 2.0, and JDBC 2.1.

4. DB2 JDBC Type 4

The JDBC Type 4 driver is also a pure Java implementation. An application using a JDBC Type 4

driver does not need to interface with a DB2 client for connectivity because this driver comes with

Distributed Relational Database Architecture™ Application Requester (DRDA® AR) functionality built

into the driver.

The implementation class name for this type of driver is com.ibm.db2.jcc.DB2Driver.

The latest version of this driver (9.1) supports SSL connections; this requires setting a property in the

Extra Provider Parameters field. For more information see http://publib.boulder.ibm.com/infocenter/
db2luw/v9/topic/com.ibm.db2.udb.apdv.java.doc/doc/rjvdsprp.htm. Note that the target database

must be set up such that it accepts incoming SSL connections.

If you are running DB2 on a z/OS platform, and the database is not configured correctly with the

required stored procedure for retrieving the schema, you might encounter some problems using the JDBC

Connector. If the JDBC Connector's query schema throws an exception, or the Add/Update action on

JDBC tables fails for BLOB data types, contact your database administrator and request that the required

stored procedure for retrieving the schema be installed. For more information about accessing DB2 from

Java, see also Overview of Java Development in DB2 UDB for Linux, UNIX, and Windows.

Connecting to Informix Dynamic Server

If you install the Informix Client SDK, you will also install Informix ODBC drivers which allow you to

use a JDBC-ODBC bridge driver. This driver is not recommended for production use. To configure ODBC,

see “Specifying ODBC database paths” on page 107.

However, we recommend you use the Informix JDBC driver, version 3.0. It is a pure-Java (Type 4) driver,

which provides enhanced support for distributed transactions and is optimized to work with IBM

WebSphere® Application Server.

It consists of a set of interfaces and classes written in the Java programming language. Included in the

driver is Embedded SQL/J which supports embedded SQL in Java.

The implementation class for this driver is com.informix.jdbc.IfxDriver.

Connecting to Oracle

Based on the JDBC driver architecture the following types of drivers are available from Oracle.

1. Oracle JDBC Type 1

This is an Oracle ODBC (not JDBC) driver, that you connect to using a JDBC-ODBC bridge driver.

Oracle does supply an ODBC driver, but does not supply a bridge driver. Instead, you can use the

Chapter 2. Connectors 105

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.apdv.java.doc/doc/rjvdsprp.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.apdv.java.doc/doc/rjvdsprp.htm
http://www-128.ibm.com/developerworks/db2/library/techarticle/0307zikopoulos/0307zikopoulos.html
http://www-306.ibm.com/software/data/informix/tools/jdbc/
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html

default JDBC-ODBC bridge that is part of the JVM, or get one of the JDBC-ODBC bridge drivers from

http://java.sun.com/products/jdbc/drivers.html. This configuration works fine, but a JDBC Type 2 or

Type 4 driver will offer more features and will be faster.

To configure ODBC, see “Specifying ODBC database paths” on page 107.

2. Oracle JDBC Type 2

There are two flavors of the Type 2 driver.

v JDBC OCI client-side driver

This driver uses Java native methods to call entrypoints in an underlying C library. That C library,

called OCI (Oracle Call Interface), interacts with an Oracle database. The JDBC OCI driver requires

an Oracle client installation of the same version as the driver. The use of native methods makes the

JDBC OCI driver platform specific. Oracle supports Solaris, Windows, and many other platforms.

This means that the Oracle JDBC OCI driver is not appropriate for Java applets, because it depends

on a C library. Starting from Version 10.1.0, the JDBC OCI driver is available for installation with

the OCI Instant Client feature, which does not require a complete Oracle client-installation. Please

refer to the Oracle Call Interface for more information.

v JDBC Server-Side Internal driver

This driver uses Java native methods to call entrypoints in an underlying C library. That C library

is part of the Oracle server process and communicates directly with the internal SQL engine inside

Oracle. The driver accesses the SQL engine by using internal function calls and thus avoiding any

network traffic. This allows your Java code to run on the server to access the underlying database

in the fastest possible manner. It can only be used to access the same database.
3. Oracle JDBC Type 4

Again, there are two flavors of the Type 4 driver.

v JDBC Thin client-side driver

This driver uses Java to connect directly to Oracle. It implements Oracle’s SQL*Net Net8 and TTC

adapters using its own TCP/IP based Java socket implementation. The JDBC Thin client-side driver

does not require Oracle client software to be installed, but does require the server to be configured

with a TCP/IP listener. Because it is written entirely in Java, this driver is platform-independent.

The JDBC Thin client-side driver can be downloaded into any browser as part of a Java application.

(Note that if running in a client browser, that browser must allow the applet to open a Java socket

connection back to the server.)

This is the most commonly-used driver. In general, unless you need OCI-specific features, such as

support for non-TCP/IP networks, use the JDBC Thin driver.

The implementation class for this driver currently is oracle.jdbc.driver.OracleDriver.

v JDBC Thin server-side driver

This driver uses Java to connect directly to Oracle. This driver is used internally within the Oracle

database, and it offers the same functionality as the JDBC Thin client-side driver, but runs inside an

Oracle database and is used to access remote databases. Because it is written entirely in Java, this

driver is platform-independent. There is no difference in your code between using the Thin driver

from a client application or from inside a server.

For more information about accessing Oracle from Java, see also Java, JDBC & Database Web Services,

and the Oracle JDBC FAQ.

Connecting to SQL Server

The Microsoft SQL Server 2005 driver for JDBC supports the JDBC 1.22, JDBC 2.0 and JDBC 3.0

specification. It is a Type 4 driver.

The implementation class for this driver is com.microsoft.sqlserver.jdbc.SQLServerConnection. It is contained

in the driver file sqljdbc.jar, typically obtained from the MS SQL Server 2005 installation, at <Microsoft

SQL Server 2005-Install-Dir>\sqljdbc_1.1.1501.101_enu\sqljdbc_1.1\enu\sqljdbc.jar.

You can also use other third party drivers for connecting to Microsoft SQL Server.

106 Reference Guide

http://java.sun.com/products/jdbc/drivers.html
http://www.oracle.com/technology/tech/java/java_db/index.html
http://www.oracle.com/technology/tech/java/sqlj_jdbc/htdocs/jdbc_faq.htm
http://msdn.microsoft.com/data/ref/jdbc/

The jTDS JDBC 3.0 driver distributed under the GNU LGPL is a good choice. This is a Type 4 driver and

supports Microsoft SQL Server 6.5, 7, 2000, and 2005. jTDS is 100% JDBC 3.0 compatible, supporting

forward-only and scrollable/updateable ResultSets, concurrent (completely independent) Statements and

implementing all the DatabaseMetaData and ResultSetMetaData methods. It can be downloaded freely

from http://jtds.sourceforge.net. More information about this driver is available from the Web site.

Connecting to Sybase Adaptive Server

The jConnect for JDBC driver by Sybase provides high performance native access (Type 4) to the

complete family of Sybase products including Adaptive Server Enterprise, Adaptive Server Anywhere,

Adaptive Server IQ, and Replication Server.

jConnect for JDBC is an implementation of the Java JDBC standard; it supports JDBC 1.22 and JDBC2.0,

plus limited compliance with JDBC 3.0. It provides Java developers with native database access in

multi-tier and heterogeneous environments. You can download jConnect for JDBC quickly, without

previous client installation, for use with thin-client Java applications - like IBM Tivoli Directory Integrator.

The implementation class name for this driver is com.sybase.jdbc3.jdbc.SybDriver.

You can also use other third party drivers for connecting to Sybase.

The jTDS JDBC 3.0 driver distributed under the GNU LGPL is a good choice. This is a Type 4 driver and

supports Sybase 10, 11, 12 and 15. jTDS is 100% JDBC 3.0 compatible, supporting forward-only and

scrollable/updateable ResultSets, concurrent (completely independent) Statements and implementing all

the DatabaseMetaData and ResultSetMetaData methods. It can be downloaded freely from

http://jtds.sourceforge.net. More information about this driver is available from the Web site.

Specifying ODBC database paths

When you use ODBC connectivity using the JDBC-ODBC bridge (supported on Windows systems only)

you can specify a database or file path the ODBC driver must use, if the ODBC driver permits. This type

of configuration avoids having to define a data source name for each database or file path your

Connector uses.

jdbcDriver

sun.jdbc.odbc.JdbcOdbcDriver

jdbcSource

jdbc:odbc:driver name;DBQ=path

 The syntax of this parameter is dependent on the following:

MS Access is installed

Open the ODBC data source control panel, and select the User DSN tab. In this table you

see the driver names you can use in the JDBC Source parameter. For example, if you

want to access an MS Access database (C:\Documents and Settings\<username>\My

Documents\mydb.mdb), provide the following value for the JDBC source:

jdbc:odbc:MS Access Database;dbq=C:\Documents and Settings\<username>\My Documents\mydb.mdb

MS Access is not installed

If MS Access is not installed, and you are on a Windows system, use the following:

jdbc:odbc:Driver={MS Access Driver

 (*.mdb)};dbq=C:\Documents and Settings\<username>\My Documents\mydb.mdb

Alternatively, use the Windows System DSN utility, available under Administrative Tools

> Data Sources (ODBC). Once you define a System DSN, use a jdbcSource parameter like

the following:

jdbc:odbc:myDSNNameHere

Chapter 2. Connectors 107

http://jtds.sourceforge.net
http://www.sybase.com/products/informationmanagement/softwaredeveloperkit/jconnect
http://jtds.sourceforge.net

Check the Driver list that you get in the utility. Your JDBC URL must exactly match the

wording found in this list.

Configuration

The Connector needs the following parameters:

JDBC URL

See documentation for your JDBC provider. Typical URL's for common RDBMS systems are:

 Table 4. JDBC URL examples

RDBMS Example connection URL

IBM DB2 (using the DRDA driver) "jdbc:db2://hostname:port/dbname"

Informix® Dynamic Server 10.0 "jdbc:informix-sqli://hostname:port/
dbname:informixserver=<Informix Server Name>"

Oracle (using the ″thin driver") "jdbc:oracle:thin:@hostname:1521:SID", using "host:port:sid" syntax,

TNSListener accepting connections on port 1521

Microsoft SQL Server (using

Microsoft's driver)

"jdbc:sqlserver://hostname:1433;databasename=dbname;", SQL Server

listening for connections on port 1433

Sybase 15 (also older versions

from v. 10), using jConnect 6.05

"jdbc:sybase:Tds:hostname:port/"

JDBC Driver

The JDBC driver implementation class name. The default value of sun.jdbc.odbc.JdbcOdbcDriver

addresses the JDBC-ODBC bridge, which is not recommended for production use. For databases

for which another type of driver is available, typical driver implementation class names are:

 Table 5. Driver implementation class names

RDBMS Driver implementation class name

IBM DB2, type 2 or 4 com.ibm.db2.jcc.DB2Driver

Oracle, type 4 oracle.jdbc.driver.OracleDriver

Informix Dynamic Server 10.0 com.informix.jdbc.IfxDriver

Microsoft SQL Server, type 4 com.microsoft.sqlserver.jdbc.SQLServerDriver

Sybase 15 (also older versions

from v. 10)

com.sybase.jdbc3.jdbc.SybDriver

Also see “Understanding JDBC Drivers” on page 103.

Username

Signon to the database using this username; only the tables accessible to this user will be shown.

Password

The password used in the signon for the user.

Schema

The schema from the table of the database that you want to use. If left blank, the value of the

jdbcLogin (that is, the Username parameter) is used.

Note: Throughout the TDI documentation, you will find the term Schema used to mean the data

definition of the object you are accessing. However, in the RDBMS world, the term Schema

has a different meaning, namely the overall collection of data definitions, tables and objects

grouped under one identifier (username). For this particular parameter in this particular

Connector, we use it in the RDBMS sense.

Table Name

The table or view to operate on. This is only used when the Connector operates in Lookup or

108 Reference Guide

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.apdv.java.doc/doc/tjvjcccn.htm
http://download-uk.oracle.com/docs/cd/B19306_01/java.102/b14355/jdbcthin.htm#CACCHECD
http://msdn2.microsoft.com/en-us/library/ms378428.aspx
http://www.sybase.com/products/informationmanagement/softwaredeveloperkit/jconnect

Update mode. If the SQL Select parameter is not specified, then the Iterator mode Connector also

uses this parameter to construct a default SELECT statement.

Select...

Click this button to bring up a list of available table names that you can select from to enter into

the Table Name field. This only works if the underlying database supports this; for example,

Microsoft Access using ODBC does not.

Return null values

If this parameter is set to true, then NULL values are returned as empty attributes (for example,

empty value set). If set to false, then the attribute is not part of the entry returned.

Commit

Controls when database transactions are committed. Options are:

v After every database operation (default)

v After every database operation (Including Selects)

v On Connector close

v Manual

Manual means user must call the commit() method of the JDBC Connector—or rollback(), as

appropriate.

Note: The option After every database operation (Including Selects) has been provided for

those databases which lock database tables in transactions even when they only have been

Selected for read operations (notably DB2).

SQL Select

The select statement to execute when selecting entries for iteration, that is, Iterator mode. If you

leave this blank, the default construct (SELECT * FROM TABLE) is used.

SQL Lookup

The custom SQL statement to use for lookups (used in Lookup and Delete modes).

SQL Insert

The custom SQL statement to use when inserting into the database, using AddOnly mode.

SQL Update

The custom SQL statement to use when updating the database, using Update mode.

SQL Delete

The custom SQL statement to use when using Delete mode.

Alter Session Statements

This parameter is a multi-line field where you can specify ALTER SESSION commands. The

following is an example of an ALTER SESSION command:

"SET NLS_FORMAT ’YYYY-MM-DD’"

Extra Provider Parameters

Additional JDBC provider parameters (name:value - one for each line). With this you can specify

additional parameters supported by the JDBC provider. You should check your driver

documentation for the supported parameters and then use them. For example, specific to DB2:

securityMechanism:KERBEROS_SECURITY

loginTimeout:20

readOnly:true

Date Format

A format string used to parse dates when they are supplied as strings. You can select from a list

of pre-defined format strings, or supply your own.

Use Prepared Statements

This value of this check box determines whether to use PreparedStatement or Statement. If this is

Chapter 2. Connectors 109

selected the PreparedStatement will be used by the JDBC connector else Statement will be used.

The default is checked, that is, "true", meaning try to pre-compile SQL statements, fall back to

normal.

Connector Flags

A list of flags to enable specific behavior.

 {ignoreFieldErrors}

 If getting field values causes an error, this flag causes the Connector to return the Java exception

object as the value instead of throwing the exception (that is, calling the Connectors *Fail

EventHandlers).

Detailed Log

If this field is checked, additional log messages are generated.

Link Criteria configuration

Link criteria specified in the Connector's configuration for Lookup, Delete, Update and Delta modes are

used to specify the WHERE clause in the SQL queries used to interact with the database.

The TDI operand Equal is translated to the equal sign (=) in the SQL query, while the Contains, Start

With and End With operators are mapped to the like operator.

Customizing select, insert, update and delete statements

Overview

The JDBC connector has the ability to expand a SQL template before executing any of its SQL operations.

There are five operations where the templates can be used. These operations are:

 Table 6. SQL Operations

Operation Description Mode(s)

SELECT Used in Iterator mode (no search criteria). Iterator

INSERT Used when adding an entry to the data source. Update, AddOnly

UPDATE Used when modifying an existing entry in the data

source.

Update

DELETE Used when deleting an existing entry in the data source. Delete

LOOKUP A SELECT statement with a WHERE clause. Used when

searching the data source.

Lookup, Delete, Update

If the template for a given operation is not defined (e.g., null or empty), the JDBC connector will use its

own internal template.

When there is a template defined for an operation, the template must generate a complete and valid SQL

statement. The template can reference the standard parameter substitution objects (e.g. mc, config, work,

Connector), as well as the JDBC schema for the table configured for the connector and a few other

convenience objects.

Metadata Object

The information about JDBC field types is provided as an Entry object named metadata. Each attribute in

the metadata Entry object corresponds to a field name and the value will be that field’s corresponding

type. For example, a table with the following definition:

CREATE TABLE SAMPLE (

 name varchar(255),

 age numeric(10),

)

could be referenced in the following manner, during parameter substitution:

110 Reference Guide

{javascript<<EOF

 metadata = params.get("metadata");

 if (metadata.getAttribute("name").equals("varchar"))

 return "some sql statement";

 else

 return "some other sql statement";

EOF

}

Link Object (Link Criteria)

The LinkCriteria values are available in the link object. The link object is an array of link criteria items.

Each item has fields that define the link criteria according to configuration. If the configured link criteria

is defined as cn equals john doe then the template could access this information with the following

substitution expressions:

link[0].name � “cn”

link[0].match � “=”

link[0].value � “john doe”

link[0].negate � false

A complete template for a SELECT operation could look like this:

SELECT * FROM {config.jdbcTable} WHERE {link[0].name} = ‘{link[0].value}’

Convenience Objects

Generating the WHERE clause or the list of column names is not easy without resorting to JavaScript

code. As a convenience, the JDBC Connector makes available the column names that would have been

used in an UPDATE and INSERT statement as columns; this does not apply to SELECT and LOOKUP

statements. This value is a comma-delimited list of column names. The textual WHERE clause is available

as “whereClause” to simplify operations. Below is an example of how to use both:

SELECT {columns} from {config.jdbcTable} WHERE {whereClause}

e.g., SELECT a,b,c from TABLE-A WHERE a > 1 AND b = 2

 Table 7. Information available for different statements

Object SELECT LOOKUP INSERT DELETE UPDATE

config yes yes yes yes yes

Connector yes yes yes yes yes

metadata no maybe maybe yes yes

conn no no yes yes yes

columns no no yes yes yes

link no yes no yes yes

whereClause no yes no yes yes

Additional JDBC Connector functions

Apart from the standard functions exposed by all Connectors, this Connector also exposes several other

functions you can use in your scripts. You could call them using the special variable thisConnector, e.g.

thisConnector.commit(); — when called from any scripting location in the Connector.

commit()

Commits any pending database operations.

execSQL (string)

Starts an arbitrary SQL command. Returns the error string if it fails.

execSQLSelect (string)

Starts SQL SELECT command. Returns the error string if it fails.

Chapter 2. Connectors 111

getNextSQLSelectEntry ()

Having started execSQLSelect you can use this method to get the next entry from the result set.

 The Connector’s Table Name parameter must be empty for this to work correctly.

rollback()

Backs out any database operations performed since the last commit() (irrespective of whether the

commit was done manually, or as a result of autocommit operations).

 The above functions do not interfere with the normal flow of entries and attribute mappings for the

Connector.

Timestamps

If you want to store a timestamp value containing both a date and a time, you must make sure you

provide an object of type java.sql.Timestamp, as you can with this Attribute Mapping:

ret.value = java.sql.Timestamp(java.util.Date().getTime());

The java.sql.Timestamp type can also come in handy if for some reason storing DATE fields in tables

causes trouble, for example the Oracle error ORA-01830: date format picture ends before converting

entire input string. Normally, if you try to store date/time values which are in the form of strings, the

Date Format parameter comes into play to convert the string into the DATE type the underlying database

expects, and if there is a mismatch between this parameter and your date/time value formatted as a

string, problems will ensue.

To troubleshoot your problem:

v What is your Data Pattern configuration?

v Find out how TDI sees this field (check in the schema tab of the Connector). A fair guess is that your

JDBC driver will convert the Oracle Data type into a java.sql.TimeStamp or java.sql.Date type (and note

that there are differences between java.util.Date and java.sql.Date, in terms of precision amongst

others). For example, in the case of a java.sql.Timestamp type, try specifying the construct mentioned

above, that is

ret.value = java.sql.Timestamp(java.util.Date().getTime());

and see if this helps. If it does, then you will be able to use

ret.value = java.sql.Timestamp(system.parseDate(work.getString("yourDate"),

 "yyyyMMddHHmmssz").getTime());

v If none of the above helps, turn the Connector into detailed log mode and see whether the Connector

is able to get the schema from the database. If not, the Connector does not use prepared statements

which makes it less efficient and more error-prone - so you’ll have to make sure that the Connector’s

schema configuration parameter is set correctly.

Calling Stored Procedures

The JDBC Connector's ″connection″ property gives you access to the JDBC Connection object created

when the connector has successfully initialized.

In other words, if your JDBC connector is named DBconn in your AL,

var con = DBconn.connector.connection;

will give you access to the JDBC Connection object (an instance of java.sql.Connection).

Note: When called from anywhere inside the connector itself, you can also use the thisConnector variable.

Here is a code example illustrating how you can invoke a stored procedure on that database:

112 Reference Guide

// Stored procedure call

command = "{call DBName.dbo.spProcedureName(?,?)}";

try {

 cstmt = con.prepareCall(command);

 // Assign IN parameters (use positional placement)

 cstmt.setString(1, "Christian");

 cstmt.setString(2, "Chateauvieux");

 cstmt.execute();

 cstmt.close();

 // TDI will close the connection, but you might want to force a close now.

 DBConn.close();

}

catch(e) {

 main.logmsg(e);

}

SQL Databases: column names with special characters

If you have columns with special characters in their names and use the AddOnly or Update modes:

1. Go to the attribute map of the Update or AddOnly Connector

2. Rename the Connector attribute (not the work attribute!) from name-with-dash to ″name-with-dash″

(add quotes).

The necessity of using this functionality might be dependent on the JDBC driver you are using, but

standard MS Access 2000 has this problem.

Using prepared statements

This section describes how the Connector creates SQL queries. You can skip this section unless you are

curious about the internals.

For a database, the Connector uses prepared statements or dynamic query depending on the situation:

v If the Connector gets the schema definition from the database, it uses prepared statements.

v Otherwise, the Connector creates a dynamic SQL query.

Taking advantage of PreparedStatements

The JDBC connector uses PreparedStatements to efficiently execute an SQL statement on a connected

RDBMS server. However, there maybe cases when the JDBC driver may not support PreparedStatements.

As a fall back mechanism a config parameter is available in the JDBC connector’s configuration. The

config parameter is a Boolean flag called usePreparedStatement (configured via a checkbox called Use

Prepared Statements in the connector config screen) which indicates whether the JDBC connector should

use PreparedStatements. If this is set (the default) the connector will use PreparedStatement and will fall

back to normal Statements (java.sql.Statement) in case of an exception. If this is not set, normal Statement

will be used by the JDBC connector while executing SQL queries. This checkbox gives an option to a TDI

solution developer to handle situations when there are problems due to use of PreparedStatements.

The findEntry, putEntry, deleteEntry and the modEntry methods of the JDBC connector checks for the

value of usePreparedStatement flag to determine whether to use PreparedStatements or Statements.

If a connector config does not have this flag (as in an older version of the config), the value of this param

will be “true” by default. This ensures that there are no migration issues or impact.

Chapter 2. Connectors 113

On Multiple Entries

See Appendix B, “AssemblyLine and Connector mode flowcharts,” on page 443 for more information

about what happens when a Connector has a link criteria returning multiple entries.

For the JDBC Connector in Delete or Update mode, if you have used the setCurrent() method of the

Connector and not added extra logic, all entries matching the link-criteria are deleted or updated.

114 Reference Guide

JMS Connector

Introduction

The JMS Connector’s functions and features are:

v Enables communication of native Entry objects to be passed using a Java Message Service product.

v Supports JMS message headers and properties.

v Supports sending different types of data on the JMS bus (text message, object message, bytes message).

v Allows users to write their own Java code (JMS initiator class) to connect to different JMS systems.

v Allows users to write JavaScript to connect to different JMS systems.

v Support for plugging in other message queues than IBM MQ.

v Supports auto acknowledge and manual acknowledge through the acknowledge() method.

The JMS Connector provides access to JMS based systems such as IBM MQ Server or the bundled MQe.

A partly-preconfigured version of this Connector exists under the name ″IBM MQ Connector″, where the

JMS Server Type is hidden, and pre-set to ″IBMMQ″.

Refer to Specific topics to see what you might need to do to your IBM Tivoli Directory Integrator

installation to make the JMS Connector work.

The Connector enables communication of both native Entry objects and XML text to be passed using a

Java Message Server product.

The JMS Connector supports JMS message properties. Each message received by the JMS Connector

populates the conn object with properties from the JMS message (see the getProperty() and setProperty()

methods of the entry class to access these). conn object properties are prefixed with jms. followed by the

JMS message property name. The property holds the value from the JMS message. When sending a

message the user can set properties which are then passed on to the JMS message sent. The JMS

Connector scans the conn object for properties that starts with jms. and set the corresponding JMS

message property from the conn property.

v JMS: correlationID=12 ——> conn jms.correlationID=12

v conn:jms.inReplyTo=12 ——> JMS:inReplyTo=12

The conn object is only available in a few hooks. See ″Conn object″ in IBM Tivoli Directory Integrator 6.1.1:

Users Guide.

JMS message flow

Everything sent and received by the JMS Connector is a JMS message. The JMS Connector converts the

IBM Tivoli Directory Integrator Entry object into a JMS message and vice versa. Each JMS message

contains predefined JMS headers, user defined properties and some kind of body that is either text, a

byte array or a serialized Java object.

There exists a method as part of the JMS Connector which can greatly facilitate communication with the

JMS bus: acknowledge(). The method acknowledge() is used to explicitly acknowledge all the JMS

session’s consumed messages when Auto Acknowlege is unchecked. By invoking acknowledge() of the

Connector, the Connector acknowledges all messages consumed by the session to which the message was

delivered. Calls to acknowledge are ignored when Auto Acknowlege is checked.

When deploying the JMS Connector in conjunction with the Checkpoint/Restart functionality available

with IBM Tivoli Directory Integrator, careful thought must be given to the acknowledgement of received

messages (see ″Checkpoint/Restart — Saving and storing AssemblyLine state information″ in IBM Tivoli

Directory Integrator 6.1.1: Users Guide). As described, the best approach is to not use Auto Acknowledge in

the JMS Connector, but rather insert a Script Connector right after the JMS Connector in the

Chapter 2. Connectors 115

AssemblyLine, invoking the acknowledge() method of the JMS Connector. This ensures that the window

between the relevant message information in the Checkpoint/Restart store being saved, and the JMS

queue notification is as small as possible. If a failure occurs in this window, the message is received once

more.

Conversely, relying on Auto Acknowledge creates a window that exists from the point at which the

message is retrieved from the queue (and acknowledged), until the message contents mapped into the

entry is secured in the Checkpoint/Restart store. If a failure occurs in this window, the message is lost,

which can be a greater problem.

Note: There could be a problem when configuring the JMS Connector in the Config Editor when Auto

Acknowledge is on, because as long as this is the case, when going through the process of schema

discovery using either Schema->Connect->GetNext or Quick Discover from Input Map the

message will be grabbed and consumed (that is, gone from the input queue). This may be an

unintended side-effect. To avoid this, turn Auto Acknowledge off before Schema detection — but

remember to switch it back on again afterwards, if this is the desired behavior

WebSphere MQ and JMS/non-JMS consumers of messages

When the JMS Connector sends messages to WebSphere MQ it is capable of sending these messages in

two different modes depending on the client which will read these messages:

v the messages are intended to be read by non-JMS clients (the default)

v the messages are intended to be read by JMS clients

By default the Connector sends the messages so that they are intended to be read by non-JMS clients. The

major difference between these two modes is that when the messages are intended to be read by non-JMS

clients, the JMS properties are ignored. Thus a subsequent lookup on these properties will not find a

match.

In order to switch to the ″intended to be read by JMS clients″ mode, the ″Specific Driver Attributes″

parameter value must contain the following line (apart from any other attributes specified):

mq_nonjms=false

JMS message types

The JMS environment that enables you to send different types of data on the JMS bus. This Connector

recognizes three of those types. The three types are referred to as Text Message, Bytes Message and

Object Message. The most open-minded strategy is to use Text Message (for example,

jms.usetextmessages=true) so that applications other than IBM Tivoli Directory Integrator can read

messages generated by the JMS Connector.

When you communicate with other IBM Tivoli Directory Integrator servers over a JMS bus the

BytesMessage provides a very simple way to send an entire Entry object to the recipient. This is also

particularly useful when the entry object contains special Java objects that are not easy to represent as

text. Most Java objects provide a toString() method that returns the string representation of it but the

opposite is very rare. Also, the toString() method does not always return very useful information. For

example, the following is a string representation of a byte array:

"[B@<memory-address>"

Text message

A text message carries a body of text. The format of the text itself is undefined so it can be virtually

anything. When you send or receive messages of this type the Connector does one of two things

depending on whether you have specified a Parser:

v When you specify a Parser the Connector calls the Parser to interpret the text message and return these

attributes along with any headers and properties. When sending a message the provided conn object is

passed to the Parser to generate the text body part. This makes it easy to send data in various formats

116 Reference Guide

onto a JMS bus (for example, use the LDIF Parser, XML Parser, and so forth). You can even use the

Simple Object Access Protocol (SOAP) Parser to send SOAP requests over the JMS bus.

v If you don’t have a Parser defined, the text body is returned in an attribute called message. When

sending a message the Connector uses the provided message attribute to set the JMS text body part.
var str = work.getString ("message");

task.logmsg ("Received the following text: " + str);

If you expect to receive text messages in various formats (XML, LDIF, CSV ...) you must leave the Parser

parameter blank and make the guess yourself as to what format the text message is. When you know the

format you can use the system.parseObject(parserName, data) syntax to do the parsing for you:

var str = work.getString ("message");

// code to determine format

if (isLDIF)

 e = system.parseObject("ibmdi.LDIF", str);

else if (isCSV)

 e = system.parseObject ("ibmdi.CSV", str);

else

 e = system.parseObject ("ibmdi.XML", str);

}

// Dump parsed entry to logfile

task.dumpEntry (e);

The Use Textmessage flag determines whether the Connector must use this method when sending a

message.

Object message

An object message is a message containing a serialized Java object. A serialized Java object is a Java object

that has been converted into a byte stream in a specific format which makes it possible for the receiver to

resurrect the object at the other end. Testing shows that this is fine as long as the Java class libraries are

available to the JMS server in both ends. Typically, a java.lang.String object causes no problems but other

Java objects might. For this reason, the JMS Connector does not generate object messages but is able to

receive them. When you receive an object message the Connector returns two attributes:

java.object

This attribute holds the java object and you must access the object using the getObject method in

your workor conn entry.

java.objectClass

This attribute is a convenience attribute and holds the class name (String) of the Java object
var obj = work.getObject ("java.object");

obj.anyMethodDefinedForTheObject ();

You only receive these messages.

Bytes message

A bytes message is a message carrying an arbitrary array of bytes. The JMS Connector generates this type

of message when the Use Textmessage flag is false. The Connector takes the provided entry and serialize

it into a byte array and send the message as a bytes message. When receiving a bytes message, the

Connector first attempts to deserialize the byte array into an Entry object. If that fails, the byte array is

returned in the message attribute. You must access the byte array using the getObject method in your

work or conn entry.

var ba = work.getObject ("message");

for (i = 0; i < ba.length; i++)

 task.logmsg ("Next byte: " + ba [i]);

This type of message is generated only ifUse Textmessage is false (not checked).

Chapter 2. Connectors 117

Iterator mode

A message selector is a String that contains an expression. The syntax of the expression is based on a

subset of the SQL92 conditional expression syntax. The message selector in the following example selects

any message that has a NewsType property that is set to the value ’Sports’ or ’Opinion’:

NewsType = ’Sports’ OR NewsType = ’Opinion’

Lookup mode

The Connector supports Lookup mode where the user can search for matching messages in a JMS Queue

(Topic (Pub/Sub) is not supported by Lookup mode).

The Link Criteria specifies the JMS headers and properties for selecting matching messages on a queue.

For the advanced link criteria you must conform to the Message Selection specification as described in

the JMS specification (http://java.sun.com/products/jms). The JMS Connector reuses the SQL filter

specification (JMS message selection is a subset of SQL92) to build the message selection string. Turn on

debug mode to view the generated message filter string.

There are basically two ways to perform a Lookup:

v Do a non-destructive search in a Queue (using QueueBrowser) which returns matching messages

without removing the messages from the JMS queue.

v Removes all matching entries from the JMS queue.

Decide which to use by setting the Lookup Removes flag in the Connector configuration. For Topic

connections the Lookup Removes flag does not apply as messages on topics are always removed when a

subscriber receives it. However, the Lookup mode heeds the Durable Subscriber flag in which case the

JMS server holds any messages sent on a topic when you are disconnected.

The JMS Connector works in the same way as other Connectors in that you can specify a maximum

number of entries to return in your AssemblyLine settings. To ensure you retrieve a single message only

during Lookup, specify Max duplicate entries returned = 1 in the AssemblyLine settings. Setting Max

duplicate entries returned to 1 enables you to retrieve one matching entry at a time regardless of the

number of matching messages in the JMS queue.

Since the JMS bus is asynchronous the JMS Connector provides parameters to determine when the

Lookup must stop looking for messages. There are two parameters that tells the Connector how many

times it queries the JMS queue and for how long it waits for new messages during the query. Specifying

10 for the retry count and 1000 for the timeout causes the Connector to query the JMS queue ten times

each waiting 1 second for new messages. If no messages are received during this interval the Connector

returns. If during a query the Connector receives a message, it continues to check for additional messages

(this time without any timeout) until the queue returns no more messages or until the received message

count reaches the Max duplicate entries returned limit defined by the AssemblyLine. The effect of this is

that a Lookup operation only retrieves those messages that are available at the moment.

Add Only mode

In this mode, on each AssemblyLine iteration the JMS Connector sends an entry to the JMS server. If a

Topic is used the message is published and if a Queue is used the message is queued.

Call/Reply mode

In this mode the Connector has two attribute maps, both Input and Output. When the AssemblyLine

invokes the Connector, an Output map operation is performed, followed by an Input map operation.

There is a method in the JMS Connector called queryReply() which uses the class QueueRequestor. The

QueueRequestor constructor is given a non-transacted QueueSession and a destination Queue. It creates a

TemporaryQueue for the responses and provides a request() method that sends the request message and

waits for its reply.

118 Reference Guide

http://java.sun.com/products/jms

JMS headers and properties

A JMS message consists of headers, properties and the body. Headers are accessed differently than

properties and were not available in previous versions. In this version you can specify how to deal with

headers and properties.

JMS headers

JMS headers are predefined named values that are present in all messages (although the value might be

null). The following is a list of JMS header names this Connector supports:

JMSCorrelationID

(String) This header is set by the application for use by other applications.

JMSDeliveryMode

(Integer) This header is set by the JMS provider and denotes the delivery mode.

JMSExpires

(Long) A value of zero means that the message does not expire. Any other value denotes the

expiration time for when the message is removed from the queue.

JMSMessageID

 (String) The unique message ID. Note that this is not a required field and can be null.

 Since the JMS provider might not use your provided message ID, the Connector sets a special

property called $jms.messageid after sending a message. This is to insure that the message ID

always is available to the user. To retrieve this value use conn.getProperty("$jms.messageid") in

your After Add hook.

JMSPriority

(Integer) The priority of the message.

JMSTimestamp

(Long) The time the message was sent.

JMSType

(String) The type of message.

JMSReplyTo

 (Destination) The queue/topic the sender expects replies to. When receiving a message this value

holds the provider specific Destination interface object and is typically an internal Queue or Topic

object. When sending a message you must either reuse the incoming Destination object or set the

value to a valid topic/queue name. If the value is NULL (for example, an attribute with no

values) or the string "%this%" the Connector uses its own queue/topic as the value. The

difference between this method and explicitly setting the queue/topic name is that you need not

update the attribute assignment if you change your Connector configuration’s queue/topic name.

 There is one restriction in the current version which enables you to only request a reply to the

same type of connection as you are currently connected to. This means that you cannot publish a

message on a topic and request the reply to a queue and vice versa.

 It is not mandatory to respond to this header so the receiver of the message can completely

ignore this field without any form of punishment.

 These headers are all set by the provider and might be acted upon by the JMS driver for outgoing

messages. In the configuration screen you can specify that you want all headers returned as attributes or

specify a list of those of interest. All headers are named using a prefix of jms.. Also note that JMS header

names always start with the string JMS. This means that you must never use property names starting

with jms.JMS as they can be interpreted as headers.

Chapter 2. Connectors 119

JMS properties

In previous versions of this Connector all JMS properties were copied between the Entry object and the

JMS Message. In this release you can refine this behavior by telling the Connector to return all user

defined properties as attributes or specify a list of properties of interest. All properties are prefixed with

jms. to separate them from other attributes. If you leave the list of properties blank and uncheck the JMS

Properties As Attributes flag, you get the same behavior as for previous versions. Both JMS headers and

JMS properties can be set by the user. If you use the backwards compatible mode you must set the entry

properties in the Before Add hook as in:

conn.setProperty ("jms.MyProperty", "Some Value");

If you either check the JMS Properties As Attributes flag or specify a list of properties, you must provide

the JMS properties as attributes. One way to do that is to add attributes using the jms. prefix in your

attribute map. For example, if you add jms.MyProperty attribute map it results in a JMS property named

MyProperty.

Configuration

The Connector name is JMS Pub/Sub Connector, and it needs the following parameters:

Broker

The URL for the JMS server. When working with IPv6 addresses, this parameter must contain

both the IPv6 JMS Server address as well as the JMS Server port.

Note: The JMS Connector will support the IPv6 protocol if the JMS Server you connect to

supports IPv6. IBM MQSeries® 5.3 does not.

Server Channel

The name of the channel configured for the MQ server.

Use SSL Connection

Enables use of parameters and configuration settings required for SSL connection.

SSL Server Channel

The name of channel configured for using SSL to access the MQ server.

Queue Manager

The name of Queue Manager defined for MQ server or INITIAL_CONTEXT_FACTORY for

non-IBM MQ.

SSL CipherSuite

Cipher Suite name which corresponds to cipher selected in configuring MQ server channel. This

parameter only applies when the JMS Connector is used with IBM WebSphere MQ Server. This

parameter is left in the configuration for backward compatibility.

User Name

User name for authenticating access to the JMS.

Password

Password for authenticating access to the JMS.

Connection Type

Specify whether you are connecting to a Queue or Topic (Topic is sometimes called Pub/Sub for

Publish/Subscribe).

Topic/Queue

The topic/queue with which messages are exchanged.

Durable Topic Subscriber

Only relevant for Connection Type Topic (Pub/Sub). If true, this causes the Connector to create a

durable subscriber. This means that the server stores messages for a topic for later retrieval when

the Connector is offline.

120 Reference Guide

Client ID

The client ID to use for Topic connections (mandatory for durable).

Message Selection Filter

Specifies a message filter for selection of messages from a Topic/Queue. Used in Iterator mode

only.

GetNext Timeout

Time (in milliseconds) to wait for a new entry in Iterator mode. -1 == forever

JMS Server Type

Select the JMS server type.

Specific Driver Attributes

Thes take the form of name=value driver attributes. For example:

QUEUE_FACTORY_NAME=primaryQCF, or

TOPIC_FACTORY_NAME=primaryTCF

JMS Driver Script

This parameter contains Javascript code to be used for initialization of the JMS provider-specific

objects. The contents of this parameter are passed to the configured JMS Driver using the

″jsscript″ Hashtable key name. This parameter is intended to be used by the JMS Script Driver,

which executes the contents of this parameter as Javascript. This ″jsscript″ name is used as a key

in the Hashtable passed to the JMS Script Driver. If the MQe or the MQ driver is configured to be

used with the JMS Connector, then the contents of this parameter will be ignored. If a 3rd party

JMS Driver different from the JMS Script Driver is configured the contents of this parameter will

most likely be ignored.

 For more details on the structure of this parameter’s Javascript code as well as on the

environment in which it executes, please see the section labeled “JMS Script driver” in the section

about the System Queue in the IBM Tivoli Directory Integrator 6.1.1: Administrator Guide and the

“System Queue Connector” on page 171.

Auto Acknowledge

If true, each message is automatically acknowledged by this Connector. If false, you must

manually acknowledge the receipt of a JMS message (by means of the Connector’s acknowledge()

method). If off, use the JMS CLIENT_ACKNOWLEDGE mode.

Use Textmessage

If true, the Connector produces a Textmessage and sends the Entry object either by using the

specified Parser to generate the text body or using the predefined message attribute as the text

body.

JMS Headers as attributes

If true, all JMS headers are returned as attributes (prefixed by jms.) in Iterator and Lookup

modes. For AddOnly mode, any attribute starting with jms.JMS is treated as JMS header. This

causes these attributes to be set as JMS headers and removed from the Entry object before

sending the message.

Note: only a few headers can be set, and setting them does not mean the JMS provider ever uses

them.

Specific JMS Headers

Same as JMS Headers as attributes, but only the listed JMS headers are treated as headers.

Specify one header per line.

JMS Properties as attributes

If true, all JMS properties are returned as attributes (prefixed by jms.) in Iterator and Lookup

modes. For AddOnly mode, any attribute starting with jms. is treated as a JMS property. This

causes these attributes to be set as JMS properties.

Chapter 2. Connectors 121

Specific JMS Properties

Same as JMS Properties as attributes , but only the listed JMS properties are treated as

properties. Specify one property per line.

Lookup Removes

If true, each message found during Lookup is removed from the queue.

Note: You can set the Max duplicate entries returned parameter in your AssemblyLine

Configuration settings to prevent Lookup from returning more than one entry.

If false, messages are returned as usual, but they are not removed from the queue.

Lookup Retries

The number of times Lookup searches the queue for matching messages.

Lookup Timeout

Time (in milliseconds) the Connector waits for new messages during a Lookup query. This

parameter is used when Lookup Removes is set to true only.

Detailed Log

If this parameter is checked, more detailed log messages are generated.

 A Parser can be selected form the Parser... pane; once in this pane, choose a parser by clicking the

bottom-right Inheritance button. If a Parser is specified, a JMS Text message is parsed using this Parser.

This Parser works with messages that are received by the JMS Connector, and is used to generate a text

message when JMS Connector sends a message.

Examples

Go to the root_directory/examples/jms directory of your IBM Tivoli Directory Integrator installation.

TDI 6.1.1 comes with an example of a JMS script driver for Sonic MQ. This sample demonstrates how the

TDI JMS components (JMS Connector, System Queue) can use the SonicMQ server as a JMS provider.

External System Configuration

The configuration of external JMS systems which this Connector accesses is not specific to this Connector.

Any external JMS system which this Connector accesses must be configured as it would be configured for

any other JMS client.

IBM WebSphere MQ

 WebSphere MQ: When IBM WebSphere MQ is used as a JMS provider the following jar files have

to be taken from the WebSphere MQ installation, and placed under the ″<tdi_root_folder\jars\
3rdparty\IBM>″ folder:

v com.ibm.mqjms.jar (this will replace an existing file)

v com.ibm.mq.jar

v jms.jar

v connector.jar

In order to enable a Secure Socket Layer (SSL) session, you must first configure a channel on

your MQ server. Detailed instructions on how to perform these tasks are included in a Technical

Journal Article, ″Configuring SSL Connections between JMS Clients and the WebSphere MQ JMS

Provider″, http://www7b.software.ibm.com/wsdd/techjournal/0211_yusuf/yusuf.html, Dr

Kareem Yusef, November 2002. This article also provides detailed instructions on obtaining and

managing certificates required to run an SSL test. The version of IBM WebSphere MQ should be

at least v5.3 service level 5.3.0.4 (i.e, fix pack CSD04 installed prior to attempting SSL

configurations. In the TDI Properties store, specify the trustStore and keyStore settings prior to

starting IBM Tivoli Directory Integrator. For example:

122 Reference Guide

http://www7b.software.ibm.com/wsdd/techjournal/0211_yusuf/yusuf.html

javax.net.ssl.trustStore=d:\\jdk141\\jre\\lib\\security\\cacerts

javax.net.ssl.trustStorePassword=

javax.net.ssl.trustStoreType=

javax.net.ssl.keyStore=C:\\Program Files\\IBM\\WebSphere MQ\\Java\\bin\\jmskeystore

javax.net.ssl.keyStorePassword=changeit

javax.net.ssl.keyStoreType=jks

IBM WebSphere MQ Everyplace

When the bundled IBM WebSphere MQ Everyplace is used as a JMS provider, no additional jar

file copying is needed after TDI is installed.

Chapter 2. Connectors 123

124 Reference Guide

JMX Connector

The JMX Connector uses the JMX 1.2 and JMX Remote API 1.0 specifications. It only uses standard JMX

features.

The JMX Connector can listen to, and report, either local or remote JMX notifications, depending on how

it is configured.

When the AssemblyLine starts the JMX Connector is initialized. On initialization, the Connector

determines whether it will report local or remote notifications based on the Connector parameters (the

Connector cannot report both local and remote notifications in a single run). Then, the Connector gets

either a local or a remote reference to the respective MBean Server and registers for the desired JMX

notifications specified in a Connector parameter.

In the getNextEntry() method, the Connector blocks the AssemblyLine while waiting for notifications.

When a notification is received, the getNextEntry() method of the Connector returns an Entry (which

contains the notification details) to the AssemblyLine.

Notifications that are received between successive getNextEntry() calls are buffered, so that no

notifications are lost. If there are buffered notifications when the getNextEntry() is called, then the

Connector returns the first buffered notification immediately without blocking the AssemblyLine.

This Connector operates in Iterator mode only.

Connector Schema

The JMX Connector makes the following Attributes available (Input Attribute Map):

event.originator

The JMX Connector object of type com.ibm.di.connector.JMXConnector

event.type

The notification type of type java.lang.String

event.rawNotification

The raw JMX Notification instance received by the JMX Connector

(javax.management.Notification). If the component that broadcasts this notification has extended

javax.management.Notification and has put some additional data in the subclass, this extra

information can be retrieved through this property.

event.timestamp

The notification timestamp of type java.lang.Long. It represents the moment when the notification

was created.

event.sequenceNumber

The notification sequence number (java.lang.Long). It represents the notification sequence number

within the source object. It’s a serial number identifying a particular instance of notification in the

context of the notification source. The notification model does not assume that notifications will

be received in the same order that they are sent. The sequence number can be used to sort

received notifications.

event.message

The message of the notification (java.lang.String).

event.mbean.objectName

The object name of the registered and unregistered MBean (javax.management.ObjectName). This

property is only available if the event.type is JMX.mbean.registered or JMX.mbean.unregistered.

ObjectName represents an MBean Name (as well as a wildcard for MBean Names). The entire

combination of the domain plus all keys and values must be unique. (That is equivalent to saying

that the entire MBean Name must be unique).

Chapter 2. Connectors 125

event.mbean.name

The string representation of the MBean object name (java.lang.String). This property is only

available if the event.type is JMX.mbean.registered or JMX.mbean.unregistered.

event.userData

The JMX notification user data (java.lang.Object).

event.source

The MBean object name on which the notification initially occurred

(javax.management.ObjectName).

Configuration

Mode This parameter determines whether the JMX Connector will listen for local or remote JMX

notifications. The Connector registers for and listens to remote JMX notifications according to the

JMX Remote API 1.0 specification.

 The available values (drop-down list) for this parameter are remote and local.

 The value “local” means that the Connector will only listen for notifications issued by MBeans

registered with an MBeanServer in the local Java Virtual Machine.

 The value “remote” means that the Connector will connect to a remote JMX system based on the

JMX Remote API 1.0 specification, and register for notifications issued by MBeans registered with

an MBean server in the Java Virtual Machine of that remote system.

Remote JMX URL

This parameter is only taken into account if the “mode” parameter is set to “remote”. This is the

JMX URL used to connect to the remote JMX system. More precisely, this URL is specified by the

remote MBean Server on its startup and is used by remote clients to connect to it.

 An example value for this parameter would be: “service:jmx:rmi://localhost/jndi/rmi://
localhost:1099/jmxconnector”

 The default value is “service:jmx:rmi://localhost/jndi/jmx”

Listen to all MBeans

Specifies whether the Connector will register with all available MBeans (checked) or only with

the ones specified in the MBeans to listen to Connector parameter (unchecked). This parameter is

checked by default.

MBeans to listen to

Specifies a list of MBean object names, each typed on a separate line. This list specifies the

MBeans with which the Connector will register for notifications. If no MBean object names are

specified (that is, the list is empty) notifications issued by any MBean will be reported. If at least

one MBean name is specified, then only notifications issued from the MBeans specified will be

reported.

Notification types

The type of a JMX notification, not to be confused with its Java class, is the characterization of a

generic notification object. The type is assigned by the broadcaster object and conveys the

semantic meaning of a particular notification. The type is given as a String field of the

Notification object. This string is interpreted as any number of dot-separated components,

allowing an arbitrary, user-defined structure in the naming of notification types.

 Specifies the types of JMX notifications which the JMX Connector will listen to. Notifications

whose types are not specified will not be reported by the Connector. Each notification type must

be typed on a separate line.

Detailed Log

If this parameter is checked, more detailed log messages are generated.

126 Reference Guide

The JMX Connector is capable of using the SSL protocol on the connection. If the remote JMX system

accepts only SSL connections, the JMX Connector will automatically establish an SSL connection provided

that a trust store is configured properly. This means that appropriate values have to be set for the

javax.net.ssl.trustStore, javax.net.ssl.trustStorePassword and javax.net.ssl.trustStoreType

properties in global.properties or solution.properties.

Chapter 2. Connectors 127

128 Reference Guide

JNDI Connector

The JNDI Connector provides access to a variety of JNDI services. To reach a specific system, you must

install the JNDI driver for that system. The driver is typically distributed as one or more jar or zip files.

Place these file in a place where the Java runtime can reach them, for example, in the

<TDI_install>/lib/ext directory.

This Connector supports Delta Tagging at the Attribute level. This means that provided a previous

Connector in the AssemblyLine has provided Delta information at the Attribute level, the JNDI Connector

will be able to use it in order to make the changes needed in the target JNDI directory.

When using the JNDI Connector for querying an LDAP Server, a SizeLimitExceededException may occur if

the number of entries satisfying the search criteria is greater than the maximum limit set by the LDAP

Server. To work around this situation, either increase the LDAP Server’s maximum result limit, or set the

java.naming.batchsize provider parameter to some value smaller than the maximum limit of the server.

For more information on the java.naming.batchsize parameter refer to: http://java.sun.com/products/
jndi/tutorial/ldap/search/batch.html

Configuration

The Connector needs the following parameters:

JNDI Driver

The class name (the JNDI Naming factory) for the JNDI driver.

Provider URL

The URL for the connection, e.g. ldap://host for the LDAP driver.

Authentication Method

The type of JNDI authentication to be used; choose from the drop-down list. Choices are:

v Anonymous (use no authentication)

v Simple (use weak authentication (cleartext password))

v CRAM-MD5 (use CRAM-MD5 (RFC-2195))

v SASL (use SASL)

Login username

The principal name (for example, username).

Login password

The credentials (for example, password).

Use SSL

Uses secure sockets layer for communication with LDAP server.

Name parameter

Specify which parameter in the AssemblyLine entry is used for naming the entry. This is used

during add, modify and delete operations and returned during read or search operations. If not

specified, $DN is used.

Search Base

The search base used when iterating the directory. Specify a distinguished name. Some directories

enable you to specify a blank string which defaults to whatever the server is configured to do.

Other directory services require this to be a valid distinguished name in the directory.

Search Filter

The search filter to be used when iterating the directory.

Search Scope

The search scope to be used when iterating the data source. Possible values are:

Chapter 2. Connectors 129

http://java.sun.com/products/jndi/tutorial/ldap/search/batch.html
http://java.sun.com/products/jndi/tutorial/ldap/search/batch.html

subtree

Return entries on all levels from search base and below.

onelevel

Only return entries that are immediately below searchbase.

Referrals

Specifies how referrals encountered by the LDAP server are to be processed. The possible values

are:

v follow – Follow referrals automatically.

v ignore – Ignore referrals.

v throw – Throw a ReferralException when a referral is encountered. You need to handle this in

an error Hook.

Provider Params

A list of extra provider parameters you want to pass to the provider. Specify each parameter:value

on a separate line. For example:

java.naming.batchsize=100

Detailed Log

If this parameter is checked, more detailed log messages are generated.

Setting the Modify operation

The JNDI connector has a way to set a modify operation value when the connector is in Modify mode.

You can also use the simple connector interface to directly add, remove or replace attribute values and

attributes instead of setting modify operation.

There is no Config Editor provided to set the modify operation. You must manually add the operation

value to each attribute in the work entry of the JNDI connector in Modify mode using the following

interface:

di.com.ibm.di.entry.Attribute.setOper(char operation) operation

di.com.ibm.di.entry.Attribute.ATTRIBUTE_DELETE

This constant deletes the specified attribute values from the attribute.

 The resulting attribute has the set difference of its prior value set and the specified value

set. If no values are specified, it deletes the entire attribute. If the attribute does not exist,

or if some or all members of the specified value set do not exist, this absence might be

ignored and the operation succeeds, or an Exception might be thrown to indicate the

absence. Removal of the last value might remove the attribute if the attribute is required

to have at least one value.

di.com.ibm.di.entry.Attribute.ATTRIBUTE_REPLACE

This constant replaces an attribute with specified values.

 If the attribute already exists, this constant replaces all existing values with new specified

values. If the attribute does not exist, this constant creates it. If no value is specified, this

constant deletes all the values of the attribute. Removal of the last value might remove

the attribute if the attribute is required to have at least one value. This is the default

modify operation.

di.com.ibm.di.entry.Attribute.ATTRIBUTE_ADD

This constant adds an attribute with the specified values.

 If the attribute does not exist, this constant creates the attribute. The resulting attribute

has a union of the specified value set and the prior value set.

130 Reference Guide

Calling the Modify Interface

Adding a value to an attribute:

public void addAttributeValue(String moddn, String modattr, String modval)

throws Exception where:

v moddn is the DN to which you want to add the attribute value

v modattr is the name of the attribute to which you want to add a value

v modval is the value you want to add to modattr

For example, if you want to add "cn=bob" to the members attribute of "cn=mygroup" you use the method

as such:

thisConnector.connector.addAttributeValue("cn=mygroup","members","cn=bob");

An Exception is thrown when the underlying modify operation fails.

Replacing the attribute value:

public void replaceAttributeValue(String moddn, String modattr, String modval)

throws Exception where:

v moddn is the DN to which you want to add the attribute value

v modattr is the name of the attribute to which you wish to add a value

v modval is the value you want to add to modattr

For example, if you want to replace the members attribute of ″cn=mygroup″ with ″cn=bob″ only, you use

the method as such:

thisConnector.connector.replaceAttributeValue("cn=mygroup","members","cn=bob");

An Exception is thrown when the underlying modify operation fails.

Removing attribute:

public void removeAttribute(String moddn, String modattr)

throws Exception where:

v moddn is the DN from which you want to remove all attribute values

v modattr is the attribute name for which you want to remove all values

For example, if you want to remove the members attribute of ″cn=mygroup″ you use the method as

such:

thisConnector.connector.removeAttribute("cn=mygroup","members");

An Exception is thrown when the underlying modify operation fails.

Removing a certain attribute value from an attribute:

public void removeAttributeValue(String moddn, String modattr, String modval)

throws Exception where:

v moddn is the DN from which you want to remove the attribute value

v modattr is the attribute name that you want to change

v modval is the value you want to remove from given attribute

An Exception is thrown when the underlying modify operation fails.

Chapter 2. Connectors 131

modify operation

modify operation can be set per Modify request. It causes modify operation for all attributes in the

modify request entry to be set to the proper modify operation value. Property values and matching

modify operation values:

 Property value (String) modify operation value

delete di.com.ibm.di.entry.Attribute.

ATTRIBUTE_DELETE

add di.com.ibm.di.entry.Attribute.

ATTRIBUTE_ADD

replace di.com.ibm.di.entry.Attribute.

ATTRIBUTE_REPLACE

This property can be set at any time while the Connector is running by setting the property

modOperation from the scripts:

conn.setProperty("modOperation","delete");

Note: This property does not affect the behavior of the any interfaces defined above. However, it does

overwrite the existing modify operation set by di.com.ibm.di.entry.Attribute.setOper(char

operation)

See also

“LDAP Connector” on page 133,

“MQe Initialization” on page 173.

132 Reference Guide

LDAP Connector

The LDAP Connector provides access to a variety of LDAP-based systems. The Connector supports both

LDAP version 2 and 3. It is built layered on top of JNDI connectivity.

This Connector can be used in conjunction with the IBM Password Synchronization plug-ins. For more

information about installing and configuring the IBM Password Synchronization plug-ins, please see the

IBM Tivoli Directory Integrator 6.1.1: Password Synchronization Plug-ins Guide.

Note that, unlike most Connectors, while inserting an object into an LDAP directory, you must specify

the object class attribute, the $dn attribute as well as other attributes. The following code example, if

inserted in the Prolog, defines an objectClass attribute that you can use later.

// This variable used to set the object class attribute

var objectClass = system.newAttribute ("objectclass");

objectClass.addValue ("top");

objectClass.addValue ("person");

objectClass.addValue ("inetorgperson");

objectClass.addValue ("organizationalPerson");

Then your LDAP Connectors can have an attribute called objectclass with the following assignment:

ret.value = objectClass

To see what kind of attributes the person class has, see java.sun.com/products/jndi/tutorial/ldap/
schema/object.html

You see that you must supply an sn and cn attribute in your Update or Add Connector.

In the LDAP Connector, you also need the $dn attribute that corresponds to the distinguished name.

When building $dn in the Attribute Map, assuming an attribute in the work object called iuid, you

typically have code like the following:

var tuid = work.getString("iuid");

ret.value = "uid= " + tuid + ",ou=people,o=example_name.com";

Notes:

1. The two special attributes, $dn and objectclass usually are not included in Modification in Update

mode unless you want to move entries in addition to updating them.

2. If you cannot connect to your directory, make sure the Use SSL flag in the Configuration is set

according to what the directory expects.

3. When doing a Lookup, you can use $dn as the Connector attribute, to look up using the

distinguished name. Do not specify a Simple Link Criteria using both $dn and other attributes; in this

case a simple lookup will be done with the DN using an Equals comparison.

4. Certain servers have a size limit parameter to stop you from selecting all their data. This can be a

nuisance as your Iterator only returns the first n entries. Some servers, for example, Netscape/iPlanet,

enable you to exceed the size limit if you are authenticated as a manager.

5. Those servers that return their whole directory in one go (for example, non-paged search) typically

cause memory problems on the client side. See “Handling memory problems in the LDAP Connector”

on page 137.

6. When Connector Flags contains the value deleteEmptyStrings, then for each attribute, the LDAP

Connector removes empty string values. This possibly leaves the attribute with no values (for

example, empty value set). If an attribute has an empty value set then a modify operation deletes the

attribute from the entry in the directory. An add operation never includes an empty attribute since

this is not permitted. Otherwise, modify entry replaces the attribute values.

7. When Connector Flags does not contain deleteEmptyStrings, then empty strings are passed as

permitted values to the directory server. Most servers interpret a REPLACE request with an empty

Chapter 2. Connectors 133

java.sun.com/products/jndi/tutorial/ldap/schema/object.html
java.sun.com/products/jndi/tutorial/ldap/schema/object.html

string the same as removing the attribute altogether. If you want to control this behavior, you can call

a function in your Before Update hook to modify the entry as in:

removeBlanks (work);

function removeBlanks (entry) {

 var list = entry.getAttributeNames();

 for (i = 0; i < list.length; i++) {

 if (entry.getString(list[i]) == "") {

 entry.removeAttribute (list[i]);

 }

 }

}

Configuration

The Connector needs the following parameters:

LDAP URL

The LDAP URL for the connection (ldap://host:port).

Login username

The distinguished name used for authentication to the server.

Login password

The credentials (password).

Search Base

The search base to be used when iterating the directory. Specify a distinguished name. Some

directories enable you to specify a blank string which defaults to whatever the server is

configured to do. Other directory services require this to be a valid distinguished name in the

directory.

Search Filter

The search filter to be used when iterating the directory.

Search Scope

This parameter is not used if the Connector is in AddOnly mode. The possible values are:

subtree

Return entries on all levels from search base and below.

onelevel

Only return entries that are immediately below searchbase.

Time Limit

Searching for Entries must take no more than this number of seconds. 0 = no limit.

Size Limit

A search or iteration must return no more than this number of Entries. 0 = no limit.

Page Size

If specified, the LDAP Connector tries to use paged mode search. Paged mode causes the

directory server to return a specific number of entries (called pages) instead of all entries in one

chunk. Not all directory servers support this option.

Comment

Your comments here.

Authentication Method

Type of LDAP authentication. Can be one of the following:

v Simple (using Login username and Login password. Treated as anonymous if Login username

and Login password not provided).

v MD5-CRAM.

134 Reference Guide

v SASL (parameters for this type of authentication will need to be specified using the Extra

Provider Parameters option).

v Anonymous (treated as Simple if Login username and Login password are supplied).

Use SSL

If this is checked, use Secure Sockets Layer for communication with the LDAP server.

Referrals

Specifies how referrals encountered by the LDAP server are to be processed. The possible values

are:

v follow – Follow referrals automatically

v ignore – Ignore referrals

v throw – Throw a ReferralException when a referral is encountered. You need to handle this in

an error Hook.

Connector Flags

Flags to enable specific behavior.

deleteEmptyStrings

This flag causes the Connector to remove attributes containing only an empty string as

value before updating the directory. If you are using an LDAP version 3 server, you must

use this flag, as the value of an attribute cannot be an empty string.

Extra Provider Parameters

Additional JNDI provider parameters. The format is one colon separated name:value pair on each

line.

Return attributes

List of attributes to return (one attribute per line). If you leave this empty, all non-operational

(user) attributes are returned. Any operational attributes (such as modifyTimestamp) must still be

listed explicitly in order to be returned.

Binary Attributes

A list of attributes that are treated as binary. The format is one attribute name on each line. If this

is not specified, a default list of attributes is used. The default list is:

v photo

v personalSignature

v audio

v jpegPhoto

v javaSerializedData

v thumbnailPhoto

v thumbnailLogo

v userPassword

v userCertificate

v authorityRevocationList

v certificateRevocationList

v crossCertificatePair

v x500UniqueIdentifier

v objectGUID

v objectSid

Note: An AssemblyLine can have one list of binary attributes only. If you have several LDAP

Connectors in an AssemblyLine, the last Connector must define the list of binary attributes

for all the LDAP Connectors in this AssemblyLine if you need to change this from the

default.

Chapter 2. Connectors 135

Auto Map AD Password

 Used for adding or updating a user’s password in Active Directory using LDAP. When checked,

it maps the LDAP password (a conn attribute that must be called userPassword) to another name

(unicodePwd). unicodePwd has a special format that the Connector translates into.

LDAP Trace File

Trace LDAP BER packets to file.

Sort Attribute

A new parameter to specify server side sorting. Does not work with Netscape/iPlanet 4.2.

Note: This increases the strain on the server.

Virtual List View Page Size

Use Virtual List View for iterations. This might be efficient on some servers, but testing shows

that some other servers (for example, Netscape/iPlanet 4.2) are very slow in this respect.

However, it does provide a workaround to the out-of-memory problem.

Attention: This parameter causes the Connector to use the Virtual List View LDAP control. In

TDI 6.1.1 this LDAP control and hence this configuration parameter is deprecated. See the

“Virtual List View Control” section for more details. LDAP paging should be used instead of the

LDAP Virtual List View - see the Page Size configuration parameter for more information.

Simulate Rename

If the server does not support rename, simulate it with delete or add operations.

Add Attribute (instead of replace)

This option changes the default behavior of the LDAP Connector when it modifies an entry.

 If this checkbox is checked, the LDAP Connector sets the constraint

DirContext.ADD_ATTRIBUTE. If this checkbox is not checked, the LDAP Connector sets the

constraint DirContext.REPLACE_ATTRIBUTE.

 By setting DirContext.ADD_ATTRIBUTE constraint for the LDAP connection, you add new

values to any attribute that goes through the AssemblyLine. This might mean that the same value

gets repeatedly added to the entry if not used carefully. This might also result in an exception if

the attribute in question is single-valued. If DirContext.REPLACE_ATTRIBUTE is set, the

behavior is the same as the old LDAP Connector (default behavior), that is, all values for the

attribute are replaced by whatever might be in the work entry.

Detailed Log

If this field is checked, additional log messages are generated.

Virtual List View Control

In TDI 6.1.1 this LDAP control and hence the Virtual List View Page Size configuration parameter is

deprecated. Newly created TDI 6.1.1 configurations as well as pre-TDI 6.1.1 configurations which didn’t

use this param (that is, used the default value 0) will have this attribute disabled in the GUI. Any

pre-TDI 6.1.1 configurations which did use this parameter will still use it with 6.1 and the parameter will

be enabled in the GUI. Note: In order to use the Virtual List View Control in TDI 6.1.1, the JNDI/LDAP

Booster Pack from Sun Microsystems needs to be downloaded (http://java.sun.com/products/jndi/
downloads/index.html). After downloading the Booster Pack the ″ldapbp.jar″ contained in the pack

needs to be copied to the ″<TDI_install_folder>\jars″ folder before starting TDI. If the Virtual List View

control is used, but the ″ldapbp.jar″ is unavailable, the AssemblyLine will fail with a corresponding error

message.

136 Reference Guide

http://java.sun.com/products/jndi/downloads/index.html
http://java.sun.com/products/jndi/downloads/index.html

Handling memory problems in the LDAP Connector

Some servers return the whole search result in one go (for example, non paged search) and this typically

causes memory problems. It might look to you that IBM Tivoli Directory Integrator leaks memory, but

that is just because it is processing the entries from the server while the server continues to pour more

and more entries into it.

LDAP servers such as Active Directory support the Paged Search extension that enables you to retrieve a

page (the number of objects to return at a time), and this is the preferred way to handle big return sets

(see the Page Size parameter for more info on this). You can always test if a server supports the paged

search by clicking the button to the right of the Page Size parameter in the LDAP Connector

Configuration tab.

If the Page Size parameter is not supported, you might have a problem, since there is little a client can

do when being overwhelmed by the Server. Here are a couple of workarounds:

v See the Virtual List View Page Size parameter that lets you do a virtual list view. This might or might

not be efficient, depending on the LDAP server you use.

v If you know that your directory is a size that can be kept in memory, you can increase the memory

available to the Java VM. See the appendix ″Increasing the memory available to the Virtual Machine″

in IBM Tivoli Directory Integrator 6.1.1: Users Guide, and take particular notice of a current issue with the

LDAP Connector deployed on AIX.

v A general solution to this problem is to use a server-specific utility to dump the LDAP database to an

LDIF file or some other file format and then read or iterate that file using a file or URL Connector. A

command line can be started in the prolog (before Connectors activated using system.shellCommand),

producing the LDIF export and then the AssemblyLine reads that file. It is an effective solution, when

possible to implement. Remember that if you are in a mode where you iterate whole, large directories,

you are able to do implement as a batch.

v In some cases you can even use IBM Tivoli Directory Integrator to dump the directory search to file.

This is possible because writing quickly to a file might enable IBM Tivoli Directory Integrator to access

enough of the data to keep up with the feed (depending on the amount of data and the speed of the

feed). If your AssemblyLine takes too long to process an entry (for example, if it is updating another

directory), the entry flood happens sooner. However, this solution is very time dependent and must be

avoided if you have a better method.

LDAP Connector methods (API)

This section describes some of the methods available in the LDAP Connector. The exhaustive API

reference is in the Javadocs; they can be viewed by choosing Help>Low Level API in the Config Editor.

LDAP compare

public boolean compare(String compdn, String attname, String attvalue)

 throws Exception

where

v compdn is the DN on which you want to compare an attribute.

v attname is the name of the attribute you want to compare.

v attvalue is the value for attvalue that you want to check comparison for.

If the value is equal, true is returned. If the value is not equal, the value false is returned. For example, if

you wanted to determine if the userpassword attribute for cn=joe,o=ibm was equal to secret, use the

method: compare("cn=joe,o=ibm", "userpassword", "secret").

Adding a value to an attribute

This method adds a given value to an attribute:

public void addAttributeValue(String moddn, String modattr, String modval)

 throws Exception

Chapter 2. Connectors 137

where

v moddn is the DN to which you want to add the attribute value.

v modattr is the name of the attribute you want to add a value to.

v modval is the value you want to add to modattr.

For example, if you want to add cn=bob to the members attribute of cn=mygroup, use the method:

addAttributeValue("cn=mygroup", "members", "cn=bob")

A java.langException is thrown when the underlying modify operation fails.

Replacing an attribute value

This method replaces a given value for an attribute:

public void replaceAttributeValue(String moddn, String modattr, String modval)

 throws Exception

where

v moddn is the DN for which you want to replace the attribute value.

v modattr is the name of the attribute you want to replace a value for.

v modval is the value you want to replace for modattr.

For example, if you want to replace the members attribute of cn=mygroup with only cn=bob, use the

method: replaceAttributeValue("cn=mygroup", "members", "cn=bob")

A java.langException is thrown when the underlying modify operation fails.

Removing an attribute value

This method removes a given value from an attribute:

public void removeAttributeValue(String moddn, String modattr, String modval)

 throws Exception

where

v moddn is the DN for which you want to remove the attribute value.

v modattr is the name of the attribute from which you want to remove a value.

v modval is the value you want to remove from modattr.

For example, if you want to remove the value cn=bob from the attribute members in the DN

cn=mygroup, use the method: removeAttributeValue("cn=mygroup", "members", "cn=bob")

A java.langException is thrown when the underlying modify operation fails.

Removing all attribute values

This method removes all values for a given attribute:

public void removeAllAttributeValues(String moddn, String modattr)

 throws Exception

where

v moddn is the DN from which you want to remove the attribute values.

v modattr is the name of the attribute from which you want to remove all values.

For example, if you want to remove all values of the members attribute of cn=mygroup, use the method:

removeAllAttributeValues("cn=mygroup", "members")

A java.langException is thrown when the underlying modify operation fails.

138 Reference Guide

Flag in Config Editor for default action for attribute add or replace

In the LDAP Connector Config Editor there is a checkbox named Add Attributes (instead of replace).

This option changes the default behavior of the LDAP Connector when it modifies an entry.

If this checkbox is checked, the LDAP Connector sets the constraint DirContext.ADD_ATTRIBUTE. If this

checkbox is not checked, the LDAP Connector sets the constraint DirContext.REPLACE_ATTRIBUTE.

By setting DirContext.ADD_ATTRIBUTE constraint for the LDAP connection, you add new values to any

attribute that goes through the AssemblyLine. This might mean that the same value gets repeatedly

added to the entry if not used carefully. This might also result in an exception if the attribute in question

is single-valued. If DirContext.REPLACE_ATTRIBUTE is set, the behavior is the same as the old LDAP

Connector (default behavior), that is, all values for the attribute are replaced by whatever might be in the

work entry.

You typically want this flag set when you are handling groups. If you want to add a member (a value) to

a group (an attribute), you do not want to delete all the other values.

The old behavior was to replace the attribute with the new value. This behavior remains the default.

Note: This property can be set at any time while the Connector is running by setting the property

addAttribute from your scripts. Use a command similar to the following:

work.setProperty("addAttribute", true)

Note: This property does not affect the behavior of the addAttributeValue and replaceAttributeValue

methods described previously.

Rebind

The LDAP Connector has a rebind() method which facilitates building advanced solutions like virtual

directories and other solutions that map incoming authentication requests (use any of the support

protocols) to LDAP.

See also

“JNDI Connector” on page 129,

“Active Directory Changelog (v.2) Connector” on page 13,

“Exchange Changelog Connector” on page 71

“Netscape/iPlanet/Sun Directory Changelog Connector” on page 161,

“IBM Directory Server Changelog Connector” on page 97

“z/OS Changelog Connector” on page 233.

Chapter 2. Connectors 139

140 Reference Guide

LDAP Server Connector

The LDAP Server Connector accepts an LDAP connection request from an LDAP client on a well-known

port set up in the configuration (usually 389). The LDAP Server Connector only operates in Server mode,

and spawns a copy of itself to take care of any accepted connection until the connection is closed by the

LDAP client.

This Connector can be used in conjunction with the IBM Password Synchronization plug-ins. For more

information about installing and configuring the IBM Password Synchronization plug-ins, please see the

IBM Tivoli Directory Integrator 6.1.1: Password Synchronization Plug-ins Guide.

Each LDAP message received on the connection drives one cycle of the LDAP Server Connector logic.

The main thread returns to listening for similar LDAP requests from other LDAP clients. At this point,

Attribute Mapping will take place, and the appropriate attributes like the LDAP Operation should be

mapped into the work object.

The rest of the AssemblyLine will be executed, and when the cycle reaches the Response channel the

return message is built from Attributes mapped out, and sent back to the client. If it was an LDAP search

command, the user will call the add method to build the data structure that is to be sent back to the

client. The LDAP Server Connector goes back to listening for the next LDAP command on the existing

connection.

The value of the LDAP operation is provided in the LDAP.operation attribute in the LDAP Server

Connector conn entry, which should be mapped into the work entry for further processing (along with

any other required attributes). Legal values are SEARCH, BIND, UNBIND, COMPARE, ADD, DELETE,

MODIFY, and MODIFYRDN. The LDAP message provides a number of attributes for the specified

LDAP operation.

Scripting

The part of the AssemblyLine that follows the LDAP Server Connector must do work to determine the

desired outcome of the LDAP message. The basic LDAP operations (SEARCH, BIND, UNBIND,

COMPARE, ADD, DELETE, MODIFY, and MODIFYRDN) are provided as values in the LDAP Server

EventHandler scripting environment to facilitate scripting, for example, if LDAP.operation equals BIND.

The user code sends search result entries to the client by calling the add (entry) method in the LDAP

Server Connector. The entry must be formatted with legal LDAP attribute names plus the special attribute

$dn (the distinguished name of the entry).

Returning the LDAP message returned values

The user-provided code in the AssemblyLine responds to each request by setting the ldap.status,

ldap.matcheddn and ldap.errormessage entry attributes. ldap.matcheddn and ldap.errormessage are

optional.

In the Response channel phase of the AssemblyLine, the LDAP Server Connector formats and returns

some of the attributes of the work entry. These are:

v LDAP.status

v LDAP.errormessage

Note: Only string is supported. The resultCode is by default set to 0 (success). A resultCode indicating

anything other than successful must be specifically set by the user.

Error handling

The LDAP Server Connector terminates the connection and records an error if the received message does

not conform to the LDAP v3 format

Chapter 2. Connectors 141

Note: The LDAP Server Connector does not perform any validation on the incoming attributes. Any

operation or parameter value is therefore accepted.

Configuration

The Connector needs the following parameters:

LDAP Port

The TCP port on which this Connector listens. You can choose one of the default values, or

provide your own port number.

Use SSL

If checked, the server connector will only accept SSL connections.

Note: Depending on your solution implementation, you may need to change the port number as

well.

Character Encoding

Specify the character set here. The default is UTF-8.

Binary Attributes

A list of attributes that are treated as binary (a binary attribute is returned as a byte array, not a

string). The format is one attribute name on each line.

Note: An AssemblyLine can have one list of binary attributes only. If you have several LDAP

Connectors in an AssemblyLine, the last Connector must define the list of binary attributes

for all the LDAP Connectors in this AssemblyLine (if you need to change this from the

default).

Comment

A comment for your own use.

Detailed Log

If this field is checked, additional log messages are generated.

See also

“LDAP Connector” on page 133

142 Reference Guide

Lotus Notes Connector

See “Lotus Notes Connector” on page 57.

Chapter 2. Connectors 143

144 Reference Guide

Mailbox Connector

This Mailbox Connector provides access to internet mailboxes (POP3 or IMAP). The Mailbox Connector

can be used in Iterator, Lookup and Delete modes. The Mailbox Connector uses predefined attribute

names for the most used headers. If you need more than this use the mail.message property to retrieve

the native message object.

When the Mailbox Connector is used in Lookup or Delete mode the only searchable headers are:

v mail.from

v mail.to

v mail.cc

v mail.subject

v mail.messageid

v mail.messagenumber

On initialization, the Connector gets all available mail messages from the mailbox on the server and

stores them into an internal Connector buffer. Later the Connector retrieves the messages one by one on

each getNextEntry() call; that is, on each Iteration. When all the messages from the buffer have been

retrieved, the parameter Poll Interval governs what happens next; see “Configuration.” This is different

from earlier implementations of this Connector.

If the IMAP protocol is specified the Mailbox Connector registers for notifications for messages added

and messages removed from the mailbox on the server. When a notification that a message has been

added to the mailbox is received, the Connector adds this message to its internal buffer. If a notification

that a message has been removed from the mailbox is received, the Connector removes this message from

its internal buffer.

Notes:

1. Only one connection per user ID is supported. If the user fails to disconnect when using the schema

tab, and then runs the AssemblyLine, this results in a connection refused error.

2. The Mailbox Connector does not support the Advanced Link Criteria (see ″Advanced link criteria″ in

IBM Tivoli Directory Integrator 6.1.1: Users Guide).

Configuration

Mail Server

The POP/IMAP mail server hosting the mailbox. It might include a port number separated by a

space (url port). For example:

domino.raleigh.ibm.com 110

Use SSL

When checked, the Connector uses SSL connections. When unchecked, the Connector uses

non-SSL connections.

Mail Protocol

Specify pop3 or imap.

Username

The user name.

Password

The password for Username.

Mail Folder

Specifies the name of the user’s mail folder on the mail server.

Chapter 2. Connectors 145

The user’s mail folder stores the user’s mail messages on the mail server. When using the POP3

mail protocol you must specify “INBOX” as the value for this parameter. When using the IMAP

mail protocol you can specify any mail folder which exists on the mail server.

Poll Interval (seconds)

After the AssemblyLine consumes all mail messages stored in the Mailbox Connector buffer, the

Connector sleeps for a while and then reconnects to the mail server and checks for new messages.

In other words, the Connector polls the server for new mail messages.

 Specifies the amount of seconds that the Connector will sleep before polling the mail server for

new mail messages.

 A special value of “-1“ means that the Connector will not poll for new mail messages after the

initial poll. This means that the AssemblyLine will terminate after it has consumed all messages

retrieved by the Connector on the initial poll.

Detailed Log

If this parameter is checked, more detailed log messages are generated.

Predefined properties and attributes

The Mailbox Connector uses the following predefined attributes and properties, which are available in

the Input Map:

mail.from

The From header

mail.to

The To (recipient) headers

mail.cc

The CC recipient headers

mail.replyto

The mail address to reply to

mail.subject

The subject header

mail.messageid

The message ID header

mail.messagenumber

The message’s internal number

mail.sent

The date the message was sent

mail.received

The date the message was received

mail.body

In case of a single part message this attribute contains the message body

mail.bodyparts

In case of a multipart message this attribute contains a javax.mail.Part object.

mail.message

This is the javax.mail.Message representing the message returned in the entry.

mail.originator

The Connector object.

146 Reference Guide

event.originator

The Connector object. This is the same object as the one stored in mail.originator. This Attribute

ensures backward compatibility with the Mailbox EventHandler.

mail.session

The Java session object (javax.mail.Session).

mailbox.session

The Java session object (javax.mail.Session). This is the same object as the one stored in

mail.session. This Attribute ensures backward compatibility with the Mailbox EventHandler.

mail.store

The message store object (javax.mail.Store).

mailbox.folder

The folder object (javax.mail.Folder). This is the same object as the one stored in mail.folder. This

Attribute ensures backward compatibility with the Mailbox EventHandler.

mail.operation

The operation related to mail.message. For POP3 connections only existing entries are reported.

For IMAP connections this property contains the value new or deleted.

mailbox.operation

The operation related to mailbox.message. This is the same object as the one stored in

mail.operation. This Attribute ensures backward compatibility with the Mailbox EventHandler.

See also

“Mailbox EventHandler” on page 265.

Chapter 2. Connectors 147

148 Reference Guide

Memory Queue Connector

The MemQueue connector provides a connector like functionality to read and write to the memory queue

feature (aka. MemBufferQ). This is an alternative to writing script to access a memory queue and is an

extension of the “Memory Queue FC” on page 353 (function component).

The objects used to communicate between components are not persistent and are not capable of handling

large return sets. For example, large data returned by an ldapsearch operation. In order to solve this

problem, an internal threadsafe memory queue can be used as a communications data structure between

AL components. It could contain embedded logic that would trigger whenever buffer is x%

full/empty/data available.

This Connector supports AddOnly and Iterator modes only.

Notes:

1. Because of the non-persistent nature of this Connector, you should use the “System Queue Connector”

on page 171 instead, because that Connector relies on the underlying Java Messaging Service (JMS)

functionality with persistent object storage.

2. By default, if the Memory Queue connector in Iterator mode starts reading from the queue but it

doesn't exists, it will create it. If you don't want this behavior, you would need to set the system

property tdi.memq.create.queue.default=false, in this case TDI will behave like previous versions;

this implies that when the queue does not exists, an exception is thrown in Iterator Mode.

This Connector can also be used in connection with MemQueue pipes set up from JavaScript, although it

is important to note that the a MemQueue pipe created by the MemQueue Connector will be terminated

when the Connector closes.

The Memory queue buffer is a FIFO type of data structure, where adding and reading can occur

simultaneously. It works as a pipe where additions happen at one end and reading happens at the other

end and reading removes the data from queue.

The Memory queue buffer provides overflow storage using the System Store when a threshold value is

reached, which is a function of the runtime memory available.

The Memory queue buffer should be constructed using the MemoryBufferQFactory.

Memory queue components

Paged memory buffer queue

A queue type buffer having the following functions:

1. Read and write

2. Finding the size

3. Registering and unregistering callback triggers

4. Generating triggers by calling callback methods

5. Option for setting the system store to use for paging

Watermark

This is the maximum size of the queue; refer to the configuration page for operational details.

Pages Collection of objects, pagesize specified by the user, which does chunking of data before it is

written to the system store, to optimize database writes. This is done by dividing the queue into

pages and reading/writing one complete page to the system store so as to minimize the number

of database read/write operations. This option is used only used when paging is use; when

paging support is switched off, the queue is not divided into pages, but is purely a sequence of

elements.

Chapter 2. Connectors 149

Threshold

This is the number of pages that can exist in the memory and beyond which pages must be

flushed to the system store. This is calculated depending on the page size entered by the user

and runtime available memory.

System Store

Database that stores the pages when the threshold is reached.

Global Lookup Table

A gobal table that can store memory buffer objects. This is to support a named pipe mechanism

of sharing between threads. A thread can lookup a memory buffer queue using a name in the

table, if it exists a reference to the queue object is returned to the user else a new queue object is

created with that name and added to the GLT.

High level workflow

With Paging

The Memory queue Buffer is a queue of pages containing objects. When a particular threshold is

reached, new thread is created that starts writing to another buffer of pages, when a page is full,

it transfers the page to either to the main queue or to the system store. When a page is read from

the main queue, one page is transferred from system store to the main queue; in doing it also

deletes that page from the system store.

Without paging

The Memory queue Buffer is a queue of objects. When a particular watermark (specified by the

user) is reached, the input is either blocked or it fails (can result in loss of data).

Configuration

Instance

Name of the Config instance. Current instance is assumed if it is null.

Queue

Name of the queue or pipe which is to be created.

Read timeout

The interval in milliseconds to wait for, before control returns, if no entries were found in the

queue.

Watermark

The Watermark parameter is either:

v With Paging Off (next parameter), it is the maximum queue size. When this size is reached,

the Blocking Add Parameter determines if the read waits or fails since the queue is full.

v With Paging On, it is the threshold at which objects are persisted to the System Store. Note

that the Page Size determines when pages are actually written, so the Watermark should be a

multiple of the Page Size.

Enable paging using system store

Check as to whether or not queue uses paging support using system store.

Page Size

Number of entries in one page.

Database name

System Store database name.

Username

Username to connect to the System Store database.

Password

Password to use when signing on to the database.

150 Reference Guide

Table name

Database table name to be used.

Blocking add operation

Option to block or fail (and always log that data is lost) while adding, if queue is full and no

paging used.

Detailed Log

Check for detailed log messages.

Accessing the Memory Queue programmatically

The Memory Queue can be accessed directly from JavaScript, not only through the Connector.

1. To create new pipe - There are two methods for this.

a. Paging disabled - newPipe(String instName,String pipeName,int watermark) // Does not

require any DB related entries

b. Paging enabled - newPipe(String instName,String pipeName,int watermark,int

pagesize) // Requires DB initialization

An example script with paging enabled:

var memQ=system.newPipe("inst","Q1",1000,10) ;

memq.initDB(dbName, jdbcLogin, jdbcPassword, tableName); // Required to Initialize DB

memQ.write(conn);

2. getPipe(String instName,String pipeName)

3. purgeQueue()

An example script would look something like this:

var q =system.getPipe("Inst1","Q1") ;

q.purgeQueue();

4. deletePipe(String pipeName)

Example:

var q =system.getPipe("Inst1","Q1");

q.deletePipe();

The following is an example script to read from the Memory Queue using API calls:

var memQ=system.getPipe("inst","Q1") ;

var size=memQ.size();

for(var count=0;i<=size;count++){

 main.logmsg(memQ.read());

}

Chapter 2. Connectors 151

152 Reference Guide

Memory Stream Connector

The Memory Stream Connector can read from or write to any Java stream, but is most often used to write

into memory, where the formatted data can be retrieved later. The allocated buffer is retrieved/accessed

as needed.

Note: The memory stream is confined to the local JVM, so it's not possible to interchange data with a

task running in another JVM; be it on the same machine or a different one.

The Connector can only operate in Iterator mode, AddOnly mode, or Passive state. The behavior of the

Connector depends on the way it has been initialized.

initialize(null)

This is the default behavior. The Connector writes into memory, and the formatted data can be

retrieved with the method getDataBuffer(), only available in Memory Stream Connectors.

Assuming the Connector is named MM, this code can be used anywhere (for example, Prolog,

Epilog, all Hooks, script components, and even inside attribute mapping):

var str = MM.connector.getDataBuffer();

// use str for something.

// To clear the data buffer and ready the Connector

 for more output, re-initialize

MM.connector.initialize(null);

initialize(Reader r)

The Connector reads from r. This can be used if you want to read from a stream.

initialize(Writer w)

The Connector writes to w.

initialize(Socket s)

The Connector can both read from and write to a Socket s.

Note: Do not reinitialize unless you want to start reading from or writing to another data stream. If you

want to use the Connector Interface object, see “The Connector Interface object” on page 436. This

Connector has an additional method, the getDataBuffer() method.

Configuration

Detailed Log

If this parameter is checked, more detailed log messages are generated.

Parser The name of a Parser to format the output or parse the input.

Chapter 2. Connectors 153

154 Reference Guide

MQe Password Store Connector

The MQe Password Store Connector supports Iterator mode only.

The MQe Password Store can use PKCS7 encryption to sign and encrypt the password change

notification messages before it sends them to the MQe Password Store Connector.

Notes:

1. See MQ Everyplace Password Store Installation and Setup (pwsync_install_directory\IDS\
readme_mqepwstore_ismp.htm) for more information.

In addition, for more information about installing and configuring the IBM Password Synchronization

plug-ins, please see the IBM Tivoli Directory Integrator 6.1.1: Password Synchronization Plug-ins Guide.

2. IBM Tivoli Directory Integrator 6.1.1 components can be deployed to take advantage of MQe

Mini-Certificate authenticated access. To use these MQe features, it is necessary to download and

install IBM WebSphere MQ Everyplace® 2.0.1.7 (or higher) and IBM WebSphere MQ Everyplace Server

Support ES06. Use of certificate authenticated access prevents an anonymous MQe client Queue

Manager or applications submitting a change password request to the MQe Password Store

Connector.

3. The MQe Password Store Connector receives password update messages from an MQe

QueueManager. See also the section on “MQe Initialization” on page 173 in the documentation of the

“System Queue Connector” on page 171 on how these two connectors utilize MQe on the same JVM.

4. MQ Everyplace does not support IP Version 6 addressing; as a consequence, the MQe Password Store

Connector can only reach MQe using traditional IPv4 addresses.

The MQe Password Store Connector supports receiving messages from multiple password stores.

The following is the MQe Password Store Connector workflow:

1. The MQe Password Store Connector requests a message from a predefined queue on its local MQe

QueueManager using the JMS interface.

2. The retrieved message is verified and/or decrypted (this step is optional).

3. The message is parsed and an Entry object is created. The attributes of this Entry object represent the

user ID, the password values and the type of password update.

4. This newly created Entry object is passed to the IBM Tivoli Directory Integrator AssemblyLine.

On initialization, the MQe Password Store Connector does the following:

v Gets a reference to the MQe QueueManager.

v Initiates a connection to the Storage Component and notifies the Storage Component that the MQe

Password Store Connector QueueManager is up.

On getting a password update message, the Connector can operate in one of three modes:

No wait

Checks if password update message is available in the QueueManager queue. If yes, the mode

retrieves and parses the message. If no, the mode returns NULL, signalling the end of the

Iterator.

Number of milliseconds to wait

Waits for a specified number of milliseconds for a password update message to appear in the

QueueManager queue. If the password update message appears, this mode retrieves and parses

the message. If not, this mode returns NULL, signaling the end of the Iterator.

Wait forever

The Connector waits until a password update message appears in the QueueManager queue. It

never returns NULL, and when operating in this mode it must be stopped externally.

Chapter 2. Connectors 155

By default, the Connector automatically acknowledges every message it receives from the QueueManager

JMS queue. However, you can change this behavior by de-selecting the Auto Acknowledge parameter; in

that case, you are responsible for message acknowledgements yourself by calling the Connector’s

acknowledge() method at appropriate places in the AssemblyLine. Each time you call the Connector’s

acknowledge() method you acknowledge all messages delivered so far by the Connector.

PKCS7 Encryption support

The MQe Password Store can use PKCS7 encryption to sign and encrypt the password change

notification messages before it sends them to the MQe Password Store Connector. The use of PKCS7

encapsulation is optional; by default it is turned off. Both signing and encryption need certificates in

order to function. Usage of PKCS7 is incompatible with the older PKI-based encryption mechanisms

available in older versions of TDI.

With the PKCS7 option activated, it verifies the signature of each received message by comparing the

Signer certificate with those in its trust store. In case of a match it verifies the message signature. If the

signature verification is successful the Connector accepts the message and decrypts it with the

Connector’s private key from its own certificate.

Note: If PKCS7 needs to be used then both the MQe Password Store Connector and the MQe Password

Store (all of them, if multiple Stores are used) need to be setup to use PKCS7. If only one side is

configured to use PKCS7 then an error will occur.
The certificates are stored in a .jks file. The Connector has a .jks file and the MQe Password Store has

another .jks file.

Signing of messages

Signing is used to verify that the sender of the message is the one he/she claims to be.

In this particular scenario the MQe Password Store Connector needs to verify that the sender of a

password change notification message is actually a trusted MQe Password Store.

It is possible to have several password stores sending messages to a single MQe Password Store

Connector. In this case the Connector must be configured so that its .jks file contains the public keys of

each of the trusted password stores.

Encryption of messages

Encryption is achieved by having the password store use the public key of the Connector to encrypt the

message. Then the Connector uses its private key to decrypt the message.

Certificate management

A .jks file is required in order to be able to work with the PKCS7 functionality. It must contain not only

MQe Password Store Connector’s certificate, but also the certificates of all the password stores that send

messages to it.

The MQe Password Store Connector’s certificate is a self-signed personal certificate, whose private key is

used to decrypt the messages from the password store.

The password stores’ certificates are trusted signer certificates, which are supplied from each MQe

Password Store’s .jks file. Every received message is then verified: the public key, attached to it, is

compared with the available in the .jks file. In case of a match the message signature is verified against

the certificate and then the message is decrypted using the Connector’s own private key.

Certificate structure: Certificates are stored in a .jks file. The Connector has a .jks file and the password

store has another, corresponding, .jks file. The two .jks files need to contain the following so that PKCS7

can be used:

MQe Password Store .jks file

156 Reference Guide

v The public key of the Connector as a trusted signer certificate

v The private-public key pair of the password store

MQe Password Store Connector .jks file

v The public key of each trusted password store as a trusted signer certificate

v The private-public key pair of the Connector

Creating certificates: The primary tool used to handle .jks files is ikeyman.exe. Ikeyman.exe is a tool

available with every JVM distributed with TDI.

It can be found in: <TDI_InstalL>\jvm\jre\bin, where <TDI_Install> is the installed directory of IBM

Tivoli Directory Integrator. Below are the steps you can follow in order to create the required

keystore/trustdtore .jks files.

1. Creating a .jks file

To create a new .jks file click on Key Database File>New and choose JKS together with the desired

name and file path. You will be asked to enter a password. Remember it – it has to be provided later

when setting up the components. You will need to create at least two such files – one for the

MQePasswordStore and another one for the MQePasswordStoreConnector.

2. Creating a certificate

To create a new certificate click on the drop-down menu above the list of certificates and choose

Personal Certificates. Next, click on New Self-Signed... and enter the appropriate information.

3. Transferring certificates

The last step is adding the just created self-signed certificates from the MQePasswordStore’s JKS to

the MQePasswordStoreConnector’s and vice versa. For this purpose you have to extract the certificate

as DER binary data: click on Extract Certificate... and then choose Data Type-> DER Binary data.

Save it to an appropriate location with the desired name and open the other .jks file. Click Add... and

find the file with the DER extracted data (Note: you must have chosen the Signer Certificates list

before adding the new certificate).

Note: The implementation of PKCS7 in TDI 6.1.1 does not support certificates that are secured with an

additional password except the one set for the .jks file.

Example

The following example demonstrates how the MQe Password Store Connector can be configured to work

with the configured MQe Password Store, described in IBM Tivoli Directory Integrator 6.1.1: Password

Synchronization Plug-ins Guide. Parameter PKCS7 is checked – meaning that the PKCS7

encryption/certification option is enabled.

The path to the .jks file, parameter PKCS7 Key Store File is C:\dev\di611_061025a\certs\
mqeconnpkcs7.jks. It must contain its self-signed certificate as well as the trusted signer certificate of the

MQe Password Store (please refer to “Creating certificates” for more information about creating the

necessary certificates). In our case the parameter MQeConnector Certificate Alias is specified as

“mqeconn”.

For the needs of our example we need to create the two .jks files – ‘mqepkcs7.jks’ and

‘mqeconnpkcs7.jks’. The steps are as follows:

1. Open iKeyman.exe and click on Key Database File-> New...

2. Select the desired location of the file. For the example described above, save the .jks file under

C:\dev\061025a\certs with the name mqeconnpkcs7.jks. By pressing the OK button, you will be

asked to enter a password. To keep compatibility with the other data in the example, enter “secret” as

password.

Chapter 2. Connectors 157

3. The next step is to create the MQe Password Store Connector’s certificate itself. For this purpose select

Personal Certificates from the drop-down menu and click New Self-Signed... The Key Label is the alias

of the certificate in the .jks file. Set it to “mqeconn”. The other options can be left with the default

values.

4. Extract the just created self-signed certificate “mqeconn” as DER data in the same folder:

C:\dev\di611_061025a\certs. Choose a name that corresponds to the certificate itself (e.g. mqeconn).

This file will be used later to import the MQe Password Store Connector’s certificate in the .jks file of

MQe Password Store.

5. Repeat the steps from 1 on page 157 to 4, but this time the location of the .jks file is: C:\Program

Files\IBM\DiPlugins\mqepkcs7.jks and the password again: ”secret”. For Key Label of the MQe

Password Store certificate set the value to ”mqestore” and extract it as mqestore.der in the same

directory: C:\Program Files\IBM\DiPlugins\.

6. Both created .jks files must exchange their certificates. Since the mqepkcs7.jks file is opened, import

first the DER binary data that was extracted from mqeconnpkcs7.jks. Select Signer Certificates from the

drop-down list and click on Add... In the window that popped up select “Binary DER data” as Data

type and then browse to the location C:\dev\di611_061025a\certs, where the .der file is saved. Select

the mqeconn.der file and click “OK”. A label for the imported certificate is required. To avoid

confusion it is advisable to give it the same alias as in the other .jks file, in this case, mqeconn,

because this value must be given in the properties file of the MQe Password Store for the property

“pkcs7MqeConnectorCertificateAlias”.

7. The same procedure must be performed on the mqeconnpkcs7.jks file (the key store holding the

necessary certificates for the connector). First open the .jks file by clicking Key Database File->

Open... and navigate to the exact location. If you followed all the instructions precisely the path to the

required file should be C:\dev\di611_061025a\certs. The password will be prompted for again.

Afterwards repeat step 6 with the new parameters. The location is C:\Program Files\IBM\DiPlugins

and the certificate name is mqestore.der. For convenience name it “mqestore” again. With this step the

example is completed.

MQe Password Store Connector Entry structure

The MQe Password Store Connector constructs IBM Tivoli Directory Integrator Entry objects with the

following fixed attribute structure:

UserID

Contains a single string value.

OperationType

Contains one of the following string values:

v replace (replace password values operation)

v add (add password values operation)

v delete (delete password values operation)

Passwords

A multi-valued attribute. Each value is a string representing a password value.

Configuration

GetNext Timeout

Specify the number of milliseconds the Connector waits for a new password update message to

appear in the QueueManager queue. Specify -1 to wait forever, and 0 to return immediately if no

message is available.

Storage notification server(s)

Specify in a host:port format the Storage Component server that listens for notifications from the

MQe Connector. The default value for the port is 41002 and the host must be the IP address of

the machine where the Password Synchronizer and the Storage Component are deployed.

158 Reference Guide

There can be multiple Storage Component servers; specify each on a separate line.

Auto Acknowledge

If checked each message is automatically acknowledged, otherwise messages should be

acknowledged manually through the Connector’s acknowledge() method. Default is selected.

Decrypt messages

Check this field if the Storage Component encrypts the password update messages and they need

to be decrypted by the MQe Connector.

Key Store File

The path of the JKS file used to decrypt password data (only taken into account when the

Decrypt messages field is selected).

Key Store File Password

The password of the JKS file (only taken into account when the Decrypt messages field is

selected).

Key Store Certificate Alias

The alias of the key from JKS file (only taken into account when the Decrypt messages field is

selected).

Key Store Certificate Password

The password used to retrieve the private key. If not specified, the Key Store File Password is

used to retrieve the private key (only taken into account when the Decrypt messages field is

selected).

PKCS7

This indicates whether PKCS7 encapsulation is used or not. The default value is disabled. All

other parameters related to the PKCS7 functionality are considered if only this parameter is

enabled.

PKCS7 Key Store File

This is the full path to the MQePasswordStoreConnector’s JKS together with its name. There is no

need for double slash “\\” instead of single “\”, when specifying the file path on Windows

platforms.

PKCS7 Key Store File Password

The actual, plaintext value of the password for the JKS file (whereas for the MQePasswordStore’s

property the encrypted version is required).

MQeConnector Certificate Alias

The alias of the MQePasswordStoreConnector’s certificate as it is saved in the .jks file without

any extensions.

Detailed Log

Check this field for more detailed log messages.

See Also

“System Queue Connector” on page 171,

The chapter on System Queue in the IBM Tivoli Directory Integrator 6.1.1: Administrator Guide,

MQe Password Store in IBM Tivoli Directory Integrator 6.1.1: Password Synchronization Plug-ins Guide.

Chapter 2. Connectors 159

160 Reference Guide

Netscape/iPlanet/Sun Directory Changelog Connector

The iPlanet Changelog Connector is a specialized instance of the LDAP Connector.

In iPlanet Directory Server 5.0, the format of the changelog was modified to a proprietary format. In

earlier versions of iPlanet Directory Server, the change log was accessible through LDAP. Now the

changelog is intended for internal use by the server only. If you have applications that must read the

changelog, you will need to use the iPlanet Retro Change Log Plug-in for backward compatibility.

Note: The current name for Sun Microsystem's directory offering is "Directory Server 5".

Since it is not always possible to run the iPlanet Directory Server in Retro Changelog mode, the

Connector is able to run in two different Delivery Modes:

1. Changelog mode – in this mode the Connector will iterate trough the changelog (enabled by the

iPlanet Retro Change Log Plug-in) and after delivering all Entries it will poll for new changes or use

change notifications

2. Realtime mode – in this mode, only changes received as notifications will be delivered and offline

changes will be lost. The Connector will not use the changelog in this mode. This delivery mode is

necessary for Netscape/iPlanet Servers that do not support a changelog

This Connector supports Delta Tagging, in two different operation modes:

v In Changelog mode Delta tagging is supported at the Entry level, the Attribute level and the Attribute

Value level. It is the LDIF Parser that provides delta support at the Attribute and Attribute Value

levels.

v In Realtime mode Delta tagging will be performed at the Entry level only.

Configuration

The Connector needs the following parameters:

LDAP URL

The LDAP URL for the connection (ldap://host:port).

Login username

The LDAP distinguished name used for authentication to the server. Leave blank for anonymous

access.

Login password

The credentials (password).

Authentication Method

The authentication method. Possible values are:

v CRAM-MD5 (use the CRAM-MD5 (RFC-2195) SASL mechanism).

v none (use no authentication (anonymous)).

v simple (use weak authentication (cleartext password)).

v If not specified, default (simple) is used. If Login username and Login password are blank,

then anonymous is used.

Use SSL

If Use SSL is true, the Connector uses SSL to connect to the LDAP server. Note that the port

number might need to be changed accordingly.

ChangeLog Base

Specifies the search base where the Changelog is kept. The standard DN for this is cn=changelog.

Also known as Notification Context for ’Realtime’ Delivery Mode.

Chapter 2. Connectors 161

Extra Provider Parameters

Allows you to pass a number of extra parameters to the JNDI layer. It is specified as name:value

pairs, one pair per line.

Iterator State Key

Specifies the name of the parameter that stores the current synchronization state in the User

Property Store of the IBM Tivoli Directory Integrator. This must be a unique name for all

parameters stored in one instance of the IBM Tivoli Directory Integrator User Property Store.

Start at changenumber

Specifies the starting changenumber. Each Changelog entry is named changenumber=intvalue

and the Connector starts at the number specified by this parameter and automatically increases

by one. The special value EOD means start at the end of the Changelog.

State Key Persistence

Governs the method used for saving the Connector’s state to the System Store. The default is End

of Cycle, and choices are:

After read

Updates the System Store when you read an entry from the iPlanet Directory Server

change log, before you continue with the rest of the AssemblyLine.

End of cycle

Updates the System Store with the change log number when all Connectors and other

components in the AssemblyLine have been evaluated and executed.

Manual

Switches off the automatic updating of the System Store with this Connector’s state

information; instead, you will need to save the state by manually calling the iPlanet

Directory Server Changelog Connector’s saveStateKey() method, somewhere in your

AssemblyLine.

Delivery Mode

Specifies whether to use changelog or notifications entries. If the LDAP Server doesn’t maintain a

changelog, Realtime is only applicable option. The default is Changelog.

Use Notifications

Specifies whether to use notification when waiting for new changes in iPlanet Directory Server. If

enabled, the Connector will not sleep or timeout but instead wait for a Notification event from

the iPlanet Directory Server.

Batch retrieval

Specifies how searches are performed in the changelog. When unchecked, the Connector will

perform incremental lookups (backward compatible mode). When checked, and the server

supports ″Sort Control″, searches will be preformed with query ’changenumber>=some_value’,

corresponding to the last retrieval you made; this works in conjunction with the next parameter,

Page Size. By default, this option is unchecked.

Page Size

Specifies the size of the pages IDS will return entries on (default value is 500). It is used only

when Batch retrieval is set to true (checked).

Timeout

Specifies the number of seconds the Connector waits for the next Changelog entry. The default is

0, which means wait forever.

Sleep Interval

Specifies the number of seconds the Connector sleeps between each poll. The default is 60.

Detailed Log

If this field is checked, additional log messages are generated.

162 Reference Guide

See also

“LDAP Connector” on page 133,

“Active Directory Changelog (v.2) Connector” on page 13,,

“Exchange Changelog Connector” on page 71

“IBM Directory Server Changelog Connector” on page 97

“z/OS Changelog Connector” on page 233.

Chapter 2. Connectors 163

164 Reference Guide

Properties Connector

This connector deals with "property=value" definitions, as in the configuration files global.properties and

solution.properties, as well as other properties collections available in the IBM Tivoli Directory

Integrator Property Store.

This Connector uses an internal memory buffer to hold all properties in a properties file. The connector

can also be used to access the JavaVM system properties object.

The Connector supports Iterator, AddOnly, Update, Lookup and Delete mode.

Also see "Property Store" in IBM Tivoli Directory Integrator 6.1.1: Users Guide for more information about

the TDI Property Store concept.

Configuration

The Properties Connector uses the following parameters:

Collection

Specifies the properties file to read/write when collection type if File/URL. This parameter is

required if the collection type is File/URL.

Encryption

Set to True if parser should decrypt/encrypt the entire data stream. Default value is False.

Cipher

The cipher algorithm to use when either Encryption=TRUE or the stream contains individually

encrypted values. Specify SERVER to use TDI server encryption. Default cipher provided in

global.properties / solution.properties

Password

The secret key to use when encrypting/decrypting the stream/property values.

 Required when encryption is active and Cipher is not SERVER.

AutoRewrite

If true, the Connector will write back the contents if any auto-encrypted values were found.

Chapter 2. Connectors 165

166 Reference Guide

Server Notifications Connector

The Server Notifications Connector is an interface to the IBM Tivoli Directory Integrator (TDI) notification

system. It listens for and reports, as well as issues, Server API notifications. The Connector provides the

ability to monitor various processes taking place in the TDI Server, such as AssemblyLine stop and start

processes, as well as issue custom server notifications.

The Server Notifications Connector supports the Iterator and AddOnly modes:

v In Iterator mode, when the Server API notification system issues an event, the event is acquired by the

Server Notifications Connector and buffered in a queue internal to the Connector. On the next

getNextEntry() method, the Connector returns the next event buffered in the internal Connector queue.

v In AddOnly mode, the Connector is capable of issuing custom Server API notifications, which can be

handled by TDI components that have registered to listen for these notifications through the Server

API.

Encryption and Cryptography

The Server Notifications Connector provides the option to use Secure Sockets Layer (SSL) when the

connection type is set to remote. If the remote TDI server accepts SSL connections only, the Server

Notifications Connector automatically establishes an SSL connection provided that a trust store on the

local TDI Server is configured properly. When SSL is used, the Connector uses a Server API SSL session,

which runs RMI over SSL.

Trust store

A trust store on the local TDI Server is needed because when the remote TDI server fires a notification a

new SSL connection to the local TDI Server is created and in order for this new SSL connection session to

be established the local TDI Server must trust (through its trust store) the remote TDI Server SSL

certificate. A trust store is configured by setting the appropriate values for the

javax.net.ssl.trustStore, javax.net.ssl.trustStorePassword and javax.net.ssl.trustStoreType

properties in the global.properties or solution.properties files.

Authentication

SSL Authentication

The Server Notifications Connector is capable of authenticating by using a client SSL certificate. This is

only possible when the remote TDI Server API is configured to use SSL and to require clients to possess

SSL client certificates. A trust store must be configured properly on the local TDI server.

Username and Password Authentication

The Server Notifications Connector is capable of using the Server API username and password

authentication mechanism. The desired username and password can be set as a Connector parameter, in

which case the Connector will use the Server API username and password authentication mechanism. If

SSL is used and a username and password have been supplied as Connector parameters, then the

Connector will use the supplied username and password and not an SSL client certificate to authenticate

to the remote TDI Server.

Configuration

The Server Notifications Connector uses the following parameters:

connectionType

Determines whether the Server Notifications Connector will listen for and emit local or remote

Server API notifications. The available values for this parameter are remote and local. local

means that the Connector will only listen for and notifications in the local Java Virtual Machine.

remote means that the Connector will connect to a remote TDI Server system and register for and

emit notifications in the Java Virtual Machine of that remote system.

Chapter 2. Connectors 167

url Specifies the Remote Method Invocation (RMI) URL used to connect to the remote TDI Server

system. This parameter is only taken into account if the connectionType parameter is set to

remote. An example value for this parameter is:

rmi://127.0.0.1:1099/SessionFactory

username

Specifies the user name the Connector uses to authenticate to the TDI server. This parameter is

only taken into account if the connectionType parameter is set to remote.

password

Specifies the password the Connector uses to authenticate to the TDI server. This parameter is

only taken into account if the connectionType parameter is set to remote.

configInstanceId

Specifies a Config Instance ID, which the Connector will use to filter event notifications. If this

parameter is specified, the Connector will only report notifications that have this Config Instance

ID. This parameter is only taken into account if the Connector mode is Iterator.

notificationId

Specifies a Notification ID, which the Connector will use to filter event notifications. If this

parameter is specified the Connector will only report notifications which have the specified

notification ID. This parameter is only taken into account if the Connector mode is Iterator.

timeOut

Specifies the maximum number of seconds to wait for a notification. After this timeout expires,

the Connector will terminate. If this parameter value is set to “0”, then the Connector will wait

forever. This parameter is only taken into account if the Connector mode is Iterator.

di_all Specifies if "di.*" notifications will be received by the Connector. This parameter is only taken into

account if the Connector mode is Iterator.

di_ci_all

Specifies if "di.ci.*" notifications will be received by the Connector. This parameter is only taken

into account if the Connector mode is Iterator.

di_ci_start

Specifies if "di.ci.start" notifications will be received by the Connector. This parameter is only

taken into account if the Connector mode is Iterator.

 di_ci_stop

Specifies if "di.ci.stop" notifications will be received by the Connector. This parameter is only

taken into account if the Connector mode is Iterator.

di_ci_file_updated

Specifies if "di.ci.file.updated" notifications will be received by the Connector. This parameter is

only taken into account if the Connector mode is Iterator.

di_al_all

Specifies if "di.al.*" notifications will be received by the Connector. This parameter is only taken

into account if the Connector mode is Iterator.

di_al_start

Specifies if "di.al.start" notifications will be received by the Connector. This parameter is only

taken into account if the Connector mode is Iterator.

di_al_stop

Specifies if "di.al.stop" notifications will be received by the Connector. This parameter is only

taken into account if the Connector mode is Iterator.

di_eh_al

Specifies if "di.eh.*" notifications will be received by the Connector. This parameter is only taken

into account if the Connector mode is Iterator.

168 Reference Guide

di_eh_start

Specifies if "di.eh.start" notifications will be received by the Connector. This parameter is only

taken into account if the Connector mode is Iterator.

di_eh_stop

Specifies if "di.eh.stop" notifications will be received by the Connector. This parameter is only

taken into account if the Connector mode is Iterator.

di_server_stop

Specifies if "di.server.stop" notifications will be received by the Connector. This parameter is only

taken into account if the Connector mode is Iterator.

hasCustomNotifications

Specifies whether the Connector will receive any additional or custom notifications. If it is

checked the additional/custom notifications can be specified in the “customNotifications”

Connector parameter. This parameter is only taken into account if the Connector mode is Iterator.

customNotifications

Specifies the notification types of additional or custom Server API notifications which the Server

Notifications Connector will listen to and report. Each notification type must be typed on a

separate line. This parameter takes effect only if the hasCustomNotifications parameter is true,

and is only taken into account if the Connector mode is Iterator.

Debug

Turns on debug messages. This parameter is globally defined for all TDI components.

Chapter 2. Connectors 169

170 Reference Guide

System Queue Connector

Introduction

The System Queue provides a subsystem similar to Java Message Service (JMS) for IBM Tivoli Directory

Integrator. It is designed for storing and forwarding general messages and TDI Entry Objects, between

TDI Servers and AssemblyLines.

The System Queue Connector is the mechanism for AssemblyLines to interface with the System Queue.

To learn more about the System Queue and its configuration, refer to the System Queue section in the

IBM Tivoli Directory Integrator 6.1.1: Administrator Guide.

The System Queue Connector can be used with AssemblyLines in Iterator and AddOnly modes:

v In Iterator mode, the Connector retrieves TDI Entry objects from a specified message queue.

v In AddOnly mode, the Connector stores TDI Entry objects in the specified message queue.

Note: If two JMS clients retrieve messages from the same JMS queue simultaneously, an error might

occur. Avoid solutions which use several instances of the System Queue Connector retrieving

messages from the same JMS queue simultaneously. However, an instance of the System Queue

Connector writing to a queue and another instance of the Connector reading from that same queue

at the same time is acceptable.

The System Queue Connector uses the Server API to access the System Queue. The Connector uses both

the local and remote interfaces of the Server API, allowing the Connector to operate on a TDI System

Queue running on a remote computer. The Connector's ability to operate on a remote computer, coupled

with the System Queue’s capability to connect to remote JMS servers, results in the ability to use some

quite complex deployment scenarios. For example: a TDI server and a System Queue Connector deployed

on machine A, working through the remote Server API with the TDI server and System Queue on

machine B, which in turn interface with a JMS server deployed on machine C.

Configuration

The System Queue Connector uses the following parameters:

Connection Type

This parameter determines whether the System Queue Connector works with the System Queue

of the local TDI server or with the System Queue of a remote TDI server. The available values for

this parameter are local and remote.

v The value local specifies that the Connector will use the local Server API interfaces and will

work with the System Queue of the local TDI server.

The value remote specifies that the Connector will use the remote Server API interfaces and will

work with the System Queue of a remote TDI server. In that case, the RMI URL parameter is

required, the Connector configuration (both the Connector parameters and the SSL

configuration of the local TDI Server) must match the configuration of the remote TDI Server.

RMI URL

The Remote Method Invocation (RMI) URL used to connect to the remote TDI Server system. An

example value for this parameter is:

rmi://127.0.0.1:1099/SessionFactory

This parameter is taken into account only if the connectionType parameter is set to remote.

Username

Used to authenticate to the remote TDI server using the user name and password authentication

mechanism of the Server API. This parameter is taken into account only if the connectionType

parameter is set to remote.

Chapter 2. Connectors 171

Password

Used to authenticate to the remote TDI server. This parameter is taken into account only if the

connectionType parameter is set to remote.

Queue Name

Specifies the name of the JMS queue with which the Connector will work. In Iterator mode, the

Connector retrieves Entry objects from this queue. In Add-Only mode, the Connector stores Entry

objects in this queue.

Timeout

Specifies the amount of time in seconds the Connector will wait before returning a null Entry

object. If a value of zero (0) is specified for this parameter, the Connector will immediately return

if there are no available Entry objects in the queue. If a negative value is specified for this

parameter then the Connector will wait indefinitely or until an Entry object becomes available in

the queue.

Detailed Log

This parameter turns on debug messages This parameter is globally defined for all TDI

components

Security, Authentication and Authorization

Encryption

When the connection type is set to remote and the remote TDI server is configured to use Secure Sockets

Layer (SSL), then the System Queue Connector uses SSL, provided that a trust store on the local TDI

Server is configured properly. When SSL is used, the Connector uses a Server API SSL session, which

runs RMI over SSL.

Note: Of the standard JMS Drivers only the driver for MQ supports SSL out of the box. The MQe JMS

Driver only works with a local Queue Manager – this is mandated by the MQe architecture. The

JMS Script Driver is a generic driver which supports whatever the corresponding user-provided

Javascript supports.

Authentication

Username and password authentication: The System Queue Connector can use the remote Server API

username and password authentication. The Connector does not implement any authentication itself. The

username and password supplied to the Server API are configured as Connector configuration

parameters.

SSL certificate-based authentication: The System Queue Connector is capable of authenticating by using

a client SSL certificate. This is only possible when the remote TDI Server API is configured to use SSL

and to require clients to possess SSL client certificates. A trust store must be configured properly on the

local TDI server.

If SSL is used and a user name and password have been supplied as Connector parameter,s then the

Connector will use the supplied user name and password and not the SSL client certificate to authenticate

to the remote TDI Server.

Authorization

The Server API authorization mechanism is applied to the Server API session the System Queue

Connector establishes to the TDI Server. With the TDI 6.1.1 Server API once the System Queue Connector

is authenticated it can use the TDI System Queue.

See Also

“JMS Connector” on page 115,

"System Queue" in IBM Tivoli Directory Integrator 6.1.1: Administrator Guide.

172 Reference Guide

MQe Initialization

There are two Connectors that can initialize MQ Everyplace (MQe): the “MQe Password Store Connector”

on page 155 and the “System Queue Connector” on page 171. Because there can be only one instance of

MQe in an instance of the JVM, it is necessary that MQe be initialized only once. To resolve the conflict

that might arise by the MQe Password Store Connector and the System Queue Connector initializing

MQe separately, the initialization of MQe takes place in a central location: the System Queue Engine.

Note: Because of these limitations, you should not attempt to start MQe yourself from within the same

JVM that TDI runs in (for example, from Java or JavaScript), otherwise problems will occur if you

attempt to use any of the aforementioned Connectors.

Components that need MQe will be able to get the necessary MQe objects from the SystemQueueEngine.

MQe is initialized on TDI server startup. To ensure compatibility with the SystemQueue Connector, the

MQePasswordStore Connector has been modified so that it retrieves the required MQe objects from the

System Queue instead of initializing MQe itself.

If you need to change the default MQe parameters, you would use the MQe Configuration Utility. This

utility is described in a section named "MQe Configuration Utility" in the IBM Tivoli Directory Integrator

6.1.1: Administrator Guide.

Chapter 2. Connectors 173

174 Reference Guide

Windows Users and Groups Connector

The Windows Users and Groups Connector (in older versions of TDI this was called the NT4 Connector)

operates with the Windows NT® security database. It deals with Windows users and groups (the two

basic entities of the Windows NT security database). This Connector can both read and modify Windows

NT security database on the local Windows machine, the Primary Domain Controller machine and the

Primary Domain Controller machine of another domain.

Note: This Connector is dependent on a Windows NT API, and only works on the Windows platform.

The Connector is designed to connect to the Windows NT4 and Windows 2000 SAM databases through

the Win32 API for Windows NT and Windows 2000/2003 user and group accounts. You can connect to a

Windows 2000 SAM database, but the Connector only reads or writes attributes that are

backward-compatible with NT4 (in other words, the Windows Users and Groups Connector has a

predefined and static attribute map table consisting of NT4 attributes). Windows 2000/2003 native

attributes or user-defined attributes are therefore not supported by this Connector.

See “Windows Users and Groups Connector functional specifications and software requirements” on page

178 for a full functional specification of the Connector, architecture description as well as hardware and

software requirements.

Preconditions

To successfully run the Windows Users and Groups Connector and obtain all of its functionality, the

Connector must be run in a process owned by a user who is a member of the local Administrators group,

and have logon privileges to the domain controller and other domains (if accessed). This precondition can

be omitted if the UserName and Password parameters of the Connector are set to specify an account

with the requirements stated above.

The Windows Users and Groups Connector is designed and implemented to work in the following

modes:

v Iterator

v Lookup

v AddOnly

v Delete

v Update

Note: This Connector does not support Advanced Link Criteria (see ″Advanced link criteria″ in IBM

Tivoli Directory Integrator 6.1.1: Users Guide).

Configuration

The Connector needs the following parameters:

Computer Name

The name of the machine (for example, ntserver01) or its IP address (for example, 212.52.2.218)

where the Connector operates. The machine IBM Tivoli Directory Integrator is running on must

be in the same Domain or Workgroup as the target system.

Username

If blank, no logon to the specified machine is performed and the Connector has the privileges of

the process in which IBM Tivoli Directory Integrator is run. If some value is set, then the

Connector attempts to log on to the Computer Name machine with this user name and the

password specified by the Password parameter.

Password

The value of this parameter is taken into account only when the parameter Username is set with

a non-blank value. It then specifies the password used for the logon operations.

Chapter 2. Connectors 175

Entry Type

Must be set to User (specifying that the Connector operates with data structured by Users) or

Group (specifying that the Connector operates with data structured by Groups).

Page Size

Specifies the number of Entries (Users and Global Groups) that Windows NT or Active Directory

return in one chunk when the Connector retrieves Users and Global Groups. Must be a number

between 1 and 100.

Detailed Log

If this parameter is checked, more detailed log messages are generated.

Constructing Link Criteria

Construct link criteria when using the Windows Users and Groups Connector in Lookup, Update and

Delete modes. The Connector supports Link Criteria that uniquely identifies one entry only. The format is

strict, and passing a Link Criteria that doesn’t match this format results in the following exception:

Unsupported Link Criteria structure.

The following is the Link Criteria structure that must be used, depending on Entry Type:

User Windows Users and Groups Connector Entry Type parameter is set to User. This parameter

consists of just one row where:

v Connector attribute is set to UserName.

v Operand is set to equals.

v Value is set to a name of a user account (for example, user name) or configured by a template

to receive the name of a user account.

Group Windows Users and Groups Connector Entry Type parameter is set to Group. This parameter

consists of two rows as follows:

1. Initial row:

v Connector attribute is set to GroupName.

v Operand is set to equals.

v Value is set to a name of a group account (for example, group name) or configured by a

template to receive the name of a group account.
2. Second Row:

v Windows Users and Groups Connector attribute is set to IsGlobal.

v Operand is set to equals.

v Value is set to True to indicate that the group account specified in the first row is global, or

False to indicate that the group account is local. Can also be configured by a template to

receive True or False values indicating global or local group accounts.

Other

User and Group account names:

On Domain Controller Machine

Users and groups are retrieved and must be accessed in the following formats:

USER_NAME,GROUP_NAME

On Non-Domain Controller Machine

Local users and groups are retrieved and must be accessed in the following format:

USER_NAME,GROUP_NAME

 Global groups and domain users (can be members of a local group on a non-domain controller machine)

are retrieved and must be accessed in the following format:

DOMAIN_NAME\GLOBAL_GROUP_NAME,DOMAIN_NAME\USER_NAME

176 Reference Guide

Creating a new user: When creating a new user with the Windows Users and Groups Connector, if any

of the following attributes are omitted or assigned a null value, they are automatically assigned a default

value as follows:

Flags The account is marked as normal account and user password never expires.

AccountExpDate

A value that indicates that the account never expires is set.

LogonHours

A value that indicates that there is no time restriction set (for example, the user can log on

always).

Setting user password

Remember that a user password value cannot be retrieved. Windows stores this in a format that cannot

be read. If an AssemblyLine copies users from one Windows machine to another, you must set the

Password attribute value manually.

When adding a user, passing the Password attribute with no value results in creating a user with an

empty password.

When modifying a user, passing the Password attribute with no value results in retaining the old

password.

Setting user Primary Group/global groups membership

All Domain Users must be members of their Primary Groups. This means that the value set in the

PrimaryGroup attribute must be present in the GlobalGroups attribute. If there is no value for the

PrimaryGroup attribute then it will be set to “Domain Users”.

Operating with groups

There are certain groups that are predefined and special for Windows, and there are certain operations

that are not enabled on these groups. Such operations are delete, rename and modification of some of

their attributes. Any attempt to try such an invalid operation over any of these groups results in an

exception thrown.

Here is the list of these groups, structured by Windows installations:

Domain Controller:

v Global groups

– Domain admins

– Domain users
v Local groups

– Administrators

– Users

– Guests

– Backup operators

– Replicator

– Account operators

– Print operators

– Server operators

Non-Domain Controller:

v Local groups

– Administrators

Chapter 2. Connectors 177

– Users

– Guests

– Backup operators

– Replicator

– Power Users

Character sets

Unicode is supported.

Examples

Navigate to the root_directory/examples/NT4 directory of your IBM Tivoli Directory Integrator

installation.

Windows Users and Groups Connector functional specifications and

software requirements

The Windows Users and Groups Connector implements Windows Users and Groups database access for

both user and group management on Windows systems according to Windows definitions and

restrictions as outlined below.

Functionality

Extract user and group data: The Windows Users and Groups Connector reads both user and group

information from the Windows Users and Groups repository, including group and user metadata as well

as relationship information (for example, users group and groups group membership). The Connector

reads both local and domain user or group data. Data is read from Windows, then organized and

provided in the containers expected by IBM Tivoli Directory Integrator.

Add user and group data: The Windows Users and Groups Connector adds user information to both

local machines and domain controllers, and it adds group information to both local machines and domain

controllers. When operating with a domain controller, the Connector can create both local and global

groups. When operating with a machine that is not a domain controller, the Connector can only create

local groups, according to security restrictions set by Windows.

Modify group membership: The Windows Users and Groups Connector modifies group membership

for both local and global groups. In accordance with Windows NT security restrictions, members can be

assigned to groups as follows:

v A global group can have users from its domain as members only.

v A local group can have global groups and users from its domain or any trusted domain as members.

However, a local group cannot contain other local groups.

v Users on a local machine can exist without being members of a group.

v Each user on a domain controller must belong to a Primary Group. The Primary Group for a user can

be any global group in the domain. While the user’s Primary Group can be changed, he is always a

member of his Primary Group.

Modify user and group data: The Windows Users and Groups Connector modifies external and group

properties on both local machines and domain controllers. When connected to a domain controller, the

Connector is able to modify the properties of both local and global groups.

Delete user and group data: The Windows Users and Groups Connector can remove users from both

local machines and domain controllers, and it can remove local groups from both local machines and

domain controllers. When operating with a domain controller, the Connector can remove both local and

global groups.

178 Reference Guide

System Store Connector

The System Store Connector (named "ibmdi.PESConnector" in the create new Connector dialog) provides

access to the underlying System Store. The primary use of the System Store Connector is to store Entry

objects into the System Store tables. However, you can also use the connector to connect to an external

CloudScape, DB2 8.1, Oracle or MS SQL*Server database, not just the database configured as the System

Store. Each Entry object is identified by a unique value called the key attribute.

The System Store Connector creates a new table in a specified database if one does not already exist. If

you iterate on a non-existing table, the (empty) table is created, and the Iterator returns no values.

The System Store Connector uses the following SQL statements to create a table and set the primary key

constraint on the table (Cloudscape syntax):

"CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH) NOT NULL, ENTRY BLOB);

ALTER TABLE {0} ADD CONSTRAINT {0}_PRIMARY Primary Key (ID);"

For Cloudscape and DB2, these SQL statements are pre-set, but you may modify them to suit your needs

. For other databases, you must enter your own, equivalent SQL statements (multiple ones, if required)

by specifying these in the Create Table Statement parameter. The parameter can not be empty; in that

case, an exception is thrown.

Notes:

1. The VARCHAR_LENGTH value is picked up from the com.ibm.di.store.varchar.length property set

in the Properties Store (TDI-P). The default VARCHAR_LENGTH is set to 512. You can change this

value by setting the value of the com.ibm.di.store.varchar.length in the Properties Store.

2. Another attribute, tdi.pesconnector.return.wrapped.entry, exists for TDI 6.0 backward compatibility.

If you define this property in the TDI global.properties file and set it to true , then TDI reverts back

to its earlier behavior where for example, the findEntry() method (used by the system in Iterator,

Lookup and Update modes) would return an Entry object of the format: [ENTRY: <Instance of Entry

object containing Attributes passed by user>]. In TDI 6.0, in order to obtain the original passed

attributes, you would need to write JavaScript code something like this:

Entry e = (Entry)conn.getAttribute("ENTRY");

at some appropriate place, after which e contains the Attributes originally passed in when writing to

the System Store. You could do this in the Input Attribute Map Hook where you would have to

carefully map the Attributes in e to the work entry, or use a Script Component after this Connector to

unpack the composite entry attribute in the work entry using the aforementioned JavaScript example

(substitute work for conn.)

In TDI 6.1.1, by default the entry is unwrapped and therefore all attributes passed by you are now

directly available as attributes in the Entry. The above scripting will not be needed any longer (unless

you set the tdi.pesconnector.return.wrapped.entry attribute to true.)

3. The System Store Connector operates in the following modes: AddOnly, Update, Delete, Iterate,

Lookup. However, AddOnly, Update and Delete operations are not permitted on the Delta Tables,

Checkpoint/Restart (CPR) tables and Property store tables.

The Connector supports both simple and advanced Link Criteria.

The System Store Connector along with the System Store provides an alternative to the Btree Connector.

It is recommended to use the System Store Connector and System Store rather than the Btree Connector

to store Entry Objects.

This Connector, like the JDBC Connector it is based upon, in principle can handle secure connections

using the SSL protocol. However, it may require driver specific configuration steps in order to set up the

SSL support. Refer to the manufacturer’s driver documentation for details.

Chapter 2. Connectors 179

Configuration

The System Store Connector requires the following parameters.

Database

The location of the database. This is an optional parameter; if left blank, the System Store as

configured in property com.ibm.di.store.database in the global.properties file is used. Note

that this is the value displayed in the Store | View System Store screen.

Username

The name of the user used to make a JDBC connection to the specified database. Only the tables

available to this user are shown. If this is not specified then the value of the

com.ibm.di.store.jdbc.user property set in the global.properties file is used as the default

value.

Password

The password of the user used to make a JDBC connection to the specified database. If this is not

specified then the value of the com.ibm.di.store.jdbc.password property set in the

global.properties file is used as the default value.

Key Attribute Name

The attribute name giving the unique value for the entry. This is a required parameter.

Note: You can specify multiple Key Attribute Names separated by the ″+″ sign. The System Store

Connector will concatenate these into a single varchar(255) key to obtain a unique key.

Selection Mode

Specify All, Existing or Deleted. In order to use the Existing and Deleted keywords, the

Connector must reference a Delta table in the System Store. When Delta is enabled on an Iterator,

the AssemblyLine stores a sequence property in the database, adding a sequence number to each

entry read from the source. This parameter is to be used on Delta tables only.

Note: Delta table names in TDI 6.0 and above, have an ″IDI_DS_″ prefix added to the identifier

specified in ″Delta Store″ field of the Delta configuration tab. Similarly, CPR table names

are prefixed with ″IDI_CP_″ and the property store table names are prefixed with

″IDI_PS_″.

Table Name

The table name to store the entries in. This is a required parameter. The System Store Connector

will create a table with the specified table name if it does not exist.

Notes:

1. The ″Select″ button in the Connector configuration tab of the connector provides a list of

tables in the connected database. Only the tables available to the user specified in the

Username field are shown.

2. The ″Delete″ button in the Connector configuration tab can be used to delete a selected table.

Ideally, the Delete button should be used when an AL has run and you would now want to

delete the table created by the System Store Connector. This does not work with the Delta and

CPR tables.

Select Database Driver

Select the database to connect to. You can select CloudScape, DB2 or other.

Create Table Statement

The ″CREATE TABLE″ SQL statement(s) used to create the tables in the selected data source. Each

statement must end with semicolon. This depends on the choice of the driver in the ″Select

Database Driver″ parameter. If the database driver specified is Cloudscape or DB2 then the

appropriate CREATE TABLE statements for these databases are displayed; you may modify them

to suit your needs. If the database driver selected is ″Other″ then you are required to enter the

correct CREATE TABLE statement(s) corresponding to the database that you choose to connect to.

180 Reference Guide

Delete table on close

If this value is set to true then the table created by the System Store Connector will be dropped

when the Connector terminates.

SQL Select

The select statement to execute when selecting entries for iteration. Specifies the WHERE clause.

This will be used as a search filter to return the data set in Iterator mode. If this is left blank, the

default construct (SELECT * FROM TABLE) is used, where TABLE is the name specified in the ″Table

Name″ field.

Commit

Controls when database transactions are committed. Options are:

v After every database operation

v On Connector Close

v Manual

Manual means user must call the commit() method of the System Store Connector — or,

alternatively, rollback() if your logic requires this.

Detailed Log

If this field is checked, additional log messages are generated.

Using the Connector

The System Store Connector provides access to the tables created in the System Store. The System Store

could be located on a CloudScape Database server, a DB2 Database server, an Oracle database server or

an MS*SQL Server. Furthermore, if the System Store uses CloudScape, it can be configured to run in

either embedded or networked mode. The only change that needs to be made while using the System

Store Connector with the above mentioned configurations of System Store is the Database field.

The correct way to specify the database for different configurations of System Store is given below.

Note: The examples are specific to Windows.

Using System Store Connector with embedded CloudScape server configured as System Store

Database: f::\Program Files\IBM\IBMDirectoryIntegrator/CloudScape

Note: In the embedded mode of operation, the CloudScape server is automatically started and

the specified database is booted into the database if it exists. If it does not exist a new

database is created at the specified location.

Using System Store Connector with networked CloudScape server configured as System Store

Database: jdbc:derby://localhost:1527/E:\TDI\TDISysStore;create=true

Notes:

1. It is important to specify the ″create=true″ flag in the database URL. This will create the

database if it does not exist. This is required when CloudScape is configured to run in

networked mode.

2. In networked mode of operation, the CloudScape server has to be started manually. For

details regarding the ways in which a CloudScape server can be started in networked mode,

please refer to the chapter on System Store in IBM Tivoli Directory Integrator 6.1.1: Administrator

Guide

Using System Store Connector with DB2 8.1 server as System Store

Database: jdbc:db2://machine-name:50000/testDB

Notes:

1. The DB2 instance and the DB2 database must be created ahead of time for it to be used as

System Store.

Chapter 2. Connectors 181

2. The specified instance must be running on the specified port in the database URL.

See also

“Btree Object DB Connector” on page 25,

The chapter on System Store in IBM Tivoli Directory Integrator 6.1.1: Administrator Guide,

Appendix A — Using CloudScape Database in IBM Tivoli Directory Integrator 6.1.1: Users Guide

182 Reference Guide

RAC Connector

Introduction

"RAC" stands for Remote Agent Controller, however the current name for this technology is Agent

Controller.

The Agent Controller is a server that enables client applications to interact with agents under its domain:

http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.tptp.platform.agentcontroller.doc.user/
tasks/rac/tworkwac.html

A Generic Log Adapter (GLA) transforms proprietary log and trace data to the Common Base Event

format (http://www.ibm.com/developerworks/library/specification/ws-cbe/). The rationale for a

Generic Log Adapter is that reading log files is messy and making parsers for all types of logs is not

scalable and one tends to customize anyway. A GLA can act as an agent of an Agent Controller so that

clients can monitor remote application logs.

More information about Agent Controller and Generic Log Adapter can be found on

www.eclipse.org/tptp/.

The RAC Connector can read data from and write data to RAC:

v In AddOnly mode the RAC Connector publishes Common Base Events through a Logging Agent. In

this mode, the RAC Connector uses an instance of the “CBE Generator Function Component” on page

347 to help convert the input schema attributes into a single Common Base Event object.

It registers as an agent within the local Agent Controller and sends it the Common Base Event objects,

which it receives from the AssemblyLine.

The RAC Connector does not require the local Agent Controller to be running at the time it is

initializing. As soon as the local Agent Controller is launched, the Logging Agent is registered and gets

ready to be monitored by clients.

The important point is that the Connector will not report an error if the local Agent Controller is not

active.

The Connector will not complain even if there is no Agent Controller installation on the local machine.

Of course, no Logging Agent will be registered then.

v In Iterator mode the RAC Connector acts as a client of a remote Logging Agent.

As such, it contacts the Agent Controller on the remote machine, obtains a handle to a certain Logging

Agent and starts receiving log data in the form of Common Base Event objects.

If the remote Agent Controller goes down the Connector hangs waiting for a response from the Agent

Controller (this is due to the current client library realization). – thus any reconnect logic cannot be

used.

The Connector uses an internal queue to store the incoming Common Base Events (CBEs). As a result

the Connector can keep fetching CBEs even after the Agent Controller has gone down because the

queue could still have events in it. Due to restrictions caused by the Agent Controller client library, the

Connector can not process Common Base Event objects, which when serialized as XML are larger than

8Kb. If a data portion larger than 8Kb arrives, the Connector will not process any more events and will

wait until the remote Logging Agent dies. This is a limitation of the client library implementation.

On termination, the Connector detaches from the remote agent. If this procedure is skipped for some

reason (for example the JVM is killed), no other client will be able to monitor the agent. Moreover, the

agent will still think that it is being monitored.

For example, if one runs the Connector from the Config Editor and manually stops the AssemblyLine,

the Connector will not have a chance to detach from the Logging Agent. So if the Connector is run

again, it will not receive any data from the agent, because the Agent Controller (and the agent) thinks

that the agent is already being monitored.

Chapter 2. Connectors 183

http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.tptp.platform.agentcontroller.doc.user/tasks/rac/tworkwac.html
http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.tptp.platform.agentcontroller.doc.user/tasks/rac/tworkwac.html
http://www.ibm.com/developerworks/library/specification/ws-cbe/
www.eclipse.org/tptp/

Only one client can monitor a Logging Agent at a given time, so no two RAC Connectors in Iterator

mode should be pointed at the same agent at the same time.

Configuration

The Connector's title, shown in the Configuration panel is "RAC Connector". Parameters are:

Remote Logging Agent Name

Used in Iterator Mode.

 The name of the remote Logging Agent to be monitored.

Agent Controller Host

Used in Iterator Mode.

 Host of the remote Agent Controller. Default value is "localhost".

Agent Controller Port

Used in Iterator Mode.

 Port of the remote Agent Controller. Default value is 10006.

Receiving Queue Size

Used in Iterator Mode.

 The size of the queue, where the received events are buffered before the Connector manages to

read them. Default value is 1024.

Wait For Dead Agent's Data

Used in Iterator Mode.

 Timeout (in seconds) for each data reception after the remote agent dies. If this timeout expires,

the agent’s data is considered depleted and the Connector terminates. Default value is 5000.

Logging Agent Name

Used in AddOnly Mode.

 The name of the Logging Agent within the local Agent Controller. Default value is

"tdi_logging_agent".

Wait to be monitored

Used in AddOnly Mode.

 Time to wait (in seconds) for the agent to be monitored before data is sent to RAC. If zero, waits

forever. Default value is 0.

Detailed log

When checked, additional log messages will be generated.

Using the Connector

AddOnly Mode

Post-install Configuration for AddOnly Mode: The AddOnly mode of the RAC Connector requires that

the binaries of the Agent Controller (.dll, .so) are available to the dynamic library loader of the operating

system. The preferred way to achieve this is to include the binaries folder of the Agent Controller in the

PATH environment variable on Windows platforms, and in the LD_LIBRARY_PATH environment

variable on Linux platforms. This can be done either globally or just for the process of the TDI Server. For

example:

v On Windows: modify the PATH environment variable from “My Computer” -> “Properties” ->

“Advanced” -> “Environment variables”; add the required path to the Agent Controller libraries.

v On Linux: add lines like the following in the startup scripts (ibmdisrv and ibmditk) after the PATH

definition and before the startup line:

184 Reference Guide

LD_LIBRARY_PATH=/AgentController/lib

export LD_LIBRARY_PATH

If you have LD_LIBRARY_PATH elements of your own, add these to the LD_LIBRARY_PATH

definition.

When operating in AddOnly mode, the first RAC Connector on the TDI Server registers a Logging Agent

with the local Agent Controller.

All Common Base Event objects received from the AssemblyLine, are serialized as XML and written to

the Logging Agent. The Logging Agent stays operational as long as the master process of the TDI server

is alive. During its lifetime it can be monitored by clients even if the Connector which registered it has

already closed. When the TDI server stops (or crashes), however, the Agent Controller (RAC) terminates

the TDI Logging Agent’s registration.

The Connector will wait a specified amount of time for a monitoring client to arrive before starting to

write data to the Logging Agent. In particular, it can wait forever. This is specified by the Wait to be

monitored Connector parameter. When a client starts monitoring the agent, the agent starts transferring

data to the Agent Controller. The Agent Controller then sends the data to the client.

Waiting happens before each Connector write attempt.

If the waiting time expires and there is still no monitoring client, the Connector throws an Exception.

However, if a client starts monitoring the agent while the Connector is waiting, the waiting is interrupted

and the agent starts transferring data to the Agent Controller.

Depending on the Wait to be monitored Connector parameter value the Connector could potentially wait

indefinitely for a client to start monitoring the agent. This would cause the entire AssemblyLine to block

indefinitely. Precisely for this reason the following Connector method is available to you:

public boolean isLogging();

This method returns true if there is a client monitoring/listening for data from this Connector and false

otherwise. This method is accessible through JavaScript and can be invoked on the Connector object (that

is, thisConnector.islogging().)

You can use this method in order to detect whether the Connector will block when the AssemblyLine

execution reaches the Connector. If blocking is not desirable, but loosing data is unacceptable, then you

could implement a solution which temporarily stores the data into a queue (possibly the TDI Memory

Queue) when the isLogging() method returns false.

Iterator Mode

In Iterator mode the RAC Connector acts as a client of a remote Agent Controller. It connects to the

Agent Controller to obtain a handle to the Logging Agent, whose name is specified in the Connector’s

configuration. After that the Connector starts monitoring the Logging Agent. During the monitoring, the

Connector receives data produced by the Logging Agent.

Data reception is handled asynchronously by the Agent Controller client library and queued there. The

Connector is notified when data reception occurs, and when the Connector reads from the queue a buffer

is received with the incoming binary data. The queue is blocking, so the Connector will wait if no data is

available and the data processor will wait if there is no free space in the queue.

The received binary data contains a CommonBaseEvent object serialized as XML in UTF-8 encoding. In

addition, the CommonBaseEvent is decoded from the buffer and made available to the Connector in the

Input Map.

Chapter 2. Connectors 185

If there is no active agent with the specified name when the Connector contacts the Agent Controller, the

Connector waits until such an agent is registered.

If at some point the agent gets deregistered (while the Connector is listening for events), the Connector

will wait for another agent with the same name to appear. Essentially the Connector never stops unless

its connection to the Agent Controller fails.

The Connector exposes a method, which provides access to the Common Base Event object obtained by

the Connector on the current AssemblyLine iteration (the last event, processed by the ’getNextEntry’

method of the Connector):

public CommonBaseEvent getCurrentCbeObject();

Schema

The connector internally uses the “CBE Generator Function Component” on page 347, and uses that

particular FC's schema.

See Also

“GLA Connector” on page 80

186 Reference Guide

RDBMS Changelog Connector

The RDBMS Changelog Connector enables IBM Tivoli Directory Integrator to detect when changes have

occurred in specific RDBMS tables. Currently, setup scenarios are provided for tables in either Oracle or

DB2 databases.

RDBMS’s have no common mechanism to inform the outside world of the changes that have been taking

place on any selected database table. To address this shortcoming, IBM Tivoli Directory Integrator

assumes that some RDBMS mechanism (such as a trigger, stored procedures or other) is able to maintain

a separate change table containing one record per modified record in the target table. Sequence numbers

are also maintained by the same mechanism.

Similar to an LDAP Changelog Connector, the RDBMS Changelog Connector communicates with the

change table that is structured in a specific format that enables the connector to propagate changes to

other systems. The format is the same that IBM DB2 Information Integrator (version 8) uses, providing

IBM Tivoli Directory Integrator users with the option to use DB2II to create such tables, or create the

tables in some other manner. The RDBMS Changelog Connector keeps track of a sequence number so

that it only reports changes since the last iteration through the change table.

The RDBMS Changelog Connector uses JDBC to connect to a specific RDBMS table. See the “JDBC

Connector” on page 103 for more information about JDBC driver issues.

The RDBMS Changelog Connector only operates in Iterator mode.

This connector supports Delta Tagging at the Entry level only.

The RDBMS Changelog Connector reads specific fields to determine new changes in the change table (see

″ “Change table format” on page 189"). The RDBMS Changelog Connector reads the next change table

record, or discovers the first change table record. If the RDBMS Changelog Connector finds no data in the

change table, the RDBMS Changelog Connector checks whether it has exceeded the maximum wait time.

If the RDBMS Changelog Connector has exceeded the maximum wait time, the RDBMS Changelog

Connector returns null to signal end of the iteration. If the RDBMS Changelog Connector finds no data in

the change table, and has not exceeded the maximum wait time, the RDBMS Changelog Connector waits

for a specific number of seconds (Poll Interval), then reads the next change table record.

If the Connector returns data in the change table, the RDBMS Changelog Connector increments and

updates the nextchangelog number in the User Property Store (an area in the System Store tailored for

this type of persistent information).

For each Entry returned, control information (counters, operation, time/date) is moved into Entry

properties. All non-control information fields in the change table are copied as is to the Entry as

attributes. The Entry objects operation (as returned by getOperation) is set to the corresponding

changelog operation (Add, Delete or Modify).

During Checkpoint of the RDBMS Changelog Connector in Iterator mode, the change number will be

saved as Connector Restart Info.

This Connector in principle can handle secure connections using the SSL protocol; but it may require

driver specific configuration steps in order to set up the SSL support. Refer to manufacturer’s driver

documentation for details.

Configuration

The Connector needs the following parameters:

Chapter 2. Connectors 187

JDBC URL

See documentation for your JDBC provider. It is called JDBC URL in the IBM Tivoli Directory

Integrator Config Editor.

Username

This is the user ID with which the Connector signs on to the RDBMS. Only the tables available to

this user are shown.

Password

The password for the user.

Schema

The schema (that is, the owner) of the table of the database that you want to use. If left blank, the

value of the Username parameter is used.

JDBC Driver

The JDBC driver class name. The default value for this parameter is com.ibm.db2.jcc.DB2Driver.

Table Name

The table or view to operate on.

Remove Processed Rows

Select to remove all previously processed table rows before the next poll attempt.

Iterator State Key

Specifies the name of the parameter that stores the current synchronization state in the User

Property Store of the IBM Tivoli Directory Integrator. This must be a unique name for all

parameters stored in one instance of the IBM Tivoli Directory Integrator User Property Store.

State Key Persistence

Governs the method used for saving the Connector’s state to the System Store. The default is End

of Cycle, and choices are:

After Read

Updates the System Store when you read an entry from the RDBMS Server change log,

before you continue with the rest of the AssemblyLine.

End of Cycle

Updates the System Store when all Connectors and other components in the

AssemblyLine have been evaluated and executed.

Manual

Switches off the automatic updating of the System Store with this Connector’s state

information; instead, you will need to save the state by manually calling the RDBMS

Changelog Connector’s saveStateKey() method, somewhere in your AssemblyLine.

Sleep Interval

Specifies the time (in seconds) that IBM Tivoli Directory Integrator waits between polls of the

change table.

Timeout

Specifies the time (in seconds) to wait for new changes. A value of 0 (zero) causes the Connector

to wait indefinitely.

Commit

Controls when database transactions are committed. Options are:

v After every database operation

v On Connector close

v Manual

Manual means user must call commit().

188 Reference Guide

Detailed Log

If this parameter is checked, more detailed log messages are generated.

Change table format

This example change table captures the changes from a table containing the fields NAME and EMAIL.

Elements in bold are common for all Changelog table. The syntax for this example is for Oracle.

IBMSNAP_COMMITSEQ is used as our changelog-nr.

IBMSNAP_OPERATION takes on of the values I (Insert), U (Updated) or D (Deleted).

CREATE TABLE "SYSTEM"."CCDCHANGELOG"

(

IBMSNAP_COMMITSEQ RAW(10) NOT NULL,

IBMSNAP_INTENTSEQ RAW(10) NOT NULL,

IBMSNAP_OPERATION CHAR(1) NOT NULL,

IBMSNAP_LOGMARKER DATE NOT NULL,

NAME VARCHAR2 (80) NOT NULL,

EMAIL VARCHAR2 (80)

)#

The RDBMS changelog connector does not work if the ibmsnap_commitseq column name used internally

in the connector does not match exactly with the actual column in the database. This is true only when

case-sensitivity is turned on for data objects in the Database the RDBMS changelog connector is iterating

on.

To handle this the column name is externalized as a connector configuration parameter. This provides the

DBA an easy way to set ibmsnap_commitseq with the same case as used in his Database table. However,

this parameter is not visible in connector config tab. To configure this parameter, you will have to set this

manually in the before initialize hooks of the RDBMS changelog connector. This will enable multiple

RDBMS changelog connectors to have their own copy of the column name value set for the change table

the connector iterates on. For example,

myConn.connector.setParam("rdbms.chlog.col","IBMSNAP_COMMITSEQ");

sets the name of the ibmsnap_commitseq column to literally, IBMSNAP_COMMITSEQ. The default is

lowercase otherwise.

Creating change tables in DB2

The following example creates triggers in a DB2 database to maintain the change table as described

previous:

connect to your_username

drop table email

drop table ccdemail

create table email (\

 name varchar(80), \

 email varchar(80) \

)

create table ccdemail (\

 ibmsnap_commitseq integer, \

 ibmsnap_intentseq integer, \

 ibmsnap_logmarker date, \

 ibmsnap_operation char, \

 name varchar(80), \

 email varchar(80) \

)

drop sequence ccdemail_seq

create sequence ccdemail_seq

create trigger t_email_ins after insert on email referencing new as n \

Chapter 2. Connectors 189

for each row mode db2sql \

 INSERT INTO your_username.ccdemail VALUES (nextval for ccdemail_seq, 0,

 CURRENT_DATE, ’I’, n.name, n.email)

create trigger t_email_del after delete on email referencing old as n \

 for each row mode db2sql \

 INSERT INTO your_username.ccdemail VALUES (nextval for ccdemail_seq, 0,

 CURRENT_DATE, ’D’, n.name, n.email)

create trigger t_email_upd after update on email referencing new as n \

 for each row mode db2sql \

 INSERT INTO your_username.ccdemail VALUES (nextval for ccdemail_seq, 0,

 CURRENT_DATE, ’U’, n.name, n.email)

Creating change tables in Oracle

Given that your username is "ORAID", then

-- create source email table in Oracle.

---This will be the table that the RDBMS changelog connector will detect changes on.

CREATE TABLE ORAID.EMAIL

(

 NAME VARCHAR2(80),

 EMAIL VARCHAR2(80)

);

-- Sequence generators used for Intentseq and commitseq

CREATE SEQUENCE ORAID.SGENERATOR001

MINVALUE 100 INCREMENT BY 1 ORDER;

CREATE SEQUENCE ORAID.SGENERATOR002

MINVALUE 100 INCREMENT BY 1 ORDER;

-- create change table and index for email table

CREATE TABLE ORAID.CCDEMAIL

(

 IBMSNAP_COMMITSEQ RAW(10) NULL,

 IBMSNAP_INTENTSEQ RAW(10) NOT NULL,

 IBMSNAP_OPERATION CHAR(1) NOT NULL,

 IBMSNAP_LOGMARKER DATE NOT NULL,

 NAME (80),

EMAIL (80)

);

CREATE UNIQUE INDEX ORAID.IXCCDEMAIL ON ORAID.CCDEMAIL

(

IBMSNAP_INTENTSEQ

);

-- create TRIGGER to capture INSERTs into email

CREATE TRIGGER ORAID.EMAIL_INS_TRIG

AFTER INSERT ON ORAID.EMAIL

FOR EACH ROW BEGIN INSERT INTO ORAID.CCDEMAIL

(NAME,

 EMAIL,

 IBMSNAP_COMMITSEQ,

 IBMSNAP_INTENTSEQ,

 IBMSNAP_OPERATION,

 IBMSNAP_LOGMARKER)

 VALUES (

 :NEW.NAME,

 :NEW.EMAIL,

 NULL,

 LPAD(TO_CHAR(ORAID.SGENERATOR002.NEXTVAL),20,’0’),

 ’I’,

 SYSDATE);END;

190 Reference Guide

-- create TRIGGER to capture DELETE ops on email

CREATE TRIGGER ORAID.EMAIL_DEL_TRIG

AFTER DELETE ON ORAID.EMAIL

FOR EACH ROW BEGIN INSERT INTO ORAID.CCDEMAIL

(NAME,

 EMAIL,

 IBMSNAP_COMMITSEQ,

 IBMSNAP_INTENTSEQ,

 IBMSNAP_OPERATION,

 IBMSNAP_LOGMARKER)

 VALUES

(:OLD.NAME,

 :OLD.EMAIL,

 NULL,

 LPAD(TO_CHAR(ORAID.SGENERATOR002.NEXTVAL),20,’0’),

 ’D’,

 SYSDATE);END;

Creating Change table and triggers in MS SQL

-- Source table msid.email.

-- This will be the table that the RDBMS changelog connector will detect changes on.

CREATE TABLE msid.email

(

 NAME VARCHAR (80),

 EMAIL VARCHAR (80)

)#

-- CCD table to capture changes. The RDBMS changelog connector uses the CCD table to capture

-- all the changes in the source table. This table needs to be created in the following format.

CREATE TABLE msid.ccdemail

(

 IBMSNAP_MSTMSTMP timestamp,

 IBMSNAP_COMMITSEQ BINARY(10) NOT NULL,

 IBMSNAP_INTENTSEQ BINARY(10) NOT NULL,

 IBMSNAP_OPERATION CHAR(1) NOT NULL,

 IBMSNAP_LOGMARKER DATETIME NOT NULL,

 NAME VARCHAR (80),

 EMAIL VARCHAR (80)

)#

You also need to create triggers to capture the insert, update and delete operations performed on the

email table.

CREATE TRIGGER msid.email_ins_trig ON msid.email

FOR INSERT AS

BEGIN

 INSERT INTO msid.ccdemail

(NAME,

 EMAIL,

 IBMSNAP_COMMITSEQ,

 IBMSNAP_INTENTSEQ,

 IBMSNAP_OPERATION,

 IBMSNAP_LOGMARKER)

 SELECT

 NAME,

 EMAIL,

 @@DBTS,

 @@DBTS,

 ’I’,

 GETDATE() FROM inserted

END;#

Note: : @@DBTS returns the value of the current timestamp data type for the current database. This

timestamp is guaranteed to be unique in the database.

Chapter 2. Connectors 191

-- creating DELETE trigger to capture delete operations on email table

CREATE TRIGGER msid.email_del_trig ON msid.email

FOR DELETE AS

BEGIN

 INSERT INTO msid.ccdemail

(

 NAME,

 EMAIL,

 IBMSNAP_COMMITSEQ,

 IBMSNAP_INTENTSEQ,

 IBMSNAP_OPERATION,

 IBMSNAP_LOGMARKER

)

 SELECT

 NAME,

 EMAIL,

 @@DBTS,

 @@DBTS,

 ’D’,

 GETDATE() FROM deleted

END;#

-- creating UPDATE trigger to capture update operations on email table

CREATE TRIGGER msid.email_upd_trig ON msid.email

FOR UPDATE AS

BEGIN

 DECLARE @COUNTER INT

 SELECT @COUNTER=COUNT(*) FROM deleted

 IF @COUNTER>1

 BEGIN

 DECLARE @NAME VARCHAR (80)

 DECLARE @EMAIL VARCHAR (80)

 DECLARE insertedrows CURSOR FOR SELECT * FROM inserted

 OPEN insertedrows

 WHILE 1=1 BEGIN

 FETCH insertedrows INTO

 @NAME,

 @EMAIL

 IF @@fetch_status<>0 BREAK

 ELSE INSERT INTO msid.ccdemail

 (

 NAME,

 EMAIL,

 IBMSNAP_COMMITSEQ,

 IBMSNAP_INTENTSEQ,

 IBMSNAP_OPERATION,

 IBMSNAP_LOGMARKER

)

 VALUES

 (

 @NAME,

 @EMAIL,

 @@DBTS,

 @@DBTS,

 ’U’,

 GETDATE()

)

 END

 DEALLOCATE insertedrows

 END ELSE INSERT INTO msid.ccdemail(

 NAME,

 EMAIL,

 IBMSNAP_COMMITSEQ,

 IBMSNAP_INTENTSEQ,

 IBMSNAP_OPERATION,

 IBMSNAP_LOGMARKER

)

192 Reference Guide

SELECT

 I.NAME,

 I.EMAIL,

 @@DBTS,

 @@DBTS,

 ’U’,

 GETDATE() FROM inserted I

 END;#

Creating change table and triggers in Informix

-- Create Source table infxid.email. This will be the table that the RDBMS changelog connector will detect changes on.

CREATE TABLE infxid.email

(

 NAME VARCHAR(80),

 EMAIL VARCHAR(80),

)#

-- create ccdemail table to capture DML operations on email table

CREATE TABLE "infxid"."ccdemail"

(

 IBMSNAP_COMMITSEQ CHAR(10) NOT NULL,

 IBMSNAP_INTENTSEQ CHAR(10) NOT NULL,

 IBMSNAP_OPERATION CHAR(1) NOT NULL,

 IBMSNAP_LOGMARKER DATETIME YEAR TO FRACTION(5) NOT NULL,

 NAME VARCHAR(80),

 EMAIL VARCHAR(80)

)#

-- create an additional table (ibmsnap_seqtable) for processing commitseq and intentseq.

CREATE TABLE "infxid"."ibmsnap_seqtable"

(SEQ INTEGER NOT NULL,

 HEXREP CHAR(128)

)#

-- insert values into ibmsnap_seqtable. This example below shows how to insert a hex value

INSERT INTO ASN.IBMSNAP_SEQTABLE VALUES (1000000000,

X’0102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F303132333435363738393A3B3C3D3E3F404142434445464748494A4B4C4D4E4F505152535455

-- procedure to capture INSERTs into email table

CREATE PROCEDURE infxid."email_ins_proc"

(

 NNAME VARCHAR(80),

 NEMAIL VARCHAR(80))

 DEFINE VARHEX CHAR(128);

 DEFINE I1 INTEGER;

 DEFINE I2 INTEGER;

 DEFINE X1 INTEGER;

 DEFINE X2 INTEGER;

 DEFINE X3 INTEGER;

 DEFINE X4 INTEGER;

 DEFINE Y1 INTEGER;

 DEFINE Y2 INTEGER;

 DEFINE Y3 INTEGER;

 DEFINE Y4 INTEGER;

 DEFINE NEWSYNCH CHAR(10);

 SELECT HEXREP

 INTO VARHEX

 FROM "infxid"."ibmsnap_seqtable";

 LET X1 = I1 / 268435456;

 LET X2 = I1 / 2097152;

 LET X3 = I1 / 16384;

 LET X4 = I1 / 128;

 LET Y1 = I2 / 268435456;

 LET Y2 = I2 / 2097152;

 LET Y3 = I2 / 16384;

 LET Y4 = I2 / 128;

Chapter 2. Connectors 193

LET NEWSYNCH =

 SUBSTR(VARHEX , MOD(X1, 128) + 1 , 1) ||

 SUBSTR(VARHEX , MOD(X2, 128) + 1 , 1) ||

 SUBSTR(VARHEX , MOD(X3, 128) + 1 , 1) ||

 SUBSTR(VARHEX , MOD(X4, 128) + 1 , 1) ||

 SUBSTR(VARHEX , MOD(I1, 128) + 1 , 1) ||

 SUBSTR(VARHEX , MOD(Y1, 128) + 1 , 1) ||

 SUBSTR(VARHEX , MOD(Y2, 128) + 1 , 1) ||

 SUBSTR(VARHEX , MOD(Y3, 128) + 1 , 1) ||

 SUBSTR(VARHEX , MOD(Y4, 128) + 1 , 1) ||

 SUBSTR(VARHEX , MOD(I2, 128) + 1 , 1);

 INSERT INTO "infxid"."ccdemail"

(NAME,

 EMAIL,

 IBMSNAP_COMMITSEQ,

 IBMSNAP_INTENTSEQ,

 IBMSNAP_OPERATION,

 IBMSNAP_LOGMARKER)

 VALUES

(NNAME,

 NEMAIL,

 NEWSYNCH,

 NEWSYNCH,

 ’I’,

 CURRENT YEAR TO FRACTION(5));END PROCEDURE;#

-- now create the trigger for INSERTs into ccdemail

CREATE TRIGGER "infxid"."email_ins_trig"

 INSERT ON "infxid"."email"

 REFERENCING NEW AS NEW FOR EACH ROW(EXECUTE PROCEDURE

 "infxid"."email_ins_proc"

(NEW.NAME,

 NEW.VARCHAR

)); #

-- create procedure to capture DELETEs on email table

CREATE PROCEDURE "infxid"."email_del_proc"

(

 ONAME VARCHAR(80),

 OEMAIL VARCHAR(80)

)

 DEFINE VARHEX CHAR(128);

 DEFINE I1 INTEGER;

 DEFINE I2 INTEGER;

 DEFINE X1 INTEGER;

 DEFINE X2 INTEGER;

 DEFINE X3 INTEGER;

 DEFINE X4 INTEGER;

 DEFINE Y1 INTEGER;

 DEFINE Y2 INTEGER;

 DEFINE Y3 INTEGER;

 DEFINE Y4 INTEGER;

 DEFINE NEWSYNCH CHAR(10);

 SELECT HEXREP

 INTO VARHEX

 FROM "infxid"."ibmsnap_seqtable";

 LET X1 = I1 / 268435456;

 LET X2 = I1 / 2097152;

 LET X3 = I1 / 16384;

 LET X4 = I1 / 128;

 LET Y1 = I2 / 268435456;

 LET Y2 = I2 / 2097152;

 LET Y3 = I2 / 16384;

 LET Y4 = I2 / 128;

 LET NEWSYNCH =

194 Reference Guide

SUBSTR(VARHEX , MOD(X1, 128) + 1 , 1) ||

 SUBSTR(VARHEX , MOD(X2, 128) + 1 , 1) ||

 SUBSTR(VARHEX , MOD(X3, 128) + 1 , 1) ||

 SUBSTR(VARHEX , MOD(X4, 128) + 1 , 1) ||

 SUBSTR(VARHEX , MOD(I1, 128) + 1 , 1) ||

 SUBSTR(VARHEX , MOD(Y1, 128) + 1 , 1) ||

 SUBSTR(VARHEX , MOD(Y2, 128) + 1 , 1) ||

 SUBSTR(VARHEX , MOD(Y3, 128) + 1 , 1) ||

 SUBSTR(VARHEX , MOD(Y4, 128) + 1 , 1) ||

 SUBSTR(VARHEX , MOD(I2, 128) + 1 , 1);

 INSERT INTO "infxid"."ccdemail"

(NAME,

 EMAIL,

 IBMSNAP_COMMITSEQ,

 IBMSNAP_INTENTSEQ,

 IBMSNAP_OPERATION,

 IBMSNAP_LOGMARKER)

 VALUES

(ONAME,

 OEMAIL,

 NEWSYNCH,

 NEWSYNCH,

 ’D’,

 CURRENT YEAR TO FRACTION(5));END PROCEDURE;#

-- create DELETE trigger

CREATE TRIGGER "infxid"."email_del_trig"

 DELETE ON "infxid"."email"

 REFERENCING OLD AS OLD FOR EACH ROW(EXECUTE PROCEDURE

 "infxid"."email_del_proc"

(OLD.NAME,

 OLD.EMAIL,

)); #

-- create PROCEDURE to capture updates

CREATE PROCEDURE "infxid"."email_upd_proc"

(

 NNAME VARCHAR(80),

 NEMAIL VARCHAR(80),

)

 DEFINE VARHEX CHAR(128);

 DEFINE I1 INTEGER;

 DEFINE I2 INTEGER;

 DEFINE X1 INTEGER;

 DEFINE X2 INTEGER;

 DEFINE X3 INTEGER;

 DEFINE X4 INTEGER;

 DEFINE Y1 INTEGER;

 DEFINE Y2 INTEGER;

 DEFINE Y3 INTEGER;

 DEFINE Y4 INTEGER;

 DEFINE NEWSYNCH CHAR(10);

 SELECT HEXREP

 INTO VARHEX

 FROM "infxid"."ibmsnap_seqtable";

 LET X1 = I1 / 268435456;

 LET X2 = I1 / 2097152;

 LET X3 = I1 / 16384;

 LET X4 = I1 / 128;

 LET Y1 = I2 / 268435456;

 LET Y2 = I2 / 2097152;

 LET Y3 = I2 / 16384;

 LET Y4 = I2 / 128;

 LET NEWSYNCH =

 SUBSTR(VARHEX , MOD(X1, 128) + 1 , 1) ||

Chapter 2. Connectors 195

SUBSTR(VARHEX , MOD(X2, 128) + 1 , 1) ||

 SUBSTR(VARHEX , MOD(X3, 128) + 1 , 1) ||

 SUBSTR(VARHEX , MOD(X4, 128) + 1 , 1) ||

 SUBSTR(VARHEX , MOD(I1, 128) + 1 , 1) ||

 SUBSTR(VARHEX , MOD(Y1, 128) + 1 , 1) ||

 SUBSTR(VARHEX , MOD(Y2, 128) + 1 , 1) ||

 SUBSTR(VARHEX , MOD(Y3, 128) + 1 , 1) ||

 SUBSTR(VARHEX , MOD(Y4, 128) + 1 , 1) ||

 SUBSTR(VARHEX , MOD(I2, 128) + 1 , 1);

 INSERT INTO "infxid"."ccdemail"

(NAME,

 EMAIL,

 IBMSNAP_COMMITSEQ,

 IBMSNAP_INTENTSEQ,

 IBMSNAP_OPERATION,

 IBMSNAP_LOGMARKER)

 VALUES

(NNAME,

 NEMAIL,

 ’U’,

 CURRENT YEAR TO FRACTION(5));END PROCEDURE;#

-- create TRIGGER to capture UPDATES

CREATE TRIGGER "infxid"."email_upd_trig"

 UPDATE ON "infxid"."email"

 REFERENCING NEW AS NEW OLD AS OLD FOR EACH ROW(EXECUTE PROCEDURE

 "infxid"."email_upd_proc"

(NEW.NAME,

 NEW.EMAIL,

)); #

Creating change table and trigger for SYBASE

-- Create Source table sybid.email.

-- This will be the table that the RDBMS changelog connector will detect changes on.

CREATE TABLE sybid.email

(

 NAME VARCHAR (80),

 EMAIL VARCHAR (80)

)#

-- Create CCD table to captures changes on email table

CREATE TABLE sybid.CCDEMAIL

(

 IBMSNAP_SYBTMSTMP timestamp,

 IBMSNAP_COMMITSEQ BINARY(10) NOT NULL,

 IBMSNAP_INTENTSEQ BINARY(10) NOT NULL,

 IBMSNAP_OPERATION CHAR(1) NOT NULL,

 IBMSNAP_LOGMARKER DATETIME NOT NULL,

 NAME VARCHAR(80),

 EMAIL VARCHAR(80)

)#

-- Create TRIGGER to capture INSERTs on email table

CREATE TRIGGER sybid.EMAIL_INS_TRIG ON sybid.EMAIL

FOR INSERT AS

BEGIN

 INSERT INTO sybid.CCDEMAIL

(NAME,

 EMAIL,

IBMSNAP_COMMITSEQ,

 IBMSNAP_INTENTSEQ,

 IBMSNAP_OPERATION,

 IBMSNAP_LOGMARKER)

 SELECT

 NAME,

 EMAIL,

196 Reference Guide

@@DBTS,

 @@DBTS,

 ’I’,

 GETDATE() FROM inserted

END;#

NOTE: @@DBTS is a special database variable that yields the next database timestamp value

-- create TRIGGER to captures DELETE ops on EMAIL table

CREATE TRIGGER sybid.EMAIL_DEL_TRIG ON sybid.EMAIL

FOR DELETE AS

BEGIN

 INSERT INTO sybid.CCDEMAIL

(

 NAME,

 EMAIL,

 IBMSNAP_COMMITSEQ,

 IBMSNAP_INTENTSEQ,

 IBMSNAP_OPERATION,

 IBMSNAP_LOGMARKER

)

 SELECT

 NAME,

 EMAIL,

 @@DBTS,

 @@DBTS,

 ’D’,

 GETDATE() FROM deleted

END;#

-- create TRIGGER to capture UPDATEs on email

CREATE TRIGGER sybid.EMAIL_UPD_TRIG ON sybid.EMAIL

FOR UPDATE AS

BEGIN

 DECLARE @COUNTER INT

 SELECT @COUNTER=COUNT(*) FROM deleted

 IF @COUNTER>1

 BEGIN

 DECLARE @NAME VARCHAR (80)

 DECLARE @EMAIL VARCHAR (80)

 DECLARE insertedrows CURSOR FOR SELECT * FROM inserted

 OPEN insertedrows

 WHILE 1=1 BEGIN

 FETCH insertedrows INTO

 @NAME,

 @EMAIL,

 IF @@fetch_status<>0 BREAK

 ELSE INSERT INTO sybid.CCDEMAIL

 (

 NAME,

 EMAIL,

 IBMSNAP_COMMITSEQ,

 IBMSNAP_INTENTSEQ,

 IBMSNAP_OPERATION,

 IBMSNAP_LOGMARKER

)

 VALUES

 (

 @NAME,

 @EMAIL,

 @@DBTS,

 @@DBTS,

 ’U’,

 GETDATE()

)

 END

 DEALLOCATE insertedrows

Chapter 2. Connectors 197

END ELSE INSERT INTO sybid.CCDEMAIL(

 NAME,

 EMAIL,

 IBMSNAP_COMMITSEQ,

 IBMSNAP_INTENTSEQ,

 IBMSNAP_OPERATION,

 IBMSNAP_LOGMARKER

)

 SELECT

 I.NAME,

 I.EMAIL,

 @@DBTS,

 @@DBTS,

 ’U’,

 GETDATE() FROM inserted I

 END;#

198 Reference Guide

runtime-provided Connector

A runtime provided Connector is a Connector Interface that is provided at runtime. When an

AssemblyLine is started by an EventHandler or from a script, you can supply only one Connector to the

AssemblyLine as a parameter. The Connector is used for those AssemblyLine Connectors configured as

type runtime provided. You can use the supplied Connector several times in the AssemblyLine.

The following is an example of how to use a runtime provided Connector from an EventHandler:

var myConnector = system.getConnector ("ibmdi.FileSystem");

myConnector.setParam ("filePath", "mypath.txt");

myConnector.initialize (null);

// Start the AssemblyLine

var al = main.startAL ("AssemblyLine1", myConnector);

The following is an example that includes an initial working entry:

var myConnector = system.getConnector ("ibmdi.FileSystem");

myConnector.setParam ("filePath", "mypath.txt");

myConnector.initialize (null);

var entry = system.newEntry();

entry.setAttribute ("cn", "My Name");

entry.setAttribute ("mail", "(my.name@dot.com)");

var al = main.startAL ("AssemblyLine2", myConnector, entry);

Configuration

The Connector might need parameters, but the names and values of these parameters depend on the

actual Connector.

See also

″IBM Tivoli Directory Integrator concepts – The AssemblyLine″ in IBM Tivoli Directory Integrator 6.1.1:

Users Guide.

Chapter 2. Connectors 199

200 Reference Guide

Script Connector

The Script Connector enables you to write your own Connector in JavaScript.

A Script Connector must implement a few functions to operate. If you plan to use it for iteration

purposes only (for example, reading, not searching or updating), you can operate with two functions

only. If you plan to use it as a fully qualified Connector, you must implement all functions. The functions

do not use parameters. Passing data between the hosting Connector and the script is enabled by using

predefined objects. One of these predefined objects is the result object, which is used to communicate

status information. Upon entry in either function, the status field is set to normal, which causes the

hosting Connector to continue calls. Signaling end-of-input or error is done by setting the status and

message fields in this object. Two other script objects are defined upon function entry, the entry object

and the search object.

Note: When you modify a Script Connector or Parser, the script gets copied from the Library where it is

stored, into your configuration file. This enables you to customize the script, but with the caveat

that new versions are not known to your AssemblyLine.

One workaround is to remove the old Script Connector from the AssemblyLine and reintroduce it.

Remember to copy over code from your hooks.

Predefined script objects

The result object

setStatus (code)

v 0 - End of Input

v 1 - Status OK

v 2 - Error

setMessage (text)

Error message.

The config object

This object gives you access to the configuration of this AL component, and its Input and Output schema

— note that the getSchema() method of this object has a single Boolean parameter: true means to return

the Input Schema while false gets you the Output Schema.

The entry object

The entry object corresponds to the conn Entry for a Connector (or Function, when scripting an FC.)

See “The Entry object” on page 436 for more details.

The search object

The search object gives you access to the searchCriteria object (built based on Link Criteria settings.) See

“The Search (criteria) object” on page 438 for more details.

Functions

The following functions can be implemented by the Script Connector. Even though some functions might

never be called, it is recommended that you insert the functions with an error-signaling code that notifies

the caller that the function is unsupported.

selectEntries

This function is called to prepare the Connector for sequential read. When this function is called

it is typically because the Connector is used as an Iterator in an AssemblyLine.

Chapter 2. Connectors 201

getNextEntry

This function must populate the Entry object with attributes and values from the next entry in the

input set. When the Connector has no more entries to return, it must use the result object to

signal end-of-input back to the caller.

findEntry

The findEntry function is called to find an entry in the connected system that matches the criteria

specified in the search object. If the Connector finds a single matching entry, then the Connector

populates the entry object. If no entries are found, the Connector must set the error code in the

result object to signal a failure to find the entry. If more than one entry is found, then the

Connector might populate the array of duplicate entries. Otherwise, the same procedure is

followed as when there are no entries found.

modEntry

This function is called to modify an existing entry in the connected system. The new entry data is

given by the entry object, and the search object specifies which entry to modify. Some Connectors

might silently ignore the search object, and use the entry object to determine which entry to

modify.

putEntry

This function adds the entry object to the connected system.

deleteEntry

This function is called to delete an existing entry in the connected system. The search object

specifies which entry to delete. Some Connectors might silently ignore the search object, and use

the entry object to determine which entry to delete.

queryReply

This function is called when the Connector is used in Call/Reply mode.

querySchema

This function is used to discover schema for a connection. If implemented, a vector of Entry

objects is returned for each column/attribute it discovered. The querySchema function is only

called when you ″Open/Query″ in the attribute map (not when you click the quick discovery

button).

 In order to support Schema discovery your Script Connector or -FC could contain code like this:

function querySchema() {

 config.getSchema(true).newItem("name-in");

 config.getSchema(true).newItem("address-in");

 config.getSchema(false).newItem("name-out");

 config.getSchema(false).newItem("address-out");

 }

This would create two items in the input and output schemas respectively. Check the

SchemaConfig and SchemaItemConfig API (in the Javadocs) for more details.

 According to the various modes, these are the minimum required functions you need to implement:

 Table 8. Required functions

Mode Function you must implement

Iterator selectEntries()

getNextEntry()

AddOnly putEntry()

Lookup findEntry()

Delete findEntry()

deleteEntry()

202 Reference Guide

Table 8. Required functions (continued)

Mode Function you must implement

Update findEntry()

putEntry()

modEntry()

CallReply queryReply()

Configuration

The Connector needs the following parameters:

External Files

If you want to include external script files at runtime, specify them here. Specify one file on each

line. These files are started before your script.

Include Global scripts

Include global scripts from the Script Library.

Detailed Log

If this parameter is checked, more detailed log messages are generated.

Script This tab is where you can create your own script code.

Examples

Navigate to the root_directory/examples/script_connector directory of your IBM Tivoli Directory

Integrator installation.

See also

“Script Parser” on page 305,

“Scripted FC” on page 345

″JavaScript Connector″ in IBM Tivoli Directory Integrator 6.1.1: Users Guide.

Chapter 2. Connectors 203

204 Reference Guide

SNMP Connector

This Connector listens for SNMP traps sent on the network and returns an entry with the name and

values for all elements in an SNMP PDU.

Notes:

1. In Client mode, a request is retried 5 times with increasing intervals over a period of 13 seconds.

Timeout occurs if no answer is received.

2. If you want to send SNMP Traps, the system.snmpTrap() method is available.

3. The SNMP Connector does not support the Advanced Link Criteria (see ″Advanced link criteria″ in

IBM Tivoli Directory Integrator 6.1.1: Users Guide).

Configuration

The Connector needs the following parameters:

Community String

Use public to test the Connector.

Mode Trap Listener or Client. The Client mode can use Connectors in AddOnly mode (SNMP Set),

Lookup mode (SNMP Get) or Iterator mode (Walk).

 Trap listener can only Iterate, listening to traps on the local host.

SNMP Trap Port

Port in Trap mode. Unused in Client mode.

Trap wait timeout

Timeout in Trap mode. The number of milliseconds to wait for the next Protocol Data Unit

(PDU). If value is zero or less, the Connector waits forever.

SNMP Host (for get)

Only used for Get in Client mode. Not used in Trap mode.

SNMP Port

Client port (for client mode). Not used in Trap mode.

SNMP Walk OID (iterate)

Used only in Client mode, Iterator Connector. Indicates the OID tree to walk.

SNMP Version

The default version for get/walk is the Client mode. Unused in trap mode.

Detailed Log

If this parameter is checked, more detailed log messages are generated.

Note: Link Criteria are treated differently for this Connector. In Lookup mode, the connector performs a

get request returning the oid/value for the requested oid. The link criteria specifies oid, as well as

server, port and version. An example link criterion might be ″oid″ = ″1.1.1.1.1.1.1″.

Examples

Go to the root_directory/examples/snmpTrap directory of your IBM Tivoli Directory Integrator

installation.

Chapter 2. Connectors 205

206 Reference Guide

SNMP Server Connector

The SNMP Server Connector supports SNMP v1. SNMP v2 is supported without the SNMP v2

authentication and encryption features.

The Connector does not support SNMP TRAP messages.

The SNMP Server Connector operates in server mode only. The transport protocol it uses is UDP and not

TCP. UDP is an unreliable transport protocol, and SSL cannot run on top of an unreliable transport

protocol. That is why the Connector cannot use SSL to protect the transport layer. The SNMP

EventHandler can be run in single or multithreaded mode, depending on the value of the network.mode

parameter. The Connector, on the other hand, works only in multi-threaded mode as the Connector in

Server Mode framework requires.

The SNMP Server Connector (contrary to other Connectors in Server Mode) uses DatagramSockets. That

is why there is no notion of connection. The SNMP Server Connector uses a single DatagramSocket

which receives SNMP packets from many different SNMP managers on the network.

In the getNextClient() method, the socket blocks on the receive() method until an SNMP packet is

received. Then, the Connector creates a new instance of itself, passes the received packet to the child

Connector and returns the child Connector.

The getNextEntry() method extracts the SNMP request packet attributes and sets them in the conn Entry,

ready for Input Attribute Mapping.

The replyEntry() method extracts the Attributes from the conn Entry and creates an SNMP response

packet and returns it to the client; the conn Entry should be populated using Output Attribute Mapping.

The replyEntry() method uses the parent Connector’s DatagramSocket to send back the response. Since

the parent Connector’s DatagramSocket is shared among all child Connectors the access to the

DatagramSocket is synchronized.

Connector Schema

The SNMP Server Connector makes the following Attributes available for Input Attribute Mapping:

snmp.operation

java.lang.String object, which represents the SNMP operation invoked. The supported operation

types are GET, GETNEXT and SET.

snmp.community

Defines an access environment for a group of Network Management Systems (NMSs). NMSs

within the community are said to exist within the same administrative domain. Community

names serve as a weak form of authentication because devices that do not know the proper

community name are precluded from SNMP operations.

snmp.remoteip

IP address of the SNMP client (dot notation).

snmp.errorcode

Indicates one of a number of errors and error types. Only the response operation sets this field.

Other operations set this field to zero.

snmp.errorindex

Associates an error with a particular object instance. Only the response operation sets this field.

Other operations set this field to zero.

snmp.request-id

Associates SNMP requests with responses.

Chapter 2. Connectors 207

snmp.PDU

Protocol Data Unit. SNMP PDUs contain a specific command (Get, Set, etc.) and operands that

indicate the object instances involved in the transaction.

snmp.oid

OID is an address of a MIB structure, indicating a specific variable or attribute to be read or

modified in the target system. A GET can contain a list of OIDs, while a SET can also include the

corresponding values to be set for those variables in the target system. However, most SNMP

deployments use only one OID per SNMP message.

snmp.oidvalue

Contains the corresponding value of one OID. This is a String representation.

snmp.oidvalue.raw

Contains the corresponding value of one OID. This is an Object representation.

Configuration

The SNMP Server Connector uses the following parameters:

UDP Port

Specifies the UDP port on which the Connector (1) receives incoming SNMP request packets and

from which (2) sends SNMP response packets. The default value is 161, which is the standard

port for SNMP GET/SET operations.

Verify Community

Specifies the SNMP Community name. SNMP Community names serve as a weak form of

authentication because devices that do not know the proper community name are precluded from

SNMP operations.

 If set, the Connector discards all messages not matching this community string. If blank, the

Connector allows all community strings.

 The default value is ″public″.

Detailed Log

If enabled, will generate detailed Log messages.

208 Reference Guide

TAM Connector

Introduction

The IBM Tivoli Directory Integrator 6.1.1 Connector for Tivoli Access Manager enables the provisioning

and managing of Tivoli Access Manager Users, Groups, Policies, Domains, SSO Resources, SSO Resource

Groups and SSO User Credentials.

This component enables the provisioning and management of Tivoli Access Manager User accounts,

Groups, Policies, Domains, SSO Resources, SSO Resource Groups, and SSO User Credentials to external

applications (with respect to Tivoli Access Manager). The Connector uses the Tivoli Access Manager Java

API.

The key features and benefits of the Connector are:

v Support for Create, Read, Update, and Delete operations for Tivoli Access Manager User accounts,

Groups, Policies, Domains, SSO Resources, SSO Resource Groups, and SSO User Credentials.

Note: The Connector uses the TAM 6 Java API to manipulate the attributes of the targeted TAM objects.

Therefore, this Connector can’t support TAM 5.1 because of JRE support restrictions for the TAM

5.1 Runtime Environment (RTE). It supports TAM 6.0 only.

SSL communication with the TAM Server is supported.

Connector Modes

The Connector supports the Lookup, Iterator, Update, AddOnly, and Delete modes. Refer to “Using the

Connector” on page 211 for specific usage of the various modes.

Configuration

Before attempting to use the connector in an AssemblyLine, Tivoli Access Manager version 6.0 must be

installed on the target machine: The Tivoli Access Manager Java Runtime Environment (JRTE) must also

be installed on the same machine as TDI.

Configuring the Tivoli Access Manager Java Run Time

The Connector makes use of the Tivoli Access Manager Java API and therefore the Tivoli Access Manager

Runtime for Java must be installed on the TDI machine. For information on how to install and configure

Tivoli Access Manager Runtime for Java on the TDI machine, refer to the Tivoli Access Manager Installation

Guide.

When entering the parameters to the configuration utility (pdjrecfg):

v Check that both the policy server and registry server are running.

v Ensure that Tivoli Directory Integrator is not running.

v Specify the location of the TDI JRE directory. For example, on a Linux machine the default TDI JRE

directory is:

/opt/IBM/IBMDirectoryIntegrator/jvm/jre

v Specify a configuration type of Full. For example, from the Policy_Director/sbin directory, enter the

following command (as one line):

pdjrtecfg -action config -host TAM_hostname -java_home

 "/opt/IBM/IBMDirectoryIntegrator/jvm/jre"

where TAM_hostname is the name of the host where Tivoli Access Manager Policy Server is installed.

Chapter 2. Connectors 209

Configuring secure communication to the Tivoli Access Manager policy server

To configure secure communication between TDI and Tivoli Access Manager policy server and

authorization server, and for TDI to become an authorized Tivoli Access Manager Java application, run

the SvrSslCfg utility on the TDI machine.

For example, from the <TDI_install>/jvm/jre/bin directory, enter the following command (as one line).

This command must be run with the JRE IBM 1.5sr3 java executable:

java com.tivoli.pd.jcfg.SvrSslCfg -action config -admin_id sec_master

 -admin_pwd password -appsvr_id appsvr -mode remote -port 999

 -policysvr policy_svr:7135:1 -authzsvr auth_svr:7136:1 -cfg_file

 cfg_file_name -key_file keyfile_name -mode remote

For complete information on the SvrSslCfg utility, refer to the Tivoli Access Manager Authorization Java

Classes Developer Reference (specifically Appendix A).

Configuring the Connector

The TDI Connector for Tivoli Access Manager can be added directly into an assembly line. The following

section lists the configuration parameters that are available.

TAM ID

The Connector attempts to log on to Tivoli Access Manager with this user name and the

password specified by the Password parameter. Default value: sec_master

TAM Password

The value of this parameter is taken in account only when the parameter TAM ID is set to a

non-blank value. It then specifies the password used for the logon operation. The default value is

blank.

Domain

Specifies the TAM Domain. The default is blank. Pressing the "Domains" button next to this

parameter queries the TAM Server for a list of Domains, from which you can select the

appropriate one. The Connector attempts to log on to Tivoli Access Manager with the TAM ID

and TAM Password parameters.

TAM Program Name

The name used by Tivoli Access Manager to identify this Connector. Default value: IDI

TAM Configuration File

File pathname for the Tivoli Access Manager configuration file created by the SvrSslCfg

configuration utility.

Entry Type

Must be set to one of the following:

v User (specifying that the Connector operates with data structured by Tivoli Access Manager

Users),

v Group (specifying that the Connector operates with data structured by Tivoli Access Manager

Groups),

v Policy (specifying that the Connector operates with data structured by Tivoli Access Manager

User Policies),

v Domain (specifying that the Connector operates with data structured by Tivoli Access Manager

Domains),

v SSOCred (specifying that the Connector operates with data structured by Tivoli Access

Manager SSO Credentials).

Import Users/Groups from Registry

When checked, Tivoli Access Manager will import users/groups from the User Registry instead

of creating users in the User Registry during an add operation.

210 Reference Guide

Delete Users/Groups/Domains from Registry

When checked, Tivoli Access Manager will delete users/groups/domains from the User Registry

during a delete operation. The UserName, RegistryUID, Firstname and Lastname attributes are

mandatory for this operation to find the correct LDAP registry user name of the TAM account to

import.

Detailed Log

If this field is checked, additional debug log messages are generated.

Using the Connector

This section describes how to use the Connector in each of the supported IBM Tivoli Directory Integrator

Connector modes. The section also describes the Tivoli Directory Integrator Entry schema supported by

the Connector.

Note: When the Connector executes in the Assembly line, a Tivoli Access Manager Context is created in

the Initialize method of the Connector. For performance reasons, so that a Context is not created

for every Tivoli Access Manager Connector Instance, the Tivoli Access Manager Connector should

be cached (pooled) within the AssemblyLine. The caching of a Connector within the AssemblyLine

can be configured within TDI. Please refer to the IBM Tivoli Directory Integrator 6.1.1: Users Guide

for more information.

When the Connector is configured to manipulate TAM Policy objects, special consideration is required

when supply attribute values in the work entry that will feed the Connector in AddOnly or Update

Modes. The policy object attributes are grouped together for related policy items. The attributes can be

broken up into sets where each set of attributes requires a value to update or apply any of the individual

attributes for that policy item. For example, when manipuilating the Policy item Account Expiry Date,

you must supply values for each of the attributes AcctExpDateEnforced, AcctExpDateUnlimited, and

AcctExpDate. If you wish to then modify any of these attributes for Account Expiry Date, you must again

also supply values for each of the three attributes and the UserName attribute.

The following defines the Policy items and their attribute groupings.

 Table 9. Policy Items

Policy item Set of Required Policy Entry Attributes

Account Expiry Date AcctExpDateEnforced, AcctExpDateUnlimited, AcctExpDate.

Account Disable Time AcctDisableTimeEnforced, AcctDisableTimeUnlimited,

AcctDisableTime

Account Password Spaces PwdSpacesAllowedEnforced, PwdSpacesAllowed

Account Maximum Password Age MaxPwdAgeEnforced, MaxPwdAge

Account Maximum Repeat Characters MaxPwdRepCharsEnforced, MaxPwdRepChars

Account Minimum Alphabetic Characters MinPwdAlphasEnforced, MinPwdAlphas

Account Minimum Non-Alphabetic Characters MinPwdNonAlphasEnforced, MinPwdNonAlphas

Account Time Of Day Access TodAccessEnforced, AccessibleDays, AccessStartTime,

AccessEndTime, AccessTimezone

Account Minimum Password Length MinPwdLenEnforced, MinPwdLen

Account Maximum Failed Login Attempts MaxFailedLoginsEnforced, MaxFailedLogins

AddOnly Mode

When deployed in AddOnly mode, the Connector is able to create a range of data in the Tivoli Access

Manager database. The Connector should be added to the Flow section of a TDI AssemblyLine. The

Output Map must define a mapping for the following attributes, these attributes can be also be retrieved

through querying the Connector Schema.

Chapter 2. Connectors 211

Notes:

1. Attributes marked with an asterisk (*) are mandatory.

2. For a detailed description of all attributes, please refer to “Connector Input Attribute Details” on page

217.

3. Keep in mind the caveats on manipulating Policy items and their required Policy Entry attributes as

stipulated in Table 9 on page 211.

 Table 10. Attributes by Entry Type in AddOnly Mode

Entry Type Attribute

User UserName*

RegistryUID*

FirstName*

LastName*

Description

Password

IsAccountValid

IsPasswordValid

IsSSOUser

NoPasswordPolicyOnCreate

MaxFailedLogins

Groups (Multivalued attribute)

Group GroupName*

RegistryGID*

CommonName

Description

ObjectContainer

Users (Multivalued attribute)

Policy UserName*

AcctExpDateEnforced

AcctExpDateUnlimited

AcctExpDate

AcctDisableTimeEnforced

AcctDisableTimeUnlimited

AcctDisableTimeInterval

PwdSpacesAllowedEnforced

PwdSpacesAllowed

MaxPwdAgeEnforced

MaxPwdAge

MaxPwdRepCharsEnforced

MaxPwdRepChars

MinPwdAlphas

212 Reference Guide

Table 10. Attributes by Entry Type in AddOnly Mode (continued)

Entry Type Attribute

MinPwdNonAlphasEnforced

MinPwdNonAlphas

TodAccessEnforced

AccessibleDays

AccessStartTime

AccessEndTime

AccessTimezone

MinPwdLenEnforced

MinPwdLen

MaxFailedLoginsEnforced

MaxFailedLogins

Domain DomainName*

Description

SSO Credentials UserName*

ResourceName*

ResourceType*

ResourceUser*

ResourcePassword*

SSO Resource SSOResourceName*

Description*

SSO Resource Group SSOResourceGroupName*

Description

SSOResources* (Multivalued attribute)

The Connector does not support duplicate or multiple entries. Only one entry should be supplied to the

Connector at a time.

Update Mode

When deployed in Update mode, the Connector is able to modify existing data in the Tivoli Access

Manager database. The Connector should be added to the Flow section of a Tivoli Directory Integrator

AssemblyLine. The Output Map must define a mapping for the following attributes. These attributes can

be also be retrieved through querying the Connector Schema.

Keep in mind the caveats on manipulating Policy items and their required Policy Entry attributes as

stipulated in Table 9 on page 211.

Chapter 2. Connectors 213

Attributes marked with an asterisk (*) are mandatory.

 Table 11. Attributes by Entry Type in Update Mode

Entry Type Attribute

User UserName*

Description

Password

IsAccountValid

IsPasswordValid

IsSSOUser

MaxFailedLogins

Groups (Multivalued attribute)

Group GroupName*

Description

Users (Multivalued attribute)

Policy UserName*

AcctExpDateEnforced

AcctExpDateUnlimited

AcctExpDate

AcctDisableTimeEnforced

AcctDisableTimeUnlimited

AcctDisableTimeInterval

PwdSpacesAllowedEnforced

PwdSpacesAllowed

MaxPwdAgeEnforced

MaxPwdAge

MaxPwdRepCharsEnforced

MaxPwdRepChars

MinPwdAlphas

MinPwdNonAlphasEnforced

MinPwdNonAlphas

TodAccessEnforced

AccessEndTime

AccessibleDays

AccessStartTime

AccessTimezone

MinPwdLenEnforced

MinPwdLen

MaxFailedLoginsEnforced

MaxFailedLogins

214 Reference Guide

Table 11. Attributes by Entry Type in Update Mode (continued)

Entry Type Attribute

Domain DomainName*

Description

SSO Credentials UserName*

ResourceName*

ResourceType*

ResourceUser*

ResourcePassword*

SSO Resource Not Supported

SSO Resource Group SSOResourceGroupName*

SSOResources* (Multivalued attribute)

Additionally, any mandatory fields mentioned above should be defined in the Link Criteria of the

Connector. The Link Criteria is required by the AssemblyLine, since the AssemblyLine will invoke the

Connectors findEntry() method to verify the existence of the given user. The value of the attribute, as

defined in the Link Criteria, must match the value of the element present in the Output Map.

The only operator supported for Link Criteria is an equals exact match. Wildcard search criteria are not

supported. The Connector does not support duplicate or multiple entries. Only one entry should be

supplied to the Connector at a time.

Delete Mode

When deployed in Delete mode, the Connector is able to delete existing data from the Tivoli Access

Manager database. The Connector should be added to the Flow section of an AssemblyLine.

Attributes marked with an asterisk (*) are mandatory.

 Table 12. Attributes by Entry Type in Delete Mode

Entry Type Attribute

User UserName*

Group GroupName*

Policy UserName*

Domain DomainName*

SSO Credentials UserName*

ResourceName*

ResourceType*

SSO Resource SSOResourceName*

Chapter 2. Connectors 215

Table 12. Attributes by Entry Type in Delete Mode (continued)

Entry Type Attribute

SSO Resource Group SSOResourceGroupName*

The mandatory attribute must be defined in the Link Criteria of the Connector. The Link Criteria is

required by the AssemblyLine, since the AssemblyLine will invoke the Connector’s findEntry() method

to verify the existence of the given user.

The only operator supported for Link Criteria is an equals exact match. Wildcard search criteria are not

supported. The Connector does not support duplicate or multiple entries. Only one entry should be

supplied to the Connector at a time.

Lookup Mode

When deployed in Lookup mode, the Connector is able to obtain all details of the required Tivoli Access

Manager data. The Connector should be added to the Flow section of an AssemblyLine. The mandatory

attribute must be defined in the Link Criteria of the Connector.

Attributes marked with an asterisk (*) are mandatory.

 Table 13. Attributes by Entry Type in Lookup Mode

Entry Type Attribute

User UserName*

Group GroupName*

Policy UserName*

Domain DomainName*

SSO Credentials UserName*

ResourceName*

ResourceType*

SSO Resource SSOResourceName*

SSO Resource Group SSOResourceGroupName*

The Connector’s findEntry() method is the main code executed. The only operator supported for Link

Criteria is an equals exact match. Wildcard search criteria are not supported.

The Connector does not support duplicate or multiple entries. The Connector will return only one entry

at a time.

Iterator Mode

When deployed in Iterator mode, the Connector is able to retrieve the details of each data entry in the

Tivoli Access Manager database, in turn, and make those details available to the AssemblyLine.

When deployed in this mode, the Tivoli Directory Integrator AssemblyLine will first call the Connector’s

selectEntries() method to obtain and cache a list of all data entries in the Tivoli Access Manager

database. The AssemblyLine will then call the Connector’s getNextEntry() method. This method will

maintain a pointer to the current name cached in the list.

216 Reference Guide

Troubleshooting

Problems may be experienced for any of the following reasons:

TAM Connector not installed properly

Check the configuration and re-configure if necessary.

Query Schema Issues

When performing a schema query using the Connectors with the TDI GUI, an attempt to connect

to the data source may result in an exception. These exceptions can be ignored. Any subsequent

use of the discover schema button will succeed. The Connectors do not support the Get Next

Entry style of schema query. The Connectors do support the torch button Discover the Schema of

the Data Source style of schema discovery.

Changing Mode of Connectors Already in AssemblyLine

During testing, it was observed that changing the mode of Connector in the AssemblyLine did

not always work. The Connector sometimes appeared to execute in its original mode, resulting in

AssemblyLine errors. If this occurs, delete the Connector and add it to the AssemblyLine in the

new mode.

Connector Input Attribute Details

This section details the attributes for connector input.

User

 Table 14.

Attribute Description Example Default

UserName The User Name maryl

RegistryUID The LDAP User Distinguished Name (DN) cn=mary ,o=companyabc,

c=au

FirstName The User’s First Name Mary

LastName The User’s Last Name Lou

Description A Description Contractor

Password User’s password

(If the ’NoPasswordPolicyOnCreate’

attribute is set to FALSE, the password must

confirm to the current password policy in

Tivoli Access Manager.)

m3ry10u

IsAccountValid TRUE to activate the account. FALSE to

leave the account inactive.

TRUE or FALSE TRUE

IsPasswordValid Set to FALSE if user is to change the

password on next login. TRUE to remain

unchanged.

TRUE or FALSE TRUE

IsSSOUser TRUE to enable Single Sign-on capabilities

for this user. FALSE to disable.

TRUE or FALSE FALSE

NoPasswordPolicy OnCreate FALSE will enforce the password policy on

the ″Password″ attribute and as a result it

will be checked against the password policy

settings the first time it is created. TRUE

will not enforce the password policy on the

password when it is created.

TRUE or FALSE TRUE

MaxFailedLogins Set the maximum number of failed logins a

user can have before the account is disabled.

8 10

Chapter 2. Connectors 217

Table 14. (continued)

Attribute Description Example Default

Groups (Multivalued

attribute)

This is a multi-valued attribute. Please refer

to the IBM Tivoli Directory Integrator 6.1.1:

Users Guide about how to set multi-valued

attributes. Any Group listed in this attribute

should already exist as a valid group in

Tivoli Access Manager.

Groups1 -> itSpecialists

Groups2 -> programmers

Group

 Table 15.

Attribute Description Example

GroupName The Group Name programmers

RegistryGID The LDAP Group DistinguishedName (DN) cn=programmers, cn=SecurityGroups,

secAuthority=Default

CommonName The LDAP Common Name (CN) programmers

Description The Group Description Fulltime Programmers

ObjectContainer

Users This is a multi-valued attribute. Please refer

to the IBM Tivoli Directory Integrator 6.1.1:

Users Guide about how to set multi-valued

attributes. Any user listed in this attribute

should already exist as a valid user in Tivoli

Access Manager.

Users1 -> maryl

Users2 -> johnd

Policy

 Table 16.

Attribute Description Example

UserName The User Name the policy will be set for.

Must be a valid Tivoli Access Manager user.

maryl

AcctExpDateEnforced If TRUE then enforce the Account Expiration

Date.

TRUE or FALSE

AcctExpDateUnlimited If TRUE then set the Account Expiration

Date to be unlimited.

TRUE or FALSE

AcctExpDate Sets the expiry date for the user account

The attribute must be of type java.util.Date,

or java.lang.String. If a String value is

provided the required date string format is

″yyyyMMdd″ where ’yyyy’ us the four digit

year, ’MM’ is the two digit month, and ’dd’

is the two digit day; i.e. 20091231 is the

value for the date 31st December 2009.

Refer to the Tivoli Access Manager

Java API Reference.

AcctDisableTimeEnforced If TRUE then enforce the Account Disable

Time.

TRUE or FALSE

AcctDisableTimeUnlimited If TRUE then set the Account Disable Time

to be unlimited.

TRUE or FALSE

AcctDisableTimeInterval Set the Account Disable Time Interval. Refer to the Tivoli Access Manager

Java API Reference.

218 Reference Guide

Table 16. (continued)

Attribute Description Example

PwdSpacesAllowedEnforced If TRUE enforce the value of the

’PwdSpacesAllowed’ attribute

TRUE or FALSE

PwdSpacesAllowed If TRUE allow spaces in the password TRUE or FALSE

MaxPwdAgeEnforced If TRUE enforce the Maximum Password

Age value

TRUE or FALSE

MaxPwdAge Sets the Maximum Password Age Refer to the Tivoli Access Manager

Java API Reference.

MaxPwdRepCharsEnforced If TRUE enforce the Maximum Password

Repeatable characters number

TRUE or FALSE

MaxPwdRepChars Sets the Maximum Password Repeatable

Characters

5

MinPwdAlphasEnforced If TRUE enforce the Minimum number of

Alphanumeric characters allowed

TRUE or FALSE

MinPwdAlphas Sets the Minimum number of Alphanumeric

characters allowed

6

MinPwdNonAlphasEnforced If TRUE enforce the Minimum number of

non-alphanumeric characters allowed

TRUE or FALSE

MinPwdNonAlphas Sets the Minimum number of

non-alphanumeric characters allowed

3

TodAccessEnforced If TRUE enforce the access times set for the

user

TRUE or FALSE

AccessibleDays Sets the days accessible for the user account Refer to the Tivoli Access Manager

Java API Reference.

AccessStartTime Sets the access start time for the user

account

Refer to the Tivoli Access Manager

Java API Reference.

AccessEndTime Sets the access end time for the user account Refer to the Tivoli Access Manager

Java API Reference.

AccessTimezone Sets the time zone for the user account Refer to the Tivoli Access Manager

Java API Reference.

MinPwdLenEnforced If TRUE enforce the Minimum Password

Length

TRUE or FALSE

MinPwdLen Sets the Minimum Password Length 8

MaxFailedLoginsEnforced If TRUE then enforce the Maximum Failed

Login setting.

TRUE or FALSE

MaxFailedLogins Sets the Maximum Failed Logins for the

user

8

Domain

 Table 17.

Attribute Description Example

DomainName The name of the domain MyDomain

Description The Domain description Sample domain name

Chapter 2. Connectors 219

SSO Credentials

 Table 18.

Attribute Description Example

UserName The name of the user the credentials will be

set for

maryl

ResourceName The SSO Resource Name. (Must be a valid

Tivoli Access Manager SSO Resource entry).

myResource1

ResourceType Specifies whether this resource is a single

resource of a resource group

Web Resource or Resource Group

ResourceUser Sets the Resource User Name marylou

ResourcePassword Sets the User Name Password for the

specified resource

b1ddy4

SSO Resource

 Table 19.

Attribute Description Example

SSOResourceName The Single sign-on Resource Name MyResource1

Description The Description Development Server 1

SSO Resource Group

 Table 20.

Attribute Description Example

SSOResourceGroupName The Single sign-on Resource Group Name MyResourceGroup1

Description The Description All Development Servers

SSOResources This is a multi-valued attribute. Please refer

to the IBM Tivoli Directory Integrator 6.1.1:

Users Guide about how to set multi-valued

attributes. Any SSO Resources listed in this

attribute should already exist as a valid SSO

Resource in Tivoli Access Manager.

SSOResources1 -> myResource1

SSOResources2 -> myResource2

220 Reference Guide

TCP Connector

The TCP Connector is a transport Connector using TCP sockets for transport. You can use the TCP

Connector in Iterator and AddOnly mode only.

Iterator Mode

When in Iterator mode, the TCP Connector waits for incoming TCP calls on a specific port. When a

connection is established, the getnext method returns an entry with the following properties:

socket The TCP socket object (for example, the TCP input and output streams)

in An instance of a BufferedReader using the socket’s input stream

out An instance of a BufferedWriter using the socket’s output stream

 The in and out objects can be used to read and write data to or from the TCP connection. For example,

you can do the following to implement a simple echo server (put the code in the After GetNext Hook):

var ins = conn.getProperty("in");

var outs = conn.getProperty("out");

var str = ins.readLine();

outs.write("You said==>"+str+"<==");

outs.flush();

Because you are using a BufferedWriter, it is important to call the out.flush() method to make sure data is

actually sent out over the connection.

If you specify a Parser, then the BufferedReader is passed to the Parser, which in turn reads and

interprets data sent on the stream. The returned entry then includes any attributes assigned by the Parser

as well as the properties listed previously (socket, in, and out).

If the TCP Connector is configured in serverMode=true then the connection is closed between each call to

the getnext method. If serverMode=false the connection to the remote host is kept open for as long as the

TCP Connector is active (for example, until the AssemblyLine stops).

AddOnly Mode

When the TCP Connector works in this mode, the default implementation is to write entries in their

string form, which is not useful. Typically, you specify a Parser or use the Override Add hook to preform

specific output. In the Override Add hook you access thein or out objects by calling the Connector

Interface’s getReader() and getWriter() methods, for example:

var in = mytcpconnector.connector.getReader();

var out = mytcpconnector.connector.getWriter();

You can also use the Before Add and After Add hooks to insert headers or footers around the output

from your Parser.

Configuration

TCP Port

The TCP port number to connect or listen to (depends on the value of servermode).

TCP Host

The remote host to which connections are made (servermode = false).

Connection Backlog

This represents the maximum queue length for incoming connection indications (a request to

connect). If a connection indication arrives when the queue is full, the connection is refused.

Chapter 2. Connectors 221

Server Mode

If true, then Iterating listens for incoming requests. If false, then Iterating connects to a remote

server.

Use SSL

If checked, the Connector will deploy the Secure Socket Layer (SSL) on the connection.

Need Client Authentication over SSL

If checked and if SSL is enabled in Server Mode (that is, listening for incoming connections),

client authentication is necessary.

Detailed Log

If this parameter is checked, more detailed log messages are generated.

 You can select a Parser for this Connector from the Parser pane, where you select a parser by clicking the

bottom-right Inherit From: button.

See also

“File system Connector” on page 77,

“Direct TCP /URL scripting” on page 29,

“TCP Server Connector” on page 223

“URL Connector” on page 227.

222 Reference Guide

TCP Server Connector

This Connector supports Server and Iterator modes only.

In Server mode, this Connector waits for incoming TCP connections on a specified port and spawns a

new thread to handle the incoming request. When the new thread has started, the original Server mode

Connector goes back to listening mode. When the newly created thread has completed, the thread stops

and the TCP connection is closed.

In Iterator mode, the Connector is single-threaded, in that it waits for a connection on the IP address of

the local machine and the port specified. Once the connection is received, the Connector will generate

Entries based on received data until the Client closes the connection.

Configuration

TCP Port

The TCP port on which to listen for incoming connections.

Connection Backlog

This represents the maximum queue length for incoming connection indications (a request to

connect). If a connection indication arrives when the queue is full, the connection is refused.

Use SSL

If checked, the Connector will deploy the Secure Socket Layer (SSL) on the connection.

Require Client Authentication

If checked, the Connector will require clients to supply client-side SSL certificates that can be

matched to the configured TDI trust store.

Detailed Log

If this parameter is checked, more detailed log messages are generated.

Connector Schema

The Connector makes the following properties available in the Input Attribute Map:

tcp.originator

The Connector object.

event.originator

The Connector object. This is the same object as the one stored in tcp.originator. This Attribute

ensures backward compatibility with the now deprecated TCP Port EventHandler.

tcp.inputstream

TCP socket input stream (java.io.InputStream)

event.inputstream

TCP socket input stream (java.io.InputStream). This is the same object as the one stored in

tcp.inputstream. This Attribute ensures backward compatibility with the TCP Port EventHandler.

tcp.outputstream

TCP socket output stream (java.io.OutputStream).

event.outputstream

TCP socket output stream (java.io.OutputStream). This is the same object as the one stored in

tcp.outputstream. This Attribute ensures backward compatibility with the TCP Port

EventHandler.

tcp.remoteIP

Remote IP address (dot notation).

tcp.remotePort

Remote TCP port number.

Chapter 2. Connectors 223

tcp.remoteHost

Remote hostname.

tcp.localIP

Local IP address (dot notation).

tcp.localPort

Local TCP port number.

tcp.localHost

Local hostname.

tcp.socket

TCP Socket object (java.net.Socket).

 The TCP Server Connector does not use its Output Attribute Map – it just closes the Connection to the

client application when done.

The tcp.inputstream and tcp.outputstream Attribute values are meant to be used via scripting in the

AssemblyLine to read the client request and write the response respectively.

See Also

“TCP Connector” on page 221.

224 Reference Guide

Timer Connector

The timer waits for a specified time; then it returns from sleep and resumes an AssemblyLine, that is, it

starts a new cycle. This Connector runs in Iterator mode only.

On attribute mapping, there is one attribute you can map into the work entry: a timestamp, which is of

type java.util.Date. It will contain the time when it started the cycle.

Using Delta functionality with this Connector does probably not make much sense.

Previous versions of this Connector used a Unix crontab-style schedule parameter to set up the exact

time at which to run the Connector; when such a schedule is encountered in a Config file it is

automatically converted to the new format as outlined below.

Configuration

This Connector needs the following parameters:

Month

Select a month to run the Timer Connector (* = any)

Day Day of the month to run the Timer Connector on(* = any)

Weekday

Select a weekday to run the Timer Connector(* = any)

Hour The hour at which to run the Timer Connector (* = any)

Minute

The minute at which to run the Timer Connector

Detailed Log

If this field is checked, additional log messages are generated.

Chapter 2. Connectors 225

226 Reference Guide

URL Connector

The URL Connector is a transport Connector that requires a Parser to operate. The Connector opens a

stream specified by a URL.

Note: When forced through a firewall that enforces a proxy server, the URL Connector does not work.

The URL Connector needs to have the right proxy server set.

This Connector supports AddOnly and Iterator modes.

The Connector, in principle, can handle secure communications using the SSL protocol, but it may require

driver–specific configuration steps in order to set up SSL support.

Configuration

The Connector needs the following parameters:

URL The URL to open (for example, http://host/file.csv).

Detailed Log

If this parameter is checked, more detailed log messages are generated.

 From the Parser configuration pane, you can select a Parser to operate upon the stream. You select a

parser by clicking on the bottom-right Inherit from: button.

Supported URL protocol

The supported URL protocols are:

v HTTP

v HTTPS

See also

“File system Connector” on page 77,

“TCP Connector” on page 221,

“Direct TCP /URL scripting” on page 29.

Chapter 2. Connectors 227

228 Reference Guide

Web Service Receiver Server Connector

The Web Service Receiver Server Connector is part of the TDI Web Services suite.

This Connector is basically an HTTP Server specialized for servicing SOAP requests over HTTP. It

operates in Server mode only.

AssemblyLines support an Operation Entry (op-entry). The op-entry has an attribute $operation that

contains the name of the current operation executed by the AssemblyLine. In order to process different

web service operations easier, the Web Service Receiver Server Connector will set the $operation attribute

of the op-entry.

The Web Service Receiver Server Connector supports generation of a WSDL file according to the input

and output schema of the AssemblyLine. As in TDI 6.1.1 AssemblyLines support multiple operations, the

WSDL generation can result in a web service definition with multiple operations. There are some rules

about naming the operations:

v Pre-6.1 TDI configuration files contain only one input and one output schema referred to as default

operation schemas. When a pre-6.1 TDI configuration is used the only operation generated is named as

the name of the AssemblyLine as in TDI 6.0.

v In TDI 6.1.1 configurations if there is an operation named “Default”, the corresponding operation in

the WSDL file is named as the name of the AssemblyLine.

v In TDI 6.1.1 configurations if there is an operation named “Default” and there is also an operation with

a name as the name of the AssemblyLine, both operations preserve their names in the WSDL file.

v In all other cases the operations appear in the WSDL file as they are named in the AssemblyLine

configuration.

Hosting a WSDL file

The Web Service Receiver Server Connector provides the ″wsdlRequested″ Connector Attribute to the

AssemblyLine.

If an HTTP request arrives and the requested HTTP resource ends with ″?WSDL″ then the Connector sets

the value of the ″wsdlRequested″ Attribute to true; otherwise the value of this Attribute is set to false.

This Attribute’s value tells the AssemblyLine whether the request received is a SOAP request or a request

for a WSDL file, and allows the AssemblyLine to distinguish between pure SOAP requests and HTTP

requests for the WSDL file. The AssemblyLine can use a branch component to execute only the required

piece of logic – (1) when a request for the WSDL file has been received, then the AssemblyLine can read

a WSDL file and send it back to the web service client; (2) when a SOAP request has been received the

AssemblyLine will handle the SOAP request. Alternatively, you could program the system.skipEntry();

call at an appropriate place (in a script component, in a hook in the first Connector in the AssemblyLine,

etc.) to skip further processing.

It is the responsibility of the AssemblyLine to provide the necessary response to either a SOAP request or

a request for a WSDL file.

The Connector implements a public method:

public String readFile (String aFileName) throws IOException;

This method can be used from TDI JavaScript in a script component to read the contents of a WSDL file

on the local file system. The AssemblyLine can then return the contents of the WSDL in the

″soapResponse″ Attrribute, and thus to the web service client in case a request for the WSDL was received.

Chapter 2. Connectors 229

Configuration

Parameters

TCP Port

The port number the service is running (listening) on.

Connection Backlog

This represents the maximum queue length for incoming connection indications (a request to

connect). If a connection indication arrives when the queue is full, the connection is refused.

Input the SOAP message as

Specifies the type of the SOAP Request message input to the AssemblyLine. This drop-down list

allows you to choose either String or ″DOMElement″.

Return the SOAP message as

Specifies the type of the SOAP Response message output from the AssemblyLine. This

drop-down list allows you to choose either String or ″DOMElement″.

Tag Op-Entry

When this parameter is checked (that is, "true") the Connector will tag the op-entry even if the

currently executed operation is not on the list of exposed operations in the AssemblyLine/WSDL.

It is up to the TDI solution implementation to handle this case appropriately.

Use SSL

If checked the server will only accept SSL (https) connections.The SSL parameters (keystore, etc.)

are specified as values of Java system properties in the global.properties file located in the TDI

installation folder.

Require Client Authentication

Specifies whether this Connector will require clients to authenticate with client SSL certificates. If

the value of this parameter is true (that is, checked) and the client does not authenticate with a

client SSL certificate, then the Connector will drop the client connection. If the value of this

parameter is true and the client does authenticate with a client SSL certificate, then the Connector

will continue processing the client request. If the value of this parameter is false, then the

Connector will process the client request regardless of whether the client authenticates with a

client SSL certificate.

Auth Realm

The basic-realm sent to the client in case authentication is requested.

Use HTTP Basic Authentication

This connector supports HTTP basic authentication. To activate, check the “Use HTTP Basic

Authentication” checkbox. If activated, the server checks if any credentials are already sent and if

not, the server sends authorization request to client. After the client sends the needed credentials,

the Connector then sets two attributes: “http.username” and “http.password”. These two

attributes contain the username and password of the client. It is responsibility of the

AssemblyLine to check if this pair of username and password is valid. If the client is authorized

successfully then “http.credentialsValid” work Entry Attribute must be set to true. If the client is

not authorized then “http.credentialsValid” work Entry Attribute must be set to false. If the client

is not authorized then the server sends a “Not Authorized” HTTP message.

Comment

Your own comments go here.

Detailed Log

If checked, will generate additional log messages.

WSDL Output to Filename

The name of the WSDL file to be generated when the Generate WSDL button is clicked. This

parameter is only used by the WSDL Generation Utility – this parameter is not used during the

Connector execution.

230 Reference Guide

Web Service provider URL

The address on which web service clients will send web service requests. Also this parameter is

only used by the WSDL Generation Utility – this parameter is not used during the Connector

execution.

 The Generate WSDL button runs the WSDL generation utility.

The WSDL Generation utility takes as input the name of the WSDL file to generate and the URL of the

provider of the web service (the web service location). This utility extracts the input and output

parameters of the AssemblyLine in which the Connector is embedded and uses that information to

generate the WSDL parts of the input and output WSDL messages. It is mandatory that for each Entry

Attribute in the ″Initial Work Entry″ and ″Result Entry″ Schema the ″Native Syntax″ column be filled in

with the Java type of the Attribute (for example, ″java.lang.String″). The WSDL file generated by this

utility can then be manually edited.

The operation style of the SOAP Operation defined in the generated WSDL is rpc.

The WSDL generation utility cannot generate a <types...>...</types> section for complex types in the

WSDL.

Connector Operation

The Web Service Receiver Server Connector stores the following information from the HTTP/SOAP

request into Attributes of the Connector’s conn entry, ready to be mapped into the work entry:

v The name of the host to which the request is sent (the local host) – stored into the ″host″ Attribute

v The requested HTTP resource – stored into the ″requestedResource″ Attribute

v The value of the ″soapAction″ HTTP header – stored into the ″soapAction″ Attribute

v If the value of the Input the SOAP message as FC parameter is String then the SOAP request message

is stored as a java.lang.String object in the ″soapRequest″ Attribute.

v If the value of the Input the SOAP message as FC parameter is DOMElement then the SOAP request

message is stored as an org.w3c.dom.Element object in the ″soapRequest″ Attribute.

v Whether a WSDL file was requested — in the ″wsdlRequested″ Attribute. If this is the case (that is, the

value is true, no other Attributes will be set).

When reaching the Response stage of the AssemblyLine, this Connector requires the SOAP response

message in text XML form or as DOMElement from the ″soapResponse″ Attribute of the work Entry to be

mapped out:

v If the value of the Return the SOAP message as FC parameter is String then the SOAP response

message must be stored as a java.lang.String object in the ″soapResponse″ Attribute by the

AssemblyLine.

v If the value of the Return the SOAP message as FC parameter is DOMElement then the SOAP

response message must be stored as a org.w3c.dom.Element in the ″soapResponse″ Attribute by the

AssemblyLine.

The Connector then wraps the SOAP response message into an HTTP response and returns it to the web

service client.

See also

“Axis Easy Web Service Server Connector” on page 21.

Chapter 2. Connectors 231

232 Reference Guide

z/OS Changelog Connector

The z/OS Changelog Connector is a specialized instance of the LDAP Connector. It is configured for

usage with a z/OS Directory Server, accessed using the LDAP protocol over TCP/IP.

This connector supports Delta Tagging, at the Entry level, the Attribute level and the Attribute Value

level. It is the LDIF Parser that provides delta support at the Attribute and Attribute Value levels. .

Configuration

The Connector needs the following parameters:

LDAP URL

The LDAP URL for the connection (ldap://host:port).

Login username

The LDAP distinguished name used for authentication to the server. Leave blank for anonymous

access.

Login password

The credentials (password).

Authentication Method

The authentication method. Possible values are:

v CRAM-MD5 (use the CRAM-MD5 (RFC-2195) SASL mechanism).

v none (use no authentication (anonymous)).

v simple (use weak authentication (cleartext password)).

v SASL

If not specified, default (simple) is used. If Login username and Login password are blank, then

anonymous is used.

Use SSL

If Use SSL is true (that is, checked), the Connector uses SSL to connect to the LDAP server. Note

that the port number might need to be changed accordingly.

ChangeLog Base

The search base where the Changelog is kept. The standard DN for this is cn=changelog.

Extra Provider Parameters

Allows you to pass a number of extra parameters to the JNDI layer. It is specified as name:value

pairs, one pair per line.

Iterator State Key

Specifies the name of the parameter that stores the current synchronization state in the User

Property Store of the IBM Tivoli Directory Integrator. This must be a unique name for all

parameters stored in one instance of the IBM Tivoli Directory Integrator User Property Store.

Start at changenumber

Specifies the starting changenumber. Each Changelog entry is named changenumber=intvalue

and the Connector starts at the number specified by this parameter and automatically increases

by one. The special value EOD means start at the end of the Changelog.

State Key Persistence

Governs the method used for saving the Connector’s state to the System Store. The default is End

of Cycle, and choices are:

After read

Updates the System Store when you read an entry from the directory server’s change log,

before you continue with the rest of the AssemblyLine.

Chapter 2. Connectors 233

End of cycle

Updates the System Store with the change log number when all Connectors and other

components in the AssemblyLine have been evaluated and executed.

Manual

Switches off the automatic updating of the System Store with this Connector’s state

information; instead, you will need to save the state by manually calling the z/OS

Changelog Connector’s saveStateKey() method, somewhere in your AssemblyLine.

Timeout

Specifies the number of seconds the Connector waits for the next Changelog entry. The default is

0, which means wait forever.

Sleep Interval

Specifies the number of seconds the Connector sleeps between each poll. The default is 60.

Detailed Log

If this field is checked, additional log messages are generated.

See also

“LDAP Connector” on page 133,

“Active Directory Changelog (v.2) Connector” on page 13,

“Exchange Changelog Connector” on page 71,

“IBM Directory Server Changelog Connector” on page 97,

“Netscape/iPlanet/Sun Directory Changelog Connector” on page 161.

234 Reference Guide

Chapter 3. EventHandlers

EventHandlers are used to extend the functionality of AssemblyLines and Connectors by providing a

framework to control how they are run. This framework is particularly useful when an incoming event

(for example, an incoming http, an LDAP change trigger or a JMS message) can trigger the start of a

number of different AssemblyLines depending on the content in the incoming data. A few EventHandlers

have been pre-programmed to make things easier.

Notes:

1. EventHandlers and the EventHandler concept are deprecated since version 6.0 of IBM Tivoli Directory

Integrator, and will be phased out completely in a future version of TDI

2. EventHandlers can now only be added to your solution by using Object->New EH in the CE.

3. You can always override EventHandler behavior by using your own scripts. (Note however. that the

concept of EventHandlers will be removed in the future, so if you heavily customize one you may

find that your EventHandler has disappeared when opening the Config file in a future version of TDI

6.1.1.)

Migration from ChangeLog EventHandlers to ChangeLog Connectors

When opening Config Files created with TDI 6.0, existing Connector references will not need migration –

old configuration files will continue to work with the updated Connectors.

As the EventHandler concept is deprecated and will be removed from future versions of TDI, you might

however want to migrate from deprecated Changelog EventHandlers to Changelog Connectors.

For each EventHandler a corresponding AssemblyLine must be created. Then an Iterator Connector

corresponding to the EventHandler must be inserted into the AssemblyLine “Feeds” section. Then the

Connector parameters must be set – this is specific for each EventHandler/Connector pair, but generally

the Connector parameters must be set the same values as the corresponding EventHandler parameters

(which usually have the same names).

Any processing performed in the EventHandler Action Map must be re-implemented in the

AssemblyLine “Flow” section.

The functionality of the “enabled” EventHandler parameter (otherwise known as “Auto-start service”) is

also available for AssemblyLines. If you want your AssemblyLine to be started right after the TDI Server

is started, go to the Config/AutoStart folder in the Config Editor and add your AssemblyLine.

No migration is necessary for the JNDI Connector.

EventHandler types

The following EventHandler types are included in IBM Tivoli Directory Integrator:

Standard EventHandler

The Standard EventHandler is the most used EventHandler. You can specify conditions and

actions using a number of predefined conditions and actions. It also provides hooks where you

can start script code for full control. See “LDAP EventHandler” on page 259 for more

information.

Primitive EventHandler (simple EventHandler, trigger or port listener)

The Primitive EventHandler enables you to script everything. With this EventHandler you have

full control of the EventHandler’s actions but you must code the EventHandler manually. See

© Copyright IBM Corp. 2003, 2007 235

“Generic thread (primitive EventHandler)” on page 271 and “Timer EventHandler (primitive

EventHandler)” on page 273 for more information.

Advanced EventHandler

The Advanced EventHandler wraps up even more than the Standard EventHandler in the Config

Editor.

When are they started?

When TDI server starts, it scans through the table of EventHandlers and checks each one for the auto

startup flag. If the auto startup flag is set, the EventHandler is spawned as a thread inside the TDI server

process. When the EventHandler thread stops, TDI server does not restart the EventHandler.

Note: You can force an EventHandler to start regardless of its auto start flag using command line

options.

See ″Starting the EventHandler″ in IBM Tivoli Directory Integrator 6.1.1: Users Guide for further discussion

on how to start EventHandlers from the Config Editor.

What do they do?

EventHandlers perform a variety of functions but typically they enable external events to trigger actions

in the TDI server. These actions can be specific to each site and each person, but one common action can

be specific to an AssemblyLine. The timer is such an example where the external event is the clock

reaching a specific time. Other events are asynchronous, such as when the TCP port EventHandler waits

for incoming TCP connections, or can initiate some connection and poll for events, such as the Mailbox

Connector EventHandler. Consult each EventHandler’s configuration for more information.

Data flow

The EventHandlers, like AssemblyLines, have a Prolog and an Epilog. The Prolog is started before the

action flow of each event.

Passing input/output file names to an AssemblyLine

To pass a filename from the EventHandler to the AssemblyLine, use an entry object. Here the filename is

called myFileName, and a property is used instead of an attribute:

var entry = system.newEntry();

entry.setProperty("inputFileName","myFileName");

// start AssemblyLine

var al = main.startAL ("myAssemblyLine", entry);

al.join (); // wait for al to finish

On the AssemblyLine side you have code in your Prolog, in the Before Connectors Initialized hook

(because you want your parameters to be used when the Connectors are initialized):

workEntry = task.getWork(); // gets the initial entry

var FileName = workEntry.getProperty("inputFileName");

// Set the relevant parameter of the (Connector)

myFileConnector.connector.setParam("filePath",FileName);

// If you don’t want the AssemblyLine to run with the intitial entry, clear it

task.setWork(null);

There are a couple of finer points here:

1. Clearing the work entry ensures that control is passed to the first Iterator. Do not clear any entries

that need to be processed. If there is a valid work entry when the AssemblyLine is initiated, then any

236 Reference Guide

Iterators in the AssemblyLine are bypassed for that work cycle, and processing starts at the first

non-Iterator. See ″Connector Modes″ in IBM Tivoli Directory Integrator 6.1.1: Users Guide for more

information.

2. Using properties instead of attributes ensures that the AssemblyLine does not map the attribute later

(automatically mapping all attributes).

EventHandler availability

The following EventHandlers are included in TDI:

v “Active Directory Changelog EventHandler” on page 239

v “Connector EventHandler” on page 243

v “DSMLv2 EventHandler” on page 245

v “Exchange Changelog EventHandler” on page 249

v “HTTP EventHandler” on page 253

v “IBM Directory Server EventHandler” on page 255

v “LDAP EventHandler” on page 259

v “LDAP Server EventHandler” on page 263

v “Mailbox EventHandler” on page 265

v “SNMP EventHandler” on page 267

v “TCP Port EventHandler” on page 269

v “Generic thread (primitive EventHandler)” on page 271

v “Timer EventHandler (primitive EventHandler)” on page 273

v “z/OS LDAP Changelog EventHandler” on page 275

Migration of Changelog EventHandlers

The EventHandler concept in IBM Tivoli Directory Integrator 6.1.1 is deprecated, and all ChangeLog

EventHandlers in particular may be removed in a future version of IBM Tivoli Directory Integrator.

Therefore, you might consider to migrate from deprecated Changelog EventHandlers to Changelog

Connectors. For each EventHandler a corresponding AssemblyLine must be created. Then an Iterator

Connector corresponding to the EventHandler must be inserted into the AssemblyLine “Feeds” section.

Then the Connector parameters must be set – this is specific for each EventHandler/Connector pair, but

generally the Connector parameters must be set the same values as the corresponding EventHandler

parameters (which usually have the same names).

Any processing performed in the EventHandler Action Map must be re-implemented in the

AssemblyLine “Flow” section. The functionality of the “enabled” EventHandler parameter (otherwise

known as “Auto-start service”) is also available for AssemblyLines. If you want your AssemblyLine to be

started right after the TDI Server is started, go to the Config/AutoStart folder in the Config Editor and

add your AssemblyLine.

For a more detailed description of how this is done for the Active Directory Changelog EventHandler, see

“Migration from Active Directory Changelog EventHandler to Active Directory Changelog (v.2)

Connector” on page 18.

Chapter 3. EventHandlers 237

238 Reference Guide

Active Directory Changelog EventHandler

The Active Directory Changelog EventHandler detects and sends notification of changes that occur in

Active Directory. It reports changed Active Directory objects so that other data sources can be

synchronized with Active Directory. The LDAP protocol is used both for registering for change

notification and retrieving changed objects.

The EventHandler uses internally the Active Directory Changelog Connector to get changed objects from

Active Directory. Changed objects retrieval is based on the uSNChanged mechanism.

See “Active Directory Changelog (v.2) Connector” on page 13 for details about the order of changes

retrieval, the structure of the delivered Entries, and specific details about handling deleted and moved

objects.

The EventHandler uses the LDAPv3 Server Notification request control to block until new changes occur

in Active Directory.

Behavior

When the EventHandler starts, it connects to Active Directory and retrieves all recent directory changes

that have happened while the EventHandler was offline. Then it blocks, waiting for a new change in

Active Directory - when this happens it retrieves all new changes, blocks again waiting for further

changes, and so on. There is no risk of losing notifications when the EventHandler is not running,

because each time it starts it retrieves the changes that it missed while offline.

The Active Directory Changelog EventHandler can be interrupted any time during the synchronization

process. It saves the state of the synchronization process in the User Property Store of theIBM Tivoli

Directory Integrator (after each Entry retrieval), and the next time the EventHandler is started it

successfully continues the synchronization from the point it was interrupted.

If the Active Directory goes offline, the EventHandler does not stop and tries to reconnect until it either

succeeds or a stop is requested.

Access to the USN synchronization values in the User Property Store

The state of synchronization at any time is represented by four update sequence number (USN) numbers:

v START_USN

v END_USN

v CURRENT_USN_CREATED

v CURRENT_USN_CHANGED

These values are packed and stored in the User Property Store. Do not change these values manually. You

might want to archive the numbers corresponding to a certain stage of synchronization and later use

these numbers to replay synchronization from that stage.

The following script code can be used in IBM Tivoli Directory Integrator to get USN values stored in the

User Property Store:

// Retrieve USN values from User Property Store

var usn = system.getPersistentObject("ad_sync");

var startUsn = usn.getString("START_USN");

var endUsn = usn.getString("END_USN");

var currentUsnCreated = usn.getString("CURRENT_USN_CREATED");

var currentUsnChanged = usn.getString("CURRENT_USN_CHANGED");

main.logmsg("START_USN: " + startUsn);

main.logmsg("END_USN: " + endUsn);

main.logmsg("CURRENT_USN_CREATED: " + currentUsnCreated);

main.logmsg("CURRENT_USN_CHANGED: " + currentUsnChanged);

Chapter 3. EventHandlers 239

"ad_sync" is the name of a parameter already stored in the User Property Store. The EventHandler

parameter Persistent Parameter Name specifies this value. The previous example dumps the values to

the screen, however, you might want to perform other actions, such as saving values in a file and backing

up this file.

The next example of script code shows how the USN values can be stored in the User Property Store:

// Store USN values in the User Property Store

var usn = system.newEntry();

usn.setAttribute("START_USN", startUsn);

usn.setAttribute("END_USN", endUsn);

usn.setAttribute("CURRENT_USN_CREATED", currentUsnCreated);

usn.setAttribute("CURRENT_USN_CHANGED", currentUsnChanged);

system.setPersistentObject("ad_sync", usn);

This code assumes that the variables startUsn, endUsn, currentUsnCreated and currentUsnChanged contain

the USN numbers as strings. This example saves the USN values under the "ad_sync" parameter, so

"ad_sync" must be specified in the EventHandler parameter Persistent Parameter Name to continue

synchronization from the desired point.

Access to the runtime EventHandler’s USN synchronization values

The Active Directory Changelog EventHandler provides the following public methods to access its

current USN values:

public Entry getUsnValues ();

Returns an Entry object with the following attributes:

v START_USN

v END_USN

v CURRENT_USN_CREATED

v CURRENT_USN_CHANGED

The value of each of the attributes is of type java.lang.Integer and represents the corresponding

EventHandler’s USN value.

public void setUsnValues (Entry usnEntry);

Sets the EventHandler’s current USN synchronization values to the values specified in the

usnEntry parameter. The structure of the usnEntry parameter must be the same as the structure

of the Entry returned by getUsnValues(). The values of the usnEntry attributes must be either

java.lang.Integer or the string representations of the corresponding numbers.

Note: Be careful when changing the USN values at runtime. Specifying inconsistent values can

result in improper synchronization.

Configuration

The EventHandler needs the following parameters:

LDAP URL

The LDAP URL of the Active Directory service you want to access. The LDAP URL has the form

ldap://hostname:port or ldap://server_IP_address:port. For example, ldap://localhost:389

Note: The default LDAP port number is 389. When using SSL the default LDAP port number is

636.

Login username

The distinguished name used for authentication to the service. For example,

cn=administrator,cn=users,dc=your_domain,dc=com.

Note: If you use Anonymous authentication, you must leave this parameter blank.

240 Reference Guide

Login password

The credentials (password).

Note: If you use Anonymous authentication, you must leave this parameter blank.

Authentication Method

The authentication method to be used. Possible values are:

v Anonymous (use no authentication)

v Simple (use weak authentication (cleartext password))

Use SSL

Specifies whether to use Secure Sockets Layer for LDAP communication with Active Directory.

LDAP Search Base

The Active Directory sub-tree that is polled for changes. For example, dc=your_domain,dc=com.

Note: This must be a Naming Context in the directory.

Persistent Parameter Name

Specifies the name of the parameter that stores the current synchronization state in the User

Property Store of the IBM Tivoli Directory Integrator. This must be a unique name for all

parameters stored in one instance of the IBM Tivoli Directory Integrator User Property Store.

Start at

Specifies either EOD or 0. EOD means report only changes that occur after the EventHandler is

started. 0 means perform full synchronization, that is, report all objects available in Active

Directory Service. This parameter is taken into account only when the parameter specified by the

Persistent Parameter Name parameter is not found in the User Property Store.

Detailed Log

Specifies whether more detailed debug information is written to the log file.

Auto-start Service

If this field is checked, this EventHandler is started when IBM Tivoli Directory Integrator is

started.

See also

“Migration of Changelog EventHandlers” on page 237.

Chapter 3. EventHandlers 241

242 Reference Guide

Connector EventHandler

This EventHandler uses any Connector as an input event generator. The EventHandler calls the

Connector’s getNext method to obtain the next entry from the Connector. When a Connector reaches end

of input, it returns null. This EventHandler continues to call the Connector’s input method even after the

Connector returns null. For some Connectors this can make sense whereas for others it does not.

For example, using the File System Connector makes sense because the file read by the Connector can

have data appended to it at any time. Connectors selecting a finite set of entries eventually run out of

entries and the EventHandler continues forever waiting for new data.

Configuration

This EventHandler needs the following parameters:

Global Connector

The Connector to use for input.

Poll Interval

The number of seconds between each call to the Connector after a NULL entry has been received

from the Connector.

Auto-start Service

If this field is checked, this EventHandler is started when IBM Tivoli Directory Integrator is

started.

Detailed Log

Specifies whether more detailed log information is written to the log file.

Objects/properties/attributes

The EventHandler sets the following event properties:

event.originator

The EventHandler object

event.connector

The Connector object used by this EventHandler

 The event object also contains any attribute returned by the Connector.

See also

″Starting the EventHandler″ in IBM Tivoli Directory Integrator 6.1.1: Administrator Guide.

Chapter 3. EventHandlers 243

244 Reference Guide

DSMLv2 EventHandler

The Directory Services Markup Language v1.0 (DSMLv1) enables the representation of directory

structural information as an XML document. DSMLv2 goes further, providing a method for expressing

directory queries and updates (and the results of these operations) as XML documents. DSMLv2

documents can be used in a variety of ways. IBM Tivoli Directory Integrator provides an EventHandler

which acts as a DSML server and listens to the DSMLv2 request over HTTP (optionally taking advantage

of secure communications by means of SSL). After it receives the request, it parses the request and sends

the request to an AssemblyLine to process. The result is sent back to the client over HTTP.

The DSMLv2 EventHandler is a simple Web server that provides a way to process a DSMLv2 request that

is transferred as HTTP body in an HTTP request message. The DSMLv2 EventHandler automatically

parses the client request into an event object and calls a user-defined AssemblyLine configured for the

operation of the request. This AssemblyLine often consists of one single Connector in the appropriate

mode. See “Configuration.” Also, the EventHandler implements HTTP basic authentication if an

authenticator Connector is specified.

Note: This DSML implementation does not comply fully with the DSMLv2 Specification. It supports

limited bindings and operations, and is expressly designed for usage with ITIM only.

An example DSMLv2 EventHandler can be found in the examples directory (<TDI_ installation

directory>\examples\event_handler_dsmlv2_http\DSML_EH_Test.xml).

Transportation (binding)

DSMLv2 requests and responses are transported over HTTP as HTTP body to or from the DSML Client

and the DSMLv2 EventHandler. SOAP and File bindings are not part of this EventHandler.

EventHandler Workflow

Here is how the EventHandler processes a DSMLv2 request:

1. The DSMLv2 EventHandler receives a batch DSML request as a single event.

2. Each individual request from the batch request is parsed by the DSMLv2 Parser into a single Entry

and fed to the AssemblyLine configured to process the operation type of that individual request

(search, modify, add, etc.).

3. Result Entry(ies) generated by an AssemblyLine is (are) parsed into individual DSMLv2 response

message which is accumulated.

4. When all individual requests are processed and the resulting DSML response messages are created, a

batch response message containing all individual response messages is returned by the EventHandler

to the client.

For RootDSE search requests, the EventHandler never initiates an AssemblyLine. It returns a list of Root

Naming Contexts that are configured.

The DSMLv2 EventHandler ignores and does not execute the ″Action Map″ workflow.

Operations

The DSMLv2 EventHandler uses internally the DSMLv2 Parser to parse and create DSML messages.

Therefore it supports the following DSML operations: Modify, Add, Delete, Search, ModifyDN and

Compare.

Configuration

The EventHandler needs the following parameters:

Chapter 3. EventHandlers 245

HTTP Port

The TCP port on which this Event Handler will be listening.

Auth Realm

The authentication realm sent to the client when requesting authentication.

Auth Connector

The authenticator Connector. If you specify a Connector, it must exist in your Connector library

and be configured for Lookup.

Note: Do not use any of the possible Hooks in the Auth Connector, as the Connector is called

internally by the EventHandler and is not executed in the context of an AssemblyLine; the

normal environment for Hooks does not apply.
This EventHandler issues authentication requests to any client (for example, Web browser) that

tries to access this service. When the client provides the username and password, the

EventHandler calls the authenticator Connector’s Lookup method providing the username and

password attributes. Therefore, your authenticator Connector must be configured using a Link

Criteria where you use the $username and $password. A typical link criteria might be:

username equals $username

password equals $password

If the search fails, the EventHandler denies the request and sends an authentication request back

to the client. If the search succeeds, the authentication is considered successful and your code in

the EventHandler is processed. You can access the username by retrieving the HTTP attribute or

property http.remote_user. You can access the entry returned by the authenticator Connector by

retrieving the event Property auth.entry, by using code similar to the following:

var auth = event.getProperty("auth.entry");

var fullName = auth.getString("FullName");

Headers As Properties

If this checkbox is checked, all HTTP headers are accessible using the getProperty method of the

event object. If not checked, all HTTP headers appear as attributes (for example, getAttribute).

Use SSL

Check this checkbox if you want to use SSL.

Note: In order to use SSL, you must generate your own certificate in your keystore (with

keytool). The client must import this certificate.

Chunked Transfer Coding

If this field is checked, the body of the response message is transferred as a series of chunks.

Note: The Chunked Transfer Coding is incompatible with ITIM.

Binary Attribute

This field is used to specify user-defined binary attributes. Each attribute is checked to determine

if it is a binary attribute. If it is a binary attribute, it is decoded before sending it to the

AssemblyLine and encoded (if it is not encoded already) before sending the response to the

client.

Naming Context

The root naming context to be associated with the set of operation AssemblyLines (specified

below). Value for the Distinguished Name (dn) in the request is used to match the proper Root

Naming Context. More than one naming context can be specified and each one has its own set of

AssemblyLines associated.

AssemblyLine for search

The name of the AssemblyLine to be used for a search operation for the selected Root Naming

Context. All Entries returned from the AssemblyLine’s iterations are accumulated and returned to

the client as multiple DSML search result entries.

246 Reference Guide

AssemblyLine for add

The name of the AssemblyLine to be used for an add operation for the selected Root Naming

Context.

AssemblyLine for modify

The name of the AssemblyLine to be used for a modify operation for the selected Root Naming

Context. If Update LDAP Connector is used to modify an entry in LDAP server, Link criteria

must be:

$dn equals $$dn

AssemblyLine for delete

The name of the AssemblyLine to be used for delete operation for the selected Root Naming

Context. The link criteria of a Delete LDAP Connector in the AssemblyLine must be:

$dn equals $$dn

AssemblyLine for compare

The name of the AssemblyLine to be used for a compare operation for the selected Root Naming

Context. The AssemblyLine does compare the value of the matching entry. If Lookup LDAP

Connector is used to compare, you can use the code similar to the following in the In

Prolog->Before Initialize hook:

name = work.getString("dsml.compare_name") + "";

value = work.getString("dsml.compare_value") + "";

and in the Data Flow->Overwrite Lookup hook:

if (compare_conn.connector.compare($dn,name,value))

 conn.setAttribute ("dsml.compare_result", "true");

else

 conn.setAttribute ("dsml.compare_result", "false");

AssemblyLine for modify DN

The name of the AssemblyLine to be used for a modifyDN operation for the selected Root

Naming Context. If Update LDAP Connector is used to modify the DN of an entry in LDAP

server, Link criteria must be:

$dn equals $$dn

In the Output Map, you add $dn to be modified.

Auto-start Service

If this checkbox is checked, this EventHandler is started when the IBM Tivoli Directory Integrator

Server instance is started.

Detailed Log

If this checkbox is checked, additional log messages are generated.

Comment

A comment for your own use.

Chapter 3. EventHandlers 247

248 Reference Guide

Exchange Changelog EventHandler

The Exchange Changelog EventHandler detects changes that occur in Exchange Directory Service and

notifies a user about these changes. It reports changed Exchange objects so that other data sources can be

synchronized with Exchange.

Note: The “Exchange Changelog EventHandler”is deprecated for this release, and will be removed in

future versions of TDI.

The LDAP protocol is used for retrieving changed objects.

The EventHandler uses the Exchange Changelog Connector internally to get changed objects from

Exchange Directory Service. Changed objects retrieval is based on the ″USN-Changed″ mechanism.

See “Exchange Changelog Connector” on page 71 for details about the order of changes retrieval,

structure of the delivered Entries, and specific details about handling deleted objects.

Notes:

1. Exchange Changelog EventHandler works with Exchange 5.5 only. If you are attempting to connect to

Exchange 2000, use the Active Directory Changelog EventHandler instead.

2. The Exchange 5.5 Service Pak 4 must be installed on the Exchange Server.

Behavior

When the EventHandler starts, it connects to Exchange Directory Service and retrieves all recent directory

changes that have happened while the EventHandler was offline. Then the EventHandler sleeps for a

configurable period of time, then it again polls Exchange for new changes, and so on.

Notifications are not lost when the EventHandler is not running. Each time the EventHandler is started, it

retrieves the changes that it missed while it was offline.

The Exchange Changelog EventHandler can be interrupted at any time during the synchronization

process. The EventHandler saves the state of the synchronization process in the User Property Store of

the IBM Tivoli Directory Integrator (after each Entry retrieval), and the next time that the EventHandler is

started, the EventHandler successfully continues the synchronization from the point when it was

interrupted.

In case Exchange goes offline the EventHandler does not stop and tries to reconnect until either it

succeeds or a stop is requested.

Access to the USN synchronization values in the User Property Store

The state of synchronization at any time is represented by four USN numbers:

v START_USN

v END_USN

v CURRENT_USN_CREATED

v CURRENT_USN_CHANGED

These values are packed and stored in the User Property Store. Do not change these values manually. You

might want to archive the numbers corresponding to a certain stage of synchronization and later use

these numbers to replay synchronization from that stage.

The following script code can be used in IBM Tivoli Directory Integrator to get USN values stored in the

User Property Store:

// Retrieve USN values from User Property Store

var usn = system.getPersistentObject("exchange_sync");

var startUsn = usn.getString("START_USN");

Chapter 3. EventHandlers 249

var endUsn = usn.getString("END_USN");

var currentUsnCreated = usn.getString("CURRENT_USN_CREATED");

var currentUsnChanged = usn.getString("CURRENT_USN_CHANGED");

main.logmsg("START_USN: " + startUsn);

main.logmsg("END_USN: " + endUsn);

main.logmsg("CURRENT_USN_CREATED: " + currentUsnCreated);

main.logmsg("CURRENT_USN_CHANGED: " + currentUsnChanged);

"exchange_sync" is the name of a parameter already stored in the User Property Store. The EventHandler

parameter Persistent Parameter Name specifies this value. The previous example dumps the values to

the screen, however, you might want to perform other actions such as saving values in a file and backing

up this file.

The next example of script code shows how the USN values can be stored in the User Property Store:

// Store USN values in the User Property Store

var usn = system.newEntry();

usn.setAttribute("START_USN", startUsn);

usn.setAttribute("END_USN", endUsn);

usn.setAttribute("CURRENT_USN_CREATED", currentUsnCreated);

usn.setAttribute("CURRENT_USN_CHANGED", currentUsnChanged);

system.setPersistentObject("exchange_sync", usn);

This code assumes that the variables startUsn, endUsn, currentUsnCreated and currentUsnChanged contain

the USN numbers as strings. This example saves the USN values under the "exchange_sync" parameter,

and so "exchange_sync" must be specified in the EventHandler’s Persistent Parameter Name parameter

to continue synchronization from the desired point.

Access to the runtime EventHandler’s USN synchronization values

The Exchange Changelog EventHandler provides the following public methods to access its current USN

values:

public Entry getUsnValues ();

Returns an Entry object with the following attributes:

v START_USN

v END_USN

v CURRENT_USN_CREATED

v CURRENT_USN_CHANGED

The value of each of the attributes is of type java.lang.Integer and represents the corresponding

EventHandler’s USN value.

public void setUsnValues (Entry usnEntry);

Sets the EventHandler’s current USN synchronization values to the values specified in the

usnEntry parameter. The structure of the usnEntry parameter should be the same as the structure

of the Entry returned by getUsnValues(). The values of the usnEntry attributes must be either

java.lang.Integer or the string representations of the corresponding numbers.

Note: Be careful when changing the USN values at runtime. Specifying inconsistent values can

result in improper synchronization.

Configuration

The EventHandler needs the following parameters:

LDAP URL

The LDAP URL of the Active Directory service you want to access. The LDAP URL has the form

ldap://hostname:port or ldap://server_IP_address:port. For example, ldap://localhost:389

250 Reference Guide

Note: The default LDAP port number is 389. When using SSL the default LDAP port number is

636.

Login username

The distinguished name used for authentication to the service. For example,

cn=administrator,ou=domain_name,o=organization_name.

Note: If you use Anonymous authentication, you must leave this parameter blank.

Login password

The credentials (password).

Note: If you use Anonymous authentication, you must leave this parameter blank.

Authentication Method

The authentication method to be used. Possible values are:

v Anonymous (use no authentication)

v Simple (use weak authentication (cleartext password))

Use SSL

Specifies whether to use Secure Sockets Layer for LDAP communication with Exchange Server.

LDAP Search Base

The specified Exchange sub-tree which is polled for changes. For example,

cn=recipients,ou=domain_name,o=organization_name.

Persistent Parameter Name

Specifies the name of the parameter that stores the current synchronization state in the User

Property Store of the IBM Tivoli Directory Integrator. This must be a unique name for all

parameters stored in one instance of the IBM Tivoli Directory Integrator User Property Store.

Start At

Specifies either EOD or 0. EOD means report only changes that occur after the EventHandler is

started. 0 means perform full synchronization, that is, report all objects available in Exchange

Directory Service. This parameter is taken into account only when the parameter specified by the

Persistent Parameter Name parameter is not found in the User Property Store.

″Is-Deleted″ Attribute visible

Specifies whether the Exchange server exposes the Is-Deleted object attribute through LDAP.

Note: If the server does expose the Is-Deleted attribute, but ″Is-Deleted″ Attribute visible is set

to false, then the EventHandler still works properly, but you can accelerate the

EventHandler by setting ″Is-Deleted″ Attribute visible to true. If the server does not

expose the Is-Deleted attribute, but ″Is-Deleted″ Attribute visible is set to true, then the

EventHandler cannot distinguish between a modified object and a deleted object and

reports all deletions as modify operations.

Sleep Interval

Specifies the number of seconds the EventHandler sleeps between successive polls for changes.

Detailed Log

Specifies whether detailed debug information is written to the log file.

Auto-start Service

If this field is checked, this EventHandler is started when IBM Tivoli Directory Integrator is

started.

See also

“Migration of Changelog EventHandlers” on page 237.

Chapter 3. EventHandlers 251

252 Reference Guide

HTTP EventHandler

The HTTP EventHandler is a simple Web server that provides a simpler way to deal with HTTP

connections than the TCP EventHandler. The HTTP EventHandler automatically parses the client request

into an event object using the HTTP Parser. In addition the EventHandler implements HTTP basic

authentication if you specify an authenticator Connector.

When dealing with events, the EventHandler forks new instances of itself, so the Prolog and Epilog are

started once for each HTTP event received.

To provide simple Web server functionality, you need to provide the http.body and http.content-type

attributes that the EventHandler returns as the response to a request. You can also add HTTP headers by

setting any http.* attribute. For example, setting the value for http.my-header causes this EventHandler to

generate a my-header: value in the response.

The http.body property can be set to any of the following

Any string (java.lang.String)

The string is sent ″as is″ in the request.

Any Input stream (java.io.InputStream)

The input stream is buffered into memory to compute the content-length HTTP header. The input

stream data is sent ″as is″ in the request.

A Java file object (java.io.File)

The content-length is generated by getting the file size from the file object. Then the contents of

the file is sent ″as is″ in the request.

Example

The following example returns any file the client requests:

var base = event.getProperty("http.base");

if (base == "/")

 base = "/index.html";

// Construct the full path

path = "/home/httpd/documents" + base;

// Construct the Java file object

file = new java.io.File (path);

// Set the response property

event.setProperty ("http.body", file);

Configuration

HTTP Port

The TCP port on which this handler is listening.

Auth Connector

The authenticator Connector. If you specify a Connector it must exist in your Connector library

and be configured for Lookup. This EventHandler issues authentication requests to any client (for

example, Web browser) that tries to access this service. When the client provides the username or

password, the EventHandler calls the authenticator Connector’s Lookup method providing the

username and password attributes. Therefore, your authenticator Connector must be configured

using a Link Criteria where you use the $username and $password. A typical link criteria might

be:

username equals $username

password equals $password

Chapter 3. EventHandlers 253

If the search fails, the EventHandler denies the request and sends an authentication request back

to the client. If the search succeeds, the request is granted and your code in the EventHandler is

executed. You can access the username by retrieving the HTTP attribute or property

http.remote_user. You can access the entry returned by the authenticator Connector by retrieving

the Property auth.entry, using code similar to the following:

var auth = event.getProperty("auth.entry");

var fullName = auth.getString("FullName");

Headers As Properties

If checked, all HTTP headers are accessible using the getProperty method of the event object. If

not, all HTTP headers appear as attributes (for example, getAttribute).

Use SSL

Check the checkbox if you want to use SSL.

Note: In order to use SSL, you must generate your own certificate in your keystore (with

keytool). The client must then import this certificate.

Comment

A comment for your own use.

Auto-start Service

If this field is checked, this EventHandler is started when IBM Tivoli Directory Integrator is

started.

Detailed Log

If this parameter is checked, more detailed log messages are generated.

See also

″EventHandler″ in IBM Tivoli Directory Integrator 6.1.1: Users Guide,

“HTTP Parser” on page 297.

254 Reference Guide

IBM Directory Server EventHandler

The IBM Directory Server EventHandler uses LDAP unsolicited event notifications to detect changes in

an LDAP directory. To use the IBM Directory Server EventHandler your LDAP server must support

LDAPv3 unsolicited notification events.

When the EventHandler starts, it connects to the LDAP server and retrieves all recent directory changes,

which have happened while the EventHandler was offline, and registers for receiving unsolicited event

notifications. When an event occurs in the LDAP directory, the EventHandler receives an unsolicited

notification event and retrieves the next changelog entry. This changelog entry is accessible as the event

entry object. The event entry object has the following attributes:

changenumber

The change number as assigned by the supplier. This integer must increase as new entries are

added, and always be unique within a given server.

 This attribute is Required.

targetdn

The distinguished name (DN) of the entry which was added, modified, or deleted; in the case of

a modrdn operation, the targetdn gives the DN of the entry before it was modified.

 This attribute is Required.

changetype

The type of change (add, delete, modify, or modrdn).

 This attribute is Required.

changes

The changes that were made to the directory server. These changes are in LDIF format; available

when changetype is either add or modify.

 This attribute is Optional.

newrdn

The new Relative Distinguished Name (RDN) of the entry. If the changeType is modrdn, or if the

changeType attribute does not have the modrdn value, then there are no values contained in the

newrdn attribute.

 This attribute is Optional.

deleteoldrdn

A flag which tells whether the old RDN of the entry must either be retained as a distinguished

attribute of the entry or be deleted.

 This attribute is Optional.

newsuperior

If present, it gives the name of the entry which becomes the immediate superior of the existing

entry.

 This attribute is Optional.

changetime

The time when the change was made.

 This attribute is Required.

modifiersname

The DN making the change.

 This attribute is Optional.

Chapter 3. EventHandlers 255

An important feature of the IBM Directory Server EventHandler is that notifications are not lost when the

EventHandler is not running or waiting for an action to complete, because each time it is invoked it

retrieves the changes that it has missed while being offline, and iterate through them, simulating the

reception of an event for every change.

Note: Even though the EventHandler will not miss any notifications as outlined above, some thought

needs to be given as to how much work is performed to process each event. Starting an

AssemblyLine to process a single change may not be a viable strategy in certain high volume

scenarios. In such a case, it may be better to base your solution upon using an LDAP ChangeLog

Connector.

Configuration

LDAP URL

The LDAP URL (ldap://hostname:port)

Login username

The distinguished name used for authentication to the server (for example, cn=root).

Note: This distinguished name must have administrator privileges because the EventHandler

must be able to read the changelog.

Login password

The credentials (password).

ChangeLog Search Base

The search base where the changelog is stored. The standard DN for this is cn=changelog.

Search Base

The base of the directory tree branch about which you want to be notified. Specify a

distinguished name. Some directories enable you to specify a blank string which defaults to

whatever the server is configured to do. Other directory services require this to be a valid

distinguished name in the directory.

Search Scope

The scope of events which you want to be notified about. Can be one of subtree, level and base.

ChangeNumber Filename

The name of the file where the last changenumber is stored. The file format is readable text. This

file is updated after each event notification.

InitialChangeNumber

If the file supplied in the ChangeNumber Filename parameter does not exist, the EventHandler

retrieves the changelog entries, starting from InitialChangeNumber.

Comment

A comment for your own use.

Authentication Method

The authentication method. Possible values are:

v MD5-CRAM (use CRAM-MD5 (RFC-2195))

v SASL (use SASL)

v Anonymous (use no authentication)

v Simple (use weak authentication (cleartext password))

If not specified, the default (Anonymous) is used. If either the Login username or Login

password parameter is blank, then Anonymous is used.

Use SSL

Specifies whether to use SSL for communication with the LDAP server.

256 Reference Guide

Auto-start Service

If this field is checked, this EventHandler is started when IBM Tivoli Directory Integrator is

started.

Detailed Log

If this parameter is checked, more detailed log messages are generated.

See also

″EventHandler″ in IBM Tivoli Directory Integrator 6.1.1: Administrator Guide,

“LDAP EventHandler” on page 259,

“Migration of Changelog EventHandlers” on page 237.

Chapter 3. EventHandlers 257

258 Reference Guide

LDAP EventHandler

This EventHandler uses the LDAP event notification mechanism to detect changes in an LDAP directory.

To use this EventHandler, your LDAP server must support Persistent Search. The only LDAP server

tested with this EventHandler is the Netscape/iPlanet/SunONE directory server (see the 133 for more

about iPlanet), but other LDAP servers may work as well.

Note: If you can base your change detection in your LDAP database upon reading a Changelog (using an

appropriate Changelog Connector) instead of relying upon the events signalled by the LDAP

database by means of the Persistent Search mechanism, your solution is much more robust. The

Persistent Search mechanism is very ephemeral: you only see changes if you are actually listening

while the changes occur. If the connection is down you miss them. A Changelog, on the other

hand, is backed by mass storage, and given the right System Change Number you can always pick

up processing from where you last stopped.

When the EventHandler starts, it connects to the LDAP server and specifies the selection criteria for event

notifications. All DNs returned from the EventHandler are relative to the search base specified. To

construct the full DN in a flexible way, you can append the search base to, for example, the new DN with

the following code in a custom script

event.setProperty("ldap.newdn", event.getProperty("ldap.newdn") +

 "," + task.getParam("ldapSearchBase"));

When an event occurs in the LDAP directory, the EventHandler sets the ldap.operation property to one

of the following values:

objAdded

A new entry was added to the directory.

objRenamed

An existing entry was renamed.

objModified

An existing entry’s attributes were modified.

objRemoved

An existing entry was removed.

handleError

An error was encountered.

 Depending on the ldap.operation, the EventHandler sets the following properties:

Object Added (_objAdded)

ldap.newdn

The new DN in case of a rename operation

ldap.newentry

The new entry with changes applied

Object Rename (_objRenamed)

ldap.dn

The old DN

ldap.newdn

The new DN

Chapter 3. EventHandlers 259

Object Modified (_objModified)

ldap.dn

The DN before the modify operation.

ldap.entry

The contents of the LDAP entry before the modify operation. This functionality is only available

for LDAP databases where a modification operation is done by first removing the object and then

recreating it with the modified attributes.

ldap.newdn

The DN after the modify operation.

ldap.newentry

The contents of the LDAP entry after the modify operation.

Object Removed (_objRemoved)

ldap.dn

The DN before the remove operation

ldap.entry

The contents of the LDAP entry before the remove operation

 The ldap.entry and ldap.newentry properties are instances of the Entry class so you can access these as

you normally do with conn and work objects in the AssemblyLine as shown in the following example:

 var old = event.getProperty ("ldap.entry");

 task.logmsg ("Old common name = " + old.getString("cn"));

Note: One important aspect of the LDAP EventHandler is that you can lose important notifications when

the EventHandler is not running. This EventHandler is best used when you want to trap changes

in a directory but still can tolerate loss of information.

Error Encountered (_handleError)

ldap.error

The java exception thrown by the EventHandler.

Note: iPlanet Directory 5.0 has changed the changelog to a proprietary format. Go to the following URL:

http://docs.iplanet.com/docs/manuals/

 directory/51/html/ag/replicat_new.htm#1)

You must install the Retro ChangeLog Plug-in for accessing the change log. The following is an

extract from the Change Log section of the iPlanet documentation:

″In iPlanet Directory Server 5.0, the format of the change log was modified. In earlier versions of

Directory Server, the change log was accessible over LDAP. Now, however, it is intended only for

internal use by the server. If you have applications that need to read the change log, you need to

use the Retro Change Log Plug-in for backward compatibility. For more information, refer to the

Retro Change Log Plug-In.″

Configuration

The EventHandler needs the following parameters:

LDAP URL

The LDAP URL for the connection (ldap://host:port).

Login username

The distinguished name used for authentication to the server.

260 Reference Guide

Login password

The credentials (password).

Search Base

The search base to be used when iterating the directory. Specify a distinguished name. Some

directories enable you to specify a blank string which defaults to whatever the server is

configured to do. Other directory services require this to be a valid distinguished name in the

directory.

Search Filter

The search filter to be used when iterating the directory.

Search Scope

This parameter is only used if the Connector is in Iterator mode. The possible values are:

subtree

Return entries on all levels from search base and below.

onelevel

Return entries that are immediately below searchbase only.

Comment

A comment for your own use.

Authentication Method

Type of LDAP authentication. Can be one of the following:

v Simple (using ldapUsername/ldapPassword). Treated as anonymous if username or password

are not provided)

v MD5-CRAM

v SASL

v Anonymous (treated as Simple if username and password are supplied)

Use SSL

If this is checked, use secure sockets layer for communication with the LDAP server.

Connector Flags

Flags to enable specific behavior.

 deleteEmptyStrings - This flag causes the Connector to remove attributes containing only an

empty string as value before updating the directory. If you are using an LDAP version 3 server,

use this flag, as the value of an attribute cannot be an empty string.

Auto-start Service

If this field is checked, this EventHandler is started when IBM Tivoli Directory Integrator is

started.

Detailed Log

If this parameter is checked, more detailed log messages are generated.

See also

″EventHandler″ in IBM Tivoli Directory Integrator 6.1.1: Users Guide,

“IBM Directory Server Changelog Connector” on page 97.

Chapter 3. EventHandlers 261

262 Reference Guide

LDAP Server EventHandler

The LDAP Server EventHandler accepts an LDAP connection request from an LDAP client. The LDAP

Server EventHandler generates a copy of itself to take care of this connection until the connection is

closed by the LDAP client. The LDAP Server EventHandler only terminates when the TCP connection is

closed. Each LDAP message received on the connection drives one cycle of the LDAP Server

EventHandler logic. The main thread returns to listening for similar LDAP requests from other LDAP

clients. The LDAP operation in the message is parsed into the LDAP Server EventHandler entry object.

The LDAP Server EventHandler code is executed, and the return message is built and sent back to the

client. If it was an LDAP search command, the user will call the add method to build the data structure

that is to be sent back to the client. The LDAP Server EventHandler goes back to listening for the next

LDAP command on the existing connection.

The value of the LDAP operation is provided in the LDAP.operation attribute in the LDAP Server

EventHandler work entry. Legal values are SEARCH, BIND, UNBIND, COMPARE, ADD, DELETE,

MODIFY, and MODIFYRDN. The LDAP message provides a number of attributes for the specified

LDAP operation. To facilitate scripting, the parser copies the LDAP message into the LDAP Server

EventHandler work object.

Scripting

The LDAP Server EventHandler must do work to determine the desired outcome of the LDAP message.

The code can reside in the LDAP Server EventHandler, or the LDAP Server EventHandler can start an

AssemblyLine to do the work. The basic LDAP operations (SEARCH, BIND, UNBIND, COMPARE,

ADD, DELETE, MODIFY, and MODIFYRDN) are provided as values in the LDAP Server EventHandler

scripting environment to facilitate scripting, for example, if LDAP.operation equals BIND. The user code

sends search result entries to the client by calling the add (entry) method in the LDAP Server

EventHandler. The entry must be formatted with legal LDAP attribute names plus the special attribute

$dn (the distinguished name of the entry).

Returning the LDAP message returned values

The user-provided code in the LDAP Server EventHandler responds to each request by setting the

ldap.status, ldap.matcheddn and ldap.errormessage entry attributes. ldap.matcheddn and

ldap.errormessage are optional.

At the end of the LDAP Server EventHandler execution cycle, the LDAP Server EventHandler formats

and returns some of the attributes of the work entry. These are:

v LDAP.status

v LDAP.errormessage

Note: Only string is supported. The resultCode is by default set to 0 (success). A resultCode indicating

anything other than successful must be specifically set by the user.

Error handling

The LDAP Server EventHandler terminates the connection and records an error if the received message

does not conform to the LDAP v3 format

Note: The LDAP Server EventHandler does not perform any validation on the incoming attributes. Any

operation or parameter value is therefore accepted.

Configuration

The EventHandler needs the following parameters:

LDAP Port

The TCP port on which this EventHandler listens.

Chapter 3. EventHandlers 263

Character Encoding

Specify the character set here. The default is UTF-8.

Binary Attributes

A list of attributes that are treated as binary (a binary attribute is returned as a byte array, not a

string). The format is one attribute name on each line.

Note: An AssemblyLine can have one list of binary attributes only. If you have several LDAP

Connectors in an AssemblyLine, the last Connector must define the list of binary attributes

for all the LDAP Connectors in this AssemblyLine (if you need to change this from the

default).

Comment

A comment for your own use.

Auto-start Service

If this field is checked, this EventHandler is started when IBM Tivoli Directory Integrator is

started.

Detailed Log

If this parameter is checked, more detailed log messages are generated.

Use SSL

If checked the server will only accept SSL connections.

Note: Depending on your solution implementation, you may need to change the port number as

well.

264 Reference Guide

Mailbox EventHandler

This EventHandler listens for changes in a mailbox. Depending on the protocol the handler either polls

the mailbox periodically by reconnecting to the mailbox (POP3) or periodically issues idle messages on

the connection (IMAP4).

Configuration

This EventHandler needs the following parameters:

Server Name

The mail server hosting the mailbox.

Protocol

Specify POP3 or IMAP.

Login Username

The user name.

Login Password

The password for Login Username.

Mail Folder

The mail folder to monitor. For POP3 this can only be INBOX. For IMAP4 servers this can be any

folder available on the server.

Poll Interval (seconds)

Number of seconds between each poll. Be aware that for POP3 this incurs a new connection each

time.

Auto-start Service

If this field is checked, this EventHandler is started when IBM Tivoli Directory Integrator is

started.

Detailed Log

If this parameter is checked, more detailed log messages are generated.

Objects/properties/attributes

The EventHandler sets the following event properties:

event.originator

The EventHandler object.

mailbox.session

The Java session object (javax.mail.Session).

mailbox.store

The message store object (javax.mail.Store).

mailbox.folder

The folder object (javax.mail.Folder).

mailbox.message

The message object (javax.mail.Message).

mailbox.operation

The operation related to mailbox.message. For pop3 connections only existing entries are reported.

For imap connections this property contains the value new or deleted.

mail.subject

The subject header from the mail.message.

mail.from

The from header from the mail.message.

Chapter 3. EventHandlers 265

mail.to

The first recipient in the mail.message.

Examples

Go to the root_directory/examples/event_handler_mailbox directory of your IBM Tivoli Directory

Integrator installation.

See also

″EventHandler″ in IBM Tivoli Directory Integrator 6.1.1: Users Guide.

266 Reference Guide

SNMP EventHandler

SNMP is a standard wire-level protocol used to query and set published attributes in remote systems.

Typically, it is used by a monitoring console to configure and get status information from a wide range of

SNMP-compliant systems.

Note: This implementation of the SNMP EventHandler supports protocols up to version 2.

The SNMP EventHandler receives UDP packages on a specified port, and returns an appropriately

formatted response to the originator. The implementation is non-blocking by default, meaning the SNMP

EventHandler spawns a copy of itself to perform the work while the main thread returns to listen for

further packets (the main thread can be set to blocking as well).

Setting the community string enables the SNMP EventHandler to ignore incoming SNMP requests that do

not contain this specific string. Leaving the community string blank results in all SNMP packets arriving

in the SNMP EventHandler.

The value of the SNMP operation is provided in the SNMP.operation attribute in the SNMP

EventHandler work entry. Legal values are GET, GETNEXT, SET and TRAP. A single SNMP message

can request an operation on multiple OIDs (OID is an address into a MIB structure, indicating a specific

variable or attribute to be read or modified in the target system). A GET can contain a list of OIDs, while

a SET can also include the corresponding values to be set for those variables in the target system.

However, most SNMP deployments use only one OID per SNMP message.

To facilitate scripting, the parser copies the OID table into two multi-valued attributes in the SNMP

EventHandler work object: SNMP.OID, containing the desired OID, and SNMP.OIDvalue, which

contains the corresponding value. OIDValue contains java.lang.Integer or java.lang.String values. After

parsing, the SNMP EventHandler work object contains the following:

v The community-string in SNMP.community

v The originating IP Address in SNMP.remoteIP

v The SNMP sequencing number in SNMP.requestId

v The attributes SNMP.errorcode (value set to 2) and SNMP.errorindex (value set to 0)

TRAP messages contain an additional set of values:

v SNMP.enterprise – OID for object-generating trap

v SNMP.agentAddress – address of object-generating trap

v SNMP.specificTrap, SNMP.genericTrap – has value when specificTrap = 6

v SNMP.timeTicks – time since last initialization of object-generating trap

Scripting the desired action

The SNMP EventHandler must do work to determine the desired outcome of the SNMP message. The

code can reside in the SNMP EventHandler, or the SNMP EventHandler can start an AssemblyLine to get

the work done.

The basic SNMP operations (GET, GETNEXT, SET and TRAP) are provided as values in the SNMP

EventHandler scripting environment to facilitate scripting, for example, if SNMP.operation equals GET.

By modifying the SNMP.OID and SNMP.OIDvalue attributes, you can build content that is sent back in

the return message. The return error code is manipulated by setting the value of the SNMP EventHandler

SNMP.errorcode attribute and SNMP.errorindex (the entry in the OID table that contains the error).

Chapter 3. EventHandlers 267

Error handling

SNMP supports return error codes that are part of the GET-RESPOND return message. Messages that do

not conform to the SNMP format are not processed by the SNMP EventHandler, but control is given to

the Epilog, where a user can add customized code:

v The default error code is 2, indicating that no work has been done. An error code 0 indicating success

must be specifically set by the user.

v Only standard SNMP-compliant error codes can be set by the user. The SNMP EventHandler

overwrites an error code with the value 5 (interpreted as other error) if the value is outside the

supported range before turning the message to the originator.

Returning the SNMP packet returned values

The SNMP EventHandler formats and returns some of the attributes of the work entry. These are:

v SNMP.OID

v SNMP.OIDValue

Note: Only string, integer and NULL are supported. java.lang.String is mapped to OctetString and

java.lang.Integer is mapped to integer.

v SNMP.errorcode

Note: The default value is 2. If the user tries to set SNMP.errorcode to something outside the range

0-5, SNMP.errorcode is set to 5 before being returned.

v SNMP.errorindex

Note: Set to the (zero-based) index in the OID table of the OID value that caused the error.

Note: According to the SNMP protocol, only one error can be reported. In case of multiple errors,

SNMP.errorindex must be the lowest index indicating an error. The user is responsible to set this

value correctly.

Configuration

This EventHandler needs the following parameters:

UDP Port

The SNMP default UDP port for get/set operations is 161, but is configurable. TRAPs are usually

received on port 162.

Verify Community

If set, discard all messages not matching this community string. If blank, enable all community

strings.

Multi threaded

Check to create a new thread for each event.

Auto-start Service

If this field is checked, this EventHandler is started when IBM Tivoli Directory Integrator is

started.

Detailed Log

If this field is checked, additional log messages are generated.

268 Reference Guide

TCP Port EventHandler

This EventHandler waits for incoming TCP connections on a specified port and spawns a new thread to

handle the incoming request. When the new thread has started, the original EventHandler goes back to

listening mode. When the newly created thread has completed, the thread stops and the TCP connection

is closed.

This EventHandler is forking, so the Prolog and Epilog are started once for each HTTP event received.

Note: The TCP Port EventHandler is deprecated for release 6.1.1 of IBM Tivoli Directory Integrator, and

will be removed in a future release. Build your solution using the TCP Server Connector instead.

Configuration

TCP Port

The TCP port on which to listen for incoming connections.

Auto-start Service

If this field is checked, this EventHandler is started when IBM Tivoli Directory Integrator is

started.

Detailed Log

If this parameter is checked, more detailed log messages are generated.

Objects/properties/attributes

The EventHandler sets the following event properties:

event.originator

The EventHandler object

event.inputstream

TCP socket input stream

event.outputstream

TCP socket output stream

tcp.remoteIP

Remote IP address (dot notation)

tcp.remotePort

Remote TCP port number

tcp.remoteHost

Remote hostname

tcp.localIP

Local IP address - dot notation

tcp.localPort

Local TCP port number

tcp.localHost

Local hostname

tcp.socket

TCP Socket object (java.net.Socket)

Examples

Go to the root_directory/examples/event_handler_tcp directory of your IBM Tivoli Directory Integrator

installation.

Chapter 3. EventHandlers 269

See also

″EventHandler″ in IBM Tivoli Directory Integrator 6.1.1: Users Guide.

270 Reference Guide

Generic thread (primitive EventHandler)

The generic thread is started at startup and continues to run as long as the script runs. The script can call

the task.sleep(milliseconds) to periodically perform its work.

Configuration

The port listener needs the following parameters:

Auto-start Service

If this field is checked, this EventHandler is started when IBM Tivoli Directory Integrator is

started.

Detailed Log

Specifies whether more detailed log information is written to the log file.

Script The script to run.

See also

“Mailbox EventHandler” on page 265.

Chapter 3. EventHandlers 271

272 Reference Guide

Timer EventHandler (primitive EventHandler)

The timer waits for a specified time, when it starts a script or starts an AssemblyLine. The script must be

provided by the administrator or user.

Configuration

This EventHandler needs the following parameters:

Auto-start Service

If this field is checked, this EventHandler is started when IBM Tivoli Directory Integrator is

started.

Schedule

This parameter decides when the EventHandler is run. The format is as follows:

<month> <day> <weekday> <hour> <minute>

The fields have numeric values:

v Month = 0 – 11 (January . . . December)

v Day = 1 – 31

v Weekday = 1 – 7 (Sunday . . . Saturday)

v Hour = 0 – 23

v Minute = 0 – 59

Fields are separated by white space. Enter ″*″ to specify any value. You can specify multiple

values for any field, separated by commas, but the values must be in ascending order.

 When the current time matches all the fields in the schedule, the specified AssemblyLine is run.

For example:

v * * 5 22 0 - Run every Thursday at 22:00 hours

v * 3 * 22 0 - Run every 3rd of each month at 22:00 hours

Notes:

1. The month field has values from 0 to 11, while day and weekday values begin at 1.

2. A common source of confusion is specifying both a day and a weekday. Both attributes must

match, meaning that this event does not occur often.

Run AssemblyLine

The AssemblyLine to start.

Detailed Log

If this parameter is checked, more detailed log messages are generated.

Script If specified, the script must contain a function called ontimer. This function is called with no

parameters whenever the time specified by the schedule parameter is reached, and then the

AssemblyLine is started. The schedule of the EventHandler can be modified through the timer

object. You reconfigure the timer by setting the schedule parameter from the ontimer function.

For example:

function ontimer()

{

timer.setParam ("schedule", "* * * 22 0");

}

Examples

Go to the root_directory/examples/event_handler_timer directory of your IBM Tivoli Directory Integrator

installation.

Chapter 3. EventHandlers 273

274 Reference Guide

z/OS LDAP Changelog EventHandler

The z/OS LDAP Changelog EventHandler iterates through the change records in the z/OS LDAP server

(RACF accessed through its LDAP interface). This EventHandler is very similar to the IBM Directory

Server EventHandler (see “IBM Directory Server EventHandler” on page 255). The difference is that this

EventHandler polls the changelog instead of using Unsolicited Event Notification.

Note: The z/OS LDAP Changelog EventHandler does not currently support Unsolicited Event

Notification.

The z/OS LDAP server creates change records when certain events happen in its LDAP Directory (add,

modify, delete, and so forth). This EventHandler is used to iterate through those change records and

initiate AssemblyLines as configured by the user.

Use this EventHandler as you might use the IBM Directory Server EventHandler. The z/OS LDAP

Changelog EventHandler can be used just as effectively with the IBM Directory Server instead of the

existing IBM Directory Server EventHandler.

Configuration

The EventHandler needs the following parameters:

LDAP URL

The URL to reach the z/OS LDAP server. This URL is in the format: ldap://hostname.domain:port

Login username

The DN to authenticate to the LDAP server.

Login password

The password to authenticate to the LDAP server (for Login username).

ChangeLog Search Base

The suffix used for changelog. In the case of z/OS, it is always cn=changelog (cn=changelog is

the default).

Search Base

The part of the directory tree that you are interested in changing. For example, if search base is

o=ibm,c=us, the EventHandler responds to all changes in the o=ibm,c=us tree, but not those in

o=ms,c=us.

Search Scope

The scope to use in conjunction with search base (the default is subtree). See previous example

(Search Base). If scope was set to baseObject, changes to the given object only are triggered.

ChangeNumber Filename

The file to store the last processed change number in (this is a plain text file).

InitialChangeNumber

If ChangeNumber Filename does not exist, this number is used as the starting point for the

changelog processing. If ChangeNumber Filename exists, this field is ignored.

PollInterval

The time (in seconds) that the EventHandler sleeps between successive polls to the changelog.

Comment

Write any comments you want.

Authentication Method

The type of authentication method to use for the LDAP connection.

Use SSL

Initiates SSL to the LDAP server (be sure to change port in LDAP URL).

Chapter 3. EventHandlers 275

Auto-start Service

Check this checkbox if you want this EventHandler to start automatically when the server starts.

Detailed Log

Turns on debug logging in the EventHandler.

Polling logic

Because the z/OS LDAP server does not currently support Event Notification, a polling mechanism is

used to check for new entries in the changelog.

When the EventHandler starts, it attempts to read the last processed change number from the file

specified in the configuration. If this file does not exist, the InitialChangeNumber as specified in the

Config ... panel is used.

A root DSE search is done to retrieve the lastchangenumber attribute. If the current changenumber (from

file or Config ...) is less than the lastchangenumber, then the EventHandler uses an LDAP Connector to

request the next sequential changenumber from z/OS LDAP.

If the entry described in that changelog entry fits within the search boundaries, the event is dispatched

and the changenumber is incremented. If the entry does not fit the search boundary, or the entry does

not exist, the changenumber is incremented and the entry is ignored.

This comparison against the lastchangenumber is continued until the changenumber is equal to the

lastchangenumber. When this condition is true, it means that the last changenumber in the system and

the EventHandler goes to sleep for the PollInterval as specified in the Config ... panel. After this interval

has passed, the root DSE is searched again for lastchangenumber and the cycle is repeated.

If at any time the lastchangenumber attribute is equal to 0, meaning that the changelog is empty, the

EventHandler sleeps for the PollInterval.

See also

“Migration of Changelog EventHandlers” on page 237.

276 Reference Guide

Chapter 4. Parsers

Parsers are used in conjunction with a transport Connector to interpret or generate the content that

travels over the Connector’s byte stream.

When the bytestream you are trying to parse is not in harmony with the chosen Parser, you get a

sun.io.MalformedInputException error. For example, the error message can show up when using the

Schema tab to browse a file.

Base Parsers

v “CSV Parser” on page 279

v “DSML Parser” on page 281

v “DSMLv2 Parser” on page 283

v “Fixed Parser” on page 295

v “HTTP Parser” on page 297

v “LDIF Parser” on page 301

v “Line Reader Parser” on page 303

v “Script Parser” on page 305

v “Simple Parser” on page 309

v “SOAP Parser” on page 311

v “XML Parser” on page 313

v “XML SAX Parser” on page 317

v “XSL based XML parser” on page 319

Character Encoding conversion

Java2 uses Unicode as its internal Character Encoding. When you work with strings and characters in

AssemblyLines and Connectors, they are always assumed to be in Unicode. Most Connectors provide

some means of Character Encoding conversion. When you read from text files on the local system, Java2

has already established a default Character Encoding conversion that is dependent on the platform you

are running.

The TDI Server has the -n command line option, which specifies the character set of Config files it will

use when writing new ones; it also embeds this character set designator in the file so that it can correctly

interpret the file when reading it back in later.

However, occasionally you read or write data from or to text files in which information is encoded in

different Character Encodings (this could happen if you are reading a file created on a machine running a

different operating system). The Connectors that require a Parser usually accept a characterSet parameter

in the Parser configuration. If set, this parameter must be set to one of the accepted conversion tables

found in the Java2 runtime, as governed by the IANA Charset Registry. If this parameter is not set, most

Parsers use the local character set. Some Parsers might have specific default character sets. See

information about individual Parsers in this chapter.

Availability

Please refer to the IANA Charset Registry (http://www.iana.org/assignments/character-sets).

A common character set on Windows computers is CP850; for i5/OS a common value is IBM037.

© Copyright IBM Corp. 2003, 2007 277

http://www.iana.org/assignments/character-sets

278 Reference Guide

CSV Parser

The Comma Separated Values (CSV) Parser reads and writes data in a CSV format.

Note: In the Config Editor, the parameters are set in the Parser tab of the File Connector. If you want to

use TAB as a Field Separator you need to specify \t, but when supplying Field Names you must

use the actual tab character between field names.

On output, multi-valued attributes only deliver their first value.

Configuration

The Parser has the following parameters:

Field Separator

Specifies the character used to separate each column. If not specified, the parser attempts to guess

when reading, and uses a comma when writing. You can use backslash (\) as the escape

character to specify non-printable characters. For example, (\t) denotes the TAB character.

Field Names

Specifies the name for each column the parser must read or write. If not specified, the parser

reads the first line and uses the value as field names. You can use the Field Separator between

the field names, or specify each name on a separate line.

Enable Quoting

On write, when this parameter is set to true, the field is output with quotes around it under the

same conditions as in previous versions, however, quotes inside a quoted field are now doubled.

Note: If Enable Quoting is set to false, the field is output as is, which can cause problems.

When reading, quotes around the field are stripped if this parameter is set to true, and the parser

is able to read quoted attributes containing the column separator. If this parameter is set to false,

the parser returns unexpected values when the input contains fields delimited by quotes.

Write Header

The default value for this parameter is true. If Write Header is set, the first line output by the

parser contains all the field names separated by the column separator.

Log long lines

Define a maximum number of bytes for a line. Linenumbers of lines longer than this maximum

number are logged.

Character Encoding

Character Encoding conversion. Also see “Character Encoding conversion” on page 277.

Detailed Log

If this field is checked, additional log messages are generated.

Chapter 4. Parsers 279

280 Reference Guide

DSML Parser

The DSML Parser reads and writes XML documents. The Parser silently ignores schema entries.

Configuration

The Parser has the following parameters:

DN Attribute

The attribute used for the distinguished name DSML attribute ($dn).

DSML prefix

Prefix used on XML elements to indicate that they belong to the DSML namespace. Default is

dsml.

DSML namespace URI

The URI which identifies this namespace. Default is http://www.dsml.org/DSML.

Omit XML Declaration

If checked, the XML declaration is omitted in the output stream.

Document Validation

If checked, this parser requests a DTD/Schema-validating parser.

Namespace Aware

If checked, this parser requests a namespace-aware parser.

Character Encoding

Character Encoding conversion.

Detailed Log

If this parameter is checked, more detailed log messages are generated.

Examples

The following example shows how you can generate DSML documents dynamically:

var dsml = system.getParser ("ibmdi.DSML");

var entry = system.newEntry();

entry.setAttribute ("$dn", "uid=johnd,o=doe.com");

entry.setAttribute ("mail", "john@doe.com");

entry.setAttribute ("uid", "johnd");

entry.setAttribute ("objectclass", "top");

entry.addAttributeValue ("objectclass", "person");

dsml.setOutputStream (new java.io.StringWriter());

// Uncomment if you dont want the "<?xml version= " header

// dsml.setOmitXMLDeclaration (true);

dsml.initParser();

dsml.writeEntry (entry);

dsml.closeParser();

var result = dsml.getXML();

task.logmsg (result);

The following example shows how you can read a DSML document using script:

var dsml = system.getParser ("ibmdi.DSML");

dsml.setInputStream (new java.io.FileInputStream("dirdata.dsml"));

dsml.initParser ();

var entry = dsml.readEntry();

while (entry != null) {

 task.dumpEntry (entry);

 entry = dsml.readEntry();

}

Chapter 4. Parsers 281

See also

“XML Parser” on page 313,

“SOAP Parser” on page 311,

“DSMLv2 Parser” on page 283.

282 Reference Guide

DSMLv2 Parser

The Directory Services Markup Language v1.0 (DSMLv1) enables the representation of directory

structural information as an XML document. DSMLv2 goes further, providing a method for expressing

directory queries and updates (and the results of these operations) as XML documents. DSMLv2

documents can be used in a variety of ways. IBM Tivoli Directory Integrator provides a Parser that can

parse and create DSMLv2 request and response messages.

An example can be found in the examples directory (<installation directory>\examples\
event_handler_dsmlv2_http\DSML_EH_Test.xml).

The DSMLv2 Parser is initialized with a DSMLv2 batch request or DSMLv2 batch response. Individual

calls to read or write Entries will result in parsing or creation of individual DSML requests or responses

(as parts of the batch request or response).

The Parser supports Delta tagging at the Entry level and the Attribute level. See also “Multiple Attribute

modifications” on page 290.

Modes

The DSMLv2 Parser operates either in Server or in Client mode:

v In Server mode the Parser reads/parses DSMLv2 requests and write/creates DSMLv2 responses

v In Client mode the Parser reads/parses DSMLv2 responses and writes/creates DSMLv2 requests.

Operations

The DSMLv2 Parser supports Modify, Add, Delete, Search, ModifyDN, Compare, Auth and Extended

operations.

 Attention: The following TDI 6.0 DSMLv2 Parser custom helper objects from the ITIM DSML library are

no longer supported:

v dsml.request – for all request operations.

v dsml.response – for all response operations.

If you have configurations using either of these Attributes, you must edit the configurations to remove

any reference to these Attributes. The data available through the raw request and response objects in

older versions are not available through the other Attributes delivered by the DSMLv2 Parser and

DSMLv2 EventHandler.

Modify Request

Entries with the following structure are parsed (on read) and created (on write) by the parser for Modify

Requests:

 Table 21.

Attribute Value

dsml.operation set to ″modifyRequest″

dsml.base holds the ″dn″ XML attribute of the DSML ″modifyRequest″ element

$dn holds the ″dn″ XML attribute of the DSML ″modifyRequest″ element

Additionally, for each modification item: a TDI attribute named as the ″name″ XML attribute of the

DSML ″modification″ element, with the values specified for the ″modification″ DSML element and TDI

attribute’s operation set as the ″operation″ XML attribute of the DSML ″modification″ element.

Modify Response

Entries with the following structure are parsed (on read) and created (on write) by the parser for Modify

Responses:

Chapter 4. Parsers 283

Table 22.

Attribute Value

dsml.operation modifyResponse

$dn holds the ″matchedDN″ XML attribute of the DSML ″modifyResponse″ element

dsml.resultcode holds the ″code″ XML attribute of the ″resultCode″ XML element of the DSML

response

dsml.resultdescr holds the ″descr″ XML attribute of the ″resultCode″ XML element of the DSML

response

dsml.error the presence of this attribute indicates an error condition and holds the value of

the ″errorMessage″ XML element of the DSML response

dsml.exception holds a javax.naming.NamingException object that is used to automatically fill in

the “code” and “descr” XML attributes of the “resultCode” XML element of the

DSML response; if this attribute is specified any values set to the

″dsml.resultcode″ and “dsml.resultdescr” Entry Attributes are ignored and

replaced with data retrieved through the exception object.

dsml.referral holds a vector containing all referral URIs of the DSML “addResponse” element

Search Request

Entries with the following structure are parsed (on read) and created (on write) by the parser for Search

Requests:

 Table 23.

Attribute Value

dsml.operation set to ″searchRequest″

$dn holds the ″matchedDN″ XML attribute of the DSML ″compareResponse″ element

dsml.base holds the ″dn″ XML attribute of the DSML ″searchRequest″ element

dsml.scope holds the value of the ″scope″ attribute of the DSML ″searchRequest″ element

dsml.filter the LDAP filter that corresponds to the ″filter″ element of the DSML request

dsml.attributes the value of this attribute is a Vector whose elements hold the names of the

attributes listed in the ″attributes″ element of the DSML request.

dsml.derefAliases holds the value of the “derefAliases” attribute of the DSML “searchRequest”

element

dsml.sizeLimit holds the value of the “sizeLimit” attribute of the DSML “searchRequest”

element

dsml.timeLimit holds the value of the “timeLimit” attribute of the DSML “searchRequest”

element

dsml.typesOnly holds the value of the “typesOnly” attribute of the DSML “searchRequest”

element

Search Response

Entries with the following structure are parsed (on read) and created (on write) by the parser for Search

Responses:

 Table 24.

Attribute Value

dsml.operation set to ″searchResponse″

$dn holds the ″matchedDN″ XML attribute of the DSML ″searchResultDone″ element

of the DSML response

284 Reference Guide

Table 24. (continued)

Attribute Value

dsml.resultcode holds the ″code″ XML attribute of the ″resultCode″ XML element of the DSML

response

dsml.resultdescr holds the ″descr″ XML attribute of the ″resultCode″ XML element of the DSML

response

resultEntries a multi-valued attribute, each of its values is a TDI Entry whose attributes

correspond to the ″attr″ elements of the corresponding ″searchResultEntry″

element.

dsml.error the presence of this attribute indicates an error condition and holds the value of

the ″errorMessage″ XML element of the DSML response

dsml.exception holds a javax.naming.NamingException object that is used to automatically fill in

the “code” and “descr” XML attributes of the “resultCode” XML element of the

DSML response; if this attribute is specified, any values set to the

″dsml.resultcode″ and “dsml.resultdescr” Entry Attributes are ignored and

replaced with data retrieved through the exception object.

Add Request

Entries with the following structure are parsed (on read) and created (on write) by the parser for Add

Requests:

 Table 25.

Attribute Value

dsml.operation set to ″addRequest″

dsml.base holds the ″dn″ XML attribute of the DSML ″addRequest″ element

$dn holds the ″dn″ XML attribute of the DSML ″addRequest″ element

Additionally, for each DSML attr element: a TDI Attribute named as the ″name″ XML attribute of the

DSML ″attr″ element and as values specified for the ″attr″ DSML element.

Add Response

Entries with the following structure are parsed (on read) and created (on write) by the parser for Add

Responses:

 Table 26.

Attribute Value

dsml.operation set to ″addResponse″

″$dn holds the ″matchedDN″ XML attribute of the DSML ″addResponse″ element

dsml.resultcode holds the ″code″ XML attribute of the ″resultCode″ XML element of the DSML

response

dsml.resultdescr holds the ″descr″ XML attribute of the ″resultCode″ XML element of the DSML

response

dsml.error the presence of this attribute indicates an error condition and holds the value of

the ″errorMessage″ XML element of the DSML response

dsml.exception holds a javax.naming.NamingException object that is used to automatically fill in

the “code” and “descr” XML attributes of the “resultCode” XML element of the

DSML response; if this attribute is specified, any values set to the

″dsml.resultcode″ and “dsml.resultdescr” Entry Attributes are ignored and

replaced with data retrieved through the exception object.

dsml.referral holds a vector containing all referral URIs of the DSML “addResponse” element

Chapter 4. Parsers 285

Delete Request

Entries with the following structure are parsed (on read) and created (on write) by the parser for Delete

Requests:

 Table 27.

Attribute Value

dsml.operation set to ″deleteRequest″

dsml.base holds the ″dn″ XML attribute of the DSML ″delRequest″ element

$dn holds the ″dn″ XML attribute of the DSML ″delRequest″ element

Delete Response

Entries with the following structure are parsed (on read) and created (on write) by the parser for Delete

Responses:

 Table 28.

Attribute Value

dsml.operation set to ″deleteResponse″

$dn holds the ″matchedDN″ XML attribute of the DSML ″delRequest″ element

dsml.resultcode holds the ″code″ XML attribute of the ″resultCode″ XML element of the DSML

response

dsml.resultdescr holds the ″descr″ XML attribute of the ″resultCode″ XML element of the DSML

response

dsml.error the presence of this attribute indicates an error condition and holds the value of

the ″errorMessage″ XML element of the DSML response

dsml.exception holds a javax.naming.NamingException object that is used to automatically fill in

the “code” and “descr” XML attributes of the “resultCode” XML element of the

DSML response; if this attribute is specified, any values set to the

″dsml.resultcode″ and “dsml.resultdescr” Entry Attributes are ignored and

replaced with data retrieved through the exception object.

dsml.referral holds a vector containing all referral URIs of the DSML “addResponse” element

ModifyDN Request

Entries with the following structure are parsed (on read) and created (on write) by the parser for

ModifyDN Requests:

 Table 29.

Attribute Value

dsml.operation set to ″modDnRequest"

dsml.base holds the ″dn″ XML attribute of the DSML ″modDNRequest″ element

$dn holds the ″dn″ XML attribute of the DSML ″modDNRequest″ element

newrdn holds the ″newrdn″ XML attribute of the DSML ″modDNRequest″ element

dsml.newSuperior holds the “newSuperior” XML attribute of the DSML “modDNRequest” element

dsml.deleteOldRDN holds the “deleteoldrdn″ XML attribute of the DSML “modDNRequest” element

ModifyDN Response

Entries with the following structure are parsed (on read) and created (on write) by the parser for

ModifyDN Responses:

286 Reference Guide

Table 30.

Attribute Value

dsml.operation set to ″modDnResponse"

$dn holds the ″matchedDN″ XML attribute of the DSML ″modDNResponse″ element

dsml.resultcode holds the ″code″ XML attribute of the ″resultCode″ XML element of the DSML

response

dsml.resultdescr holds the ″descr″ XML attribute of the ″resultCode″ XML element of the DSML

response

dsml.error the presence of this attribute indicates an error condition and holds the value of

the ″errorMessage″ XML element of the DSML response

dsml.exception holds a javax.naming.NamingException object that is used to automatically fill in

the “code” and “descr” XML attributes of the “resultCode” XML element of the

DSML response; if this attribute is specified, any values set to the

″dsml.resultcode″ and “dsml.resultdescr” Entry Attributes are ignored and

replaced with data retrieved through the exception object.

dsml.referral holds a vector containing all referral URIs of the DSML “addResponse” element

Compare Request

Entries with the following structure are parsed (on read) and created (on write) by the parser for

Compare Requests:

 Table 31.

Attribute Value

dsml.operation set to ″compareRequest″

dsml.base holds the ″dn″ XML attribute of the DSML ″compareRequest″ element

$dn holds the ″dn″ XML attribute of the DSML ″compareRequest″ element

dsml.compare_name holds the ″name″ XML attribute of the ″assertion″ element of the DSML request

dsml.compare_value holds the value of the ″assertion″ element of the DSML request

Compare Response

Entries with the following structure are parsed (on read) and created (on write) by the parser for

Compare Responses:

 Table 32.

Attribute Value

dsml.operation set to ″compareResponse″

$dn holds the ″matchedDN″ XML attribute of the DSML ″compareResponse″ element

dsml.compare_result either ″true″ of ″false″ depending on whether the compare found match or not.

When the Parser is used to create a DSML response, this attribute is required

and depending on its value the Parser sets the right result code value.

dsml.resultcode holds the ″code″ XML attribute of the ″resultCode″ XML element of the DSML

response

dsml.resultdescr holds the ″descr″ XML attribute of the ″resultCode″ XML element of the DSML

response

dsml.error the presence of this attribute indicates an error condition and holds the value of

the ″errorMessage″ XML element of the DSML response

Chapter 4. Parsers 287

Table 32. (continued)

Attribute Value

dsml.exception holds a javax.naming.NamingException object that is used to automatically fill in

the “code” and “descr” XML attributes of the “resultCode” XML element of the

DSML response; if this attribute is specified, any values set to the

″dsml.resultcode″ and “dsml.resultdescr” Entry Attributes are ignored and

replaced with data retrieved through the exception object.

dsml.referral holds a vector containing all referral URIs of the DSML “addResponse” element

Auth Request

Entries with the following structure are parsed (on read) and created (on write) by the parser for Auth

Requests:

 Table 33.

Attribute Value

dsml.operation set to ″authRequest″

dsml.principal holds the “principal” XML attribute of the DSML “authRequest” element

Auth Response

Entries with the following structure are parsed (on read) and created (on write) by the parser for Auth

Responses:

 Table 34.

Attribute Value

dsml.operation set to ″ authResponse″

$dn holds the “matchedDN” XML attribute of the DSML “authResponse” element

dsml.resultcode holds the “code” XML attribute of the “resultCode” XML element of the DSML

response

dsml.resultdescr holds the “descr” XML attribute of the “resultCode” XML element of the DSML

response

dsml.error the presence of this attribute indicates an error condition and holds the value of

the “errorMessage” XML element of the DSML response.

dsml.exception holds a javax.naming.NamingException object that is used to automatically fill in

the “code” and “descr” XML attributes of the “resultCode” XML element of the

DSML response; if this attribute is specified, any values set to the

″dsml.resultcode″ and “dsml.resultdescr” Entry Attributes are ignored and

replaced with data retrieved through the exception object.

dsml.referral holds a vector containing all referral URIs of the DSML “authResponse” element

Extended Request

Entries with the following structure are parsed (on read) and created (on write) by the parser for

Extended Requests:

 Table 35.

Attribute Value

dsml.operation set to ″extendedRequest″

dsml.extended.requestname holds the “requestName” XML attribute of the DSML “extendedRequest”

element

dsml.extended.requestvalue holds the “requestValue” XML attribute of the DSML “extendedRequest” element

288 Reference Guide

Extended Response

Entries with the following structure are parsed (on read) and created (on write) by the parser for

Extended Response:

 Table 36.

Attribute Value

dsml.operation set to ″extendedResponse″

$dn holds the “matchedDN” XML attribute of the DSML “extendedResponse”

element

dsml.resultcode holds the “code” XML attribute of the “resultCode” XML element of the DSML

response

dsml.resultdescr holds the “descr” XML attribute of the “resultCode” XML element of the DSML

response

dsml.error the presence of this attribute indicates an error condition and holds the value of

the “errorMessage” XML element of the DSML response

dsml.exception holds a javax.naming.NamingException object that is used to automatically fill in

the “code” and “descr” XML attributes of the “resultCode” XML element of the

DSML response; if this attribute is specified, any values set to the

″dsml.resultcode″ and “dsml.resultdescr” Entry Attributes are ignored and

replaced with data retrieved through the exception object.

dsml.referral holds a vector containing all referral URIs of the DSML “extendedResponse”

element

dsml.responseName holds the “responseName″ XML attribute of the DSML “extendedResponse”

element

dsml.response holds byte array containing string which represents the response from an

″extendedResponse″ operation

Binary and non-String Attributes

When parsing DSML messages, attributes tagged as binary by the Binary Attributes Parser parameter are

Base64 decoded, that is, the string value from the DSML message is Base64 decoded to Java byte array.

When creating DSML messages, all Attributes whose value is Java byte array are Base64 encoded to

String before being written in the DSML message.

If when creating a DSML message an Attribute is passed whose value’s type is neither String nor Java

byte array, the value is converted to String by calling the object’s ″toString()″ method and this String

value is written in the DSML message.

Optional Attributes

The following optional attributes, when present, are parsed (on read) and created (on write) by the parser

for all DSMLv2 Requests and Responses:

 Table 37.

Attribute Value

dsml.requestID corresponds to the DSMLv2 ″requestID″ attribute.

dsml.controls holds an array of raw ″com.ibm.dsml2.parser.Control″ objects and corresponds to

the ″control″ DSMLv2 elements.

Chapter 4. Parsers 289

Setting result code and result description

When setting the ″dsml.resultcode″ Attribute for DSML Response messages, allowed types are:

java.lang.Integer and java.lang.String containing an integer value as string. This value corresponds to the

integer ″code″ XML attribute of the ″resultCode″ DSML element and it is required by the DSMLv2

specification.

You can optionally set the ″dsml.resultdescr″ Attribute for DSML Response messages. This value

corresponds to the ″descr″ XML attribute of the ″resultCode″ DSML element. It is not required by the

DSMLv2 specification. When you assign a value to this attribute it is placed in the DSML response as is –

no validation of the value (which is an enumerated string is done) and no check is performed whether

this value corresponds to the mandatory integer ″dsml.resultcode″ Attribute.

The “code” and “descr” XML attributes of the “resultCode” DSML element can also be set through the

“dsml.exception” Entry Attribute for DSML Response messages. This attribute can only accept

javax.naming. NamingException objects. When “dsml.exception” attribute is set, the “code” and “descr”

XML attributes of the “resultCode” DSML element are overwritten with new values extracted from the

exception object. For example when the “dsml.exception” attribute is set to a

javax.naming.AuthenticationException object, the “code” attribute will be set to the LDAP code of “49”

and the “descr” attribute will be set to the LDAP description “inappropriateAuthentication”.

Multiple Attribute modifications

The DSMLv2 Parser (and LDIF Parser) does not support multiple modifications over a single Attribute –

the values from a modification are accumulated in the Attribute and the operation from the last

modification is set as the operation tag for the Attribute. Therefore, the Parsers need to merge the

modifications in a TDI Entry in such way that the resulting Attribute modification be equivalent to the

modifications for that Attribute in the modify operation. This can be achieved by using

Attribute.ATTRIBUTE_MOD – a TDI-specific tagging at the Attribute level and by using AttributeValue level

tagging - AttributeValue.AV_ADD, AttributeValue.AV_DELETE.

The following data flow rules will be used when accumulating modifications in a TDI Attribute object:

v On modification “Add” – the value(s) will be added with AttributeValue.AV_ADD to the Attribute; also

the Attribute will be tagged as Attribute.ATTRIBUTE_MOD unless it is already tagged as

Attribute.ATTRIBUTE_REPLACE

v If the Attribute is already tagged with Attribute.ATTRIBUTE_REPLACE in a previous modification this tag

will not be changed

v On modification “Delete” with value(s) – the value(s) will be added with AttributeValue.AV_DELETE to

the Attribute; also the Attribute will be tagged as Attribute.ATTRIBUTE_MOD unless it is already tagged

as Attribute.ATTRIBUTE_REPLACE; if the Attribute is tagged as Attribute.ATTRIBUTE_REPLACE for each

value in the “Delete” modification the value will be removed from the Attribute if that value is present

in the Attribute

v On modification “Delete” without values – the Attribute values from previous modifications will be

cleared and the Attribute will be tagged as Attribute.ATTRIBUTE_REPLACE

v On modification “Replace” – the Attribute values from previous modifications will be cleared and the

new ones will be added; also the Attribute will be tagged as Attribute.ATTRIBUTE_REPLACE.

Configuration

The Parser needs the following parameters:

Character Encoding

Specifies the XML character encoding; for example, UTF-8 or ASCII.

Mode Specifies whether the Parser operates in Server or in Client mode – possible values are “Server”

and “Client”. In “Server” mode requests are read and responses are written. In “Client” mode

requests are written and responses are read.

290 Reference Guide

Binary Attributes

 Specifies a comma delimited list of attributes that will be treated by the Parser as binary

attributes.

 The following attributes are specified as binary by default (but you can change this list):

v photo

v personalSignature

v audio

v jpegPhoto

v javaSerializedData

v thumbnailPhoto

v thumbnailLogo

v userPassword

v userCertificate

v authorityRevocationList

v certificateRevocationList

v crossCertificatePair

v x500UniqueIdentifier

v objectGUID

v objectSid

On Error

A BatchRequest element can contain the XML-attribute onError, which determines how the server

responds to failures while processing request elements. The valid values are: exit and resume.

The default value is exit.

Processing

Sets the value of the ″processing″ DSML attribute for Batch Requests.

Response Order

Influences how the server orders individual responses within the BatchResponse. The values of

this parameter are sequential and unordered. The default value is sequential. If the Response

Order value is set to sequential, the server must return a BatchResponse in which the individual

responses maintain a positional correspondence with the individual requests.

Omit XML Declaration

Determines whether XML declaration omitting is enabled or disabled. By default, this parameter

is disabled.

Indent Output

If checked, the output will be indented according to the depth of the statement lines. This is

cosmetic only; it has no bearing upon the semantic content of the output file.

Soap Binding

When turned on, the parser processed and creates SOAP DSML message. Otherwise the DSML

messages are not wrapped in SOAP.

Detailed Log

If checked, more detailed log messages will be generated.

Examples

Parsing a DSMLv2 AddRequest in Server mode

If the DSMLv2 Parser is configured to run in “server” (read) mode and is passed the following DSMLv2

request:

Chapter 4. Parsers 291

<batchRequest onError="exit" processing="sequential"

 responseOrder="sequential" xmlns="urn:oasis:names:tc:DSML:2:0:core"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <addRequest requestID = "3" dn="cn=chavdar kovachev,o=ibm,c=us">

 <attr name="objectclass">

 <value>person</value>

 </attr>

 <attr name="telephoneNumber">

 <value>555</value>

 </attr>

 <attr name="sn">

 <value>kovachev</value>

 </attr>

 <attr name="cn">

 <value>chavdar kovachev</value>

 </attr>

 </addRequest>

</batchRequest>

it will generate an Entry object with the following Attributes:

v sn: ’kovachev’

v $dn: ’cn=chavdar kovachev,o=ibm,c=us’

v telephoneNumber: ’555’

v objectclass: ’person’

v dsml.operation: ’addRequest’

v dsml.requestID: ’3’

v cn: ’chavdar kovachev’

v dsml.base: ’cn=chavdar kovachev,o=ibm,c=us’

Creating a DSMLv2 SearchRequest in Client mode

If the DSMLv2 Parser is configured to run in “client” (write) mode and is passed an Entry with the

following Attributes:

v dsml.derefAliases: ’neverDerefAliases’

v dsml.sizeLimit: ’0’

v dsml.operation: ’searchRequest’

v dsml.timeLimit: ’0’

v dsml.typesOnly: ’false’

v dsml.requestID: ’7’

v dsml.attributes: ’[cn, sn]’

v dsml.scope: ’wholeSubtree’

v dsml.base: ’o=ibm,c=us’

v dsml.filter: ’(sn=*)’

it will generate the following DSMLv2 request:

<?xml version="1.0" encoding="UTF-8"?>

<batchRequest onError="exit" processing="sequential"

 responseOrder="sequential" xmlns="urn:oasis:names:tc:DSML:2:0:core"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <searchRequest requestID="7" derefAliases="neverDerefAliases"

 dn="o=ibm,c=us" scope="wholeSubtree" sizeLimit="0"

 timeLimit="0" typesOnly="false">

 <filter>

 <present name="sn"/>

 </filter>

 <attributes>

292 Reference Guide

<attribute name="cn"/>

 <attribute name="sn"/>

 </attributes>

 </searchRequest>

</batchRequest>

Chapter 4. Parsers 293

294 Reference Guide

Fixed Parser

The Fixed Parser reads and writes fixed length text records.

Configuration

The Parser has the following parameters:

Column Description

This multi-line parameter specifies each field name, the offset and length. For example:

field1, 1, 12

field2, 13, 4

field3, 17, 3

Trim values

Trim leading or trailing spaces for input fields.

Character Encoding

Character Encoding conversion.

Detailed Log

If this field is checked, additional log messages are generated.

Chapter 4. Parsers 295

296 Reference Guide

HTTP Parser

The HTTP Parser interprets a byte stream according to the HTTP specification. This Parser is used by the

HTTP Client Connector and by the HTTP Server Connector.

Configuration

The Parser has the following parameters:

Headers As Properties

If set, the header values are get as Properties and set as Properties. If not set, the header values

are read as attributes and returned as attributes.

Client Mode

If set, the parser operates in client mode. If not set, the parser operates in server mode.

Character Encoding

Character Encoding conversion.

Detailed Log

If this parameter is checked, more detailed log messages are generated.

Attributes or properties

When constructing a page, depending on the value of Headers As Properties, the Parser uses these

attributes or properties, where relevant, to construct the header. When reading a page, the Parser parses

the header to fill in these attributes or properties where possible.

http.method

The HTTP method when sending this information in client mode (default is GET). This attribute

or property is returned in server mode. See http://www.w3.org/Protocols/HTTP/Methods.html

for more information about HTTP methods.

http.url

The URL to use. This attribute or property is mandatory in client mode.

http.content-type

The content type for the returned http.body (if any). If this is set to application/x-www-form-
urlencoded, the http.body is also parsed for more headers. The default value when writing

(when http.body contains something), is text/plain.

http.responseCode

The HTTP response code as an Integer object. Read in client mode.

http.responseMsg

The HTTP response message as a String object. Read in client mode.

http.content-encoding

The encoding of the returned http.body (if any)

http.content-length

The number of bytes in http.body. This attribute or property is returned when reading, and

ignored when writing. It is recomputed by the Parser.

http.body

When reading, depending of the content-type of the data, this object is an instance of

java.lang.StringBuffer, a char[] or a byte[] that contains the returned body. When the content is a

StringBuffer, you can use code such as the following:

var body = conn.getObject ("http.body");

task.logmsg ("Returned text: " + body.toString());

Chapter 4. Parsers 297

See ″Using binary values in scripting″ in IBM Tivoli Directory Integrator 6.1.1: Users Guide for

information about handling a char[] or byte[]. When writing, http.body must contain either an

instance of java.io.File, in which case that file is used as the body, or some text that is used as the

body.

http.text-body

When reading, if the http.content-type starts with the sequence text/, the Connector assumes the

body is textual data and reads the http.body stream object into this attribute.

http.redirect

When this attribute or property has a value, and the user is writing and in server mode, redirect

message pointing to the value of this attribute or property is sent.

http.status

Used when writing in server mode. The default is OK. Some possible values are:

v OK or 200 OK- Returns a 200 OK response.

v FORBIDDEN or 401 Forbidden- Attempts to authenticate using the http.auth-realm attribute

or property.

v NOT FOUND or 404 File Not Found - Returns a 404 File Not Found response.

http.auth-realm

Used when requesting additional authentication. The default value is IBM-Directory-Integrator.

http.authorization

Contains the authorization read in server mode. It is probably easier to use http.remote_user and

http.remote_pass.

http.remote_user

The username returned when reading in server mode, or the username to use when writing in

client mode.

http.remote_pass

The password returned when reading in server mode, or the password to use when writing in

client mode.

http.base

The base URL. Returned when reading in server mode.

http.qs.*

Parts of the query string when reading in server mode. The key is the part of the name after

http.qs.

 The value is contained in the attribute or property.

http.* All other attributes or properties beginning with http. are used to generate a header line when

writing. When reading, headers are put into attributes or properties with a name beginning with

http., and continuing with the name of the header.

Character sets/Encoding

Character set when reading

The default character encoding when reading is iso-8859–1. This encoding is overridden by the Character

Encoding parameter in the config pane for this Connector; and this characterSet parameter is overridden

in turn by a header of the type ″Content-type: text/plain; charset=iso-8859–1″. For optimum

performance and compatibility, this header should be present.

Character set when sending

The default character encoding when reading is iso-8859–1. This encoding is overridden by the Character

Encoding parameter in the config pane for this Connector. When sending a text message, the Entry to

298 Reference Guide

send should contain an attribute with the name ″http.content-type″, having a text value of the form

″Content-type: text/plain; charset=iso-8859-1″. The defaults will be used only if this attribute is not

present .

 If the http.body attribute is a java.io.File object, that file will be sent as is, no character conversion will be

performed

See also

“HTTP Client Connector” on page 83,

“HTTP Server Connector” on page 91.

Chapter 4. Parsers 299

300 Reference Guide

LDIF Parser

The LDIF Parser reads and writes LDIF style data. The LDIF Parser is usually used to do file exchange

with an LDAP directory.

The LDIF Parser correctly parses and writes MIME BASE64 encoded strings: it tries to perform BASE64

encoding if necessary. One such situation is where there are trailing spaces after attribute values: To make

sure another LDIF Parser gets the space, it encodes the attribute as BASE64.

Note: A conforming LDIF file must always have Character Encoding set to UTF-8. The Character

Encoding parameter is also applied when encoding or decoding BASE64 encoded strings.

BASE64 encoding looks like garbled text if you do not know how to decode it.

This Parser handles/provides tags compatible with Delta Tagging at the Entry level, the Attribute level

and the Attribute Value level. Delta tagging at the Attribute level is handled as in the DSMLv2 Parser, see

“Multiple Attribute modifications” on page 290.

Configuration

The Parser has the following parameters:

DN Attribute Name

The attribute name to use.

Version Number

Displays a version attribute in the beginning of the output if checked. This parameter is On by

default.

Note: LDIF parser can now suppress the LDIF version number by using the Version Number

parameter.

Binary Attributes

If you need to specify additional attributes to be treated as binary (a binary attribute is returned

as a byte array, not a string), specify them in this parameter. By default, the following attributes

are treated as binary:

v photo

v personalSignature

v audio

v jpegPhoto

v javaSerializedData

v thumbnailPhoto

v thumbnailLogo

v userPassword

v userCertificate

v authorityRevocationList

v certificateRevocationList

v crossCertificatePair

v x500UniqueIdentifier

v objectGUID

v objectSid

Character Encoding

Character Encoding conversion.

Chapter 4. Parsers 301

Detailed Log

If this parameter is checked, more detailed log messages are generated.

See also

http://www.ietf.org/rfc/rfc2849.txt

302 Reference Guide

http://www.ietf.org/rfc/rfc2849.txt

Line Reader Parser

The Line Reader Parser reads single lines of data. The line read is returned in a single attribute. There is

also an attribute named linenumber that contains the line number, starting with 1.

Note: Use the Line Reader Parser if you want to copy a text file only. If you want to copy a binary file,

see the FTP Object “Example” on page 437 for an example of how not to copy a binary file.

The Line Reader Parser is useful when reading text files only.

Configuration

The Parser has the following parameters:

Attribute Name

Specifies the name of the attribute that contains the line. Default is line.

Character Encoding

Character Encoding conversion.

Detailed Log

If this parameter is checked, more detailed log messages are generated.

Chapter 4. Parsers 303

304 Reference Guide

Script Parser

The Script Parser enables you to write your own Parser using JavaScript.

To operate, a Script Parser must implement a few functions. The functions do not use parameters. Passing

data between the hosting Connector and the script is done by using predefined objects. One of these

predefined objects is the result object which is used to communicate status information. Upon entry into

either function, the status field is set to normal which causes the hosting Parser to continue calls.

Signaling end-of-input or errors is done by setting the status and message fields in this object. The entry

object is populated on calls to writeEntry and is expected to be populated in the readEntry function.

When reading entries you have the inp BufferedReader object available for reading character data from a

stream. When writing entries you have the out BufferedWriter object available for writing character data

to a stream.

You can add your own parameters to the configuration and obtain these by using the Parser object.

Objects

The following objects are the only ones accessible to the script Parser:

The result object

setStatus

code

v 0 - End of Input

v 1 - Status OK

v 2 - Error

setMessage

text

The entry object

addAttributeValue (name, value)

Adds a value to an attribute.

getAttribute (name)

Returns the named attribute.

 A complete list of available methods, including parameters and return values, can be found in the

Javadocs (root_directory/docs/api/com/ibm/di).

The inp object

read() Returns next character from stream.

readLine()

Returns next CRLF-stopped line from the input stream.

The out object

write (str)

Writes a string to the output stream.

writeln (str)

Writes a string followed by CRLF to the output stream.

The Parser object

getParam(str)

Returns the parameter value associated with parameter name str

Chapter 4. Parsers 305

setParam(str, value)

Sets the parameter str to value value

logmsg(str)

Writes the parameter str in the log file

 A complete list of methods can be found in the installation package.

The Connector object

For more information, see the Javadocs material included in the installation package.

Functions (methods)

The Parser should supply the following functions, where relevant for the intended usage in IBM Tivoli

Directory Integrator:

readEntry()

Read the next logical entry from the input stream and populate the entry object. This function is

not required for Parsers called in add_only situations only.

writeEntry()

Write the contents of the entry object to the output stream. This function is not required for

Parsers that are only used for reading.

closeParser ()

The closeParser function, if implemented, will be called when Connector.close is called. For

example:

function closeParser ()

{

 task.logmsg("CLOSE CALLED.");

}

flush()

The flush function will be called if the Parser’s flush is called via the connector.getParser().flush(

) method. Implementing these methods in effect overrides the Parser’s methods. For example:

function flush ()

{

 task.logmsg("FLUSH CALLED.");

}

Configuration

The Parser has the following parameters:

Script Language

Choose an available script language from the list.

External Files

If you want to include external script files at runtime, specify them here, one file on each line.

These files are run before your script.

Include Global Scripts

Include scripts from the Script Library.

Character Encoding

Character Encoding conversion.

Detailed Log

If this parameter is checked, more detailed log messages are generated.

Script The user-defined script to run.

306 Reference Guide

Note: When you use a Script Connector or Parser, the script is copied from the Library where it resides

and into your configuration file. This has the advantage that you can customize the script, but with

the disadvantage that new versions are not known to your AssemblyLine.

To work around this disadvantage, remove the old Script Parser from the AssemblyLine and

re-introduce it. Remember to copy over code from your hooks.

Example

Go to the root_directory/examples/script_parser directory of your IBM Tivoli Directory Integrator

installation.

See also

“Script Connector” on page 201,

“Scripted FC” on page 345

″JavaScript Parser″ in IBM Tivoli Directory Integrator 6.1.1: Users Guide.

Chapter 4. Parsers 307

308 Reference Guide

Simple Parser

The Simple Parser reads and writes entries. The format is lines with attributename:value pairs, where

attributename is the name of the attribute, and value is the value.

Multi-valued attributes use multiple lines. Lines with a single period mark the end of an entry. \r and \n

in the value is an encoding of CR and LF.

Configuration

The Parser has the following parameters:

Character Encoding

Character Encoding conversion.

Detailed Log

If this parameter is checked, more detailed log messages are generated.

Chapter 4. Parsers 309

310 Reference Guide

SOAP Parser

The SOAP Parser reads and writes SOAP XML documents. The Parser converts SOAP XML documents to

or from entry objects in a simple, straightforward fashion. When writing the XML document, the Parser

uses attributes from the entry to build the document. The SOAP_CALL attribute is expected to contain

the value for the SOAP call. Similarly, when reading, this attribute is set to reflect the first tag following

the SOAP-ENV:Body tag. Then, for each attribute in the entry, a tag with that name and value is created.

When reading the document, each tag under the SOAP_CALL tag translates to an attribute in the entry

object.

Note: When working with the WebServices EventHandler and Connector, you must avoid starting

attribute names with special characters (such as [0-9] [- ’ () + , . / = ? ; ! * # @ $ %]). Also, you

must avoid having attribute names that include special characters (such as [’ () + , / = ?; ! * # @ $

%]). This is because WebServices builds on SOAP, which is XML. XML does not accept $ as in

tags.

The following examples show an entry and a SOAP XML document as they are read or written.

Example Entry

*** Begin Entry Dump

 SOAP_CALL: ’updateLDAP’

 mail: (’john@doe.com)’

 uid: ’johnd’

*** End Entry Dump

Example SOAP document

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="(http://schemas.xmlsoap.org/soap/envelope/)"

 xmlns:xsi="(http://www.w3.org/1999/XMLSchema-instance)"

 xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>

<ns1:updateLDAP xmlns:ns1="" SOAP-ENV:encodingStyle=

 "http://schemas.xmlsoap.org/soap/encoding/">

<uid xsi:type="xsd:string">johnd</uid>

<mail xsi:type="xsd:string">john@doe.com</mail>

</ns1:updateLDAP>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Configuration

The Parser has the following parameters:

Omit XML Declaration

Omit the XML declaration header in the output stream.

Document Validation

Request a DTD/XSchema-validating XML parser.

Namespace Aware

Request a namespace-aware XML parser.

Character Encoding

Character Encoding conversion.

Detailed Log

If this parameter is checked, more detailed log messages are generated.

Chapter 4. Parsers 311

Parser-specific calls

You can access the SOAP Parser from your script by dynamically loading the Parser and calling the

methods to read or write SOAP documents. The following example shows how to generate the XML

document from an entry:

var e = system.newEntry();

e.setAttribute ("soap_call", "updateLDAP");

e.setAttribute ("uid", "johnd");

e.setAttribute ("mail", "(john@doe.com)");

// Retrieve the XML document as a string

var soap = system.getParser ("ibmdi.SOAP");

soap.initParser();

var soapxml = soap.getXML (e);

task.logmsg ("SOAP XML Document");

task.logmsg (soapxml);

// Write to a file

var soap = system.getParser("ibmdi.SOAP");

soap.setOutputStream (new java.io.FileOutputStream("mysoap.xml"));

soap.writeEntry (e);

soap.close();

// Read from file

soap.setInputStream (new java.io.FileInputStream ("mysoap.xml"));

var entry = soap.readEntry();

// Read from string (from soapxml generated above)

var entry = soap.parseRequest(soapxml);

task.dumpEntry (entry);

Examples

Go to the root_directory/examples/soap directory of your IBM Tivoli Directory Integrator installation.

312 Reference Guide

XML Parser

The XML Parser reads and writes XML documents. This Parser uses the Apache Xerces and Xalan

libraries. The Parser gives access to XML document through a script object called xmldom. The xmldom

object is an instance of the org.w3c.dom.Document interface. Refer to http://java.sun.com/xml/jaxp-
1.0.1/docs/api/index.html for a complete description of this interface.

You can also use the XPathAPI (http://xml.apache.org/xalan-j/apidocs/index.html and Access Java

Classes in your Scripts) to search and select nodes from the XML document. selectNodeList, a

convenience method in the system object, can be used to select a subset from the XML document.

When the Connector is initialized, the XML Parser tries to perform Document Type Definition (DTD)

verification if a DTD tag is present.

Use the Connector’s override functions to interpret or generate the XML document yourself. Create the

necessary script in either the Override GetNext or GetNext Successful in your AssemblyLine’s hook

definitions. If you do not override, the Parser reads or writes a very simple XML document that mimics

the entry object model. The default Parser only permits you to read or write XML files two levels deep. It

will also read multi-valued attributes, although only one of the multi-value attributes will be shown

when browsing the data in the Schema tab.

Note that certain methods, such as setAttribute are available in both the IBM Tivoli Directory Integrator

entry and the objects returned by xmldom.createElement. These functions have the same name or

signature. Do not confuse the xmldom objects with the IBM Tivoli Directory Integrator objects.

Notes:

1. If you read large (greater than 4MB) or write large (greater than 14MB) XML files, your Java VM may

run out of memory. Refer to ″Increasing the memory available to the Virtual Machine″ in IBM Tivoli

Directory Integrator 6.1.1: Users Guide for a solution to this. Alternatively, use the “XML SAX Parser” on

page 317.

2. The Parser silently ignores empty entries.

3. When reading a CDATA attribute, no blank space is trimmed from the value. However, blank space is

trimmed from attributes that are not CDATA.

4. Certain characters, such as $, are illegal in XML tags. Avoid these characters in your attribute names

when using the XML Parser because these characters might create illegal XML.

5. When reading from an LDAP directory or an LDIF file, the distinguished name (DN) is typically

returned in an attribute named $dn. If you map this attribute without changing the name into an

XML file, it fails because $dn is not a legal tag in an XML document. If you do explicit mapping, you

must change ″$dn″ to ″dn″ (or something without a special character) in your output Connector. If

you do implicit mapping, for example, * or Automatically map all attributes checked in the

AssemblyLine Settings (through the Config . . . tab of the AssemblyLine), you can configure the

XML Parser to translate the distinguished name (for example, $dn) to a different name. For example,

you can add something like this in the Before GetNext Hook:

conn.setAttribute("dn", work.getAttribute("$dn"));

conn.removeAttribute("$dn");

6. The implementation of XML used in IBM Tivoli Directory Integrator uses the DOM model, which

means it is memory based. The whole tree must be contained in memory for it to be valid. This is not

a problem in regards to Connectors utilizing the XML Parser in Iterator mode, except possibly for the

fact that you could run out of memory if the input file is large. During normal operation as well as

restart the Parser reads the whole tree into memory but still skips to the correct entry if so instructed

by the Checkpoint/Restart framework at restart.

Configuration

The Parser has the following parameters:

Chapter 4. Parsers 313

http://java.sun.com/xml/jaxp-1.0.1/docs/api/index.html
http://java.sun.com/xml/jaxp-1.0.1/docs/api/index.html

Root Tag

The root tag (output).

Entry Tag

The entry tag for entries (output).

Value Tag

The value tag for entry attributes (output).

Character Encoding

Character Encoding conversion.

Omit XML Declaration

If checked, the XML declaration is omitted in the output stream.

Document Validation

If checked, this parser requests a DTD/Schema-validating parser.

Namespace Aware

If checked, this parser requests a namespace-aware parser.

Indent Output

If this field is checked, then the output is indented.

Note: If this text is to be processed by a program (and not meant for human interpretation) you

most likely will want to deselect this parameter. This way, no unnecessary spaces or

newlines will be inserted in the output.

Detailed Log

If this parameter is checked, more detailed log messages are generated.

Character Encoding in the XML Parser

The default and recommended Character Encoding to use when deploying the XML Parser is UTF-8. This

will preserve data integrity of your XML data in most cases. When you are forced to use a different

encoding, the Parser will handle the various encodings in the following way:

v When reading a file, the encoding specified in the XML header of the file is used. If no encoding is

specified there, then the encoding specified in the parser config is used. If stilll no encoding is

specified, then UTF-8 is used.

v On output, the Parser will write an XML header specifying the character encoding. This will be the

encoding specified in the Parser config. If nothing is specified there, UTF-8 will be used.

Examples

Override Add hook:

var root = xmldom.getDocumentElement();

var entry = xmldom.createElement ("entry");

var names = work.getAttributeNames();

for (i = 0; i < names.length; i++) {

 xmlNode = xmldom.createElement ("attribute");

 xmlNode.setAttribute ("name", names[i]);

 xmlNode.appendChild (xmldom.createTextNode (work.getString(

 names[i])));

 entry.appendChild (xmlNode);

}

root.appendChild (entry);

After Selection hook:

//

// Set up variables for "override getnext" hook

//

314 Reference Guide

var root = xmldom.getDocumentElement();

var list = system.selectNodeList (root, "//Entry");

var counter = 0;

Override GetNext hook

//

// Note that the Iterator hooks are NOT called when we override the

 getnext function

// Initialization done in After Select Entries hook

var nxt = list.item (counter);

if (nxt != null) {

 var ch = nxt.getFirstChild();

 while (ch != null) {

 var child = ch.getFirstChild();

 while (child != null) {

 // Use the grandchild’s value if it exist, to be able to

 read multivalue attributes

 grandchild = child.getFirstChild();

 if (grandchild != null)

 nodeValue = grandchild.getNodeValue();

 else nodeValue = child.getNodeValue();

 // Ignore strings containing newlines, they are just fillers

 if (nodeValue != null && nodeValue.indexOf(’\n’)

 == -1) {

 work.addAttributeValue (ch.getNodeName(), nodeValue);

 }

 child = child.getNextSibling();

 }

 ch = ch.getNextSibling();

 }

 result.setStatus (1); // Not end of input yet

 counter++;

} else {

 result.setStatus (0); // Signal end of input

}

The previous example parses files containing entries that look like the following:

<DocRoot>

 <Entry>

 <firstName>John</firstName>

 <lastName>Doe</lastName>

 <title>Engineer</title>

 </Entry>

 <Entry>

 <firstName>Al</firstName>

 <lastName">Bundy</lastName>

 <title">Shoe salesman</title>

 </Entry>

</DocRoot>

Suppose instead that the input looks like the following:

<DocRoot>

 <Entry>

 <field name="firstName">John</field>

 <field name="lastName">Doe</field>

 <field name="title">Engineer</field>

 </Entry>

 <Entry>

 <field name="firstName">Al</field>

Chapter 4. Parsers 315

<field name="lastName">Bundy</field>

 <field name="title">Shoe salesman</field>

 </Entry>

</DocRoot>

Here the attribute names can be retrieved from attributes of the field node, and this code is used in the

Override GetNext Hook:

var nxt = list.item (counter);

if (nxt != null) {

 var ch = nxt.getFirstChild();

 while (ch != null) {

 if(String(ch.getNodeName()) == "field") {

 attrName = ch.getAttributes().item(0).getNodeValue();

 nodeValue = ch.getFirstChild().getNodeValue();

 work.addAttributeValue (attrName, nodeValue);

 }

 ch = ch.getNextSibling();

 }

 result.setStatus (1); // Not end of input yet

 counter++;

} else {

 result.setStatus (0); // Signal end of input

}

This example package demonstrates how the base XML Parser functionality can be extended to read XML

more than two levels deep, by using the Override GetNext and Override Add hooks.

Additional Examples

Go to the root_directory/examples/xmlparser directory of your IBM Tivoli Directory Integrator.

See also

“XML SAX Parser” on page 317,

“XSL based XML parser” on page 319,

“SOAP Parser” on page 311,

“DSML Parser” on page 281.

316 Reference Guide

XML SAX Parser

The XML SAX Parser is based on the Apache Xerces library. It is used for reading large sized XML

documents that the DOM based XML parser won’t be able to handle because of memory constraints. It

extracts data enclosed within the ’Group tag’ supplied in the configuration and creates an Entry with the

attributes present in the data. You can specify multiple group tags by separating each tag name with a

comma. This will cause the SAX parser to break on any the tags specified. When specifying multiple

group tags the SAX parser will use a first-in-win approach where the group tag that was first

encountered will be tag that closes the group. As an example, if you have A and B as group tags and the

document has a structure where B is a child of A, then A will be the tag closing the entry (as A is found

before B and thus takes precedence).

Once a group tag has been found, then any nested occurrence of group tags will have no effect on the

current Entry.

If no group tags have been defined, the entire XML document will be returned as a single Entry.

The entry attribute name is composed of surrounding tag names with ″@″ as the separator. For example,

consider the following XML file -

<?xml version="1.0" encoding="UTF-8"?>

<DocRoot>

 <Entry>

 <Company>

 <Name incorporated="yes">IBM Corporation</Name>

 <Country>USA</Country>

 </Company>

 </Entry>

 <Entry>

 <Company>

 <Name incorporated="no">Smith Brothers</Name>

 <Country>USA</Country>

 </Company>

 </Entry>

</DocRoot>

Using ″Entry″ as the GroupTag, the above XML document would yield two entries as follows -

Entry 1

Attribute name: DocRoot@Entry@Company@Name

Attribute value: IBM Corporation

Attribute name: DocRoot@Entry@Company@Name#incorporated

Attribute value: yes

Attribute name:DocRoot@Entry@Company@Country

Attribute value: USA

Entry 2

Attribute name: DocRoot@Entry@Company@Name#incorporated

Attribute value: Smith Brothers

Attribute name: DocRoot@Entry@Company@Name#incorporated

Attribute value: no

Attribute name:DocRoot@Entry@Company@Country

Attribute value: USA

The attribute name may be shortened by specifying a ’Remove Prefix’ value in the configuration. For

example, a ’Remove Prefix’ value of ″DocRoot@Entry@Company″ in the above example will result in the

Entry containing attributes like -

Attribute name: Name

Attribute value: IBM Corporation

Attribute name: Name#incorporated

Chapter 4. Parsers 317

Attribute value: yes

Attribute name: Country

Attribute value: USA

...

When the Connector is initialized, the XML Parser tries to perform Document Type Definition (DTD)

verification if a DTD tag is present. The parser will read multi-valued attributes, although only one of the

multi-value attributes will be shown when browsing the data in the Schema tab.

If the XML file has nested entry tags, all Entry tags enclosed within the outermost Entry tag, will be

treated as normal XML tags. For example,

<entry>

 <entry>

 <company>IBM</company>

 </entry>

</entry>

Here the entry will contain the following attribute:

attribute name: entry@entry@company

attribute value: IBM

Configuration

Group Tag

XML Group tag name(s) that encloses entries. Specify multiple tags by separating each tag name

with a comma; or use the root tag if this parameter is not specified (and the entire XML

document will be returned as a single Entry).

Remove prefix

Specify the prefix to remove from the attribute names.

Ignore attributes

Asks the parser to ignore attributes of the group tag and its children.

Character Encoding

The character set to observe when reading; the default is UTF-8.

Document Validation

Checking this field, requests the validation of the file on basis of the DTD/XSchema used.

Namespace Aware

Checking this field, requests a namespace aware XML parser.

Read Timeout

The time in seconds, after which the parser stops if no data is received.

Detailed Log

If this field is checked, additional log messages are generated.

See also

“XML Parser” on page 313,

“XSL based XML parser” on page 319.

318 Reference Guide

XSL based XML parser

Introduction

The XSL based XML DOM Parser enables TDI to parse XML documents in any format using the XSL

supplied by the user, into attribute value pairs, stored in the entry object. The XSL based parser is

required to facilitate reading of any kind of XML format. Particularly, when the user needs only a specific

chunk of the XML he can write an XSL for picking the required chunk. The parser will create an

in-memory parse tree to represent the input XML and the TDI internal format. The XSL transforms the

DOM Document generated from input XML, and produces an output DOM for the TDI internal format. It

uses the javax transformation libraries to carry out transformations.

Configuration

The XSL based DOM XML Parser provides the following parameters:

Use input XSL file

Check box to indicate whether to use input XSL file or use the XSL keyed in (in the Input XSL

field)

Input XSL File Name

The input XSL file that contains template matching rules for transforming user XML to TDI

internal format

Input XSL

Editable area to allow the user to key in or paste the entire input XSL.

Use output XSL file

Check box to indicate whether to use output XSL file or use the XSL keyed in (in the Output XSL

field).

Output XSL File Name

The output XSL file that has template matching rules for transforming TDI internal format back

to user XML

Output XSL

Editable area to allow the user to key in or paste the entire output XSL.

Character Encoding

The character encoding to use when reading or writing; the default is UTF-8.

Omit XML Declaration

If checked, omit XML declaration header in output stream.

Document validation

if checked, request a DTD/XSchema validating XML parser.

Namespace aware

If checked, request a namespace aware XML parser.

Indent Output

If checked, causes the output to be neatly indented, improving human readability. If your output

is going to be processed by another program, this option is best left off.

Detailed log

Specifies whether detailed debug information is written to the log.

Using the Parser

The parser can be used with the Filesystem Connector in Iterator or AddOnly mode. The XSL based DOM

XML parser requires the user to specify:

v The input XSL file (when used in a Filesystem Connector in Iterator mode): to transform XML to TDI

internal format.

Chapter 4. Parsers 319

v The output XSL file (when used in a Filesystem connector in AddOnly mode): to transform TDI

internal format back to the original format.

In an XSL transformation, an XSLT processor reads both an XML document and an XSLT style sheet.

Based on the instructions the processor finds in the XSLT style sheet, it outputs a new XML document or

fragment thereof. The parser will do the basic validation of the XSL files for authenticity. The parser also

has optional Document and namespace validation of the file supplied by the Connector. The parser can

be used in conjunction with the filesystem connector. The parser will support reading as well as writing,

in the sense that XML files can be read and written to in a format specified by the respective XSL. The

following optional validations are provided:

v Document validation

v Namespace aware

TDI Internal Format

<DocRoot>

 <Entry>

 <attribute_name>

 <value_tag>attribute_value</value_tag>

 <value_tag>attribute_value</value_tag>

 <value_tag>attribute_value</value_tag>

 </ attribute_name>

 <attribute_name>

 <value_tag>attribute_value</value_tag>

 </ attribute_name>

 -

 -

 -

 </Entry>

 <Entry>

 -

 -

 -

 </Entry>

 -

</DocRoot>

Example

Input XML: birds.XML

<?XML version="1.0" encoding="UTF-8"?>

<Class>

<Order Name="TINAMIFORMES">

 <Family Name="TINAMIDAE">

 <Species Scientific_Name="Tinamus major"> Great Tinamou.</Species>

 <Species Scientific_Name="Nothocercus">Highland Tinamou.</Species>

 <Species Scientific_Name="Crypturellus soui">Little Tinamou.</Species>

 <Species Scientific_Name="Crypturellus cinnamomeus">Thicket Tinamou.</Species>

 <Species Scientific_Name="Crypturellus boucardi">Slaty-breasted Tinamou.</Species>

 <Species Scientific_Name="Crypturellus kerriae">Choco Tinamou.</Species>

 </Family>

 </Order>

<Order Name="GAVIIFORMES">

 <Family Name="GAVIIDAE">

 <Species Scientific_Name="Gavia stellata">Red-throated Loon.</Species>

 <Species Scientific_Name="Gavia arctica">Arctic Loon.</Species>

 <Species Scientific_Name="Gavia pacifica">Pacific Loon.</Species>

 <Species Scientific_Name="Gavia immer">Common Loon.</Species>

 <Species Scientific_Name="Gavia adamsii">Yellow-billed Loon.</Species>

 </Family>

 </Order>

</Class>

320 Reference Guide

Input XSL: birds.XSL

<?XML version="1.0" ?>

<XSL:stylesheet xmlns:XSL="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <XSL:output method="XML" indent="yes" />

<XSL:template match="Class">

 <DocRoot>

 <XSL:for-each select="Order">

 <XSL:variable name="order"><XSL:value-of select="@Name" />

 </XSL:variable>

 <XSL:for-each select="Family">

 <Entry>

 <Attribute name="Order">

 <Value><XSL:value-of select="$order" /></Value>

 </Attribute>

 < Attribute name="Family">

 <Value><XSL:value-of select="@Name" /></Value>

 </Attribute>

 <Attribute name="Species">

 <XSL:for-each select="Species">

 <Value><XSL:value-of select="." /></Value>

 </XSL:for-each>

 </Attribute>

 </Entry>

 </XSL:for-each>

 </XSL:for-each>

 </DocRoot>

</XSL:template>

</XSL:stylesheet>

 birds.xsl transforms birds.xml to TDI internal format from entry object with attribute value pairs, can be

formed.

See also

“XML Parser” on page 313

The XML Bible (the chapter on XSL)

http://www.ibiblio.org/xml/books/bible2/chapters/ch17.html

W3C Document Object Model

http://www.w3.org/DOM/

Effective XML processing with DOM and XPath in Java

http://www-106.ibm.com/developerworks/XML/library/x-domjava/

XSL Transformation using Xalan and Java

http://www.perfectxml.com/vip1.asp

Chapter 4. Parsers 321

http://www.ibiblio.org/xml/books/bible2/chapters/ch17.html
http://www.w3.org/DOM/
http://www-106.ibm.com/developerworks/XML/library/x-domjava/
http://www.perfectxml.com/vip1.asp

322 Reference Guide

User-defined parsers

In addition to the parsers already provided with the installation of IBM Tivoli Directory Integrator, you

can write your own parsers and add them to the system.

One example of a user-defined parser, capable of parsing Regular Expressions, is provided in the

Examples directory. Go to the root_directory/examples/regexp_parser directory of your IBM Tivoli

Directory Integrator installation. This particular example was written in Java.

Another example of a user-defined parser can be found in root_directory/examples/script_parser, which

shows how to write a parser using scripting. See ″JavaScript Parser″ in the IBM Tivoli Directory Integrator

6.1.1: Users Guide for a further explanation of this example.

Chapter 4. Parsers 323

324 Reference Guide

Chapter 5. Function Components

Function Components (FC) are, besides of Connectors, EventHandlers and Parsers, another type of

building block that make up the IBM Tivoli Directory Integrator. Function Components are similar in

scope to a Connector, with the difference that the latter are datasource specific whereas a Function

Component is not. Rather, it is an AssemblyLine Component that facilitates wrapping of custom logic and

external methods, and may present a user friendly ″connector-like″ user interface in the Configuration

Editor (CE).

Also, a Function Component is modeless; that is, in order to configure a Function Component in your

AssemblyLine you don’t have to specify in which mode it is supposed to operate. It will do its work in

the perform() method whenever it is called by the AssemblyLine.

Many of the components described below provide the means to build a complete (both client-side and

server-side) web service solution in the modular TDI web service architecture.

The Function Components provided with the IBM Tivoli Directory Integrator 6.1.1 are:

v “AssemblyLine FC” on page 339

v “Axis EasyInvoke Soap WS FC” on page 367

v “Axis Java To Soap FC” on page 355

v “Axis Soap To Java FC” on page 365

v “Castor Java to XML FC” on page 327

v “Castor XML to Java FC” on page 329

v “CBE Generator Function Component” on page 347

v “Complex Types Generator FC” on page 371

v “Function Component For SAP R/3” on page 385

v “InvokeSoap WS FC” on page 361

v “Java Class Function Component” on page 341

v “Memory Queue FC” on page 353

v “Parser FC” on page 343

v “Remote Command Line FC” on page 373

v “Scripted FC” on page 345

v “SendEMail Function Component” on page 351

v “WrapSoap FC” on page 359

v “XMLToSDO FC” on page 331

v “SDOToXML FC” on page 335

v “z/OS TSO/E Command Line FC” on page 377

© Copyright IBM Corp. 2003, 2007 325

326 Reference Guide

Castor Java to XML FC

Processing complex and custom data types is often a requirement for various XML solutions, for example

Web Services.

The existence of a self-contained Java-to-XML and XML-to-Java binding functionality in the IBM Tivoli

Directory Integrator provides the ability to process complex/custom data types independently of a Web

Service toolkit. In particular this means that there is an option to deal with possible binding limitations of

various Web Service toolkits.

Castor Overview

Castor is an open source data binding framework providing access to the data defined in an XML

document through an object data model.

Castor can marshal almost any ″bean-like″ Java object to and from XML. The process of

marshalling/unmarshalling can use Castor’s default introspection model (an implementation based on

Java reflection where Castor decides how to marshal and unmarshal data), but this process can also be

controlled and customized by the use of Castor XML Mapping Files that define mapping rules.

From an IBM Tivoli Directory Integrator perspective, you can create XML Mapping Files and specify how

custom data is mapped to and from XML.

With Castor you can process an XML document not specially designed for Castor by skipping parts of

the XML you are not interested in. A limitation here is that Castor cannot skip an XML node and process

a node belonging to the subtree of the skipped node. This limitation is a serious inconvenience when you

want to extract random parts of a big and complex XML document (cases which might be expected in the

real world) – that is why the IBM Tivoli Directory Integrator Castor Function Components provide the

ability to specify certain parts of the XML through XPath queries.

The CastorJavaToXML Function Component uses Castor 0.9.5.4. Documentation and information for the

Castor library can be obtained from the Castor project web site: http://www.castor.org/

Configuration

Parameters

Castor Mapping File

An XML Mapping File (as defined by the Castor syntax) that defines how Java or Entry objects

are serialized into XML.

 The mapping file as specified by this parameter should always include the mapping rules defined

in the ″TDI_installation_directory/jars/functions/di_castor_mapping.xml″ file. This means that

either you must specify ″jars/functions/di_castor_mapping.xml″ as value of this parameter or

make sure that the mapping file specified contains these rules (for example by using Castor’s

″include″ clause to include ″di_castor_mapping.xml″ rules in another mapping file).

XML Root Element

The name of the root element of the generated XML; if left empty the root element is named

″Entry″.

Use Attribute Names

If this is checked, the names of the Attributes are used as XML element names, otherwise the

XML elements are named as specified in the Mapping File. This parameter is only taken into

account in Entry mode.

Return XML as

This drop-down list specifies the return type - only taken into account when the input object is

not an object of type Entry. Valid values are String and DOMelement.

Chapter 5. Function Components 327

http://www.castor.org

Detailed Log

Check to generate additional log messages.

Comment

Your own comments go here.

Using the FC

The CastorJavaToXML Function Component creates an XML document from a Java object or an Entry

object.

This Function Component can operate both with Entry objects and with custom Java objects.

When the Function Component is passed an Entry object on input, it will return an Entry object. This

mode of operation is called Entry mode.

When passed a Java object which is not an Entry object, the Function Component will serialize the object

passed using Castor serialization and this will be the result XML. This mode of operation is called

non-Entry mode.

Entry mode

v In Entry mode each Attribute of the Entry passed on input is marshalled and placed under the root of

the resulting XML element.

v If the Return XML as parameter is set to DOMelement the resulting Entry contains one attribute

named ″xmlDOMElement″ and its value is the marshaled XML element as a ″org.w3c.dom.Element″

object.

v If the Return XML as parameter is set to String the resulting Entry contains one attribute named

″xmlString″ and its value is the serialized XML element as a ″java.lang.String″ object.

Non-Entry mode

v If the Return XML as parameter is set to DOMelement the resulting XML element is returned as a

″org.w3c.dom.Element″ object.

v If the Return XML as parameter is set to String the XML element is returned as a ″java.lang.String″

object.

328 Reference Guide

Castor XML to Java FC

The CastorXMLtoJava Function Component is the mirror-image counterpart to the “Castor Java to XML

FC” on page 327, and the same section on “Castor Overview” on page 327 applies.

Specifically, the CastorXMLtoJava FC creates an Entry or a general Java object from an XML document,

and it provides the option to get data from certain parts of the XML tree when deserializing the XML

document.

In addition to the Castor mapping mechanism which specifies how to build a Java object (possibly of a

custom Java class) from an XML node/subtree, this Function Component provides its own logic to

specify how to populate Entry Attributes from an XML document. By using XPath queries you can

specify which parts of the XML document will be passed to the Castor APIs for deserializing.

This approach both provides ease of use in the IBM Tivoli Directory Integrator context and gives more

power when processing custom XML documents, for example XML documents generated by other

systems. Through the XPath queries you are able to specify which parts of the XML you are interested in

(and get them directly into Entry Attributes) and which are irrelevant for your process and should not be

processed. In addition, the writing of the Castor XML Mapping Files is facilitated since you will only

have to write mapping rules for the parts of the XML document you are interested in and not for the

whole XML document.

The CastorXMLToJava Function Component uses Castor 0.9.5.4. Documentation and information for the

Castor library can be obtained from the Castor project web site: http://www.castor.org/

Configuration

Parameters

Castor Mapping File

An XML Mapping File (as defined by the Castor syntax) that defines how XML is mapped to

Java objects

 The mapping file as specified by this parameter should always include the mapping rules defined

in the ″TDI_installation_directory/jars/functions/di_castor_mapping.xml″ file. This means that

either you must specify ″jars/functions/di_castor_mapping.xml″ as value of this parameter or

make sure that the mapping file specified contains these rules (for example by using Castor’s

″include″ clause to include ″di_castor_mapping.xml″ rules in another mapping file).

Attribute Specification

Each line specifies a single Attribute in the format: <AttributeName>,<XPath query>[,<type>] .

This parameter is only taken into account when the Function Component is used in Entry mode.

Within each line,

<AttributeName>

specifies the name of the Entry Attribute;

<XPath query>

specifies which part(s) of the XML to unmarshal and assign as value to this Attribute.

<type>

must be used whenever the type of the Attribute is not a complex Java class, but one of

the following basic data types: string, date, boolean, integer, long, double, float, big-decimal,

byte, short, character, strings (array of strings), chars (array of chars), bytes (array of bytes).

In these cases the user must specify the type, because of a limitation in Castor – Castor

cannot handle these types when they map to standalone objects (instead of being

members of other objects) and so the Function Component needs to know the type and

take special actions to make Castor produce the correct object.

Chapter 5. Function Components 329

http://www.castor.org

XML Input as

This drop-down list specifies whether the Function Component will accept the input XML data in

the form of a DOMElement object or as a String.

Detailed Log

Check to generate additional log messages.

Comment

Your own comments go here.

Using the FC

The CastorXMLToJava Function Component creates an Entry or a general Java object from an XML

document, and can operate both with Entry objects and with custom Java objects.

When the Function Component is passed an Entry object on input, it will return an Entry object. This

mode of operation is called Entry mode.

When the Function Component is passed an object that is not an Entry on input (String or a

DOMelement) it returns the raw Java object as it is unmarshalled by Castor. This mode of operation is

called non-Entry mode.

Entry mode

v If the XML Input as parameter specifies DOMelement, the Function Component will expect on input

an Entry with an Attribute named ″xmlDOMElement″ with value of type ″org.w3c.dom.Element″.

v If the XML Input as parameter specifies String, an Entry with an Attribute named ″xmlString″ and

value of type ″java.lang.String″ is expected on input.

v The output generated is an Entry whose Attributes are the unmarshalled XML elements as specified by

the Attribute Specification parameter and the mapping file.

Non-Entry mode

v If the XML Input as parameter specifies DOMelement, the Function Component will expect on input a

″org.w3c.dom.Element″ object.

v If the XML Input as parameter specifies String, a ″java.lang.String″ object is expected on input.

330 Reference Guide

XMLToSDO FC

The EMF XMLToSDO Function Component converts an XML document to SDO objects connected in a

tree-like structure resembling the XML structure.

For each XML element an XML Attribute Data Object is created. TDI Entry Attributes are then created for

some of the Data Objects. The name of the Entry Attribute consists of the names of the ancestor elements

of the element the TDI Attribute represents. Subsequent XML element names are separated by the “@”

character. When an XML attribute is represented, the name of the XML attribute is appended to the name

of the XML element using the “#” symbol as a separator.

All Attribute names start with the “DocRoot” text which represents the XML root. There are two types of

Entry Attribute values:

v The standard Java wrapper when the XML element/attribute value is a primitive type (java.lang.String,

java.lang.Integer, java.lang.Boolean, etc.)

v A Service Data Object when the XML element is a complex XML structure. This will be an object of

type org.eclipse.emf.ecore.sdo.EDataObject.

XML elements that have a common parent element are called siblings. Sibling elements with the same

name are grouped in a multi-valued TDI Attribute Entry.

Note: Attributes are not created for XML elements with an ancestor element that has a sibling with the

same name. Those can only be accessed through the multi-valued Attribute representing the

siblings.

Example

This example illustrates how the following XML file is processed by the EMF XMLToSDO Function

Component:

<?xml version="1.0">

<database name="Persons">

 <description>This is a sample database</description>

 <person>

 <name>Ivan</name>

 <age>21</age>

 <person>

 <person>

 <name>George</name>

 <age>32</age>

 <person>

</database>

When the EMF XMLToSDO Function Component processes the example XML File, an entry with the

following Attributes is created:

v DocRoot – a Service Data Object representing the XML root

v DocRoot@database - a Service Data Object representing the “database” XML element

v DocRoot@database#name – a java.lang.String object representing the “name” XML attribute of the

“database” XML element.

v DocRoot@database@description - a java.lang.String representing the “description” XML element (which

is a child of the “database” XML element).

v DocRoot@database@person – multi-value attribute whose values are Service Data Objects representing

the individual “person” XML elements.

“DocRoot@database@person@name” is not a valid TDI Attribute in this case because more than one

person XML element exists in the XML document at the same level.

Chapter 5. Function Components 331

The EMF XMLToSDO Function Component provides an option to use namespace prefixing. Namespace

prefixing option specifies that all XML element names part of the Entry Attribute name will be prefixed

with the corresponding namespace; for example: “DocRoot@namespace1:database@namespace2:person”.

Configuration

xsdFile

Specifies the location of the XML Schema (XSD) File. The XML Schema File is used in the process

of reading the XML document, in the generation of an EMF Ecore Model and in the Discover

Schema functionality. This parameter is required.

 The extension of the XML Schema File specified must be “.xsd”.

useNamespaces

Specifies whether XML elements and attributes namespaces will be set in the generated Entry

Attribute names. When this parameter is checked XML elements and attributes will be prefixed

either with a prefix defined in the “namespaceMap” parameter or with the namespace URI if no

prefix is defined in “namespaceMap”.

 This parameter also specifies whether the Discover Schema functionality will use XML

namespaces to prefix the Entry Attribute names.

namespaceMap

Defines a mapping between namespace prefixes and namespace URIs. Each pair is specified on a

new line. The prefix is delimited from the URI with an equal sign, for example

“ibm=http://www.ibm.com”. Preceding and trailing white space for both the prefix and the URI

is ignored.

 This parameter is only taken into account if the “useNamespaces” parameter is set to true.

inputXMLType

Specifies the type of the input XML document. It can be a java.lang.String object or

org.w3c.dom.Element object.

debug Turns on debug messages.

Migration

The EMF XMLToSDO and SDOToXML Function Components are not compatible with the TDI 6.0 Castor

Function Components. Any solution which uses the Castor Function Components needs to be

re-implemented in order to work with the EMF XMLToSDO and EMF SDOToXML Function Components.

The Castor XML To Java Function Component supports a mapping file. This mapping file can be used to

specify how a complex custom XML is to be parsed and converted to a complex custom Java object. This

feature is not supported by the EMF XMLToSDO Function Component. By following the next broad

guidelines, a TDI 6.0 configuration can be re-implemented to work with the EMF XMLToSDO Function

Component:

1. Insert the EMF XMLToSDO Function Component into an AssemblyLine.

2. Set its parameters accordingly.

3. Insert a Script Component into the AssemblyLine right after the EMF XMLToSDO Function

Component.

4. Write Javascript code in this Script Component, which extracts the desired data from the SDO

DataObject returned by the EMF XMLToSDO Function Component and populates the custom Java

Object needed.

The Castor XML To Java Function Component used to support a mechanism which allowed a specific

portion of the XML to be mapped to Entry Attributes. The EMF XMLToSDO Function Component does

not support this feature. The EMF XMLToSDO Function Component always parses and maps the entire

XML to Entry Attribute. By using the Input Attribute Map of the EMF XMLToSDO Function Component,

however, only the desired Attributes can be mapped thus emulating the behavior of the Castor XML To

Java Function Component.

332 Reference Guide

The Castor Java To XML Function Component used to support a mapping file, which could be used to

specify how to serialize a complex Java object into XML (element/attribute names, etc.). The EMF

SDOToXML Function Component serializes into XML based on an XML Schema file, that is, the names of

elements/attributes, etc. are specified in the XML Schema file specified as a Function Component

parameter.

Chapter 5. Function Components 333

334 Reference Guide

SDOToXML FC

The EMF SDOToXML Function Component converts Service Data Objects to XML. This component uses

an XML Schema definition to build an Ecore model.

The Function Component receives an Entry whose Attributes represent an XML document. The types of

the Entry Attribute values are either Java classes representing primitive types or Service Data Objects

(org.eclipse.emf.ecore.sdo.EDataObject) representing complex XML elements.

The Entry Attribute names describe the XML hierarchy in exactly the same manner as the EMF

XMLToSDO Function Component constructs Attribute names. All Attribute names start with “DocRoot”

which represents the XML root. Subsequent elements down the XML hierarchy are separated with the

“@” character. If the TDI Entry Attribute represents an XML attribute the “#’ character is used to separate

the name of the XML attribute from the name of the XML element containing this attribute.

It is possible that the TDI Entry passed contains only Entry Attributes corresponding to the real data. For

example, the Entry may contain an Attribute “DocRoot@database@person” without containing an

Attribute “DocRoot@database” – the EMF SDOToXML Function Component will automatically create the

“database” XML element in the XML document it builds. The EMF SDOToXML Function Component

uses the XML Schema to track and create all XML elements that are ancestors of the specified XML

element or attribute.

It might happen that the Entry contains Attributes specifying XML elements that are contained in other

XML elements specified by Entry Attributes, for example the Entry contains both

“DocRoot@database@person” and “DocRoot@database” Attributes. In this case the Attributes are

processed starting from the one that is closest to the root, continuing with the one closest to it and so on

– the last one will be the most specific XML element that is contained in all the other. This order of

processing provides the option to change specific details in a bigger XML context.

For example, if you want to change just the “DocRoot@database@person” element but you want to leave

the other parts of the “DocRoot@database” element untouched, you might read the XML document with

the EMF XMLToSDO Function Component, map the “DocRoot@database” attribute and provide it to the

EMF SDOToXML Function Component as is. Then you will also provide the

“DocRoot@database@person” Attribute that contains the specific updates you want to make on the

“person” XML element(s). The EMF SDOToXML Function Component will first process the

“DocRoot@database” applying all the content to the resulting XML and it will then override the “person”

child of the “database” element with whatever is provided in the “DocRoot@database@person” Entry

Attribute.

In case a multi-valued Attribute is provided together with an Attribute specifying a child or other

successor of that element, the function Component will signal an error (throw exception) because it

cannot be determined to which of the sibling XML elements, this successor applies. For example, if

“DocRoot@database@person” is provided and contains two values (thus specifying two XML “person”

elements at the same level) and also “DocRoot@database@person@name” is provided, the Function

Component would not know to which “person” element of the two existing this “name” element applies

to. The names of the elements in the Entry Attribute can be XML namespace prefixed.

The names of the elements are prefixed with the namespace URI or with the prefixes defined in the

“namespaceMap” parameter.

For example, in order to construct the following XML document:

<?xml version="1.0"?>

<database xmlns="www.ibm.com" xmlns:tmp="www.tmp.com" name="employees">

 <person>

Chapter 5. Function Components 335

<name>Ivan</name>

 <tmp:age>21</tmp:age>

 <person>

</database>

the following TDI Entry can be passed to the EMF SDOToXML Function Component:

v DocRoot@ibm:database#ibm:name

v DocRoot@ibm:database@ibm:person@ibm:name

v DocRoot@ibm:database@ibm:person@www.tmp.com:age

The namespace prefixes used assume that the “namespaceMap” parameter contains the “ibm” prefix set

to “www.ibm.com” and no namespace prefix is defined for “www.tmp.com” (that is why it is used

directly in the Attribute name). More details on the “namespaceMap” parameter can be found in section

“Configuration”.

Configuration

xsdFile

The parameter specifies the location of the XML Schema File. The XML Schema File is used in the

process of generating the XML document and in the Discover Schema functionality. This

parameter is required. The extension of the XML Schema File specified must be “.xsd”.

useNamespaces

Specifies whether the Discover Schema functionality will use XML namespaces to prefix the Entry

Attribute names. When this parameter is checked XML elements and attributes will be prefixed

either with a prefix defined in the “namespaceMap” parameter or with the namespace URI if no

prefix is defined in “namespaceMap”.

namespaceMap

Defines a mapping between namespace prefixes and namespace URIs. Each pair is specified on a

new line. The prefix is delimited from the URI with an equal sign, for example

“ibm=http://www.ibm.com”. Preceding and trailing white space for both the prefix and the URI

is ignored.

returnXMLType

Specifies the type of the XML document that will be returned by the Function Component. It can

be a java.lang.String object or an org.w3c.dom.Element object.

debug Turns on debug messages.

Using the FC

Migration

The EMF XMLToSDO and SDOToXML Function Components are not compatible with the TDI 6.0 Castor

Function Components. That is why any solution which uses the Castor Function Components needs to be

re-implemented in order to work with the EMF XMLToSDO and EMF SDOToXML Function Components.

The Castor XML To Java Function Component used to support a mapping file. This mapping file could

be used to specify how a complex custom XML is to be parsed and converted to a complex custom Java

object. This feature is not supported by the EMF XMLToSDO Function Component. However by

following the next broad guidelines such a TDI 6.0 configuration can be re-implemented to work with the

EMF XMLToSDO Function Component:

1. Insert the EMF XMLToSDO Function Component into an AssemblyLine.

2. Set its parameters accordingly.

3. Insert a Script Component into the AssemblyLine right after the EMF XMLToSDO Function

Component.

336 Reference Guide

4. Write Javascript code in this Script Component, which extracts the desired data from the SDO

DataObject returned by the EMF XMLToSDO Function Component and populates the custom Java

Object needed.

The Castor XML To Java Function Component used to support a mechanism which allowed a specific

portion of the XML to be mapped to Entry Attributes. The EMF XMLToSDO Function Component does

not support this feature. The EMF XMLToSDO Function Component always parses and maps the entire

XML to Entry Attribute. By using the Input Attribute Map of the EMF XMLToSDO Function Component,

however, only the desired Attributes can be mapped thus emulating the behavior of the Castor XML To

Java Function Component.

The Castor Java To XML Function Component used to support a mapping file, which could be used to

specify how to serialize a complex Java object into XML (element/attribute names, etc.). The EMF

SDOToXML Function Component serializes into XML based on an XML Schema file, that is, the names of

elements/attributes, etc. are specified in the XML Schema file specified as a Function Component

parameter.

Chapter 5. Function Components 337

338 Reference Guide

AssemblyLine FC

The AssemblyLine FC wraps the calling of another AssemblyLine into a Component, with some controls

on how the other AssemblyLine is executed and what to do with a possible result.

Configuration

AssemblyLine

A drop-down list of pre-defined AssemblyLines that could be the target of this FC.

Server The TDI Server on which the AssemblyLine should be run. Use ″Local″ or blank for internal

server or hostname[:port] for remote server.

Config Instance

Specify the config instance when using a remote server.

Execution Mode

A drop-down list of three possible modes:

Run and wait for result

Result can be picked up as described in the JavaDocs for this FC; this typically involves

calling the FC with an empty Entry object. The returned Entry object contains the

reference to the target AL in its ″value″ attribute.

Run in background

This starts the AssemblyLine asynchronously, and does not wait for any results.

Manual (cycle mode)

Detailed Log

When checked, generates additional log messages.

Comment

Your own comments go here.

Using the FC

This FC provides a handler object for calling and managing AssemblyLines on either the local or a

remote Server.

You configure this FC by choosing the AL to call, the Server on which this AL is defined and should run

on (blank or ″local″ indicating that the AL runs on this Server which is running the FC), as well as the

Config Instance that the AL belongs to. Again, a blank parameter value means that this AL is in the same

Config Instance as the one containing the FC itself.

You also choose the Execution Mode (see ″AL Cycle Mode″ in IBM Tivoli Directory Integrator 6.1.1: Users

Guide for more information). Although there are three Execution Modes (Run and wait for completion,

Run in background and Manual cycle mode), the first two options are the standard methods of starting

an AL from script with or without calling the AL join() method.

These first two modes cause the target AL to run on its own (stand alone) in its own thread. The third

mode, cycle mode, means that the target AL is controlled by the FC which will execute it one cycle at a

time for each time the FC is invoked. When the FC runs an AssemblyLine in stand-alone mode, the FC

keeps a reference to the target AL – just like you get when you call main.startAL(). The FC can also

return the status of the running/terminated ALs. You obtain this status by calling the FC’s perform()

method with a null or empty Entry parameter. The returned Entry object contains the reference to the

target AL in an attribute called ″value″. If you pass a null value to the FC, the return value is the actual

reference to the target AL (again, like making a main.startAL() call).

You can also call the FC with specific string command values to obtain info about the target AL:

Chapter 5. Function Components 339

perform(″target″) returns the object reference of the target AL.

perform(″active″) returns either ″active″, ″aborted″ or ″terminated″ depending on the target AL status.

perform(″error″) returns the java.lang.Exception object when the status is ″aborted″.

perform(″result″) returns the current result Entry object.

perform(″stop″) tries to terminate an active target AL, and will throw an error if the call does not succeed.

Note that if you have specified the ″Run and wait for completion″ Execution Mode, then each call to

perform() starts the target AL and returns the complete status for the execution (e.g. reference to the

target as well as status and error object). In this case, the initialize() method does NOT start the target AL

as it does in all other cases. When the FC is called in this mode with an Entry object, the Entry object can

contain one or more of the above keywords in an attribute called command (as described in the list

above, and concatenated in a comma-separated list). The returned Entry object is then populated with the

same values as described above. So, rather than calling perform() several times with each desired

command, you can create an Entry with all keywords as attributes in the Entry object and get away with

one call to perform():

var e = system.newEntry();

e.setAttribute("command", "target, status");

// In this example, fc references a Function Interface.

// If this was an AL Function instead, then fc.callreply(e)

// would be done.

var res = fc.perform(e);

task.logmsg("The status is: " + res.getString("status"));

When the FC runs an AL in manual mode, each call with an Entry object causes one cycle to be executed

in the target AL. The returned Entry object is the work entry result at the end of the cycle. When the

target AL has completed, a null entry is returned. If the cycle execution causes an error, then that error is

re-thrown by the FC (so you should use a try-catch block in your script).

Note that the Quick Discovery button in the FC Input and Output Map tabs will try the following

methods for determining the schema of the AL to be called:

1. If the AL has a defined schema (AL Call/Return tab), then this will be used.

2. Otherwise the FC examines the Input and Output maps of all Connectors in the AL to be called in

order to ″guess″ its schema.

340 Reference Guide

Java Class Function Component

IBM Tivoli Directory Integrator 6.1.1 (TDI) allows you to use Java objects in your script code to perform

specific operations not provided directly by TDI. Because calling methods of Java objects when the Java

object must be constructed and parameters mapped to proper classes can be difficult, the Java class

Function Component makes using Java objects in your scripts easier. The Java Class Function Component

allows you to choose a Java class and method through the Config Editor and performs the conversion

and mapping of parameters to the method.

Schema

The schema for the Java Class Function Component is dynamic and reflects the chosen Java class and

method. The Function Component also performs dynamic conversion of parameters to match the

signature of the target Java class/method.

Parameter Conversion

Parameter conversion is performed for the most common types. However, it is beyond the scope of this

FC to provide conversion for all potential Java class objects. For unsupported objects you must explicitly

create these before invoking the Java Class Function Component. Below is a table of objects that the Java

Class Function Component will recognize for parameter conversions.

 Table 38.

Parameter type Notes

Integer Both object and primitive type

Long Both object and primitive type

Double Both object and primitive type

Float Both object and primitive type

Short Both object and primitive type

Byte Both object and primitive type

Character Both object and primitive type

Boolean Both object and primitive type

Date Only conversion from default date format as defined by DateFormat

String

In addition to these types, the Java Class Function Component will also attempt conversion into primitive

arrays and java.util.Collection objects.

Configuration

The Java Class Function Component uses the following parameters:

JAR/Class File

This parameter specified the file in which the Java class is found.

Java class

Specifies the fully qualified name of the Java class. This parameter is required.

Method

Specifies the method to call in the Java class.

Chapter 5. Function Components 341

342 Reference Guide

Parser FC

The Parser FC wraps a Parser into an AssemblyLine Component, such that it can be inserted anywhere in

the AssemblyLine data flow.

Multiple instances of Parser FCs could aid in decoding two or more layers of protocol.

Configuration

Content Parser

A drop-down list of pre-defined parsers that interpret or generate data stream records.

Operation Mode

Operation mode of the Parser: Read an Entry from parser, Write an Entry to parser (returning

result)

Returns result as String

Check to have the function return a String object instead of a Bytearray object

Detailed Log

When checked, generates additional log messages.

Comment

Your own comments go here.

Using the FC

This FC allows you to select a Parser and then set its mode to either input (Read) or output (Write).

In Read mode, you must provide an attribute (in the Output Map) called ″value″ which is either a string,

a File, a Reader or a java.io.InputStream object to be used as input for the Parser. The FC will return an

Entry object (conn) with the parsed attributes, which are then available for your Input Map.

In Write mode the FC takes an Entry with the attributes passed in by the Output Map and applies the

Parser to that Entry, providing the return bytestream in the Attribute named ″value″. This Attribute is a

java.lang.String if you select the Return result as String checkbox in the Config tab; otherwise it is a

bytearray.

Chapter 5. Function Components 343

344 Reference Guide

Scripted FC

Like Connectors, EventHandlers and Parsers, IBM Tivoli Directory Integrator allows you to fully program

a Function Component using scripting. This is done by means of the template that the Scripted FC

provides.

Configuration

Configuration is relatively simple as all logic is in the Script pane.

Detailed Log

When checked, generates additional log messages.

Comment

Your own comments go here.

Using the FC

The bulk of the FC is in the script pane; in here, you must provide the logic that make up the FC.

To aid in programming, you are provided with stub functions as a reminder of the functions required to

make a valid FC. These are:

initialize (fc,obj)

This function is called during the initialization phase of the AssemblyLine this FC is part of. The

obj parameter is the parameter block as described by your FCs Config dialog.

terminate (fc)

This function is called during the termination phase of the AssemblyLine this FC is part of. Here

is where you would release resources, etc.

perform (fc,obj)

This is the function that performs the actual work, and is called by the AssemblyLine at the point

you positioned the FC. The obj parameter is the parameter block as described by your FCs Config

dialog.

getUI (fc)

This function implements/overrides the standard getUI() method, and can be used to configure

the FC’s operational parameters. This function is optional.

 These correspond to the three main Function Interface methods. Each method is passed an initial

Function Component parameter, which is the AL FC wrapper, giving your script access to settings like

the Attribute Maps etc.

See also

“Script Connector” on page 201,

“Script Parser” on page 305,

″JavaScript Connector″ in IBM Tivoli Directory Integrator 6.1.1: Users Guide.

Chapter 5. Function Components 345

346 Reference Guide

CBE Generator Function Component

The CBE Generator Function Component allows you to generate Common Base Event (CBE) event objects

which can be written to CBE logs or issued to an IBM Common Event Infrastructure (CEI) server.

Common Base Event (CBE)

Common Base Event (CBE) facilitates effective intercommunication among disparate enterprise

components that support logging, management, problem determination, autonomic computing, and

e-business functions.

 An event encapsulates message data sent as the result of an occurrence of a situation. Events exchanged

between and among applications in complex information technology systems allow these various facets of

the system to interoperate, communicate and coordinate their activities. Fundamental aspects of

enterprise management and e-business communications, such as performance monitoring, security and

reliability, as well as fundamental portions of e-business communications, such as order tracking, are

grounded in the viability and fidelity of these events.

The Common Base Event is defined as a new standard for enterprise management and business

applications events. The Common Base Event definition ensures completeness of the data by providing

properties to publish general information whenever a situation occurs. This general information provided

by the Common Base Event is called the 3-tuple.

The following elements constitute the 3-tuple:

v The identification of the component that is reporting the situation

v The identification of the component that is affected by the situation (which may be the same as the

component reporting the situation)

v The situation itself

The Common Event Infrastructure (CEI)

The Common Event Infrastructure (CEI) is IBM’s implementation of a consistent, unified set of APIs and

infrastructure for the creation, transmission, persistence and distribution of a wide range of business,

system and network CBE formatted events. CEI is based upon the Autonomic Computing Division’s CBE

specification, which defines a standard format for event information, which devices and software use to

keep track of transactions and other activity.

CBE FC Configuration

The CBE Generator Function Component uses the following parameters:

Logger's Name

The name of the logger. This is an optional attribute and if you not define it defaults to

LocalHostIP .

Debug

Turns on debug messages. This parameter is globally defined for all TDI components.

Input and Output Map Attributes

The CBE specification has a complex structure. To enable you to define the attributes, a dotted notation

for the attributes is supported in the attribute map for some of the components. To know more about

these attributes and their suggested values please refer to the Autonomic Computing Toolkit Developer’s

Guide at: http://www-128.ibm.com/developerworks/autonomic/books/fpy0mst.htm#ToC_91.

Chapter 5. Function Components 347

http://www-128.ibm.com/developerworks/autonomic/books/fpy0mst.htm#ToC_91

Table 39. Input map attributes

Attribute Name Attribute Type

Event org.eclipse.hyades.logging.events.cbe.CommonBaseEvent

eventXml String

 Table 40. Output map attributes

Attribute Name

Attribute

Type Description

CreationTime String The time the event was created. Default value will be

the time when the event object is created in the

CBEGeneratorFC.

GlobalInstanceId String Primary Identifier of event. A unique id will be

generated if not passed by user.

Message String Optional property

Severity Integer Optional property. Value ranges from 0 – 70

ExtensionName String Optional property.

SequenceNumber Integer Optional property

RepeatCount Integer Optional property.

ElapsedTime Integer Optional property if RepeatCount is not set.

Priority Integer Optional property. Values range from 0 – 100.

situation. This notation defines properties of the situation object.

situation.CategoryName String Describes the type of Situation. Defined Values are

v StartSituation

v StopSituation

v ConnectSituation

v ConfigureSituation

v RequestSituation

v FeatureSituation

v DependencySituation

v CreateSituationDestroy

v SituationReportSituation

v AvailableSituation

v OtherSituation

This is a required property.

situation.reasoningScope Describes scope of the situation. This is a required

property.

availableSituation.operationDisposition String Required if CategoryName is AvailableSituation

availableSituation.processingDisposition String Required if CategoryName is AvailableSituation

availableSituation.availabilityDisposition String Required if CategoryName is AvailableSituation

configureSituation.successDisposition String Required if CategoryName is ConfigureSituation

connectSituation.successDisposition String Required if CategoryName is ConnectSituation

connectSituation.situationDisposition String Required if CategoryName is ConnectSituation

createSituation.successDisposition String Required if CategoryName is CreateSituation

dependencySituation.dependencyDisposition String Required if CategoryName is DependencySituation

destroySituation.successDisposition String Required if CategoryName is DestroySituation

348 Reference Guide

Table 40. Output map attributes (continued)

Attribute Name

Attribute

Type Description

featureSituation.featureDisposition String Required if CategoryName is FeatureSituation

reportSituation.reportCategory String Required if CategoryName is ReportSituation

requestSituation.successDisposition String Required if CategoryName is RequestSituation

requestSituation.situationQualifier String Required if CategoryName is RequestSituation

startSituation.successDisposition String Required if CategoryName is StartSituation

startSituation.situationQualifier String Required if CategoryName is StartSituation

stopSituation.successDisposition String Required if CategoryName is StopSituation

stopSituation.situationQualifier String Required if CategoryName is StopSituation

otherSituation.any String Required if CategoryName is OtherSituation

SCI. This notation describes the source component

identification. These are required properties for a

CommonBaseEvent.

SCI.location String

SCI.locationType String

SCI.executionEnvironment String

SCI.component String

SCI.subcomponent String

SCI.componentIdType String

SCI.componentType String

RCI. This notation describes component identification

information for the reporter component. This is not a

required property.

RCI.location String

RCI.locationType String

RCI.executionEnvironment String

RCI.component String

RCI.subcomponent String

RCI.componentIdType String

RCI.componentType String

X. This notation describes an ExtendedDataElement (EDE).

This is not a required property.

X.attributeName String Creates EDE with name attribute Name and value

defined by user

X.attributeName.childAttributeName String Creates EDE with name attribute Name and child

element with name childAttributeName

Function Component API

The CBEGenerator FC exposes the following methods (also see the Javadocs for this component):

public String convertCBEEventToXML (CommonBaseEvent event) throws Exception

This method will convert a CommonBaseEvent object to a XML string object. This XML will also

be available by default in the eventXml attribute of the Input Map.

Chapter 5. Function Components 349

public String getCBELogXML (CommonBaseEvent event, boolean isCompleteXML)

This method is a wrapper over the org.eclipse.hyades.logging.java.CommonBaseEventLogRecord

class’s externalizeCanonicalXmlDocString() and externalizeCanonicalXmlString() API. This

method can be used for obtaining a CBE Log XML. Whether the XML string returned is a

complete XML document or just an XML fragment is decided by the isCompleteXML flag.

 For more details see: http://download.eclipse.org/tptp/4.2.0/javadoc/Platform/public/org/
eclipse/hyades/logging/java/CommonBaseEventLogRecord.html

 Also see “Generating a CBE Log XML.”

public static String mapCbeToEntry (CommonBaseEvent cbe, Entry entry)

This static method maps the fields of a Common Base Event object into the attributes of a TDI

Entry. The process is the reverse of what the CBE Generator FC’s ‘perform’ method does. All

attributes in the resulting Entry are of type java.lang.String.

 This method is accessible through Javascript in TDI.

Generating a CBE Log XML

In one of the scripts (after event generation from CBE Generator), a call to the getCBELogXML() API

(exposed in the CBEGeneratorFC) can be made, and the newly created event object can be passed. The

resulting output string will be an XML fragment which adheres to the Hyades CBE Logging format. The

string received from the getCBELogXML() API can be (for example) set back into the work entry by

calling the work.setAttribute() API.

var cbe = work.getObject("event");

var xmlString = com.ibm.di.fc.cbe.CBEGeneratorFC.getCBELogXml(cbe,false);

work.setAttribute("logXML",xmlString);

Then, using the File System connector with a LineReader parser, you can write this new attribute

(containing the CBE Log XML) to any log file.

See also

v Autonomic Computing Toolkit (includes specification of the Common Base Event)

v Common Base Event best practices: Getting it right the first time. Highlights of the ″Best Practices for

the Common Base Event and Common Event Infrastructure″ manual

v Common Base Event Best Practices Guide

v An example of generating Common Base Events with TDI in examples/cbe_demo

350 Reference Guide

http://download.eclipse.org/tptp/4.2.0/javadoc/Platform/public/org/eclipse/hyades/logging/java/CommonBaseEventLogRecord.html
http://download.eclipse.org/tptp/4.2.0/javadoc/Platform/public/org/eclipse/hyades/logging/java/CommonBaseEventLogRecord.html
http://www-128.ibm.com/developerworks/autonomic/sublink5.html
http://www-128.ibm.com/developerworks/autonomic/library/ac-cbebp1.html?ca=dnw-713
http://www-128.ibm.com/developerworks/autonomic/library/ac-cbebp1.html?ca=dnw-713
ftp://www6.software.ibm.com/software/developer/library/autonomic/books/cbepractice/index.htm

SendEMail Function Component

The SendEMail Function Component uses the JavaMail API to send e-mails. By connecting to an Simple

Mail Transfer Protocol (SMTP) server, the SendEMail Function Component can send e-mails to multiple

recipients and can optionally attach multiple files to e-mails. You can also attach multiple files with

different Multipurpose Internet Mail Extensions (MIME) types.

Note: Many Web-based e-mail services provide access only to browsers with HTTP. These services cannot

be accessed using the SendEMail Function Component.

Configuration

The SendEMail Function Component uses the following parameters:

smtpServerHost

The parameter specifies the address of the SMTP server that sends mails. If this parameter is not

set the smtpServer Entry Attribute should be mapped.

 smtpServerPort

Specifies the port of the SMTP server that sends mails.

username

This parameter is the user name used for SMTP authentication. Do not enter a value for this

parameter if the SMTP Server does not require a user name and password authentication.

password

This parameter is password used for SMTP authentication.

useSSL

This parameter uses Secure Sockets Layer (SSL) to communicate with the SMTP server.

from Specifies the content of the From field in the e-mail. If this parameter is not set, the from Entry

Attribute should be mapped. The from parameter cannot contain spaces.

recipients

This parameter is a comma separated list of the recipients’ addresses. If this parameter is not set,

the recipients Entry Attribute should be mapped.

subject

Specifies the subject of the e-mail. This is a mandatory field; if absent, an exception is thrown.

attachments

This parameter allows you to attach any files(s) you want to include with your message. To set

different a MIME type for individual attached files, add the MIME attachment type after file

name. The MIME type and file name must be separated by the character >. For example:

SomeDocument.pdf>application/pdf

contentType

This parameter allows you to set the MIME content type of the e-mail's body. text/plain is the

default value.

encoding

Specifies the MIME charset to use for encoded words and text parts. If left blank the default

system charset is used. Supported encodings can be found at: http://java.sun.com/j2se/1.5/
docs/guide/intl/encoding.doc.html.

 Debug

Turns on debug messages. This parameter is globally defined for all TDI components

Chapter 5. Function Components 351

http://java.sun.com/j2se/1.5/docs/guide/intl/encoding.doc.html
http://java.sun.com/j2se/1.5/docs/guide/intl/encoding.doc.html

352 Reference Guide

Memory Queue FC

Aka. MemQueue FC. The Memory Queue FC encapsulates the functionality of the TDI Memory Buffer

Pipe (as present in the API) and provides a GUI configuring it. The FC contains two parts: the raw FC

and the Config Editor (GUI) component. The raw FC encapsulates the calls to the memory buffer pipe.

The GUI provides a way for the user to configure the behavior of a memory buffer pipe. The FC either

returns a reference to the Memory Buffer Pipe object or reads/writes to it.

Note: The Memory Queue FC is deprecated in this release. It is much easier and also recommended to

use the “Memory Queue Connector” on page 149 or directly use “The system object” on page 439

to create a new pipe, add data to the pipe and put data into the pipe. APIs for all these

functionalities have been exposed in the System Object.

Configuration

Instance name

Name of the TDI instance on which to create the Memory Buffer Pipe. The current instance is

assumed if this is blank (default).

Pipe name

Name of the Memory Buffer Pipe to be created.

Watermark

The Watermark parameter is either:

v With Paging Off (next parameter), it is the maximum queue size. When this size is reached,

the Blocking Add Parameter determines if the read waits or fails since the queue is full.

v With Paging On, it is the threshold at which objects are persisted to the System Store. Note

that the Page Size determines when pages are actually written, so the Watermark should be a

multiple of the Page Size.

Enable paging using System Store

Check this to let the Memory Buffer Queue use the System Store for paging.

Page Size

Number of entries in one page.

Database name

A JDBC URL of an external database to use.

Username

Login username to the database used.

Password

Login password to the database used.

Table name

Table to use for paging.

Blocking add operation

Check this option to block or fail (and always log that data is lost) while adding, if queue is full

and no paging used.

Detailed Log

Check for additional log messages.

Using the FC

“The system object” on page 439 has a method called getFunction(string name) that returns an initialized

instance of the FC. The returned object can be used to perform calls as in:

Using a simple call:

Chapter 5. Function Components 353

MemoryBufferQ pipe = system.getFunction("ibmdi.MemoryBufferPipeFC").perform(null);

Using the Entry call:

var inp = system.newEntry();

inp.setAttribute ("test", "this is a sample entry");

MemoryBufferQ pipe = system.getFunction("ibmdi. MemoryBufferPipeFC").perform(inp);

The Memory Buffer Queue FC returns a reference to a Memory Buffer Pipe for a null Entry object,

performs a read operation on the Memory Buffer Pipe for the empty Entry object and a write operation

on the Memory Buffer Queue for a non-empty Entry object.

The returned MemoryBufferQ object has two methods that can aid in managing the object: purgeQueue()

and deletePipe().

See also

“Memory Queue Connector” on page 149

“System Queue Connector” on page 171

354 Reference Guide

Axis Java To Soap FC

The Axis Java-to-Soap Function Component (FC) is part of the TDI Web Services suite.

This component can be used both on the web service client and on the web service server side. This

component receives an Entry or a Java object and produces the SOAP request (when on the client) or

response (when on the server) message. It will provide the whole SOAP message, as well as separately

the SOAP Header and the SOAP Body to facilitate processing and customization.

The component supports both RPC and Document style.

Configuration

Parameters

WSDL URL

The URL of the WSDL document describing the service

SOAP Operation

The name of the SOAP operation as described in the WSDL file

Return XML as

This drop-down list specifies whether the result is returned as a String or a DOM Element.

Complex Types

This parameter is optional; if specified, it should be a list of fully qualified Java class names

(including the package name), where the different elements (Java classes) of this list are separated

by one or more of the following: a comma, a semicolon, a space, a carriage return or a new line.

Mode A flag that indicates whether this FC should generate a SOAP request (when deployed on the

client) or a SOAP response (when deployed on the server) message

Use Multi Refs

This parameter is taken into account only when RPC-style web services are used. When

Document-style web services are used this parameter has no effect on the generated SOAP

message.

 If checked and the web service used is an RPC-style web service, the generated SOAP message

will use multi-refs. If not checked and the web service used is an RPC-style web service, the

generated SOAP message will not use multi-refs.

Operation Parameters

This parameter is a list of Attribute names, where different Attribute names are separated by one

or more of the following: a comma, a semicolon, a space, a carriage return or a new line.

Detailed Log

When checked, generates additional log messages.

Comment

Your own comments go here.

Function Component Input

Entry or Java Object. If anything else is passed, an Exception is thrown.

Function Component Output

An Entry object with 3 attributes – one for the whole SOAP message, one for the SOAP Header and one

for the SOAP Body. The SOAP message, Body and Header will be either XML strings or DOM objects, as

specified by the Return XML as parameter.

Chapter 5. Function Components 355

Using the FC

This Function Component (FC) serializes the Java representation of a SOAP message into the XML

representation of that SOAP message.

v If this FC is passed (a) an Entry with a ″soapFault″ Attribute, whose value is an object of type

org.apache.axis.AxisFault, or (b) a Java object of type org.apache.axis.AxisFault, then the FC

generates a SOAP Fault message containing the information stored in the passed AxisFault object.

v If the value of the Return XML as FC parameter is String then the SOAP response message is stored in

the ″xmlString″ Attribute, if an Entry was passed to the FC. However, If the value of the Return XML

as FC parameter is DOMElement then the generated SOAP message is stored in the ″xmlDOMElement″

Attribute, if an Entry was passed to the FC. If a Java Object array (Object[]) was passed to this FC, then

the return value of the FC is either a java.lang.String object (when the value of the Return XML as

FC parameter is String) or an org.w3c.dom.Element object (when the value is DOMElement).

v If the value of the ″soapFault″ Attribute passed in is not of type org.apache.axis.AxisFault, then an

Exception is thrown.

v Each item from the value of the Operation Parameters FC parameter is the name of an Attribute,

which must be present in the Entry passed to the FC. If any of these Attributes is missing, an

Exception is thrown.

v If this FC is passed a Java Object array (Object[]) then it passes the SOAP operation each Java Object

from this array in the order in which the Objects are stored in the array. If this FC is passed an Entry,

then the order and values of the parameters passed to the SOAP operation are determined by the value

of the Operation Parameters FC parameter.

v The order of the items from the value of the Operation Parameters FC parameter determines the order

in which the Attribute values are passed as parameters to the SOAP operation.

v This FC is capable of generating (a) Document style SOAP messages, (b) RPC style SOAP messages

and (c) SOAP Fault messages. The style of the message generated is determined by the WSDL specified

by the WSDL URL FC parameter.

v The FC is capable of generating SOAP messages encoded using both ″literal″ encoding and SOAP

Section 5 encoding. The encoding of the message generated is determined by the WSDL specified by

the WSDL URL FC parameter.

v The parameter Use Multi Refs can mean different things, but is applicable only for RPC-style

messages; when Document-style web services are used this parameter has no effect on the generated

SOAP message. If checked and the web service used is an RPC-style web service, the generated SOAP

message will use multi-refs. If not checked and the web service used is an RPC-style web service, the

generated SOAP message will not use multi-refs.

Note: The presence of the Use Multi Refs parameter is a consequence of using the Axis library to

implement this FC. Currently when the Axis JavaToSoap FC serializes an RPC-style message it

uses XML hrefs/multi-refs in the generated SOAP, and this breaks the Axis C++ library. That is

why an Axis JavaToSoap FC configuration parameter is present to allow you to switch

hrefs/multi-refs on and off.

v This FC is capable of generating SOAP messages containing values of complex types which are defined

in the <types> section of a WSDL document. In order to do that this FC requires that (1) the Complex

Types FC parameter contains the names all Java classes that implement the complex types used as

parameters to the SOAP operation and (2) these Java classes’ class files are located in the Java class

path of TDI.

v If this FC was passed an Entry object, then the FC stores the generated SOAP message Header and

SOAP message Body (apart from the entire generated SOAP message) as Attributes in the returned

Entry. If the value of the Return XML as FC parameter is String then the SOAP Header and Body are

stored in the ″soapHeaderString″ and ″soapBodyString″ Attributes respectively as java.lang.String

objects. If the value of the Return XML as FC parameter is DOMElement then the SOAP Header and

Body are stored in the ″soapHeaderDOMElement″ and ″soapBodyDOMElement″ Attributes respectively as

org.w3c.dom.Element objects.

356 Reference Guide

Custom serializers/deserializers

Both AxisJavaToSoap and AxisSoapToJava Function Components provide methods for registering XML

type to Java type mappings with custom serializers/deserializers (by default all complex types are

serialized/deserialized by the Axis’ org.apache.axis.encoding.ser.BeanSerializer/
org.apache.axis.encoding.ser.BeanDeserializer).

/**

 * This method is analogous to the ’registerTypeMapping’ method in org.apache.axis.client.Call.

 * It can be used for configuring serialization/deserialization of Java types, for which the

 * default serializer/deserializer (org.apache.axis.encoding.ser.BeanSerializer/

 * org.apache.axis.encoding.ser.BeanDeserializer) is not suitable.

 */

 public void registerTypeMapping(Class javaType,

 QName xmlType,

 SerializerFactory serializerFactory,

 DeserializerFactory deserializerFactory)

This method can be invoked on an FC in the “After Initialize” Prolog FC hook through JavaScript like

this:

var myClass = java.lang.Class.forName("mypackage.MyClass");

var myQName = new javax.xml.namespace.QName("http://www.myserver.com", "MyClass");

var mySerializerFactory = new mypackage.MySerializerFactory();

var myDeserializerFactory = new mypackage.MyDeserializerFactory();

myFC.getFunction().registerTypeMapping(myClass, myQName, mySerializerFactory, myDeserializerFactory);

See Also

“Axis Soap To Java FC” on page 365

Chapter 5. Function Components 357

358 Reference Guide

WrapSoap FC

The WrapSoap Function Component (FC) is part of the TDI Web Services suite.

This component is used to generate a complete SOAP message given the SOAP Body and optionally a

SOAP Header.

Such a component is useful when the user customizes the content of the SOAP Body or creates it

completely on his own (using Castor binding for example). This component will accept the contents of

the SOAP Body and the SOAP Header and attributes for the SOAP Envelope, Header and Body XML

elements (usually namespace declarations) and will create the complete SOAP message.

This is actually a helper FC that will save the user from error-prone processing of string or DOM objects

to wrap his SOAP data into a complete SOAP message.

Configuration

Parameters

Input the SOAP Body and Header as

This drop-down specifies whether the SOAP Body and SOAP Header input values will be passed

as String (that is, java.lang.String) or as DOM objects (org.w3c.dom.Node).

Return the SOAP message as

This drop-down specifies whether the complete SOAP message should be returned as a String or

as a DOM object.

Header and Body tags present

Specifies whether the SOAP Body passed in an Attribute contains the <Body> tag and whether

the SOAP Header passed in an Attribute contains the <Header> tag.

Attributes to add to the SOAP Envelope

Specifies the XML attributes and their values to include in the SOAP Envelope XML element.

Namespace declarations to add to the SOAP Envelope

Specifies Namespace declarations to add to the SOAP Envelope.

Attributes to add to the SOAP Body

Specifies the XML attributes and their values to include in the SOAP Body XML element.

Namespace declarations to add to the SOAP Body

Specifies Namespace declarations to add to the SOAP Body.

Attributes to add to the SOAP Header

Specifies the XML attributes and their values to include in the SOAP Header XML element.

Namespace declarations to add to the SOAP Header

Specifies Namespace declarations to add to the SOAP Header.

Detailed Log

Check to generate additional log messages.

Comment

Your own comments go here.

Function Component Input

Entry object – it has one Attribute for the SOAP Header (optional) and one Attribute for the SOAP Body.

If anything else is passed an Exception is thrown.

Chapter 5. Function Components 359

Function Component Output

An Entry object that contains the complete SOAP message.

Using the FC

The type and format of the entries processed and returned by this FC are highly dependent on the

specified parameters, as clarified below.

v If the Input the SOAP Body and Header as FC parameter is String then the SOAP Body is passed in

the ″soapBodyString″ Attribute and the SOAP Header is passed in the ″soapHeaderString″ Attribute. If the

Input the SOAP Body and Header as FC parameter is DOMElement then the SOAP Body is passed in

the ″soapBodyDOMElement″ Attribute and the SOAP Header is passed in the ″soapHeaderDOMElement″

Attribute.

v If the Return the SOAP message as FC parameter is String then the complete SOAP message is

returned in the ″xmlString″ Attribute; however if it is specified as DOMElement then the complete

SOAP message is returned in the ″xmlDOMElement″ Attribute.

v Each of the Add attributes to... parameters expects a list of XML attributes to be added to the target

SOAP message element (envelope, header or body) tag in the created SOAP message. Each

attribute-value pair is separated from the other attribute-value pairs by one of the following: a space, a

comma, a semicolon, carriage return or a line feed. The attribute name in an attribute-value pair is

separated from the attribute value by an equals sign ″=″.

v Each of the Namespace declarations to add to... parameters expects a list of XML namespace

declarations to be added to the SOAP message element (envelope, header or body) tag in the created

SOAP message. Each namespace prefix-value pair is separated from the other namespace prefix-value

pairs by one of the following: a space, a comma, a semicolon, carriage return or a line feed. The

namespace prefix in a prefix-value pair is separated from the namespace value by an equals sign ″=″.

360 Reference Guide

InvokeSoap WS FC

Introduction

The Axis InvokeSoapWS Function Component (FC) is part of the TDI Web Services suite.

It is used to perform a web service call, given the input message for the call. It has no built-in SOAP

parsing functionality and can be used with the “Axis Soap To Java FC” on page 365 and “Axis Java To

Soap FC” on page 355 to provide a complete web service solution.

The InvokeSoapWS Function Component requires a complete SOAP request message. When called with a

SOAP message the Function Component invokes the remote web service operation with this message.

The Function Component returns the SOAP response message. The Function Component, however, does

not perform any XML-Java binding (that is, the SOAP response message is not parsed) – the Function

Component only returns the SOAP response message.

Authentication

The InvokeSoapWS FC supports the HTTP basic authentication method. If username and password

parameters are filled, then the ″authorization″ HTTP header field is set with the proper credentials (as

specified in the HTTP specification for using HTTP basic authentication). Before sending the username

and password, the FC encodes them. The encoding used is Base64 and is done internally by the

InvokeSoapWS FC.

Configuration

Parameters

WSDL URL

The URL of the WSDL document describing the service. his parameter is required; otherwise an

exception is thrown on initialization.

SOAP Operation

The name of the SOAP operation as described in the WSDL file. This parameter is required;

otherwise an exception is thrown on initialization.

Provider URL

The URL of the web service provider; substitutes the value in the WSDL; this parameter is

provided to allow for dynamic provider switching. If this parameter is Empty then the value

from the WSDL is used.

Login username

The login username sent to the server, using HTTP Basic Authentication. If the server requires

authorization it uses this value and the next (Login password) to authenticate the client. The

encoding used is Base64 and is done internally by the InvokeSoapWS FC.

Login password

The login password sent to the server, using HTTP Basic Authentication. If the server requires

authorization it uses this value and the previous (Login username) to authenticate the client.

Input the SOAP message as

This drop-down list specifies whether the SOAP request message will be passed to the FC as a

string or as a DOM object. This is a required parameter.

Return the SOAP message as

This drop-down list specifies whether the SOAP response message should be returned as a string

or as a DOM object. This is a required parameter. If the parameter is not specified or has an

invalid value, an exception is thrown on initialization. Also, if the SOAP request message does

Chapter 5. Function Components 361

not conform to the format specified by the this parameter, an error will occur. However, it is

ignored when invoking one-way web service operations (see“One-way web service operation

support” on page 363.)

Detailed Log

When checked, will generate additional log messages.

Comment

Your own comments go here.

Function Component Input

An Entry, a java.lang.String object, or an org.w3c.dom.Element object – contains the complete SOAP

request message.

If anything else is passed, an Exception is thrown.

If an Entry is passed to the FC and if the value of the Input the SOAP message as FC parameter is

String then the SOAP request message must be stored in the ″xmlString″ Attribute of that Entry. If an

Entry is passed to the FC and if the value of the Input the SOAP message as FC parameter is

DOMElement then the SOAP request message must be stored in the ″xmlDOMElement″ Attribute.

If a non-Entry object (either String or Element) is passed to the FC and if the value of the Input the

SOAP message as FC parameter is String then the SOAP request message must be passed as a

java.lang.String object. If a non-Entry object (either String or Element) is passed to the FC and if the

value of the Input the SOAP message as FC parameter is DOMElement then the SOAP request message

must be passed as an org.w3c.dom.Element object.

Function Component Output

An Entry object with 3 attributes – one for the whole SOAP message, one for the SOAP Header and one

for the SOAP Body. The SOAP message, Body and Header will be either XML strings or DOM objects, as

specified by the Return the SOAP message as parameter. Refer to ″Using the FC″, next.

Using the FC

This Function Component makes a web service call by sending a SOAP request message and receiving a

SOAP response message.

v If an Entry was passed to the FC, then if the value of the Return the SOAP message as FC parameter is

String then the SOAP response message is stored in the ″xmlString″ Attribute; however, If the value of

the Return the SOAP message as FC parameter is DOMElement then the SOAP response message is

stored in the ″xmlDOMElement″ Attribute.

v Additionally, if this FC was passed an Entry object, then the FC stores the SOAP response Header and

SOAP response Body (apart from the entire SOAP response message) as Attributes in the returned

Entry. If the value of the Output the SOAP message as FC parameter is String then the SOAP Header

and Body are stored in the ″soapHeaderString″ and ″soapBodyString″ Attributes respectively as

java.lang.String objects. If the value of the Return the SOAP message as FC parameter is

DOMElement then the SOAP Header and Body are stored in the ″soapHeaderDOMElement″ and

″soapBodyDOMElement″ Attributes respectively as org.w3c.dom.Element objects.

v If a non-Entry object was passed to this FC, then the return value of the FC is either a

java.lang.String object (when the value of the Return the SOAP message as FC parameter is String) or

an org.w3c.dom.Element object (when the value is DOMElement).

v This FC is capable of sending and receiving SOAP messages encoded using both ″literal″ encoding and

SOAP Section 5 encoding.

v This FC is capable of sending and receiving SOAP messages containing values of complex types which

are defined in the <types> section of a WSDL document.

362 Reference Guide

v This FC sets the ″soapAction″ HTTP Header for the SOAP request message to the value specified in the

WSDL document (whose location is specified by the WSDL URL FC parameter) for the given SOAP

operation (whose name is specified by the SOAP Operation FC parameter).

v This FC sends the SOAP request message over HTTP to the web service address specified in the

“WSDL URLl” parameter. If the “WSDL URL” parameter is missing or empty, the web service address

specified in the WSDL document (whose location is specified by the WSDL URL FC parameter) for the

given SOAP operation (whose name is specified by the SOAP Operation FC parameter) is used .

v This FC provides Username and Password parameters. If these parameters are provided, then the FC

sets the basic authorization header and sends it to the server. It encodes the supplied username and

password using encoding method base64; this is done inside the InvokeSoapWS FC

One-way web service operation support

WSDL 1.1 has four transmission primitives that a web service endpoint can support:

One-way

The endpoint receives a message.

Request-response

The endpoint receives a message, and sends a correlated message.

Solicit-response

The endpoint sends a message, and receives a correlated message.

Notification

The endpoint sends a message.

WSDL refers to these transmission primitives as operations. (More information on the subject can be

found on: http://www.w3.org/TR/wsdl#_porttypes.)

The InvokeSoapWS Function Component supports only request-response and one-way web service

operations. During the initialization phase, the InvokeSoapWS FC reads the configured WSDL document

and checks whether the specified SOAP operation is one-way. If the operation is not one-way, it is

assumed to be request-response.

The following is a sample WSDL fragment, which describes a reqeust-response operation:

 <operation name="myRequestResponseOperation">

 <input message="myInputMessage"/>

 <output message="myOutputMessage"/>

 </operation>

And the following sample WSDL fragment describes a one-way operation:

 <operation name="myOneWayOperation">

 <input message="myInputMessage"/>

 </operation>

Note: One-way web service operations do not involve a server response – the client sends a request

message but the server is not supposed to reply back (not even with a fault message). That is why

the InvokeSoapWS does not return a response when invoking a one-way SOAP operation: If the

‘perform’ method of the FC is passed an Entry argument (for example when the FC is executed as

a part of an AssemblyLine), the FC returns an empty Entry. If the ‘perform’ method of the FC is

passed a java.lang.Object (for example when the FC is executed by a script), the FC returns null.

See also

“Axis EasyInvoke Soap WS FC” on page 367

Chapter 5. Function Components 363

http://www.w3.org/TR/wsdl#_porttypes

364 Reference Guide

Axis Soap To Java FC

The Axis Soap-to-Java Function Component (FC) is part of the TDI Web Services suite.

This component can be used both on the web service client and on the web service server side. This FC

uses Axis’ mechanism for parsing SOAP response (when on the client) or SOAP request (when on the

server) to Java objects - as a complementary component to the AxisJavaToSoap FC. It is given a SOAP

response/request message and returns the parsed Java objects either as standalone Java object(s) or

capsulated in an Entry object.

This component supports both RPC and Document style.

Configuration

Parameters

WSDL URL

The URL of the WSDL document describing the service

SOAP Operation

The name of the SOAP operation as described in the WSDL file

Input the SOAP message as

This drop-down list specifies whether the SOAP message is specified as a string or as a DOM

object.

Complex Types

This parameter is optional; if specified, it should be a list of fully qualified Java class names

(including the package name), where the different elements (Java classes) of this list are separated

by one or more of the following: a comma, a semicolon, a space, a carriage return or a new line.

Mode This required parameter takes either a value of Request or Response. The value of Specifies

whether this FC will parse SOAP request or SOAP response messages.

Detailed Log

If checked, will generate additional log messages.

Comment

Your own comments go here.

Function Component Input

Entry or Java Object representing the complete SOAP message.

If anything else is passed, an Exception is thrown.

Function Component Output

An Entry or a Java Object containing the Java representation of the SOAP request/response.

Using the FC

This Function Component parses a SOAP message and turns it into a Java Object.

v If this FC is passed a SOAP Fault message to parse, this FC returns a Java object of type

org.apache.axis.AxisFault.

v In case this FC returns an org.apache.axis.AxisFault object, the FC stores this object in the ″soapFault″

Attribute if an Entry is passed to the FC; and if a java.lang.Object was passed then this FC returns the

org.apache.axis.AxisFault object.

v If the value of the Input the SOAP message as FC parameter is String then the SOAP message to

parse is read from the ″xmlString″ Attribute as a java.lang.String, provided an Entry is passed to the

Chapter 5. Function Components 365

FC. If the value of the Input the SOAP message as FC parameter is DOMElement then the SOAP

message to parse is read from the ″xmlDOMElement″ Attribute as an org.w3c.dom.Element object,

provided an Entry is passed to the FC.

v If a Java Object is passed to this FC, then the SOAP message to parse is assumed to be the value of the

passed Java Object as either a java.lang.String object (when the value of the Input the SOAP

message as″ FC parameter is String) or as an org.w3c.dom.Element object (when the value of the Input

the SOAP message as FC parameter is DOMElement).

v This FC is capable of parsing (a) Document style SOAP messages, (b) RPC style SOAP messages and

(c) SOAP Fault messages.

v This FC is capable of parsing SOAP messages encoded using both ″literal″ encoding and SOAP Section

5 encoding.

v This FC is capable of parsing SOAP messages containing values of complex types which are defined in

the <types> section of a WSDL document. In order to do that this FC requires that (1) the Complex

Types FC parameter contains the names all Java classes that implement the complex types used in the

SOAP message and (2) these Java classes’ class files are located in the Java class path of TDI.

v If an Entry is passed to this FC and the message parsed is not a SOAP Fault message, then this FC

returns the output parameters in Entry Attributes, whose names match the names of the SOAP

Operation output parameters.

See Also

“Custom serializers/deserializers” on page 357

“Axis Java To Soap FC” on page 355

366 Reference Guide

Axis EasyInvoke Soap WS FC

The Axis EasyInvokeSoapWS Function Component (FC) is part of the TDI Web Services suite.

This is a ″simplified″ web service invocation component: it is a stand-alone FC with its own Config

screen, but internally instantiates, configures and uses the following three FCs: AxisJavaToSoap,

InvokeSoapWS and AxisSoapToJava.

The functionality provided is the same as if you chain and configure these three FCs in an AssemblyLine.

When using this FC you lose the possibility to hook custom processing, that is, you are tied to the

processing and binding provided by Axis, but you gain simplicity of setup and use.

Authentication

The AxisEasyInvokeSoapWS FC uses org.apache.axis.client.Call’s authentication mechanism. When

username and password parameters of the FC are specified, then they are set to be used by the Call

object. This information is sent to the server and if it requires authentication it takes this two parameters

for username and password.

Configuration

Parameters

WSDL URL

The URL of the WSDL document describing the service. This parameter is required; otherwise an

exception is thrown on initialization.

SOAP Operation

The name of the SOAP operation as described in the WSDL file. This parameter is required;

otherwise an exception is thrown on initialization.

Login username

The login username sent to the server, using HTTP Basic authentication. If the server requires

authorization it uses this value and the next (Login password) to authenticate the client. The

encoding used is Base64 and is done internally by the InvokeSoapWS FC.

Login password

The login password sent to the server. If the server requires authorization it uses this value and

the previous (Login username) to authenticate the client.

Input the SOAP message as

This drop-down list specifies whether the SOAP request message will be passed to the FC as a

string or as a DOM object. This parameter is required. If the parameter is not specified or has an

invalid value, an exception is thrown on initialization. Also, if the SOAP request message does

not conform to the format specified by the this parameter, an error will occur.

Complex Types

This parameter is optional; if specified, it should be a list of fully qualified Java class names

(including the package name), where the different elements (Java classes) of this list are separated

by one or more of the following: a comma, a semicolon, a space, a carriage return or a new line.

Operation Parameters

The list of ordered SOAP operation parameter names. This parameter is required if the SOAP

operation has any parameters and the FC is passed an Entry; if the SOAP operation has no

parameters and the FC is passed an Entry then this parameter must be empty. If no Entry is

passed, the content of the parameter is not relevant.

v If specified, the parameter must contain a list of Attribute names, where different Attribute

names are separated by one or more of the following: a comma, a semicolon, a space, a

carriage return or a new line.

Chapter 5. Function Components 367

v Each item from this list is a name of an Attribute, which must be present in the Entry passed to

the FC. If one of these Attributes is missing, an Exception is thrown.

v The order of the items from the list determines the order in which the Attribute values are

passed as parameters to the SOAP operation.

Detailed Log

Checking this box causes additional log messages to be generated.

Comment

Your own comments go here.

Security and Authentication

The AxisEasyInvokeSoapWS FC uses the org.apache.axis.client.Call’s authentication mechanism. When

the username and password parameters of the FC are filled, then they are set to be used by the Call

object. This information is sent to the server and if it requires authentication it takes this two parameters

for username and password.

Function Component Input

Entry or a Java object representing the web service input data. If anything else is passed, an Exception is

thrown.

Function Component Output

Entry or a Java object representing the web service output data.

Using the FC

This Function Component (FC) provides a relatively simple way of invoking SOAP over HTTP web

services.

This is how the communication flows:

Web service client <–> AxisEasyInvokeSoapWS FC <–> org.apache.axis.client.Call <–> Web service

The following usability notes apply:

v If this FC is passed a Java Object array (Object[]) then it passes to the SOAP operation each Java Object

from this array in the order in which the Objects are stored in the array. If this FC is passed an Entry,

then the order and values of the parameters passed to the SOAP operation are determined by the value

of the SOAP Operation FC parameter.

v This FC is capable of generating and parsing Document-style SOAP messages and RPC-style SOAP

messages as well as parsing SOAP Fault messages. The style of the message generated is determined

by the WSDL specified by the WSDL URL FC parameter.

v The FC is capable of generating and parsing SOAP messages encoded using both ″literal″ encoding and

SOAP Section 5 encoding. The encoding of the message generated is determined by the WSDL

specified by the WSDL URL FC parameter.

v This FC is capable of generating and parsing SOAP messages containing values of complex types

which are defined in the <types> section of a WSDL document. In order to do that this FC requires

that (1) the Complex Types FC parameter contains the names all Java classes that implement the

complex types used as parameters to the SOAP operation and (2) these Java classes’ class files are

located in the Java class path of TDI.

v If an Entry is passed to this FC and the SOAP response message returned by the server is not a SOAP

Fault message and there is a single output parameter of the SOAP Operation, then this FC returns the

parameter in the ″return″ Attribute. (Due to Axis 1.1 specifics, if a SOAP operation has a single output

parameter, this parameter is considered the return value of the operation. And if a SOAP operation has

several output parameters, its return type is considered to be void.)

368 Reference Guide

v If an Entry is passed to this FC and the SOAP response message returned by the server is not a SOAP

Fault message and there are several output parameters of the SOAP Operation, then this FC returns the

output parameters in Entry Attributes, whose names match the names of the SOAP Operation output

parameters.

v If an Object[] with the input parameters of the SOAP operation is passed to this FC and the SOAP

response message returned by the server is not a SOAP Fault message, the result is of type Object[],

where the first element is the return value of the SOAP operation (null if the operation is void) and the

rest are the output parameters of the operation.

v This FC provides username and password parameters. If these parameters are specified, then the FC

sets basic authorization header and sends it to the server. It encodes the supplied username and

password. The used encoding method is base64 and is done inside the InvokeSoapWS FC.

Object[] –> AxisEasyInvokeSoapWS FC –> Object[]

or

Entry –> AxisEasyInvokeSoapWS FC –> Entry

See also

“InvokeSoap WS FC” on page 361

Chapter 5. Function Components 369

370 Reference Guide

Complex Types Generator FC

The Complex Types Generator Function Component is part of the TDI Web Services suite.

This Function Component is used for generating a JAR file, which contains the Java class files

implementing the complex data types defined in a schema either internal to or referenced by a WSDL.

This JAR file can then be used by the other Web Service FCs in order to serialize and parse SOAP

messages containing these complex data types.

Please note that this FC is not supposed to be ″run″ as part of an AssemblyLine for example. Here is the

way this FC is supposed to be used:

1. Place it in an AssemblyLine

2. Fill in its parameters

3. Click the ″Generate complex types″ button to create the JAR file.

After the desired JAR file has been created the FC can be either disabled or deleted altogether from the

AssemblyLine – the FC does not provide any runtime functionality whatsoever.

Configuration

Parameters

WSDL URL

The value of this parameter must be either a valid URL string or a file system path (either

absolute or relative) specifying the location of a WSDL file.

WSDL2Java Options

The value of this parameter is a command-line-like list of options for the Axis WSDL2Java utility.

The FC passes this list of options to the WSDL2Java utility when generating Java source files

from WSDL. These options can be used to alter the default behavior of the WSDL2Java utility.

JAR file name

The value of this parameter must be the name of the JAR file (either absolute or relative) to be

created.

JDK Path

The path to a Java Development Kit installation. If left empty the utility assumes that the Java

compiler ″javac″ and the ″jar″ tools are on the system executable path.

Note: The implementation of this FC requires a minimum version 1.4 of the JDK.

Generate Java Source Files

If this box is checked (which is the default), then the FC utility generates Java source files from

the specified WSDL. If unchecked, then the FC utility skips the generation of Java source files

and only performs the compilation and the JAR creation. Setting this parameter to false (that is,

unchecked) is useful when you want to write the implementation of the complex types yourself

or you want to modify auto-generated Java source files (setting this parameter to true will

overwrite any manually edited/written Java source files).

Function Component Input and Output

You run the FC JAR creation utility by pressing the ″Generate complex types″ button.

v The Java source files are output and then read from ″<installation_folder>/temp/
ComplexTypesJavaFiles″. If this folder does not exist it is automatically created.

v The Java class files are output and then read from ″<installation_folder>/temp/
ComplexTypesClassFiles″. If this folder does not exist it is automatically created.

Chapter 5. Function Components 371

Note: Before creating any output files (Java source or class files, the JAR file) the previously generated

files are deleted.

Troubleshooting

If the ComplexTypesGenerator FC displays an error message box and you need further information about

the error that has occurred do the following:

1. Change the log level of the log4j.logger.com.ibm.di.admin logger in ″<installation_directory>/
log4j.properties″ to DEBUG. For example change the line log4j.logger.com.ibm.di.admin=WARN to

log4j.logger.com.ibm.di.admin=DEBUG.

2. Restart the Config Editor.

3. Run the ComplexTypesGen utility again.

372 Reference Guide

Remote Command Line FC

The Remote Command Line Function Component (Remote CLFC) enables command line system calls to

be executed on remote machines. The design and implementation uses the RXA toolkit v2.2 to connect to

remote machines, execute the commands and return the results. The returned output can then be parsed

to be consumed one value at a time and detect any problems with the executed command.

The Remote CLFC has the ability to connect to remote machines using any of the following protocols:

RSH, REXEC, SSH, AS400 or Windows. You can select which of the protocols will be used, however, if

left to the default value of ’ANY’, the FC will attempt to connect to the remote machine using each of the

available protocols one-by-one until a successful connection is made.

You will need to provide information about the remote machine including hostname, username and

password. . If the connection is being made using the SSH protocol then you have the option of

providing a keystore name and passphrase instead of using a password for authentication.

Note: SSH Connections are typically associated with Linux/UNIX and z/OS hosts. However, by

installing Cygwin and the Cygwin openssh package on the Windows target machine the SSH

protocol can be used with those targets as well. In addition, z/OS targets can be reached using the

SSH protocol also.

Configuration

Target Machine Hostname

The hostname (address) of the target machine.

Remote User

The name of a user with Administrative privileges on the target machine.

Password

The password for the user (specified as Remote User) on the target machine. This parameter may

be optional in the case of SSH connections using a keystore, as well as for RSH connections.

Keystore Path

Full path to the file containing the keystore. This parameter is optional, and only used for SSH

connections.

Passphrase

The passphrase that protects your private key, in the keystore specified by the Keystore Path

parameter above.

Connection Protocol

Select from ‘ANY’, ‘SSH’, ‘RSH’, ‘REXEC’, 'AS400' and ‘WIN’. This designates what protocol to

use when connecting to the remote machine. See “Using the FC” on page 375 for more details.

Port The port to use to connect to the target machine.

Command

The command that is to be executed on the target machine. This is overridden if an input

attribute ’command.line’ has been provided.

Stdin source file (local)

The path to the file on the local system that is to be used as standard input to the command

specified. This parameter is optional.

Stdin destination directory (remote)

The path to an existing destination directory on the target where you want the standard input

file, designated by Stdin source file (local), to be copied. If a value for Stdin source file (local)

has been provided, but no value for the destination then a random temporary directory will be

created on the remote machine. Note that the file is copied temporarily; once the command has

finished execution, the copy on the remote machine is deleted.

Chapter 5. Function Components 373

Timeout (ms)

The desired CPU timeout period in milliseconds. If the operation does not complete within the

specified duration then the operation is cancelled. This parameter is optional. An unspecified or 0

(zero) value indicates Unlimited, that is, no computational time limit.

Note: The timeout is a measure of the CPU clock time of the Remote CLFC process, not a

measure of the actual time elapsed since process initiation. Commands that are not

computationally intensive will not timeout in the specified time if they have not reached

their computational time limit.

Enable SSL for AS400?

This parameter governs whether an SSL connection is enforced on the AS400 (i5/OS) connection.

If checked an SSL connection will be attempted to the AS400 target (SSL must be installed and

configured on the AS400 target system). The default is unchecked.

AS400 Proxy Server Name

This parameter defines an AS400 proxy server if so required.

Run AS400 Program?

An optional Remote CLFC parameter that defines the type of command execution to use for an

AS400 (i5/OS) connection. AS400 programs have the extension .PGM. Arguments for these AS400

Programs can be specified using the Entry Attribute command.args.

 The default value is unchecked.

Enable RXA Internal Logging?

Enabling this will allow the RXA internal logger to generate log messages in the AssemblyLine

log file.

Detailed Log

Enabling this will generate debug log messages.

Function Component Input

Some of the parameters configured in the Configuration screen of the Remote CLFC can be provided as

Attributes mapped from the work Entry in the Input Map. When present and non-empty, they take

precedence over the parameters in the Configuration screen:

command.line

The command that is to be executed on the target machine.

command.args

A multi-valued Attribute whose values each are command line arguments. Required when

executing AS400 Programs.

command.args.delim

This Attribute specifies the command/Program argument delimiter. If not specified the default is

a single white space character.

stdin.source

This attribute, of type java.io.String, represents the path to the file on the local machine that is to

be used as standard input for the specified command.

stdin.destination

This attribute, of type java.io.String, represents the path where the transferred file should be

stored on the remote machine.

In other words, if an attribute called command.line is provided in the input entry object then any

command that was entered in the Config Editor will be disregarded. This allows you to call the Remote

CLFC repeatedly by other components in the AssemblyLine to perform different commands.

374 Reference Guide

Function Component Output

Once the Remote CLFC has executed the command specified by either the command.line attribute or the

Command configuration parameter as discussed above, the FC makes the following attributes available

for attribute mapping:

command.returnCode (int)

The return code that resulted from executing the remote command.

command.error (String)

The standard error message, if any, that was generated when the command was run.

command.out (String)

The standard output message, if any, that was generated when the command was run.

Using the FC

The Remote CLFC may be used within an AssemblyLine containing other TDI components such as

Connectors and other Function Components. To function correctly, you must configure the Remote CLFC

correctly using the Config Editor. When it is initialized it will establish a connection with the remote

machine and then when its perform() method is called (normally when it is reached in the AssemblyLine

it is part of), it will execute its command on the target.

Upon completion, the perform() method will return an Entry object containing the three output attributes

described above: command.returnCode, command.error and command.out. These attributes will then be

available to other TDI components further down in the AssemblyLine.

If you use the FC to perform a command that returns a list of messages in Standard Out such as a

directory listing then the Remote CLFC would need to be used in conjunction with other TDI

components, like a Parser, in order to extract the individual entries from the command.out String object

and process them one at a time.

Configuring the Target System

The target machines must satisfy the following requirements:

Windows Targets

Using the WIN protocol: Windows XP targets must have Simple File Sharing disabled for Remote

Execution and Access to work. Simple Networking forces all logins to authenticate as ″guest″. A

guest login does not have the authorizations necessary for Remote Execution and Access to

function.

 To disable Simple File Sharing, you need to start Windows Explorer and click Tools->Folder

Options. Select the View tab, scroll through the list of settings until you find Use Simple File

Sharing. Remove the check mark next to Use Simple File Sharing, then click Apply and OK.

 Windows XP includes a built-in firewall called the Internet Connection Firewall (ICF). By default,

ICF is disabled on Windows XP systems, except on Windows XP Service Pack 2 where it is on by

default. If either firewall is enabled on a Windows XP target, it will block attempted accesses by

Remote Execution and Access. On Service Pack 2, you can select the File and Printer Sharing box

in the Exceptions tab of the Windows Firewall configuration to allow access.

 The target machine must have remote registry administration enabled (which is the default

configuration) in order for Remote Execution and Access to run commands and execute scripts on

the target machine.

 The default hidden administrative disk shares (such as C$, D$, etc) are required for proper

operation of Remote Execution and Access.

Cygwin Targets

Using the SSH protocol: To use SSH logins to remote Windows computers, you must download

Cygwin from http://cygwin.com and install it on each Windows machines that your application

will target. Complete documentation for Cygwin is available at http://cygwin.com.

Chapter 5. Function Components 375

http://cygwin.com
http://cygwin.com

To use Remote Execution and Access applications on Cygwin targets, you will need to install up

to two additional Cygwin packages that are not part of the default Cygwin installation. From

http://cygwin.com, download and install openssh, which is in the net category of Cygwin

packages. openssh contains the ssh daemon that is needed to support SSH logins on Cygwin

targets. Another package, cygrunsrv, which is in the admin category of packages, provides the

ability to run the ssh daemon as a Windows service. If you do not wish to run the ssh daemon as

a service, this package is optional.

UNIX and Linux Targets

Using SSH, RSH or REXEC protocols: The RXA toolkit this FC uses does not supply SSH code

for UNIX machines. You must ensure SSH is installed and enabled on any target you want to

access using SSH protocol. OpenSSH 3.71, or higher, contains security enhancements not available

in earlier releases.

 RXA cannot establish connections with any UNIX target that has all remote access protocols (rsh,

rexec, or ssh) disabled.

 In all UNIX environments except Solaris, the Bourne shell (sh) is used as the target shell in UNIX

environments. On Solaris targets, the Korn shell (ksh) is used instead due to problems

encountered with sh.

 In order for RXA to communicate with Linux and other SSH targets using password

authentication, you must edit the file /etc/ssh/sshd_config file on target machines and set:

PasswordAuthentication yes (the default is ’no’)

After changing this setting, stop and restart the SSH daemon using the following commands:

/etc/init.d/sshd stop

/etc/init.d/sshd start

For further details on how to configure SSH between the local machine and the target, either

using password authentication or a keystore, please refer to the relevant OpenSSH documentation

at http://www.openssh.com.

z/OS Targets

Using SSH and z/OS, VMS shell commands can be executed on mainframe zSeries systems.

Commands executed using this type of connection are very Unix-like as they are run in the

simulated Unix shell environment.

Note: The target TDI Server you run this on should be in ASCII mode as required by the

underlying RXA libraries. Refer to "ASCII Mode" in IBM Tivoli Directory Integrator 6.1.1:

Administrator Guide for more information.

AS400 Targets

AS400 targets require the IBM Toolbox for Java (V5.2 recommended) to be installed along with a

suitable JRE. The IBM Toolbox for Java is also required on the TDI server where the JAR files will

be placed in the <TDI_INSTALL>/jars/3rdParty/IBM directory. The commands and programs

themselves have to be located under the QSYS library on the iSeries system.

 When enabling the AS400 SSL connection option, additional configuration is required for self

signed certificates. In this case, the signing certificate must be added to the Java Security CA

Certificate store (<jre_directory>/lib/security/cacerts). Further information can be found here:

http://access1.sun.com/techarticles/Keytool.html.

See also

“Command line Connector” on page 26,

“z/OS TSO/E Command Line FC” on page 377.

376 Reference Guide

http://cygwin.com
http://www.openssh.com
http://access1.sun.com/techarticles/Keytool.html

z/OS TSO/E Command Line FC

This Function Component addresses the need TDI to be able to issue privileged z/OS commands,

including RACF, ACF2 and TopSecret commands.

Configuration

Parameters

The z/OS environment requires a number of parameters for this FC to function properly.

Partner TP Name

Specifies the Partner TP Name as specified in the APPC TP Profile. This parameter is required.

Destination LU Name

Specifies the destination LU name as specified in the APPC configuration file. If NULL or empty

the LU that is defined as default will be used.

Source LU Name

Specifies the source LU name as specified in the APPC configuration file. If NULL or empty the

LU that is defined as default will be used.

APPC mode

Specifies the mode of the APPC conversation. If NULL or empty the default mode as specified in

the source LU will be used.

User Name

The user under whose identity the conversation will be held.

 If NULL or empty, Security_Type of the conversation is ATB_SECURITY_SAME and the identity

under which the IBM Tivoli Directory Integrator is started is used with a default profile.

Otherwise, Security_Type of the conversation is ATB_SECURITY_PROGRAM and the TSO

command will be executed under the identity of the user specified using the profile of that user.

User Password

The password of the user under whose identity the conversation will be held; only taken into

account when the User Nameparameter is specified.

 If NULL or empty, the conversation will succeed only if the user specified is granted surrogate

authorization on the system where the REXX script is deployed.

Detailed Log

When checked, generates additional log messages.

Comment

Your own comments go here.

Using the FC

The z/OS TSO Command Line Function Component is able to execute TSO/E shell commands.

This component is only responsible for execution of the command it is passed – it will not construct shell

commands and will not understand the business logic associated with the commands it is executing.

The Function Component is given the command line on input and returns the execution status and the

output generated by the command. Architecturally this FC consists of a Java layer, a USS shared library

and a REXX script component: The Java layer passes the command to the shared library, the shared

library passes it to the REXX script through APPC and the REXX script executes the TSO/E command

and passes back the result.

Chapter 5. Function Components 377

Specific business logic of a higher level can be built on top of this Function Component - for example a

Connector that manages RACF users. This Connector could construct the correct RACF commands (that

correspond to add, modify, etc.) and use internally the FC to execute them.

Function Component Input

An Entry object with an Attribute named command whose value is the TSO/E command to be executed.

Function Component Output

An Entry object with the following Attributes:

commandOutput

Contains the output of the TSO/E command execution.

tsoCommandReturnCode

Contains the return code of the TSO/E command.

appcReturnCode

Contains the APPC return code.

Authentication

The APPC conversation can be performed in two modes: Security_Same and Security_Progam.

Whether the conversation will be held in the Security_Program mode depends on whether the User

Name Function Component parameter contains a non NULL value.

Authorization

The REXX script is the component that actually executes the TSO command.

TDI will be allowed or disallowed to execute the TSO command depending on the privileges of the user

id specified in the z/OS TSO Command Line Function Component configuration.

To minimize the chances that the REXX script ability to execute TSO commands is maliciously exploited,

the following optional deployment strategy can be applied:

A specific dataset is created for the REXX script – this dataset will contain the REXX script only and no

other members. In RACF the access to the dataset will be limited to only those users that we want to

allow to execute that script. The same user(s) will then need to be specified in the z/OS TSO Command

Line Function Component configuration.

Other options for restricting the access to the REXX script include limiting the access provided by APPC:

v The Logical Units from which conversation requests will be accepted can be restricted. If for example

the REXX script is accessed from the local system, the TP Profile can be put in a LU that is inaccessible

for remote calls.

v A limited number of users might be allowed to request a conversation with the TP associated with the

REXX script. For example, special users might be created that can access the TP.

Setting up the native part of the FC

Before using the TSO Command Line Function Component a REXX script must be deployed on a z/OS

dataset and APPC configured accordingly:

The z/OS TSO Command Line Function Component contains a REXX script named ″TDIEXEC″ that

executes a TSO/E command and returns the command output.

This REXX script has to be copied to a FB 80 z/OS dataset where it will be invoked from.

The z/OS TSO Command Line Function Component contains a JCL named ″TDITP.jcl″ that defines the

TP Profile data for the REXX script.

378 Reference Guide

You customize the JCL according to the z/OS system environment and execute it.

In detail, in order to deploy the FC you should:

1. Identify (or allocate) PDS datasets where the JCL and REXX script will reside. The JCL and the REXX

script can reside in the same or in different datasets.

You can find the ″TDITP.jcl″ JCL and ″TDIEXEC″ REXX script in the ″tso_fc″ subfolder of the IBM

Tivoli Directory Integrator installation folder (only on z/OS).

2. Copy the REXX script and the JCL to the dataset.

For example, this can be done from the TSO shell or menu 6 of ISPF with the following commands:

OGET ’<TDI_root>/tso_fc/TDIEXEC’ ’<TDIEXEC_dataset>(TDIEXEC)’

OGET ’<TDI_root>/tso_fc/TDITP.jcl’ ’<TDITP.jcl_dataset>(TDITP)’

3. Make sure APPC and ASCH (Transaction Scheduler) are started.

APPC could be started with the following system command:

 s APPC,SUB=MSTR

ASCH could be started with the following system command:

 s ASCH,SUB=MSTR

Note: If you want to execute the system commands from ISPF, go to ″System Display and Search

Facility″, Menu ″s″ and prefix your command with ″/″, for example:

 /s APPC,SUB=MSTR

4. Customize TDITP.jcl to reflect your environment.

To do so, follow the instructions within the TDITP.jcl JCL. Basically you need to specify the name of

the dataset where the TDIEXEC REXX script resides, the APPC TP Profile dataset and the Transaction

Scheduler class. The APPC configuration files will give you the necessary information for the APPC

TP Profile dataset and the Transaction Scheduler class: by default the APPC and ASCH configuration

files are located in the USER.PARMLIB dataset: APPCPM00 for APPC and ASCHPM00 for the

Transaction Scheduler.

5. Submit the modified TDITP.jcl.

You can submit it from ISPF by typing ″sub″ in front of the name of the JCL.

See also

″z/OS environment Support″, in IBM Tivoli Directory Integrator 6.1.1: Administrator Guide.

Chapter 5. Function Components 379

380 Reference Guide

Chapter 6. SAP R/3 Component Suite

Who should read this chapter

IBM Tivoli Directory Integrator components are designed for network administrators who are responsible

for maintaining user directories and other resources. This chapter assumes that you have practical

experience installing and using both IBM Tivoli Directory Integrator and SAP R/3, and it describes the

procedural steps that are required to achieve integration between IBM Tivoli Directory Integrator and

SAP R/3.

This chapter assumes that both IBM Tivoli Directory Integratorand SAP R/3 are installed, configured and

running on your network. No details are provided regarding the installation and configuration of these

products, except where necessary to achieve integration.

Component Suite Installation

This section describes the software requirements and installation steps for the IBM Tivoli Directory

Integrator Component Suite for SAP R/3.

This chapter contains the following sub-sections:

v “Software Requirements”

v “Verifying the Component Suite for SAP R/3” on page 382

v “Checking the Version Numbers” on page 383

v “Uninstallation” on page 383

Software Requirements

The IBM Tivoli Directory Integrator Component Suite for SAP R/3 is supported on the operating systems

platforms that are common for IBM Tivoli Directory Integrator and SAP JCo 2.1.6. Please see the IBM

Tivoli Directory Integrator Administrators Guide for supported operating system platforms supported by

IBM Tivoli Directory Integrator and please see the SAP website for information about supported

platforms for SAP JCo 2.1.6. SAP JCo has other prerequisites, please refer to the SAP Note 684106 for

information about other prerequisites.

Installing IBM Tivoli Directory Integrator 6.1.1 also installs the Component Suite. However, to complete

the install of the Component Suite, an additional component must be added on the target machine:

v SAP Java Connector (JCo) version 2.1.6

Licensed SAP R/3 customers can download the JCo from the SAP Website. You will require a valid SAP

support login account and password, which can be obtained by request from SAP support. SAP R/3 6.20

or 6.40 must also be installed and running on a node within the network environment. TCP/IP network

connectivity is required between the SAP R/3 instance and the machine hosting the IBM Tivoli Directory

Integrator Component Suite for SAP R/3.

Configuring the SAP Java Connector

Once downloaded and available on the machine designated to host IBM Tivoli Directory Integrator and

the Component Suite for SAP R/3 , the JCo can be installed and configured for IBM Tivoli Directory

Integrator 6.1.1 as follows:

1. Unzip the JCo distribution package to a directory on the target machine. For example:

/SapJco216

2. Open the installation.html file and follow the installation instructions for your Operating System.

For example:

© Copyright IBM Corp. 2003, 2007 381

/SapJco216/docs/jco/installation.html

3. Add the following entries to your network service file:

v sapdpNN 32NN/tcp

v sapgwNN 33NN/tcp

- where NN is the SAP instance identifier of the SAP R/3 system to which the IBM Tivoli Directory

Integrator Component Suite for SAP R/3 will connect.

4. Copy sapjco.jar from the SAP JCo package directory to the TDI_HOME/jars folder.

5. On Windows machines only, copy librfc32.dll and sapjcorfc.dll to the TDI_HOME/libs folder.

Notes:

1. The network service file can be found at %system_root%\system32\drivers\etc\services on Windows

32, or /etc/services on UNIX.

2. Before using the IBM Tivoli Directory Integrator Component Suite for SAP R/3, ensure that the

sapjco.jar is in the CLASSPATH, and that sapjcorfc.{dll/so} and librfc*.{dll/so} are in the

loadable library path.

Verifying the Component Suite for SAP R/3

To verify the IBM Tivoli Directory Integrator 6.1.1 Component Suite for SAP R/3:

Table 41 below describes the files and locations installed by the system installer for IBM Tivoli Directory

Integrator 6.1.1, with regards to the Components Suite.

 Table 41. Installed locations for the IBM Tivoli Directory Integrator Component Suite for SAP R/3

 Filename Description

TDI_SAPR3Connectors_UserGuide.doc TDI_HOME/doc

SapR3BorConnector.jar TDI_HOME/jars/connectors

SapR3UserConnector.jar TDI_HOME/jars/connectors

SapR3RfcFC.jar TDI_HOME/jars/functions

index.html (Javadoc for all SAP Components) TDI_HOME/docs/api/

bapi_user_actgroups_assign.xsl TDI_HOME/xsl

bapi_user_actgroups_delete.xsl TDI_HOME/xsl

bapi_user_change.xsl TDI_HOME/xsl

bapi_user_create.xsl TDI_HOME/xsl

bapi_user_delete.xsl TDI_HOME/xsl

bapi_user_getdetail_postcall.xsl TDI_HOME/xsl

bapi_user_getdetail_precall.xsl TDI_HOME/xsl

bapi_user_getlist_postcall.xsl TDI_HOME/xsl

bapi_user_getlist_precall.xsl TDI_HOME/xsl

bapi_user_profiles_assign.xsl TDI_HOME/xsl

bapi_user_profiles_delete.xsl TDI_HOME/xsl

bapi_employee_dequeue.xsl TDI_HOME/xsl

bapi_employee_enqueue.xsl TDI_HOME/xsl

bapi_employee_getdata_postcall.xsl TDI_HOME/xsl

bapi_employee_getdata_precall.xsl TDI_HOME/xsl

bapi_persdata_change.xsl TDI_HOME/xsl

bapi_persdata_create.xsl TDI_HOME/xsl

382 Reference Guide

Table 41. Installed locations for the IBM Tivoli Directory Integrator Component Suite for SAP R/3 (continued)

 Filename Description

bapi_persdata_delete.xsl TDI_HOME/xsl

bapi_persdata_getdetail_postcall.xsl TDI_HOME/xsl

bapi_persdata_getdetail_precall.xsl TDI_HOME/xsl

bapi_persdata_getdetailedlist_postcall.xsl TDI_HOME/xsl

bapi_persdata_getdetailedlist_precall.xsl TDI_HOME/xsl

Checking the Version Numbers

To check the component software version numbers for this integration package:

1. Start IBM Tivoli Directory Integrator and click on Help

2. Select About IBM Tivoli Directory Integrator Components.

3. Version numbers are displayed for the following components:

v ibmdi.SapR3RfcFC

v ibmdi.SapR3UserRegConnector

v ibmdi.SapR3BorConnector

Uninstallation

To remove the IBM Tivoli Directory Integrator the Component Suite for SAP R/3 from the target system:

1. Stop IBM Tivoli Directory Integrator assembly lines that are currently running and using one of the

IBM Tivoli Directory Integrator Components for SAP R/3.

2. Run the uninstall executable located at TDI_HOME/_uninstsap and follow the prompts.

3. Remove the following entries from your network service file (%system_root%\system32\drivers\etc\
services on Windows 32, /etc/services on UNIX):

v sapdpNN 32NN/tcp

v sapgwNN 33NN/tcp

- where NN is the SAP instance identifier of the SAP R/3 system to which the IBM Tivoli Directory

Integrator Component Suite for SAP R/3 connects.

4. Remove the SAP JCo (SAP_JCO_HOME) directory that was created during the installation.

5. Remove the environment variable entries and additions that were created during installation as a

result of following the instructions within SAP_JCO_HOME/docs/jco/installation.html.

6. Remove sapjco.jar from the TDI_HOME/jars folder.

7. On Windows machines only, remove the librfc32.dll and sapjcorfc.dll files from the

TDI_HOME/libs folder.

Chapter 6. SAP R/3 Component Suite 383

384 Reference Guide

Function Component For SAP R/3

This chapter describes the IBM Tivoli Directory Integrator Function Component for SAP R/3.

This chapter includes the following sections:

v “Function Component Introduction”

v “Configuration”

v “Using the Function Component” on page 387

Function Component Introduction

The Function Component for SAP R/3 6.20 and 6.40 uses SAP JCo 2.1.6 to invoke RFCs on the SAP R/3

System. The Function Component provides a means of calling an arbitrary RFC.

Figure 1 below illustrates the overview architecture of the RFC Function Component.

 Before using the Function Component for SAP R/3, the SAP JCo must be downloaded and installed (for

details, see “Software Requirements” on page 381).

Configuration

If the Function Component for SAP R/3 is added directly into an assembly line, the following

configuration parameters are available for client connections. The parameters are very similar to the logon

parameters for the traditional SAP GUI. Runtime names are shown below in parentheses.

Figure 1. Overview architecture of the RFC Function Component

Chapter 6. SAP R/3 Component Suite 385

Parameters

 R3 Client (client)

SAP R/3 Logon client for R/3 connection. For example, 100.

R3 User (user)

SAP R/3 Logon user for R/3 connection.

Password (passwd)

SAP R/3 Logon password for R/3 connection.

R3 System Number (sysnr)

The SAP R/3 system number for R/3 connection. For example, 00.

R3 Hostname (ashost)

SAP R/3 application server name for R/3 connection.

Gateway host (gwhost)

Gateway host name for R/3 connection.

RFC Trace (trace)

Set to one (1) to enable RFC API tracing. If enabled, the SAP RFC API will produce separate

rfc_nnnn.trc files (where nnnn represents values assigned by the RFC API) in the working

directory IBM Tivoli Directory Integrator This option may be useful to help diagnose RFC

invocation problems. It logs the activity and data between the Connector and SAP R/3. This

should be set to zero (0) for production deployment.

 Additional configuration parameters are available when using the Function Component

programmatically. For more information on the additional parameters, see the SapR3RfcFC Java Doc in the

distribution package.

Function Component Input

The perform() method accepts an Entry object. If anything else is passed an Exception is thrown. The

Entry object contains two attributes:

v requestType

v request

The Function Component supports three styles of invocation:

v XML Document,

v XML string, or

v multi-valued attribute.

The value of requestType should be set to one of the following, to indicate which style is to be used:

v xmlDomDocument

v xmlString

v multiValuedAttributes

The value of attribute request is a type of:

v org.w3c.dom.Document if requesttype is xmlDomDocument,

v java.lang.String if requesttype is xmlString, or

v com.ibm.di.entry.Attribute if requesttype is multiValuedAttributes.

The value of request represents the request data of an RFC as one of:

v XML String,

v DOM Document, or

v multi-valued Attribute (please refer to the Javadoc for some sample JavaScript using multi-values

attribute invocation).

386 Reference Guide

Any other value will result in an Exception being thrown.

 If request is of type org.w3c.dom.Document:

Its associated value must be an org.w3c.dom.Document containing an XSchema that conforms to

the specification for ABAP RFC XML serialization.

If request is of type java.lang.String:

Its associated value must be an XML string. A DOM parser will parse the string value. Its

XSchema must also conform to the specification for Serialization of ABAP Data in XML.

If request is a multi-valued attribute:

The first value of attribute request must be of type java.lang.String, containing the name of the

RFC, while the second value of the attribute request must be com.ibm.di.entry.Attribute, whose

values contain additional attributes for the SAP RFC parameters as a series of nested and

multi-valued attributes representing the names of the import and table parameters of the RFC.

The names of the parameters must be encoded according to the rules for Serialization of ABAP

Data in XML (names will not have characters that could result in badly-formed XML).

 Here is an example of how to invoke the Function Component using the multi-valued attributes style:

 var rfc = system.newAttribute("BAPI_SALESORDER_GETLIST");

 var attr1 = system.newAttribute("CUSTOMER_NUMBER");

 attr1.addValue("0000000016");

 var attr2 = system.newAttribute("SALES_ORGANIZATION");

 attr2.addValue("AU01");

 rfc.addValue(attr1);

 rfc.addValue(attr2);

 var entry = system.newEntry();

 var reqAttr = entry.newAttribute("request");

 reqAttr.addValue(rfc);

 entry.setAttribute("requestType", "multiValuedAttributes");

 var result = fc.perform(entry);

Note: For SAP specifications, see the SAP Web site at http://ifr.sap.com.

Function Component Output

The Function Component output is an Entry object with two attributes:

v responseType, indicating the response type,

v response, with the RFC response as either a DOM Document, an XML string or a nested multi-valued

Attribute.

Attribute responseType will have a java.lang.String value corresponding to the input request type.

 If the Entry contains an attribute responseType with value xmlDomDocument

The value of attribute response is an org.w3c.dom.Document containing the RFC response.

If the Entry contains an attribute responseType with value xmlString

The value of attribute response is an XML java.lang.String containing the RFC response.

If the Entry contains an attribute responseType with value multiValuedAttributes

The value of attribute response is a nested and multi-valued attribute, where the first value is a

java.lang.String, which has the name of the RFC that was invoked, and the second value

contains the results of the RFC as a series of nested multi-valued attributes.

Using the Function Component

The Function Component invokes the given RFC for a SAP R/3 system.

It can be placed in an assembly line or invoked directly from script. It is the callers’ responsibility to

check the returned Entry object for any errors that may have resulted from invoking the RFC.

As an example, the following code can be used to invoke an RFC from JavaScript:

Chapter 6. SAP R/3 Component Suite 387

http://ifr.sap.com

var counter = 0;

var fc = system.getFunction("ibmdi.SapR3RfcFC");

var myentry;

var docResponse;

fc.setParam(fc.PARAM_CONFIG_CLIENT, "100");

fc.setParam(fc.PARAM_CONFIG_USER, "TIVOLI");

fc.setParam(fc.PARAM_CONFIG_PASSWORD, "******");

fc.setParam(fc.PARAM_CONFIG_SYSNUMBER, "11");

fc.setParam(fc.PARAM_CONFIG_LANGUAGE, "E");

fc.setParam(fc.PARAM_CONFIG_APPLICATION_SERVER, "kimala");

fc.initialize(null);

var rfc = new java.lang.String("<BAPI_COMPANYCODE_GETLIST/>");

var myentry = system.newEntry();

var attr = myentry.newAttribute(fc.PARAM_INPUT_TYPE);

attr.addValue(fc.PARAM_VAL_STRING);

attr = myentry.newAttribute(fc.PARAM_INPUT);

attr.addValue(rfc);

var myresponse = fc.perform(myentry);

//system.dumpEntry(myresponse);

fc.terminate();

Note: Configuration parameters must be set before initialize() is called, and terminate() should be called

to cleanup.

Using the Command Line RFC Invoker

As a tool to assist in creating valid RFC XML requests, a command line utility has been provided. It can

be invoked outside of the IBM Tivoli Directory Integrator environment and is able to read an XML file,

which represents an RFC XML request to be executed against the SAP R/3 system.

To invoke the utility, add TDI_HOME/jars/functions/SapR3RfcFC.jar to the CLASSPATH environment

variable:

TDI_HOME/jvm/bin/java com.ibm.di.fc.sapr3rfc.RfcXmlInvoker -f

 [input XML file] -o [output XML file] -p

 [JCO Connection properties file]

Notes:

1. These instructions assume that you have already completed the steps described in “Configuring the

SAP Java Connector” on page 381. It is important that the sapjco.jar is in the CLASSPATH, and that

sapjcorfc.{dll/so} and librfc*.{dll/so} are in the loadable library path.

2. For AIX, the path to the Java executable is TDI_HOME/jvm/jre/bin/java.exe

The contents of the JCO Properties file represent the R/3 client connection parameters for the R/3 system.

An example of the values in the property file is shown below:

jco.client.client=R/3 CLIENT

jco.client.user=R/3 USER NAME

jco.client.passwd=R/3 USER PASSWORD

jco.client.sysnr=R/3 SYSTEM NUMBER

jco.client.ashost=R/3 APPLICATION SERVER HOSTNAME OR IP ADDRESS

jco.client.trace=RFC API TRACE: 1 = ON; 0 = OFF

388 Reference Guide

User Registry Connector for SAP R/3

The section describes the configuration and operation of the IBM Tivoli Directory Integrator User Registry

Connector for SAP R/3.

This chapter contains the following sections:

v “Introduction”

v “Configuration” on page 390

v “Using the User Registry Connector for SAP R/3” on page 393

Introduction

This component enables the provisioning and management of SAP R/3 user accounts to external

applications (with respect to SAP R/3). The Connector uses the generic RFC invocation feature of the

IBM Tivoli Directory Integrator Function Component for SAP R/3 (referred to hereafter as the RFC

Function Component). The RFC Function Component enables the Connector to manage SAP user account

attributes by executing RFC ABAP code as an external SAP R/3 client application.

The Connector supports an extendable generic framework for provisioning SAP R/3 user accounts and

their associated attributes. This is achieved by defining an XML representation of user account

information. This XML is then transformed via XSL style sheet transformations (XSLT) into RFC requests.

The default functionality of the Connector does not require the deployment of custom RFC ABAP code

onto the target R/3 instance.

The key features and benefits of the Connector are:

v Support for Create, Read, Update, and Delete (C.R.U.D) operations for SAP R/3 users.

v Modifiable behavior through XSL transformations for SAP R/3 RFC execution.

v Minimal compile time dependency between the Connector and SAP R/3. The Connector does not use

any generated RFC proxy code. It relies on the RFC Function Component as a dynamic proxy.

The Connector supports the following IBM Tivoli Directory Integrator Connector modes:

v Add Only

v Update

v Delete

v Lookup

v Iterator

Chapter 6. SAP R/3 Component Suite 389

Figure 2 below illustrates the component design of the SAP R/3 User Registry.

Configuration

The User Registry Connector for SAP R/3 may be added directly into an assembly line. The following

section lists the configuration parameters that are available for R/3 client connections and XSL style sheet

behavior. The runtime names are shown in parentheses.

Parameters

 R3 Client (client)

SAP R/3 Logon client for R/3 connection (for example, 100). This is passed directly to the RFC

Function Component.

R3 User (user)

SAP R/3 Logon user for R/3 connection. This is passed directly to the RFC Function Component.

Password (passwd)

SAP R/3 Logon password for R/3 connection. This is passed directly to the RFC Function

Component.

R3 System Number (sysnr)

The SAP R/3 system number for R/3 connection (for example, 100). This is passed directly to the

RFC Function Component.

R3 Hostname (ashost)

SAP R/3 application server name for R/3 connection. This is passed directly to the RFC Function

Component.

Figure 2. Component design of the SAP R/3 User Registry

390 Reference Guide

Gateway host (gwhost)

Gateway host name for R/3 connection. This is passed directly to the RFC Function Component.

RFC Trace (trace)

Set to one (1) to enable RFC API tracing. If enabled, the SAP RFC API will produce separate

rfc_nnnn.trc files in the working directory of IBM Tivoli Directory Integrator. This option may

be useful to help diagnose RFC invocation problems. It logs the activity and data between the

Connector and SAP R/3. This should be set to zero (0) for production deployment.

Optional RFC Connection Parameters

Used to define a list of other optional RFC connection parameters. The value for this

configuration list is a key=value list where each connection parameter is separated by the space

character. For example the following string value would set the SAP Gateway Service to

"sapgw00" and enable the SAP GUI.

"gwserv=sapgw00 use_sapgui=1"

Here is a list of optional SAP Java Connector parameters that are accessible.

Alias user name (alias_user)

SAP message server (mshost)

Gateway service (gwserv)

Logon language (lang)

1 (Enable) or 0 (disable) RFC trace (trace)

Initial codepage in SAP notation (codepage)

Secure network connection (SNC) mode, 0 (off) or 1 (on) (snc_mode)

SNC partner, e.g. p:CN=R3, O=XYZ-INC, C=EN (snc_partnername)

SNC level of security, 1 to 9 (snc_qop).

SNC name. Overrides default SNC partner (snc_myname)

Path to library which provides SNC service (snc_lib)

SAP R/3 name (r3name)

Group of SAP application servers (group)

Program ID of external server program (tpname)

Host of external server program (tphost)

Type of remote host 2 = R/2, 3 = R/3, E = External (type)

Enable ABAP debugging 0 or 1 (abap_debug)

Use remote SAP graphical user interface (0/1/2) (use_sapgui)

Get/Don’t get a SSO ticket after logon (1 or 0) (getsso2)

Use the specified SAP Cookie Version 2 as logon ticket (mysapsso2)

Use the specified X509 certificate as logon ticket (x509cert)

Enable/Disable logon check at open time, 1 (enable) or 0 (disable) (lcheck)

String defined for SAPLOGON on 32-bit Windows (saplogon_id)

Data for external authentication (PAS) (extiddata)

Type of external authentication (PAS) (extidtype)

Idle timeout (in seconds) for the connection after which it will be closed by R/3.

 Only positive values are allowed. (idle_timeout)

Enable (1) or Disable (0) dsr support (dsr)

RFC Function Component Name (sapr3.userconn.rfcFC)

The name of the RFC Function Component registered with IBM Tivoli Directory Integrator. This

option should be changed only on the advice of IBM support. The default value is:

ibmdi.SapR3RfcFC

Add Mode StyleSheets (sapr3.userconn.putStylesheets)

The list of XSLT style sheets files to be executed by the Connector when deployed in Add Only

mode. At runtime, each style sheet is applied to the XML contained within the Container Entry.

The XSL will be applied to the value of the attribute named sapUserXml. Each XSL style sheet

filename must be entered on a new line within the text box. This configuration parameter should

be changed only at the direction of IBM support. The default value is:

Chapter 6. SAP R/3 Component Suite 391

xsl/bapi_user_create.xsl, xsl/bapi_user_actgroups_assign.xsl,

 xsl/bapi_user_profiles_assign.xsl

Update Mode StyleSheets (sapr3.userconn.modifyStylesheets)

The list of XSLT style sheets files to be executed by the Connector when deployed in Update

mode. At runtime, each style sheet is applied to the XML contained within the Container Entry.

The XSL will be applied to the value of the attribute named sapUserXml. Each XSL style sheet

filename must be entered on a new line within the text box. This configuration parameter should

be changed only at the direction of IBM support. The default XSL list is:

xsl/bapi_user_change.xsl, xsl/bapi_user_actgroups_assign.xsl,

 xsl/bapi_user_profiles_assign.xsl

Delete Mode StyleSheets (sapr3.userconn.deleteStylesheets)

The list of XSLT style sheets files to be executed by the Connector when deployed in Delete

mode. At runtime, each style sheet is applied to the XML contained within the Container Entry.

The XSL will be applied to the value of the attribute named sapUserXml. Each XSL style sheet

filename must be entered on a new line within the text box. This configuration parameter should

be changed only at the direction of IBM support. The default value is:

xsl/bapi_user_delete.xsl

Lookup Mode Pre StyleSheet (sapr3.userconn.findPreStylesheet)

The XSLT style sheet file to be executed by the Connector when creating an RFC XML request

that is able to obtain all user attributes for a given user. This configuration value must be set

when the Connector is deployed in Update, Delete, and Lookup modes. This configuration

parameter should be changed only at the direction of IBM support. The default value is:

xsl/bapi_user_getdetail_precall.xsl

Lookup Mode Post StyleSheet (sapr3.userconn.findPostStylesheet)

The XSLT style sheet file to be executed by the Connector when creating the user XML formatted

response from the Connector. This configuration value must be set when the Connector is

deployed in Update, Delete, and Lookup modes. The XSLT transforms the response XML from

the RFC executed as a result of the XSLT from Lookup Mode Pre StyleSheet configuration. This

configuration parameter should be changed only at the direction of IBM support. The default

value is:

xsl/bapi_user_getdetail_postcall.xsl

Select Entries Pre StyleSheet (sapr3.userconn.selectEntriesPreStylesheet)

The XSLT style sheet file to be executed by the Connector when creating an RFC XML request

that is able to obtain all user names from SAP. This configuration value must be set when the

Connector is deployed in Iterator mode. This configuration parameter should be changed only at

the direction of IBM support. The default value is:

xsl/bapi_user_getlist_precall.xsl

Select Entries Post StyleSheet (sapr3.userconn.selectEntriesPostStylesheet)

The XSLT style sheet file to be executed by the Connector when creating the user XML for the

getNextEntry() processing. This configuration value must be set when the Connector is deployed

in Iterator mode. The XSLT transforms the response XML from the RFC executed as a result of

the XSLT from Select Entries Pre StyleSheet configuration. This configuration parameter should

be changed only at the direction of IBM support. The default value is:

xsl/bapi_user_getlist_postcall.xsl

Iterator Mode Pre StyleSheet (sapr3.userconn.getNextPreStylesheet)

The XSLT style sheet file to be executed by the Connector when creating an RFC XML request

that is able to obtain all user attributes for a given user. This configuration value must be set

when the Connector is deployed in Iterator mode. This configuration parameter should be

changed only at the direction of IBM support. The default value is:

xsl/bapi_user_getdetail_precall.xsl

392 Reference Guide

Iterator Mode Post StyleSheet (sapr3.userconn.getNextPostStylesheet)

The XSLT style sheet file to be executed by the Connector when creating the user XML formatted

response from the Connector. This configuration value must be set when the Connector is

deployed in Iterator mode. The XSLT transforms the response XML from the RFC executed as a

result of the XSLT from Iterator Mode Pre StyleSheet configuration. This configuration parameter

should be changed only at the direction of IBM support. The default value is:

xsl/bapi_user_getdetail_postcall.xsl

Detailed Log

When checked, generates additional log messages. The Connector logs data and activity when

this option is enabled.

Using the User Registry Connector for SAP R/3

This section describes how to use the Connector in each of the IBM Tivoli Directory Integrator Connector

modes. The section also describes the IBM Tivoli Directory Integrator Entry schema supported by the

Connector.

Note: The default XSL style sheet file name values are relative path locations with respect to the IBM

Tivoli Directory Integrator AssemblyLine execution directory. In some situations, it may be

necessary to preprend the default file name values with the fully qualified installation location of

the XSL files. Such modification is likely if the IBM Tivoli Directory Integrator Component Suite for

SAP R/3 has been installed in (or if the AssemblyLine is executing from) a directory location

separate from the IBM Tivoli Directory Integrator installation.

IBM Tivoli Directory Integrator Entry Schema

The User Registry Connector supports only two fixed IBM Tivoli Directory Integrator entry attributes.

The schema is available through the discover schema feature (the torch icon) in the IBM Tivoli Directory

Integrator configuration tool. The attribute schema is described below.

 Table 42. IBM Tivoli Directory Integrator Schema

Attribute Name Type Description

sapUserXml java.lang.String A string representing the attributes of an R/3 user. The

XSchema is defined in “XSchema for User Registry Connector

XML” on page 422.

This attribute and value must be present on the Output Map

when the Connector is deployed in Add Only, Update and

Delete modes.

This attribute and value are available on the Input Map when

the Connector is deployed in Lookup and Iterator modes.

sapUserName java.lang.String A string representing the name of a given SAP R/3 user. The

Connector supports this attribute primarily for configuration of

Link Criteria.

Add Only Mode

When deployed in Add Only mode, the Connector is able to create a new user in the SAP R/3 database.

The Connector should be added to the Flow section of a IBM Tivoli Directory Integrator AssemblyLine.

The Output Map must define a mapping for the sapUserXml Connector attribute. The value of this

attribute represents the details of the user to be added to SAP. The value will be applied to each

configured XSLT file in the order defined. The XSLT transforms produce separate RFC XML requests to

be executed by the RFC Function Component, which is managed internally by the Connector.

The Connector does not support duplicate or multiple entries. Only one entry should be supplied to the

Connector at a time.

Chapter 6. SAP R/3 Component Suite 393

Update Mode

When deployed in Update mode, the Connector is able to modify an existing user in the SAP R/3

database. The Connector should be added to the Flow section of a IBM Tivoli Directory Integrator

AssemblyLine. The Output Map must define a mapping for the sapUserXml Connector attribute. The

value of this attribute represents the details of the user to be changed in SAP. The value will be applied

to each configured XSLT file in the order defined. The XSLT transforms produce separate RFC XML

requests to be executed by the RFC Function Component, which is managed internally by the Connector.

Additionally, the sapUserName attribute should be defined in the Link Criteria of the Connector. The

Link Criteria is required by the AssemblyLine, since the AssemblyLine will invoke the Connectors

findEntry() method to verify the existence of the given user. The value of sapUserName, as defined in

the Link Criteria, must match the value of the <sapUserName> XML element present in the value of

sapUserXml. All parameters defined in the Link Criteria are passed as XSLT style sheet parameters. If

duplicate Link Criteria names are supplied, the Connector will use the last value supplied. The style

sheets are not required to use the parameter.

The only operator supported for Link Criteria is an equals exact match. Wildcard search criteria are not

supported, because the RFC lookup method does not currently support wild cards. The Connector will

not return duplicate entries.

The Connector does not support duplicate or multiple entries. Only one entry should be supplied to the

Connector at a time.

Note: This mode allows role and profile assignments to be changed. If sapRoleList or sapProfileList are

present in the XML supplied to the Connector, then Connector will perform a complete delete and

replace of the current assignments in SAP. This means the supplied XML must contain the

complete assignments that need to exist after the operation is executed. This is true also for date

ranges associated with roles. If the intention is to change a date range for a role already assigned,

and not add or remove existing assignments, the complete list of role assignments with the new

date ranges needs to be supplied in the XML. Date ranges should be present with all roles, unless

the SAP defaults date values are acceptable.

Delete Mode

When deployed in Delete mode, the Connector is able to delete an existing user from the SAP R/3

database. The Connector should be added to the Flow section of a IBM Tivoli Directory Integrator

AssemblyLine. The sapUserName attribute must be defined in the Link Criteria of the Connector. The

Link Criteria is required by the AssemblyLine, since the AssemblyLine will invoke the Connector’s

findEntry() method to verify the existence of the given user. All parameters defined in the Link Criteria

are passed as XSLT style sheet parameters. If duplicate Link Criteria names are supplied, the Connector

will use the last value supplied. The style sheets are not required to use the parameter.

The only operator supported for Link Criteria is an equals exact match. Wildcard search criteria are not

supported, because the RFC lookup method does not currently support wild cards.

The Connector does not support duplicate or multiple entries. Only one entry should be supplied to the

Connector at a time.

Lookup Mode

When deployed in Lookup mode, the Connector is able to obtain all details of a given SAP R/3 user. The

Connector should be added to the Flow section of a IBM Tivoli Directory Integrator AssemblyLine. The

sapUserName attribute must be defined in the Link Criteria of the Connector. If duplicate Link Criteria

names are supplied, the Connector will use the last value supplied. The Connector will populate the XML

string value of the attribute sapUserXml. This attribute is available to the AssemblyLine in the

Connector’s Input Map .

394 Reference Guide

The Connector’s findEntry() method is the main code executed. It uses the result of the XSLT transform

configured in Lookup Mode Pre StyleSheet, to execute an RFC to obtain all details for the given user.

The result of the RFC is then transformed using the XSLT transform configured in Lookup Mode Post

StyleSheet.

The only operator supported for Link Criteria is an equals exact match. Wildcard search criteria are not

supported, because the RFC lookup method does not currently support wild cards.

The Connector does not support duplicate or multiple entries. The Connector will return only one entry

at a time.

Iterator Mode

When deployed in Iterator mode, the Connector is able to retrieve the details of each user in the SAP R/3

database, in turn, and make those details available to the AssemblyLine. The XSLT style sheets for Select

Entries Pre StyleSheet, Select Entries Post StyleSheet, Iterator Mode Pre StyleSheet, and Iterator Mode

Post StyleSheet must be configured.

When deployed in this mode, the IBM Tivoli Directory Integrator AssemblyLine will first call the

Connector’s selectEntries() method to obtain and cache a list of all user names in the SAP R/3 database.

The AssemblyLine will then call the Connector’s getNextEntry() method. This method will maintain a

pointer to the current name cached in the list. The method will use this name to call an RFC to obtain all

details for the user. The results of the RFC are formatted by an XSLT transform and set as the value of

sapUserXml and returned by the Connector.

Transactional Operations Not Supported

Neither the Connector nor IBM Tivoli Directory Integrator currently supports transactions with SAP R/3.

Some of the known consequences are explained in this section.

When the Connector is deployed in a mode that results in write operations with SAP (that is, Add Only,

Update andDelete) it is possible for operations to be partially complete. This can occur if multiple XSL

style sheets, which generate RFC requests, are required to complete the operation. If one of the earlier

RFC requests fails, then RFC requests executed subsequently may fail as a result. The Connector attempts

to perform all XSL transformations and resulting RFC invocations on a best effort basis.

Consider the Add Only case to create a user account in SAP. The first style sheet generates an RFC

request for BAPI_USER_CREATE. The second style sheet generates an RFC request for

BAPI_USER_ACTGROUPS_ASSIGN. The third style sheet generates an RFC request for

BAPI_USER_PROFILES_ASSIGN. If the third request fails, then the user may be created without the

assignment of profiles.

Another case exists when attempting to create a user that already exists in SAP. The first style sheet

results in a call to BAPI_USER_CREATE. This invocation will result in an ABAP application level error return

result (this is not the same as an API or infrastructure error). The Connector will log this. The Connector

will then proceed with the subsequent style sheet and RFC invocations, which attempt to assign roles and

profiles to the user. Since the user already exists, the role and profile assignments will succeed.

For the case explained above, should the Connector stop processing after the first RFC, or should the

Connector continue with the role and profile assignments that the IBM Tivoli Directory Integrator user

expected to exist for the newly created user? If the required behavior is to stop after the first RFC error,

then an additional configuration of the IBM Tivoli Directory Integrator AssemblyLine can satisfy this

requirement. Deploy a second instance of the Connector in Lookup mode before the Add Only mode

instance. The Lookup Connector can assist some custom JavaScript code to conditionally terminate or

continue the AssemblyLine, depending on the existence of the user to be created.

Chapter 6. SAP R/3 Component Suite 395

Handling ABAP Errors

The Connector invokes BAPI/RFC functions in SAP to perform the Connector mode operations. In some

cases, data passed to the BAPI/RFC functions from the XML input, may result in ABAP data validation

failures. An example of this case could be the value for post code is not valid within the country region.

The BAPI/RFC functions return the results of validation checks in the RETURN parameter of the RFC.

The Connector has been designed to make the RFC return status available to the AssemblyLine. The

Connector does not interpret or translate ABAP errors or warnings into thrown exceptions. The

Connector registers a script bean named urcAbapErrorCache. The bean is registered for all Connector

modes and can be accessed in Connector hooks. The bean is an instance of AbapErrorCache. Script code

in a Connector hook can use this information to perform contingency actions as required. The cache is

reset before the execution of each Connector method.

Example script code is shown below. For specific details, refer to the Javadoc contained in the distribution

package.

var errs = urcAbapErrorCache.getLastErrorSet();

if (errs.size() > 0) {

 task.logmsg("********** There were ABAP Errors **********");

 for (var i = 0; i < errs.size(); ++i) {

 var errInfo = errs.get(i);

 task.logmsg("The message is: " + errInfo.getMsg());

 task.logmsg("The message number is: " + errInfo.getMsgNum().toString());

 }

}

var warns = urcAbapErrorCache.getLastWarningSet();

if (warns.size() > 0) {

 task.logmsg("********** There were ABAP Warnings *********");

 for (var i = 0; i < warns.size(); ++i) {

 var errInfo = warns.get(i);

 task.logmsg("The message is: " + errInfo.getMsg());

 task.logmsg("The message number is: " + errInfo.getMsgNum().toString());

 }

}

396 Reference Guide

Human Resources/Business Object Repository Connector for SAP R/3

This section describes the configuration and operation of the IBM Tivoli Directory Integrator Human

Resources/Business Object Repository Connector for SAP R/3.

This chapter contains the following sections:

v “Introduction”

v “Configuration” on page 399

v “Using the Human Resources Connector for SAP R/3” on page 402

Introduction

The SAP Human Resources modules include a large range of business features. The major feature areas

address the business needs of payroll, personnel time management, and general personnel master data

management.

From a data perspective, the backbone of the SAP HR system is the infotype. Infotypes are a logical

grouping of related attributes. SAP defines a large set of default infotypes, which are grouped and

identified in SAP using number ranges. The table below shows the ranges:

 Table 43. Infotype Number Ranges

Number Range HR Submodule

0000 to 0999 HR Master Data

1000 to 1999 Personnel Planning

2000 to 2999 Time Management

4000 to 4999 Recruitment

9000 to 9999 Custom extensions

Since there are such a large number of infotypes, it is quite difficult to design a single Tivoli Directory

Integrator Connector to cover and suit all SAP HR integration requirements. Fortunately, SAP supports

access to its HR data repositories via Business APIs (BAPI) that are attached to objects in the Business

Object Repository (BOR). As a result, a generic BOR Connector has been designed and implemented. This

Connector can invoke any method of any BOR object. The Connector projects an XML representation of

the data managed by the given BOR object. The Connector requires the configuration of a set of XSL style

sheets, and specification of the class identification name for the given BOR object (in fact, the XSL style

sheets define the XML data representation).

Chapter 6. SAP R/3 Component Suite 397

The figure below illustrates the component design of the Connector.

 The integration distribution package supplies an example set of XSL style sheets that enable the

Connector to manage HR Personal Data (Infotype 0002). The style sheets have been setup to invoke the

BAPI RFC methods of the PERSDATA BOR object. The Connector uses the generic RFC invocation feature

of the Tivoli Directory Integrator Function Component for SAP R/3.

The key features and benefits of the Connector are:

v Support for Create, Read, Update, and Delete (C.R.U.D) operations for SAP R/3 HR data.

v Modifiable behavior through XSL transformations for SAP R/3 RFC execution.

v Minimal compile time dependency between the Connector and SAP R/3. The Connector does not use

any generated RFC proxy code. It relies on the RFC Function Component as a dynamic proxy.

v No need for custom ABAP or Java coding (although specific new features might be supported with

custom code).

The Connector supports the following standard Tivoli Directory Integrator Connector modes, but relies

on the standard BAPI methods to deliver the functionality of each mode:

v Add Only

v Update

v Delete

v Lookup

v Iterator

Figure 3. Component design of the Human Resources/Business Object Repository Connector for SAP R/3

398 Reference Guide

The table below gives an example of Connector mode to BAPI method mappings

 Table 44. Example Mappings

Connector Mode BAPI Method

Add Create, CreateFromData

Update Change

Delete Delete

Lookup Get, GetDetail

Iterator GetList, Get, GetDetailedList

Key Fields and XML Representation

Key fields of BOR objects are given special treatment by the Connector. This is reflected in the XML

representation of BOR object data.

While it is possible to define alternate XSL style sheets to process request and response XML, the style

sheets must support an element named sapBorObjIdentifier. This element is processed by the Java code

of the Connector when returning entries in Lookup and Iterator modes. The sapBorObjIdentifier may

appear anywhere within the XML. The contents of the element are elements whose tag names match the

names of the key fields of the given BOR object.

The general form of the HR Personal Data XML is shown below.

<sapPersonalData>

 <sapBorObjIdentifier>

 <EmployeeNumber>00000001</EmployeeNumber>

 <SubType />

 <ObjectID />

 <LockIndicator />

 <ValidityEnd>99991231</ValidityEnd>

 <ValidityBegin>19740320</ValidityBegin>

 <RecordNumber>000</RecordNumber>

 </sapBorObjIdentifier>

 <personalDataDetail>

 <title>1</title>

 <firstname></firstname>

 <lastname></lastname>

 <nameAtBirth />

 <knownAs></knownAs>

 <surnamePrefix />

 <gender></gender>

 <dateOfBirth></dateOfBirth>

 <birthPlace />

 <stateOfBirth />

 <countryOfBirth />

 <maritalStatus></maritalStatus>

 <numberOfChildren></numberOfChildren>

 <religion />

 <language></language>

 <languageCode></languageCode>

 <nationality></nationality>

 <idNumber />

 </personalDataDetail>

</sapPersonalData>

Configuration

The BOR Connector for SAP R/3 may be added directly into an assembly line. The following section lists

the configuration parameters that are available for R/3 client connections and XSL style sheet behavior.

Runtime names are shown in parentheses.

Chapter 6. SAP R/3 Component Suite 399

Parameters

 R3 Client (client)

SAP R/3 Logon client for R/3 connection (for example, 100). This is passed directly to the RFC

Function Component.

R3 User (user)

SAP R/3 Logon user for R/3 connection. This is passed directly to the RFC Function Component.

Password (passwd)

SAP R/3 Logon password for R/3 connection. This is passed directly to the RFC Function

Component.

R3 System Number (sysnr)

The SAP R/3 system number for R/3 connection (for example, 100). This is passed directly to the

RFC Function Component.

R3 Hostname (ashost)

SAP R/3 application server name for R/3 connection. This is passed directly to the RFC Function

Component.

Gateway host (gwhost)

Gateway host name for R/3 connection. This is passed directly to the RFC Function Component.

RFC Trace (trace)

Set to one (1) to enable RFC API tracing. If enabled, the SAP RFC API will produce separate

rfc_nnnn.trc files in the working directory of Tivoli Directory Integrator. This option may be

useful to help diagnose RFC invocation problems. It logs the activity and data between the

Connector and SAP R/3. This should be set to zero (0) for production deployment.

Optional RFC Connection Parameters

Used to define a list of other optional RFC connection parameters. The value for this

configuration list is a key=value list where each connection parameter is separated by the space

character. For example the following string value would set the SAP Gateway Service to

″sapgw00″ and enable the SAP GUI.

"gwserv=sapgw00 use_sapgui=1"

Here is a list of optional SAP Java Connector parameters that are accessible.

Alias user name (alias_user)

SAP message server (mshost)

Gateway service (gwserv)

Logon language (lang)

1 (Enable) or 0 (disable) RFC trace (trace)

Initial codepage in SAP notation (codepage)

Secure network connection (SNC) mode, 0 (off) or 1 (on) (snc_mode)

SNC partner, e.g. p:CN=R3, O=XYZ-INC, C=EN (snc_partnername)

SNC level of security, 1 to 9 (snc_qop).

SNC name. Overrides default SNC partner (snc_myname)

Path to library which provides SNC service (snc_lib)

SAP R/3 name (r3name)

Group of SAP application servers (group)

Program ID of external server program (tpname)

Host of external server program (tphost)

Type of remote host 2 = R/2, 3 = R/3, E = External (type)

Enable ABAP debugging 0 or 1 (abap_debug)

Use remote SAP graphical user interface (0/1/2) (use_sapgui)

Get/Don’t get a SSO ticket after logon (1 or 0) (getsso2)

Use the specified SAP Cookie Version 2 as logon ticket (mysapsso2)

Use the specified X509 certificate as logon ticket (x509cert)

400 Reference Guide

Enable/Disable logon check at open time, 1 (enable) or 0 (disable) (lcheck)

String defined for SAPLOGON on 32-bit Windows (saplogon_id)

Data for external authentication (PAS) (extiddata)

Type of external authentication (PAS) (extidtype)

Idle timeout (in seconds) for the connection after which it will be closed by R/3.

 Only positive values are allowed. (idle_timeout)

Enable (1) or Disable (0) dsr support (dsr)

BOR Class Name (sapr3.conn.borObjName)

The name of the BOR class with which this Connector will be integrating. The names of BOR

classes are available using transaction BAPI in SAP R/3. This value is used to obtain the keyfield

names of the BOR object when a schema query is performed.

RFC Function Component Name (sapr3.conn.rfcFC)

The name of the RFC Function Component that is registered with Tivoli Directory Integrator. This

option should be changed only on the advice of IBM support. The default value is:

ibmdi.SapR3RfcFC

Add Mode StyleSheets (sapr3.conn.putStylesheets)

The list of XSLT style sheets files to be executed by the Connector when deployed in Add Only

mode. At runtime, each style sheet is applied to the XML contained within the Container Entry.

The XSL will be applied to the value of the attribute named sapXml. Each XSL style sheet

filename must be entered on a new line within the text box.

Update Mode StyleSheets (sapr3.conn.modifyStylesheets)

The list of XSLT style sheets files to be executed by the Connector when deployed in Update

mode. At runtime, each style sheet is applied to the XML contained within the Container Entry.

The XSL will be applied to the value of the attribute named sapXml. Each XSL style sheet

filename must be entered on a new line within the text box.

Delete Mode StyleSheets (sapr3.conn.deleteStylesheets)

The list of XSLT style sheets files to be executed by the Connector when deployed in Delete

mode. At runtime, each style sheet is applied to the XML contained within the Container Entry.

The XSL will be applied to the value of the attribute named sapXml. Each XSL style sheet

filename must be entered on a new line within the text box.

Lookup Mode Pre StyleSheet (sapr3.conn.findPreStylesheet)

The XSLT style sheet file to be executed by the Connector when creating an RFC XML request

that is able to obtain all user attributes for a given user. This configuration value must be set

when the Connector is deployed in Update, Delete, and Lookup modes.

Lookup Mode Post StyleSheet (sapr3.conn.findPostStylesheet)

The XSLT style sheet file to be executed by the Connector when creating the user XML formatted

response from the Connector. This configuration value must be set when the Connector is

deployed in Update, Delete, and Lookup modes. The XSLT transforms the response XML from

the RFC executed as a result of the XSLT from Lookup Mode Pre StyleSheet configuration.

Select Entries Pre StyleSheet (sapr3.conn.selectEntriesPreStylesheet)

The XSLT style sheet file to be executed by the Connector when creating an RFC XML request

that is able to obtain all user names from SAP. This configuration value must be set when the

Connector is deployed in Iterator mode.

Select Entries Post StyleSheet (sapr3.conn.selectEntriesPostStylesheet)

The XSLT style sheet file to be executed by the Connector when creating the user XML for the

getNextEntry() processing. This configuration value must be set when the Connector is deployed

in Iterator mode. The XSLT transforms the response XML from the RFC executed as a result of

the XSLT from Select Entries Pre StyleSheet configuration.

Iterator Mode Pre StyleSheet (sapr3.conn.getNextPreStylesheet)

The XSLT style sheet file to be executed by the Connector when creating an RFC XML request

Chapter 6. SAP R/3 Component Suite 401

that is able to obtain all user attributes for a given user. This configuration value must be set

when the Connector is deployed in Iterator mode.

Iterator Mode Post StyleSheet (sapr3.conn.getNextPostStylesheet)

The XSLT style sheet file to be executed by the Connector when creating the user XML formatted

response from the Connector. This configuration value must be set when the Connector is

deployed in Iterator mode. The XSLT transforms the response XML from the RFC that is executed

as a result of the XSLT from Iterator Mode Pre StyleSheet configuration.

Detailed Log

When checked, generates additional log messages. The Connector logs data and activity when

this option is enabled.

Using the Human Resources Connector for SAP R/3

This section describes the details of using the Connector in each of the supported Tivoli Directory

Integrator Connector modes. The section also describes the Tivoli Directory Integrator Entry schema

supported by the Connector.

Note: The default XSL style sheet file name values are relative path locations with respect to the Tivoli

Directory Integrator AssemblyLine execution directory. In some situations, it may be necessary to

preprend the default file name values with the fully qualified installation location of the XSL files.

Such modification is likely if the Tivoli Directory Integrator Component Suite for SAP R/3 has

been installed in (or if the AssemblyLine is executing from) a directory location separate from the

Tivoli Directory Integrator installation.

IBM Tivoli Directory Integrator Entry Schema

The BOR Connector supports one native attribute named sapXml. The value of sapXml is an XML string

representing the attributes of a BOR object. Other attributes reflect the given BOR object key field names.

They are supported to allow the definition of IBM Tivoli Directory Integrator Link Criteria when the

Connector is deployed in Lookup, Delete, or Update modes.

The schema is available via the query schema feature in the IBM Tivoli Directory Integrator configuration

tool. The attribute schema is described below.

 Table 45. Entry Schema Attributes

Attribute Name Type Description

sapXml java.lang.String A string representing the attributes of an R/3 BOR Object.

This attribute and value must be present on the Output

Map when the Connector is deployed in Add Only and

Update modes.

This attribute is available on the Input Map when the

Connector is deployed in Lookup and Iterator modes.

EmployeeNumber java.lang.String Personal Data Infotype 0002 specific.

The 8 digit employee number.

This attribute and value must be present on the Link

Criteria when the Connector is deployed in Lookup,

Update and Delete modes.

This attribute is available on the Input Map when the

Connector is deployed in Lookup and Iterator modes.

Subtype java.lang.String Personal Data Infotype 0002 specific.

The 4 character personal data subtype.

This attribute and value must be present on the Link

Criteria when the Connector is deployed in Lookup,

Update and Delete modes.

This attribute is available on the Input Map when the

Connector is deployed in Lookup and Iterator modes.

402 Reference Guide

Table 45. Entry Schema Attributes (continued)

Attribute Name Type Description

ObjectID java.lang.String Personal Data Infotype 0002 specific.

The 2 character object ID for infotypes where all other key

fields are the same.

This attribute is available on the Input Map when the

Connector is deployed in Lookup and Iterator modes.

LockIndicator java.lang.String Personal Data Infotype 0002 specific.

The 1 character flag indicating if the master data record is

locked in SAP.

This attribute is available on the Input Map when the

Connector is deployed in Lookup and Iterator modes.

ValidityEnd java.lang.String Personal Data Infotype 0002 specific.

8 digit date value (YYYYMMDD).

This attribute and value must be present on the Link

Criteria when the Connector is deployed in Lookup,

Update and Delete modes.

This attribute is available on the Input Map when the

Connector is deployed in Lookup and Iterator modes.

ValidityBegin java.lang.String Personal Data Infotype 0002 specific.

8 digit date value (YYYYMMDD).

This attribute and value must be present on the Link

Criteria when the Connector is deployed in Lookup,

Update and Delete modes.

This attribute is available on the Input Map when the

Connector is deployed in Lookup and Iterator modes.

RecordNumber java.lang.String Personal Data Infotype 0002 specific.

2 digit value.

This attribute is available on the Input Map when the

Connector is deployed in Lookup and Iterator modes.

Add Only Mode

When deployed in Add Only mode, the Connector is able to create a new object in the SAP R/3

database. The Connector should be added to the Flow section of a Tivoli Directory Integrator

AssemblyLine. The Output Map must define a mapping for the sapXml Connector attribute. The value of

this attribute represents the details of the object to be added to SAP. The value will be applied to each

configured XSLT file in the order defined. The XSLT transforms produce separate RFC XML requests to

be executed by the RFC Function Component, which is managed internally by the Connector.

The Connector does not support duplicate or multiple entries. Only one entry should be supplied to the

Connector at a time.

For HR Personal Data (infotype 0002), a valid employee number must exist. The general form of the XML

is shown below. The mandatory elements are EmployeeNumber, ValidityBegin, and ValidityEnd.

<sapPersonalData>

 <sapBorObjIdentifier>

 <EmployeeNumber>00000001</EmployeeNumber>

 <SubType />

 <ObjectID />

 <LockIndicator />

 <ValidityEnd>99991231</ValidityEnd>

 <ValidityBegin>19740320</ValidityBegin>

 <RecordNumber>000</RecordNumber>

 </sapBorObjIdentifier>

 <personalDataDetail>

 <title></title>

 <firstname></firstname>

Chapter 6. SAP R/3 Component Suite 403

<lastname></lastname>

 <nameAtBirth />

 <knownAs>Torpedo</knownAs>

 <surnamePrefix />

 <gender>1</gender>

 <dateOfBirth></dateOfBirth>

 <birthPlace />

 <stateOfBirth />

 <countryOfBirth />

 <maritalStatus></maritalStatus>

 <numberOfChildren></numberOfChildren>

 <religion />

 <language></language>

 <languageCode></languageCode>

 <nationality></nationality>

 <idNumber />

 </personalDataDetail>

</sapPersonalData>

Update Mode

When deployed in Update mode, the Connector is able to modify an existing object in the SAP R/3

database. The Connector should be added to the Flow section of a Tivoli Directory Integrator

AssemblyLine. The Output Map must define a mapping for the sapXml Connector attribute. The value of

this attribute represents the details of the user to be changed in SAP. The value will be applied to each

configured XSLT file in the order defined. The XSLT transforms produce separate RFC XML requests to

be executed by the RFC Function Component, which is managed internally by the Connector.

Additionally, some of the key fields of the BOR object are needed for the Link Criteria of the Connector.

The Link Criteria is required by the AssemblyLine, since the AssemblyLine will invoke the Connector’s

findEntry() method to verify the existence of the given object. All parameters defined in the Link Criteria

are passed as XSLT style sheet parameters. If duplicate Link Criteria names are supplied, the Connector

will use the last value supplied.

The Connector does not support duplicate or multiple entries. Only one entry should be supplied to the

Connector at a time.

For HR Personal Data (infotype 0002), the following attributes must be defined in the Link Criteria:

v EmployeeNumber,

v ValidityBegin,

v ValidityEnd.

Since these attributes are passed as parameters to the XSL style sheets, they are not required in the XML.

The general form of the XML is shown below.

<sapPersonalData>

 <sapBorObjIdentifier>

 <SubType />

 <ObjectID />

 <LockIndicator />

 <RecordNumber>000</RecordNumber>

 </sapBorObjIdentifier>

 <personalDataDetail>

 <title></title>

 <firstname></firstname>

 <lastname></lastname>

 <nameAtBirth />

 <knownAs>Torpedo</knownAs>

 <surnamePrefix />

 <gender></gender>

 <dateOfBirth></dateOfBirth>

 <birthPlace />

 <stateOfBirth />

 <countryOfBirth />

404 Reference Guide

<maritalStatus></maritalStatus>

 <numberOfChildren></numberOfChildren>

 <religion />

 <language></language>

 <languageCode></languageCode>

 <nationality></nationality>

 <idNumber />

 </personalDataDetail>

</sapPersonalData>

Delete Mode

When deployed in Delete mode, the Connector is able to delete an existing object from the SAP R/3

database. The Connector should be added to the Flow section of a Tivoli Directory Integrator

AssemblyLine. In Delete mode, the Connector relies solely on the Link Criteria. All parameters defined

in the Link Criteria are passed as XSLT style sheet parameters. If duplicate Link Criteria names are

supplied, the Connector will use the last value supplied.

The Connector does not support duplicate or multiple entries. Only one entry should be supplied to the

Connector at a time.

For HR Personal Data (infotype 0002), the following Attributes must be defined in the Link Criteria:

v EmployeeNumber,

v ValidityBegin,

v ValidityEnd.

Lookup Mode

When deployed in Lookup mode, the Connector is able to obtain all details of a given SAP R/3 object.

The Connector should be added to the Flow section of a Tivoli Directory Integrator AssemblyLine.

Connector key field attributes should be defined in the Link Criteria of the Connector. If duplicate Link

Criteria names are supplied, the Connector will use the last value supplied. The Connector will populate

the XML string value of the attribute sapXml and make it available to the AssemblyLine in the

Connector’s Input Map. The key field names and values are also made available to the Input Map.

The Connector’s findEntry() method is the main code executed. It uses the result of the XSLT transform

configured in Lookup Mode Pre StyleSheet to execute an RFC and obtain all details for the given user.

The result of the RFC is then transformed using the XSLT transform configured in Lookup Mode Post

StyleSheet.

The Connector does not support duplicate or multiple entries. The Connector will return only entry at a

time.

For HR Personal Data (infotype 0002), the following Attributes must be defined in the Link Criteria:

v EmployeeNumber,

v ValidityBegin,

v ValidityEnd.

Iterator Mode

When deployed in Iterator mode, the Connector is able to retrieve the details of each object in the SAP

R/3 database, in turn, and make those details available to the AssemblyLine. The XSLT style sheets for

Select Entries Pre StyleSheet, Select Entries Post StyleSheet, Iterator Mode Pre StyleSheet, and Iterator

Mode Post StyleSheet must be configured.

When deployed in this mode, the Tivoli Directory Integrator AssemblyLine will first call the Connector’s

selectEntries() method to obtain and cache a list of all key field names and values (for the given BOR

object) in the SAP R/3 database. The AssemblyLine will then call the Connector’s getNextEntry() method.

This method will maintain a pointer to the current key field cached in the list. The method will use the

Chapter 6. SAP R/3 Component Suite 405

key field information to call an RFC to obtain all details for the object. The result of the RFC are

formatted by an XSLT transform and set as the value of sapXml and returned by the Connector. The key

field names and values are also made available to the Input Map.

Transactional Operations Not Supported

When the Connector is deployed in a mode that results in write operations with SAP (Add Only,

Update, Delete), it is possible for operations to be partially complete. This can occur if multiple XSL style

sheets, which generate RFC requests, are required to complete the operation. If one of the earlier RFC

requests fails, then RFC requests executed subsequently may fail as a result.

Handling ABAP Errors

The Connector invokes BAPI/RFC functions in SAP to perform the Connector mode operations. In some

cases, data passed to the BAPI/RFC functions from the XML input, may result in ABAP data validation

failures. The BAPI/RFC functions return the results of validation checks in the ″RETURN″ parameter of

the RFC.

The Connector has been designed to make the RFC return status available to the AssemblyLine. The

Connector does not interpret or translate ABAP errors or warnings into thrown exceptions. The

Connector registers a script bean named borcAbapErrorCache. The bean is registered for all Connector

modes and can be accessed in Connector hooks. The bean is an instance of AbapErrorCache. Script code

in a Connector hook can use this information to perform contingency actions as required. The cache is

reset before the execution of each Connector method.

Example script code is shown below. For specific details, refer to the Javadoc contained in the distribution

package.

var errs = borcAbapErrorCache.getLastErrorSet();

if (errs.size() > 0) {

 task.logmsg("********** There were ABAP Errors *********");

 for (var i = 0; i < errs.size(); ++i) {

 var errInfo = errs.get(i);

 task.logmsg("The message is: " + errInfo.getMsg());

 task.logmsg("The message number is: " + errInfo.getMsgNum().toString());

 }

}

var warns = borcAbapErrorCache.getLastWarningSet();

if (warns.size() > 0) {

 task.logmsg("********** There were ABAP Warnings *********");

 for (var i = 0; i < warns.size(); ++i) {

 var errInfo = warns.get(i);

 task.logmsg("The message is: " + errInfo.getMsg());

 task.logmsg("The message number is: " + errInfo.getMsgNum().toString());

 }

}

406 Reference Guide

ALE Intermediate Document (IDOC) Connector for SAP R/3 and SAP

ERP

This section describes the configuration and operation of the IBM Tivoli Directory Integrator Connector

for processing ALE IDOCs sent from an SAP R/3 or ERP system. The chapter contains the following

sections:

v “Introduction”

v “Configuration” on page 408

v “Using the SAP ALE IDOC Connector” on page 410

Introduction

In an SAP System the Application Link Enabling (ALE) is one of the core integration technologies. It

involves the exchange of hierarchical data documents known as Intermediate Documents (IDOCs). There

are two scenarios, inbound to SAP, and outbound from SAP. This release of the connector only integrates

with IDOCs that are outbound from SAP, and inbound to IBM Tivoli Directory Integrator. This document

will use the term inbound with reference to inbound to IBM Tivoli Directory Integrator. The SAP System

will always be the IDOC client with IBM Tivoli Directory Integrator acting as the IDOC Server. The IDOC

is sent to IBM Tivoli Directory Integrator as an asynchronous event, and when received, IBM Tivoli

Directory Integrator pushes the IDOC data onto an AssemblyLine for processing as desired. As it is

asynchronous communication, IBM Tivoli Directory Integrator will not provide a response to the client

SAP system. SAP TID management is used to ensure data consistency between the SAP system client and

IBM Tivoli Directory Integrator. Due to the asynchronous communication the Connector supports only

Iterator mode.

When configuring ALE in an SAP System, the core task is to create what is called a distribution model.

There are many pre-defined distribution models available as standard in an SAP system, but there is also

the ability to create a customizable distribution model of your own. The core use of this connector is as

an external application that acts as a logical system within the chosen SAP distribution model. The

examples provided in this chapter will define integration into a custom SAP HR distribution model, and

the pre-defined SAP Central User Management (CUA) distribution model. Of course the connector could

be used for integration into any of the other SAP distribution models to access the master data for other

SAP modules such as SAP FI/CO or SAP PP. For detailed information on SAP modules visit the SAP

help site at http://help.sap.com. Almost any SAP master data business object with an IDOC interface can

be exchanged this way.

Central to creating or configuring an SPA distribution model are the IDOC message types you want to

support. What the connector provides is an XML version of the IDOC, which must be parsed accordingly.

To facilitate parsing of the IDOC XML data the connector has been enabled to make use of the IBM Tivoli

Directory Integrator XML parsers. You have the choice of the DOM Parser, the SAX Parser or the XSLT

Parser. Using these will enable you to extract the required data from the IDOC for you business purpose.

For example you may wish to extract particular infotypes from the SAP HR IDOC message type

HRMD_A to forward on to IBM Tivoli Identity Manager for automated provisioning purposes.

The figure below illustrates the interaction with the SAP System IDOC client and the IBM Tivoli

Directory Integrator IDOC server.

Chapter 6. SAP R/3 Component Suite 407

http://help.sap.com

Configuration

The SAP ALE IDOC Connector for SAP R/3 may be added directly into an assembly line. The following

section lists the configuration parameters the connector.

IDOC Server Parameters

IDOC Server SAP Gateway Host

A mandatory RFC Server Connection attribute that defines the host system that is the SAP

Gateway.

IDOC Server SAP Gateway Service

A mandatory RFC Server Connection attribute that defines the SAP Gateway Service.

IDOC Server Program ID

A mandatory RFC Server Connection attribute that Defines the Server Program ID that is used in

the configuration of the required TCP/IP RFC Destination to register the Server with the SAP

Gateway.

IDOC Server Unicode Connection?

An optional RFC Server Connection attribute that defines the host system that is the SAP

Gateway.

IDOC Server Optional Connection Parameters

An optional RFC Server Connection attribute used to define a list of other optional RFC

connection parameters. The value for this configuration list is a key=value list where each

connection parameter is separated by the space character. For example the following string value

would set the SAP System number to "00" and enable the RFC trace mechanism:

“jco.server.trace=1 jco.server.sysnr=00”

IDOC Client Configuration Parameters

IDOC Client Number

A mandatory RFC Client Connection attribute that defines the SAP Systems client. Consists of a 3

digit string value such as “000” or “100” defining the logon client.

Figure 4. Interaction with the SAP System IDOC client and the IBM Tivoli Directory Integrator IDOC server

408 Reference Guide

IDOC Client User

A mandatory RFC Client Connection attribute that defines the SAP User Account logon id.

Typically this would be a SAP User Account type of Communication or CPIC, although the

Dialogue type can be used

IDOC Client Password

A mandatory RFC Client Connection attribute that defines the SAP User Account password.

IDOC Client Lang

A mandatory RFC Client Connection attribute that defines the logon language.

IDOC Client Hostname

A mandatory RFC Client Connection attribute that defines the hostname for the target SAP

System.

IDOC Client System Number

A mandatory RFC Client Connection attribute that defines the system identifier (SID) for the

target SAP System.

IDOC Client SAP Gateway Service

An optional RFC Client Connection attribute that defines the SAP Gateway Service. In most cases

this will have the same value as the IDOC Server SAP Gateway Service.

IDOC Client SAP Gateway Host

An optional RFC Client Connection attribute that defines the SAP Gateway hostname.

IDOC Client Max Connections

A mandatory RFC Client Connection attribute that defines the maximum number of RFC

connections supported by the internal connection pool.

IDOC Client Optional Connection Parameters

An optional RFC Client Connection attribute used to define a list of other optional RFC

connection parameters. The value for this configuration list is a key=value list where each

connection parameter is separated by the space character. For example the following string value

would turn on the RFC trace mechanism and enable the use of the SAP GUI if it was installed on

the same host as IBM Tivoli Directory Integrator.

"jco.client.trace=1 jco.client.use_sapgui=1"

The following is a list of optional SAP Java Connector parameters that are accessible.

Alias user name [jco.client.alias_user]

SAP message server [jco.client.mshost]

RFC trace [jco.client.trace]

Initial codepage in SAP notation [jco.client.codepage]

Secure network connection (SNC) mode, 0 (off) or 1 (on) [jco.client.snc_mode]

SNC partner, e.g. p:CN=R3, O=XYZ-INC, C=EN [jco.client.snc_partnername]

SNC level of security, 1 to 9 [jco.client.snc_qop]

SNC name. Overrides default SNC partner [jco.client.snc_myname]

Path to library, which provides SNC service [jco.client.snc_lib]

SAP R/3 name [jco.client.r3name]

Group of SAP application servers [jco.client.group]

Program ID of external server program [jco.client.tpname]

Host of external server program [jco.client.tphost]

Type of remote host 2 = R/2, 3 = R/3, E = External [jco.client.type]

Enable ABAP debugging 0 or 1 [jco.client.abap_debug]

Use remote SAP graphical user interface (0/1/2) [jco.client.use_sapgui]

Get/Don’t get a SSO ticket after logon (1 or 0) [jco.client.getsso2]

Use the specified SAP Cookie Version 2 as logon ticket [jco.client.mysapsso2]

Use the specified X509 certificate as logon ticket [jco.client.x509cert]

Enable/Disable logon check at open time, 1 (enable) or 0 (disable) [jco.client.lcheck]

Chapter 6. SAP R/3 Component Suite 409

String defined for SAPLOGON on 32-bit Windows [jco.client.saplogon_id]

Data for external authentication (PAS) [jco.client.extiddata]

Type of external authentication (PAS) [jco.client.extidtype]

Idle timeout (in seconds) for the connection after which it will be closed by R/3.

 Only positive Enable (1) or Disable (0) dsr support [jco.client.dsr]

General Configuration Parameters

IDOC As XML Only?

A general attribute that defines if only the XML valued attribute for the IDOC is required. If set

to “No”, the IDOC control data will be set as independent attributes within the resulting Entry

for each IDOC. If set to “Yes”, only one attribute (idoc.xml) is created for the IDOC which

contains the IDOC content as an XML valued string.

Process SAP RFM Requests?

A general attribute that defines if the Connector will also process remote function module (RFM)

calls made on it. If set to “Yes” all RFM calls will be added to an Entry which contain one

attribute (rfm.xml) which is the content of the RFM as an XML valued string. If set to “No” then

RFM requests on the IDOC Server will be ignored.

Note: The processing performed for RFM calls is merely to provide the RFM as an XML valued

attribute. The IDOC Server does not currently attempt to populate the export and table

arguments of the RFM call. If required this can be provided under an enhancement of the

Connector. To do this contact IBM Support. Only RFM calls that form part of an ALE

distribution models internal process should be considered.

Parse IDOC or RFM XML?

A general attribute that defines if parsing is to be attempted on the XML valued attributes

idoc.xml and rfm.xml. You must have one of the available IBM Tivoli Directory Integrator parsers

configured to interact with the Connector in your AssemblyLine configuration.

Enable JCo Middleware Trace Logging?

A general attribute that defines if the available JCo trace logs are to be enabled and included in

the AssemblyLine logging and tracing.

JCo Middleware Trace Level

A general attribute that defines the JCo middleware trace level.

JCo Middleware Trace File Path

A general attribute that defines the directory where the JCo middleware trace file will be created.

Also used to store RFM requests as a file with XML content.

Using the SAP ALE IDOC Connector

This section describes details on using the Connector in the supported Iterator mode. Also described is

the IBM Tivoli Directory Integrator schema supported by the Connector.

IBM Tivoli Directory Integrator schema

The schema for the Connector is centred on providing an AssemblyLine with Entries, where each

represents and individual IDOC. An IDOC itself contains 3 sections of data. These are Control Data,

Segment Data, and Status Data. The simplest and most effective way of representing this data in IBM

Tivoli Directory Integrator is an XML format, which can be easily dissected for the required data. As the

control data is readily accessible, and can provide useful standalone information, this data is also

available as individual attributes. The configuration parameter “IDOC As XML Only?” is used to enable

or disable the production of the control data as stand alone attributes.

As the Connector is also able to accept Remote Function Module requests, there is a requirement to

represent the data in one or more attributes. Currently the content of an RFM will be available as a single

XML valued attribute. The configuration parameter “Process SAP RFM Requests?” is used to enable or

disable the production of the RFM XML valued attribute.

410 Reference Guide

The table below defines the schema available to this Connector.

 Table 46. SAP ALE IDOC Connector Schema

Attribute Name Attribute Description Attribute Syntax

idoc.tid Input schema attribute whose value is the associated TID

value provided by the SAP System Client.

java.lang.string

idoc.xml Input schema attribute whose value is the complete IDOC in

XML format.

java.lang.string

idoc.segments.xml Input schema attribute whose value is the complete Segment

hierarchy in XML format. No control attribute values are

contained in this XML.

java.lang.string

idoc.ctrl.ArchiveKey Input schema attribute whose value represents the IDOC

control data archive key (the value of the field ″ARCKEY″).

java.lang.string

idoc.ctrl.Client Input schema attribute whose value represents the IDOC

control data client (the value of the field ″MANDT″).

java.lang.string

idoc.ctrl.CreationDate Input schema attribute whose value represents the IDOC

control data creation date (the value of the field ″CREDAT″).

java.lang.string

idoc.ctrl.CreationTime Input schema attribute whose value represents the IDOC

control data creation time (the value of the field ″CRETIM″).

java.lang.string

idoc.ctrl.Direction Input schema attribute whose value represents the IDOC

control data direction (the value of the field ″DIRECT″).

java.lang.string

idoc.ctrl.EDIMessage Input schema attribute whose value represents the IDOC

control data EDI message (the value of the field ″REFMES″).

java.lang.string

idoc.ctrl.EDIMessageGroup Input schema attribute whose value represents the IDOC

control data EDI message group (the value of the field

″REFGRP″).

java.lang.string

idoc.ctrl.EDIMessageType Input schema attribute whose value represents the IDOC

control data EDI message type (the value of the field

″STDMES″).

java.lang.string

idoc.ctrl.EDIStandardFlag Input schema attribute whose value represents the IDOC

control data EDI standard flag (the value of the field ″STD″).

java.lang.string

idoc.ctrl.EDIStandardVersion Input schema attribute whose value represents the IDOC

control data EDI standard version (the value of the field

″STDVRS″).

java.lang.string

idoc.ctrl.EDITransmissionFile Input schema attribute whose value represents the IDOC

control data EDI transmission file (the value of the field

″REFINT″).

java.lang.string

idoc.ctrl.ExpressFlag Input schema attribute whose value represents the IDOC

control data express flag (the value of the field ″EXPRSS″).

java.lang.string

idoc.ctrl.IDocCompoundType Input schema attribute whose value represents the IDOC

control data IDOC compound type (the value of the field

″DOCTYP″).

java.lang.string

idoc.ctrl.IDocNumber Input schema attribute whose value represents the IDOC

control data IDOC number (the value of the field

″DOCNUM″).

java.lang.string

idoc.ctrl.IDocSAPRelease Input schema attribute whose value represents the IDOC

control data IDOC SAP release (the value of the field

″DOCREL″).

java.lang.string

idoc.ctrl.IDocType Input schema attribute whose value represents the IDOC

control data IDOC type (the value of the field ″IDOCTYP″).

java.lang.string

Chapter 6. SAP R/3 Component Suite 411

Table 46. SAP ALE IDOC Connector Schema (continued)

Attribute Name Attribute Description Attribute Syntax

idoc.ctrl.IDocTypeExtension Input schema attribute who’s value represents the IDOC

control data IDOC type extension that is also known as CIM

type or customer extension type (the value of the field

″CIMTYP”);

java.lang.string

idoc.ctrl.MessageCode Input schema attribute whose value represents the IDOC

control data message code (the value of the field ″MESCOD″).

java.lang.string

idoc.ctrl.MessageFunction Input schema attribute whose value represents the IDOC

control data message function (the value of the field

″MESFCT″).

java.lang.string

idoc.ctrl.MessageType Input schema attribute whose value represents the IDOC

control data message type (the value of the field ″MESTYP″).

java.lang.string

idoc.ctrl.OutputMode Input schema attribute whose value represents the IDOC

control data output mode (the value of the field ″OUTMOD″).

java.lang.string

idoc.ctrl.RecipientAddress Input schema attribute whose value represents the IDOC

control data recipient address (the value of the field

″RCVSAD″).

java.lang.string

idoc.ctrl.RecipientLogicalAddress Input schema attribute whose value represents the IDOC

control data logical recipient address (the value of the field

″RCVLAD″).

java.lang.string

idoc.ctrl.RecipientPartnerFunction Input schema attribute whose value represents the IDOC

control data recipient partner function (the value of the field

″RCVPFC″).

java.lang.string

idoc.ctrl.RecipientPartnerNumber Input schema attribute whose value represents the IDOC

control data recipient partner number (the value of the field

″RCVPRN″).

java.lang.string

idoc.ctrl.RecipientPartnerType Input schema attribute whose value represents the IDOC

control data recipient partner type (the value of the field

″RCVPRT″).

java.lang.string

idoc.ctrl.RecipientPort Input schema attribute whose value represents the IDOC

control data recipient port (the value of the field ″RCVPOR″).

java.lang.string

idoc.ctrl.SenderAddress Input schema attribute whose value represents the IDOC

control data sender address (the value of the field

″SNDSAD″).

java.lang.string

idoc.ctrl.SenderLogicalAddress Input schema attribute whose value represents the IDOC

control data logical sender address (the value of the field

″SNDLAD″).

java.lang.string

idoc.ctrl.SenderPartnerFunction Input schema attribute whose value represents the IDOC

control data sender partner function (the value of the field

″SNDPFC″).

java.lang.string

idoc.ctrl.SenderPartnerNumber Input schema attribute whose value represents the IDOC

control data sender partner number (the value of the field

″SNDPRN″).

java.lang.string

idoc.ctrl.SenderPartnerType Input schema attribute whose value represents the IDOC

control data sender partner type (the value of the field

″SNDPRT″).

java.lang.string

idoc.ctrl.SenderPort Input schema attribute whose value represents the IDOC

control data Returns the sender port (the value of the field

″SNDPOR″).

java.lang.string

idoc.ctrl.Serialization Input schema attribute whose value represents the IDOC

control data serialization (the value of the field ″SERIAL″).

java.lang.string

412 Reference Guide

Table 46. SAP ALE IDOC Connector Schema (continued)

Attribute Name Attribute Description Attribute Syntax

idoc.ctrl.Status Input schema attribute whose value represents the IDOC

control data status (the value of the field ″STATUS″).

java.lang.string

idoc.ctrl.TableStructureName Output schema attribute whose value represents the IDOC

control data table structure name (the value of the field

″TABNAM″).

java.lang.string

idoc.ctrl.TestFlag Input schema attribute whose value represents the IDOC

control data test flag (the value of the field ″TEST″).

java.lang.string

rfm.xml Input schema attribute whose value represents the complete

content of an RMF request in XML format.

java.lang.string

Attributes of type java.lang.String can be of arbitrary length.

XML Attribute Parsing

The main mode of operation for the connector is the production of the XML valued attributes that

represent the complete content of an IDOC, or RFM. As a result the best way to handle this data is with

one of the available IBM Tivoli Directory Integrator XML Parsers attached to the Connector. Due to the

nested nature of the resulting XML, the DOM parser is not recommended, but still can be used. The

recommended parsers are the SAX Parser or the XSLT Parser depending on the type of SAP ALE

distribution model the Connector is to integrate with. If the Connector has to handle multiple IDOC

message types, or is configured to process RFM requests, then the SAX Parser is recommended. This is

because you will have different XML schemas for the different IDOC message types, and the RFM XML.

The SAX Parser is the only IBM Tivoli Directory Integrator parser that can handle XML values with

different XML schemas. You do this by not configuring the SAX Parser to have a specific value for it’s

“Group” configuration parameter. This has the effect of not having to define a particular root element. If

you are certain that the Connector will process only one type of IDOC, then you can use the XSLT Parser,

which allows for a more complete Connector Entry to Work Entry attribute mapping. For example if the

Connector was configured to be the recipient of SAP HR Master Data, then you would only ever expect

to see IDOCs of the message type HRMD_A. At the time this connector was developed the latest version

of this message type was HRMD_A06. You could then use and XSL like the following to parse the IDOCs

contents for the required data.

<XSL:stylesheet xmlns:XSL="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <XSL:output method="XML" indent="yes" />

 <XSL:template match="HRMD_A06">

 <DocRoot>

 <Entry>

 <XSL:apply-templates select="./IDOC"/>

 </Entry>

 </DocRoot>

 </XSL:template>

 <XSL:template match="IDOC">

 <XSL:apply-templates select="./EDI_DC40"/>

 <XSL:apply-templates select="./E1PLOGI"/>

 </XSL:template>

 <XSL:template match="EDI_DC40">

 <Attribute name="IDOC_CTRL_DOCNUM">

 <XSL:for-each select="DOCNUM">

 <Value>

 <XSL:value-of select="." />

 </Value>

 </XSL:for-each>

 </Attribute>

 <Attribute name="IDOC_CTRL_MANDT">

 <XSL:for-each select="MANDT">

 <Value>

Chapter 6. SAP R/3 Component Suite 413

<XSL:value-of select="." />

 </Value>

 </XSL:for-each>

 </Attribute>

 <Attribute name="IDOC_CTRL_DOCREL">

 <XSL:for-each select="DOCREL">

 <Value>

 <XSL:value-of select="." />

 </Value>

 </XSL:for-each>

 </Attribute>

 <Attribute name="IDOC_CTRL_IDOCTYP">

 <XSL:for-each select="IDOCTYP">

 <Value>

 <XSL:value-of select="." />

 </Value>

 </XSL:for-each>

 </Attribute>

 <Attribute name="IDOC_CTRL_SNDPOR">

 <XSL:for-each select="SNDPOR">

 <Value>

 <XSL:value-of select="." />

 </Value>

 </XSL:for-each>

 </Attribute>

 <Attribute name="IDOC_CTRL_RCVPOR">

 <XSL:for-each select="RCVPOR">

 <Value>

 <XSL:value-of select="." />

 </Value>

 </XSL:for-each>

 </Attribute>

 </XSL:template>

 <XSL:template match="E1PLOGI">

 <XSL:apply-templates select="./E1PITYP"/>

 </XSL:template>

 <XSL:template match="E1PITYP">

 <XSL:apply-templates select="./E1P0002"/>

 <XSL:for-each select="E1P0105">

 <Attribute name="PR_COMM_SUBTY">

 <XSL:for-each select="SUBTY">

 <Value>

 <XSL:value-of select="." />

 </Value>

 </XSL:for-each>

 </Attribute>

 <Attribute name="PR_COMM_USRID">

 <XSL:for-each select="USRID">

 <Value>

 <XSL:value-of select="." />

 </Value>

 </XSL:for-each>

 </Attribute>

 <Attribute name="PR_COMM_USRID_LONG">

 <XSL:for-each select="USRID_LONG">

 <Value>

 <XSL:value-of select="." />

 </Value>

 </XSL:for-each>

 </Attribute>

 </XSL:for-each>

 </XSL:template>

 <XSL:template match="E1P0002">

 <Attribute name="PR_PERNR">

414 Reference Guide

<XSL:for-each select="PERNR">

 <Value>

 <XSL:value-of select="." />

 </Value>

 </XSL:for-each>

 </Attribute>

 <Attribute name="PR_LASTNAME">

 <XSL:for-each select="NACHN">

 <Value>

 <XSL:value-of select="." />

 </Value>

 </XSL:for-each>

 </Attribute>

 <Attribute name="PR_FIRSTNAME">

 <XSL:for-each select="VORNA">

 <Value>

 <XSL:value-of select="." />

 </Value>

 </XSL:for-each>

 </Attribute>

 <Attribute name="PR_BIRTHDATE">

 <XSL:for-each select="GBDAT">

 <Value>

 <XSL:value-of select="." />

 </Value>

 </XSL:for-each>

 </Attribute>

 </XSL:template>

</XSL:stylesheet>

If the IDOC message type was always going to be the USERCLONE message type, then you could use

XSL like the following to get the required attribute mappings.

<XSL:stylesheet xmlns:XSL="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <XSL:output method="XML" indent="yes" />

 <XSL:template match="USERCLONE05">

 <DocRoot>

 <Entry>

 <XSL:apply-templates select="./IDOC"/>

 </Entry>

 </DocRoot>

 </XSL:template>

 <XSL:template match="IDOC">

 <XSL:apply-templates select="./EDI_DC40"/>

 <XSL:apply-templates select="./E1BPBNAME"/>

 <XSL:apply-templates select="./E1BPLOGOND"/>

 <XSL:apply-templates select="./E1BPADDR3"/>

 <XSL:apply-templates select="./E1BPLOGOND"/>

 <XSL:apply-templates select="./E1BPUSCOMP"/>

 </XSL:template>

 <XSL:template match="EDI_DC40">

 <Attribute name="TDI_DOCNUM">

 <XSL:for-each select="DOCNUM">

 <Value>

 <XSL:value-of select="." />

 </Value>

 </XSL:for-each>

 </Attribute>

 <Attribute name="TDI_MANDT">

 <XSL:for-each select="MANDT">

 <Value>

 <XSL:value-of select="." />

 </Value>

Chapter 6. SAP R/3 Component Suite 415

</XSL:for-each>

 </Attribute>

 <Attribute name="TDI_DOCREL">

 <XSL:for-each select="DOCREL">

 <Value>

 <XSL:value-of select="." />

 </Value>

 </XSL:for-each>

 </Attribute>

 <Attribute name="TDI_IDOCTYP">

 <XSL:for-each select="IDOCTYP">

 <Value>

 <XSL:value-of select="." />

 </Value>

 </XSL:for-each>

 </Attribute>

 <Attribute name="TDI_USERCLONE">

 <XSL:for-each select="USERCLONE">

 <Value>

 <XSL:value-of select="." />

 </Value>

 </XSL:for-each>

 </Attribute>

 <Attribute name="TDI_SNDPOR">

 <XSL:for-each select="SNDPOR">

 <Value>

 <XSL:value-of select="." />

 </Value>

 </XSL:for-each>

 </Attribute>

 <Attribute name="TDI_RCVPOR">

 <XSL:for-each select="RCVPOR">

 <Value>

 <XSL:value-of select="." />

 </Value>

 </XSL:for-each>

 </Attribute>

 </XSL:template>

 <XSL:template match="E1BPBNAME">

 <Attribute name="TDI_BAPIBNAME">

 <XSL:for-each select="BAPIBNAME">

 <Value>

 <XSL:value-of select="." />

 </Value>

 </XSL:for-each>

 </Attribute>

 </XSL:template>

 <XSL:template match="E1BPLOGOND">

 <Attribute name="TDI_CLASS">

 <XSL:for-each select="CLASS">

 <Value>

 <XSL:value-of select="." />

 </Value>

 </XSL:for-each>

 </Attribute>

 <Attribute name="TDI_TZONE">

 <XSL:for-each select="TZONE">

 <Value>

 <XSL:value-of select="." />

 </Value>

 </XSL:for-each>

 </Attribute>

 </XSL:template>

 <XSL:template match="E1BPADDR3">

416 Reference Guide

<Attribute name="TDI_FIRSTNAME">

 <XSL:for-each select="FIRSTNAME">

 <Value>

 <XSL:value-of select="." />

 </Value>

 </XSL:for-each>

 </Attribute>

 <Attribute name="TDI_LASTNAME">

 <XSL:for-each select="LASTNAME">

 <Value>

 <XSL:value-of select="." />

 </Value>

 </XSL:for-each>

 </Attribute>

 <XSL:apply-templates select="./E1BPADDR1"/>

 </XSL:template>

 <XSL:template match="E1BPADDR1">

 <Attribute name="TDI_E_MAIL">

 <XSL:for-each select="E_MAIL">

 <Value>

 <XSL:value-of select="." />

 </Value>

 </XSL:for-each>

 </Attribute>

 </XSL:template>

 <XSL:template match="E1BPUSCOMP">

 <Attribute name="TDI_COMPANY">

 <XSL:for-each select="COMPANY">

 <Value>

 <XSL:value-of select="." />

 </Value>

 </XSL:for-each>

 </Attribute>

 </XSL:template>

</XSL:stylesheet>

Configuration in SAP ALE Distribution Models

To enable the connector to be part of an SAP ALE distribution model the Connector must be setup as a

logical system on the SAP system. To do this to actions are required.

1. An RFC Destination of type TCP/IP is created where the Connector is registered as an external

program. Take care to make sure that the program name provided in the RFC Destination, is the same

value you give to the Connector configuration parameter “IDOC Server Program ID”. To test the RFC

connection ensure the Connector is running in an IBM Tivoli Directory Integrator AssemblyLine. This

AssemblyLine may be bare bones one with only the connector, and possibly a script component to

dump the resulting work entry attributes. Create RFC Destinations using SAP GUI transaction SM59.

2. A logical System is created that has the same name as the RFC Destination created in step 1. This is

done using SAP GUI transaction SALE. You don’t need to assign a client to the logical system like

you do for other SAP logical systems that actually represent a real SAP System client.

Once the logical system is in place you can pretty much use it as you would any other logical system in

an SAP ALE distribution model. The Connector has been tested as part of a SAP HR Master Data

distribution model, and as part of the pre-defined SAP CUA distribution model. If you run into other

issues using other SAP ALE distribution models please contact IBM Support. This is a new Connector for

IBM Tivoli Directory Integrator and will no doubt have some teething issues.

Chapter 6. SAP R/3 Component Suite 417

418 Reference Guide

Troubleshooting the SAP R/3 Component Suite

Problems may be experienced for any of the following reasons:

 SAP Java Connector not installed properly

Check the installation and re-install if necessary.

Missing sapjco.jar

If you attempt to use the SAP R/3 RFC FC and get an error similar to the following:

13:01:58 Error in: InitConnectors: java.lang.ClassCastException:

 java.lang.NoClassDefFoundError

java.lang.ClassCastException: java.lang.NoClassDefFoundError

It may be that SAP JCo is not installed correctly. Check that sapjco.jar is in the TDI_Home/jars

directory. Refer to the instructions in “Configuring the SAP Java Connector” on page 381.

Missing librfc32.dll

If you attempt to use SAP R/3 RFC FC and get an error similar to the following:
″The dynamic linked library LIBRFC32.dll could not be found in the specified path″
On Windows machines, ensure that librfc32.dll is in the TDI_Home/libs directory. On Solaris

and AIX machines, ensure that librfccm.{o/so} has been added to the loadable library path.

Old version of librfc32.dll

 If you get an error of the following type:

java.lang.ClassCastException: java.lang.ExceptionInInitializerError

It is possible that the librfc32 being used is an older version and is not compatible with JCo

2.1.6. Check that there is no other librfc32 in your PATH. Also check that any

librfc32*.{dll/so} that is in your system path is at least version 6403.3.81.4751.

15:13:44 [YourAssemblyLine] BEGIN selectEntries

15:13:45 [YourAssemblyLine] handleException: initialize,

java.lang.ClassCastException: java.lang.ExceptionInInitializerError

15:13:45 [YourAssemblyLine] initialize

java.lang.ClassCastException: java.lang.ExceptionInInitializerError

 at com.ibm.di.script.ScriptEngine.call(Unknown Source)

 at com.ibm.di.connector.ScriptConnector.selectEntries(Unknown Source)

 at com.ibm.di.server.AssemblyLineComponent.initialize(Unknown Source)

 at com.ibm.di.server.AssemblyLine.initConnectors(Unknown Source)

 at com.ibm.di.server.AssemblyLine.msInitConn(Unknown Source)

 at com.ibm.di.server.AssemblyLine.executeMainStep(Unknown Source)

 at com.ibm.di.server.AssemblyLine.executeMainLoop(Unknown Source)

 at com.ibm.di.server.AssemblyLine.executeAL(Unknown Source)

 at com.ibm.di.server.AssemblyLine.run(Unknown Source)

RFC_ERROR_SYSTEM_FAILURE: Screen output without connection to user

If the connector returns this message, please see SAP Note 49730 for more information.

Query Schema Issues

When performing a schema query using the Connectors with the IBM Tivoli Directory Integrator

GUI, an attempt to connect to the data source may result in an exception. These exceptions can be

ignored. Any subsequent use of the discover schema button will succeed.

 The Connectors do not support the Get Next Entry style of schema query. The Connectors support

the torch button Discover the Schema of the data source style of schema discovery.

User Registry Company Code Assignment

If the value associated with the XML element, <companyKeyName>, does not represent a valid

company code within SAP, or is not supplied at all, SAP will assign the configured default.

Chapter 6. SAP R/3 Component Suite 419

Changing Mode of Connectors Already in AssemblyLine

During testing, it was observed that changing the mode of Connector in the AssemblyLine did

not always work. The Connector sometimes appeared to execute in its original mode, resulting in

AssemblyLine errors. If this occurs, delete the Connector and add it to the AssemblyLine in the

new mode.

Function Component differences to SE37 Test RFC Feature

In some cases, the RFC Function Component exhibits slightly different behavior to that observed

when executing a given RFC from SAP’s Test Function Feature, available from transaction SE37. In

some cases, the SAP test feature will automatically convert values to internal German abbreviated

values (for example, BAPI_SALESORDER_GETLIST). Therefore, some of the values returned by the

connector in Lookup and Iterator mode may differ slightly from those returned by the SAP test

function feature. When you are required to provide input XML files to set the values of

parameters, you should supply the internal values (that is, the same format as the values

returned by the connector in Lookup and Iterator modes).

 The RFC Function Component will not pad out values of character string types to the maximum

length.

User Registry Connector Warnings

In some cases, the Connectors may log warning severity messages as a result of application level

ABAP warnings return from SAP. An example of warning messages logged by the User Registry

Connector running in Iterator mode is shown below.

15:50:10 [newGetUsers] W: Unable to read the address (69) (D:\Program

 Files\IBM\IBMDirectoryIntegrator\xsl\bapi_user_get_detail_precall.xsl)

15:50:10 [newGetUsers] W: Unable to determine the company (76) (D:\Program

 Files\IBM\IBMDirectoryIntegrator\xsl\bapi_user_get_detail_precall.xsl)

In most cases, these warning messages can be ignored.

User Registry Connector In Update Mode

When run in this mode, the Connector expects the sapUserName attribute to be defined in the

Link Criteria and as an XML element, <sapUserName>, within the value associated with the

attribute sapUserXml. The values of sapUserName should match in both cases. The Connector

does not verify the equality.

Password Behavior In SAP

After a new user is created in SAP, or the password of an existing user is changed, SAP will

prompt that user to reset their password at the next logon. This is standard SAP behavior and

occurs if the user is created or modified through the SAP transaction SU01, or the Connector.

Delete HR Personal Data With HR Connector

In some cases, an attempt to delete a Personal Data entry using the Connector, or SAP transaction

PA30, may fail. The failure message states ″Record cannot be deleted (time constraint 1)″. Currently,

there is no known solution to this problem.

420 Reference Guide

Supplemental information for the SAP R/3 Component Suite

Example User Registry Connector XML Instance Document

The following code sample shows an example User Registry Connector XML Instance Document:

<User>

 <sapUserName></sapUserName>

 <sapUserPassword></sapUserPassword>

 <sapUserAlias>

 <aliasName></aliasName>

 </sapUserAlias>

 <sapAddress>

 <title></title>

 <academicTitle></academicTitle>

 <firstName></firstName>

 <lastName></lastName>

 <namePrefix></namePrefix>

 <nameFormat></nameFormat>

 <nameFormatRuleCountry></nameFormatRuleCountry>

 <isoLanguage></isoLanguage>

 <language></language>

 <searchSortTerm></searchSortTerm>

 <department></department>

 <function></function>

 <buildingNumber></buildingNumber>

 <buildingFloor></buildingFloor>

 <roomNumber></roomNumber>

 <name></name>

 <name2></name2>

 <name3></name3>

 <name4></name4>

 <city></city>

 <postCode></postCode>

 <poBoxPostCode></poBoxostCode>

 <poBox></poBox>

 <street></street>

 <streetNumber></streetNumber>

 <houseNumber></houseNumber>

 <country></country>

 <countryIso></countryIso>

 <region></region>

 <timeZone></timeZone>

 <primaryPhoneNumber></primaryPhoneNumber>

 <primaryPhoneExtension></primaryPhoneExtension>

 <primaryFaxNumber></primaryFaxNumber>

 <primaryFaxExtension></primaryFaxExtension>

 </sapAddress>

 <sapCompany>

 <companyNameKey></companyNameKey>

 </sapCompany>

 <sapDefaults>

 <startMenu></startMenu>

 <outputDevice></outputDevice>

 <printTimeAndDate></printTimeAndDate>

 <printDelete></printDelete>

 <dateFormat></dateFormat>

 <decimalFormat></decimalFormat>

 <logonLanguage></logonLanguage>

 <cattTestStatus></cattTestStatus>

 <costCenter></costCenter>

 </sapDefaults>

 <sapLogonData>

 <validFromDate></validFromDate>

 <validToDate></validToDate>

 <userType></userType>

 <userGroup></userGroup>

Chapter 6. SAP R/3 Component Suite 421

<accountId></accountId>

 <timeZone></timeZone>

 <lastLogonTime></lastLogonTime>

 <codeVerEncryption></codeVerEncryption>

 </sapLogonData>

 <sapSncData>

 <printableName></printableName>

 <allowUnsecure></allowUnsecure>

 </sapSncData>

 <sapUserGroupList>

 <group>

 <name></name>

 </group>

 <group>

 <name></name>

 </group>

 </sapUserGroupList>

 <sapParameterList>

 <parameter>

 <parameterId></parameterId>

 <parameterValue></parameterValue>

 </parameter>

 <parameter>

 <parameterId></parameterId>

 <parameterValue></parameterValue>

 </parameter>

 </sapParameterList>

 <sapUserEmailAddressList>

 <email>

 <defaultNumber></defaultNumber>

 <smtpAddress></smtpAddress>

 <isHomeAddress></isHomeAddress>

 <sequenceNumber></sequenceNumber>

 </email>

 <email>

 <defaultNumber></defaultNumber>

 <smtpAddress></smtpAddress>

 <isHomeAddress></isHomeAddress>

 <sequenceNumber></sequenceNumber>

 </email>

 </sapUserEmailAddressList>

 <sapRoleList>

 <role>

 <name></name>

 <validFromDate></validFromDate>

 <validToDate></validToDate>

 </role>

 <role>

 <name></name>

 <validFromDate></validFromDate>

 <validToDate></validToDate>

 </role>

 </sapRoleList>

 <sapProfileList>

 <profile>

 <name></name>

 </profile>

 <profile>

 <name></name>

 </profile>

 </sapProfileList>

 </User>

XSchema for User Registry Connector XML

The XSchema for User Registry Connector XML is show below:

422 Reference Guide

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="User">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="sapUserName" minOccurs="1" maxOccurs="1"/>

 <xsd:element ref="sapUserPassword" minOccurs="1" maxOccurs="1"/>

 <xsd:element ref="sapUserAlias" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="sapAddress" minOccurs="1" maxOccurs="1"/>

 <xsd:element ref="sapCompany" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="sapDefaults" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="sapLogonData" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="sapSncData" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="sapUserGroupList" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="sapParameterList" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="sapUserEmailAddressList" minOccurs="0"

 maxOccurs="1"/>

 <xsd:element ref="sapRoleList" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="sapProfileList" minOccurs="0" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="academicTitle">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="20"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="accountId">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="12"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="aliasName">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="40"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="allowUnsecure">

 <xsd:simpleType >

 <xsd:restriction base="xsd:boolean">

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="buildingFloor">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="10"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="buildingNumber">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="10"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="cattTestStatus">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="1"></xsd:maxLength>

Chapter 6. SAP R/3 Component Suite 423

</xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="companyNameKey">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="42"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="costCenter">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="8"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="dateFormat">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="1"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="decimalFormat">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="1"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="defaultNumber">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="1"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="department">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="40"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="email">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="defaultNumber" minOccurs="1" maxOccurs="1"/>

 <xsd:element ref="smtpAddress" minOccurs="1" maxOccurs="1"/>

 <xsd:element ref="isHomeAddress" maxOccurs="1" minOccurs="0"/>

 <xsd:element ref="sequenceNumber" minOccurs="1" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="firstName">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="40"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="function">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="40"></xsd:maxLength>

 </xsd:restriction>

424 Reference Guide

</xsd:simpleType>

 </xsd:element>

 <xsd:element name="group">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="name">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="12"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="isHomeAddress">

 <xsd:simpleType >

 <xsd:restriction base="xsd:boolean">

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="isoLanguage">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="2"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="language">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="1"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="lastLogonTime">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:minLength value="8"></xsd:minLength>

 <xsd:maxLength value="8"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="lastName">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="40"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="logonLanguage">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="1"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="name">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="40"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="name2">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

Chapter 6. SAP R/3 Component Suite 425

<xsd:maxLength value="40"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="name3">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="40"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="name4">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="40"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="nameFormat">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="2"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="nameFormatRuleCountry">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="3"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="namePrefix">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="20"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="outputDevice">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="4"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="parameter">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="parameterId" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="parameterValue" minOccurs="0" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="parameterId">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="20"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="parameterValue">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="18"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

426 Reference Guide

</xsd:element>

 <xsd:element name="poBox">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="10"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="postCode">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="10"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="primaryFaxExtension">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="10"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="primaryFaxNumber">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="30"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="primaryPhoneExtension">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="10"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="primaryPhoneNumber">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="30"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="printDelete">

 <xsd:simpleType >

 <xsd:restriction base="xsd:boolean">

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="printTimeAndDate">

 <xsd:simpleType >

 <xsd:restriction base="xsd:boolean">

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="printableName">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="255"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="profile">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="name">

 <xsd:simpleType >

Chapter 6. SAP R/3 Component Suite 427

<xsd:restriction base="xsd:string">

 <xsd:maxLength value="12"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="region">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="3"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="role">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="name">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="30"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element ref="validFromDate" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="validToDate" minOccurs="0" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="roomNumber">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="10"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="sapAddress">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="title" minOccurs="1" maxOccurs="1"/>

 <xsd:element ref="academicTitle" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="firstName" minOccurs="1" maxOccurs="1"/>

 <xsd:element ref="lastName" minOccurs="1" maxOccurs="1"/>

 <xsd:element ref="namePrefix" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="nameFormat" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="nameFormatRuleCountry" minOccurs="0"

 maxOccurs="1"/>

 <xsd:element ref="isoLanguage" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="language" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="searchSortTerm" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="department" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="function" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="buildingNumber" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="buildingFloor" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="roomNumber" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="name" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="name2" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="name3" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="name4" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="postCode" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="poBox" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="street" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="region" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="timeZone" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="primaryPhoneNumber" minOccurs="0"

 maxOccurs="1"/>

428 Reference Guide

<xsd:element ref="primaryPhoneExtension" minOccurs="0"

 maxOccurs="1"/>

 <xsd:element ref="primaryFaxNumber" minOccurs="0"

 maxOccurs="1"/>

 <xsd:element ref="primaryFaxExtension" minOccurs="0"

 maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="sapCompany">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="companyNameKey" minOccurs="0" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="sapDefaults">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="startMenu" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="outputDevice" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="printTimeAndDate" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="printDelete" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="dateFormat" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="decimalFormat" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="logonLanguage" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="cattTestStatus" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="costCenter" minOccurs="0" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="sapLogonData">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="validFromDate" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="validToDate" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="userType" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="userGroup" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="accountId" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="timeZone" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="lastLogonTime" minOccurs="0" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="sapParameterList">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0" ref="parameter"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="sapProfileList">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0" ref="profile"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="sapRoleList">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0" ref="role"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="sapSncData">

 <xsd:complexType>

Chapter 6. SAP R/3 Component Suite 429

<xsd:sequence>

 <xsd:element ref="printableName" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="allowUnsecure" minOccurs="0" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="sapUserAlias">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="aliasName" minOccurs="0" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="sapUserEmailAddressList">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0" ref="email"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="sapUserGroupList">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0" ref="group"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="sapUserName">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="12"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="sapUserPassword">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="8"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="searchSortTerm">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="20"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="sequenceNumber">

 <xsd:simpleType >

 <xsd:restriction base="xsd:nonNegativeInteger">

 <xsd:totalDigits value="3"></xsd:totalDigits>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="smtpAddress">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="241"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="startMenu">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="20"></xsd:maxLength>

 </xsd:restriction>

430 Reference Guide

</xsd:simpleType>

 </xsd:element>

 <xsd:element name="street">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="60"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="timeZone">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="6"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="title">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="30"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="userGroup">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="12"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="userType">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="1"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="validFromDate">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="10"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="validToDate">

 <xsd:simpleType >

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="10"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

</xsd:schema>

Chapter 6. SAP R/3 Component Suite 431

432 Reference Guide

Chapter 7. Script languages

With this version of IBM Tivoli Directory Integrator the only script language available is JavaSript,

implemented by means of the IBM JavaScript Engine (IBMJS), with Rhino compatibility extensions. If you

previously have used VBScript, PerlScript or even BeanShell, you will need to convert this to JavaScript.

JavaScript

There are certain issues you might want to consider when using JavaScript. These are:

v ″Comparing JavaScript strings″ in IBM Tivoli Directory Integrator 6.1.1: Users Guide.

v ″JavaScript string methods″ in IBM Tivoli Directory Integrator 6.1.1: Users Guide.

v “Java and JavaScript”

Java and JavaScript

In JavaScript you can access Java objects. This is very useful, because all the IBM Tivoli Directory

Integrator internal objects are Java objects.

However, there is a pitfall when some of the Java Objects have methods with names that are reserved

words or operators in JavaScript. In these cases, the JavaScript interpreter tries to process the reserved

word instead of calling the Java method.

Such an example can be found with the java.io.File class which has a delete method. delete is also a

JavaScript operator, so the following fails:

var myFile = java.io.File("file.txt"); myFile.delete();

Instead, you can do one of the following:

v myFile[’delete’]();

This exploits the fact that you can access the Java methods as array elements.

v system.deleteFile("file.txt");

This works well, because the system library has a deleteFile method.

© Copyright IBM Corp. 2003, 2007 433

434 Reference Guide

Chapter 8. Objects

The objects discussed in this chapter are fully documented in the Javadocs in the root_directory/docs/api

directory of your installation. Check the Javadocs for the available methods; you can view the Javadocs

by selecting Help>Low Level API in the Config Editor.

The AssemblyLine Connector object

The AssemblyLine Connector object is a wrapper that provides additional functionality to the Connector

Interface. The Connector Interface can be accessed from the AssemblyLine Connector as the connector

object.

Note: In addition to using the name of the AssemblyLine Connector, you can always refer to the

currently executing AssemblyLine Connector object with the name ″thisConnector″ in your

JavaScript code.

The AssemblyLine Connector is the Connector calling the hook functions you define in the AssemblyLine

and is also the Connector that performs the attribute mapping. Each AssemblyLine Connector in the

AssemblyLine is given a name that is automatically available in your scripts as that name. If you name

an AssemblyLine Connector ldap, that name is also used as the script object name. Make sure you name

your Connectors in a way that can be used as a JavaScript variable. Typically, you must avoid using

whitespace and special characters.

The AssemblyLine Connector has methods and properties described in the

com.ibm.di.server.AssemblyLineComponent.

The attribute object

An attribute object is usually contained in Entry objects. An attribute is a named object with associated

values. Each value in the attribute corresponds to a Java object of some type. Attribute names are not

case-sensitive, and cannot contain a slash (/) as part of the name. Remember that some of the

Connectors for example, those accessing a database, might consider other characters as unsuitable. If you

can, try to stick to alphanumeric characters in attribute names.

If the attribute was populated with Connector values by the attribute map, the values are of the same

datatype that the Connector supplied.

For more information, see the Javadocs material included in the installation package (the

com.ibm.di.entry.Attribute class).

Examples

Creating a new attribute object

var attr = system.newAttribute("AttributeName");

This example creates an attribute object with name AttributeName and assigns it to the attr variable.

Note that upon initial creation, the attribute holds no value. Now, through the attr variable you can

access and interact with the newly created attribute.

Adding values to an attribute

attr.addValue("value 1");

attr.addValue("value 2");

© Copyright IBM Corp. 2003, 2007 435

This example adds the string values ″value 1″ and ″value 2″ to the attr attribute, thereby creating a

multiple values attribute. Consecutive calls to addValue(obj) add values in the same order in the

attribute.

Scanning attribute’s values

var values = attr.getValues();

for (i=0; i<values.length; i++) {

 task.logmsg("Value " + i + " —> " + values[i]);

}

This example processes any attribute object, whether it holds single or multiple values. In reality, there is

no difference between single and multiple-value attributes. Every attribute can hold zero, one or more

values. A single-value attribute is therefore merely an underloaded multiple-values attribute.

See also

“The Entry object.”

The Connector Interface object

The Connector Interface object is obtained either by loading a Connector Interface explicitly

(system.loadConnector) or by retrieving the named AssemblyLine Connectors's .connector

(myConnector.connector). When writing scripts in an AssemblyLine, you usually use the AssemblyLine

Connector object that gives you access to another set of methods.

The Connector Interface is fully described as Connector in the Javadocs. For more information, see the

Javadocs material included in the installation package (com.ibm.di.connector.Connector).

Methods

Some of the often-used methods include:

getNextEntry()

Returns the next input entry.

putEntry (entry)

Adds or inserts an entry.

modEntry (entry, search)

Modify entry identified by search with contents of entry.

deleteEntry (entry, search)

Deletes the entry identified by search.

findEntry (search)

Searches for an entry identified by search. If no entries are found, a null value is returned.

findEntry (attribute, value)

Performs a search using "attribute equals value" and returns the entry found. If no entries or

more than one entry is found a null value is returned.

The Entry object

The Entry object is used by AssemblyLines and EventHandlers. The Entry object is a Java object that

holds attributes and properties. Attributes in turn contain any number of values. Properties contain a

single value. For more information, see the Javadocs material included in the installation package

(com.ibm.di.entry.Entry).

436 Reference Guide

Global Entry instances available in scripting

conn The local storage object in Connectors in an AssemblyLine. It only exists during the Attribute

Mapping phase of the Connector’s life. See ″Attribute Mapping″ in IBM Tivoli Directory Integrator

6.1.1: Users Guide.

work The data container object of the AssemblyLine. It is therefore accessible in every Connector from

the AssemblyLine.

event The event object is the work Entry object when scripting inside EventHandlers, like the conn

object during Attribute Mapping.

current

Available only in Connectors in Update and Delta mode. Stores the Entry that the Connector read

from the data source to determine whether this is an Add or Modify operation.

error An Entry object that holds error status information in the following attributes:

status (java.lang.String)

ok if there is no exception thrown (in this case, this is the error’s only attribute). fail if an

exception is thrown, when the following attributes are also available:

exception (java.lang.Exception)

The java.lang.Exception (or some its successor class) object that is thrown

class (java.lang.String)

The name of the exception class (java.lang.Exception or some of its successors)

message (java.lang.String)

The error message of the exception

operation (java.lang.String)

The operation type of the Connector (for example, AddOnly, Update, Lookup,

Iterator and so forth)

connectorname (java.lang.String)

The name of the Connector whose Hook is being called

See also

“The attribute object” on page 435.

The FTP object

The FTP object is available as a scriptable object. This object is useful when the FTP Client Connector

does not provide the required functionality. See the full documentation in the Javadocs for

com.ibm.di.protocols.FTPBean.

Example

var ftp = system.getFTP();

if (! ftp.connect ("ftpserver", "username",

 "password"))

{

 task.logsmg ("Connect failed: " +

 ftp.getLastError());

}

ftp.cd ("/home/user1");

var list = ftp.dir();

while (list.next())

{

 if (list.getType() == 1)

Chapter 8. Objects 437

task.logmsg ("Directory: " +

 list.getName());

 else

 task.logmsg ("File: " + list.getName());

}

ftp.setBinary();

ftp.get ("remotefile", "c:\\localfile");

ftp.put ("c:\\localfile", "remotefile");

Main object

The main object is the top level thread (see Interface RSInterface in the Javadocs). This object has

methods for manipulating AssemblyLine behavior. The most common methods are:

void dump(object)

Dumps the object to the log file. If object is anEntry , Dumps the object to the log file; otherwise,

just the class name and object.toString().

void logmsg (String loglevel, String msg)

Alternative version of the logmsg() method, with a Log Level parameter. The legal values for Log

Level are: ″FATAL″, ″ERROR″, ″WARN″, ″INFO″, ″DEBUG″, corresponding to the log levels

available for log Appenders. Any unrecognized value is treated as ″DEBUG″.

startAL (name, initial-work-entry), startAL (name, runtime-provided-Connector), startAL (name,

initial-work-entry, runtime-provided-Connector), startAL (name, java.util.Vector)

Starts the AssemblyLine given by the name parameter. See also ″IBM Tivoli Directory Integrator

concepts – The AssemblyLine″ in IBM Tivoli Directory Integrator 6.1.1: Users Guide.

The Search (criteria) object

The Search (criteria) object is used by AssemblyLines and Connectors to specify a generic search criteria.

See com.ibm.di.server.SearchCriteria in the Javadocs. It is up to each Connector how to interpret and

translate the search criteria into a Connector specific search. The search criteria is a very simple

multi-valued object where each value specifies an attribute, operand, and a value.

Operands

The following operands have been defined for use with the criteria objects.

= Equals

~ Contains

^ Starts with

$ Ends with

! Not equals

Example

for (i = 0; i < search.size(); i++) {

 var sc = search.getCriteria (i);

 task.logmsg (sc.name + sc.match + sc.value);

}

The shellCommand object

The shellCommand object contains the results from a command line process.

438 Reference Guide

On Microsoft Windows platforms, the shell command starts, but you cannot get output or status from the

shell command. See com.ibm.di.function.ExecuteCommand in the Javadocs for available methods.

For example:

var cmd = system.shellCommand ("/bin/ls -l");

if (cmd.failed()) {

 task.logmsg ("Command failed: " + cmd.getError());

} else {

 task.logmsg (cmd.getOutputBuffer());

}

The status object

The status object contains information about an AssemblyLine’s Connectors and error codes. It is a

synonym to task.getStats()

The system object

The system object is available as a scriptable object in all scripting contexts and provides a basic set of

functions. The Java object is com.ibm.di.function.UserFunctions, but linked to the Script object system.

You can find a complete list of the methods by looking at the Javadocs.

The task object

The task object is an instance of class that implements com.ibm.di.server.TaskInterface and represents

the current thread of execution:

v For AssemblyLines, this is the AssemblyLine thread where you can access AssemblyLine specific

information and methods. See class com.ibm.di.server.AssemblyLine in the Javadocs.

v For EventHandlers, this is the EventHandler thread where you can access EventHandler specific

information and methods. See class com.ibm.di.eventhandler.Switchboard in the Javadocs.

Chapter 8. Objects 439

440 Reference Guide

Appendix A. Password Synchronization plug-ins

The IBM Tivoli Directory Integrator provides an infrastructure and a number of ready-to-use components

for implementing solutions that synchronize user passwords in heterogeneous software environments.

A password synchronization solution built with the IBM Tivoli Directory Integrator can intercept

password changes on a number of systems. The intercepted changes can be directed back into:

v The same software systems, or

v A different set of software systems.

Synchronization is achieved through the IBM Tivoli Directory Integrator AssemblyLines, which can be

configured to propagate the intercepted passwords to desired systems.

The components that make up a password synchronization solution are: Password Synchronizers,

Password Stores, Connectors and AssemblyLines. The Password Synchronizers, Password Stores and

Connectors are ready-to-use components included in the IBM Tivoli Directory Integrator. As a result,

implementing the solution that intercepts the passwords and makes them accessible from IBM Tivoli

Directory Integrator is achieved by deploying and configuring these components.

The following sections describe the specialized password synchronization components that are currently

available.

Password Synchronizers

Password Synchronizer for Windows NT/2000/XP

Intercepts the Windows login password change.

Password Synchronizer for IBM Tivoli Directory Server

Intercepts IBM Tivoli Directory Server password changes.

Password Synchronizer for Sun ONE Directory Server

Intercepts Sun ONE Directory Server password changes.

Password Synchronizer for Domino

Intercepts changes of the HTTP password for Lotus Notes users.

Password Synchronizer for UNIX and Linux

Intercepts changes of UNIX and Linux user passwords.

Password Stores

LDAP Password Store

Provides the function necessary to store the intercepted user passwords in LDAP

directory servers.

MQ Everyplace Password Store

Provides the function necessary to store user passwords into IBM WebSphere MQ

Everyplace.

Note: IBM Tivoli Directory Integrator 6.1.1 components can be deployed to take

advantage of MQe Mini-Certificate authenticated access. To use these MQe

features, it is necessary to download and install IBM WebSphere MQ Everyplace

2.0.1.7 (or higher) and IBM WebSphere MQ Everyplace Server Support ES06. Use

of certificate authenticated access prevents an anonymous MQe client Queue

Manager and/or application submitting a change password request to the “MQe

Password Store Connector” on page 155.

Specialized Connectors

© Copyright IBM Corp. 2003, 2007 441

MQe Password Store Connector

Provides the function necessary to retrieve password update messages from IBM

WebSphere MQ Everyplace and send them to IBM Tivoli Directory Integrator.

For more information about installing and configuring the IBM Password Synchronization plug-ins,

please see the IBM Tivoli Directory Integrator 6.1.1: Password Synchronization Plug-ins Guide.

442 Reference Guide

Appendix B. AssemblyLine and Connector mode flowcharts

Legend for Diagrams
Hook Flow diagrams

Lookup

Attribute Map

Continue
from

Previous Iterator
or Start of

AL

On Multiple
Entries*

Multiple

Entries Found?* Yes

No

On
Error

Add

Black arrows indicate normal flow.

Red arrows show error/exception flow. Errors can occur both in scripted

flow components, as well as in Integrator operations.

The Flow Endpoint symbol represents the start or end of the flow for a

flow diagram. The text contained in the symbol provides more information
about system state and behavior at this point.

These boxes represent scripted flow components, and are used for both
Attribute Maps and Hooks. Note that if a Hook is enabled, then control is
passed to the script in the Hook. If a Hook is not enabled, then the flow
continues past the Hook without executing it.

A few Hooks are mandatory and must be enabled, although they do not
need to actually contain any script. If a mandatory Hook is not enabled
and the flow reaches this point, then this is considered an error , and
control faults out to error handling.

This box represents an Integrator operation (these are available as
functions in the component Interface object. Note that Integrator
operations may also result in error flows.

Decision components represent logical branches in component flow
execution, depending on state information at this point.

The Continuation symbol indicates that the flow is continued on another
page that is common for one or more modes. The page being referenced
will appear in a label below this symbol.

This is a Continuation symbol that is used when the referenced page is
still part of the same component mode flow. The page being referenced
will appear in a label below this symbol.

Hook Flow rev. 6.1
20060519

Directory Integrator

For Each Non-Iterator

(Enabled)

Mode-
specific
Flow*

The yellow trapezoid describe flow which is detailed elsewhere (i.e. on
another page in this document. The optional rounded blue box includes
the

© Copyright IBM Corp. 2003, 2007 443

AssemblyLine flow

This flow diagram is for an AssemblyLine started by a main thread:

For Each Flow
component

(Enabled)

*Flow References

These yellow trapezoids
represent flows

found in
the AssemblyLine

components.

Initialization Flows
are found on the

pages entitled
Initialization & Close

Flows

Iterator Flow is
described on the
page for Iterator

Mode flow.

Mode-specific Flow
can be found

on the page(s)
for that component

Mode.

AssemblyLine Flow
Hook Flow diagrams

Work Entry

Available?
+

Epilog -
Before Close

Hook Flow rev. 6.1
20060519

Directory Integrator

Active Iterator
Available? Yes

Work Entry
Exists?

No

Zero out Work Entry

Yes

Epilog -
After Close

Prolog -
Before

Initialization

Prolog -
After

Initialization

Yes

No

For Each component

(Enabled & Passive)

Initialization
Flow*

Process TCB

Load AL Configuration

Global
Prologs

Iterator
Flow*

Mode-
specific
Flow*

For Each component

(Enabled & Passive)

Close
Flow*

AL Termination

On Start of
Cycle

+Work Entry Available

This test checks to see if there
is an Entry object which
is to be used as work for

the new cycle.

This Entry can be provided
in a number of ways:

o an Initial Work Entry (IWE)
o via a call to task.setWork()
o using system.restartEntry()

Switch to next Iterator

No

444 Reference Guide

Connector initialization

Directory Integrator

Prolog -
Before

Initialization

Connector Initialization

Prolog -
After Selection

Connector in
Iterator Mode?

Prolog -
Before Selection

Yes

selectEntries() call

Prolog -
After Initialization

No

Continue from
AssemblyLine

Prolog - Before
Intialization

Continue to
AssemblyLine

Prolog
(After

Initialization)

Connector
Initialization Flow

Hook Flow diagrams

Hook Flow rev. 6.1

20060519

Available Objects

The work object is not
available in Initialization

Hooks (unless it is
provided as an

Initial Work Entry (IWE).

As always, if an
Error Hook

is enabled, the error
flow continues and
does not go to the

Error Flow.

No

Is Error
Handled (and not

re-thrown) in Hook
above?

Yes

Prolog
On Error

Abort
AssemblyLine
(AL On Error

will be
executed)

error

Available temporary
script variables

Error Handling

Please note that if the Prolog On
Error Hook is enabled, then control

is passed to back to the
AssemblyLine flow;

Otherwise, the AssemblyLine
aborts.

The error condition can be
passedon to next On Error

Hook (i.e. to the
AssemblyLine Error Hook)

by re-throwing the exception:

throw error.getObject(”exception”);

Furthermore, if an error occurs
in an On Error Hook, then

the AssemblyLine will also abort.

The error object (of type Entry) is
available throughout an

AssemblyLine, and provides
information about the error situation

through its attributes:
status, exception, class, message,

operation and connectorname.

The status attribute
will have the string value ”OK”

until an error situation arises, at
which time it is assigned

the value ”fail” and the other
attributes are added to error.

t

Appendix B. AssemblyLine and Connector mode flowcharts 445

Close flow

Directory Integrator

Connector
Close Flow
Hook Flow diagrams

Hook Flow rev. 6.1
20060519

Epilog -
Before Close

Connector Close

Epilog -
After Close

Continue from
AssemblyLine
Epilog - Before

Close

Continue to
AssemblyLine

Epilog
(After Close)

Available Objects

Close Hooks will
have access to the

last work Entry
processed by the

AssemblyLine

As always, if an
Error Hook

is enabled, the error
flow continues and
does not go to the

Error Flow.

No

Is Error
Handled (and not
re-thrown) in Hook

above?

Yes

Epilog -
On Error

Abort
AssemblyLine
(AL On Error

will be
executed)

error

Available temporary
script variables

Error Handling

Please note that if the Prolog On
Error Hook is enabled, then control

is passed to back to the
AssemblyLine flow;

Otherwise, the AssemblyLine
aborts.

The error condition can be
passedon to next On Error

Hook (i.e. to the
AssemblyLine Error Hook)

by re-throwing the exception:

throw error.getObject(”exception”);

Furthermore, if an error occurs
in an On Error Hook, then

the AssemblyLine will also abort.

The error object (of type Entry) is
available throughout an

AssemblyLine, and provides
information about the error situation

through its attributes:
status, exception, class, message,

operation and connectorname.

The status attribute
will have the string value ”OK”

until an error situation arises, at
which time it is assigned

the value ”fail” and the other
attributes are added to error.

t

446 Reference Guide

AddOnly mode

On
Success

On
Error

End-Of-Flow

work conn

Available Objects

As always, work gives you
access to the attributes that

are currently in
the AssemblyLine.

The information stored in
the conn object is

written to the data source by
the Add operation.

AddOnly Mode
Hook Flow diagrams

Continue
from

previous
component or

Start of
AL

Before Execute

Override
AddOnly
Enabled?

Yes

No

Override
AddOnly

Output
Attribute Map

Before Add

After Add

Add

Hook Flow rev. 6.1
20060519

Directory Integrator

Available temporary
script variables

Appendix B. AssemblyLine and Connector mode flowcharts 447

Call/Reply mode

On
Success

On
Error

End-Of-Flow

work conn

Available Objects

As always, work gives you
access to the attributes that

are currently in
the AssemblyLine.

*The information stored in
the conn object is

slightly different in this

mode.

It is important to note that
the conn object serves
two different purposes
in Call/Reply mode:

1) Storing the call
attributes/parameters

defined in the
Output Attribute Map
to be transmitted by the

Call/Reply operation,

2) Receiving return
attributes/parameters that

will be accessed by the
Input Attribute Map
after the Call/Reply

operation

Call/Reply Mode
Hook Flow diagrams

Continue
from

previous
component or

Start of
AL

Before Execute

Override
Call/Reply
Enabled?

Yes

No
Override
CallReply

Output
Attribute Map

Before
Call/Reply

After
Call/Reply

Call/Reply

Hook Flow rev. 6.1
20060519

Directory Integrator

Input
Attribute Map

*

Available temporary
script variables

Answer
Received?

No Answer
Returned

448 Reference Guide

Delete mode

Delete 2/2

Delete On
Error

End-Of-Flow

Delete Mode 1/2
Hook Flow diagrams

work conn

Available Objects

As always, work gives you
access to the attributes that

are currently in
the AssemblyLine.

After the Build Link Criteria
operation, there is a script object

called search available
which gives you access to this

information (i.e. for use in
the Override Hook).

The record/entry matching
the Link Criteria(and that

is about to be deleted)
is available for scripting as

the conn object, and
Attribute Mapping is carried out

to allow your AssemblyLine
to use Attributes from

the Entry which is to be
deleted.

*On Multiple Entries

If more than one record/entry is
found that matches the Link Criteria

then the On Multiple Entries
Hook must also be enabled, or this

is treated as an error.

You can access the set of
records/entries found by using
either of these two Connector

functions:

getFirstDuplicateEntry()
or

getNextDuplicateEntry()

Each of these functions returns
an Entry object that can be used

to call a Connector Interface’s
data access methods

(.update(), delete(), etc.).

If you wish to proceed with
the delete flow/operation, then you

must set thecurrent Entry
with the following Connector

function:

myConnector.setCurrent(myEntry)

If you do not set a current
Entry, then execution will
continue to On Success,

bypassing the rest of the mode-
specific flow.

Note:

Data sources behave differently
when multiple Entries are

to be handled.

Even if you select a specific
Entry as described above,

it is not recommended
that you continue with

the delete flow,
as this may result in

an error, or that the operation is
performed on multiple entries.

Continue
from

previous
component or

Start of
AL

Before Execute

Override
Delete

Enabled?
Yes

No

Lookup

Build Link Criteria

Multiple

Entries Found?*

Yes

No

Override
Delete

On Multiple
Entries*

Current Entry
Set?

Yes

No

Hook Flow rev. 6.1
20060519

Directory Integrator

Build Link Criteria

Before Lookup

On
Success

Available temporary
script variables

Appendix B. AssemblyLine and Connector mode flowcharts 449

On
Success

On
Error

End-Of-Flow

Delete Mode 2/2
Hook Flow diagrams

work conn

Before Delete

Delete

After Delete

Input
Attribute Map

Hook Flow rev. 6.1

20060519

Directory Integrator

(cont’d)
Delete

Match Found?

Yes

No

On No Match

After Lookup

Available temporary
script variables

current

450 Reference Guide

Delta Mode

Delta 2/4 End-Of-Flow

On
Success

On
Error

Delta Mode 1/4
Hook Flow diagrams

Before Execute

Override
Delta

Continue
from

previous
component or

Start of
AL

Delta
Support

work

Override
Delta

Enabled?

No

Available Objects

As always, work gives you
access to the attributes that

are currently in
the AssemblyLine.

After the Build Link Criteria
operation, there is a script object

called search available
which gives you access to this

information (e.g. for use in
the Override Hook).

Hook Flow rev. 6.1
20060519

Directory Integrator

Before Delta

Build Link Criteria

Available temporary
script variables

*Valid Operation Code

Be default, an exception is
thrown if Delta mode detects
that the work Entry does not
have a valid operation code

(for example, ”generic”).
Operation code detection

occurs after the
Before Execute Hook.

Delta mode can be configured
to ignore these Entries

instead.

Yes

Entry
Operation Code

Unchanged?

No

Invalid
Entry Operation

Code?*

Is Invalid
Code an

Error?

No

Yes

No

Yes

Yes

Delta Application

During Delta processing,
the necessary steps are taken to

prepare for for applying the
detected changes as efficiently

as possible.

For example, multi-value Attributes
require special handling so that

value-level Delta operation codes
are applied correctly.

Appendix B. AssemblyLine and Connector mode flowcharts 451

conn

Delta 3/4End-Of-Flow

On
Success

On
Error

Delta Mode 2/4
Hook Flow diagrams

Lookup

Build Link Criteria

Multiple
Entries Found?

No

Apply
Delta

work

Current Entry
Set? No

Hook Flow rev. 6.1
20060519

Directory Integrator

*On Multiple Entries

If more than one record/entry is
found that matches the Link Criteria

then the On Multiple Entries
Hook must also be enabled, or this

is treated as an error.

You can access the set of
records/entries found by using
either of these two Connector

functions:

getFirstDuplicateEntry()
or

getNextDuplicateEntry()

Each of these functions returns
an Entry object that can be used

to call a Connector Interface’s
data access methods

(.update(), delete(), etc.).

In addition, conn may be
set to the desired Entry object by

calling the Connector’s setCurrent()
function:

myConnector.setCurrent(myEntry)

If no Entry object is
set, then execution will continue

to On Success, skipping the
rest of the mode-specific flow.

Note:

Please note that data sources
(and therefore related Connectors)

behave differently when
multiple Entries are to be handled.

Even if you set a specific
Entry as described above,

it is not recommended that you
continue with the delta

operation, as this may result in
an error, or that the operation is
performed on multiple entries.

Before Lookup

After Lookup

Available temporary
script variables

current

Entry
Operation Code

Add?

No

Yes

On Multiple

Entries*

Incremental
Modification
possible?#

No

Yes

(cont’d)
Delta

Support

Match Found?

No

On No Match

Yes

Yes

Yes

Build Link Criteria
#Incr. Mod. possible?

The Connector checks
to see if the underlying

system supports
incremental modifications.

For the LDAP Connector,
this will always be Yes.

For the JDBC Connector
the answer is currently

always be No.

452 Reference Guide

conn

End-Of-Flow

On
Error

Delta Mode 3/4
Hook Flow diagrams

No

work

Hook Flow rev. 6.1

20060519

Directory Integrator

Available temporary
script variables

current

(cont’d)
Apply
Delta

Entry
Operation Code

Add?

Override
Add

Override
Add

Enabled?
Yes

Before Add

After Add

No

Add

Output
Attribute Map

Yes

Delta 4/4

Delta
Delete

After
Delta

Delta 4/4

On No Add

Yesconn Entry empty?

No

Continue
to next

component, next
AL section,

or start of next
cycle

Appendix B. AssemblyLine and Connector mode flowcharts 453

work currentconn

Delta Mode 4/4
Hook Flow diagrams

End-Of-Flow

Override
Modify

Enabled?
Yes

No Modify
Override Script

Output
Attribute Map

Before Modify

On No Changes

After Modify

Modify*

After Delta

(cont’d)
Delta

Delete

Changes
Detected?

No

Yes

On
Success

On
Error

Hook Flow rev. 6.1
20060519

Directory Integrator

Available temporary
script variables

*Modify operation

If the Connector supports Delta
directly, then this operation is
carried out by this specialized
behavior (for example, doing

an incremental modify operation
for an LDAP directory).

Otherwise, a standard modify
call is made.

(cont’d)
After
Delta

Entry
Operation Code

Delete?

Override
Delete

Enabled?
Yes

Before Delete

After Delete

No

Delete

Yes

Override
Delete

No

454 Reference Guide

Iterator mode

*After the End Of Data
hook, execution flow continues

as shown below:

Iterator Mode
Hook Flow diagrams

More Iterators in
Feeds section?

Yes

No

Continue to
next Iterator

End of
AssemblyLine

execution

work conn

Available Objects

As always, work gives you
access to the attributes that

are currently in
the AssemblyLine.

The data read in by each
GetNext operation is

available in the conn object.

Note:

If a Connector in Iterator
mode detects the presence

of a valid work object at
the start of its execution -

for example, that there
is another Iterator in

front of this one in the same
AssemblyLine, or that the

initial work Entry has
been passed into the

AssemblyLine from a calling
process or system -

then this Connector will
not be executed, passing

instead this Entry to
the next Connector in the

AssemblyLine.

The sidebar below
illustrates what happens
when an Iterator reaches

its end-of-data. At this
point it will not pass

a work object to
the next Connector, which

in the case of another
Iterator, will signal it

to begin its own
iteration.

Before Execute

Override
GetNext

Enabled?

Override
GetNext

Before GetNext

After GetNext

No

GetNext

Input
Attribute Map

Continue
from

previous
component or

Start of
AL

On
Success

On
Error

End-Of-Flow

Hook Flow rev. 6.1
20060519

Directory Integrator

End of Data?

No

End Of Data*

Yes

End Of Data

Yes

Available temporary
script variables

Appendix B. AssemblyLine and Connector mode flowcharts 455

Lookup mode

work conn

Available Objects

As always, work gives you
access to the attributes that

are currently in
the AssemblyLine.

After the Build Link Criteria
operation, there is a script object

called search available
which gives you access to this

information (i.e. for use in
the Override Hook).

The record/entry matching
the Link Criteria is

available through the
conn object.

*On Multiple Entries

If more than one record/entry is
found that matches the Link Criteria

then the On Multiple Entries
Hook must also be enabled, or this

is treated as an error.

During this hook, conn may be
set to the desired Entry object by

calling the Connector’s setCurrent()
function:

myConnector.setCurrent(myEntry)

You can access the set of
records/entries found by using
either of these two Connector

functions:

getFirstDuplicateEntry()
or

getNextDuplicateEntry()

Each of these functions returns
an Entry object that can be used

in the setCurrent() call.

If setCurrent() is not called
(e.g. no current entry is set)
then the flow is passed on to

On Success, skipping
the rest of the mode-specific

flow.

Lookup Mode
Hook Flow diagrams

Continue
from

previous
component or

Start of
AL

Before Execute

Override
Lookup

Enabled?

No

Lookup

Override
Lookup

Build Link Criteria

Before Lookup

Build Link Criteria

After Lookup

Input
Attribute Map

Multiple
Entries Found?*

On Multiple
Entries*

Yes

No

On
Error

End-Of-Flow

On
Success

Match Found?

On No Match

No

Yes

Yes

Current Entry
Set?

Yes

No

Hook Flow rev. 6.1
20060519

Directory Integrator

Available temporary
script variables

current

456 Reference Guide

Server Mode

Available Objects

The only temporary Entry object
is conn, which is available in the

After Accepting Connection
Hook.

This Entry contains a single
Attribute called

connectorInterface

Its only value is a reference
to the Connector Interface
that will be paired up with
the Flow component list in

in Iterator Mode
to feed it with event data.

Server Mode
Hook Flow diagrams

Launched
from

Feeds
list

Before
Accepting

Connection

After
Accepting

Connection

Accept Connection

On
Error

End-Of-Flow

Hook Flow rev. 6.1
20060519

Directory Integrator
conn

Available temporary
script variables

Server Behavior

Server Mode Connectors
do not run exclusively

like Iterators do.
Instead, each is launched as

a separate process in
event listeningmode and

control is passed to the
next Feeds Connector.

When an event is detected
(for example, a client attempts

to connect) then the
Connector creates a clone

of itself in Iterator Mode
once the

After Accepting Connection
Hook has completed.

This cloned Iterator is then
paired up with the

AssemblyLine Flow component
list (possibly from the AL Pool)

and Hook flow continues as
with standard Iterator mode.

Furthermore, once the Flow
section of the AssemblyLine
completes, control is passed

to the Server Response
logic which then creates and
sends the required reply to

the caller/client system.

The Response Hook flow is
detailed on the page

entitled Server Response.

Appendix B. AssemblyLine and Connector mode flowcharts 457

work conn

Available Objects

As always, work gives you
access to the attributes that

are currently in
the AssemblyLine.

The information stored in
the conn object is

sent to the data source by
the Reply operation.

Continue
from

last Flow
component

Before Execute

Override
Reply

Enabled?
Yes

No

Override
Reply

Output
Attribute Map

Before Reply

After Reply

Reply

Server Response
Hook Flow diagrams

Directory Integrator

Available temporary
script variables

Hook Flow rev. 6.1
20060519

On
Error

End-Of-Flow

Reply
Successful

Continue
to start of next

cycle

458 Reference Guide

Update mode

Update 3/3

Modify

conn

Update 2/3 End-Of-Flow

On
Success

On
Error

Update Mode 1/3
Hook Flow diagrams

Before Execute

Override
Update

No

Lookup

Continue
from

previous
component or

Start of
AL

Build Link Criteria

No

Yes

Multiple
Entries Found?

Yes

On Multiple
Entries*No

Add

work

Match Found?

Override
Update

Enabled?
Yes

Available Objects

As always, work gives you
access to the attributes that

are currently in
the AssemblyLine.

After the Build Link Criteria
operation, there is a script object

called search available
which gives you access to this

information (e.g. for use in
the Override Hook).

Current Entry
Set?

Yes

No

Hook Flow rev. 6.1
20060519

Directory Integrator

*On Multiple Entries

If more than one record/entry is
found that matches the Link Criteria

then the On Multiple Entries
Hook must also be enabled, or this

is treated as an error.

You can access the set of
records/entries found by using
either of these two Connector

functions:

getFirstDuplicateEntry()
or

getNextDuplicateEntry()

Each of these functions returns
an Entry object that can be used

to call a Connector’s
data access methods

(.update(), delete(), etc.).

In addition, conn may be
set to the desired Entry object by

calling the Connector’s setCurrent()
function:

myConnector.setCurrent(myEntry)

If no Entry object is
set, then execution will continue

to On Success, skipping the
rest of the mode-specific flow.

Note:

Please note that data sources
(and therefore related Connectors)

behave differently when
multiple Entries are to be handled.

Even if you set a specific
Entry as described above,

it is not recommended that you
continue with the update

operation, as this may result in
an error, or that the operation is
performed on multiple entries.

Before Update

Before Lookup

After Lookup

Build Link Criteria

Available temporary
script variables

current

Appendix B. AssemblyLine and Connector mode flowcharts 459

Update Mode 2/3
Hook Flow diagrams

Available Objects

As always, work gives you
access to the attributes that

are currently in
the AssemblyLine.

If the Update results in
an Add operation,

conn holds the data that is
written to the data source.

After
Update

Update 3/3End-Of-Flow

On
Error

Add Override
Script

Override
Add

Enabled?
Yes

Before Add

After Add

No

Add

Output
Attribute Map

(cont’d)
Add

connwork

Hook Flow rev. 6.1
20060519

Directory Integrator

Available temporary
script variables

conn Entry empty?

On No Add

No

Continue
to next

component, next
AL section,

or start of next
cycle

Yes

460 Reference Guide

work currentconn

Update Mode 3/3
Hook Flow diagrams

Available Objects

As always, work gives you
access to the attributes that

are currently in
the AssemblyLine.

If the update results in
a Modify operation,

the current object gives you
access to the record/entry

in the connected data source that
matched the Link Criteria

(e.g. is about to be modified).
Note that until the Output

Map, both conn and current
contain the same information.

As in the case of an Add,
the conn object holds the

information that is to
be written to the data source,

in this case, by the Modify
operation.

The conn object

The conn object is emptied
immediately before

the Output Map. After
this point, conn and current

no longer contain the
Entry object found by
the lookup operation.

End-Of-Flow

Override
Modify

Enabled?
Yes

No Modify
Override Script

Output
Attribute Map

Before Modify

Compute
Changes?

On No Changes

After Modify

Before Applying
Changes

Modify*

After Update

(cont’d)
Modify

(cont’d)
After

Update

Changes
Detected?

NoNo

Yes

Yes

*Modify

Please note that some
data sources will compute

changes automatically,
and if none are detected,

will revert with a
No Changes exception.

This will cause flow
to be directed to the

On No Changes
Hook.

On
Success

On
Error

Hook Flow rev. 6.1
20060519

Directory Integrator

Available temporary
script variables

conn Entry empty?

Appendix B. AssemblyLine and Connector mode flowcharts 461

End-of-flow for all modes

End-Of-Flow for All
Connector Modes

Hook Flow diagrams work

Available Objects

As always, work gives you
access to the attributes that

are currently in
the AssemblyLine,.

The conn and curent objects
are available in the

On Error and On Success
Hooks if they were present

previously in the flow

End-Of-Flow

This flow applies to all
components that either terminate

normally (e.g. successfully) or
due to an error.

Error Handling

Please note that if either On Error
Hook is enabled, then control is
passed to the next component,

as if the Connector had terminated
successfully; Otherwise, the

AssemblyLine aborts.

The error condition can be
passedon to next On Error

Hook (either the Default
for the Connector, or the

AssemblyLine Error Hook)
by re-throwing the exception:

throw error.getObject(”exception”);

Furthermore, if an error occurs
in an On Error Hook, then

the AssemblyLine will also abort.

The error object (of type Entry) is
available throughout an

AssemblyLine, and provides
information about the error situation

through its attributes:
status, exception, class, message,

operation and connectorname.

The status attribute
will have the string value ”OK”

until an error situation arises, at
which time it is assigned

the value ”fail” and the other
attributes are added to error.

t

(Mode-Specific)
On Success

(Default)
On Success

Abort
AssemblyLine
(AL On Error

will be
executed)

Continue
to next

component, next
AL section,

or start of next
cycle

(Mode-Specific)
On Error

(Default)
On Error

Yes

Is Error
Handled (and not

re-thrown) in Hooks
above?

No

On
Success

On
Error

error

Hook Flow rev. 6.1
20060519

Directory Integrator

Available temporary
script variables

AssemblyLine
End-of-Flow

If the AssemblyLine
completes without

unhandled errors, the
AssemblyLine

On Success Hook
is invoked.

Otherwise, if an error
has occurred than

control is passed to
the AsemblyLine
On Error Hook.

Return to
the point after

where this error
originated

462 Reference Guide

Connector Reconnect

Connector Reconnect
Hook Flow diagrams

Connection
Failure

Detected

On Connection
Failure

Auto Reconnect*

Hook Flow rev. 6.1
20060519

Directory Integrator

Retry
Connector
Interface

Operation

Auto
Reconnect
Enabled?

Yes

No

Connection
Restored?

Yes

No

Available Objects

As always, work gives you
access to the attributes that

are currently in
the AssemblyLine,.

The error object (of type Entry) is
available throughout an

AssemblyLine, and provides
information about the an error
situation through its attributes:

status, exception, class, message,
operation and connectorname.

The status attribute
will have the string value ”OK”

until an error situation arises, at
which time it is assigned

the value ”fail” and the other
attributes are added to error.

*Auto Reconnect

The Auto Reconnect feature
is configured through the
parameters found in the

Connector Reconnect tab.

These parameters control
the maximum number of times

a reconnect will be tried,
as well as the number

seconds to wait between
each attempt.

Abort
AssemblyLine
(AL On Error

will be
executed)

(Default)
On Error

At Least One
On Error Hook

Enabled?

Yes

No

Return to
the point after

where this error
originated

Appendix B. AssemblyLine and Connector mode flowcharts 463

Function Components

work conn

Available Objects

As always, work gives you
access to the attributes that

are currently in
the AssemblyLine.

*The information stored in
the conn object changes

during FC operation.

It is important to note that
the conn object serves
two different purposes

in a Function:

1) Storing the call
attributes/parameters

defined in the
Output Attribute Map
to be transmitted by the
Function call operation,

2) Receiving return
attributes/parameters that
will be mapped in by the

Input Attribute Map
after the Function call

operation

Function (FC)
Continue

from
previous

component or
Start of

AL

Before Execute

Output
Attribute Map

Before
Call

After
Call

function call

Hook Flow rev. 6.1
20060519

Directory Integrator

Input
Attribute Map

*

Available temporary
script variables

Answer
Received?

No Answer
Returned

No

Yes

(Default)
On Success

Abort
AssemblyLine
(AL On Error

will be
executed)

Continue
to next

component, next
AL section,

or start of next
cycle

No

error

Is Error
Handled (and not

re-thrown) in Hook
above?

Yes

(Default)
On Error

464 Reference Guide

Appendix C. Server API

Overview

The IBM Tivoli Directory Integrator 6.1.1 Server API provides a set of programming calls that can be used

to develop solutions and interact with the IBM Tivoli Directory Integrator (TDI) Server locally and

remotely. It also includes a management layer that exposes the Server API calls through the Java

Management Extensions (JMX) interface.

The Server API includes calls that allow you to:

v Get information about the TDI Server

v Get information about components installed on the Server

v Read, Modify and Write configurations loaded by the Server

v Create and Load new configurations on the Server

v Start, Query and Stop AssemblyLines and EventHandlers

v Cycle manually through AssemblyLines

v Register for and receive notifications for Server events

v Register for and receive AssemblyLines and EventHandlers log messages

All calls can be invoked locally from the TDI Server JVM, and remotely from another JVM (on the local

or a remote network machine), through RMI:

Local access

This type access includes scripting in AssemblyLine or EventHandler hooks and also using the

API from new components (Connectors, EventHandlers) implemented in Java and deployed on

the Server.

Remote access:

This type of access enables the implementation of solutions that remotely connect to TDI and

manage processes within TDI or/and build business logic on top of TDI. It could be an

application dedicated solely to TDI or an application that uses TDI to accomplish some of its

goals.

 A management layer of the Server API exposes the Server API calls through JMX. This provides for

Server manageability and enables you to plug TDI into a managing infrastructure that speaks JMX. The

JMX interface is accessible:

v Locally, as defined in the JMX 1.2 specification

v Remotely, through RMI as defined by the JMX Remote API 1.0 specification

The notifications issued by the Server API internal engine are also available as JMX notifications.

Remote access to the Server API (including the JMX Remote API) is secured by using SSL with client and

server authentication.

The different methods that can be used to access the TDI Server API are depicted on the diagram below:

© Copyright IBM Corp. 2003, 2007 465

Sample use case

In this sample scenario, a client (a stand-alone Java application, for example) needs to start an

AssemblyLine on TDI Server. The client could use the Server API and access it remotely through the RMI

interface, using the Server API RMI client library.

In accordance with the security model described in “Security” on page 467, the client will first create a

session to the remote TDI Server using its own certificate or custom authentication. The Server will

successfully authenticate the client if it has the client certificate in its trust store or custom authentication

succeeds. If the authentication is successful the client will be provided with an object that represents an

entry point for calling Server API methods. Using that object the client will invoke the call for starting an

AssemblyLine passing parameters that specify which AssemblyLine needs to be started.

Before actually executing the method the Server API will check whether the client is authorized to

execute that method – the identity of the client is determined through the client certificate used to

establish the SSL channel or with provided credentials for the custom authentication. If the client is

allowed to start this AssemblyLine the method will be executed and the AssemblyLine will be started;

otherwise, the method will not be executed and an error (exception) will be sent back to the client

indicating that it is not authorized to perform this operation.

Local and Remote Server API interfaces

The Server API provides two sets of interfaces: one for local use and one for remote use. Both sets of

interfaces provide the same calls and functionality, but reside in different Java packages.

The package com.ibm.di.api.local contains the interfaces for local access and com.ibm.di.api.remote

contains the interfaces for remote access to the Server through RMI.

Detailed specification of the local and remote interfaces and their methods can be found in the JavaDoc

documentation shipped with the TDI (in the docs/api folder under the root folder where TDI is

installed).

All interfaces in the remote package extend java.rmi.Remote and all their methods throw

java.rmi.RemoteException. The interfaces for local access on the other hand do not extend

Figure 5.

466 Reference Guide

java.rmi.Remote and their methods do not throw java.rmi.RemoteException which facilitates coding and

is one of the reasons to have separate set of interfaces for local and remote access.

Server API structure

The structure of the local and remote interfaces is identical. The text below refers to the names of the Java

interfaces only and is valid for the interfaces from both the local (com.ibm.di.api.local) and remote

(com.ibm.di.api.remote) Server API Java packages.

The entry point to the Server API is the SessionFactory interface (com.ibm.di.api.local.SessionFactory

for local use and com.ibm.di.api.remote.SessionFactory for remote use).

The SessionFactory interface provides two methods createSession() and createSession(Username,

Password). They create an API session for the user/entity that calls it and returns an object of type

Session. It is this Session object that provides further access to the calls of the Server API.

Through the Session object one can get Server information or stop the Server itself, existing Config

Instances can be obtained or new Config Instances can be loaded and created from scratch. Some of the

calls of the Session object will return other Server API objects – for example startConfigInstance(String

aConfigUrl) will return a ConfigInstance object. The ConfigInstance object gives access to the

configuration data structure, to AssemblyLines and EventHandlers running in the Config Instance as well

as calls for starting new AssemblyLines and EventHandlers. Some of its calls will also return Server API

objects. startAssemblyLine(String aAssemblyLineName), for example, returns an AssemblyLine object that

you can use to query and perform different operations on the AssemblyLine.

To summarize, the Session object is the one that gives access to the hierarchy of Server API objects. All

Server API calls are either invoked directly on the Session object or they are invoked on objects retrieved

directly or indirectly through the Session object.

Security

Authentication is performed in the process of obtaining the Session object. Once obtained, all methods

called on the Session object or on other Server API objects retrieved directly or indirectly through this

Session object are executed under the identity of the user that obtained the Session object.

Authorization is performed on each method call. Before executing the requested call, the Server will

determine whether the identity associated with the current session is authorized to execute that call.

The following authentication options are available:

SSL-based authentication (the mechanism available in TDI 6.0)

This option functions only when api.remote.ssl.client.auth.on=true (you will also need

api.on=true, api.remote.on=true, api.remote.ssl.on=true.

 The user is authorized as per the rights assigned to the SSL certificate user ID in the Server API

User Registry.

Note: When SSL is used and the remote client application uses Server API listener objects, the

client application must have its own certificate that is trusted by the TDI Server (this is

analogous to the setup for SSL client authentication). If there is no client certificate trusted

by the TDI Server, the listener objects will not work and the remote client application will

not be able to receive notifications from the TDI Server.

Username/password based authentication

This option functions only when api.custom.authentication is set to a JavaScript authentication

file.

Appendix C. Server API 467

This authentication method works regardless of whether SSL is used and whether SSL client

authentication is used. The user is authorized as per the rights assigned to the username user in

the Server API User Registry.

 An example authentication hook Javascript file is available in order to demonstrate what the

Javascript of an authentication hook looks like. This example Javascript can also be used as the

basis of real-world TDI authentication hooks.

 You can view an JavaScript example that demonstrates how an authentication hook can use an

LDAP server (Tivoli Directory Server, Active Directory, etc.) for authenticating client request in

the examples/auth_ldap TDI Server folder. The example file is called ldap_auth.js.

LDAP authentication

The TDI Server API provides support for LDAP Authentication. This allows customers to

leverage their existing LDAP infrastructures which already hold their User IDs and Passwords.

 In order to use LDAP authentication the appropriate properties must be configured in

global.properties/solution.properties. These properties are described in the Administrator Guide.

Host-based authentication

This option functions only when api.remote.ssl.on=false. If so, then opening of Server API

sessions without username/password supplied from all hosts specified by the

api.remote.nonssl.hosts property are successfully authenticated and granted admin authority.

The api.remote.nonssl.hosts property can be specified in the global.properties/
solution.properties files.

Note: It is strongly recommended that you use this authentication only for demo purposes, quick

prototyping and in closed, trusted environments.

Configuring the Server API

Configuring the Server API on the Server side includes specifying the relevant system properties in

global.properties (solution.properties) and configuring the User Registry file.

Configuring the Server API properties

The Server API engine is configured through a set of properties in the global.properties file (or

solution.properties file, if a solution folder is used). Refer to “Security and TDI chapter, section Server

API Access Security” in the IBM Tivoli Directory Integrator 6.1.1: Administrator Guide for information on

how to setup the Server API.

Setting up the User Registry

Refer to the “Security and TDI” chapter in the IBM Tivoli Directory Integrator 6.1.1: Administrator Guide for

information and examples of how to setup the User Registry, assign user roles and encrypt/decrypt the

User Registry file.

Remote client configuration

This section describes what is necessary for a remote client that will use the remote Server API.

Prerequisites:

Java 1.4.2 or higher is required on the client side.

Configuring the client:

1. The following jar files must be included in the CLASSPATH of the remote side:

v jars/common/diserverapi.jar

v jars/common/diserverapirmi.jar

v jars/3rdparty/others/log4j-1.2.jar

v jars/common/miconfig.jar

468 Reference Guide

v jars/common/miserver.jar

v jars/common/mmconfig.jar

v jars/3rdparty/IBM/icu4j_3_4_1.jar

v jars/3rdparty/IBM/ITLMToolkit.jar

Users can copy these jar files from the TDI installation.

2. If custom non-TDI objects are used in the solution being implemented with the Server API

(for example as Attribute values of an Entry that is transferred over the wire) the

corresponding Java classes have to be available on the client side as well. These classes must

be serializable and they have to be included in the CLASSPATH of the client JVM.

SSL configuration of the remote client

There are two options for configuring SSL on the remote client:

Using Server API specific SSL properties

When the Java System property api.client.ssl.custom.properties.on is set to true, then SSL is

configured through the following TDI Server API-specific Java System properties:

v api.client.keystore – specifies the keystore file containing the client certificate

v api.client.keystore.pass – specifies the password of the keystore file specified by

api.client.keystore

v api.client.key.pass – the password of the private key stored in keystore file specified by

api.client.keystore; if this property is missing, the password specified by api.client.keystore.pass is

used instead.

v api.truststore – specifies the keystore file containing the TDI Server public certificate.

v api.truststore.pass – specifies the password for the keystore file specified by api.truststore.

Using the Server API-specific SSL properties is convenient when your client application is using

the standard Java SSL properties for configuration of another SSL channel used by the same

application.

You can specify these properties as JVM arguments on the command line, for example:

java MyTDIServerAPIClientApp

 -Dapi.client.ssl.custom.properties.on=true

 -Dapi.truststore=C:\TDI\serverapi\testadmin.jks

 -Dapi.truststore.pass=administrator

 -Dapi.client.keystore=C:\TDI\serverapi\testadmin.jks

 -Dapi.client.keystore.pass=administrator

This example refers to the sample testadmin.jks keystore file shipped with TDI. Note that it

contains both the client private key and also the public key of the TDI Server, so it is used as

both as a keystore and truststore.

Using the standard SSL Java System properties:

When the Java System property api.client.ssl.custom.properties.on is missing or when it is

set to false, then the standard JSSE system properties are used for configuring the SSL channel.

Follow the standard JSSE procedure for configuring the keystore and truststore used by the client

application.

 You can specify these properties as JVM arguments on the command line; for example:

java MyTDIServerAPIClientApp

-Djavax.net.ssl.keyStore=C:\TDI\serverapi\testadmin.jks

-Djavax.net.ssl.keyStorePassword=administrator

-Djavax.net.ssl.trustStore=C:\TDI\serverapi\testadmin.jks

-Djavax.net.ssl.trustStorePassword=administrator

Appendix C. Server API 469

Using the Server API

Creating a local Session

If you are writing Java code that will be executed in the TDI Server JVM (for example a new Connector,

or a Java class that you will access through scripting) and you want to execute Server API calls, you’ll

need a local Server API session.

You can obtain a local Server API session by calling:

import com.ibm.di.api.APIEngine;

import com.ibm.di.api.local.Session;

...

Session session = APIEngine.getLocalSession();

getLocalSession() is a static method of the com.ibm.di.api.APIEngine class. It creates and returns a new

com.ibm.di.api.local.Session object. This session returned has admin rights and can execute all Server

API calls.

Access to the Server API in a scripting context

Users can get access to the Server API from a scripting context (for example from AssemblyLine hooks)

by calling the session script object. TDI Server registers session objects by calling

com.ibm.di.api.APIEngine.getLocalSession() method.

Creating a remote Session

A client application that uses the remote Server API would first need to connect to the TDI Server and

obtain a Server API Session.

Use the following Java code to lookup the RMI SessionFactory object and obtain a Server API Session:

import com.ibm.di.api.remote.Session;

import com.ibm.di.api.remote.SessionFactory;

...

SessionFactory sessionFactory = (SessionFactory) Naming.lookup("rmi://<TDI_Server_host>:

 <TDI_Server_RMI_port>/SessionFactory");

Session session = sessionFactory.createSession();

You need to replace TDI_Server_host and TDI_Server_RMI_port with the host and the RMI port of the TDI

Server; for example:

Naming.lookup("rmi://127.0.0.1:1099/SessionFactory")

The calls provided by the local and remote Session objects are identical. All examples below assume that

you have already obtained a session and will operate in a remote context. In other words, the remote

versions of the Server API interfaces will be used.

Working with Config Instances

The Config Instance represents a configuration loaded on the TDI Server and the associated Server object.

Each AssemblyLine or EventHandler is running in the context of a Config Instance. Through a Config

Instance you can query the configuration of AssemblyLines, EventHandlers, Connectors, Parsers,

Functional Components, start AssemblyLines and EventHandlers, get access to running AssemblyLines

and EventHandlers and query their log files.

470 Reference Guide

Getting access to running Config Instances

You can obtain access to all Config Instances running on the TDI Server by executing the following piece

of code:

ConfigInstance[] configInstances = session.getConfigInstances();

for (int i=0; i<configInstances.length; i++) {

// do something with configInstances[i]

}

The getConfigInstances() method will return an array with Config Instance Server API objects

representing all Config Instances running on the Server.

Starting a Config Instance

In order to load a new configuration on the TDI Server you need to start a new Config Instance, pointing

it to the XML configuration file:

ConfigInstance configInstance = session.startConfigInstance("testconfig.xml");

This loads the testconfig.xml configuration file and start a new Config Instance object associated with that

configuration. Once you get that Config Instance object you can use it to change the configuration itself,

start AssemblyLines and EventHandlers or stop the Config Instance on the Server when you no longer

need it.

Stopping a Config Instance

Assuming that you have a reference to the Config Instance Server API object, you can stop the Config

Instance by calling:

configInstance.stop();

For a reference to the Config Instance object, you have the following options:

v Keep that reference from where you started the Config Instance, that is, configInstance =

session.startConfigInstance(″testconfig.xml″)

v Retrieve the Config Instance object through its Config ID by calling session.getConfigInstance (String

aConfigId). The Config ID is a unique identifier for each Config Instance running on the Server. It is

created by the Server API when the corresponding Server API Config Instance object is created. You

can retrieve the Config ID through the Config Instance object by calling configInstance.getConfigId().

v Iterate through all running Config Instances and find the one you need: session.getConfigInstances()

will return an array of all running Config Instances.

Working with AssemblyLines

Getting access to the AssemblyLines available in a configuration

Assuming that you already have a reference to the Config Instance object, you must obtain the

MetamergeConfig object representing the configuration data structure for the whole Config Instance and

then get the available AssemblyLines:

import com.ibm.di.config.interfaces.MetamergeConfig;

import com.ibm.di.config.interfaces.MetamergeFolder;

import com.ibm.di.config.interfaces.AssemblyLineConfig;

...

MetamergeConfig configuration = configInstance.getConfiguration();

MetamergeFolder configFolder =

 configuration.getDefaultFolder(MetamergeConfig.ASSEMBLYLINE_FOLDER);

String[] assemblyLineNames = configFolder.getNames();

if (assemblyLineNames != null) {

 for (int i=0; i<assemblyLineNames.length; i++) {

 System.out.println(assemblyLineNames[i]);

Appendix C. Server API 471

// get the AssemblyLine configuration object

 AssemblyLineConfig alConfig =

 configuration.getAssemblyLine(assemblyLineNames[i]);

 // do something with alConfig ...

This block of code prints to the standard output the names of all AssemblyLines in the configuration and

demonstrates how to get the AssemblyLine configuration objects. You can use the AssemblyLine

configuration object to get more detailed information, such as which Connectors are configured in the

AssemblyLine, their parameters, etc.

Note that the MetamergeConfig, MetamergeFolder and AssemblyLineConfig interfaces are not part of the

Server API interfaces. They are part of the TDI configuration driver (see the import clauses in the

example) and they are not remote objects. When configInstance.getConfiguration() is executed the

MetamergeConfig object is serialized and transferred over the wire. Your code will then work with the

local copy of that object.

Getting access to running AssemblyLines

You can get the active AssemblyLines either for a specific Config Instance or for all active AssemblyLines

on the TDI Server for all running Config Instances.

Getting the active AssemblyLines for a specific Config Instance:

You will need a reference to the Config Instance object. The following code will return all

AssemblyLines currently running in the Config Instance:

AssemblyLine[] assemblyLines = configInstance.getAssemblyLines();

for (int i=0; i

for (int i=0; i<assemblyLines.length; i++) {

 System.out.println(assemblyLines[i].getName());

 // do someting with assemblyLines[i]

}

Getting the active AssemblyLines for the whole TDI Server:

If you want to get all AssemblyLines running on the Server, execute the following code:

AssemblyLine[] assemblyLines = session.getAssemblyLines();

for (int i=0; i<assemblyLines.length; i++) {

 System.out.println(assemblyLines[i].getName());

 // do someting with assemblyLines[i]

 // which Config Instance this AssemblyLine belongs to?

 ConfigInstance alConfigInstance = assemblyLines[i].getConfigInstance();

}

Note that this is executed at the session level and not for a particular Config Instance. If you need

to know which Config Instance a running AssemblyLine belongs to, you can get a reference to

the parent Config Instance object through the AssemblyLine object.

 You can use the AssemblyLine Server API object to get various AssemblyLine properties, the

AssemblyLine configuration object, AssemblyLine log, AssemblyLine result Entry as well as stop

the AssemblyLine.

Starting an AssemblyLine

You can start an AssemblyLine through the Config Instance object to which the AssemblyLine belongs.

You need to know the name of the AssemblyLine you want to start:

AssemblyLine assemblyLine = configInstance.startAssemblyLine("MyAssemblyLine");

You also receive a reference to the newly started AssemblyLine instance.

472 Reference Guide

Starting an AssemblyLine in manual mode

The Server API provides a mechanism for manually running an AssemblyLine. In manual mode the

AssemblyLine is not running in its own thread. Instead, when you start the AssemblyLine, it is only

initialized. Iterations on the AssemblyLine are done in a synchronous manner when the executeCycle()

method of the AssemblyLine object is called. This call blocks the current thread and when the

AssemblyLine iteration is done it returns the result Entry object.

The following code will start the TestAL AssemblyLine in manual mode and execute three iterations on it.

The result Entry from each iteration is printed to the standard output:

AssemblyLineHandler alHandler = configInstance.startAssemblyLineManual("TestAL", null);

Entry entry = null;

for (int i=0; i<3; i++) {

 entry = alh.executeCycle();

 System.out.println("TestAL entry: " + entry);

}

alHandler.close();

The startAssemblyLineManual(String aAssemblyLineName, Entry aInputData) method of the Config

Instance object starts an AssemblyLine in manual mode and returns an object of type

com.ibm.di.api.remote.AssemblyLineHandler. Through this object you can manually iterate through the

AssemblyLine, you can pass an initial work Entry and various Task Call Block parameters, you can get a

reference to the AssemblyLine Server API object and you can terminate the AssemblyLine when you are

done with it.

You can imitate the AssemblyLine runtime behavior by calling executeCycle() until it returns NULL.

Starting an AssemblyLine with a listener

When you start an AssemblyLine through the Server API you can register a specific AssemblyLine

listener that will receive notifications on each AssemblyLine iteration, delivering the result Entry, and also

when the AssemblyLine terminates. Through this mechanism you can start an AssemblyLine from a

remote application and easily receive all Entries produced by the AssemblyLine. The AssemblyLine

listener will also deliver all messages logged during the execution of the AssemblyLine.

Your listener class must implement the com.ibm.di.api.remote.AssemblyLineListener interface (or

com.ibm.di.api.local.AssemblyLineListener for local access).

The methods you must specify are:

v assemblyLineCycleDone(Entry aEntry) – this method will be called at the end of each AssemblyLine

iteration; the aEntry parameter represents the result Entry from the AssemblyLine iteration.

v assemblyLineFinished() – this method is called by the Server API when the AssemblyLine terminates.

v messageLogged(String aMessage) – this method is called by the Server API whenever a message is

logged through the AssemblyLine logger. Thus you can get remote real time access to the log messages

produced by the AssemblyLine.

A sample AssemblyLine listener class that only prints to the standard output all Entries received and all

AssemblyLine log messages might look like this:

import com.ibm.di.api.DIException;

import com.ibm.di.api.remote.AssemblyLineListener;

import com.ibm.di.entry.Entry;

import java.rmi.RemoteException;

public class MyRemoteALListener implements AssemblyLineListener {

 public void assemblyLineCycleDone(Entry aEntry)

 throws DIException, RemoteException

 {

 System.out.println("AssemblyLine iteration: " + aEntry.toString());

 System.out.println();

Appendix C. Server API 473

}

 public void assemblyLineFinished()

 throws DIException, RemoteException

 {

 System.out.println("AssemblyLine terminated.");

 System.out.println();

 }

 public void messageLogged(String aMessage)

 throws DIException, RemoteException

 {

 System.out.println("AssemblyLine log message: " + aMessage);

 System.out.println();

 }

}

Once you have implemented your AssemblyLine listener class, you need to instantiate a listener object

and pass it when starting the AssemblyLine:

MyRemoteALListener alListener = new MyRemoteALListener();

configInstance.startAssemblyLine("TestAL", null,

 AssemblyLineListenerBase.createInstance(alListener,true), true);

The startAssemblyLine(String aAssemblyLineName, Entry aInputData, AssemblyLineListener aListener,

boolean aGetLogs) method specifies the name of the AssemblyLine, an initial work Entry, the listener

object and whether you want to receive log messages – when aGetLogs is false, the

messageLogged(String aMessage) listener method will not be called by the Server API.

When you are registering a listener in a remote context, you have to wrap your specific listener in an

AssemblyLine Base Listener class – this is necessary to provide a bridge between your custom listener

Java class that is not available on the Server side and the Server API notification mechanism. A base

listener class is created by calling the static createInstance(AssemblyLineListener aListener, boolean

aSSLon) method of the com.ibm.di.api.remote.impl.AssemblyLineListenerBase class. You need to provide

the object representing your listener class and specify whether SSL is used for communication with the

Server or not (you must specify how the Server API is configured on the Server side – otherwise the

communication for that listener will fail).

Stopping an AssemblyLine

You need a reference to the AssemblyLine object in order to stop it. You can keep the reference to the

AssemblyLine object from when you started the AssemblyLine or you can iterate through all running

AssemblyLines and find the one you need. Execute the following line of code to stop the AssemblyLine:

assemblyLine.stop();

Working with EventHandlers

Everything stated in section “Working with AssemblyLines” about AssemblyLines is valid for

EventHandlers as well. You can work with EventHandlers in exactly the same manner using the

corresponding EventHandler classes, interfaces and methods. Please consult the JavaDocs for the

signatures of the EventHandler related classes, interfaces and methods.

Note: The concept of EventHandlers is deprecated in TDI 6.1.1 and will be removed in a future version.

Use AssemblyLines with Connectors in Server Mode instead.

Editing configurations

TDI Configurations folder

A TDI Server property api.config.folder is available in the TDI Server configuration file

global.properties - it specifies a folder on the local disk. The Server API will provide calls for browsing

and loading configurations placed in this folder or its subfolders. For example:

474 Reference Guide

api.config.folder=configs

This means that all configuration files placed in “<TDI_root>/configs” and its subfolders are eligible for

browsing and loading through the Server API (locally and remotely).

The Server API provides new calls for browsing the files and folders in the folder specified by the

api.config.folder property.

Load for editing

In TDI 6.0 configurations can be edited only after the corresponding Config Instance has been started on

the TDI Server. Then there are API calls for getting the Config object, setting the Config object back

(probably modified) and saving the configuration on the disk.

TDI 6.1.1 will not allow modification of the Config object of an active Config Instance. Server API users

will still be able to get the Config object for an active Config Instance, but the following calls for setting

the Config object and saving it on the disk will throw an exception when executed on a normal running

Config Instance:

v ConfigInstance.setConfiguration(MetamergeConfig configuration)

v ConfigInstance.saveConfiguration()

v ConfigInstance.saveConfiguration(boolean aEncrypt)

When a configuration is loaded for editing with a temporary Config Instance it will be able to execute the

setConfiguration(...) method in order to test the changes applied to the configuration. The

saveConfiguration(...) methods will however still throw exceptions. TDI 6.1.1 will present new Server

API calls for loading configurations for editing and for saving the edited configurations on the disk.

Configuration Locking

The Server API internally tracks all configurations loaded for editing. When another Server API user

requests a configuration already loaded for editing, the method call will fail with exception. A new Server

API call has been added for checking whether a configuration is currently loaded for editing (locked).

The lock on a configuration will be released when the user that loaded the configuration for editing saves

it back or cancels the update. The Server API provides an option to specify a timeout value for keeping a

configuration locked. When that timeout is reached for a configuration the lock is released and the user

that locked the configuration will not be able to save it before loading it again.

A new property “api.config.lock.timeout” has been added in the TDI Server configuration file

global.properties. It specifies the timeout value in minutes. When the property is left empty or is set a

value of 0, this means that there is no timeout. The default value for this property is 0. The timeout logic

is implemented by a new thread in the TDI Server. This thread is activated only when

“api.config.lock.timeout” is set to a value greater than 0 and will check for and release expired locks each

30 seconds.

A special call for a forced releasing of the lock on a configuration loaded for editing has been added to

the Server API. Only Server API users with the admin role will be able to execute it.

All configurations are identified through the relative file path of the configuration file according the TDI

Server configurations folder.

All paths specified as method parameters are relative to the TDI Server configurations folder.

The following new calls will be added to the local and remote Server API Session objects and in the JMX

interfaces:

v public boolean releaseConfigurationLock(String aRelativePath) throws DIException;

Appendix C. Server API 475

Administratively releases the lock of the specified configuration. This call can be only executed by

users with the admin role.

v public boolean undoCheckOut(String aRelativePath) throws DIException;

Releases the lock on the specified configuration, aborting all changes being done. This call can only be

executed from a user that has previously checked out the configuration and if the configuration lock

has not timed out.

v public ArrayList listConfigurations(String aRelativePath) throws DIException;

Returns a list of the file names of all configurations in the specified folder. The configurations file paths

returned are relative to the TDI Server configurations folder.

v public ArrayList listFolders(String aRelativePath) throws DIException;

Returns a list of the child folders of the specified folder

v public ArrayList listAllConfigurations() throws DIException;

Returns a list of the file names of all configurations in the directory subtree of the TDI Server

configurations folder. The configurations file paths returned are relative to the TDI Server

configurations folder.

v public MetamergeConfig checkOutConfiguration(String aRelativePath) throws DIException;

Checks out the specified configuration. Returns the MetamergeConfig object representing the

configuration and locks that configuration on the Server.

v public MetamergeConfig checkOutConfiguration(String aRelativePath, String aPassword) throws

DIException;

Checks out the specified password protected configuration. Returns the MetamergeConfig object

representing the configuration and locks that configuration on the Server.

v public void checkInConfiguration(MetamergeConfig aConfiguration, String aRelativePath) throws

DIException;

Saves the specified configuration and releases the lock. If a temporary Config Instance has been started

on check out, it will be stopped as well.

v public void checkInConfiguration(MetamergeConfig aConfiguration, String aRelativePath,

boolean aEncrypt) throws DIException;

Encrypts and saves the specified configuration and releases the lock. If a temporary Config Instance

has been started on check out, it will be stopped as well.

v public void checkInAndLeaveCheckedOut(MetamergeConfig aConfiguration, String aRelativePath)

throws DIException;

Checks in the specified configuration and leaves it checked out. The timeout for the lock on the

configuration is reset.

v public MetamergeConfig createNewConfiguration(String aRelativePath, boolean aOverwrite)

throws DIException;

Creates a new empty configuration and immediately checks it out. If a configuration with the specified

path already exists and the aOverwrite parameter is set to false the operation will fail and an Exception

will be thrown.

v public ConfigInstance checkOutConfigurationAndLoad(String aRelativePath) throws DIException;

Checks out the specified configuration and starts a temporary Config Instance on the Server. This

Config Instance will be stopped when the configuration is checked in or when the lock on the

configuration expires. The method returns the ConfigInstance object. The MetamergeConfig object can

be retrieved through the ConfigInstance object.

v public ConfigInstance checkOutConfigurationAndLoad(String aRelativePath, String aPassword)

throws DIException;

Checks out the specified password protected configuration and starts a temporary Config Instance on

the Server. This Config Instance will be stopped when the configuration is checked in or when the lock

on the configuration expires. The method returns the ConfigInstance object. The MetamergeConfig

object can be retrieved through the ConfigInstance object.

476 Reference Guide

v public ConfigInstance createNewConfigurationAndLoad(String aRelativePath, boolean aOverwrite)

throws DIException;

Creates a new empty configuration, immediately checks it out and loads a temporary Config Instance

on the Server. If a configuration with the specified path already exists and the aOverwrite parameter is

set to false the operation will fail and an Exception will be thrown. The temporary Config Instance will

be stopped when the configuration is checked in or when the lock on the configuration expires. The

method returns the ConfigInstance object. The MetamergeConfig object can be retrieved through the

ConfigInstance object.

v public boolean isConfigurationCheckedOut(String aRelativePath) throws DIException;

Checks if the specified configuration is checked out on the Server.

Load for editing with temporary Config Instance

This is a special version of the load for edit mechanism – the difference is that when the configuration is

loaded for editing a temporary Config Instance will be started as well. This will allow testing the

configuration and its AssemblyLines while they are being developed and will be particularly useful for

development tools like the TDI Config Editor.

The Config Instance will be automatically stopped when the configuration is released or when the lock

on the configuration expires.

The temporary Config Instances are independent of the normal long running Config Instances on the

Server. A normal Config Instance from configuration rs.xml might be running on the Server and at the

same time the rs.xml configuration can be loaded for editing with a temporary Config Instance. This will

result in starting a new temporary Config Instance from the rs.xml file in addition to the normal long

running rs.xml Config Instance.

The same locking mechanism applies for configurations loaded for editing with a temporary Config

Instance. This means that a configuration can be loaded for editing only once regardless of whether it has

been loaded for editing with a temporary Config Instance or without.

New Server API event for configuration update

A new Server API event di.ci.file.updated will be fired whenever a configuration that has been locked

is saved on the TDI Server.

This notification will allow Server API clients to get notified for changes in configurations they are using

and for example reload them to get the latest version.

Working with the System Queue

A System Queue TDI module is introduced in TDI 6.1.1. The System Queue is a TDI server module

which TDI internal objects as well as TDI components can use as a general purpose queue. The purpose

of the System Queue is to connect to a JMS Provider and provide functionality for getting from JMS

message queues and putting into JMS message queues general messages as well as TDI Entry objects. The

System Queue can connect to different JMS Providers using different TDI JMS Drivers. For more

information on the System Queue please see the “System Queue” chapter of the IBM Tivoli Directory

Integrator 6.1.1: Administrator Guide.

The System Queue functionality is exposed through both the local and remote interfaces of the Server

API as well as through the JMX layer of the Server API. TDI components and sub-systems which run in

the Java Virtual Machine of the local TDI server are expected to use the local Server API interfaces to

interact with the System Queue. Remote Server API client applications as well as TDI components and

sub-systems which run in the Java Virtual Machine of a remote TDI server are expected to use the remote

Server API interfaces.

Appendix C. Server API 477

A SystemQueue MBean has been introduced in the TDI 6.1.1 Server API JMX layer. This MBean provides

JMX access to the SystemQueue. A JMX client can access the newly introduced SystemQueue JMX MBean

and thus work with the System Queue through JMX.

The System Queue must be properly configured before it can be accessed through the Server API. A

simple way to configure the System Queue is like the following:

v Setup the JMS Provider.

TDI provides the MQ Everyplace JMS Provider out of the box. You can setup a MQe Queue Manager

via the mqeconfig command line utility (the mqeconfig utility is located in the ‘jars/plugins’ subfolder of

your TDI installation).

Modify the mqeconfig.props configuration file.

– Specify the folder where you want to place the MQe Queue Manager:

serverRootFolder=C:\\TDI\\MQePWStore

– Specify the IP address of the TDI Server:

serverIP=127.0.0.1

– Having the configuration options set, create the MQe Queue Manager:

mqeconfig mqeconfig.props create server

– Create a queue for test purposes:

mqeconfig mqeconfig.props create queue myqueue

v Configure the System Queue and the JMS Provider in global.properties/solution.properties

– Turn on System Queue usage:

systemqueue.on=true

– Set the JMS driver for the System Queue to MQ Everyplace:

systemqueue.jmsdriver.name=com.ibm.di.systemqueue.driver.IBMMQe

– Set the configuration file for the MQe Queue Manager (this file has been generated by the

mqeconfig utility):

systemqueue.jmsdriver.param.mqe.file.ini=C:\TDI\MQePWStore\pwstore_server.ini

:

Note: For a stand-alone Java program to operate successfully with the System Queue through the Server

API, a JMS implementation must be included in the CLASSPATH of the program. You can use the

JMS implementation distributed with TDI: jars/3rdparty/IBM/ibmjms.jar

Access the System Queue through the Server API

Once a Server API session is initiated, the System Queue can be accessed like this:

import com.ibm.di.api.remote.SystemQueue;

...

SystemQueue systemQueue = session.getSystemQueue();

Put a message in the System Queue

The following code puts a text message into a queue named “myqueue” (the call will not create the

specified queue automatically - the queue must be created manually first):

systemQueue.putTextMessage("myqueue", "mytextmessage");

Retrieve a message from the System Queue

The following code retrieves a text message from a queue named “myqueue” (the queue must exist). The

method call waits a maximum of 10 seconds for a message to become available:

String textMessage = systemQueue.getTextMessage("myqueue", 10);

Working with the Tombstone Manager

A Tombstone Manager TDI module was introduced in TDI 6.1.1.

478 Reference Guide

Previous versions of TDI do not keep track of configurations or AssemblyLines that have terminated.

Therefore, administrators have no way of knowing when their AssemblyLines last ran, without going into

the log of each one. Bundlers that initiate AssemblyLines have no way of querying their status after

they’ve terminated.

The solution is a Tombstone Manager that creates records ("tombstones") for each AssemblyLine and

configuration as they terminate, that contain exit status and other information that later can be requested

through the Server API.

Globally Unique Identifiers

Globally Unique Identifiers (GUID) are created by the Server API to uniquely identify Config Instance,

AssemblyLine and EventHandler instances. The GUID is a string value that is unique for each instance of

a Config Instance, an AssemblyLine or an EventHandler ever created by a particular TDI Server.

GUIDs are defined as the string representation of the Config Instance/AssemblyLine/EventHandler

object hashcode concatenated with the string representation of the Config Instance/AssemblyLine/
EventHandler start time in milliseconds.

A new method has been added to the Config Instance, AssemblyLine and EventHandler Server API

interfaces: String getGlobalUniqueID ();

A new field GlobalUniqueID has been added to AssemblyLine, EventHandler and Config Instance stop

Server API events.

Server API support for the Tombstone Manager

What is a tombstone: The Server API provides a new class com.ibm.di.api.Tombstone whose instances

represent tombstone objects. The public interface of the Tombstone class follows:

public class Tombstone implements Serializable {

 public int getComponentTypeID ()

 public int getEventTypeID ()

 public java.utilDate getStartTime ()

 public java.utilDate getTombstoneCreateTime ()

 public String getComponentName ()

 public String getConfigID ()

 public int getExitCode ()

 public String getErrorDescription ()

 public String getGUID ()

 public Entry getStat ()

 public String getUserMessage ()

}

Retrieving tombstones: Tombstones are retrieved through the Tombstone Manager. You can access the

Tombstone Manager via the Server API like this:

import com.ibm.di.api.remote.TombstoneManager;

...

TombstoneManager tombstoneManager = session.getTombstoneManager();

Appendix C. Server API 479

With the Tombstone Manager at hand, you can search for specific Tombstones. The following code

iterates through all tombstones created last week:

Calendar calendar = Calendar.getInstance();

calendar.add(Calendar.DATE, -7);

Tombstone[] tombstones = tombstoneManager.getTombstones(calendar.getTime(), new Date());

for (int i = 0; i < tombstones.length; ++i) {

System.out.println("Tombstone found for : "+tombstones[i].getComponentName());

System.out.println("\t GUID : "+tombstones[i].getGUID());

System.out.println("\t statistics : "+tombstones[i].getStatistics());

}

All tombstones for a particular AssemblyLine can be retrieved this way (the example AssemblyLine is

named “myline” and the ID of the configuration is “C__TDI_myconfig.xml”):

Tombstone[] alTombstones = tombstoneManager.getAssemblyLineTombstones("AssemblyLines/myline",

 "C__TDI_myconfig.xml");

The following new Server API calls are provided for querying the Tombstone Manager – these are

methods of the com.ibm.di.api.local.TombstoneManager interface:

v Tombstone getTombstone (String aGUID)

Returns a single tombstone object uniquely identified by the specified GUID.

v Tombstone[] getAssemblyLineTombstones (String aAssemblyLineName, String aConfigID)

Returns all available tombstones for the specified AssemblyLine.

v Tombstone[] getAssemblyLineTombstones (String aAssemblyLineName, String aConfigID,

java.util.Date aStartTime, java.util.Date aEndTime)

Returns all available tombstones for the specified AssemblyLine with timestamps in the interval

specified by aStartTime and aEndTime.

v Tombstone[] getEventHandlerTombstones (String aEventHandlerName, String aConfigID)

Returns all available tombstones for the specified EventHandler.

v Tombstone[] getEventHandlerTombstones (String aEventHandlerName, String aConfigID,

java.util.Date aStartTime, java.util.Date aEndTime)

Returns all available tombstones for the specified EventHandler with timestamps in the interval

specified by aStartTime and aEndTime.

v Tombstone[] getConfigInstanceTombstones (String aConfigID)

Returns all available tombstones for the specified Config Instance.

v Tombstone[] getConfigInstanceTombstones (String aConfigID)

Returns all available tombstones for the specified Config Instance.

v Tombstone[] getTombstones (java.util.Date aStartTime, java.util.Date aEndTime)

Returns all available tombstones with timestamps in the interval specified by aStartTime and

aEndTime.

Deleting tombstones: When tombstones are no longer needed they should be deleted.

The following code deletes all tombstones from the last week:

tombstoneManager.deleteTombstones(7);

The following new Server API calls are provided for deleting old tombstone records:

v int deleteTombstones (int aDays)

Deletes all tombstones that are older than the specified number of days. Returns the number of deleted

tombstone records.

v int keepMostRecentTombstones (int aMostResentToKeep)

480 Reference Guide

After this method is executed only the aMostRecentToKeep most recent tombstone records are kept and

all other are deleted. Returns the number of deleted tombstone records.

v int deleteALTombstones (String aAssemblyLineName, String aConfigID)

Deletes all tombstones for specified AssemblyLine. Returns the number of deleted tombstone records.

v int deleteALTombstones (String aAssemblyLineName, String aConfigID, int aDays)

Deletes all tombstones for the specified AssemblyLine that are older than the specified number of days.

Returns the number of deleted tombstone records.

v int keepMostRecentALTombstones (String aAssemblyLineName, String aConfigID, int

aMostResentToKeep)

After this method is executed only the aMostRecentToKeep most recent tombstone records for the

specified AssemblyLine are kept and all other are deleted. Returns the number of deleted tombstone

records.

v int deleteEHTombstones (String aEventHandlerName, String aConfigID)

Deletes all tombstones for specified EventHandler. Returns the number of deleted tombstone records.

v int deleteEHTombstones (String aEventHandlerName, String aConfigID, int aDays)

Deletes all tombstones for the specified EventHandler that are older than the specified number of days.

Returns the number of deleted tombstone records.

v int keepMostRecentEHTombstones (String aEventHandlerName, String aConfigID, int

aMostResentToKeep)

After this method is executed only the aMostRecentToKeep most recent tombstone records for the

specified EventHandler are kept and all other are deleted. Returns the number of deleted tombstone

records.

v int deleteCITombstones (String aConfigID)

Deletes all tombstones for specified Config Instance. Returns the number of deleted tombstone records.

v int deleteCITombstones (String aConfigID, int aDays)

Deletes all tombstones for the specified Config Instance that are older than the specified number of

days. Returns the number of deleted tombstone records.

v int keepMostRecentCITombstones (String aConfigID, int aMostResentToKeep)

After this method is executed only the aMostRecentToKeep most recent tombstone records for the

specified Config Instance are kept and all other are deleted. Returns the number of deleted tombstone

records.

v boolean deleteTombstone (String aGUID)

Deletes the tombstone with the specified GUID. Returns true only when the tombstone object with the

specified GUID is found and deleted.

Adding a custom message to AssemblyLine tombstones

The task script object represents the AssemblyLine object in an AssemblyLine context so that you can use

this object when scripting.

The interface of the task object is extended to provide a method for setting a custom message that will be

saved in the UserMessage field of the tombstone for this AssemblyLine. The signature of the new

method, accessible through the task script object is as follows:

task.setTombstoneUserMessage(String aUserMessage);

This method can be used from AssemblyLine scripts to provide additional information in the

AssemblyLine tombstone.

The user message of a tombstone can be retrieved like this:

String userMessage = tombstone.getUserMessage();

Note: No user defined messages can be set for ConfigInstance and EventHandler tombstones.

Appendix C. Server API 481

Working with TDI Properties

For a remote client to query/get/set properties (or stores), it needs to be provided a remote reference of

the TDIProperties object in the server. A remote client can obtain the

com.ibm.di.api.remote.TDIProperties interface remote reference via the following method in

com.ibm.di.api.remote.ConfigInstance:

public TDIProperties getTDIProperties() throws DIException,RemoteException;

A similar interface and implementation is available in the local Server API interfaces.

For a description of the interface methods please see the TDI JavaDocs.

The following example lists all available Property Stores for a given configuration instance:

TDIProperties tdiProperties = configInstance.getTDIProperties();

List stores = tdiProperties.getPropertyStoreNames();

Iterator it = stores.iterator();

System.out.println("Available property stores :");

while (it.hasNext()) {

 String storeName = (String) it.next();

 System.out.println("\t"+storeName);

}

Individual properties can be acquired by their name. The following code prints all properties available in

the Global Property Store (global.properties) :

String storeName = "Global-Properties";

System.out.println(storeName+" store contents :");

String[] storeKeys = tdiProperties.getPropertyStoreKeys(storeName);

for (int i = 0; i < storeKeys.length; ++i) {

System.out.println("\t"+storeKeys[i]+" : "+ tdiProperties.getProperty(storeName, storeKeys[i]));

}

Property values can be changed and new properties can be created like this:

tdiProperties.setProperty(storeName, "mykey", “myvalue”);

The following code removes a property from a Property Store:

tdiProperties.removeProperty(storeName, "mykey");

Before any changes to a Property Store (adding a new property, changing the value of a property or

removing a property) take effect, the changes must be committed:

tdiProperties.commit();

JMX layer API

A TDIPropertiesMBean interface is available in the com.ibm.di.api.jmx.mbeans package. The methods

exposed in TDIPropertiesMBean interface are similar to the ones exposed in the

com.ibm.di.api.remote.TDIProperties interface.

A method getTDIProperties() is available in the com.ibm.di.api.jmx.mbeans.ConfigInstanceMBean class

via which a JMX client can obtain a reference to a javax.management.ObjectName interface.

Registering for Server API event notifications

The Server API provides an event notification mechanism for Server events like starting and stopping of

Config Instances, AssemblyLines and EventHandlers. This allows a local or remote client application to

register for event notifications and react to various events.

Applications that need to register and receive notifications should implement a listener class that

implements the DIEventListener interface (com.ibm.di.api.remote.DIEventListener for remote

482 Reference Guide

applications and com.ibm.di.api.local.DIEventListener for local access). This class is responsible for

processing the Server events. The handleEvent(DIEvent aEvent) method from the DIEventListener

interface is where you need to put your code that processes Server events. Of course you may implement

as many listener classes as you need, with different implementations of the handleEvent(DIEvent aEvent)

method and register all of them as event listeners. A sample listener that just logs the event object might

look like this:

import java.rmi.RemoteException;

import com.ibm.di.api.DIEvent;

import com.ibm.di.api.DIException;

import com.ibm.di.api.remote.DIEventListener;

public class MyListener implements DIEventListener

{

 public void handleEvent (DIEvent aEvent) throws DIException, RemoteException

 {

 System.out.println("TDI Server event: " + aEvent);

 System.out.println();

 }

}

Once you have implemented your listener you will need to register it with the Server API. If however

you are implementing a remote application there is one extra step you need to perform before actually

registering the listener object with the Server API – you need to instantiate and use a base listener object

that will wrap the listener you implemented. The base listener class allows you to use your own listener

classes without having the same Java classes available on the Server:

DIEventListener myListener = new MyListener();

DIEventListener myBaseListener = DIEventListenerBase.createInstance(myListener, true);

The base listener object implements the same DIEventListener interface – its class however is already

present on the Server and it can act as a bridge between your local client side listener class and the

Server. A base listener object is created by calling the static method createInstance(DIEventListener aListener,

boolean aSSLon) of the com.ibm.di.api.remote.impl.DIEventListenerBase class. The first parameter aListener

represents the actual listener object and the second one specifies whether SSL is used or not by the Server

API (note that this is not an option for you to select whether to use SSL or not with this listener object;

here you have to specify how the Server API is configured on the Server side – otherwise the

communication for that listener will fail).

When you have your listener object ready (or a base listener for remote access), you can register for event

notifications through the session object:

session.addEventListener(myBaseListnener, "di.*", "*");

The addEventListener(DIEventListener aListener, String aTypeFilter, String aIdFilter) method of the session

object will register your listener. The first parameter aListener is the listener object (or the base listener

object for remote access), aTypeFilter and aIdFilter let you specify what types of events you want to

receive:

v aTypeFilter specifies what type of event objects you want to receive. The currently supported events are:

– di.ci.start – Config Instance started

– di.ci.stop – Config Instance stopped

– di.al.start – AssemblyLine started

– di.al.stop – AssemblyLine stopped

– di.eh.start – EventHandler started

– di.eh.stop – EventHandler stopped

– di.ci.file.updated – Configuration file modified

– di.server.stop – TDI Server shutdown

Appendix C. Server API 483

You can either specify a specific event type like di.al.start or you can specify a filter using the "*"

wildcard; for example di.al.* will register your listener for all Server events related to AssemblyLines,

while a type filter of * or NULL will register your listener for all events.

v aIdFilter is only taken into account when aTypeFilter is not set to “*” or NULL. It lets you filter events

depending on the object related to the event – for AssemblyLines this is the AssemblyLine name, for

EventHandlers this is the EventHandler name and for Config Instances this is the Config Instance ID.

For example, if you register your listener with addEventListener(myListnener, "di.al.start",

"MyAssemblyLine") it will only be sent events when the "MyAssemblyLine" AssemblyLine is started and

will not receive any other Server events.

If at some point you want to stop receiving event notifications from a listener already registered with the

Server API, you need to unregister the listener. This is done through the same session object it was

registered with by calling:

session.removeEventListener(myListener);

Server shutdown event

A new Server API event notification has been added to signal Server shutdown events. This event is

available to Server API clients and JMX clients, both in local and remote context. The event type is

“di.server.stop” for both the Server API and JMX notification layers. As an additional user data the event

object conveys the Server boot time.

Custom Server API event notifications

New Server API functionality has been added for sending custom, user defined event notifications. The

following new call has been added to the local and remote Server API Session objects and also to the

DIServer MBean so that it can be accessed from the JMX context as well:

public void sendCustomNotification (String aType, String aId, Object aData)

The invocation of this method will result in broadcasting a new user defined event notification. The

parameters that must be passed to this method have the same meaning as the respective parameters of

standard Server API notifications. The aType parameter specifies the type of the event. The value given

by the user will be prefixed with the user. prefix. For example if the type passed by the user is

process.X.completed the type of the event broadcast will be user.process.X.completed. A client

application can register for all custom events specifying a type filter of user.*. The aId parameter can be

used to identify the object this event originated from. The standard Server API events use this value to

specify a Config Instance, AssemblyLine or EventHandler. The aData parameter is where the user can

pass on any additional data related to this event; if the event is expected to be sent and received in a

remote context, this object has to be serializable.

Getting access to log files

“Starting an AssemblyLine with a listener” on page 473 describes how listeners can be used to get

AssemblyLine (or EventHandler) log messages in real time as they are produced.

The Server API provides another mechanism for direct access to log files produced by AssemblyLines or

EventHandlers. This mechanism only provides access to the log files generated by the AssemblyLine or

EventHandler SystemLog logger.

You don’t need a reference to an AssemblyLine or EventHandler Server API object to get to the log file.

Also you can access old logs of AssemblyLines/EventHandlers that have terminated.

First you need to get hold of the SystemLog object:

SystemLog systemLog = session.getSystemLog();

You can then ask for all the log files generated by an AssemblyLine:

484 Reference Guide

String[] alLogFileNames = systemLog.getALLogFileNames("C__Dev_TDI_rs.xml", "TestAL");

if (alLogFileNames != null) {

 System.out.println("Availalbe AssemblyLine log files:");

 for (int i=0; i<allLogFileNames.length; i++) {

 System.out.println(alLogFileNames[i]);

 }

}

The getALLogFileNames(String aConfigId, String aALName) method is passed the Config ID (see “Stopping a

Config Instance” on page 471 for more details on the Config ID) and the name of the AssemblyLine. This

will return an array with the names of all log files generated by runs of the specified AssemblyLine.

If you are interested in the last run of the AssemblyLine only, there is a Server API call that will give you

the name of that log file only:

String lastALLogFileName = systemLog.getALLastLogFileName("C__Dev_TDI_rs.xml", "TestAL");

System.out.println("AssemblyLine last log file name: " + lastALLogFileName);

When you have got the name of a log file you can retrieve the actual content of the log file:

String alLog = systemLog.getALLog("C__Dev_TDI_rs.xml", "TestAL", lastALLogFileName);

System.out.println("TestAL AssemblyLine log: ");

System.out.println(alLog);

In cases where the log file can be huge, you might want to retrieve only the last chunk of the log. The

sample code below specifies that only the last 10 kilobytes from the log file should be retrieved:

String alLog = systemLog.getALLogLastChunk("C__Dev_TDI_rs.xml", "TestAL", lastALLogFileName, 10);

System.out.println("Last 10K of the TestAL AssemblyLine log: ");

System.out.println(alLog);

The same methods are available for EventHandler log files. Consult the JavaDoc of the

com.ibm.di.api.remote.SystemLog or com.ibm.di.api.local.SystemLog interfaces for the signatures and

description of the EventHandler methods.

The Server API also provides methods for cleaning up (deleting) old log files.

You can delete all log files (for all configurations and all AssemblyLines and EventHandlers) older than a

specific date. The sample code below will delete all log files older than a week:

Calendar calendar = Calendar.getInstance();

calendar.add(Calendar.DATE, -7);

systemLog.cleanAllOldLogs(calendar.getTime());

Another criterion you can use for log files clean up is the number of log files for each AssemblyLine or

EventHandler. You can specify that you want to delete all log files except the 5 most recent logs for all

AssemblyLines and EventHandlers:

systemLog.cleanAllOldLogs(5);

You can also delete the log files for AssemblyLines only or for EventHandlers only or for a specific

AssemblyLine or EventHandler. The same two criteria are available: date and number of log files but in

addition you can specify the name of an AssemblyLine or EventHandler or use calls that operate on all

AssemblyLines or all EventHandlers only. Consult the JavaDoc of the com.ibm.di.api.remote.SystemLog

or com.ibm.di.api.local.SystemLog interfaces for the signatures and the descriptions of all log clean up

methods.

Server Info

Through the Server API you can get various types of information about the TDI Server itself like the

Server version, IP address, operating system, boot time and information about what Connectors, Parsers,

EventHandlers and Function Components are installed and available on the Server.

Appendix C. Server API 485

It is the ServerInfo object that provides access to this information. You can get the ServerInfo object

through the session object:

ServerInfo serverInfo = session.getServerInfo();

You can then get and print out details of the Server environment:

System.out.println("Server IP address: " + serverInfo.getIPAddress());

System.out.println("Server host name: " + serverInfo.getHostName());

System.out.println("Server boot time: " + serverInfo.getServerBootTime());

System.out.println("Server version: " + serverInfo.getServerVersion());

System.out.println("Server operating system: " + serverInfo.getOperatingSystem());

You can also output a list of all Connectors installed and available on the Server:

String[] connectorNames = serverInfo.getInstalledConnectorsNames();

System.out.println("Connectors available on the Server: ");

for (int i=0; i<connectorNames.length; i++) {

 System.out.println(connectorNames[i]);

}

You can output more details for each installed Connector including its description and version:

String[] connectorNames = serverInfo.getInstalledConnectorsNames();

for (int i=0; i<connectorNames.length; i++) {

 System.out.println("Installed connector: ");

 System.out.println(" name: " + connectorNames[i]);

 System.out.println(" description: " + serverInfo.getConnectorDescription(connectorNames[i]));

 System.out.println(" version: " + serverInfo.getConnectorVersionInfo(connectorNames[i]));

 System.out.println();

}

In information for other components can be retrieved in a similar manner – Parsers,Functional

Components and EventHandlers.

Using the Security Registry

The Security Registry is a special Server API object that lets you query what rights a user is granted and

whether he/she is authorized to execute a specific action. This is useful if an application is building an

authentication and authorization logic of its own – for example the application is using internally a single

admin user for communication with the TDI Server and it manages its own set of users and rights.

The Security Registry object is only available to users with the admin role. It is obtained through the

session object:

SecurityRegistry securityRegistry = session.getSecurityRegistry();

You can then check various user rights. For example, securityRegistry.userIsAdmin(“Stan”) will return

true if Stan is granted the admin role; securityRegistry.userCanExecuteAL (“User1”, “rs.xml”,

“TestAL”) will return true only if Stan is allowed to execute AssemblyLine “TestAL” from configuration

“rs.xml”.

Check the JavaDoc of com.ibm.di.api.remote.SecurityRegistry for all available methods.

Custom Method Invocation

You sometimes need to implement your own functionality and be able to access it from the Server API,

both locally and remotely. This was supported by the Server API in TDI 6.0, but it needed to be

simplified so that you can drop a JAR file of your own in the TDI classpath and then access it from the

Remote Server API without having to deal with RMI.

Two methods are now available in the following interfaces:

v com.ibm.di.api.remote.Session

486 Reference Guide

v com.ibm.di.api.local.Session

The two methods are:

public Object invokeCustom(String aCustomClassName, String aMethodName, Object[] aParams)

 throws DIException;

and

public Object invokeCustom(String aCustomClassName, String aMethodName,

 Object[] aParamsValue, String[] aParamsClass)

 throws DIException;

Both methods invoke a custom method described by its class name, method name and method

parameters.

These methods can invoke only static methods of the custom class. This is not a limitation, because the

static method of the custom class can instantiate an object of the custom class and then call instance

methods of the custom class.

The main difference between the two methods is that the invokeCustom(String, String, Object[],

String[]) method requires the type of the parameters to be explicitly set (in the paramsClass String

array) when invoking the method. This helps when you want to invoke a custom method from a custom

class, but also want to invoke this method with a null parameter value. Since the parameter’s value is

null its type can not be determined and so the desired method to be called cannot be determined.

If the you need to invoke a custom method with a null value you must use the invokeCustom(String,

String, Object[], String[]) method, where the desired method is determined by the elements of the

String array which represents the types and the exact order of the method parameters. If the user uses

invokeCustom(String, String, Object[]) and in the object array put a value which is null than an

Exception will be thrown.

Primitive types handling

These methods do not support the invocation of a method with primitive types of parameter(s).

All primitive types in Java have a wrapper class which could be used instead of the primitive

type.

Custom methods with no parameters

If your need to invoke a method which has no parameters you must set the paramsValue object

array to null (and the paramsClass String array if the other method is used).

Errors

Several exceptions may occur when using these methods. Both local and remote sessions support

these two methods, but the Server API JMX does not.

Turning custom invocation on/off

The ability to use invokeCustom() methods can be turned on or off (the default is off). This can be

done by setting a property in the global.properties file named api.custom.method.invoke.on to

true or false. If the value of this property is set to true then users can use these methods.

Specifying the classes allowed for custom invocation

There is a restriction on the classes which can be invoked by these Server API methods. In the

global.properties file there is another property named

api.custom.method.invoke.allowed.classes which specifies the list of classes which these

methods can invoke. If these methods are used and a class which is not in the list of allowed

classes is invoked then an exception is thrown. The value of this property is the list of fully

qualified class names separated by comma, semicolon, or space.

Examples

Here are some sample values for these properties:

Appendix C. Server API 487

api.custom.method.invoke.on=true

api.custom.method.invoke.allowed.classes=com.ibm.MyClass,com.ibm.MyOtherClass

The first line of this example specifies that custom invocation is turned on and thus the two

invokeCustom() methods are allowed to be used. The second line specifies which classes can be

invoked. In this case only com.ibm.MyClass and com.ibm.MyOtherClass classes are allowed to be

invoked. If one of the two invokeCustom() methods is used to invoke a different class then an

exception is thrown.

Defaults

The default value of the api.custom.method.invoke.on property is false. This means that users

are not allowed to use the two invokeCustom() methods and that an exception would be thrown

if any one of these methods is invoked. The default value of the

api.custom.method.invoke.allowed.classes is empty, in other words, no classes can be invoked.

This means that even if custom invocation is turned on no classes can be invoked by the

two invokeCustom() methods.

A Full Example

Suppose the following class is packaged in a jar file, which is then placed in the ‘jars’ folder of TDI:

public class MyClass {

 public static Integer multiply(Integer a, Integer b) {

 return new Integer(a.intValue() * b.intValue());

 }

}

Suppose the global.properties TDI configuration file contains the following lines:

api.custom.method.invoke.on=true

api.custom.method.invoke.allowed.classes=MyClass

Then in a client application the ‘multiply’ method of ‘MyClass’ can be invoked in a Server API session

like this:

Integer result = (Integer) session.invokeCustom(

 "MyClass",

 "multiply",

 new Object[] {new Integer(3), new Integer (5)});

The JMX layer

The Server API provides a JMX layer. It exposes all Server API calls through a JMX interface locally and

remotely (through the JMX Remote API 1.0).

Please refer to the "Remote Server" chapter in the IBM Tivoli Directory Integrator 6.1.1: Administrator Guide

for information on how to switch on and setup the JMX layer of the Server API for local and remote

access.

Local access to the JMX layer

You can get a reference to the JMX MBeanServer object from the local Server JVM by calling

import com.ibm.di.api.jmx.JMXAgent;

import javax.management.MBeanServer;

...

MBeanServer jmxMBeanServer = JMXAgent.getMBeanServer();

The getMBeanServer() static method of the com.ibm.di.api.jmx.JMXAgent class will return an MBeanServer

JMX object that represents an entry point to all MBeans provided by the JMX layer of the Server API. You

can also register for JMX notifications with the MBeanServer object returned.

488 Reference Guide

Note: The getMBeanServer() method will throw an Exception if it is called and the JMX layer of the

Server API is not initialized.

Remote access to the JMX layer

The remote JMX access to the Server API is implemented as per the JMX Remote API 1.0 specification.

You have to use the following JMX Service URL for remote access:

service:jmx:rmi://<TDI_Server_host>/jndi/rmi://<TDI_Server_host>:<TDI_Server_RMI_port>/jmxconnector

You need to replace <TDI_Server_host> and <TDI_Server_RMI_port> with the host and the RMI port of

the TDI Server; for example, service:jmx:rmi://localhost/jndi/rmi://localhost:1099/jmxconnector

The sample code below demonstrates how a remote JMX connection can be established:

import javax.management.MBeanServerConnection;

import javax.management.remote.JMXConnector;

import javax.management.remote.JMXConnectorFactory;

import javax.management.remote.JMXServiceURL;

...

JMXServiceURL jmxUrl = new

 JMXServiceURL("service:jmx:rmi://localhost/jndi/rmi://localhost:1099/jmxconnector");

JMXConnector jmxConnector = JMXConnectorFactory.connect(jmxUrl);

MBeanServerConnection jmxMBeanServer = jmxConnector.getMBeanServerConnection();

Similarly to the local JMX access the MBeanServerConnection object is the entry point to all MBeans and

notifications provided by the JMX layer of the Server API.

For example, you can list all MBeans available on the JMX Server:

Iterator mBeans = jmxMBeanServer.queryNames(null, null).iterator();

while (mBeans.hasNext()) {

 System.out.println("MBean: " + mBeans.next());

}

MBeans and Server API objects

The JMX layer wraps the Server API objects in MBeans. The access to the MBeans is however

straightforward - you can directly look up an MBean through the MBeanServerConnection object.

There is no session object in the MBean layer (the session and the security checks are managed through

the RMI session). The methods for creating, starting and stopping Config Instances that exist in the

Server API Session object can be found in the DIServer MBean in the JMX layer.

A list of the Server API MBeans available at some time on a TDI Server might look like this:

v ServerAPI:type=ServerInfo,id=192.168.113.222

v ServerAPI:type=ConfigInstance,id=C__Dev_TDI_11_11_fp1_rs.xml

v ServerAPI:type=AssemblyLine,id=AssemblyLines/longal.618794016

v ServerAPI:type=DIServer,id=winserver

v ServerAPI:type=SystemLog,id=SystemLog

v ServerAPI:type=SecurityRegistry,id=SecurityRegistry

v ServerAPI:type=Notifier,id=Notifier

Each Config Instance, AssemblyLine or EventHandler is wrapped in an MBean. When the Config

Instance, AssemblyLine or EventHandler is started the MBean is created automatically and it is

automatically removed when the Config Instance, AssemblyLine or EventHandler terminates.

Appendix C. Server API 489

Refer to the JavaDoc of the Java package com.ibm.di.api.jmx.mbeans for all available MBeans, their

methods and attributes.

JMX notifications

The JMX layer of the Server API provides local and remote notifications for all Server API events (see

“Working with the System Queue” on page 477.)

You have to register for JMX notifications with the Notifier MBean.

The JMX notification types are exactly the same as the Server API notifications:

v di.ci.start – Config Instance started

v di.ci.stop – Config Instance stopped

v di.al.start – AssemblyLine started

v di.al.stop – AssemblyLine stopped

v di.eh.start – EventHandler started

v di.eh.stop – EventHandler stopped

v di.ci.file.updated – Configration file modified

v di.server.stop – TDI Server shutdown

JMX Example - TDI 6.1.1 and MC4J configuration

This example describes how MC4J and TDI can be set up so that MC4J can be used to access the Server

API JMX layer from MC4J.

TDI side

Set up Remote Server API and JMX: Set the following properties in global/solution.properties file:

Server API properties

api.on=true

api.user.registry=serverapi/registry.txt

api.user.registry.encryption.on=false

api.remote.on=true

api.remote.ssl.on=false

api.remote.ssl.client.auth.on=true

api.remote.naming.port=1099

api.truststore=testserver.jks

{protect}-api.truststore.pass={encr}L79kdqak1afKdAyuCZBMi1GqY/DPfD1Ipo020CVAGx/OROE2JBUTgZxLjqADXSZJgM3dHg2aWlCRwB+is/WQa+dSVwT2hpA2kT11T7svqnIESYlcfbSg8xWxcNACdtHmdZoF7aKSJ1c

Specifies a list of IP addresses to accept non SSL connections from (host names are not accepted).

Use space, comma or semicolon as delimiter between IP addresses. This property is only taken into account

when api.remote.ssl.on is set to false.

api.remote.nonssl.hosts=

api.jmx.on=true

api.jmx.remote.on=true

Note: SSL is turned off for easy configuration.

Start the TDI server from the command line:

D:\TDI>ibmdisrv -d

CTGDKD435I Remote API successfully started on port:1099, bound to:’SessionFactory’. SSL and Client Authentication are disabled.

CTGDKD111I JMX Remote Server Connector started at: service:jmx:rmi://localhost/jndi/rmi://localhost:1099/jmxconnector.

490 Reference Guide

MC4J side

1. Download and install MC4J from http://sourceforge.net/projects/mc4j/.

2. Start the Connect to server ... wizard

3. Enter TDI in Name field.

4. In the Server URL text box paste the JMX connection URL dumped by the TDI server on startup

Note: If TDI and MC4J are on different machines replace localhost with the TDI machine IP address.

5. Select Next.

Figure 6.

Appendix C. Server API 491

6. In the Custom classpath and server libraries list, add all JAR files from the <TDI_HOME>\jars\
common folder.

7. Add these three jars as well:

v <TDI_home>\jars\3rdparty\others\log4j-1.2.8.jar

v <TDI_home>\jars\3rdparty\IBM\icu4j_3_4_1.jar

v <TDI_home>\jars\3rdparty\IBM\ITLMToolkit.jar

v Select Finish.

Now MC4J is connected to the TDI server.

Figure 7.

492 Reference Guide

Backward compatibility

Scenarios overview

While upgrading your TDI 6.0 installation to TDI 6.1.1, you may find yourself in one of the following

scenarios:

Figure 8.

Appendix C. Server API 493

Table 47. Compatibility matrix

TDI Server version�

Client version� 6.0 6.1

6.0 OK In most cases porting the client to 6.1

is required – see the ““Guidelines for

porting a TDI 6.0 Server API client to

use a TDI 6.1.1 server”” section

6.1 OK with some caveats – see the

““Guidelines for implementing a

Server API client capable of working

with both TDI 6.0 and TDI 6.1.1

servers”” section

OK

Guidelines for porting a TDI 6.0 Server API client to use a TDI 6.1.1 server

When is porting required: Probably the most significant change in the TDI 6.1.1 Server API is the way

configurations are edited. For more information on editing configurations in TDI 6.1.1 see the “Using the

Server API -> Editing Configurations” section.

Server API changes in TDI 6.1.1 relevant to porting a TDI 6.0 Server API client:

v There is a slight behavior change to a configuration editing related method described in “Table 50 on

page 498 - Changed Methods”.

v If a TDI 6.0 client uses some of the method calls listed in “Table 51 on page 498 - Deprecated methods”

it needs to be reworked to use the new TDI 6.1.1 methods instead.

Another reason to rework a TDI 6.0 client is to benefit from the functionality introduced in TDI 6.1.1:

v There are several interfaces introduced in TDI 6.1.1 described in “Table 48 on page 496 – New Server

API interfaces”.

v Some TDI 6.0 interfaces have been added new methods. A list of the new methods can be found in

“Table 49 on page 496 - New methods”.

Another important consideration while porting a TDI 6.0 client is the usage of serializable classes. More

details can be found in the ““Using serializable classes” on page 495” section. A major part of the

serializable classes used by the Server API are the TDI config interface classes. New serializable classes

are listed in “Table 52 on page 498 - New Serializable classes/interfaces”. A complete reference of the

config interfaces can be found in the JavaDocs provided with TDI.

When is porting optional: If the TDI 6.0 client does not use config editing and there is no requirement

to use the new TDI 6.1.1 Server API features the TDI 6.0 client does not need to be modified.

Guidelines for implementing a Server API client capable of working with both TDI

6.0 and TDI 6.1.1 servers

Since the enhancements in the Server API are done in a backward compatible manner it is possible a

Server API client application to use all TDI 6.0 features against a TDI 6.0 Server and also use all new TDI

6.1.1 features against a TDI 6.1.1 Server. This can be accomplished by having the Server API client check

the TDI server version and then execute the appropriate version specific code accordingly. An example is

available in the ““Checking the TDI server version” on page 495” section.

There are two primary ways of sharing data between the Server API client and the TDI server:

v Using RMI remote objects

v Using serializable classes

494 Reference Guide

Using RMI remote objects: In this case the Server API client will use remote object stubs generated

from the TDI 6.1.1 version of the remote classes. These stubs contain all methods existing in the TDI 6.0

version of the remote classes as well as the methods introduced in TDI 6.1.1 (as they are described in

“Table 49 on page 496 - New Methods”):

v The methods introduced in TDI 6.1.1 cannot be used against a TDI 6.0 server. It is the responsibility of

the client Server API application not to use these new methods against a TDI 6.0 server by checking

the server version beforehand.

v The methods described in “Table 51 on page 498 - Deprecated methods” can only be used with a TDI

6.0 server. If a deprecated method is invoked on a TDI 6.1.1 server an exception will be thrown.

Using serializable classes: The Server API serializable classes as well as the TDI serializable classes have

evolved from TDI 6.0 to TDI 6.1.1. Thus these classes are different in TDI 6.0 and in TDI 6.1.1.

Nevertheless these classes have evolved in a backward compatible way from a serialization perspective.

This means that the TDI 6.0 serializable classes can interoperate with the TDI 6.1.1 serializable classes

through the Java RMI engine.

The Java RMI engine determines whether serializable classes are compatible by checking the class serial

version UID – if the class serial version UID of two classes are identical then the RMI engine considers

these two classes compatible. The serial version UIDs of the serializable classes in TDI can be found in

“Table 53 on page 499 – serialVersionUID for serializable classes”. Since the TDI 6.1.1 serializable classes

are compatible with the TDI 6.0 serializable classes the serial version UIDs of these classes have not

changed.

“Table 52 on page 498 - New Serializable classes/interfaces” lists classes and interfaces introduced in TDI

6.1.1. Since these classes and interfaces are not available in TDI 6.0 they cannot be used against a TDI 6.0

server. The TDI JavaDocs should be referred to for more detailed information on method signature

changes of serializable classes in both releases. Methods which are not available in TDI 6.0 cannot be

used against a TDI 6.0 server.

If the Server API client uses third party or custom user serializable classes then the best approach would

be to ensure that these classes are identical on the server and on the client. If for any reason the

serializable classes are different (but compatible) versions of the same class then the client still can work

if both versions are set the same serialVersionUID. More information on maintaining and evolving

serializable classes can be found at:

http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html

http://java.sun.com/j2se/1.5.0/docs/guide/serialization/spec/serialTOC.html

http://www-03.ibm.com/developerworks/blogs/page/woolf?entry=serialization_and_serial_version_uid

Config Editing: Config editing in TDI 6.1.1 is very different from config editing in TDI 6.0. That is why

special care must be taken when coding editing TDI configs for both TDI 6.0 and TDI 6.1.1 servers. This

code is TDI version-specific. That is why the code needs to be branched by checking the TDI server

version as described in the ““Checking the TDI server version”” section.

Authentication mechanisms: The username/password based authentication mechanism and the LDAP

authentication mechanism are not supported on TDI 6.0. That is why the createSession (String

aUserName, String aPassword) method of the com.ibm.di.api.remote.SessionFactory interface will fail if

invoked against a TDI 6.0 server.

Checking the TDI server version: Usually most of the Server API client code will be common for TDI

6.0 and TDI 6.1.1 servers. Sometimes, however, TDI 6.0- or TDI 6.1.1-specific code could be needed. These

version-specific portions of code require checking the server version. Below is a code sample which

demonstrates how the TDI server version can be retrieved and used.

import com.ibm.di.api.remote.Session;

import com.ibm.di.api.remote.ServerInfo;

Appendix C. Server API 495

http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html
http://java.sun.com/j2se/1.5.0/docs/guide/serialization/spec/serialTOC.html
http://www-03.ibm.com/developerworks/blogs/page/woolf?entry=serialization_and_serial_version_uid

...

ServerInfo serverInfo = session.getServerInfo();

if (serverInfo == null) {

 throw new Exception("Server version information is not available!");

}

String serverVersion = serverInfo.getServerVersion();

if (serverVersion.startsWith("6.1")) {

 // TDI 6.1 specific code

}

else if (serverVersion.startsWith("6.0")) {

 // TDI 6.0 specific code

}

else {

 throw new Exception("Unsupported TDI server version: " + serverVersion);

}

Server API changes in TDI 6.1.1

 Table 48. New Server API interfaces

Name Description

SystemQueue Server API access to SystemQueue

TDIProperties Wrapper for External Property Stores

TombstoneManager Access to Tombstones read and delete

 Table 49. New Methods

Name Description

AssemblyLine

String getGlobalUniqueID () Returns AssemblyLine GUID. The GUID is a string value

that is unique for each component ever created by a

particular TDI Server.

ConfigInstance

String getGlobalUniqueID () Returns the Config Instance GUID. The GUID is a string

value that is unique for each component ever created by

a particular TDI Server.

String[] getConnectorPoolNames () Returns the names of all Connector Pools in the Config

Instance.

int getConnectorPoolSize (String aConnectorPoolName) Returns the size of the specified Connector Pool.

int getConnectorPoolFreeNum (String

aConnectorPoolName)

Returns the number of free Connectors in the specified

Connector Pool.

PoolDefConfig getConnectorPoolConfig (String

aConnectorPoolName)

Returns the Connector Pool configuration object.

int purgeConnectorPool (String aConnectorPoolName) Unused Connectors will be released so that the Pool is

shrunk to its minimum size.

TDIProperties getTDIProperties() Returns the TDIProperties object associated with the

current configuration.

EventHandler

String getGlobalUniqueID () Returns EventHandler GUID. The GUID is a string value

that is unique for each component ever created by a

particular TDI Server.

Session

void shutDownServer (int aExitCode) Shuts down the TDI Server with the specified exit code.

496 Reference Guide

Table 49. New Methods (continued)

Name Description

TombstoneManager getTombstoneManager () Returns the TombstoneManager object. Tombstones can

be queried and cleared through this object.

boolean isSSLon () Checks if current session is over SSL.

boolean releaseConfigurationLock(String aRelativePath) Administratively releases the lock of the specified

configuration. This call can be only executed by users

with the admin role.

boolean undoCheckOut(String aRelativePath) Releases the lock on the specified configuration, thus

aborting all changes being done. This call can only be

executed from a user that has previously checked out the

configuration and only if the configuration lock has not

timed out.

ArrayList listConfigurations(String aRelativePath) Returns a list of the file names of all configurations in

the specified folder. The configurations file paths

returned are relative to the Server configuration codebase

folder.

ArrayList listFolders(String aRelativePath) Returns a list of the child folders of the specified folder.

ArrayList listAllConfigurations() Returns a list of the file names of all configurations in

the directory subtree of the Server configuration

codebase folder. The configurations file paths returned

are relative to the TDI Server configuration codebase

folder.

MetamergeConfig checkOutConfiguration (String

aRelativePath)

Checks out the specified configuration. Returns the

MetamergeConfig object representing the configuration

and locks that configuration on the Server.

MetamergeConfig checkOutConfiguration (String

aRelativePath, String aPassword)

Checks out the specified password protected

configuration. Returns the MetamergeConfig object

representing the configuration and locks that

configuration on the Server.

ConfigInstance checkOutConfigurationAndLoad (String

aRelativePath)

Checks out the specified configuration and starts a

temporary Config Instance on the Server.

ConfigInstance checkOutConfigurationAndLoad (String

aRelativePath, String aPassword)

Checks out the specified configuration and starts a

temporary Config Instance on the Server.

void checkInConfiguration (MetamergeConfig

aConfiguration, String aRelativePath)

Saves the specified configuration and releases the lock. If

a temporary ConfigInstance has been started on check

out, it will be stopped as well.

void checkInAndLeaveCheckedOut (MetamergeConfig

aConfiguration, String aRelativePath)

Checks in the specified configuration and leaves it

checked out. The timeout for the lock on the

configuration is reset.

void checkInConfiguration (MetamergeConfig

aConfiguration, String aRelativePath, boolean aEncrypt)

Encrypts and saves the specified configuration and

releases the lock. If a temporary Config Instance has been

started on check out, it will be stopped as well.

MetamergeConfig createNewConfiguration (String

aRelativePath, boolean aOverwrite)

Creates a new empty configuration and immediately

checks it out. If a configuration with the specified path

already exists and the aOverwrite parameter is set to

false the operation will fail and an Exception will be

thrown.

ConfigInstance createNewConfigurationAndLoad (String

aRelativePath, boolean aOverwrite)

Creates a new empty configuration, immediately checks

it out and loads a temporary Config Instance on the

Server. If a configuration with the specified path already

exists and the aOverwrite parameter is set to false the

operation will fail and an Exception will be thrown.

Appendix C. Server API 497

Table 49. New Methods (continued)

Name Description

boolean isConfigurationCheckedOut (String

aRelativePath)

Checks if the specified configuration is checked out on

the Server.

void sendCustomNotification (String aType, String aId,

Object aData)

Sends a custom, user defined notification to all registered

listeners.

SystemQueue getSystemQueue() Gets the remote Server API SystemQueue representation

object

String getConfigFolderPath() Gets the value of the api.config.folder property in the

remote server as a complete path. If not set, then returns

an empty string.

Object invokeCustom (String aCustomClassName, String

aMethodName, Object[] aParams)

Invokes the specified method from the specified class.

Object invokeCustom (String aCustomClassName, String

aMethodName, Object[] aParamsValue,String[]

aParamsClass)

Invokes the specified method from the specified class.

SessionFactory

Session createSession (String aUserName, String

aPassword)

Creates a session object with the specified username and

password.

 Table 50. Changed Methods

Name Description

ConfigInstance

void setConfiguration (MetamergeConfig aConfiguration) In TDI 6.1.1 this method can be invoked only if a

particular client has already checked out same config

with temporary config instance.

 Table 51. Deprecated methods (these are methods which are not to be used against a TDI 6.1.1 server; it is perfectly

OK to use these methods against a TDI 6.0 server)

Name Description

ConfigInstance

void saveConfiguration () Use CheckIn methods instead of save

void saveConfiguration (boolean aEncrypt) Use CheckIn methods instead of save

void setExternalProperties (ExternalPropertiesConfig

aExPropConfig)

Use TDIProperties

void setExternalProperties (String aKey,

ExternalPropertiesConfig aExPropConfig)

Use TDIProperties

void saveExternalProperties () Use TDIProperties

 Table 52. New Serializable classes/interfaces

Name Description

com.ibm.di.api.Tombstone 5178569311755396746L

com.ibm.di.api.CIEvent 5178569311755396746L

com.ibm.di.config.interfaces.NamespaceEvent -1857414661726671152L

com.ibm.di.config.interfaces.OperationConfig 2715909691453046036L

com.ibm.di.config.interfaces.PoolDefConfig -1252371938517765606L

com.ibm.di.config.interfaces.PoolInstanceConfig 5594919717769030291L

498 Reference Guide

Table 52. New Serializable classes/interfaces (continued)

Name Description

com.ibm.di.config.interfaces.PropertyManager 4280805548502266432L

com.ibm.di.config.interfaces.PropertyStoreConfig -2620929677558833640L

com.ibm.di.config.interfaces.ReconnectConfig -7935628947261477628L

com.ibm.di.config.interfaces.TDIProperties -3361471837888677277L

com.ibm.di.config.interfaces.TDIPropertyStore 198251115520372634L

com.ibm.di.config.interfaces.TombstonesConfig -3260102686391332434L

 Table 53. serialVersionUID for serializable classes

Name Status serialVersionUID

com.ibm.di.api.ALEvent backward compatible 5631772256973692972L

com.ibm.di.config.base.ALMappingConfigImpl backward compatible 2712493657450710788L

com.ibm.di.server.ALState backward compatible 669938312260868491L

com.ibm.di.config.base.AssemblyLineConfigImpl backward compatible 2715909691453046036L

com.ibm.di.entry.Attribute backward compatible 6675881744901860329L

com.ibm.di.config.base.AttributeMapConfigImpl backward compatible -2619015538178665684L

com.ibm.di.entry.AttributeValue backward compatible 100100L

com.ibm.di.config.base.BaseConfigurationImpl known issue – see the

“Known issues” on

page 500 section

-7316979979253125005L

com.ibm.di.config.base.BranchConditionImpl backward compatible -4091773233583817912L

com.ibm.di.config.base.BranchingConfigImpl backward compatible -1013588884381133944L

com.ibm.di.config.base.CallConfigImpl backward compatible -4697458497835329096L

com.ibm.di.config.base.CallParamConfigImpl backward compatible 5788021154714741767L

com.ibm.di.config.base.CheckpointConfigImpl backward compatible -8342369881523468483L

com.ibm.di.config.base.ConfigCache backward compatible -3311255731504174416L

com.ibm.di.config.base.ConfigStatistics backward compatible -1271645457384911249L

com.ibm.di.config.base.ConnectorConfigImpl backward compatible 4093376456212230000L

com.ibm.di.config.base.ConnectorSchemaConfigImpl backward compatible 930161291800752910L

com.ibm.di.config.base.ConnectorSchemaItemConfigImpl backward compatible -1665598194757295769L

com.ibm.di.config.base.ContainerConfigImpl backward compatible -4134004409592694052L

com.ibm.di.config.base.DeltaConfigImpl backward compatible -7250128484588024017L

com.ibm.di.api.DIEvent backward compatible -8664533477452491219L

com.ibm.di.api.EHEvent backward compatible -1690270461263918159L

com.ibm.di.entry.Entry backward compatible -5961424529378625729L

com.ibm.di.config.base.EventHandlerActionConfigImpl backward compatible -1798497078340945864L

com.ibm.di.config.base.EventHandlerActionItemConfigImpl backward compatible 7669745504897906857L

com.ibm.di.config.base.EventHandlerConditionConfigImpl backward compatible 1427205408043312536L

com.ibm.di.config.base.EventHandlerConfigImpl backward compatible -4274035078726148643L

com.ibm.di.config.interfaces.ExternalPropertiesDelegator known issue – see the

“Known issues” on

page 500 section

7725187425731381660L

Appendix C. Server API 499

Table 53. serialVersionUID for serializable classes (continued)

Name Status serialVersionUID

com.ibm.di.config.base.ExternalPropertiesImpl backward compatible -5837658758525300221L

com.ibm.di.config.base.FormConfigImpl backward compatible -8761349695805705052L

com.ibm.di.config.base.FormItemConfigImpl backward compatible -7825109041707716857L

com.ibm.di.config.base.FunctionConfigImpl backward compatible 5778585850194005910L

com.ibm.di.config.interfaces.GlobalRef backward compatible 366178307603105225L

com.ibm.di.config.base.HookConfigImpl backward compatible -1300997546910640256L

com.ibm.di.config.base.HooksConfigImpl backward compatible -9160883008989377612L

com.ibm.di.config.interfaces.InheritanceLoopException backward compatible -5977834080357995975L

com.ibm.di.config.base.InheritConfigImpl backward compatible 9015532163983199487L

com.ibm.di.config.base.InstanceConfigImpl backward compatible -7052997089129596762L

com.ibm.di.config.base.LibraryConfigImpl backward compatible -6737181973806281819L

com.ibm.di.config.base.LinkCriteriaConfigImpl backward compatible -9206856536172011821L

com.ibm.di.config.base.LinkCriteriaItemImpl backward compatible -952539248920610452L

com.ibm.di.config.base.LogConfigImpl backward compatible 3371411072185625170L

com.ibm.di.config.base.LogConfigItemImpl backward compatible 6299750464788808971L

com.ibm.di.config.base.LoopConfigImpl backward compatible -8174541074510481418L

com.ibm.di.config.base.MetamergeConfigImpl backward compatible -3363695330685967904L

com.ibm.di.config.xml.MetamergeConfigXML backward compatible -4403169711579029765L

com.ibm.di.config.base.MetamergeFolderImpl backward compatible 6107586753523140220L

com.ibm.di.config.base.NamespaceConfigImpl backward compatible 986964857890827079L

com.ibm.di.config.base ParserConfigImpl backward compatible 5497221494799800099L

com.ibm.di.config.base.PropertyConfigImpl backward compatible -2620929677558833640L

com.ibm.di.config.base.RawConnectorConfigImpl backward compatible 8439049716964119460L

com.ibm.di.config.base.SandboxConfigImpl backward compatible -399320124155373314L

com.ibm.di.config.base.SchemaConfigImpl backward compatible 1778816095104785134L

com.ibm.di.config.base.SchemaItemConfigImpl backward compatible 5168801947811376566L

com.ibm.di.config.base.ScriptConfigImpl backward compatible -7747686242551793890L

com.ibm.di.api.remote.impl.rmi.SSLRMIClientSocketFactory backward compatible 5083017546031420384L

com.ibm.di.server.TaskCallBlock backward compatible 115072761837771375L

com.ibm.di.server.TaskStatistics backward compatible 2098518046376889585L

com.ibm.di.api.remote.impl.rmi.RMISocketFactory backward compatible -3200652858929712303L

Known issues

com.ibm.di.config.interfaces.ExternalPropertiesDelegator

The com.ibm.di.config.interfaces.ExternalPropertiesDelegator class is the implementation class of the

com.ibm.di.config.interfaces.ExternalPropertiesConfig interface. The

com.ibm.di.config.interfaces.ExternalPropertiesDelegator class also extends the

com.ibm.di.config.base.BaseConfigurationImpl class.

Server API client code deals with interfaces and not classes, that is why the ExternalPropertiesDelegator

class is not directly referenced in the Server API client source code. The limitation is that while a TDI 6.0

500 Reference Guide

client can retrieve an ExternalPropertiesConfig object from a TDI 6.0 server, this client cannot modify the

external properties on the server by calling the setExternalProperties(String aKey,

ExternalPropertiesConfig aExPropConfig) or the setExternalProperties(ExternalPropertiesConfig

aExPropConfig) on a config instance object (com.ibm.di.api.remote.ConfigInstance). If one of these

methods is invoked from a TDI 6.1.1 client against a TDI 6.0 server it will fail.

com.ibm.di.config.base.BaseConfigurationImpl

The same issue as the above one discussed for com.ibm.di.config.interfaces.ExternalPropertiesDelegator

applies to com.ibm.di.config.base.BaseConfigurationImpl as well. (The former is an extension of the

latter.)

Appendix C. Server API 501

502 Reference Guide

Appendix D. Implementing your own Components

This chapter is intended for developers that are tasked with creating new Connectors or Function

Components for IBM Tivoli Directory Integrator (TDI). They should have a firm understanding of TDI

operations as well as experience in developing with the Java language.

This material does not describe how to develop parsers, and assume that parsing logic is implemented in

the component itself. A separate document will be provided to cover this theme.

TDI currently also supports a component type called an EventHandler; however, this type of component

is being phased out and replaced by Connectors in Server mode. You should therefore not attempt to

implement your own EventHandler, as the framework supporting this type of component may be

removed in future versions of TDI.

Support materials for Component development

The DirectoryConnector.java file contains Java code which is a helpful examples when reading this

tutorial. The file is located in the root_directory/examples/connector_java directory.

All java docs for the core TDI classes cited in this chapter are located in the ″/docs/api″ folder of your

TDI installation. You can view this documentation by selecting Help>Low Level API from within the

Config Editor.

Developing a Connector

Implementing the Connector's Java source code

All TDI Connectors implement the ″com.ibm.di.connector.ConnectorInterface″ Java interface. This interface

provides a number of methods to implement addressing all the possible ways of using a Connector

within TDI. Usually the Connectors you write will not require all the options provided by TDI and you

will actually need to implement only a subset of the methods presented in the ″ConnectorInterface″

interface. It is the ″com.ibm.di.connector.Connector″ class that makes this possible.

″com.ibm.di.connector.Connector″ is an abstract class implementing ″ConnectorInterface″ that contains core

Connector functionality (for example processing of Connector’s configuration) and also provides empty or

default implementation to many of the methods from ″ConnectorInterface″. This allows you to start

implementing your Connector by subclassing ″com.ibm.di.connector.Connector″ and focusing on

(implementing) only those methods from ″ConnectorInterface″ that provide value in your case, and that are

actually necessary for your Connector.

Listed below are the ″ConnectorInterface″ methods that build the backbone of a real Connector, and which

you will usually need to implement:

Connector’s constructor

Required for all Connector modes.

 In the constructor you will usually set the name of your Connector (using the ″setName(...)″

method) and define what modes – Iterator, Lookup, AddOnly, Server, etc. – that your Connector

supports (using the ″setModes(...)″ methods). For an example of a Connector implementation, look

at the ″DirectoryConnector.java″ Connector included in this package.

© Copyright IBM Corp. 2003, 2007 503

public void initialize (Object object)

This method is called by the AssemblyLine before it starts cycling. In general anybody who

creates and uses a Connector programmatically should call ″initialize(...)″ after constructing the

Connector and before calling any other method.

 Usually the ″initialize(...)″ method reads the Connector’s parameters and makes the necessary

preparations for the actual work (creates a connection, etc.) based on the parameter values

specified.

public void selectEntries ()

Required for Iterator mode. This method is called only when the Connector is used in Iterator

mode, after it has been initialized.

 Place in ″selectEntries(...)″ any code you need to execute prior to actually starting to iterate over

the Entries. When the Connector operates on a database, that code could be an SQL SELECT

query that returns a result set; when the Connector operates on an LDAP directory, that code

could be a search operation that returns a result set. The result of the ″selectEntries(...)″ (result set,

etc.) is later used by the ″getNextEntry(...)″ method to return a single Entry on each

call/AssemblyLine iteration. Of course you might not need any preparation to iterate over the

Entries (as in the case with the FileSystem Connector) in which case there is no need to

implement ″selectEntries(...)″. By subclassing ″com.ibm.di.connector.Connector″ you will inherit its

default implementation that does nothing.

public Entry getNextEntry ()

Required for Iterator mode. This is the method called on each AssemblyLine’s iteration when the

Connector is in Iterator mode.

 It is expected to return a single Entry that feeds the rest of the AssemblyLine.

 There are no general guidelines for implementing this method – it all depends on the information

this Connector is supposed to access. This method retrieves data from the connected data source

and must create an Entry object and populate it with Attributes. For example, a database

Connector would read the next record from a table/result set and build an Entry object whose

Attributes correspond to the record’s fields.

public Entry findEntry (SearchCriteria search)

Required for Lookup, Update and Delete modes. It is called once on each AssemblyLine iteration

when the Connector performs a Lookup operation.

 This method finds matching data in the connected system based on the ″Link Criteria″ specified

in the Config Editor GUI. For example, a database Connector would execute a SELECT query

with the appropriate WHERE clause based on Link Criteria and then build an Entry from the

database record, in the same way as ″getNextEntry()″ does. Please consult the Java Docs for the

structure of the SearchCriteria input parameter.

v When the specified link criteria succeeds in finding exactly one Entry, it should return that

Entry.

v When the specified link criteria results in either zero or multiple Entries found (that is,

anything but a single match), the method should return NULL. However, in the case of a

multiple entry match, it must still provide the entries found so that they can be accessed from

the ″On Multiple Entries″ Hook.

Use the following implementation pattern to achieve the above required Connector behavior: for

each Entry found call Connector’s ″addFindEntry(...)″ method. When finished, call

″getFindEntryCount(...)″ to get the number of Entries you have found – if it is 1, return the value

returned by ″getFirstFindEntry(...)″ , otherwise return NULL.

 For example: In a database Connector, ″modEntry(...)″ executes an SQL UPDATE query, using the

Attributes of the entry parameter as database fields and the SearchCriteria in the search

parameter to build the WHERE clause.

504 Reference Guide

public void putEntry (Entry entry)

Required for AddOnly and Update modes. It is called once on each AssemblyLine iteration when

the Connector is used in AddOnly mode, or for Update mode when no matching entry is found

in the connected data source.

 The goal of this method is to add/save/store the Entry object (passed in as parameter to this

method) into the Connector’s data source. So, a database Connector would execute an INSERT

SQL statement using the Entry’s Attributes’ names and values and table fields names and values.

public void modEntry (Entry entry, SearchCriteria search, Entry old)

—or—

public void modEntry (Entry entry, SearchCriteria search)

Required for Update mode.

 Before discussing the ″modEntry(...)″ method, a short clarification of the Update mode is

necessary: When the AssemblyLine encounters a Connector in Update mode, it will first execute

Connector’s ″findEntry(...)″ method using the specified Link Criteria. If ″findEntry(...)″ finds no

matching Entry, then the Connector’s ″putEntry(...)″ method is called to add the Entry to the data

source. If ″findEntry(...)″ finds exactly one Entry, the Connector’s ″modEntry(...)″ method is called.

Finally, if the ″findEntry(...)″ method finds more than one Entry, the ″On Multiple Entries″ hook is

executed and depending on what the user specified either no Connector’s calls are invoked or

one of ″putEntry(...)″, alternatively ″modEntry(...)″ methods is invoked.

 As seen above there are two variants of the ″modEntry(...)″ method – one with three and one with

two input parameters. The two parameters that you get in both cases are: entry, the output

mapped conn Entry, ready to be written to the data source; and search, the SearchCriteria to be

used to make the modify call to the underlying system. When this method is invoked by the

Update mode logic (the ″update(...)″ method of an AssemblyLineComponent), this will reference

the actual SearchCriteria built from the Link Criteria (after evaluation of Attribute values, etc.).

 The extra parameter is old. This is the original Entry in the data source as it looks right now,

before the modification is applied. This information might be useful in certain cases like ″rename″

operations when you need the old name to perform the rename.

 It is up to you to decide which of these methods to use. Of course you could implement both of

them. One of them is sufficient for your Connector to support Update mode.

 Following the analogy with the database Connector, ″modEntry(...)″ would execute an SQL

UPDATE query, using the Attributes of the entry parameter as database fields and the data from

the search parameter to build the WHERE clause of the SQL query.

public Entry queryReply (Entry entry)

Required for CallReply mode. It is called once on each AssemblyLine iteration when the

Connector is used in CallReply mode.

 This mode is appropriate when your Connector participates in some kind of request-response

communication. The output mapped entry parameter contains the data necessary to perform the

″call″ or ″request″ part of the operation. For example, the Web Service Connector builds and

transmits a SOAP call based on the Attributes in entry. The method then must build and return

an Entry object from the reply/response data.

public void deleteEntry (Entry entry, SearchCriteria search)

Required for Delete mode.

 Delete mode will cause the Connector to perform a ″findEntry(...)″ to try and locate the Entry to

be deleted. If the ″findEntry(...)″ method returns exactly one Entry, the ″deleteEntry(...)″ method is

called with this Entry and the Link Criteria used in the Lookup as parameters. If ″findEntry(...)″

returns zero or more than one Entries the corresponding Connector hooks are called. Depending

on what the user specified in the script code, either nothing more is executed or the

″deleteEntry(...)″ method is called with the Entry specified by the user script via the

Appendix D. Implementing your own Components 505

AssemblyLineComponent method setCurrent(entry). Unless the current entry is set in the On

Multiple Found hook, nothing more happens, and control passes down the AssemblyLine.

 Back to our database Connector example, ″deleteEntry()″ would execute an SQL DELETE

statement.

public ConnectorInterface getNextClient()

The “getNextClient()” method is used for Connectors in Server mode to accept a client request.

This method usually blocks until a client request arrives. When a request is received it creates

and returns a new instance of itself. This new instance is then handed over to the AssemblyLine

that spawns a new AssemblyLine thread for that Connector instance. The AssemblyLine then

calls the “getNextEntry()” method on this new Connector instance in the new thread until there

are no more Entries for processing. Right after the “getNextClient()” method returns and the

AssemblyLine spawns a new thread to handle the client request, the AssemblyLine calls again

“getNextClient()” to accept the next client request.

 Since Connectors in Server mode handle client requests which require a response, the

AssemblyLine will call the “replyEntry(...)” Connector method at the end of the AssemblyLine.

Use this method to place your code that returns response to the client. In case your Connector

might need to return multiple responses on a single request you can code the “putEntry(...)”

method so that it returns an individual response Entry. In this case it will be the responsibility of

the AssemblyLine developer to call the “putEntry(...)” method of the Connector by scripting and

this fact has to be documented in the Connector’s documentation.

 When implementing a Connector in Server mode, you also have to take care about terminating

the Connector on external request. Place your termination code in the “terminateServer()” method.

Take into consideration that this method can be called on the master Connector instance that

accepts client requests and also on a child Connector instance processing a client request. In both

cases proper termination should happen: it is usually a good termination practice to stop

accepting new requests from the master Server Connector instance but let all child Connectors

finish their processing. The “terminateServer()” method usually sets some flag that is checked by

the “getNextClient()” method of the master Server Connector instance – if termination is requested

the “getNextClient()” method will return NULL. This is a signal to the AssemblyLine that this

Server Connector has terminated and the AssemblyLine will not call anymore its “getNextClient()”

method.

public void terminate ()

The ″terminate(...)″ method is called by the AssemblyLine after it has finished cycling and before it

terminates. You would put here any cleanup code, that is, release connections, resources that you

created in the ″initialize(...)″ method or later during processing.

The methods listed above are the core ConnectorInterface methods that bring life to your Connector. And

remember, you only need to implement the methods corresponding to the Connector modes that your

Connector will support.

ConnectorInterface also provides other methods that address aspects of the possible use of a Connector and

which you might want to implement. One example is ″querySchema(...)″. This method returns the schema

of the connected data source . If you implement it, the Config Editor presents the returned values as the

Connector’s Schema.

These return values are stored as a Vector of Entry objects, one for each column/attribute in the schema.

For example, a database Connector would return one Vector for each column in the connected database

table.

Each Entry in the Vector returned should contain the following attributes:

 name The name of the attribute (column, field, etc.)

syntax The syntax (like VARCHAR or TIMESTAMP) or expected value type of this attribute.

506 Reference Guide

size If specified, this will give the user a hint as to how long the field may be.

Specified by: querySchema in ConnectorInterface

Parameters: source - The object on which to discover schema. This may be an Entry or a string value

Returns: A vector of com.ibm.di.entry.Entry objects describing each entity, or in the case of error, a

java.lang.Exception is thrown.

Using a Parser in your Connector

If your connector extends the base implementation of the TDI connector

(com.ibm.di.connectors.Connector), you can invoke the initParser() method to initialize the associated

parser:

 /**

 * Initialize the connector’s parser with input and output streams. If the parser

 * has not been loaded then an attempt is made to load it. The input and output objects

 * may be Stream objects (InputStream,OutputStream), java.io.Reader object, String object,

 * java.net.Socket, byte and character array objects.

 *

 * @param is The input object.

 * @param os the output object.

 * @exception Any exception thrown by the parser

 * @see #getParser

 */

 public void initParser (Object is, Object os) throws Exception;

You have to provide the input and/or output streams the parser will use for its read/write operations.

The mode of your connector typically determines which way the flow goes (note that your initialize(Object

obj) connector method will have the connector mode in the ″obj″ object). You are not required to initialize

the parser at the time of connector initialization, but you should do so unless there is a good reason to

initialize it elsewhere. In any case you should invoke the initParser() method to properly initialize the

parser with logging objects, debug flags and other standard TDI objects/behaviors.

The parser can be chosen either by the user or you can hide the parser selection and either provide the

configuration in your ″idi.inf″ file or programmatically configure the parser in your connector (or both).

1. Let the user choose the parser.

In this case you must define a parameter in your connector’s ″idi.inf″ file that activates the ″Parser

Config″ tab in the configuration editor. Once this field is defined the selection of the parser is

delegated to the user through a standard user interface (note that you can prefill the parserConfig

section of your idi.inf file with a default parser). Here is a snippet from the FileSystem connector’s

″idi.inf″ file showing ″parserOption″ as ″Required″, which means the connector requires a parser (that

is, an error is thrown if none is defined in the configuration):

 [connectors ibmdi.FileSystem]

 connectorConfig {

 connectorType:com.ibm.di.connector.FileConnector

 parserOption:Required

 filePath:

 fileAwaitDataTimeout:

 etc

The value for the ″parserOption″ parameter can be ″Required″ or ″Useless″ (no parser allowed).

2. Use a predefined parser using the ″idi.inf″ file.

You can include the parserConfig section in your ″idi.inf″ file if you always use the same parser:

 [connectors myconnector]

 parserConfig {

 parserType:<name of parser class>

 <custom parameters>

Appendix D. Implementing your own Components 507

etc....

 }

 connectorConfig {

 connectorType:<name of connector class>

 parserOption:Required

 <custom parameters>

or as an alternative you can reuse the system library of parsers using the ″inheritFrom″ keyword:

[connectors myconnector]

 parserConfig {

 inheritFrom:system:/Parsers/ibmdi.CSV

 <optional/additional parameters to make the parser functional (e.g. field separator etc)>

 }

3. Configure the parser at runtime.

Your connector has access to the ConnectorConfig object via the Connector.getConfiguration() method.

Through the ConnectorConfig object you can obtain the ParserConfig interface object for the

connector. Use that object to configure the parser before you invoke the initParser() method:

import com.ibm.di.config.interfaces.ConnectorConfig;

 public void initialize(Object obj) throws Exception {

 // Check mode

 String mode = "" + obj;

 boolean isIterator = mode.equals(ConnectorConfig.ITERATOR_MODE);

 ConnectorConfig cc = (ConnectorConfig)getConfiguration();

 // Get the parser config object

 ParserConfig parser = cc.getParserConfig();

 // -- use the csv parser and set the column separator parameter

 parser.setParameter("parserType", "com.ibm.di.parser.CSVParser");

 parser.setParameter("csvColumnSeparator", "\t");

 if(isIterator)

 initParser(inputStream, null);

 else

 initParser(null, outputStream);

Once the parser has been initialized you can invoke the readEntry() and writeEntry() methods to

translate com.ibm.di.entry.Entry objects to and from the stream format defined by the parser. You

typically invoke the readEntry() method in your getNextEntry() method and the writeEntry method

from your putEntry method. You obtain the parser interface handle through the getParser() method.

4. Optional parser and dynamic reinitialization

If your connector can function with or without a parser you can invoke the hasParser() method to

determine whether a parser is configured or not:

if(hasParser())

 doSomething();

If you use multiple instances of the parser during the life time of your connector you should close the

parser interface to ensure data is written to the outputstream and that system resources are released.

The methods used to re-initialize a parser can differ based on which parser you use but the following

method calls should be sufficient for most parsers:

 // Close parser to release system resources

 if(getParser() != null)

 getParser().closeParser();

 // assuming you just got a new input stream ... reinitialize the parser

 initParser(inputStream, null);

508 Reference Guide

When your connector is terminated it will automatically invoke the closeParser() method if one is in

use by the connector.

Logging from a Connector

The com.ibm.di.connector.Connector class that your Connector will be extending, has a number of

methods to enable you to log messages to the AssemblyLine's configured log files. The simplest way of

logging is using one of the following methods:

 /**

 * Log a message to the connector’s log. The message is prefixed by the connector’s

 * name.

 *

 * @param msg The message to write to the log

 */

 public void logmsg(String msg)

 /**

 * Log a debug message to the connector’s log

 *

 * @param msg The message to write to the log

 */

 public void debug(String msg)

You can call these methods with code like

 logmsg("initializing my connector");

This will cause your string to be issued to the AssemblyLine's configured log appenders, at INFO level. If

you want to do more advanced logging, the com.ibm.di.connector.Connector class also has this field:

 /**

 * The log object for logging messages

 */

 protected com.ibm.di.server.Log myLog;

This com.ibm.di.server.Log class has many methods for logging. You could therefore use the myLog

object to do logging like this:

 myLog.logerror("Something very bad happened");

This issues a message to the log(s) at ERROR level. There are corresponding methods for logging at

different levels, like loginfo() and logfatal().

Building the Connector's source code

When building the source code of your Connector, set up your CLASSPATH to include the jar files from the

″jars/common″ folder of the IBM Tivoli Directory Integrator installation. At minimum you would need to

include ″miserver.jar″ and ″miconfig.jar″.

Note: When integrating your Java code with IBM Tivoli Directory Integrator, pay attention to the

collection of pre-existing components that comprise IBM Tivoli Directory Integrator, notably in the

jars directory. If your code relies upon one of your own library components that overlap or clash

with one or more that are part of the TDI installation there will most likely be loader problems

during execution.

Implementing the Connector's GUI configuration form

Introduction

When you create a custom TDI component you also have to provide an additional file that describes your

component to TDI. This file is located at the root of your jar file and is named idi.inf. The syntax and

contents of this file is described in this document. Localized versions of this file are provided by inserting

the locale identifier in the file name (e.g. idi_en.inf, idi_fr.inf etc).

Appendix D. Implementing your own Components 509

The first part of this section explains the format of this file and also shows the minimum requirements for

a component inf-file.

The second part of this section focuses on the form definition and the various options you have when

you define a form. This form definition is used by the TDI configuration editor to let the user configure

your component. While the UI options in the form definition are basic and somewhat limited, you can

still perform advanced operations using your own custom java based UI components as well as

associating scripts with form events.

idi.inf file format

The “.inf” files are created in the original (that is, IDI 4.6) configuration file format (that is, not XML). The

format is a very simple key/value pair file with hashtables and array constructs. These are organized into

a tree structure (all lines are trimmed before interpretation) that is used internally by the

MetamergeConfig drivers (MetamergeConfigImpl).

The file syntax can be summarized by the following:

v All sections must start with a main section definition and end with a main section terminator

[connectors connectorName] Connector main section

[parsers parserName] Parser main section

[functions functionName] Function main section

[end] Main section terminator

v If the line ends with an opening curly brace it denotes a named Hashtable

v If the line ends with an opening bracket it denotes an array of values

v Otherwise, it is expected to be a keyword:value pair. Keyword/value pairs cannot span lines (e.g. there

is no line-continuation character) so you have to add a ″\n″ if you need a newline in the text.

An example:

[connectors CustomConnector]

 connectorConfig {

 connectorType:pub.test.CustomConnector

 options [

 First Value

 Second Value

 Third Value

]

 subsection {

 anotherKey:anotherValue

 }

 paramWithNewlines:line 1\nline 2\n line3

 }

[end]

The above constructs a Hashtable with one key (″connectorConfig″) that contains three named items

(mode, options and subsection). This hashtable is added as a connector named CustomConnector to the

current configuration (MetamergeConfig object). The specific parameters for your component appear

inside the connectorConfig/functionConfig/parserConfig sections. In the above example options,

subsection and paramWithNewlines are all component specific parameters.

Basic Component Definitions: When you first create your inf-file you add the main sections for the

components your jar file contains. For each component you add a section where you as a minimum

define java class. The syntax is as follows for the three main components:

510 Reference Guide

Table 54.

Component Type Minimum Section Contents

Connector [connectors CustomConnector]

 connectorConfig {

 connectorType:pub.test.CustomConnector

 }

}

[end]

Parser [parsertypes CustomParser]

 parserConfig {

 class:com.ibm.di.parser.FixedRecordParser

 }

[end]

Function [functions ibmdi.ComplexTypesGenerator]

 functionConfig {

 javaclass:com.ibm.di.fc.webservice.ComplexTypesGenerator

 }

[end]

In addition you should always include a form definition for each of your components. This is to prevent

the configuration editor to report errors of missing forms. If your component has no configurable

parameters you should include a form that says so.

Note: The current configuration object that the FormUI refers to is always the connectorConfig/parserConfig/
functionConfig object. If you need to access the main component’s parameters you should use the

“config.getParent()” method to obtain for example the ConnectorConfig interface for the

configuration.

Install Location: When you start either the configuration editor or the server there is a component called

the TDI Loader that runs through its configured jar directories looking for *.jar/*.zip files that contain an

“idi.inf” file at its root level. All these files are concatenated into a single configuration file known as the

system templates (the system namespace in configuration terms).

The locations of these files are:

v <TDI_INSTALL_DIRECTORY>/jars and any subdirectory therein

v Any files/directories specified by the com.ibm.di.loader.userjars property (etc/global.properties)

When you put your jar file in either of these directories your component will show up in the

configuration editor with the name you chose as part of the system namespace.

Note: Adding your jar file to the CLASSPATH or PATH alone does not include it in the system templates

and hence will not be visible to the user.

Form description

The form description is used to provide custom input panels for components. While most of the user

interface in the configuration editor is static (defined in standard_templates.cfg / miadmin.jar), most

components need specific user interfaces to let the user define its behaviour.

Component/Form Association: The form definition defines the input fields and labels that the

configuration editor will build when you open the configuration for a component. The binding between

the component (e.g. connector, parser) and its form is through the java class of the component. Using the

example above, the connectorConfig has a ″connectorType″ parameter that defines the implementing class

for the component (pub.test.CustomConnector). When a component of this type is presented to the user,

the configuration editor will look for a form with the same name as the implementing java class.

Appendix D. Implementing your own Components 511

Form/Configuration Binding: When the form has been created it also has a binding object for each

parameter to the configuration object. These binding objects will set the initial value of the input field

(using the default value provided by the form if the configuration object returns null for the value) and

also function as the controller between the input field and the configuration object. When the input field

changes its value the binding will update the configuration object and vice versa. The configuration

object is read and updated using the primitives of the configuration object (e.g.

BaseConfiguration.getParameter/setParameter). It is possible to have the binding object invoke specific

methods rather than using the primitives, but for component developers this is rarely needed.

Form Definition: Forms are defined the same way as components are defined. Below is an example of a

form with three input fields and one event handler trapping changes to one of the parameters.

[form pub.test.CustomConnector]

 title:This is the title/heading that appears at the top of the form

 formevents:function firstParameter_changed() { form.alert("First param modified"); }

 parameterlist [

 firstParameter

 secondParameter

 $GLOBAL.debug

]

 parameters {

 firstParameter {

 label:First Param Label

 }

 secondParameter {

 label:Second Param Label

 }

 }

[end]

Form - top level keywords: At the top level of the form definition you define the overall characteristics of

the form.

 Table 55.

Keyword Description

title The heading text for the form.

width/height If the form is presented in its own frame (e.g. modal dialog etc) these fields define the

size of the frame.

parameterlist This array defines which parameters are included in the form and order in which they

appear. Parameters starting with ″$GLOBAL.″ refers to commonly used parameter

settings, which is defined in the ″standard_forms.cfg″ resource (miadmin.jar). For each

parameter listed here there must be a corresponding subsection in the parameters

section.

parameters This section contains the specific configurations for each parameter. See parameter

definitions next.

formevents This keyword lets you define javascript functions that are called when parameter

values change. The function name is constructed using the parameter name plus a

″_changed″ suffix. So to intercept changes to ″firstParameter″ you would add a

function called ″firstParameter_changed()″. In the function you have access to the

″form″ object which is the instance of the com.ibm.di.admin.ui.FormUI class shown in

the configuration tab of the component.

tablist This parameter lets you create a multi-form form. The value of the tablist specifies the

name of each form which will be created and added as a separate pane to the main

form. Each sub-form shares the same configuration object.

When this parameter is present only the sub-forms are created. That means that any

parameterlist/parameters sections are ignored for this form definition.

512 Reference Guide

Table 55. (continued)

Keyword Description

<form>.title

<form>.tooltip

When tablist is specified these parameters define the title and tool tip for each

sub-form. If tablist contains the form “A” you can define “A.title” and “A.tooltip” to

customize the tab header in the main form.

Parameter Definitions: Each parameter has its own section within the parameters section. In this section

you define the characteristics for each parameter.

 Table 56.

Keyword Description

label The label appearing in the left column of the form (e.g. LDAP URL)

description The tooltip for the parameter

default Default value for the parameter. The preferred way of providing a default value is in

the component configuration itself (in the idi.inf file). This default value will only be

set if the user uses the CE to view/modify the configuration for the component.

script

script2

Specifying this parameter adds a button to the right of the input field. When the

button is clicked, the named JavaScript function is executed.

Script2 allows for a second button to the right of the first one.

scriptLabel

scriptLabel2

The button text

scriptHelp

scriptHelp2

Tooltip for the script button

syntax Specifies the syntax of the parameter. This also affects the choice of UI control used to

represent the value. See the syntax section for more info.

values Array of values used to populate dropdown lists. The values can be static or dynamic.

Dynamic values are values that the FormUI will gather from configuration objects or

from java objects passed to the FormUI when it was instantiated (this is typically

config editor specific and not used much by 3rd party devs). See section below for

possible macros for dynamic value lists.

localizedValues Array of display values. This field is only used when the values parameter is provided.

Instead of showing the user the text from the values parameter the corresponding

value in this array is shown instead (index based). This is often used to provide

localized values and/or human readable text for numeric/technical configuration

values.

readonly If present and set to “true” the input field is not editable.

reflect If present the binding will use this method to get/set the parameter value. The binding

will prepend “get” or “set” accordingly to this value (e.g. specify Name to invoke

getName and setName). This is only used when the configuration object performs

specific logic when getting/setting a parameter value. For component developers this

is rarely needed as component configurations only have get/set primitives.

reflectClass Optional – in case there are several versions of the reflect method Specifies the

conversion class (e.g. java.lang.Boolean) to be used when setting the parameter value

(e.g. setValue(boolean) vs setValue(string).

minValue

maxValue

Used when the parameter syntax is Number. The fields specify the minimum and

maximum numeric value.

Dynamic Values: The values array can contain static and dynamic values. The dynamic values are

expanded and added to the array at runtime to populate the dropdown list.

Appendix D. Implementing your own Components 513

Table 57.

Value Description

@ASSEMBLYLINES@ Adds all known AssemblyLines to the array

@CONNECTORS@ Adds all known connectors to the array

@PARSERS@ Adds all known parsers to the array

@USER.PROPERTIES@ Adds all known property values to the array

@CONFIG:param Retrieves the value for param from the current configuration object and adds it to the

array.

Syntax: The syntax for a parameter can be any of the following.

 Table 58.

Value Description

String This is the default syntax. A one line text field is created for text input.

Password A password field is created for text input. Be aware that if the user has configured a

password store then FormUI will not insert the value in the configuration object but

insert a property reference. The actual value is then stored in the password store.

If you modify this parameter via script or java code make sure to invoke

BaseConfiguration.setProtectedParameter() instead of BaseConfiguration.setParameter(). The

setProtectedParameter will automatically create a new property if there isn’t one in

place already. If the password store is not configured setProtectedParameter will

simply invoke setParameter instead.

Boolean A checkbox is created for true/false values

Droplist

Dropedit

Dropdown with values from the values parameter. Dropedit is the editable version

where the user also has a text field to specify a custom value. See Dynamic Values for

special values.

Fontlist

Fontedit

Creates a dropdown list of available fonts

Color Creates a Color selection dialog

List Creates a JList showing all values with the selection as the current value

TextArea Creates a text area control for multi-line text input

Script Creates a button that invokes a script

Static Creates a text label for viewing only (same as string w/readonly=true)

Number Creates a single-line text input field with validation. Validation includes verifying the

input is a valid numeric string in the range defined by minValue and maxValue

EditorWindow This syntax causes the form to be a tabbed pane. The non-editorwindow parameters

appear in the left most tab whereas each editorwindow parameter has its own tab with

an editor input control. Used when you need the complete display area for input (e.g.

scripts)

514 Reference Guide

Table 58. (continued)

Value Description

Component This enables you to provide your own UI component if you need complex input

mechanisms or otherwise want more control over the UI. Specify the java class name

in the component keyword that you want inserted into the form:

 syntax:component

component:pub.test.CustomUI

The class is instantiated by FormUI at runtime and should be an AWT or Swing

subclass (something that can be added to a JPanel). Also, it must have a constructor as

shown in this example:

package pub.test;

import com.ibm.di.admin.ui.FormUI;

import com.ibm.di.config.interfaces.BaseConfiguration;

public class CustomUI extends JPanel {

 /*

 * form – the FormUI object

 * config – the config object being modified

 * paramname – the parameter of config being edited

 */

 public CustomUI(FormUI form, BaseConfiguration config,

 String paramname) {

 }

}

Form Scripts: In your form definitions you can add calls to script functions. These functions execute in

the form’s script engine. The form’s script engine provides the following predefined objects:

v form Represents the com.ibm.di.admin.ui.FormUI instance managing this form

v config A handle to the configuration objects this form operates on (e.g. the connection configuration for

a connector, parser config for parser etc)

v button The JButton that triggered the script to be invoked

v util An instance of the com.ibm.di.admin.ui.Util class

v system An instance of the com.ibm.di.function.UserFunctions class

Multi-Form Definition: Your component’s inf-file can define more than one form. Often, it is advisable

to break a form into several parts (like common, advanced etc) instead of having one form with too many

input fields. To accomplish this you basically create a separate form definition for each part and bring

them together in the main form. You are free to choose the name of your sub-forms but to avoid name

collisions with other components you should use your main form name as base. Here is an example of a

multi-form with two sub-forms.

[form pub.test.CustomConnector]

 tablist:pub.test.CustomConnector.common, pub.test.CustomConnector.advanced

 pub.test.CustomConnector.common.title:Common Parameters

 pub.test.CustomConnector.common.tooltip:This tab contains the most commonly used params

 pub.test.CustomConnector.advanced.title:Advanced Parameters

 pub.test.CustomConnector.advanced.tooltip:This tab contains special parameters

[end]

[form pub.test.CustomConnector.common]

 (form definition)

[end]

Appendix D. Implementing your own Components 515

[form pub.test.CustomConnector.advanced]

 (form definition)

[end]

Examples

Look at TDI's components in the configuration editor to find an example you find suitable. Use a zip/jar

tool (e.g. winzip, unzip) and extract the "idi.inf" file from the component's jar file (<tdi_installdir>/jars/
components subdirectory).

Also, the ″examples/connector_java″ folder of this package contains the ″idi.inf″ file of the Directory

Connector.

Packaging and deploying the Connector

Now that we have the Connector source code compiled and supplied the ″idi.inf″ file, we are ready to

package and deploy the Connector.

What you need to do is create a jar file (typically with the same name as that of the Connector) and

include in it:

1. The class file(s) of the Connector

2. The ″idi.inf″ file, in the root of the jar file. (You might also include ″idi.inf″ files for different

languages naming them in the standard Java internationalization schema – for example ″idi_de.inf″

for German, ″idi_fr.inf″ for French, etc.)

After you have created the jar file of the new Connector, you need only drop that jar file in the

″jars/connectors″ folder of the IBM Tivoli Directory Integrator installation. The next time the system

starts up, it will automatically load the new Connector and make it ready for use.

Developing a Function Component

Implementing a Function Component (FC) follows absolutely the same pattern of developing a

Connector. A Function Component is actually easier to implement because of fewer dependencies on the

AssemblyLine workflow.

Implementing Function Component Java source code

Similar to the Connector foundation classes, we have ″com.ibm.di.fc.FunctionInterface″ and the

″com.ibm.di.fc.Function″ abstract class that implements the interface (the Java sources of both classes are

included in the ″fc″ folder of this package).

You will usually implement your FCs by subclassing the ″com.ibm.di.fc.Function″ class. These are the most

important methods you will usually need to implement:

public void initialize (Object obj)

Put any initialization code here – reading FC’s parameters, allocating resources, etc. When the FC

is placed into an AssemblyLine, the AssemblyLine will call the ″initialize(...)″ method once, on

startup.

 When the FC is created and used programmatically the ″initialize(...)″ method must be called right

after constructing the FC object and setting its parameters, and before calling its ″perform(...)″

method.

public Object perform (Object obj)

The ″perform(...)″ method is the actual implementation of the business logic of your FC. In

contrast to the Connector where you have different Connector modes and different methods to

implement for each of them (getNextEntry(), findEntry(), etc.) all that a FC is supposed to do is

implemented in the ″perform(...)″ method.

516 Reference Guide

The general contract for the ″perform(...)″ method is that it receives some data on input and based

on that input it produces some output data. There are no other assumptions. As you will see

below it is not even necessary that your FC works with Entry objects.

 When the FC is placed into an AssemblyLine, the AssemblyLine calls its ″perform(...)″ method on

each iteration. In the AssemblyLine context the ″perform(...)″ method will be given an Entry object

as input parameter (this is the Entry object constructed by the Output Attribute Mapping

process). And it is supposed to return an Entry object as well. the AssemblyLine will feed the

returned Entry object to the Input Attribute Mapping process, the result of which is applied to

the AssemblyLine’s work Entry. If you want to enable your FC to be placed into an

AssemblyLine, you need to support this ″Entry on input – Entry on output″ behavior.

 You might also code the ″perform(...)″ method so that it receives non-Entry objects on input and

returns non-Entry objects on output. This could facilitate the process of programmatically creating

and calling an FC. No Attribute Mapping will be done if you use this method.

public void terminate()

The FC’s ″terminate(...)″ method is called by the AssemblyLine after it has finished cycling and

before it terminates. You would put here any cleanup code, that is, release connections, resources

that you created in the ″initialize(...)″ method or later during processing.

 When using an FC programmatically, you must call the ″terminate(...)″ method after you have

finished using that FC instance.

public java.awt.Component getUI()

The ″getUI(...)″ method allows you to build custom graphical user interface for the configuration

form of your FC instead of using the standard configuration forms described in ″idi.inf″ files.

 This however is an option. In most cases the standard GUI provided by forms that you can

describe in ″idi.inf″ will be sufficient. It is up to you to decide how to implement it, what visual

controls to include and how they map to the FC’s parameters

Building the Function Component source code

When building the source code of your Connector, include in your CLASSPATH the jar files from the ″jars″

folder of the IBM Tivoli Directory Integrator installation. At minimum you would need to include

″miserver.jar″ and ″miconfig.jar″.

Note: When integrating your Java code with IBM Tivoli Directory Integrator, pay attention to the

collection of pre-existing components that comprise IBM Tivoli Directory Integrator, notably in the

jars directory. If your code relies upon one of your own library components that overlap or clash

with one or more that are part of the TDI installation there will most likely be loader problems

during execution.

Implementing the Function Component GUI configuration form

You have two options for implementing the FC GUI – use the standard syntax of ″idi.inf″ file or code

your own GUI by implementing the ″getUI(...)″ method.

If you choose to use the standard ″idi.inf″ mechanism, you describe the FC configuration form by using

the same syntax as used for Connectors.

Remember that even if you code a custom GUI by implementing the ″getUI(...)″ method, you still need

the ″idi.inf″ file in the jar file of your FC. The presence of this file tells TDI that this component is an

FC and must be loaded.

Appendix D. Implementing your own Components 517

Packaging and deploying the Function Component

Packaging and deploying an FC is just like packaging and deploying a Connector:

You need a jar file that contains:

1. The class file(s) of the Function Component

2. ″idi.inf″ file placed in the root of the jar file (and optionally ″idi_??.inf″ files if you want to

support different languages)

After you have created the jar file of the new Function Component, you only need to drop that jar file in

the ″jars/functions″ folder in the IBM Tivoli Directory Integrator installation. The next time the IBM

Tivoli Directory Integrator is started it will automatically load the new Function Component and it will

be ready for use.

See also

Appendix C, “Server API,” on page 465

518 Reference Guide

Appendix E. Notices

This information was developed for products and services offered in the U.S.A. IBM might not offer the

products, services, or features discussed in this document in other countries. Consult your local IBM

representative for information on the products and services currently available in your area. Any

reference to an IBM product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product, program, or service that

does not infringe any IBM intellectual property right may be used instead. However, it is the user’s

responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in this document. The

furnishing of this document does not give you any license to these patents. You can send license

inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the information.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

information at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

Department MU5A46

11301 Burnet Road

© Copyright IBM Corp. 2003, 2007 519

Austin, TX 78758

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this document and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or

any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurement may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs. You may copy, modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application programs conforming

to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©

Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Third-Party Statements

ICU License - ICU 1.8.1 and later

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1995-2006 International Business Machines Corporation and others

520 Reference Guide

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and

associated documentation files (the ″Software″), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of the

Software, and to permit persons to whom the Software is furnished to do so, provided that the above

copyright notice(s) and this permission notice appear in all copies of the Software and that both the

above copyright notice(s) and this permission notice appear in supporting documentation.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

or other countries, or both:

 IBM Tivoli AIX® Lotus

Notes pSeries® DB2 WebSphere

OS/390® Domino iNotes Cloudscape

Java, JavaScript and all Java-based trademarks and logos are trademarks or registered trademarks of Sun

Microsystems, Inc. in the United States and other countries.

Microsoft, Windows, Windows NT and the Windows logo are registered trademarks of Microsoft

Corporation.

Intel™ is a trademark of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the U.S., other countries, or both.

This product includes software developed by the Apache Software Foundation (http://
www.apache.org/).

Other company, product, and service names may be trademarks or service marks of others.

Appendix E. Notices 521

522 Reference Guide

����

Printed in USA

SC32-2566-01

	Preface
	Who should read this book
	Publications
	IBM Tivoli Directory Integrator library
	Related publications
	Accessing publications online

	Accessibility
	Accessibility features
	Keyboard navigation
	Interface Information
	Vendor software
	Related accessibility information

	Contacting IBM Software support

	Contents
	Chapter 1. Introduction
	Chapter 2. Connectors
	Connector availability and reference
	Connector Interfaces
	Legend for the Supported Mode columns

	Script-based Connectors
	Configurations
	Connector re-use

	ACT Connector
	Introduction
	Configuration
	ACT Rule Builder

	Using the Connector
	Sending a notification from a rule
	Programmatic Interface (API)
	See Also

	Active Directory Changelog (v.2) Connector
	Tracking changes in Active Directory
	Deleted objects in Active Directory
	Moved objects in Active Directory
	Use objectGUID as the object identifier

	Behavior
	Using the Active Directory Changelog V2 Connector
	Configuration
	Migration from Active Directory Changelog EventHandler to Active Directory Changelog (v.2) Connector
	See also

	AssemblyLine Connector
	Configuration
	Using the Connector
	Attribute Mapping
	AssemblyLine Parameters

	Axis Easy Web Service Server Connector
	Hosting a WSDL file
	Configuration
	Parameters

	Connector Operation
	See also

	Btree Object DB Connector
	Configuration
	Btree object

	Command line Connector
	Native-encoded output on some operating systems
	Some words on quoting
	Configuration
	Examples
	See also

	Direct TCP /URL scripting
	TCP
	URL

	Domino/Lotus Notes Connectors
	Session types
	Java Class loader issue
	Supported versions of Lotus Notes and Lotus Domino
	Native API call threading
	The ncso.jar file
	TDI Server
	Running an AssemblyLine, IIOP Session
	TDI Config Editor Aspects

	Domino Change Detection Connector
	Using the Connector
	Required Setup of the IBM Tivoli Directory Integrator
	Required Domino Setup
	Configuration
	Troubleshooting the Domino Change Detection Connector

	Domino Users Connector
	Deployment and connection to Domino server
	Configuration
	Security
	Using the Domino Connector
	List of Domino user attributes (or Person document items)
	Domino Server 6.0 for AIX/Linux/Solaris
	Examples
	See also

	Lotus Notes Connector
	Known limitations
	Session types
	Connecting with IIOP
	Configuration
	Security

	ITIM DSMLv2 Connector
	Using the Connector with ITIM Server
	HTTPS (SSL) Support
	Configuration
	See also

	DSMLv2 SOAP Connector
	Supported Connector Modes
	Extended Operations
	Configuration

	DSMLv2 SOAP Server Connector
	Extended operations
	Configuration

	Exchange Changelog Connector
	Behavior
	Using the Exchange Changelog Connector
	The Is-Deleted attribute in Exchange
	Accessing the USN synchronization values in the User Property Store
	Accessing the runtime Connector's USN synchronization values
	Configuration
	Migration
	See Also

	File system Connector
	Configuration
	See also

	FTP Client Connector
	Configuration
	See also

	GLA Connector
	Introduction
	Adapter configuration file
	Using more than one outputter in the configuration file

	Configuration
	Configuring the TDIOutputter
	Using the Connector
	Schema
	See Also

	HTTP Client Connector
	Modes
	Lookup Mode

	Special attributes
	Configuration
	Examples
	See also

	Old HTTP Client Connector
	Modes
	Lookup Mode

	Special attributes
	Configuration
	Examples
	See also

	HTTP Server Connector
	Connector structure and workflow
	Connector Client Authentication
	Chunked Transfer Encoding
	Configuration
	Connector Schema
	Input Attributes
	Output Attributes

	See also

	Old HTTP Server Connector
	Configuration
	See also

	IBM Directory Server Changelog Connector
	Configuration
	See also

	ITIM Agent Connector
	Setting up SSL for the ITIM Agent Connector
	Configuration
	Known Issues
	See also

	JDBC Connector
	Connector structure and workflow
	Understanding JDBC Drivers
	Connecting to DB2
	Connecting to Informix Dynamic Server
	Connecting to Oracle
	Connecting to SQL Server
	Connecting to Sybase Adaptive Server

	Specifying ODBC database paths
	Configuration
	Link Criteria configuration

	Customizing select, insert, update and delete statements
	Overview
	Metadata Object
	Link Object (Link Criteria)
	Convenience Objects

	Additional JDBC Connector functions
	Timestamps
	Calling Stored Procedures
	SQL Databases: column names with special characters
	Using prepared statements
	Taking advantage of PreparedStatements

	On Multiple Entries

	JMS Connector
	Introduction
	JMS message flow
	WebSphere MQ and JMS/non-JMS consumers of messages
	JMS message types
	Text message
	Object message
	Bytes message

	Iterator mode
	Lookup mode
	Add Only mode
	Call/Reply mode
	JMS headers and properties
	JMS headers
	JMS properties

	Configuration
	Examples
	External System Configuration

	JMX Connector
	Connector Schema
	Configuration

	JNDI Connector
	Configuration
	Setting the Modify operation
	Calling the Modify Interface
	modify operation

	See also

	LDAP Connector
	Configuration
	Virtual List View Control
	Handling memory problems in the LDAP Connector
	LDAP Connector methods (API)
	LDAP compare
	Adding a value to an attribute
	Replacing an attribute value
	Removing an attribute value
	Removing all attribute values
	Flag in Config Editor for default action for attribute add or replace
	Rebind

	See also

	LDAP Server Connector
	Scripting
	Returning the LDAP message returned values
	Error handling
	Configuration
	See also

	Lotus Notes Connector
	Mailbox Connector
	Configuration
	Predefined properties and attributes
	See also

	Memory Queue Connector
	Memory queue components
	High level workflow
	Configuration
	Accessing the Memory Queue programmatically

	Memory Stream Connector
	Configuration

	MQe Password Store Connector
	PKCS7 Encryption support
	Signing of messages
	Encryption of messages
	Certificate management
	Example

	MQe Password Store Connector Entry structure
	Configuration
	See Also

	Netscape/iPlanet/Sun Directory Changelog Connector
	Configuration
	See also

	Properties Connector
	Configuration

	Server Notifications Connector
	Encryption and Cryptography
	Trust store

	Authentication
	SSL Authentication
	Username and Password Authentication

	Configuration

	System Queue Connector
	Introduction
	Configuration
	Security, Authentication and Authorization
	Encryption
	Authentication
	Authorization
	See Also

	MQe Initialization

	Windows Users and Groups Connector
	Preconditions
	Configuration
	Constructing Link Criteria
	Other
	Setting user password
	Setting user Primary Group/global groups membership
	Operating with groups

	Character sets
	Examples
	Windows Users and Groups Connector functional specifications and software requirements
	Functionality

	System Store Connector
	Configuration
	Using the Connector
	See also

	RAC Connector
	Introduction
	Configuration
	Using the Connector
	AddOnly Mode
	Iterator Mode
	Schema

	See Also

	RDBMS Changelog Connector
	Configuration
	Change table format
	Creating change tables in DB2
	Creating change tables in Oracle
	Creating Change table and triggers in MS SQL
	Creating change table and triggers in Informix
	Creating change table and trigger for SYBASE

	runtime-provided Connector
	Configuration
	See also

	Script Connector
	Predefined script objects
	The result object
	The config object
	The entry object
	The search object

	Functions
	Configuration
	Examples
	See also

	SNMP Connector
	Configuration
	Examples

	SNMP Server Connector
	Connector Schema
	Configuration

	TAM Connector
	Introduction
	Connector Modes
	Configuration
	Configuring the Tivoli Access Manager Java Run Time
	Configuring secure communication to the Tivoli Access Manager policy server
	Configuring the Connector

	Using the Connector
	AddOnly Mode
	Update Mode
	Delete Mode
	Lookup Mode
	Iterator Mode

	Troubleshooting
	Connector Input Attribute Details
	User
	Group
	Policy
	Domain
	SSO Credentials
	SSO Resource
	SSO Resource Group

	TCP Connector
	Iterator Mode
	AddOnly Mode
	Configuration
	See also

	TCP Server Connector
	Configuration
	Connector Schema
	See Also

	Timer Connector
	Configuration

	URL Connector
	Configuration
	Supported URL protocol
	See also

	Web Service Receiver Server Connector
	Hosting a WSDL file
	Configuration
	Parameters

	Connector Operation
	See also

	z/OS Changelog Connector
	Configuration
	See also

	Chapter 3. EventHandlers
	Migration from ChangeLog EventHandlers to ChangeLog Connectors
	EventHandler types
	When are they started?
	What do they do?
	Data flow
	Passing input/output file names to an AssemblyLine
	EventHandler availability
	Migration of Changelog EventHandlers
	Active Directory Changelog EventHandler
	Behavior
	Access to the USN synchronization values in the User Property Store
	Access to the runtime EventHandler's USN synchronization values
	Configuration
	See also

	Connector EventHandler
	Configuration
	Objects/properties/attributes
	See also

	DSMLv2 EventHandler
	Transportation (binding)
	EventHandler Workflow
	Operations
	Configuration

	Exchange Changelog EventHandler
	Behavior
	Access to the USN synchronization values in the User Property Store
	Access to the runtime EventHandler's USN synchronization values
	Configuration
	See also

	HTTP EventHandler
	Example
	Configuration
	See also

	IBM Directory Server EventHandler
	Configuration
	See also

	LDAP EventHandler
	Object Added (_objAdded)
	Object Rename (_objRenamed)
	Object Modified (_objModified)
	Object Removed (_objRemoved)
	Error Encountered (_handleError)
	Configuration
	See also

	LDAP Server EventHandler
	Scripting
	Returning the LDAP message returned values
	Error handling
	Configuration

	Mailbox EventHandler
	Configuration
	Objects/properties/attributes
	Examples
	See also

	SNMP EventHandler
	Scripting the desired action
	Error handling
	Returning the SNMP packet returned values
	Configuration

	TCP Port EventHandler
	Configuration
	Objects/properties/attributes
	Examples
	See also

	Generic thread (primitive EventHandler)
	Configuration
	See also

	Timer EventHandler (primitive EventHandler)
	Configuration
	Examples

	z/OS LDAP Changelog EventHandler
	Configuration
	Polling logic

	See also

	Chapter 4. Parsers
	Base Parsers
	Character Encoding conversion
	Availability

	CSV Parser
	Configuration

	DSML Parser
	Configuration
	Examples
	See also

	DSMLv2 Parser
	Modes
	Operations
	Modify Request
	Modify Response
	Search Request
	Search Response
	Add Request
	Add Response
	Delete Request
	Delete Response
	ModifyDN Request
	ModifyDN Response
	Compare Request
	Compare Response
	Auth Request
	Auth Response
	Extended Request
	Extended Response

	Binary and non-String Attributes
	Optional Attributes
	Setting result code and result description
	Multiple Attribute modifications
	Configuration
	Examples
	Parsing a DSMLv2 AddRequest in Server mode
	Creating a DSMLv2 SearchRequest in Client mode

	Fixed Parser
	Configuration

	HTTP Parser
	Configuration
	Attributes or properties
	Character sets/Encoding
	Character set when reading
	Character set when sending

	See also

	LDIF Parser
	Configuration
	See also

	Line Reader Parser
	Configuration

	Script Parser
	Objects
	The result object
	The entry object
	The inp object
	The out object
	The Parser object
	The Connector object

	Functions (methods)
	Configuration
	Example
	See also

	Simple Parser
	Configuration

	SOAP Parser
	Example Entry
	Example SOAP document
	Configuration
	Parser-specific calls
	Examples

	XML Parser
	Configuration
	Character Encoding in the XML Parser
	Examples
	Additional Examples
	See also

	XML SAX Parser
	Configuration
	See also

	XSL based XML parser
	Introduction
	Configuration
	Using the Parser
	TDI Internal Format
	Example

	See also

	User-defined parsers

	Chapter 5. Function Components
	Castor Java to XML FC
	Castor Overview
	Configuration
	Parameters

	Using the FC
	Entry mode
	Non-Entry mode

	Castor XML to Java FC
	Configuration
	Parameters

	Using the FC
	Entry mode
	Non-Entry mode

	XMLToSDO FC
	Example
	Configuration
	Migration

	SDOToXML FC
	Configuration
	Using the FC
	Migration

	AssemblyLine FC
	Configuration
	Using the FC

	Java Class Function Component
	Schema
	Parameter Conversion

	Configuration

	Parser FC
	Configuration
	Using the FC

	Scripted FC
	Configuration
	Using the FC
	See also

	CBE Generator Function Component
	Common Base Event (CBE)
	The Common Event Infrastructure (CEI)
	CBE FC Configuration
	Input and Output Map Attributes
	Function Component API
	Generating a CBE Log XML
	See also

	SendEMail Function Component
	Configuration

	Memory Queue FC
	Configuration
	Using the FC
	See also

	Axis Java To Soap FC
	Configuration
	Parameters
	Function Component Input
	Function Component Output

	Using the FC
	Custom serializers/deserializers
	See Also

	WrapSoap FC
	Configuration
	Parameters
	Function Component Input
	Function Component Output

	Using the FC

	InvokeSoap WS FC
	Introduction
	Authentication
	Configuration
	Parameters
	Function Component Input
	Function Component Output

	Using the FC
	One-way web service operation support

	See also

	Axis Soap To Java FC
	Configuration
	Parameters
	Function Component Input
	Function Component Output

	Using the FC
	See Also

	Axis EasyInvoke Soap WS FC
	Authentication
	Configuration
	Parameters
	Security and Authentication
	Function Component Input
	Function Component Output

	Using the FC
	See also

	Complex Types Generator FC
	Configuration
	Parameters

	Function Component Input and Output
	Troubleshooting

	Remote Command Line FC
	Configuration
	Function Component Input
	Function Component Output
	Using the FC
	Configuring the Target System

	See also

	z/OS TSO/E Command Line FC
	Configuration
	Parameters

	Using the FC
	Function Component Input
	Function Component Output
	Authentication
	Authorization

	Setting up the native part of the FC
	See also

	Chapter 6. SAP R/3 Component Suite
	Who should read this chapter
	Component Suite Installation
	Software Requirements
	Configuring the SAP Java Connector

	Verifying the Component Suite for SAP R/3
	Checking the Version Numbers
	Uninstallation

	Function Component For SAP R/3
	Function Component Introduction
	Configuration
	Parameters
	Function Component Input
	Function Component Output

	Using the Function Component
	Using the Command Line RFC Invoker

	User Registry Connector for SAP R/3
	Introduction
	Configuration
	Parameters

	Using the User Registry Connector for SAP R/3
	IBM Tivoli Directory Integrator Entry Schema
	Add Only Mode
	Update Mode
	Delete Mode
	Lookup Mode
	Iterator Mode
	Transactional Operations Not Supported
	Handling ABAP Errors

	Human Resources/Business Object Repository Connector for SAP R/3
	Introduction
	Key Fields and XML Representation

	Configuration
	Parameters

	Using the Human Resources Connector for SAP R/3
	IBM Tivoli Directory Integrator Entry Schema
	Add Only Mode
	Update Mode
	Delete Mode
	Lookup Mode
	Iterator Mode
	Transactional Operations Not Supported
	Handling ABAP Errors

	ALE Intermediate Document (IDOC) Connector for SAP R/3 and SAP ERP
	Introduction
	Configuration
	IDOC Server Parameters
	IDOC Client Configuration Parameters
	General Configuration Parameters

	Using the SAP ALE IDOC Connector
	IBM Tivoli Directory Integrator schema
	XML Attribute Parsing
	Configuration in SAP ALE Distribution Models

	Troubleshooting the SAP R/3 Component Suite
	Supplemental information for the SAP R/3 Component Suite
	Example User Registry Connector XML Instance Document
	XSchema for User Registry Connector XML

	Chapter 7. Script languages
	JavaScript
	Java and JavaScript

	Chapter 8. Objects
	The AssemblyLine Connector object
	The attribute object
	Examples
	Creating a new attribute object
	Adding values to an attribute
	Scanning attribute's values

	See also

	The Connector Interface object
	Methods

	The Entry object
	Global Entry instances available in scripting
	See also

	The FTP object
	Example

	Main object
	The Search (criteria) object
	Operands
	Example

	The shellCommand object
	The status object
	The system object
	The task object

	Appendix A. Password Synchronization plug-ins
	Appendix B. AssemblyLine and Connector mode flowcharts
	AssemblyLine flow
	Connector initialization
	Close flow

	AddOnly mode
	Call/Reply mode
	Delete mode
	Delta Mode
	Iterator mode
	Lookup mode
	Server Mode
	Update mode
	End-of-flow for all modes
	Connector Reconnect
	Function Components

	Appendix C. Server API
	Overview
	Sample use case

	Local and Remote Server API interfaces
	Server API structure
	Security
	Configuring the Server API
	Configuring the Server API properties
	Setting up the User Registry
	Remote client configuration
	SSL configuration of the remote client

	Using the Server API
	Creating a local Session
	Access to the Server API in a scripting context

	Creating a remote Session
	Working with Config Instances
	Getting access to running Config Instances
	Starting a Config Instance
	Stopping a Config Instance

	Working with AssemblyLines
	Getting access to the AssemblyLines available in a configuration
	Getting access to running AssemblyLines
	Starting an AssemblyLine
	Starting an AssemblyLine in manual mode
	Starting an AssemblyLine with a listener
	Stopping an AssemblyLine

	Working with EventHandlers
	Editing configurations
	TDI Configurations folder
	Load for editing
	Configuration Locking
	Load for editing with temporary Config Instance
	New Server API event for configuration update

	Working with the System Queue
	Access the System Queue through the Server API
	Put a message in the System Queue
	Retrieve a message from the System Queue

	Working with the Tombstone Manager
	Globally Unique Identifiers
	Server API support for the Tombstone Manager
	Adding a custom message to AssemblyLine tombstones

	Working with TDI Properties
	JMX layer API

	Registering for Server API event notifications
	Server shutdown event
	Custom Server API event notifications

	Getting access to log files
	Server Info
	Using the Security Registry
	Custom Method Invocation
	A Full Example

	The JMX layer
	Local access to the JMX layer
	Remote access to the JMX layer
	MBeans and Server API objects
	JMX notifications
	JMX Example - TDI 6.1.1 and MC4J configuration
	TDI side
	MC4J side

	Backward compatibility
	Scenarios overview
	Guidelines for porting a TDI 6.0 Server API client to use a TDI 6.1.1 server
	Guidelines for implementing a Server API client capable of working with both TDI 6.0 and TDI 6.1.1 servers

	Server API changes in TDI 6.1.1
	Known issues
	com.ibm.di.config.interfaces.ExternalPropertiesDelegator
	com.ibm.di.config.base.BaseConfigurationImpl

	Appendix D. Implementing your own Components
	Support materials for Component development
	Developing a Connector
	Implementing the Connectors Java source code
	Using a Parser in your Connector
	Logging from a Connector

	Building the Connectors source code
	Implementing the Connectors GUI configuration form
	Introduction
	idi.inf file format
	Form description
	Examples

	Packaging and deploying the Connector

	Developing a Function Component
	Implementing Function Component Java source code
	Building the Function Component source code
	Implementing the Function Component GUI configuration form
	Packaging and deploying the Function Component

	See also

	Appendix E. Notices
	Third-Party Statements
	ICU License - ICU 1.8.1 and later

	Trademarks

