
IBM Security Directory Integrator
Version 7.2.0.1

Installation and Administrator Guide

SC27-2705-03

���

IBM Security Directory Integrator
Version 7.2.0.1

Installation and Administrator Guide

SC27-2705-03

���

Note
Before using this information and the product it supports, read the general information under “Notices” on page 377.

Edition notice

Note: This edition applies to version 7.2.0.1 of IBM Security Directory Integrator licensed program (5724-K74) and
to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2003, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this publication vii
Access to publications and terminology vii
Accessibility ix
Technical training ix
Support information ix
Statement of Good Security Practices x

Chapter 1. Introduction 1
IBM Security Directory Integrator Editions 1

Chapter 2. Installation instructions for
IBM Security Directory Integrator 3
Before you install 3

Disk space requirements 3
Memory requirements 3
Platform requirements 3
Components in IBM Security Directory Integrator 3
Other requirements 5

Root or Administrator Privileges. 5
Security Enhanced (SELinux) 6
Authentication of AMC on Unix/Linux . . . 7
Graphics packages for UNIX systems 7
Prerequisites for CE on AIX operating system . 7
Prerequisite for upgrading from V7.1.1 to V7.2
on Windows 2012 operating system. 8

Installing IBM Security Directory Integrator 8
Launching the appropriate installer 9
Using the platform-specific IBM Security
Directory Integrator installer. 12

Installing using the graphical installer 12
Install Panel flow 12
Uninstall Panel flow 31
Add Feature Panel flow 36
Migration Panel flow 38

Installing using the command line 41
Temporary file space usage during installation . . 43
Performing a silent install 43

Service name limitation on UNIX systems . . . 43
Post-installation steps 44

CE Update Site 44
Plug-ins 44
Administration and Monitoring Console (AMC) 44
Documentation 45
Migration 45

Installing local Help files 45
Deploying AMC to a custom ISC SE or IBM
Dashboard Application Services Hub 47
Installing or Updating using the Eclipse Update
Manager 48

Post-installation steps 50
Uninstalling 50

Launching the uninstaller. 50
Performing a silent uninstallation 51

Default installation locations. 51
Default solution directory 52

Chapter 3. Update Installer 53
The .registry file 55
Installation of fix packs 57
Rollback 57
Troubleshooting 58

Chapter 4. Supported platforms 59

Chapter 5. Migrating 61
Migrate files to a different location 61

Which files do not need to be modified to be
used in another location? 61
Which files need to be modified before they can
be used in another location? 62
Which files should not be used in another
location under normal circumstances? 63
Migrating files that contain encrypted data . . . 63

Migrate files to a newer version 63
Installer-assisted migration 64
Tool-assisted migration 65
Manual migration 65
Backing up important data 78

Files backed up by the Installer. 78
Upgrade from version 6.0 to 7.1 78
Upgrade from version 6.1.x to 7.1 78
Upgrade from version 7.0 to 7.1 79
Upgrade from version 7.1 to 7.1.1 79
Upgrade from version 7.1.1 to 7.2 79

Backup tools 79
Manual backup 80

Migrating AMC 7.x configuration settings to another
AMC deployment 80
Converting from EventHandlers to corresponding
AssemblyLines 81

TCP Server Connector 82
Mailbox Connector 83
JMX Connector 83
SNMP Server Connector 83
IBM Security Directory Server Changelog
Connector 84
HTTP Server Connector 84
LDAP Server Connector 85
Sun Directory Change Detection Connector. . . 85
Active Directory Change Detection Connector . . 86
DSMLv2SOAPServerConnector 87

Migrating BTree tables and BTree Connector to
System Store 88
Migrating Cloudscape database to Derby 88
Migrating global and solution properties files using
migration tool 90
Migrating Password plug-ins properties files using
migration tool 91

Chapter 6. Security 93
Manage keys, certificates and keystores 93

© Copyright IBM Corp. 2003, 2014 iii

Background 93
Public/private keys and certificates 94
Secret keys 94
Keystores 94
Keys for SSL 94
Keys for encryption 95
Tools 96

List the contents of a keystore 96
Create keys 96

Secure Sockets Layer (SSL) Support 99
Server SSL configuration of IBM Security
Directory Integrator components 100
Client SSL configuration of IBM Security
Directory Integrator components 101
SSL client authentication. 102
IBM Security Directory Integrator and Microsoft
Active Directory SSL configuration 102
Summary of properties for enabling SSL and
PKCS#11 support 104
SSL example. 105

IBM Security Directory Integrator component
as a server 105
IBM Security Directory Integrator component
as a client 106

Remote Server API 107
Configuring the Server API. 108

Remote Server API access on a Virtual
Private Network 110

Server API access options 110
Server API SSL remote access 111

Using Server API specific SSL properties . . 111
Using the standard SSL Java System
properties 112

Server API authentication 113
Local client session 113
Remote client session 113
JAAS authentication 113
SSL-based authentication 114
Username/password based authentication 115
LDAP Authentication support 116

LDAP Authentication Configuration . . . 116
LDAP Authentication Logic 118
LDAP Group Support 118

Host based authentication 120
Summary of Server API Authentication
options 121
Server API JMX layer. 121
Server API authentication setup examples 122

Server API Authorization 123
Authorization roles 124
Server API User Registry 125

Server Audit Capabilities 128
Auditing scope 129
Suppression of notifications 129
Sending notifications 130

IBM Security Directory Integrator Server Instance
Security 131

Stash File 131
Server Security Modes 132
Working with encrypted IBM Security Directory
Integrator configuration files 133

Creating an encrypted IBM Security
Directory Integrator configuration file from
scratch 135
Editing an encrypted IBM Security Directory
Integrator configuration file 135

Standard encryption of global.properties or
solution.properties. 135
Encryption of properties in external property
files 136
The IBM Security Directory Integrator
Encryption utility 136

IBM Security Directory Integrator System Store
Security 138
Miscellaneous Config File features 140

Component Password Protection 140
Saving passwords to configured Properties 141

Protecting attributes from being printed in clear
text during tracing 142
Encryption of IBM Security Directory Integrator
Server Hooks 142
Remote CE and SSL 142
Using the Remote Configuration Editor . . . 143

Summary of configuration files and properties
dealing with security 144
Web Admin Console Security 147
Miscellaneous security aspects. 147

HTTP Basic Authentication 147
Lotus Domino SSL specifics 147
Certificates for the IBM Security Directory
Integrator Web service Suite 148
IBM WebSphere MQ Everyplace authentication
with mini-certificates 148

Chapter 7. Reconnect Rule Engine 151
Reconnect Rules 151
User-defined rules configuration 153

Exception considerations 154
General reconnect configuration 155

Chapter 8. System Queue 157
System Queue Configuration 157

Apache ActiveMQ parameters 158
Configuration 158
Logging 159
Using SSL with ActiveMQ 159

IBM WebSphere MQ Everyplace parameters . . 160
IBM WebSphere MQ parameters 160
Microbroker parameters 161
JMSScript Driver parameters 161

The env JavaScript object 162
The ret JavaScript object 162
JavaScript example for Fiorano MQ 163

System Queue Configuration Example 163
Security and Authentication 164

IBM WebSphere MQ Everyplace Configuration
Utility 164

Authentication of IBM WebSphere MQ
Everyplace messages to provide Queue Security. 165
Support for DNS names in the configuration of
the IBM WebSphere MQ Everyplace Queue . . 166

iv IBM Security Directory Integrator: Installation and Administrator Guide

Configuration of High Availability for IBM
WebSphere MQ Everyplace transport of
password changes 167
Providing remote configuration capabilities in
the IBM WebSphere MQ Everyplace
Configuration Utility 167

Chapter 9. Encryption and FIPS mode 169
Configuring IBM Security Directory Integrator to
run FIPS mode 169

Symmetric cipher support 169
FIPS encryption 170

Connectors, Function Components,
Parsers 170
The IBM Security Directory Integrator
server and FIPS 171

Configuring SSL and PKI certificates 179
Encrypting and decrypting using CryptoUtils 180
Working with certificates 180

Comparing CA-signed and Self-signed
certificates 181
Configuring certificates using PKI and SSL 181

Using cryptographic keys located on hardware
devices 182

Using IBMPCKS11. 183
Enabling or disabling padding 183

Maintaining encryption artifacts - keys, certificates,
keystores, encrypted files 183

Chapter 10. Configuring the IBM
Security Directory Integrator Server
API 185
Server ID 185
Exception for password protected Configs 185
Server RMI 186
Config load time-out interval 186

Chapter 11. Properties 187
Working with properties. 187

Global properties 188
Solution properties 188
Java properties 189
System properties 190

Chapter 12. System Store 191
Property stores 194
Third-party RDBMS as System Store. 195

Oracle 196
MS SQL Server 196
IBM DB2 197
IBM solidDB 197
Using Derby to hold your System Store . . . 198

Configuring Apache Derby Instances 199
Starting Apache Derby in networked mode . . 199
Enabling user authentication in System Store 199
Create statements for System Store tables . . . 200

Backing up Apache Derby databases 201
Troubleshooting Apache Derby issues 201

Chapter 13. Command-line options 205
Configuration Editor 205
Server 206
Command Line Interface – tdisrvctl utility. . . . 209

Command Line Reference 210
Operations 211

Chapter 14. Logging and debugging 223
Script-based logging 224
Logging using the default Log4J class 224
Log Levels and Log Level control 228
Log4J default parameters 229

Creating your own log strategies 230

Chapter 15. Tracing and FFDC 233
Tracing Enhancements 233
Understanding Tracing 233
Configuring Tracing 234

Setting trace levels dynamically 234
Useful JLOG parameters. 235

Chapter 16. Administration and
Monitoring 237
Installation and Configuration 237

Deploying AMC into the Integrated Solutions
Console 237

Deploying AMC as a Windows service or
UNIX process using the IBM Security
Directory Integrator installer 238
Deploying AMC on existing IBM WebSphere
Application Server environment 238

Starting and logging in the AMC and Action
Manager 238
Enabling AMC 239

Running Action Manager remotely 240
AMC Logs 242
AMC in the Integrated Solutions Console 242
Action Manager 243

Enabling Action Manager 248
Action Manager status in real time 250
AMC force trigger for a given rule 250

AMC and Action Manager security 251
AMC and SSL 251
AMC and remote IBM Security Directory
Integrator server 253
AMC and role management 253
AMC and passwords 255
AMC and encrypted configs 255

Administation and Monitoring Console User
Interface 255

Log in and logout of the console 255
AMC Console Layout 256
Logging off the console 257
Using AMC tables 257

Select action drop-down menu 258
Paging 258
Sorting 258
Finding 259
Filtering 259

Servers 260

Contents v

Add a server 260
Modify a server 261

Console Properties 261
Solution Views 263

Configure ACLs 263
Local variables 264
Add a Solution View 264
Config files (allows loading/reloading of
configurations) 266

Custom load 267
Monitor Status and Action Manager 267

Monitor Status 268
Solution View Details. 268
View Components 271
Show Preferred Solution Views 271

Refreshing Solution View Details in AMC 271
Action Manager 272

Add/Edit configuration rules 272
Add/Modify Action 274
Substitute variable for event data. . . . 278
View Rules Summary. 280

Property Stores 280
Log Management 281
Preferred Solution Views 282

AMC and AM Command line utilities 283
Example walkthrough of creating a Solution View
and Rules 288

Chapter 17. Touchpoint Server 295
Touchpoint concepts 295

Touchpoint Server 295
Touchpoint Provider 296
Touchpoint Type 296
Touchpoint Instance 298
Touchpoint Template 301

Resource Persistence 305
Touchpoint Schema 306
Touchpoint Configuration 310

Instance Configuration 310
Destination Configuration 311

Touchpoint Instance communication protocol 312
Provider Touchpoint 312
Initiator Touchpoint 313
Intermediary Touchpoint 313
Representation of Entry objects as HTTP
content 313

Touchpoint Status Entry schema 314
Property sheet definitions 314
XML Schema locations 316

Error flows 316
Configuration 317
Authentication 319
Examples 319

Shipped example 319
Example steps for creating a Touchpoint
Instance using a JDBC Connector. 320

Provider Touchpoint Instance 320
Initiator Touchpoint Instance 321
Intermediary Touchpoint Instance 322

Chapter 18. Tombstone Manager . . . 325
Configuring Tombstones. 325

Configuration Editor Configuration screen. . . 325
AssemblyLine Configuration screen 327
The Tombstone Manager 328

Chapter 19. Multiple IBM Security
Directory Integrator services 331
IBM Security Directory Integrator as Windows
Service 331

Installing and uninstalling the service 331
Installing the service 331
Uninstalling the service 332

Starting and stopping the service 333
Logging 333
Configuring the service 333

IBM Security Directory Integrator as Linux/UNIX
Service 335
Command line support 337

Appendix A. Example Property files 339
Log4J.properties 340
jlog.properties 341
derby.properties 342
global.properties 342

Appendix B. Monitoring with external
tools 349
Monitoring IBM Security Directory Integrator with
ITM 350

Short presentation of the ITM architecture . . . 350
Importing an existing Agent configuration in
ITM Agent Builder 6.2 350
Creating an IBM SDI agent for ITM using ITM
Agent Builder 6.2 351
Generating the ITM Agent 357
Configuring the ITM Agent. 358
Monitoring IBM Security Directory Integrator
data 359

Defining thresholds 360
Creating links between tables 364

Purpose of links 364
Construction of links 365

Send custom notifications to ITM. 370
Limitations 370

Monitoring IBM SDI using OMNIbus 371
Configuring the EIF probe props file 371
Determine the severity for the events 371
Working with the EventPropertyFile.properties
file 372
Send custom notifications to OMNIbus 374

Appendix C. Accessibility features for
IBM Security Directory Integrator . . . 375

Notices 377

Index 381

vi IBM Security Directory Integrator: Installation and Administrator Guide

About this publication

This publication contains the information that you require to develop solutions by
using components that are part of IBM® Security Directory Integrator.

IBM Security Directory Integrator components are designed for network
administrators who are responsible for maintaining user directories and other
resources. It is assumed that you have practical experience with installation and
usage of both IBM Security Directory Integrator and IBM Security Directory Server.

The information is also intended for users who are responsible for the
development, installation, and administration of solutions by usingIBM Security
Directory Integrator. The reader must familiar with the concepts and the
administration of the systems that the developed solution would connect to.
Depending on the solution, these systems might include, but are not limited to,
one or more of the following products, systems, and concepts:
v IBM Security Directory Server
v IBM Security Identity Manager
v IBM Java™ runtime environment (JRE) or Oracle Java runtime environment
v Microsoft Active Directory
v Windows and UNIX operating systems
v Security management
v Internet protocols, including HyperText Transfer Protocol (HTTP), HyperText

Transfer Protocol Secure (HTTPS) and Transmission Control Protocol/Internet
Protocol (TCP/IP)

v Lightweight Directory Access Protocol (LDAP) and directory services
v A supported user registry
v Authentication and authorization concepts
v SAP ABAP Application Server

Access to publications and terminology
Read the descriptions of the IBM Security Directory Integrator Version 7.2.0.1
library and the related publications that you can access online.

This section provides:
v A list of publications in the “IBM Security Directory Integrator library.”
v Links to “Online publications” on page viii.
v A link to the “IBM Terminology website” on page ix.

IBM Security Directory Integrator library

The following documents are available in the IBM Security Directory Integrator
library:
v IBM Security Directory Integrator Version 7.2.0.1 Federated Directory Server

Administration Guide

Contains information about using the Federated Directory Server console to
design, implement, and administer data integration solutions. Also contains

© Copyright IBM Corp. 2003, 2014 vii

information about using the System for Cross-Domain Identity Management
(SCIM) protocol and interface for identity management.

v IBM Security Directory Integrator Version 7.2.0.1 Getting Started Guide

Contains a brief tutorial and introduction to IBM Security Directory Integrator.
Includes examples to create interaction and hands-on learning of IBM Security
Directory Integrator.

v IBM Security Directory Integrator Version 7.2.0.1 Users Guide

Contains information about using IBM Security Directory Integrator. Contains
instructions for designing solutions using the Security Directory Integrator
designer tool (the Configuration Editor) or running the ready-made solutions
from the command line. Also provides information about interfaces, concepts
and AssemblyLine creation.

v IBM Security Directory Integrator Version 7.2.0.1 Installation and Administrator Guide

Includes complete information about installing, migrating from a previous
version, configuring the logging functionality, and the security model underlying
the Remote Server API of IBM Security Directory Integrator. Contains
information on how to deploy and manage solutions.

v IBM Security Directory Integrator Version 7.2.0.1 Reference Guide

Contains detailed information about the individual components of IBM Security
Directory Integrator: Connectors, Function Components, Parsers, Objects and so
forth – the building blocks of the AssemblyLine.

v IBM Security Directory Integrator Version 7.2.0.1 Problem Determination Guide

Provides information about IBM Security Directory Integrator tools, resources,
and techniques that can aid in the identification and resolution of problems.

v IBM Security Directory Integrator Version 7.2.0.1 Message Guide

Provides a list of all informational, warning and error messages associated with
the IBM Security Directory Integrator.

v IBM Security Directory Integrator Version 7.2.0.1 Password Synchronization Plug-ins
Guide

Includes complete information for installing and configuring each of the five
IBM Password Synchronization Plug-ins: Windows Password Synchronizer, Sun
Directory Server Password Synchronizer, IBM Security Directory Server
Password Synchronizer, Domino® Password Synchronizer and Password
Synchronizer for UNIX and Linux. Also provides configuration instructions for
the LDAP Password Store and JMS Password Store.

v IBM Security Directory Integrator Version 7.2.0.1 Release Notes

Describes new features and late-breaking information about IBM Security
Directory Integrator that did not get included in the documentation.

Online publications

IBM posts product publications when the product is released and when the
publications are updated at the following locations:

IBM Security Directory Integrator Library
The product documentation site (http://www-01.ibm.com/support/
knowledgecenter/SSCQGF/welcome) displays the welcome page and
navigation for this library.

IBM Security Systems Documentation Central
IBM Security Systems Documentation Central provides an alphabetical list
of all IBM Security Systems product libraries and links to the online
documentation for specific versions of each product.

viii IBM Security Directory Integrator: Installation and Administrator Guide

http://www-01.ibm.com/support/knowledgecenter/SSCQGF/welcome
http://www-01.ibm.com/support/knowledgecenter/SSCQGF/welcome
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/IBM%20Security%20Systems%20Documentation%20Central/page/Welcome

IBM Publications Center
The IBM Publications Center site (http://www-05.ibm.com/e-business/
linkweb/publications/servlet/pbi.wss) offers customized search functions
to help you find all the IBM publications you need.

Related information

Information related to IBM Security Directory Integrator is available at the
following locations:
v IBM Security Directory Integrator uses the JNDI client from Oracle. For

information about the JNDI client, see the Java Naming and Directory Interface™

Specification at http://download.oracle.com/javase/7/docs/technotes/guides/
jndi/index.html .

v Information that might help to answer your questions related to IBM Security
Directory Integrator can be found at https://www-947.ibm.com/support/entry/
myportal/over-accesspubsview/software/security_systems/
tivoli_directory_integrator.

IBM Terminology website

The IBM Terminology website consolidates terminology for product libraries in one
location. You can access the Terminology website at http://www.ibm.com/
software/globalization/terminology.

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully. With this product,
you can use assistive technologies to hear and navigate the interface. You can also
use the keyboard instead of the mouse to operate all features of the graphical user
interface.

For additional information, see the Accessibility Appendix in Configuring Directory
Integrator.

Technical training
For technical training information, see the following IBM Education website at
http://www.ibm.com/software/tivoli/education.

Support information
IBM Support provides assistance with code-related problems and routine, short
duration installation or usage questions. You can directly access the IBM Software
Support site at http://www.ibm.com/software/support/probsub.html.

Troubleshooting provides details about:
v What information to collect before contacting IBM Support.
v The various methods for contacting IBM Support.
v How to use IBM Support Assistant.
v Instructions and problem-determination resources to isolate and fix the problem

yourself.

About this publication ix

 http://www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
 http://www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://download.oracle.com/javase/7/docs/technotes/guides/jndi/index.html
http://download.oracle.com/javase/7/docs/technotes/guides/jndi/index.html
https://www-947.ibm.com/support/entry/myportal/over-accesspubsview/software/security_systems/tivoli_directory_integrator
https://www-947.ibm.com/support/entry/myportal/over-accesspubsview/software/security_systems/tivoli_directory_integrator
https://www-947.ibm.com/support/entry/myportal/over-accesspubsview/software/security_systems/tivoli_directory_integrator
http://www.ibm.com/software/globalization/terminology
http://www.ibm.com/software/globalization/terminology
http://www.ibm.com/software/tivoli/education
http://www.ibm.com/software/support/probsub.html

Statement of Good Security Practices
IT system security involves protecting systems and information through
prevention, detection and response to improper access from within and outside
your enterprise. Improper access can result in information being altered, destroyed,
misappropriated or misused or can result in damage to or misuse of your systems,
including for use in attacks on others. No IT system or product should be
considered completely secure and no single product, service or security measure
can be completely effective in preventing improper use or access. IBM systems,
products and services are designed to be part of a comprehensive security
approach, which will necessarily involve additional operational procedures, and
may require other systems, products or services to be most effective. IBM DOES
NOT WARRANT THAT ANY SYSTEMS, PRODUCTS OR SERVICES ARE
IMMUNE FROM, OR WILL MAKE YOUR ENTERPRISE IMMUNE FROM, THE
MALICIOUS OR ILLEGAL CONDUCT OF ANY PARTY.

x IBM Security Directory Integrator: Installation and Administrator Guide

Chapter 1. Introduction

Read about the general concepts of IBM Security Directory Integrator before you
start the installation and administration tasks.

For an overview of the general concepts of IBM Security Directory Integrator, refer
to "IBM Security Directory Integrator concepts," in Configuring Directory Integrator.

For more detailed information about IBM Security Directory Integrator concepts,
see Reference.

IBM Security Directory Integrator Editions
Use the information provided here to know about the different editions of the
product.

The IBM Security Directory Integrator Version 7.2 exists in two different editions
(for which different licensing agreements apply):
v General Purpose Edition: Licensing for this edition is done on a per-processor

basis.
v Identity Edition: Licensing is done on a per-user basis.

Unlike earlier versions of IBM Security Directory Integrator, in Version 7.2, both the
General Purpose Edition and the Identity Edition are identical in their content,
functionality, and capabilities. They only differ in their licensing agreements.

© Copyright IBM Corp. 2003, 2014 1

2 IBM Security Directory Integrator: Installation and Administrator Guide

Chapter 2. Installation instructions for IBM Security Directory
Integrator

Installing IBM Security Directory Integrator comprises of checking the
requirements in prior, installing the software and performing some tasks to finally
get the software working.

Before you install
You must ensure that your system meets the minimum requirements before you
begin installing IBM Security Directory Integrator.

The IBM Security Directory Integrator installer uses the InstallAnywhere 2012 SP1
technology.

Disk space requirements
Check the disk space requirements at the link provided here.

See the Software requirements in the IBM Security Directory Integrator
documentation.

Memory requirements
Check the memory requirements at the link provided here.

See the Software requirements in the IBM Security Directory Integrator
documentation.

Platform requirements
Check the platform requirements at the link provided here.

See the Software requirements in the IBM Security Directory Integrator
documentation.

Components in IBM Security Directory Integrator
Go through the information provided here about the available components.

With some exceptions, the following components are available and selectable for
installation as part of IBM Security Directory Integrator:

Runtime Server
A rules engine used to deploy and run IBM Security Directory Integrator
integration solutions.

Configuration Editor
A development environment for creating, debugging and enhancing IBM
Security Directory Integrator integration solutions.

Note: IBM Security Directory Integrator does not support the
Configuration Editor (CE) on the following operating systems:
v Linux PPC
v Linux 390

© Copyright IBM Corp. 2003, 2014 3

sysreqs.html
sysreqs.html
sysreqs.html

v AIX® PPC 64

For information on how to develop solutions without a local Configuration
Editor, see “Using the Remote Configuration Editor” on page 143.

Configuration Editor Update Site (Eclipse update site for CE)

Use the CE Update Site folder to install the IBM Security Directory
Integrator Configuration Editor into an existing Eclipse installation. Use the
Eclipse software update tool and use this folder as a local update site. The
CE update site is only supported for deployment on Eclipse 3.5.1 or later.

Note: IBM Security Directory Integrator does not support the
Configuration Editor Update Site on the following operating systems:
v Linux PPC
v Linux 390
v AIX PPC 64

For information on how to develop solutions without a local Configuration
Editor, see “Using the Remote Configuration Editor” on page 143.

Java API documentation
Full HTML documentation of IBM Security Directory Integrator internals.
Essential reference material for scripting in solutions, as well as for
developing custom components.

Examples
A series of short, illustrative example Configs that highlight specific IBM
Security Directory Integrator features or components.

Help system (Host IBM Security Directory Integrator help locally. The default is
online.)

Note: This feature is deprecated and will be removed in a future version
of IBM Security Directory Integrator.

You can install an IBM User Interface Help System built on Eclipse
(formerly known as IBM Eclipse Help System, or IEHS) locally as an
alternative to using the global online help service. This option requires
manual download and deployment of the IBM Security Directory
Integrator help files after installation.

If your platform meets the system requirements, you can proceed with the
download and installation instructions documented in “Installing local
Help files” on page 45.

embedded Web platform (includes Integrated Solutions Console SE) v8.1.0.3
IBM Security Directory Integrator includes an embedded lightweight Web
server platform, sometimes referred to as LWI. This server platform is
based on the Eclipse and Open Services Gateway Initiative (OSGI)
architecture and supports running web applications and Web services. The
runtime provides a secure infrastructure with a small footprint and
minimal configuration. The embedded Web platform includes Integrated
Solution Console SE, which is used as the default alternative for deploying
AMC on an existing ISC installation. The embedded Web platform
provides an OSGI based lightweight infrastructure for hosting Web
applications and Web services with the following characteristics:
v Minimal footprint
v Minimal configuration

4 IBM Security Directory Integrator: Installation and Administrator Guide

v Compatibility with OSGI based ISC

Note: The AMC feature and the embedded Web platform are deprecated
and will be removed in a future version of IBM Security Directory
Integrator.

AMC: Administration and Monitoring Console
A browser-based application for monitoring and managing running IBM
Security Directory Integrator Servers. AMC runs in the Integrated Solutions
Console (ISC). In previous releases, AMC was a servlet application that
was deployed into an embedded or existing instance of IBM WebSphere
Application Server.

Note: The AMC feature is deprecated and will be removed in a future
version of IBM Security Directory Integrator.
IBM WebSphere Application Server supports ISC SE 7.2.0.2 and IBM
Dashboard Application Services Hub Version 3.1.

Password Synchronization Plug-ins
A solution built with the IBM Security Directory Integrator that can
intercept password changes on a number of systems.

Additional components automatically installed that are not selectable:

Java Runtime Environment (JRE) 7.0.4
A subset of the Java Development Kit (JDK) that contains the core
executable files and other files that constitute the standard Java platform.
The JRE includes the Java Virtual Machine (JVM), core classes, and
supporting files.

Note: The JRE used for any of the installed IBM Security Directory
Integrator packages is independent of any system-wide JRE or JDK you
may have installed on your system. The JRE is installed no matter what
features are selected. The uninstaller requires the JRE, so it is always
installed.

Miscellaneous
Contains the License Package, the Uninstaller, and the Update Installer.

The IBM Security Directory Integrator License Package contains the license
files for IBM Security Directory Integrator.

Other requirements
You must ensure that your system meets certain other requirements as described
here.

Root or Administrator Privileges
Ensure that you meet the requirements related to root or Administrator privileges.

Note the following differences when installing IBM Security Directory Integrator
with administrator as opposed to non-administrator privileges:
v Anyone installing IBM Security Directory Integrator must have write privileges

when installing to the specified installation location.
v Non-administrator users have different Configuration Editor shortcuts from

administrative users.

Chapter 2. Installation instructions for IBM Security Directory Integrator 5

v Users who do not have administrator privileges when installing IBM Security
Directory Integrator do not see the "Register AMC as a Service" and "Register
Server as System Service" windows.

v Once IBM Security Directory Integrator is installed using one particular non-root
user ID, that same user ID must be used to carry out any further maintenance
on that installation, like un-installation or migration to newer versions.

Security Enhanced (SELinux)
You can use the instructions provided here to modify the settings and run
SELinux. This will help you to run SELinux error free.

RedHat Linux (RHEL) has a security feature known as Security Enhanced Linux or
SELinux. SELinux provides security that protects the host from certain types of
malicious attacks. RHEL version 5.0 defaults SELinux to enabled. The RHEL 5.0
SELinux default settings have been known to prevent Java from running properly.
If you try to run the RHEL 5.0 IBM Security Directory Integrator installer, an error
resembling the following output may display:
./install_sdiv72_linux_x86_64.bin

Initializing Wizard........
Verifying JVM...

No Java Runtime Environment (JRE) was found on this system.

The reason for this error is that the Java Runtime Environment (JRE) that
InstallAnywhere 2012 SP1 extracts to the /tmp directory does not have the required
permissions to run. To avoid this error:
1. Disable SELinux: setenforce 0.
2. Run the IBM Security Directory Integrator installer.
3. Enable SELinux again: setenforce 1.

You can also edit the /etc/selinux/config configuration file to enable and disable
SELinux. The default settings for the /etc/selinux/config file resemble the
following lines:
This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - SELinux is fully disabled.
SELINUX=enforcing
SELINUXTYPE= type of policy in use. Possible values are:
targeted - Only targeted network daemons are protected.
strict - Full SELinux protection.
SELINUXTYPE=targeted

Modifying SELINUX to either SELINUX=permissive or SELINUX=disabled allows the
IBM Security Directory Integrator installer to run. However, both modifications of
the SELINUX property, to either SELINUX=permissive or to SELINUX=disabled, affect
the level of security for the host.

The IBM Security Directory Integrator installer uses a JRE located at
install_dir/jvm that cannot run with the SELinux default settings. The installer
makes a best effort to avoid the problems with the SELinux default settings by
trying to change the IBM Security Directory Integrator JRE security permissions
that are blocking the installer. The IBM Security Directory Integrator installer issues
a command that changes the security permissions for the IBM Security Directory
Integrator JRE so that it can run. The IBM Security Directory Integrator installer
issues the following command:
chcon -R -t textrel_shlib_t install_dir/jvm/jre

6 IBM Security Directory Integrator: Installation and Administrator Guide

Note: If the installer cannot issue the chcon command, or if there is an error when
issuing the command, you must edit the permissions manually.
Errors that resemble the following output indicate that the chcon command did not
work:
[root@dyn9-37-225-164 V7.2]# ./ibmdisrv
Failed to find VM – aborting

[root@dyn9-37-225-164 V7.2]# ./ibmditk
Failed to find VM – aborting

[root@dyn9-37-225-164 V7.2]# bin/amc/start_tdiamc.sh
Failed to find VM - aborting

Authentication of AMC on Unix/Linux
There are some limitations of a non-root user while working on AMC. Use the
information provided here to know more about it and the available workaround.

On some UNIX platforms the Administration and Monitoring Console (AMC) in
ISE SE fails to authenticate users, even when correct credentials are specified. Such
behavior is observed when AMC is run as a non-root user and the operating
system uses a password database (for example, a /etc/shadow file). For more
information on this issue, and for a workaround see "Authentication failure on
UNIX when LWI runs as non-root user" in Troubleshooting.

Graphics packages for UNIX systems
Use the instructions provided here to resolve the error generated while running the
CE without required graphics packages.

If the required graphics packages are not installed on UNIX systems, the following
error might occur later when you run the ibmditk command to start the
Configuration Editor:
No fonts found; this probably means that the fontconfig library is not correctly
configured. You may need to edit the fonts.conf configuration file.
More information about fontconfig can be found in the fontconfig(3) manual page
and on http://fontconfig.org

To avoid such errors complete the following steps:
1. Ensure that the following graphics packages are installed on UNIX systems:

v libgtk-x11-2.0.so.0

v libgthread-2.0.so.0

2. Run the following command:
export LD_LIBRARY_PATH=/usr/sfw/lib/:/usr/lib:/lib

3. Install or ensure that the following file is installed:
/etc/fonts/fonts.conf

4. Run the following command:
export FONTCONFIG_PATH=/etc/fonts

Prerequisites for CE on AIX operating system
Use the instructions provided here to install the RPMs on AIX.

When the CE is installed as a plug-in in Eclipse on an AIX operating system, it
does not launch and creates a log file.

To use the CE, the gtk+ RPM and dependencies must be available on AIX. Install
the following RPMs on AIX:
atk-1.12.3-2.aix5.2.ppc.rpm
cairo-1.8.8-1.aix5.2.ppc.rpm
expat-2.0.1-1.aix5.2.ppc.rpm

Chapter 2. Installation instructions for IBM Security Directory Integrator 7

fontconfig-2.4.2-1.aix5.2.ppc.rpm
freetype2-2.3.9-1.aix5.2.ppc.rpm
gettext-0.10.40-6.aix5.1.ppc.rpm
glib2-2.12.4-2.aix5.2.ppc.rpm
gtk2-2.10.6-4.aix5.2.ppc.rpm
libjpeg-6b-6.aix5.1.ppc.rpm
libpng-1.2.32-2.aix5.2.ppc.rpm
libtiff-3.8.2-1.aix5.2.ppc.rpm
pango-1.14.5-4.aix5.2.ppc.rpm
pixman-0.12.0-3.aix5.2.ppc.rpm
xcursor-1.1.7-3.aix5.2.ppc.rpm
xft-2.1.6-5.aix5.1.ppc.rpm
xrender-0.9.1-3.aix5.2.ppc.rpm
zlib-1.2.3-3.aix5.1.ppc.rpm

Note: The installed RPMs must be the versions listed here because earlier or later
versions may not be compatible.

To install these RPM versions, complete the following steps:
1. Download the RPMs to a new directory. You can find the RPMs at

ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/RPMS/ppc/.
2. Install the downloaded RPMs by using the following command. If an existing

version of an RPM is already installed, the command upgrades or downgrades
it to the downloaded version.
rpm -U *.rpm --force

3. Verify that the environment variable LIBPATH contains a path to the closure of
the libraries. For example: LIBPATH=/opt/freeware/64/lib/.

Prerequisite for upgrading from V7.1.1 to V7.2 on Windows 2012
operating system
Use the information provided here to know more about the prerequisite for
upgrading the versions.

If you are planning to upgrade IBM Security Directory Integrator Version 7.1.1 to
Version 7.2 on Windows 2012 operating system, then ensure that Windows 7
compatibility mode is enabled on the Version 7.1.1 uninstaller.exe before you start
the Version 7.2 installer. For more information, see the technical note at
http://www-01.ibm.com/support/docview.wss?uid=swg21634336.

Installing IBM Security Directory Integrator
Use the installer to install IBM Security Directory Integrator in its entirety, only
those IBM Security Directory Integrator components that you need, upgrade a
previous version (versions 7.0, 7.1, or 7.1.1), or add features to an existing IBM
Security Directory Integrator installation.

Note:

v Upgrading IBM Security Directory Integrator from versions 6.x or earlier,
directly to Version 7.2 is not supported. You must first upgrade from version 6.x
to version 7.1.1 and then from version 7.1.1 to Version 7.2.

v IBM Security Directory Integrator does not support the Configuration Editor
(CE) on the following operating systems:
– Linux PPC
– Linux 390
– AIX 64-bit

See “Using the Remote Configuration Editor” on page 143 and for more
information on using the product without a locally-installed Configuration
Editor.

8 IBM Security Directory Integrator: Installation and Administrator Guide

When you choose to upgrade from a previous version, IBM Security Directory
Integrator uninstalls the previous version; the uninstallation does not remove any
files that the user has created. User created files are still available after the new
installation completes. Configuration files such as global.properties and
am_config.properties are migrated to IBM Security Directory Integrator Version
7.2, keeping any custom configuration changes that have been made.

Note: Though the IBM Security Directory Integrator installer backs up and restores
some of the pre-defined configuration and property files, it is a good practice to
also manually back up your files and databases that have critical data before you
start the installation.

The IBM Security Directory Integrator Version 7.2 installation continues to include
the features available in previous versions of IBM Security Directory Integrator:
v Administration and Monitoring Console (AMC).
v Configuration Editor (CE)
v Examples
v IBM User Interface Help System built on Eclipse
v Java API Documentation
v Runtime Server

Note: For the remainder of this Installing and Administering, the variable
TDI_install_dir refers to the installation directory location chosen by the user on the
Destination Panel during installation. See “Default installation locations” on page
51 for information on where IBM Security Directory Integrator is usually installed.

Launching the appropriate installer
You can launch the Installer either by using the Launchpad or installing it directly.
Use the information provided here to know the detailed steps for launching.

You can launch the IBM Security Directory Integrator Installer by using one of the
following methods:

Launch the installer from the Launchpad
The IBM Security Directory Integrator Launchpad provides essential
getting started installation information and links to more detailed
information on various installation, migration, and post installation topics.
In addition, Launchpad allows you to launch the IBM Security Directory
Integrator installer.

Note: Using the Launchpad requires that you have a supported Web
browser installed and configured; if this is not the case, you cannot use the
Launchpad. However, you can still use the platform-specific installer
directly; see “Using the platform-specific IBM Security Directory Integrator
installer” on page 12 for instructions on how to use the IBM Security
Directory Integrator Installer.
1. Open the IBM Security Directory Integrator Launchpad by typing the

following command at the command prompt:
v For Windows platforms, type:

Launchpad.bat

v For all other platforms, type:
Launchpad.sh

Chapter 2. Installation instructions for IBM Security Directory Integrator 9

The menu on the left of the Launchpad allows you to navigate the
Launchpad windows. Click a menu item to view information about it.
The following menu items are available:

Welcome
The installation Welcome window contains links to:
v IBM Security Directory IntegratorWeb site
v IBM Security Directory Integrator Documentation
v Support Web site
v IBM Security Directory Integrator news group

The following options on the left are IBM Security Directory
Integrator Launchpad windows:

Release Information
This window contains a list of some of the new and improved
features available this release, as well as links to documentation
about the release.

Prerequisite Information
This window contains links to information about platform
support and hardware requirements.

Installation scenarios
This window contains a description of the IBM Security
Directory Integrator components available for installation. You
can install some or all of these components during installation.
This window also contains a description of the Password
Synchronization Plug-ins components available for installation.

Migration Information
This window contains a link to information about migrating

Screen capture name: Adminst-1

10 IBM Security Directory Integrator: Installation and Administrator Guide

from IBM Security Directory Integrator 7.0, 7.1, or 7.1.1 to
Version 7.2. It also contains information about migrating the
Derby System Store.

Note: Upgrading IBM Security Directory Integrator from
versions 6.x or earlier, directly to version 7.2, is not supported.
You must first upgrade from version 6.x to version 7.1.1 and
then from version 7.1.1 to version 7.2.

Install IBM Security Directory Integrator
This window contains links to the IBM Security Directory
Integrator Installer, as well as links to installation, migration
and supported platforms documentation. See “Using the
platform-specific IBM Security Directory Integrator installer” on
page 12 for instructions on how to use the IBM Security
Directory Integrator Installer.

Install IBM Security Directory Integrator Password Synchronization
Plug-ins

This window contains links to the IBM Security Directory
Integrator Password Synchronizer Plug-ins Installer, as well as
links to installation and supported platforms documentation.

Note: This window is not available on Linux PPC and Linux
390 platforms.

Exit Exits the Launchpad, without installing anything.
2. On the installation window, click IBM Security Directory Integrator

Installer. This launches the installer. See “Using the platform-specific
IBM Security Directory Integrator installer” on page 12 for instructions
on how to use the installer.

Launch the installer directly
You can launch the installer directly using the installation executable file:
1. Locate the installation executable file for your platform in the

tdi_installer directory on the product CD.

Windows Intel
install_sdiv72_win_x86.exe

Windows 64-bit
install_sdiv72_win_x86_64.exe

AIX install_sdiv72_aix_ppc.bin

AIX 64-bit
install_sdiv72_aix_ppc_64.bin

Linux 64-bit
install_sdiv72_linux_x86_64.bin

Power® PC Linux
install_sdiv72_ppclinux.bin

Solaris Sparc
install_sdiv72_solaris_sparc.bin

Solaris (Intel)
install_sdiv72_solaris_x86_64.bin

2. Double-click the executable file, or type the executable file name at the
command prompt. This launches the installer. See “Using the

Chapter 2. Installation instructions for IBM Security Directory Integrator 11

platform-specific IBM Security Directory Integrator installer” for
information on how to use the installer.

Once you have launched the installer, you are ready to begin the process of “Using
the platform-specific IBM Security Directory Integrator installer.”

Using the platform-specific IBM Security Directory Integrator
installer

Use the instructions provided here to install the platform specific IBM Security
Directory Integrator.

The platform-specific IBM Security Directory Integrator installer is launched either
from the Launchpad or from the command line. The IBM Security Directory
Integrator installer can be used to install a new copy of IBM Security Directory
Integrator, add a feature to an existing instance of IBM Security Directory
Integrator, or upgrade a previous version of IBM Security Directory Integrator. The
default install location on your computer for IBM Security Directory Integrator
varies with the platform.

During installation, the Installer will log its actions in files (sdiv72install.log and
sdiv72debug.log) residing in the system's temporary files directory, typically /tmp
or /var/tmp on UNIX platforms.

Installing using the graphical installer
Use the instructions provided here to install the IBM Security Directory Integrator
using graphical installer.

Install Panel flow
Use the instructions provided here to install the panel flow.

Pre-Initialization Panel
You invoke the installer executable either from the command line, or by
double clicking the executable (Windows only). This panel will initially
appear followed by a splash screen:

Note: The splash screen may also show a drop down list of language
choices if the underlying system supports more than one. (The default is
English.)

12 IBM Security Directory Integrator: Installation and Administrator Guide

Chapter 2. Installation instructions for IBM Security Directory Integrator 13

Introduction Panel
This is the welcome panel for the installer. This is the default panel
provided by the InstallAnywhere installer. You have the option to continue
by hitting the Next button or canceling out of the installer by pressing
Cancel.

14 IBM Security Directory Integrator: Installation and Administrator Guide

Previous Installations Panel
This panel informs your that detecting previous versions of IBM Security
Directory Integrator may take some time.

Chapter 2. Installation instructions for IBM Security Directory Integrator 15

If a previous version is detected, you are presented with a number of
upgrade options.

Note: Upgrading IBM Security Directory Integrator from versions 6.x or
earlier, directly to version 7.2, is not supported. You must first upgrade
from version 6.x to version 7.1.1 and then from version 7.1.1 to version 7.2.

16 IBM Security Directory Integrator: Installation and Administrator Guide

Software License Agreement Panel
The license panel is provided by the IBM license tool. This panel will be
shown in a New Security Directory Integrator v72 install and Upgrading
an older Security Directory Integrator version.

Chapter 2. Installation instructions for IBM Security Directory Integrator 17

Choose Install Folder Panel

Note:

1. This panel will not be shown if an upgrade from IBM Security
Directory Integrator Version 7.0, 7.1, or 7.1.1 was selected nor will it be
shown if you are adding features to an existing IBM Security Directory
Integrator Version 7.2 instance.

2. The destination panel will have the last value entered if you go
forward in the wizard to other panels and then come back.

3. Non-ASCII characters and the following list of characters are not
supported in the install path: ";|*?!#&$’,=^@%+

18 IBM Security Directory Integrator: Installation and Administrator Guide

Choose Install Set Panel
The typical install includes the Runtime Server, the Configuration Editor
(CE), Javadocs, Examples and AMC. It does not include the Configuration
Editor Update Site, IBM User Interface Help System built on Eclipse, or the
Password Synchronization Plug-ins.

If you select Typical, the feature selection panel is skipped. Also, you will
automatically get the bundled embedded Web platform/ISC package. The
ISC Directory panel will be skipped.

Chapter 2. Installation instructions for IBM Security Directory Integrator 19

Feature Selection Panel
This panel allows you to specify which features will be installed. Any
feature can be individually installed if needed. The only exception to this is
that if the Configuration Editor is selected, the server will be selected
because the Configuration Editor is a subfeature of the server.

If any feature is not supported on the platform it will not be shown on the
feature selection panel.

20 IBM Security Directory Integrator: Installation and Administrator Guide

The following list summarizes each feature:

Runtime Server
A rules engine used to deploy and run IBM Security Directory
Integrator integration solutions.

Configuration Editor
A development environment for creating, debugging and
enhancing IBM Security Directory Integrator integration solutions.
This feature can not be installed without installing the Runtime
Server.

Configuration Editor Update Site
Patterned after the Eclipse Update Site. Contains the necessary files
to install the Config Editor to an existing Eclipse. It will also be
used for maintenance. (Not available on zLinux or Linux PPC.)

Javadocs
Full HTML documentation of IBM Security Directory Integrator
internals. Essential reference material for scripting in solutions, as
well as for developing custom components.

Examples
A series of short, illustrative example Configs that highlight
specific IBM Security Directory Integrator features or components.

Chapter 2. Installation instructions for IBM Security Directory Integrator 21

IBM User Interface Help System built on Eclipse (local help)
An IBM User Interface Help System (previously known as IEHS)
built on Eclipse that you can install locally as an alternative to
using the global online help service. This option requires manual
download and deployment of IBM Security Directory Integrator
help files after installation.

embedded web platform
The embedded Web platform package, which includes ISC SE.

Administration and Monitoring Console
A browser-based application for monitoring and managing running
IBM Security Directory Integrator Servers.

Password Synchronization Plug-ins
IBM Security Directory Integrator password synchronization
plug-ins.

IBM Security Directory Integrator Solutions Directory Panel
This panel is only displayed if the Server feature was chosen. It lets you
select the default Solution Directory for the server. The Solution Directory
is a static directory containing the solutions created by the user that will be
run. By default, this panel will select to have the Solution Directory set the
user's home directory.

If you select the Select a directory to use radio button, you need to specify
a valid Solution Directory. The Universal Naming Convention (UNC) path
is supported for Solution Directory during installation time.

Note: This panel will not be shown in an upgrade from IBM Security
Directory Integrator Version 7.0, 7.1, or 7.1.1.

If you are adding features, and the Server feature was already installed,
this panel will not be shown.

22 IBM Security Directory Integrator: Installation and Administrator Guide

Server Port Configuration Panel

You will be asked for 4 server ports numbers. There will be default values
for these ports. The installer will make sure that you enter a valid and
available port number (see Server Port Configuration).

Chapter 2. Installation instructions for IBM Security Directory Integrator 23

Register Server as a System service panel
This panel will only be displayed if new instance of IBM Security Directory
Integrator is getting installed and you have selected the Server to install as
a feature or if it is an upgrade installation. Also this panel will only be
displayed if you have Administrative privileges.

If the checkbox is checked, then only SERVER will be registered as a
service for that OS.

The default is for the checkbox to be unchecked. The two text boxes will be
enabled only if the checkbox is checked. The first text box is for service
name and the second is for the port number that the server as a system
service will use to run on.

The installer will do its best to provide a valid default value for Service
Name (see Registering Server as a Windows service or Unix Process for
details on this process). If the installer is unable to determine a valid
Service Name, the field will be blank. You will not be able to move
forward until you enter a valid service name.

Note: If you are installing on an UNIX system, ensure that the Service
Name does not exceed the maximum length of 4 characters. If it exceeds 4
characters, this limitation results in an error and you cannot proceed with
the installation.

24 IBM Security Directory Integrator: Installation and Administrator Guide

IBM Security Directory Integrator AMC Deployment Panel
This panel is only displayed if the Custom install set was chosen and you
also chose to install the AMC feature. You must choose which ISC instance
AMC will be deployed to. You may choose to deploy AMC to the bundled
ISC that is shipped with IBM Security Directory Integrator, an ISC that is
already installed on the target machine, or choose to deploy AMC at a later
time. When choosing an ISC that is already installed, the user must select a
directory that contains the embedded Web platform (LWI) or IBM
WebSphere Application Server, for example C:\Program
Files\IBM\WebSphere\AppServer or C:\dev\IBM\TDI\lwi.

If you did not choose to install the embedded web platform feature, then
that choice will be grayed out.

Note:

1. If you are adding features and the AMC feature is already installed,
this panel will be skipped.

2. When deploying AMC to IBM WebSphere Application Server, the
Security Directory Integrator AMC Admin role is not assigned
automatically as when deploying to the embedded Web platform. This
role must be manually assigned by the ISC console administrator.

Chapter 2. Installation instructions for IBM Security Directory Integrator 25

ISC Port panel
This panel is shown either during a typical install or custom install, when
you choose to deploy AMC to an Embedded instance of ISC. The ISC
instance could be the embedded ISC that is shipped with IBM Security
Directory Integrator, or it can be an ISC that is already resident on the
target system.

If you are deploying AMC to a custom SE, the default values that are used
for the HTTP and HTTPS ports are found as follows:

Look in the TDI_Selected_ISC/conf/overrides/*.properties files for the
first occurrence of the properties com.ibm.pvc.webcontainer.port and
com.ibm.pvc.webcontainer.port.secure and use the associated values. If
either of these properties is not defined in any of the .properties files in
that directory, look in TDI_Selected_ISC/conf/config.properties for them.
If the HTTP port is not found, it will default to port 80, and if the HTTPS
port is not found, it will default to port 443. The help port will have the
same value as the HTTP port.

If you are deploying AMC to a custom AE, the default values that are used
for the HTTP and HTTPS ports are found as follows:

Look for files named serverindex.xml file in the following directory
specification:

TDI_Selected_ISC\profiles\AppSrv01\config\cells*\nodes*.

26 IBM Security Directory Integrator: Installation and Administrator Guide

Inside those files, look for XML blocks similar to the following for the
HTTP port:
<specialEndpoints xmi:id="NamedEndPoint_1200476459036"

endPointName="WC_adminhost">
<endPoint xmi:id="EndPoint_1200476459036" host="*" port="9060"/>
</specialEndpoints>

and similar to the following for the HTTPS port:
<specialEndpoints xmi:id="NamedEndPoint_1200476459039"

endPointName="WC_adminhost_secure">
<endPoint xmi:id="EndPoint_1200476459039" host="*" port="9043"/>
</specialEndpoints>

The installer searches for a specialEnpoints tag that has an endPointName
of WC_adminhost or WC_adminhost_secure and use the associated port
values from the embedded endPoint tags. In the event the HTTP port is
not found by this method, it 9060 and in the event the HTTPS port is not
found, it will default to 9043. The help port will be set to the HTTP port
value.

The values shown are the defaults for the embedded SE.

The panel will not allow ports to be entered that are already in use. A
warning message will appear asking you to choose another port value.

Register AMC as a service Panel
If the checkbox is checked, then AMC will be registered as a service for
that OS.

Chapter 2. Installation instructions for IBM Security Directory Integrator 27

The default is for the checkbox to be unchecked.

This panel is only shown if the embedded web platform and AMC features
were selected and if you have administrative privileges.

The installer will do its best to provide a valid default value for Service
Name (see Registering AMC as a Windows service or Unix process for
details on this process). If the installer is unable to determine a valid
Service Name, the field will be blank. You cannot move forward until you
enter a valid service name.

Note: If you are installing on an UNIX system, ensure that the Service
Name does not exceed the maximum length of 4 characters. If it exceeds 4
characters, this limitation results in an error and you cannot proceed with
the installation.
The AMC feature is deprecated and will be removed in a future version of
IBM Security Directory Integrator.

Pre-Install Summary Panel
This Summary panel gives you a summary of what features will be
installed and where they will be installed to.

28 IBM Security Directory Integrator: Installation and Administrator Guide

Installation Progress Panel
This panel is displayed while the actual install is occurring. This panel is
the Progress Panel provided by InstallAnywhere. All of the features are
installed while this is occurring.

Chapter 2. Installation instructions for IBM Security Directory Integrator 29

Installation Complete Panel
This panel shows you that the install has completed successfully. When the
Done button is pressed, the install is complete. Start the Configuration
Editor is checked by default.

30 IBM Security Directory Integrator: Installation and Administrator Guide

Uninstall Panel flow
Use the instructions provided here to uninstall the panel flow.

Uninstall Welcome Panel
This is an InstallAnywhere panel, with standard content.

Chapter 2. Installation instructions for IBM Security Directory Integrator 31

Choose Product Features Panel
This panel allows you to choose to uninstall the entire product, or only
specific features.

32 IBM Security Directory Integrator: Installation and Administrator Guide

If Uninstall Specific Features is chosen, the following panel is also
displayed:

Chapter 2. Installation instructions for IBM Security Directory Integrator 33

Uninstall Progress Panel
This panel is shown during uninstallation.

34 IBM Security Directory Integrator: Installation and Administrator Guide

Uninstall Finish Panel
This panel shows you that the uninstallation has completed successfully.
When the Done button is pressed, the uninstaller exits.

Chapter 2. Installation instructions for IBM Security Directory Integrator 35

Add Feature Panel flow
You can know more about the add feature flow with information provided here.

The Add Feature flow is similar to the new install flow. Only the unique panels
will be shown here.

Pre-Initialization Panel

The Welcome Panel

Upgrade Panel
After the Welcome panel and the Previous IBM Security Directory
Integrator information panel, if there is an instance of IBM Security
Directory Integrator already installed on the box, you will see this panel.

36 IBM Security Directory Integrator: Installation and Administrator Guide

You are not able to choose the Add Feature button if there is no IBM
Security Directory Integrator Version 7.2 instance available.

You are not able to choose the Upgrade button if there are no previous
versions of IBM Security Directory Integrator available.

The IBM Security Directory Integrator drop down is enabled if the Add
Features button is chosen.

Feature Selection Panel
The next panel in the Add Feature sequence will be the Feature Selection
panel, with the already installed features selected and grayed out.

Chapter 2. Installation instructions for IBM Security Directory Integrator 37

At this point you can add any additional features you choose.

You are not allowed to remove features.

From this point the panel flow matches the new install flow. Panels related
to already-installed features will, however, be skipped.

If you select Configuration Editor, Server will also automatically be
selected. Also if both features are selected and you deselect Server, then
Configuration Editor will also be deselected.

Security Directory Integrator Solutions Directory Panel

Register Server as a System Service Panel

Security Directory Integrator AMC Deployment Panel

Register AMC as a service Panel

Pre-Install Summary Panel

Installation Progress Panel

Installation Complete Panel

Migration Panel flow
You can know more about the migration panel flow with information provided
here.

38 IBM Security Directory Integrator: Installation and Administrator Guide

The Migration flow is similar to the new install flow. Only the unique panels will
be shown here.

Pre-Initialization Panel

The Welcome Panel

Upgrade Panel

Note: If you are planning to upgrade IBM Security Directory Integrator
Version 7.1.1 to Version 7.2 on Windows 2012 operating system, then
ensure that Windows 7 compatibility mode is enabled on the Version 7.1.1
uninstaller.exe before you start the Version 7.2 installer. For more
information, see the technical note at http://www-01.ibm.com/support/
docview.wss?uid=swg21634336.
After the Welcome panel and the Previous SDI information panel, if there
is an instance of IBM Security Directory Integrator already installed on the
box, you will see this panel:

You are not able to choose the Add Feature button if there is no IBM
Security Directory Integrator Version 7.2 instance available.

You are not able to choose the Upgrade button if there are no previous
versions of IBM Security Directory Integrator available.

The previous IBM Security Directory Integrator version drop down is
enabled if the Upgrade button is chosen.

Chapter 2. Installation instructions for IBM Security Directory Integrator 39

IBM Security Directory Integrator 6.1.x, 7.0, 7.1.x Upgrade Flow

Note: Upgrading IBM Security Directory Integrator from versions 6.x or
earlier, directly to version 7.2, is not supported. You must first upgrade
from version 6.x to version 7.1.1 and then from version 7.1.1 to version 7.2.
If you choose to upgrade from IBM Security Directory Integrator version
7.1.1, the next panel you will see will be the License panel and after
accepting the license, the Feature selection panel:

It will show those features (selected) that were already installed in the
previous version, and allow you to add new ones. You are not allowed to
disable features that were previously installed.

If the Server was previously installed, the SDI Solutions Directory panel
will be skipped. The installer will use the value from the previous
installation.

If AMC was previously installed, you will still see the Choose ISC panel, in
an IBM Security Directory Integrator 6.x.x migration.

The rest of the panel flow is the same as a new install. In an IBM Security
Directory Integrator 7.0 migration, there is one new feature: Register server
as system service, this panel is only shown after the feature selection
panel.

40 IBM Security Directory Integrator: Installation and Administrator Guide

If you select Configuration Editor, Server will also automatically be
selected. Also if both features are selected and you deselect Server, then
Configuration Editor will also be deselected.

Installing using the command line
Here is the list of commands you can use while doing the installation.

The following command line options are supported by the IBM Security Directory
Integrator installer:

-i Sets the installer interface mode: silent, console or gui.
install_sdiv72_win_x86.exe -f Response File Name -i silent

install_sdiv72_win_x86.exe –i console

-f Sets the location of a response file (installer.properties file) for the
installer to use.
install_sdiv72_win_x86.exe –f installer.properties

This path can be absolute or relative. (Relative paths are relative to the
location of the installer.)

-r Creates a response file.
install_sdiv72_win_x86.exe –r myinstaller.properties

Note: The IBM Security Directory Integrator installer creates the
tdi_respfile72.txt response file in the system's temporary files directory,
even if -r option is not specified. For example:
v On Windows platform, the response file is created in the

C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp directory.
v On non-Windows platform, the response file is created in the /tmp

directory.

The TDI_install_dir/examples/install directory contains example
response files for various installation and uninstallation scenarios.

-D Passes custom command-line arguments.
install_sdiv72_win_x86.exe -Dmyvar=myvalue

-l Uses the specified language code (and optional country code) to set the
locale for the InstallAnywhere installer.
install_sdiv72_win_x86.exe -l en

install_sdiv72_win_x86.exe -l pt_BR

The required language code is a two-character (commonly lowercase) code
defined by the ISO-639 standard. InstallAnywhere accepts both old (iw, ji,
and in) and new (he, yi, and id) language codes.

The optional country code is a two-character (commonly uppercase) code
defined by the ISO-3166 standard.

Locale options are only respected if the installer includes localizations for
the locale you specify.

-? Shows help for the InstallAnywhere installer.

On Windows, -help only works from the console launcher. Make sure to
set the LaunchAnywhere to Console on the Windows tab of the Project >

Chapter 2. Installation instructions for IBM Security Directory Integrator 41

Platforms subtask. (For an installed LaunchAnywhere to provide this
information, you need to make sure it is explicitly set to Console Launcher
on the action.)

The following command line option is unique to the IBM Security Directory
Integrator installation Wizard:

LAX_VM
The LAX_VM parameter is used to boot the installer from Java virtual
machine, which is installed on the system.

You need to specify absolute path of the Java executable file that resides in
the Java bin directory. For example,
install_sdiv72_win_x86.exe LAX_VM "Java_DIR/jre/bin/java.exe"

Use only the space characters between the arguments.

Note: Make sure that you use the absolute path of IBM JRE 7.0.4 and
above, as parameter value. The IBM Security Directory Integrator installer
may not work correctly with other JREs.

-DTDI_BACKUP="true"

This parameter should only be passed in on an uninstallation. This
parameter is provided for future migration considerations; for example:
TDI_install_dir_uninst\uninstaller.exe –DTDI_BACKUP="true"

This instructs the uninstaller to run the TDI_install_dir/bin/
tdiBackup.bat(.sh) script, which in turn will cause a directory
TDI_install_dir/backup_tdi to be created. A backup of a number of files
particular to your installation will be stored into this directory, including
your global properties files, global certificates and the like.

Note: On a non-Windows system the $ (dollar) must be escaped with a \
(backslash). For example:
TDI_install_dir_uninst\uninstaller -D\$TDI_BACKUP\$="true"

-D$TDI_SKIP_VERSION_CHECK$="true"
This parameter will cause the installer to skip any previous version checks.
This essentially disables any migration from previous releases.

In a silent install, if this skip option is chosen and the install directory is
same as an earlier installation of IBM Security Directory Integrator, it will
cause the installer to stop.

Note: On a non-Windows system the $ (dollar) sign must be escaped with
a \ (backslash). For example:
./install_sdiv72_linux_x86_64.bin -D\$TDI_SKIP_VERSION_CHECK\$="true"

-D$TDI_NOSHORTCUTS$="true"

This parameter is used to stop the installer from creating any shortcuts to
the uninstaller, CE, or AMC.

Note: On a non-Windows system the $ (dollar) must be escaped with a \
(backslash). For example:
./install_sdiv72_linux_x86_64.bin -D\$TDI_NOSHORTCUTS\$="true"

42 IBM Security Directory Integrator: Installation and Administrator Guide

Temporary file space usage during installation
Use the instructions provided here to make the best use of temporary file storage.

During installation, the installer may use a substantial amount of temporary file
space in order to stage files. If your system is constrained in this regard, errors
during installation might occur.

UNIX/Linux systems typically use /tmp or /var/tmp as temporary files storage,
whereas on Windows, the temporary file storage area is found in the location
pointed to by the environment variable TEMP.

InstallAnywhere installers can be instructed to redirect their temporary file usage
by setting the environment variable IATEMPDIR before starting the installer. For
example, on UNIX:
export IATEMPDIR=/opt/IBM/TDI/temp

Then, start your console mode installers from the session in which you have set
the IATEMPDIR variable.

Performing a silent install
You can perform a silent installation with the help of instructions provided here.

To perform a silent installation you must first generate a response file. To generate
this file, perform a non-silent installation with the -r option specified, for example:
install_sdiv72_win_x86.exe -r Response File Name

The response file is created in the directory that you specify during installation.

Note: The directory TDI_install_dir/examples/install contains a number of
example response files for various installation and uninstallation scenarios.
Once the response file is created, you can install silently using the following
command:
install_sdiv72_win_x86.exe –i silent –f Response File Name

Note: The examples in this document use the Windows platform installation
executable file. See “Launching the appropriate installer” on page 9 for a list of
executable file names for each supported platform.

Service name limitation on UNIX systems
Consider the limitations while naming a service on UNIX system.

During silent installation of IBM Security Directory Integrator on UNIX systems,
ensure that the service name for IBM Security Directory Integrator and AMC does
not exceed the maximum length of 4 characters. This value is specified in the
response file, examples\install\TDICustomInstallRsp_Unix.txt.

The silent installation fails if you specify a name that is longer than 4 characters,
for example:
TDI_SERVER_SERVICENAME=tdisrv_silent
TDI_AMC_SERVICENAME=tdiamc_silent

The log files, /tmp/sdiv72install.log and /tmp/sdiv72debug.log, report the
following error:

Chapter 2. Installation instructions for IBM Security Directory Integrator 43

tdisrv_silent must be 4 characters or less.
A service already exists with that name or the name is invalid.
UNIX based platforms, maximum 4 characters name is valid.

If this error occurs, you must edit the response file and change the values of the
TDI_SERVER_SERVICENAME and TDI_AMC_SERVICENAME properties to be 4
characters or less.

Post-installation steps
Perform the steps listed here after the installation is done.

CE Update Site
Use the information provided here to manually deploy the Eclipse.

If the CE Update site was installed, you now have to manually deploy into Eclipse.
See the section entitled “Installing or Updating using the Eclipse Update Manager”
on page 48 for more information.

Plug-ins
Refer to the information provided here to access the documentation about
password synchronization plug-ins.

If any of the password synchronization plug-ins were installed, see the Password
Synchronization Plug-ins section of the IBM Knowledge Center for IBM Security
Directory Integrator for information on how to deploy the plug-in code.

Administration and Monitoring Console (AMC)
You can know more about the general information, information about web
platform deployment and deferred deployment of Administration and Monitoring
Console.

General information

v For more information on AMC, see “Administration and Monitoring Console
(AMC).”

v When you are ready to log into the console, browse to http://hostname:port/
ibm/console. For more information, see section “Log in and logout of the
console” on page 255.

v For more information on adding users and user roles, see the section “Console
user authority” in “AMC in the Integrated Solutions Console” on page 242.

Bundled embedded web platform deployment

v If you installed AMC with the bundled embedded web platform and are ready
to use AMC, you will need to run the commands to start AMC and Action
Manager (AM) before you can log into the ISC console. For more information,
see section “Starting and logging in the AMC and Action Manager” on page 238.

Note: On Windows, a shortcut to the launchAMC.html file is created in the start
menu under Program Files.

v By default, the user who installs IBM Security Directory Integrator is the only
one with access to log in to the console.

Customer or deferred deployment

44 IBM Security Directory Integrator: Installation and Administrator Guide

http://www-01.ibm.com/support/knowledgecenter/SSCQGF/welcome
http://www-01.ibm.com/support/knowledgecenter/SSCQGF/welcome

v If you chose a custom to deploy AMC to, and are now ready to deploy, see
“Deploying AMC to a custom ISC SE or IBM Dashboard Application Services
Hub” on page 47. When deploying AMC in such a way the installer does not
automatically assign the current user the SDI AMC Admin role. This right needs
to be manually authorized by an administrator of the ISC console. This is
typically done using the Users and Groups -> Administrative User Roles panel
of the IBM Dashboard Application Services Hub console. Alternatively this role
could be assigned using the setAMCRoles command.

v If you chose to defer deployment of AMC into an ISC and are ready to do so,
see section “Deploying AMC to a custom ISC SE or IBM Dashboard Application
Services Hub” on page 47.

Note: If you have done a custom ISC SE/AE deployment then at a minimum
you will need to ensure that AM is started after you start the ISC SE/AE that
AMC was installed into.

Documentation
You can access the documentation online or choose to deploy it manually. Read
more about it in the information provided here.

The documentation system used by IBM Security Directory Integrator is the IBM
Knowledge Center. After you have done a default installation, this means that IBM
Security Directory Integrator documentation is made available to you online, on
the Web, hosted by IBM. You may, however, choose to deploy the documentation
locally. For more information, see “Installing local Help files.”

If you are new to IBM Security Directory Integrator, we recommend that you read
and step through the Getting Started in order to get used to the concepts used.

If you have used earlier versions of IBM Security Directory Integrator, then section
3 of the Configuring Directory Integrator will be very beneficial to you in order to
understand the new IDE framework and layout. It will also explain how you can
import and open your existing configurations; and how the Server still uses the
Config model at runtime.

Migration
Read more about migration through the link provided here.

If you have installed an earlier version of IBM Security Directory Integrator, then
you will most likely need to migrate certain aspects of your previous deployment.
More information on what to do in this case can be found under Chapter 5,
“Migrating,” on page 61.

Installing local Help files
Use the instructions provided here to install the documentation locally.

Note: This feature is deprecated and will be removed in a future version of IBM
Security Directory Integrator.

The IBM Security Directory Integrator installer does not contain any user
documentation, other than the Java API documentation, which can be displayed by
selecting the Help -> Welcome screen, JavaDocs link in the Configuration Editor.
IBM provides the user documentation in online form in the IBM Knowledge
Center for IBM Security Directory Integrator.

Chapter 2. Installation instructions for IBM Security Directory Integrator 45

http://www-01.ibm.com/support/knowledgecenter/SSCQGF/welcome
http://www-01.ibm.com/support/knowledgecenter/SSCQGF/welcome

IBM Security Directory Integrator is equipped with code1 to provide you with
context-dependent online help that you can launch from the Configuration Editor
(CE). By default, this code resolves the documentation from the online product
documentation as referenced above. You can, however, install the documentation
locally, such that you are not dependent upon the Internet to be able to read it.

These are the steps you must take to install documentation locally:
v The code to handle the documentation files, the IBM User Interface Help System

built on Eclipse, is not installed by default. In order to install the Help system,
you will need to do a custom install, and install the Help system feature into
your existing IBM Security Directory Integrator installation.

v All the manuals are stored together in one compressed directory, which when
uncompressed contains an Eclipse Document plug-in.

v All the manuals can be downloaded in their compressed form from the IBM
Knowledge Center for IBM Security Directory Integrator. On the welcome page
for the current release, click the Information center plug-ins link under the column
More information.

v The entire documentation package, di_plug-ins-7.2.0.1.zip, should be
uncompressed into the right place: TDI_install_dir/ibm_help/eclipse/plugins
folder (or uncompress somewhere else, and move into the right place). The
package contains the actual IBM Security Directory Integrator documentation in
com.ibm.IBMDI.doc_7.2.0.1, alongside a number of other directories whose
names end in .doc; all of those directories should be at the same aforementioned
plugins level.

v The location of the documentation that the CE tries to access is set in the
global.properties file, which resides in the etc folder in the installation
directory of IBM Security Directory Integrator, or solutions.properties in the
Solutions Directory. By default, this points to the online product documentation.
If you change the following lines as shown here, then next time you run the CE
and launch Help, it uses the local help system.
com.ibm.di.helpHost=publib.boulder.ibm.com
com.ibm.di.helpPort=80

to:
com.ibm.di.helpHost=localhost
com.ibm.di.helpPort=9999

v The location of the documentation server that AMC tries to access is set in its
web.xml file. Open the web.xml file which is located in the WEB-INF folder of
tdiamc webapp and list the IP address (or hostname) and port of the help server,
for both occurrences of the following attributes: InfocenterHostName and
InfocenterPort.

After you install the documentation in the plugins directory as outlined above, you
can also decide to host the documentation on that computer for other installations
of IBM Security Directory Integrator in your environment. In the
TDI_install_dir/ibm_help directory there are a number of .bat files (Windows) or
.sh files (Unix/Linux) that enable you to do this.

Starting and stopping the local documentation task

You must first start a local task to serve the documentation.

1. The help system is powered by Eclipse™ technology. (http://www.eclipse.org)

46 IBM Security Directory Integrator: Installation and Administrator Guide

http://www-01.ibm.com/support/knowledgecenter/SSCQGF/welcome
http://www-01.ibm.com/support/knowledgecenter/SSCQGF/welcome

IC_start.bat or IC_start.sh
If you run this script, the script starts an information center on
http://your_IP_address:9999

By editing this file, you can change the port number from the default, 9999;
if you want to change this, to for example 80, change "-port 9999" to "-port
80". On those clients that are trying to access this information center, the
port must match another property in the global.properties or
solution.properties file, com.ibm.di.helpPort – its default is set to 80.
Also, the com.ibm.di.helpHost property should read something like
infocenter_IP_address, where infocenter_IP_address is the address of your
local information center.In addition, in order for AMC to find this
information center, you must update the parameters InfoCenterHostname
and InfoCenterPort attributes in its configuration file, web.xml, to match the
values above.

IC_stop.bat or IC_stop.sh
Stops the help system, a Java program, that serves the local information
center.

help_start.bat or help_start.sh
Similar to IC_start, except the port used is a random one, and it also
launches a local browser showing the start page. As the port is random,
unsuitable for use other than on the local computer.

help_stop.bat or help_stop.sh
Stop the local Java task that was started by help_start.

Deploying AMC to a custom ISC SE or IBM Dashboard Application
Services Hub

Use the instructions provided here to deploy the AMC after deferring it.

If you chose to defer deployment of AMC to ISC, and are now ready to deploy,
follow these steps:
v Execute the following scripts:

TDI_install_dir/bin/setISCHome.bat(sh) ISC location
TDI_install_dir/bin/amc/install.bat(sh)
TDI_install_dir/bin/amc/setAMCRoles.bat(sh) username

Note:

1. Calling the setAMCRoles script is optional for both SE and AE. If executed,
username should be an already existing one on the ISC/IBM WebSphere
Application Server environment. As an alternative, you can use the ISC
console ("Console User Authority" panel specifically) to manually assign one
of the roles that came with AMC - "SDI AMC Admin" and "SDI AMC User"
to a user.

2. See the section “AMC in the Integrated Solutions Console” on page 242 for
more information on AMC roles.

v Alter the amc.properties file so the lines specifying am.api.port and
amc.help.port have appropriate port values. For ISC SE this file is located in ISC
location/runtime/isc/eclipse/plugins/AMC_7.2.0.0/ and for IBM Dashboard
Application Services Hub this file is located in ISC location/systemApps/
isclite.ear/tdiamc.war

Chapter 2. Installation instructions for IBM Security Directory Integrator 47

If you chose a custom IBM Dashboard Application Services Hub to deploy AMC
to, and are now ready to deploy, follow this step:
v Execute the following script:

TDI_install_dir/bin/amc/setAMCRoles.bat(sh) username

Note:

1. Calling the setAMCRoles script is optional for both SE and AE. If executed,
username should be an already existing one on the ISC/IBM WebSphere
Application Server environment. As an alternative, you can use the ISC
console ("Console User Authority" panel specifically) to manually assign one
of the roles that came with AMC - "SDI AMC Admin" and "SDI AMC User"
to a user.

2. See the section “AMC in the Integrated Solutions Console” on page 242 for
more information on AMC roles.

Installing or Updating using the Eclipse Update Manager
You can use the instructions provided here to use the Eclipse Update Manager.

The IBM Security Directory Integrator Rich Client Platform contains a complete
runtime environment to run the IBM Security Directory Integrator CE. However, it
is possible to install the IBM Security Directory Integrator Eclipse plug-in into an
existing Eclipse installation. This is done using the Eclipse Update Manager. In
Eclipse, open the Eclipse Update Manager through the Help menu.

Before you have the IBM Security Directory Integrator plug-in installed you will
want to add a new update site. Choose the Add Site... button and specify the
location of the update site.

48 IBM Security Directory Integrator: Installation and Administrator Guide

Depending on the location of the update site choose the appropriate action. In this
example we choose a directory on the local file system. Using the Local button you
are prompted to choose a directory which is then filled into the location input
field. When you press OK the new update site and updates should be available:

Check the plug-ins you want to install and press Install. As the software update
manager updates your installation you may be prompted to confirm the

Chapter 2. Installation instructions for IBM Security Directory Integrator 49

installation and you are also usually encouraged to restart the workbench after
installation. After installation is complete you should see IBM Security Directory
Integrator in the Installed Software tab.

Post-installation steps
Perform some post installation tasks using the instructions provided here.

When the CE is installed as a plug-in in another Eclipse installation like in the
procedure described above, a number of specific properties must be set to include
the SDI loader. The IBM Security Directory Integrator loader is an
org.eclipse.osgi fragment that provides class loading for the CE.
TDI class loader
osgi.framework.extensions=com.ibm.tdi.loader
osgi.hook.configurators.include=com.ibm.tdi.loader.TDIClassLoaderHook
TDI_HOME_DIR=c\:/Program Files/IBM/TDI/V7.2

Note that the property TDI_HOME_DIR needs to point to an existing IBM Security
Directory Integrator Server installation, since the CE must be able to query many
IBM Security Directory Integrator component Java classes in order to work
correctly. This installation is also used to create the local development server that
the CE uses. The fragment above shows the installation default for Windows;
update this to reflect your environment.

There are several ways to set these properties. One is to update the
configuration/config.ini file of the Eclipse installation.

Note: After installation and configuration of the CE into Eclipse, you may run into
dependency problems. A Technote published about this issue may help you resolve
such problems.

Uninstalling
You can uninstall IBM Security Directory Integrator in its entirety, or uninstall only
certain components.

Launching the uninstaller
Launching the uninstaller requires some steps to be performed. Use the
information provided here to do the same.

About this task

To uninstall IBM Security Directory Integrator, you must first launch the
uninstaller:

Note: Before uninstalling, stop any component that you intend to remove, for
example an instance of the IBM Security Directory Integrator Runtime, an AMC
service that is running, or a Password Synchronization plug-in. Not stopping
running components may cause some files to not be removed (to remain after the
uninstallation). On Windows, a restart may be required and the IBM Security
Directory Integrator Web Admin (AMC) service may remain in the Services list,
requiring manual deletion.

Procedure
1. Navigate to the IBM Security Directory Integrator _uninst directory, for

example:install_path/_uninst

50 IBM Security Directory Integrator: Installation and Administrator Guide

2. Launch the uninstaller by executing the uninstall executable file.
For Windows platforms, the uninstall executable file is called uninstaller.exe.
For all other platforms, the uninstall executable file is called uninstaller.bin.

3. You will now enter the “Uninstall Panel flow” on page 31.

Results

Attention: During an uninstallation, a number of directories on the computer are
emptied and removed. These are:
v TDI_install_dir/lwi - There is the possibility that some files are left over here,

or files can get created by the embedded Web platform that the installer doesn't
lay down. This directory is deleted on uninstallation.

v TDI_install_dir/ce/eclipsece/features/com.ibm.tdi.*.jar

v TDI_install_dir/ce/eclipsece/plugins/com.ibm.tdi.*.jar

v TDI_install_dir/ce/eclipsece/configuration

v TDI_install_dir/ce/update_site/features/com.ibm.tdi.*.jar - If any features
have been added that match this wildcard, they will be deleted.

v TDI_install_dir/ce/update_site/plugins/com.ibm.tdi.*.jar - same as
previous.

v TDI_install_dir/maintenance/BACKUP - This directory may be created by the
update installer.

v TDI_install_dir/_uninst/*, TDI_install_dir/amc/*, TDI_install_dir/osgi/*,
TDI_install_dir/SCIM/*, and TDI_install_dir/LDAPSync/* - These directories
are deleted regardless of the changes made by the user.

Anything you may have put into these directories yourself that matches any of
these criteria, will be removed as well during an uninstallation.

Performing a silent uninstallation
You can perform a silent uninstallation with the help of instructions provided here.

To perform a silent uninstallation of IBM Security Directory Integrator you must
first generate a response file. To generate this file, you must perform a full GUI or
console uninstallation with the -options-record option specified; for
example:TDI_install_dir/_uninst/uninstaller.exe -r
UninstallResponseFileNameThe response file is created in the directory that you
specify during uninstallation.

Note: The directory TDI_install_dir/examples/install contains a number of
example response files for various installation or uninstallation scenarios.
Once the response file is created, you can uninstall silently using the following
command:TDI_install_dir/_uninst/uninstaller.exe -f
UninstallResponseFileName

Default installation locations
IBM Security Directory Integrator installs to the following default locations:

Windows platforms
C:\Program Files\IBM\TDI\V7.2

Linux and UNIX platforms
/opt/IBM/TDI/V7.2

Chapter 2. Installation instructions for IBM Security Directory Integrator 51

Default solution directory
Use the tdi_install_dir\bin\setDefaultSolDir.bat(sh) to set a new default
solution directory.

For example, if you run the following command:
setDefaultSolDir.bat C:\mysoldir

TDI_SOLDIR=C:\mysoldir is set in the defaultSoldir.bat(sh) file.

This value in the defaultSoldir.bat(sh) is used for setting the default directory
when you choose the solution directory during IBM Security Directory Integrator
installation.

The solution directory value in the defaultSoldir.bat(sh) script is set by the TDI
installer.

This default value is changed based on the option you select on the Solutions
Directory page of the installer.

The defaultSoldir.bat(sh) file is used by the IBM Security Directory Integrator
server for getting the location of the default solution directory.

52 IBM Security Directory Integrator: Installation and Administrator Guide

Chapter 3. Update Installer

Use the IBM Security Directory Integrator Update Installer, applyUpdates.bat(sh)
to install fix packs to an existing IBM Security Directory Integrator installation.

The regular installer lays down a file that is named .registry in the installation
directory that represents the current level of installed components. A script that is
named tdiSetBackupDir.bat or tdiSetBackupDir.sh is created in the bin directory
of the installation that sets the location of the backup directory. This directory is
named BACKUP in the maintenance directory by default. You can change the
backup location by running the tdiSetBackupDir script. For example, if a fix is
named "ifix1", backup files and directories would be under install
dir/maintenance/BACKUP/ifix1 in this scenario. The update installer harvests the
name of the backup directory during maintenance. The user who runs the
maintenance procedure on IBM Security Directory Integrator must have write
permission for the installation and backup directories. You must also be aware that
during a complete uninstallation, the uninstaller attempts to delete the default
backup directory.

The regular installer also handles maintenance of the .registry file during
uninstalling and adding features.
v During a full uninstallation, the .registry file is deleted along with the other

files.
v During a partial uninstallation, only the components that are being uninstalled

are removed from the .registry file.
v When features are added, the .registry file is updated to contain the newly

installed features.

After a feature is added, you must immediately install all of the fixes that are
currently applied.

The update installer consists of several Java files. To avoid having to specify the
Java executable file, a wrapper script is created in the bin directory, which is called
applyUpdates.bat(sh). This script uses existing scripts to find the right JRE to use
and call the underlying code. The script's usage is shown here:
applyUpdates -update fix_file.zip [-clean [-silent]]
applyUpdates -rollback
applyUpdates -queryreg
applyUpdates -queryfix fix_file.zip
applyUpdate -enroll license_file.zip
applyUpdates -?

The options are as follows:

-update
This option is used to apply a fix pack.

The name of the compressed file that contains the fix pack is fix_file.zip. It
can be a relative or absolute path.

The -cleanoption, which is only available for a fix pack, erases all of the files
that were backed up before the current fix pack was applied. You are
prompted to confirm that you want to delete the old data. The -silent option
suppresses the confirmation prompt.

© Copyright IBM Corp. 2003, 2014 53

When a fix pack is being reapplied, for example, if new features that need the
fix pack were added, the -clean option is ignored.

If you use the -clean option to cleaning the backup directories, the ability to
roll back is limited to a single level.

-rollback
This option is used to roll back to the state IBM Security Directory Integrator
was in before the most recent fix was applied. This data, by default, is stored
in tdi_install_dir/maintenance/BACKUP/FP##.

-queryreg
This option shows the features that are in the current installation and all of the
fixes that are applied.

The following output is an example:
Information from .registry file in: C:\Program Files\IBM\TDI\V7.2
Edition: Identity
Level: 7.2.0.1

Fixes Applied
=-=-=-=-=-=-=
SDI-7.2-FP0001(7.2.0.0)

Components Installed
=-=-=-=-=-=-=-=-=-=
BASE
SERVER
CE
CE UPDATE
JAVADOCS
EXAMPLES
IEHS
EMBEDDED WEB PLATFORM
AMC

Deferred: false
PLUGINS

-queryfix
This option shows information about the fix that is contained in fix_file.zip.

The following output is an example:
Information from fix file: C:\fixes\SDI-7.2-FP0001.zip
Name: fixpack1

Minimum level required to apply fix: 7.2.0
Maximum level allowed to apply fix: 7.2.0.1

Prereq
=-=-=-
None

Components Affected
=-=-=-=-=-=-=-=-=-=
BASE
CE
EXAMPLES

The compressed file with the fix fix_file.zip contains a manifest file
.manifest, which contains information about applying the fix.

-enroll
This option is used to register an empty, trial, or full license. You can also use
this option to upgrade the product from a trial version to a full version.
However, this option is used by all of the installers. The license to be enrolled
is contained in the compressed file and is passed as an argument.

To update a license for upgrading the product from a trial version to full
version, run the following command:
applyupdates -enroll license_file.zip

54 IBM Security Directory Integrator: Installation and Administrator Guide

Note: The license_file.zip file can be obtained from IBM sales or support
team.

Complete the following steps if the IBM Security Directory Integrator server
does not start because of an already enrolled license and due to hardware
failure:
1. Take a backup of the tdi-home.registry file.
2. In the .registry file, remove the value that is defined in the license tag.

For example, <LICENSE>Full</LICENSE>
3. Remove the existing nodelocked file from tdi-home\license directory.
4. Run the applyUpdates command.

tdi-home\bin\applyUpdates -enroll lumfile.zip

Depending on the number of licenses that are included in the compressed
file, the resulting message indicates the licenses that are applied as shown
in the following example.
./applyUpdates.sh -enroll /tmp/TDI_LUM_FULL.zip
CTGDKO059I Trial license successfully enrolled.
CTGDKO062I Full license successfully enrolled.

Note: The lum_file.zip file is deleted after the command is run.

-? This option is for usage information.

The .registry file
Use the .registry file to know the level of all IBM Security Directory Integrator
components that are currently installed on the system in a particular installation
directory.

The .registry file is in the installation directory. This file is initially created by the
installer and is based on the options that were chosen at installation time.

When a fix is installed, the backed up files are stored in a directory with the name
of the fix inside the backup directory. If the fix pack is installed successfully, extra
entries are made to the .registry file, which represent the changes that are made
to components by a fix. There is a FIXES section of the .registry file that
represents the fixes were been applied, and each component has entries that
represent which fixes were applied that altered them. However, if the fix pack is
failed to install, the .registry file is not updated and contains the same entries
that existed before the fix pack was applied.

The Update Installer recognizes the following components:
v BASE
v SERVER
v Configuration Editor (CE)
v CE_UPDATE
v JAVADOCS
v EXAMPLES
v IEHS
v embedded Web platform
v Administration and Monitoring Console (AMC)

Chapter 3. Update Installer 55

v PLUGINS: The plug-ins component might require some steps that cannot be
done by the update installer and must be done manually. If something needs to
be changed in any of the pwsync.props files, you must do this change manually.
Follow the steps in the manual_readme.txt file in the fix pack. You must
complete these steps after installation of the fix pack, but before any of the
post-installation steps that are listed in the following sections. The readme file
warns you that the Update Installer updates only the files that the Installer
installs. Files that you copied must be updated manually as described in the
following post-installation steps. You need to do these steps before and after
installation of the fix pack as specified. These steps are required only if you
registered the corresponding Password Synchronizers into target systems.

Windows Password Synchronizer

Pre-installation
None

Post-installation
The following steps are required only if the fix pack contains an
update of the DLL of the Password Synchronizer.
1. Remove the name of the DLL of the Password Synchronizer

from the following registry key:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\LSA\Notification Packages

The DLL file is named tdipwflt on 32-bit Windows and
tdipwflt_64 on 64-bit Windows.

2. Reboot Windows, so that the Local Security Authority (LSA)
process unloads the DLL of the Password Synchronizer.

3. Replace the DLL inside the system32 Windows folder with
the one from the installation of the Password Synchronizer.
The DLL path after installation is either install_dir/
pwd_plugins/windows/tdipwflt.dll or install_dir/
pwd_plugins/windows/tdipwflt_64.dll depending on the
version of Windows.

4. Add the name of the DLL (without the .dll extension) inside
the registry key:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\LSA\Notification Packages

5. Reboot Windows again, so that the LSA loads the new DLL.

Afterward you restart, the Password Synchronizer must run
normally by using the updated files.

IBM Security Directory Server Password Synchronizer

Pre-installation

1. Stop the Directory Server.
2. Stop the Proxy process of the Password Synchronizer by

using the stopProxy command-line utility. This step is
necessary because the IBM Security Directory Server
Password Synchronizer does not automatically stop its Proxy
when terminated.

Post-installation
None

Sun Directory Server Password Synchronizer

56 IBM Security Directory Integrator: Installation and Administrator Guide

Pre-installation
Stop the Directory Server.

Post-installation
None

PAM Password Synchronizer

Pre-installation
If possible, avoid any password changes while the update takes
place. Otherwise, unregister the Password Synchronizer from the
PAM configuration file.

Post-installation
If you unregistered the Password Synchronizer before the
update, register it again.

For more information, see Password Synchronization Plug-ins
section of the IBM Security Directory Integrator documentation.

Domino Password Synchronizer

Pre-installation

Post-installation
Complete the post-installation instructions in the section for
Domino HTTP Password Synchronizer in Password Synchronization
Plug-ins section of the IBM Security Directory Integrator
documentation.

Next, do a new setup of the Domino plug-in as described in the
section Deployment on a single Domino Server.

Installation of fix packs
To install fix packs, follow the instructions in the readme file that is provided with
the fix pack.

If a fix file contains a fix for a component and that component is installed on the
system, a number of programmed actions are performed for the individual
components.

If any manual steps must be performed outside of the update installer, instructions
are included in the readme file for the fix.

Note: All IBM Security Directory Integrator process must be shutdown before any
fix pack update is carried out.

Rollback
During a Rollback, the Update Installer uses information previously laid out
during a fix, and files backed up, to restore a previous state.

Note: All IBM Security Directory Integrator process must be shutdown before any
rollback is carried out.

The rollback operation does not roll back any files on which you took a manual
action during the fix pack installation.

Chapter 3. Update Installer 57

http://www-01.ibm.com/support/knowledgecenter/SSCQGF/welcome
http://www-01.ibm.com/support/knowledgecenter/SSCQGF/welcome
http://www-01.ibm.com/support/knowledgecenter/SSCQGF/welcome

Troubleshooting
Use the Update Installer logs to troubleshoot errors related to installation of
updates.

The Update Installer creates a log file named updateinstaller.log in the
install_dir/logs directory. By default, the messages of INFO level are logged. You
can change this by altering the install_dir/logsinstall_dir/etc/
updateinstaller-log4j.properties file so that DEBUG messages are also logged.

58 IBM Security Directory Integrator: Installation and Administrator Guide

Chapter 4. Supported platforms

For information about supported operating systems, web browsers, and
virtualization support refer the link provided here.

See the “Software requirements” section in the IBM Security Directory Integrator
documentation at http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/
com.ibm.IBMDI.doc_7.2/sysreqs.html.

© Copyright IBM Corp. 2003, 2014 59

http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.IBMDI.doc_7.2/sysreqs.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.IBMDI.doc_7.2/sysreqs.html

60 IBM Security Directory Integrator: Installation and Administrator Guide

Chapter 5. Migrating

You can learn about migration, its types, scenarios, and various components that
can be migrated through the information provided here.

In the context of IBM Security Directory Integrator, "migrating" can mean a number
of things.
v Prepare relevant files (and their contents) to be used in a new location, on the

same machine or a different one; or
v prepare relevant files to be used with a new version of the product.

The following table summarizes migration scenarios:

Table 1. Migration scenarios
Source & Destination
versions equal?

Source & Destination
install paths equal? Scenario description

no no Migrate files to a new version, which is installed in a different location

no yes Migrate files to a new version, which will be installed in the same location

yes no Migrate files to a different installation of the same version

yes yes Restore backed up files to their original location

If you have to both migrate to a new version and a new location, you should do
the version upgrade first, because here we will cover location migration only for
the current release.

The IBM Security Directory Integrator Installer can assist in migrating from IBM
Security Directory Integrator 7.0, 7.1, and 7.1.1 to IBM Security Directory Integrator
Version 7.2.

Note: Upgrading IBM Security Directory Integrator from versions 6.x or earlier,
directly to version 7.2, is not supported. You must first upgrade from version 6.x to
version 7.1.1 and then from version 7.1.1 to version 7.2.

Migrate files to a different location
You can take care of the certain issues before selecting on the component / file to
be migrated.

In this section we cover only IBM Security Directory Integrator.

Which files do not need to be modified to be used in another
location?

You can refer to the list of file types that are not required to be modified.
v User configurations, data files (.xml, .xsd, .xsl, .txt ...), key store files (.jks, ...),

certificate files (.der, ...), and so forth.
Also consider the implications of section “Maintaining encryption artifacts -
keys, certificates, keystores, encrypted files” on page 183.

v Scripts (see “Which files should not be used in another location under normal
circumstances?” on page 63 for exceptions)

v .bat, .sh and .vbs files

© Copyright IBM Corp. 2003, 2014 61

v JAR files
v Native binaries - .exe, .dll, .so, and so forth.
v Server API registry file
v Server Stash File
v Derby databases:

For example the default System Store database "TDISysStore" and the default
AMC database "tdiamcdb".
Note that you must move the database as a whole (the whole folder). You
should not merge the files of two databases.
For more complicated scenarios, transfer data between databases using the JDBC
Connector.

v Action Manager property files (located in the TDI_install_dir/bin/amc/
ActionManager folder)

v Configuration files from the "etc" folder except these:
– build.properties
– global.properties
– updateinstaller-log4j.properties
– tdisrvctl-log4j.properties

v AMC configuration files:
– amc.properties
– amcdbhandler.properties
– amcdbschema.xml
– idiamc.sth
– The AMC feature is deprecated and will be removed in a future version of

IBM Security Directory Integrator.

Which files need to be modified before they can be used in
another location?

You can refer to the list of file types that are required to be modified.

In general, location-sensitive files will contain the absolute path of the installation
folder in one or more places. These occurrences need to be replaced with the new
location path, so that the file becomes relevant to the new location.

Below is a list of the files that need migration and hints about which fields to
update. These hints are based on the default content of these files. If you have
modified the files, there may be other fields that are also location specific and need
to be updated too.
v bin/amc/amcwinservice.ini:

This is the configuration file for AMC when registered as a Windows service.
Update the "WorkingDirectory", "StartCommand" and "StopCommand"
properties.

v global.properties/solution.properties:
Update the "com.ibm.di.store.database" property.
Also consider these properties: "api.config.folder",
"systemqueue.jmsdriver.param.mqe.file.ini" and "com.ibm.di.loader.userjars".
If you migrate the file to an installation that uses a different encryption key, see
section “Maintaining encryption artifacts - keys, certificates, keystores, encrypted
files” on page 183.

62 IBM Security Directory Integrator: Installation and Administrator Guide

v etc/updateinstaller-log4j.properties:
Update the "log4j.appender.Default.file" property.

v etc/tdisrvctl-log4j.properties:
Update the "log4j.appender.Default.file" property.

v ibmdiservice.props:
This is the configuration file for the Server when registered as a Windows
service.
Update the "path", "ibmdiroot" and "jvmRoot" properties.

v pwsync.props:
These are the configuration files of the Password Synchronizers.
Update the "proxyStartExe", "logFile", "javaLogFile" and "mqe.file.ini" properties.

Which files should not be used in another location under
normal circumstances?

You can refer to the list of file types that should not be used after migration.
v Certain scripts

The sole purpose of the existence of these files is to convey location specific
data.
There is virtually nothing else in them, so they would be of little value in
another location.
Consider these scripts from the TDI_install_dir/bin folder: "javaHome",
"defaultSolDir", "backupDir", "tdiISCHome".

v .reg files
These are used by the Windows Password Synchronizer.

v IBM WebSphere MQ Everyplace queue manager files
Although you cannot easily migrate IBM WebSphere MQ Everyplace files to
another location, you can transfer data from one IBM WebSphere MQ
Everyplace queue to another using the JMS Connector with an IBM WebSphere
MQ Everyplace JMS driver.

v CE workspace
To reuse Directory Integrator projects from the Config Editor workspace, export
them as Directory Integrator configurations and import them into the new
workspace.

v etc/build.properties
This file contains time and version information about the release of the product.

Migrating files that contain encrypted data
For more information on migrating files that contain encrypted data, please refer
the link provided here.

See “Maintaining encryption artifacts - keys, certificates, keystores, encrypted files”
on page 183.

Migrate files to a newer version
You can migrate the files to a newer version through 3 ways. Learn more about
those with the information provided here.

Chapter 5. Migrating 63

Installer-assisted migration
You can learn about how the installer works, which all files are migrated
automatically and manually, through the information provided here.

The installer migrates certain files automatically during upgrade to a newer
version. Note that the installer considers only the installation folder of the
Directory Integrator.

All solution folders that are different than the installation folder must be migrated
manually (or using some of the tools described in section “Tool-assisted migration”
on page 65).

Which files does the installer migrate automatically?

v 6.0 to 7.1
– global.properties
– Cloudscape database (if used for System Store) is upgraded to Derby Version

10.5.3. See “Migrating Cloudscape database to Derby” on page 88.
– pwsync.props (for each installed Password plug-in)

v 6.1.x to 7.1
– global.properties
– the AMC database
– amc.properties
– am_config.properties
– pwsync.props (for each installed Password plug-in)

v 7.0 to 7.1
– global.properties
– pwsync.props (for each installed Password plug-in)

v 7.1 to 7.1.1
– global.properties
– solution.properties (if exists in default Solution Directory)
– pwsync.props (for each installed Password plug-in)

v 7.1.1 to 7.2
– etc\reconnect.rules
– etc\derby.properties
– etc\jlog.properties
– etc\log4j.properties
– etc\tdisrvctl-log4j.properties
– etc\tdimiggbl-log4j.properties
– etc\updateinstaller-log4j.properties
– etc\it_registry.properties
– etc\tp.xml
– etc\activemq.xml
– etc\global.properties
– solution.properties (if exists in default Solution Directory)
– pwsync.props (for each installed Password plug-in)
– The AMC database (use the following tools to back up AMC:

bin/backupam.bat, bin/backupamc.bat, and bin/backupamcdb.bat)

64 IBM Security Directory Integrator: Installation and Administrator Guide

– AMC_7.2.0.0\amc.properties
– AMC_7.2.0.0\conf\amcdbhandler.properties
– AMC_7.2.0.0\conf\logging.properties
– bin\amc\ActionManager\am_config.properties
– bin\amc\ActionManager\am_logging.properties

Which files need to be migrated manually?

Everything mentioned in section “Manual migration,” except those mentioned in
its first subsection, Property Files.

Tool-assisted migration
Go through the list of tools that are used for installer-assisted migration.

These tool are used by the installer for the installer-assisted migration. You can use
them for manual migration.

Property files migration

v global.properties:
Use the "tdimiggbl" tool from TDI_install_dir/bin; see section
“Migrating global and solution properties files using migration tool” on
page 90.

v amc.properties:
Use the "tdimigamc" tool from TDI_install_dir/bin/amc; see “AMC and
AM Command line utilities” on page 283. The AMC feature is
deprecated and will be removed in a future version of IBM Security
Directory Integrator.

v am_config.properties:
Use the "tdimigam" tool from TDI_install_dir/bin/amc; see “AMC and
AM Command line utilities” on page 283.

v pwsync.props (for each installed Password plug-in):
Use the "migpwsync" tool from TDI_install_dir/pwd_plugins/bin; see
“Migrating Password plug-ins properties files using migration tool” on
page 91.

AMC database migration

Use the "backupamcdb"/"restoreamcdb" tools from TDI_install_dir/bin/
amc; see “AMC and AM Command line utilities” on page 283. The AMC
feature is deprecated and will be removed in a future version of IBM
Security Directory Integrator.

Cloudscape System Store migration (only for 6.0)

See the more detailed instructions in section “Migrating Cloudscape
database to Derby” on page 88.

Manual migration
You can start your manual migration with the information provided here. Further,
you can go through a extensive list of properties that have been changed, added
and deleted in IBM Security Directory Integrator versions.

Copy your Config files and any other custom files, including Derby databases from
your old installation directory to the new installation directory. IBM Security

Chapter 5. Migrating 65

Directory Integrator supports a Solution Directory, and we recommend you copy
the Config files, property files, Derby databases, and so on, to such a solution
directory instead of to the installation directory of IBM Security Directory
Integrator version.

Once you have copied the objects referenced above to a new location, you can set
out to manually migrate their contents to adapt them for use with IBM Security
Directory Integrator as described in the sections below:
1. Property Files
2. Configurations
3. Customized scripts
4. Added or replaced JAR files in the installation
5. Password Synchronizer configurations

Note: Sandbox data is version-specific; data recorded under any previous version
does not play in Version 7.2.

Property files
v global.properties:

The following tables list the properties that have been deleted, changed, or
added in different versions of IBM Security Directory Integrator:

Table 2. Deleted and changed properties

Properties in Global/Solution.properties
Modified,
deleted, or added Remarks

web.server.ssl.on *MODIFIED*
For more information about this property, see the table titled New
properties in v7.1.1.

From IBM Security Directory Integrator version 7.2 onwards, the
default value of this property is true.

Example:

web.server.ssl.on=true

{protect}-dashboard.auth.user.admin *ADDED*
This property is added in IBM Security Directory Integrator
version 7.2. It is used for providing Federated Directory Server
username and password.

The default value of this property is admin.

Example:

{protect}-dashboard.auth.user.admin=admin

To specify multiple Federated Directory Server user login accounts,
see the following example:

{protect}-dashboard.auth.user.admin=admin
{protect}-dashboard.auth.user.user1=user1passwd
{protect}-dashboard.auth.user.user2=user2passwd

dashboard.auth.localhost *MODIFIED*
From IBM Security Directory Integrator version 7.2 onwards, the
default value of this property is properties.

dashboard.auth.remote *MODIFIED*
From IBM Security Directory Integrator version 7.2 onwards, the
default value of this property is properties.

66 IBM Security Directory Integrator: Installation and Administrator Guide

Table 2. Deleted and changed properties (continued)

Properties in Global/Solution.properties
Modified,
deleted, or added Remarks

com.ibm.di.server.NIST.on *ADDED*
From IBM Security Directory Integrator version 7.2 onwards, this
property is used to turn NIST mode in IBM Security Directory
Integrator.

If this property is set to true, then IBM Security Directory
Integrator is enforced to run in NIST Compliant Mode.

The default value is false, that is, it does not run in NIST Mode
by default.

Table 3. Deleted and changed properties in v7.1.1

Old property (pre-v7.0) New property Remarks

Active Correlation Technology
engine settings
act.engine.rule.set.file
=myrules.acts

DELETED Remove ACT Engine and ACT Connector

Location of directory where the
JRE that SDI will use is installed
com.ibm.di.jvmdir=$jvmRoot$

DELETED No longer possible to specify.

com.ibm.di.scriptengine
.precompile=true

DELETED No longer possible to specify; the current
script engine does not have this
functionality.

com.ibm.di.scriptengine
.regex=java

DELETED No longer possible to specify - Java
syntax is always followed.

ibmjs.options=com.ibm.di.script
.ScriptEngineOptions

DELETED Related to previous property; this is no
longer a valid option.

com.ibm.di.store.create
.checkpoint.store
=<multiple statements>

DELETED Checkpoint/Restart functionality is
removed; any System Store create table
statements related to this should be
removed too.

com.ibm.di.admin.library.dir= *DELETED* The current Config Editor does not use
this, so no longer possible to specify.

api.remote.on=false api.remote.on=true RMI enabled by default in IBM Security
Directory Integrator Server - Setting to
true since it is enabled by default.

javax.net.ssl.trustStore=
{protect}-javax.net.ssl
.trustStorePassword=
javax.net.ssl.trustStoreType=

javax.net.ssl.trustStore
=serverapi\testadmin.jks
{protect}-javax.net.ssl
.trustStorePassword=administrator
javax.net.ssl.trustStoreType=jks

RMI enabled by default in IBM Security
Directory Integrator Server - empty values
replaced by the default truststore.

javax.net.ssl.keyStore=
{protect}-javax.net.ssl
.keyStorePassword=
javax.net.ssl.keyStoreType=

javax.net.ssl.keyStore
=serverapi\testadmin.jks
{protect}-javax.net.ssl
.keyStorePassword=administrator
javax.net.ssl.keyStoreType=jks

RMI enabled by default in IBM Security
Directory Integrator Server - empty values
replaced by the default keystore.

com.metamerge
.securityTransformation
=DES/ECB/NoPadding

com.ibm.di.securityTransformation
=DES/ECB/NoPadding

FIPS 140-2 Certification - property name
changed.

com.ibm.di.server.keystore
=myKeyStore.jks
com.ibm.di.server.key.alias
=myKeyAlias

api.keystore=myKeyStore.jks
api.key.alias=myKeyAlias

Server API keystore properties renamed.

Chapter 5. Migrating 67

Table 3. Deleted and changed properties in v7.1.1 (continued)

Old property (pre-v7.0) New property Remarks

com.ibm.di.store.database
=TDISysStore
com.ibm.di.store.jdbc.driver
=org.apache.derby.jdbc
.EmbeddedDriver
com.ibm.di.store.jdbc.urlprefix
=jdbc:derby:
com.ibm.di.store.jdbc.user=APP

#com.ibm.di.store.database
=TDISysStore
#com.ibm.di.store.jdbc.driver
=org.apache.derby.jdbc
.EmbeddedDriver
#com.ibm.di.store.jdbc.urlprefix
=jdbc:derby:
#com.ibm.di.store.jdbc.user=APP

The EMBEDDED MODE properties for
the System Store have been commented
out, since the System Store now runs in
Network mode by default. The Installer
never makes this change; if you have
previously used Cloudscape/Derby in
embedded mode you will need to make
this change manually.

#com.ibm.di.store.database
=jdbc:derby://localhost:1527
/TDISysStore;create=true
#com.ibm.di.store.jdbc.driver
=org.apache.derby.jdbc
.ClientDriver
#com.ibm.di.store.jdbc
.urlprefix=jdbc:derby:
#com.ibm.di.store.jdbc
.user=APP
#com.ibm.di.store.jdbc
.password=APP
#com.ibm.di.store.jdbc.start.mode
=automatic
#com.ibm.di.store.jdbc.host
=localhost
#com.ibm.di.store.jdbc.port=1527
#com.ibm.di.store.jdbc.sysibm=true

com.ibm.di.store.database
=jdbc:derby://localhost:1527
/TDISysStore;create=true
com.ibm.di.store.jdbc.driver
=org.apache.derby.jdbc.ClientDriver
com.ibm.di.store.jdbc.urlprefix
=jdbc:derby://localhost:1527/
com.ibm.di.store.jdbc.user=APP
com.ibm.di.store.jdbc.password=APP
com.ibm.di.store.jdbc.start.mode
=automatic
com.ibm.di.store.jdbc.host
=localhost
com.ibm.di.store.jdbc.port=1527
com.ibm.di.store.jdbc.sysibm=true

These are the new, default properties for
the System Store in IBM Security
Directory Integrator v7.1.1. If you have
migrated your installation, you will need
to make these changes to your
global.properties file as well, if you wish
to run the System Store in Networked
mode.

The new architecture of the Configuration
Editor in conjunction with other changes
to the development process make that
running System Store in embedded mode
is very cumbersome. Therefore, we highly
recommend that you run in Networked
mode.

api.config.folder=$change$/configs api.config.folder=configs The configs folder is now always local to
the Solution Directory.

##----------------------
System Queue settings
##----------------------
If set to "true" the System
Queue is initialized on startup
and can be used;
otherwise the System Queue
is not initialized and cannot be
used.
systemqueue.on=false

MQe JMS driver initialization
properties
Specifies the location of the
MQe initialization file.
This file is used to initialize
MQe on TDI server startup.
systemqueue.jmsdriver.param.mqe
.file.ini=$change$/MQePWStore
/pwstore_server.ini

##----------------------
System Queue settings
##----------------------
If set to "true" the System
Queue is initialized on startup
and can be used;
otherwise the System Queue is
not initialized and cannot be
used.
systemqueue.on=true

MQe JMS driver initialization
properties
Specifies the location of the
MQe initialization file.
This file is used to initialize
MQe on TDI server startup.
systemqueue.jmsdriver.param.mqe
.file.ini=MQePWStore/pwstore_server
.ini

The System Queue is now enabled by
default in IBM Security Directory
Integrator. Also, the IBM WebSphere MQ
Everyplace initialization file is now
located in a directory subordinate to the
Solution Directory.

Table 4. New properties in v7.0

Property Remarks

com.ibm.di.server.fipsmode.on=false New property for enabling/disabling FIPS mode was
added.

To enable the built-in JAAS Authentication
mechanism,
set this property to "[jaas]".
api.custom.authentication
JAAS Authentication properties

java.security.auth.login.config=

Provide support for JAAS as a Server API
Authentication provider; empty property is provided
in which you can specify the JAAS Configuration
file.

68 IBM Security Directory Integrator: Installation and Administrator Guide

Table 4. New properties in v7.0 (continued)

Property Remarks

Encryption certificate properties
com.ibm.di.server.encryption.keystore = <<value of
com.ibm.di.server.keystore

from 6.1.1 global.properties>>
com.ibm.di.server.encryption.key.alias = <<value
of com.ibm.di.server.key.alias

from 6.1.1 global.properties >>

Server API keystore passwords
{protect}-api.keystore.password= << keystore
password from idisrv.sth>>
{protect}-api.key.password= << key password from
idisrv.sth if present>>

Provide separate configuration options for certificate
to be used for PKI Encryption and SSL.

TDI Logging
com.ibm.di.logging.enabled=true

Provide mechanisms to completely disable logging -
set to "false" if you want to disable all logging.

derby.connection.requireAuthentication=true
derby.authentication.provider=BUILTIN
derby.database.defaultConnectionMode=fullAccess

Additional parameters for the System Store (in
Derby) in Networked mode.

##PKCS11 options
##Set the value of following properties to use
PKCS11 enabled
devices to store TDI servers private key /
certificate.
com.ibm.di.pkcs11cfg=etc\pkcs11.cfg
com.ibm.di.server.pkcs11=false
com.ibm.di.server.pkcs11.library=
com.ibm.di.server.pkcs11.slot=
{protect}-com.ibm.di.server.pkcs11.password
=PASSWORD

Support IBM Security Directory Integrator Server's
private key/certificate on PKCS 11 compliant crypto
devices.

Specify the unique ID for the TDI Server
--
This property helps a client connecting to the
TDI server to identify different servers
running on the same IP and the same port in
different time. (Default is blank)
com.ibm.di.server.id=

IBM Security Directory Integrator Server must
provide a unique server ID available to remote
server clients to detect the server being talked to.

Timeout in minutes for loading configuration.
api.config.load.timeout=2

Config initialization and Server API initialization
need to be synchronized.

com.ibm.di.server.encryption.keystoretype = jks
com.ibm.di.server.encryption.transformation = RSA

Symmetric Cipher Support (FIPS 140-2 compliance).

Specifies a list of Server notification types,
which will be suppressed.
Notifications of suppressed types will not be
propagated by the notifications framework.
The notification types in the list are separated by spaces.
Wildcards may be included.
Example:
api.notification.suppress=di.al.* di.ci.start
The above example will suppress all AssemblyLine related
notifications as well as
notifications for starting a configuration
instance.
If the property is missing or is empty, no
notifications will be suppressed.
api.notification.suppress=di.server.api.authenticate di
.server.api.authorize.*

Provide IBM Security Directory Integrator Audit
Capabilities - Server notification suppression.

api.audit.on=false Provide IBM Security Directory Integrator Audit
Capabilities.

Chapter 5. Migrating 69

Table 4. New properties in v7.0 (continued)

Property Remarks

This property specifies whether LDAP Group
authentication is turned on.
If it is set to ’true’, the group membership of the
authenticating user
will be resolved and will be taken into account
during authorization.
If it is missing, the default value ’false’ is
used.
api.custom.authentication.ldap.groupsupport=
false

Specifies the name of the attribute of a user in LDAP
that contains a list of the groups of which the user
is a member.
It is taken into account only if
’api.custom.authentication.ldap.groupsupport’ is set to true.
api.custom.authentication.ldap.usermembershipattribute=

Specifies how groups are named in the membership
attribute of a user.
For example, if the user’s membership attribute
contains values,
which correspond to the ’objectSID’ attributes of groups,
set this property to ’objectSID’.
If the user’s membership attribute contains
distinguished names of groups, then set this property to ’dn’.
The property is required in case ’api.custom.authentication.
ldap.groupsupport’ is set to true.
api.custom.authentication.ldap.usermembershipattributecontent=

Specifies the name of a group’s attribute in
LDAP which corresponds to the way the group is named in
the TDI User Registry.
For example, if LDAP groups are addressed in
the TDI registry by their common name, then set this
property to ’cn’.
If the User Registry contains the distinguished names of
the groups, then set this property to ’dn’.
api.custom.authentication.ldap.groupnameattribute=

Represents the LDAP directory context, where
groups will be searched.
It is required only when LDAP group support is
enabled
api.custom.authentication.ldap.groupsearchbase=

Optional property, which represents a list of
space-separated attribute names.
Specifies attributes which have non-string
syntax.
api.custom.authentication.ldap.binaryattributes=

Enhance Authorization to support LDAP groups.

Table 5. New properties in v7.1

Property Remarks

api.remote.server.ports=8700-8900 Commented out by default; this property is used to
configure RMI ports. This is useful in case the
default ports conflict with your firewall.

The server will use these ports to listen for incoming
RMI service requests, in addition to listening on the
ports defined by other properties. For outgoing RMI
service requests, random port numbers may be used.

70 IBM Security Directory Integrator: Installation and Administrator Guide

Table 5. New properties in v7.1 (continued)

Property Remarks

The properties determine the default bind
address and the remote bind address for the
Server API.
* means bind to all network interfaces.
The Remote Bind Address overrides the Default one.
Only one IP address should be set. No hostnames
are accepted.
Mind that the java.rmi.server.hostname
property is set implicitly to equal the Remote
Bind Address property when used. This will cause
the client stubs to create sockets on the
specified Remote Bind Address.
com.ibm.di.default.bind.address=*
api.remote.bind.address=*

Commented out by default; these two properties are
used to configure the network interface (hostname or
IP address) that the Remote API listens on.

Touchpoint Server properties
tp.server.on=false
tp.server.port=1098
tp.server.config=etc/tp.xml
tp.server.auth=false
tp.server.auth.realm=Tivoli Directory Integrator
Touchpoint Server

These properties configure the REST interface to IBM
Security Directory Integrator connectors using a
Service Control Management Protocol (SCMP) based
Service.

##
Server API client properties
##
api.client.ssl.custom.properties.on=true
api.client.keystore=serverapi/testadmin.jks
{protect}-api.client.keystore.pass=administrator
api.client.keystore.type=jks
{protect}-api.client.key.pass=administrator
api.client.truststore=serverapi/testadmin.jks
{protect}-api.client.truststore.pass=administrator
api.client.truststore.type=jks

These properties enable custom SSL properties for
Server API clients. If
api.client.ssl.custom.properties.on=true, then the
api.client.* properties will be used by Server API
clients. Otherwise the default javax.net.ssl.*
properties will be used.

Table 6. New properties in v7.1.1

Property Remarks

Web container
web.server.port=1098
web.server.ssl.on=false
web.server.ssl.client.auth.on=false
web.server.session.timeout=300

These properties are the general settings for REST API and
Dashboard. It specifies the port and security settings of the
HTTP access point into IBM Security Directory Integrator REST
and Dashboard.

Chapter 5. Migrating 71

Table 6. New properties in v7.1.1 (continued)

Property Remarks

Dashboard properties
##
dashboard.on=true
dashboard.templates.folder=dashboard/templates

Dashboard authentication properties
##
The values for localhost and remotehost can be:
none: No authentication is required
deny: All connections denied
ldap: Authentication is done by logging into

an LDAP server and optionally validating
group membership

##
dashboard.ldap.url
Specify the LDAP host port and optionally a

search base
(ldap://<host>:<port>[/<search base>])

##
dashboard.ldap.url.group
Specify the LDAP host port and optionally a

search base
(ldap://<host>:<port>[/<search base>])

dashboard.auth=true dashboard.auth.localhost=none
dashboard.auth.remote=deny

dashboard.auth.ldap.url
=ldap://localhost:389/ou=users,ou=system

dashboard.auth.ldap.url.group
=ldap://localhost:389/cn=group1,
ou=groups,ou=system

These properties are specific to the Dashboard. The properties,
which are set manually are, “dashboard.on” (enables/disables
the Dashboard web application) and the
“dashboard.templates.folder” (location of template solutions).

All other properties are editable in the Dashboard.

REST API

api.rest.on=true
api.rest.auth=false
api.rest.auth.realm

=Tivoli Directory Integrator REST API

api.rest.jmsdriver.name
=com.ibm.di.systemqueue.driver.ActiveMQ

api.rest.jmsdriver.queue.sender.persistance=false
api.rest.jmsdriver.queue.sender.timeToLive=60000
api.rest.jmsdriver.param.jms.broker

=vm://localhost?brokerConfig
=xbean:etc/activemq.xml

api.rest.jmsdriver.auth.username
api.rest.jmsdriver.auth.password

These properties configure IBM Security Directory Integrator
REST API enablement and security settings. The
api.rest.jmsdriver property specifies the JMS queue to use in
asynch log messages. Messages are used by the Dashboard.

Table 7. Deleted/modified in v7.1.1

Old property New property Remarks

com.ibm.di.store.database
=jdbc:derby://localhost
:1527/$change$/TDISysStore;
create=true

com.ibm.di.store.database
=jdbc:derby://localhost
:1527/$soldir$/TDISysStore;
create=true

From IBM Security Directory Integrator
Version 7.1.1, $soldir$ is not replaced with
<TDI_ install_dir> by default. The
directory is updated in runtime inside
JVM with current Solution Directory of
the user. Thus, IBM Security Directory
Integrator System Store is unique for each
Solution Directory.

tp.server.port=1098 *DELETED* This property is redefined as
web.server.port=1098.

v amc.properties:
The table below lists which properties have been deleted or changed in BM
Security Directory Integrator v7.1.1:

72 IBM Security Directory Integrator: Installation and Administrator Guide

Table 8. Deleted and changed properties in AMC

Old property (pre-v7.0) New property Remarks

AMC.auth *DELETED*

monitor.refresh.rate *DELETED* The refresh rate for the Monitor Status
panel. The rate was specified in minutes.

monitor.startup *DELETED* To set the Monitor Status panel as the first
panel to be seen by the user when (s)he
logs in.

LDAPHostName
LDAPPort
LDAPAdminUId
LDAPAdminPwd
LDAPServerType
LDAPBindID
LDAPBindPassword
LDAPSuffix
LdapUserPrefix
LDAPUserSuffix
LdapGroupPrefix
LDAPGroupSuffix
LDAPUserObjectClass
LDAPGroupObjectClass
LDAPGroupMember
LDAPUserFilter
LDAPGroupFilter
LDAPsearchTimeout
LDAPsslEnabled
LDAPIgnoreCase

DELETED LDAP Details.

com.ibm.di.amc.jdbc.start.mode New default value: Automatic

com.ibm.di.amc.jdbc.host New default value: Localhost

com.ibm.di.amc.jdbc.port New default value: 1528

com.ibm.di.amc.jdbc.sysibm New default value: True

The table below lists which properties have been added in BM Security
Directory Integrator v7.0:

Table 9. New properties in AMC

New property (default) Remarks

am.logrotate (10) Used to determine the maximum age of AM log files in days.
The log files older than the specified value are deleted. The
minimum value is 1 and can be increased up to 2147483647.

amc.session.timeout (20) Used to determine the maximum time (in minutes) a user is
inactive, before the AMC session expires and is automatically
logged out of AMC. The value should be a positive integer
number.

al.workEntries.cacheSize (100) Used by AMC when the AssemblyLine is started in
Synchronous mode. The cache size specified here is used for
determining the size of the work entries cache.

amc.db.type (derby) Specifies the database being used by the AMC.

am.api.host (localhost) Action Manager RMI Details.

am.api.port (13104) Action Manager RMI Details.

com.ibm.di.server.port.default (1099) Default port for IBM Security Directory Integrator server.

This property can be modified by the IBM Security Directory
Integrator installer to have a value different from 1099. When
AMC is started for the first time (or if its database was lost),
this property is read and its value saved in the newly created
AMC database. Later it will be used when AMC connects to the
default IBM Security Directory Integrator server instance.

v am_config.properties:

Chapter 5. Migrating 73

The table below lists which properties have been deleted or changed in BM
Security Directory Integrator v7.1.1:

Table 10. Deleted and changed properties in AM

Old property (pre-v7.0) New property Remarks

com.ibm.di.amc.am.serverapi
.fail.interval.time=120
com.ibm.di.amc.am.queryProperty
.interval.time=600
com.ibm.di.amc.am.healthAL.interval
.time=5

DELETED These properties should be commented
out as the values for these properties will
be configured by the user from AMC
while creating each Server API Failure
Trigger, On Property trigger and
Configuring a Health AL respectively.
Hence the properties mentioned in the
am-config.properties file will not be
used.

com.ibm.di.amc.am.queryAL.interval
.time

DELETED

javax.net.ssl.trustStore=$change$
/bin/amc/ActionManager/testadmin.jks
javax.net.ssl.keyStore=$change$
/bin/amc/ActionManager/testadmin.jks

javax.net.ssl.trustStore=bin/amc
/ActionManager/testadmin.jks
javax.net.ssl.keyStore=bin/amc
/ActionManager/testadmin.jks

Truststore files are now local to Solution
Directory.

The table below lists which properties have been added in BM Security
Directory Integrator v7.1.1:

Table 11. New properties in AM

New property (default) Remarks

smtp.host=
smtp.port=
smtp.user=
{protect}-smtp.password=

SMTP server details, added in BM Security
Directory Integrator 7.0.

javax.net.ssl.trustStore=
TDI_Install_dir/serverapi/testadmin.jks

{protect}-javax.net.ssl.trustStorePassword=administrator
javax.net.ssl.trustStoreType=jks
javax.net.ssl.keyStore=TDI_Install_dir/serverapi/testadmin.jks
{protect}-javax.net.ssl.keyStorePassword=administrator
javax.net.ssl.keyStoreType=jks

Action Manager SSL Properties, added in BM
Security Directory Integrator 7.1.

com.ibm.di.amc.am.encryption.keystore =
TDI_Install_dir/testserver.jks

com.ibm.di.amc.am.encryption.key.alias = server
com.ibm.di.amc.am.encryption.keystoretype = jks
com.ibm.di.amc.am.encryption.transformation = RSA
com.ibm.di.amc.am.stash.file = TDI_Install_dir/idisrv.sth

Action Manager encryption properties, added in
BM Security Directory Integrator 7.1.

These properties are similar to the encryption
properties used by the server. For convenience
the location of the stash file has been added as a
property: com.ibm.di.amc.am.stash.file. By
default the AM will reuse the server's keystore
and stash file encryption/decryption of AM
protected properties.

Configurations

Certain Directory Integrator components/features have been modified or removed.
Configurations that reference these need to be migrated manually. Here is a list of
affected components/features:
v Checkpoint/restart functionality:

This functionality is removed in 7.0. This leaves Connectors that support Iterator
mode with only the default ability to do a simple reconnect and automatically
skip forward as many times as the number of successful reads. The assumption
is that skipping forward this number of entries would get you back to where
you last left off. Most BM Security Directory Integrator Connectors will not
automatically attempt to do this, because the behavior can be indeterminate or

74 IBM Security Directory Integrator: Installation and Administrator Guide

not appropriate. However, the default behavior is specific per Connector. The
ability to automatically skip forward as many times as the number of successful
reads is a new reconnect option available to each Connector and is configured in
the Connection Errors panel, see The Configuration Editor -> The Connector
Editor -> Connection Errors in the Configuring section of the IBM Knowledge
Center for IBM Security Directory Integrator. If you require more than the ability
to automatically skip entries processed. you need to use one of the following
options in your solutions:
– Configure Delta for an Iterator mode for dynamically changing result sets.
– Override the on_connection_failure hook and do custom reconnect logic.

v Derby/Cloudscape in embedded mode as System Store used by multiple JVMs:
Default and recommended behavior in IBM Security Directory Integrator is
running Derby in networked mode. If you continue to use Derby in embedded
mode, considerations regarding multiple JVMs attempting to use the same
database simultaneously still apply; see “Using Derby to hold your System
Store” on page 198. For migrating databases, see “Migrating Cloudscape
database to Derby” on page 88.

v Exchange Changelog Connector:
This Connector is removed in v7.0. You may consider using the unsupported
Exchange Changelog Connector that is now provided as an "example" in
TDI_install_dir/examples/ExchangeChangelogConnector.

v Btree Connector:
This Connector is removed from the default installation in v7.0. Use the System
Store Connector instead as described in section “Migrating BTree tables and
BTree Connector to System Store” on page 88; alternatively, use the
(unsupported) Btree connector that is now provided as an "example" in
TDI_install_dir/examples/BTreeDBConnector.

v Domino Change Detection Connector:
This applies to 6.0 and 6.1 only.
The Delivery Mode parameter is removed and State Key Persistence will be
used instead. The behavior of old configurations which use this parameter will
be as follows:
– If the Delivery Mode parameter is set to "Assured once and only once

delivery" mode then the State Key Persistence parameter will be set to "After
read" which is the same behavior - the synchronization state is saved right
after the notes document is read.

– If the Delivery Mode parameter is set to "Normal assured delivery" mode
then a check for a valid State Key Persistence parameter is made. If such is
not found then the value of the State Key Persistence parameter is set to
"After read". If the parameter is found in the configuration then the original
value of it is used.

v IDS Changelog Connector:
The CRAM-MD5 option is no longer available in 7.0; you must manually choose
another authentication mechanism.
In version 6.2 of IBM Security Directory Server the BEREncoder and
BERDecoder classes have been moved from the com.ibm.asn1 package to the
com.ibm.ldap.bp.asn1 package. Starting from IBM Security Directory Server v7.0
custom user solutions that directly use the old classes (com.ibm.asn1.BEREncoder
and com.ibm.asn1.BERDecoder) need be updated to reflect this change.

v EMF XMLToSDO and EMF SDOToXML Function Components:
These are deprecated in 7.0. Consider other functionality in the future.

Chapter 5. Migrating 75

http://www-01.ibm.com/support/knowledgecenter/SSCQGF/welcome
http://www-01.ibm.com/support/knowledgecenter/SSCQGF/welcome

v DSMLv2 Parser:
This applies only to 6.0.
The "dsml.request" and "dsml.response" attributes have been removed. These
attributes used to provide the raw request and response objects from the ITIM
DSMLv2 library. If you have old configurations using any of these Attributes,
you to edit your old configurations so that these Attributes are no longer used.
All the data available through the raw request and response objects is also
available through the other Attributes delivered by the DSMLv2 Parser.

v ITIM Agent Connector:
If you have used the ITIM Agent Connector in a previous version of IBM
Security Directory Server, you may have to change the way you configure SSL
connections. The ITIM Agent Connector in IBM Security Directory Server uses
JSSE (Java based keystore or truststore) for SSL authentication, and this requires
that you configure the SSL related certificate details in the global.properties or
solution.properties file; instead of mentioning the certificate name in the old
ITIM Agent Connector's "CA Certificate File" Parameter. These are the steps
involved:
1. Import the ITIM Agent's certificate that was previously mentioned in the "CA

Certificate File" parameter into the IBM Security Directory Integrator
truststore with for example keytool (Ikeyman can be used too):
keytool -import -file servercertificate.der -keystore tim.jks

In this example the truststore is stored in the file tim.jks.
2. Configure this truststore in the "server authentication" section of the

global.properties or solution.properties file:
server authentication

javax.net.ssl.trustStore=serverapi\tim.jks
{protect}-javax.net.ssl.trustStorePassword=administrator
javax.net.ssl.trustStoreType=jks

Now, the ITIM Agent Connector uses the same JSSE-based secure
communications architecture as the rest of IBM Security Directory Integrator.
If you already have a truststore file configured in global.properties or
solution.properties, then import the certificate into that store instead of creating
a new one.

v XML Parser:
The pre-v7.0 XML Parser has been renamed and is now called the Simple XML
Parser; the current XML Parser is a new parser with more functionality,
especially regarding hierarchical objects. Config files created under earlier
versions of IBM Security Directory Server referring to the XML Parser will, when
imported into v7.1 and later, refer to the Simple XML Parser (as the class name
has not changed). If you want to use the new XML Parser instead, you will need
to change that in your AssemblyLines and/or Connectors. In order to have the
new XML Parser behave like the old one did you must set the both Entry Tag
and Value Tag parameters to the values used in the Simple XML Parser.

Note: The Simple XML Parser exports a script variable named "xmldom", which
is not exported by the new XML Parser. The new XML Parser represents the
deeper hierarchy with the Entry itself. Any logic that relies on the "xmldom"
variable and cannot be reworked to make use of the hierarchical structure
provided by the Entry class, must not migrate to the new XML Parser.

v Castor Java to XML and XML to Java Function Components:

76 IBM Security Directory Integrator: Installation and Administrator Guide

From IBM Security Directory Server v7.1 onwards, the location of the Castor
mapping file has changed, from TDI_install_dir/jars/functions/
di_castor_mapping.xml to TDI_install_dir/etc/di_castor_mapping.xml.
Consequently, the default value for the Castor Mapping File parameter now
reflects the new location.

v HTTP Client Connector:
From IBM Security Directory Server v7.1 onwards, the HTTP Client Connector
has been modified to automatically send an HTTP "Connection" header with
value "close" when it does not intend to reuse the TCP connection for more
HTTP requests. The reason for this modification is to comply with HTTP 1.1
recommendation (http://tools.ietf.org/html/rfc2616#section-14.10).
This behavior is mandatory according to the HTTP 1.1 spec and previously you
needed to code this yourself in the AssemblyLine.

v HTTP Server Connector:
From IBM Security Directory Server v7.1 onwards, HTTP Server Connector has
been modified to use persistent HTTP connections by default. This means that
one TCP connection can be used by the same HTTP client for multiple HTTP
requests (http://tools.ietf.org/html/rfc2616#section-8.1). HTTP clients may still
send a "Connection" header with value "Keep-Alive", but it is no longer required
in order to use a persistent connection. Idle TCP connections will be closed
automatically after 20 seconds of inactivity.

Customized scripts

If you have customized any of the Directory Integrator scripts (for example, adding
items to the PATH or the LD_LIBRARY_PATH environment variables in the startup
scripts - ibmdisrv, ibmditk), you should apply these customizations to the
corresponding scripts of the new version.

Previous versions of IBM Security Directory Server used the (MY)CLASSPATH
variable in these scripts; the current version has the required path information built
in and does not require this variable anymore. If you had tailored the
aforementioned scripts before to include some libraries of your own, you do not
have to do anything with the CLASSPATH variable; just make sure your library is
in the correct place (typically in the jars/ directory) so it is found by IBM Security
Directory Server. Alternatively, use the com.ibm.di.loader.userjars property in
global.properties to point to your own directory to be included in the loader path.
In IBM Security Directory Server, the property may specify several directories or
jar files, separated by the Java Property "path.separator", which is ":" on Linux and
";" on Windows. The TDILoader for jar files searches directories recursively for files
that contain classes and resources. Only files with a ".zip" or ".jar" extension are
searched.

Added or replaced JAR files in the installation

If you have added JAR files to the installation, you should copy them to the new
version too.

IBM Security Directory Server now requires and includes a Java 7 compliant JVM
(J2SE version 7.0.4). If you have developed your own code in Java, linked this code
against the JVM libraries and integrated this with your IBM Security Directory
Server solution, you might have to recompile and re-link your code.

Chapter 5. Migrating 77

If you have overwritten any of the original JAR files of the installation (for
example, putting any required MQ jars in TDI_install_dir/jars/3rdparty/IBM), you
should do the same with the new version.

A 64-bit Java Runtime Environment (JRE) is used now on Windows x86-64, Linux
x86-64 and Linux s390. Compared to a 32-bit JRE, some performance degradation
has been observed in some scenarios; you can still use the Windows x86-32
installer for non-password plug-in activities if you believe you will have potential
issues with performance degradation.

If you do use the 64-bit JRE, you need to be aware that 64-bit shared libraries will
be needed for any custom component (connector, parser, FC) that depends on JNI.

Password Synchronizer configurations
v Windows Password Synchronizer

Follow the steps described in "Migration from previous installations" in the
Windows Password Synchronizer section of the Password Synchronization Plug-ins
section of the IBM Knowledge Center for IBM Security Directory Integrator.

v Other Password Synchronizers
There are no specific migration steps. Uninstall the old version, install IBM
Security Directory Integrator and configure it to suit your needs.

Backing up important data
Know everything about backing up data with the information provided here.

Files backed up by the Installer
Here is a comprehensive list of files backed up by the installer in different version
upgrade.

Upgrade from version 6.0 to 7.1:

If the Server feature is being upgraded the listed files will be backed up.
TDI_install_dir\global.properties to TDI_install_dir\etc\global.properties.v60
TDI_install_dir\serverapi\testadmin.jks to TDI_install_dir\serverapi\testadmin.jks.v60
TDI_install_dir\serverapi\testadmin.der to TDI_install_dir\serverapi\testadmin.der.v60
TDI_install_dir\serverapi\registry.enc to TDI_install_dir\serverapi\registry.enc.v60
TDI_install_dir\serverapi\registry.txt to TDI_install_dir\serverapi\registry.txt.v60
TDI_install_dir\idisrv.sth to TDI_install_dir\idisrv.sth.v60
TDI_install_dir\testserver.jks to TDI_install_dir\testserver.jks.v60
TDI_install_dir\testserver.der to TDI_install_dir\testserver.der.v60

In addition, configuration files and solution.properties will be backed up.

Upgrade from version 6.1.x to 7.1:

If the Server feature is being migrated, the listed files will be backed up: (The new
suffix will be .v61 or .v611 depending on the previous version.)
TDI_install_dir\etc\global.properties to TDI_install_dir\etc\global.properties.v61x
TDI_install_dir\serverapi\testadmin.jks to TDI_install_dir\serverapi\testadmin.jks.v61x
TDI_install_dir\serverapi\testadmin.der to TDI_install_dir\serverapi\testadmin.der.v61x
TDI_install_dir\serverapi\registry.enc to TDI_install_dir\serverapi\registry.enc.v61x
TDI_install_dir\serverapi\registry.txt to TDI_install_dir\serverapi\registry.txt.v61x
TDI_install_dir\idisrv.sth to TDI_install_dir\idisrv.sth.v61x
TDI_install_dir\testserver.jks to TDI_install_dir\testserver.jks.v61x
TDI_install_dir\testserver.der to TDI_install_dir\testserver.der.v61x
TDI_install_dir\etc\reconnect.rules to TDI_install_dir\etc\reconnect.rules.v61x
TDI_install_dir\etc\derby.properties to TDI_install_dir\etc\derby.properties.v61x
TDI_install_dir\etc\jlog.properties to TDI_install_dir\etc\jlog.properties.v61x
TDI_install_dir\etc\log4j.properties to TDI_install_dir\etc\log4j.properties.v61x
TDI_install_dir\etc\tdisrvctl-log4j.properties to TDI_install_dir\etc\tdisrvctl-log4j.properties.v61x
TDI_install_dir\etc\act-jlog.properties to TDI_install_dir\etc\act-jlog.properties.v611

(IBM Security Directory Integrator 6.1.1 only)

78 IBM Security Directory Integrator: Installation and Administrator Guide

http://www-01.ibm.com/support/knowledgecenter/SSCQGF/welcome

In addition, configuration files and solution.properties will be backed up.

Upgrade from version 7.0 to 7.1:

If the Server feature is being upgraded the listed files will be backed up.
TDI_install_dir\etc\global.properties to TDI_install_dir\etc\global.properties.v70
TDI_install_dir\serverapi\testadmin.jks to TDI_install_dir\serverapi\testadmin.jks.v70
TDI_install_dir\serverapi\testadmin.der to TDI_install_dir\serverapi\testadmin.der.v70
TDI_install_dir\serverapi\registry.enc to TDI_install_dir\serverapi\registry.enc.v70
TDI_install_dir\serverapi\registry.txt to TDI_install_dir\serverapi\registry.txt.v70
TDI_install_dir\idisrv.sth to TDI_install_dir\idisrv.sth.v70
TDI_install_dir\testserver.jks to TDI_install_dir\testserver.jks.v70
TDI_install_dir\testserver.der to TDI_install_dir\testserver.der.v70
TDI_install_dir\etc\reconnect.rules to TDI_install_dir\etc\reconnect.rules.v70
TDI_install_dir\etc\derby.properties to TDI_install_dir\etc\derby.properties.v70
TDI_install_dir\etc\jlog.properties to TDI_install_dir\etc\jlog.properties.v70
TDI_install_dir\etc\log4j.properties to TDI_install_dir\etc\log4j.properties.v70
TDI_install_dir\etc\tdisrvctl-log4j.properties to TDI_install_dir\etc\tdisrvctl-log4j.properties.v70
TDI_install_dir\etc\act-jlog.properties to TDI_install_dir\etc\act-jlog.properties.v70

In addition, configuration files, the workspace and solution.properties will be
backed up.

Upgrade from version 7.1 to 7.1.1:

If the Server feature is being upgraded the listed files will be backed up.
TDI_install_dir\etc\global.properties to TDI_install_dir\backup_tdi\global.properties
TDI_install_dir\serverapi\testadmin.jks to TDI_install_dir\backup_tdi\testadmin.jks
TDI_install_dir\serverapi\testadmin.der to TDI_install_dir\backup_tdi\testadmin.der
TDI_install_dir\serverapi\registry.enc to TDI_install_dir\backup_tdi\registry.enc
TDI_install_dir\serverapi\registry.txt to TDI_install_dir\backup_tdi\registry.txt
TDI_install_dir\idisrv.sth to TDI_install_dir\backup_tdi\idisrv.sth
TDI_install_dir\testserver.jks to TDI_install_dir\backup_tdi\testserver.jks
TDI_install_dir\testserver.der to TDI_install_dir\backup_tdi\testserver.der
TDI_install_dir\etc\reconnect.rules to TDI_install_dir\backup_tdi\reconnect.rules
TDI_install_dir\etc\derby.properties to TDI_install_dir\backup_tdi\derby.properties
TDI_install_dir\etc\jlog.properties to TDI_install_dir\backup_tdi\jlog.properties
TDI_install_dir\etc\log4j.properties to TDI_install_dir\backup_tdi\log4j.properties
TDI_install_dir\etc\tdisrvctl-log4j.properties to TDI_install_dir\backup_tdi\tdisrvctl-log4j.properties
TDI_install_dir\etc\tdimiggbl-log4j.properties to TDI_install_dir\backup_tdi\tdimiggbl-log4j.properties
TDI_install_dir\etc\updateinstaller-log4j.properties to TDI_install_dir

\backup_tdi\updateinstaller-log4j.properties
TDI_install_dir\etc\it_registry.properties to TDI_install_dir\backup_tdi\it_registry.properties
TDI_install_dir\etc\tp.xml to TDI_install_dir\backup_tdi\tp.xml

In addition, configuration files from TDI_install_dir\configs folder, the
workspace and solution.properties will be backed up.

Upgrade from version 7.1.1 to 7.2:

If the Server feature is being upgraded the listed files will be backed up.
TDI_install_dir\etc\reconnect.rules
TDI_install_dir\etc\derby.properties
TDI_install_dir\etc\jlog.properties
TDI_install_dir\etc\log4j.properties
TDI_install_dir\etc\tdisrvctl-log4j.properties
TDI_install_dir\ etc\tdimiggbl-log4j.properties
TDI_install_dir\ etc\updateinstaller-log4j.properties
TDI_install_dir\ etc\it_registry.properties
TDI_install_dir\etc\tp.xml
TDI_install_dir\ etc\activemq.xml
TDI_install_dir\etc\global.properties
solution.properties (if exists in default Solution Directory)
pwsync.props (for each installed Password plug-in)
The AMC database
ISC location/runtime/isc/eclipse/plugins/AMC_7.2.0.0\amc.properties
ISC location/runtime/isc/eclipse/plugins/AMC_7.2.0.0\conf\amcdbhandler.properties
ISC location/runtime/isc/eclipse/plugins/AMC_7.2.0.0\conf\logging.properties
TDI_install_dir\bin\amc\ActionManager\am_config.properties
TDI_install_dir\bin\amc\ActionManager\am_logging.properties

Backup tools
These tools are used for backup/restore by the installer.

They can also be used for manual migration.

Chapter 5. Migrating 79

backupamc/restoreamc
Use to backup/restore AMC configuration files.

backupamcdb/restoreamcdb
Use to backup/restore the AMC database.

backupam/restoream
Use to backup/restore the Action Manager (AM) database.

See “AMC and AM Command line utilities” on page 283 for more details.

Manual backup
In case you are performing a manual back up, take care of the instructions
provided here.

Manual backup means copy the file to some dedicated backup folder. Conversely,
restore means copy the file from the dedicated backup folder to its original
location.

Note that in some cases you have to consider dependencies between files. You
need to backup a group of interdependent files as a whole. Such groups of files
are:

Derby database files
To backup a database, backup the whole folder that contains the database
files. For example copy the TDI_install_dir/TDISysStore folder to backup
the default System Store database or copy the TDI_install_dir/bin/amc/
tdiamcdb folder to backup the default AMC database.

IBM WebSphere MQ Everyplace queue manager files
Backup the whole folder of the IBM WebSphere MQ Everyplace queue
manager. For example copy the TDI_install_dir/MQePWStore folder to
backup the default System Queue.

CE workspace files
Backup the whole workspace folder.

OSGI Backup the whole osgi folder.

LDAPSync
Backup the whole LDAPSync folder.

SCIM Backup the whole SCIM folder.

Migrating AMC 7.x configuration settings to another AMC deployment
You can migrate AMC configuration data to a new AMC deployment with the
instructions provided here.

Note: The AMC feature is deprecated and will be removed in a future version of
IBM Security Directory Integrator.

The section explains the steps that are to be followed for migrating AMC
configuration data to a new AMC deployment. These instructions are useful when
migrating AMC 7.0 and later from ISC SE to IBM Dashboard Application Services
Hub, IBM Dashboard Application Services Hub to ISC SE, or to create a mirror
instance of AMC on another machine.
1. Backup all of the AMC configuration files and data:

80 IBM Security Directory Integrator: Installation and Administrator Guide

a. Stop the AMC that you are migrating configuration data from using the
stop_tdiamc.bat(sh) script. This script stops the server on which AMC is
deployed.

b. Execute the backupamc.bat (.sh) script specifying the directory in which
the AMC configuration files need to be backed up.

2. Migrate all of the AMC configuration data to the new AMC instance:
a. If the ISC you are migrating the AMC configuration to, is residing on

another machine you will need to get the AMC backup directory copied to
the new machine.

b. Ensure the AMC being migrated to is stopped. See step 1a for information
on stopping AMC.

c. Execute the restoreamc.bat (.sh) script specifying the directory you have
the AMC configuration information backed up to. This command will place
the AMC configuration files at the correct location in the AMC you are
migrating to. This completes the migration process.

Note:

1. The instructions are for migrating AMC 7.0 and later to any other ISC
deployment.

2. The instructions assume that you already have AMC deployed already in both
the system being migrated from and the system being migrated to using the
IBM Security Directory Integrator installer. The systems can be either running
AMC in ISC SE or IBM Dashboard Application Services Hub.

3. If you are trying to migrate the AMC configuration to another AMC
deployment on the same machine and you want all of the AMC commands
shipped with your IBM Security Directory Integrator deployment to use that
AMC from that point on, you will need to update the configured ISC location
in the AMC command line utility. This can be done using the following
command: setISCHome.bat(sh). The command takes as a parameter the
location of the ISC installation directory, which is the installation location of
IBM WebSphere Application Server for IBM Dashboard Application Services
Hub and the location of the embedded Web platform for ISC SE. The command
needs to be executed between steps 1 and 2 mentioned above.

Converting from EventHandlers to corresponding AssemblyLines
You can migrate certain parts of a typical EventHandler. Learn in detail about
these with the instructions provided here.

EventHandlers do not exist in IBM Security Directory Integrator Version 7.2.
Therefore, in order to replace the deleted functionality in old solutions, you need
to migrate your EventHandler configurations to Server/Iterator or Changelog
Connector configurations.

For each EventHandler a corresponding AssemblyLine must be created. Then a
Server/Iterator Connector corresponding to the EventHandler must be inserted
into the AssemblyLine "Feeds" section. Then the Connector parameters must be set
- this is specific for each EventHandler/Connector pair, but generally the
Connector parameters must be set to the same values as the corresponding
EventHandler parameters (which usually have the same names).

Any processing configured in the EventHandler must be re-implemented in the
AssemblyLine "Flow" section.

Chapter 5. Migrating 81

The functionality of the "enabled" EventHandler parameter (otherwise known as
"Auto-start service") is also available for AssemblyLines. If you want your
AssemblyLine to be started right after the IBM Security Directory Integrator Server
is started, go to the Solution Logging and Settings section in the Navigator in
your workspace in the Config Editor and add your AssemblyLine.

In general an EventHandler executes some piece of logic when a certain event
occurs. "Event" has a different meaning for each EventHandler. For the HTTP
EventHandler an "event" is an HTTP request. For the IBM Security Directory
Integrator EventHandler an "event" is a change notification that comes from an
IBM LDAP Directory.

Below are some general guidelines on migrating certain parts of a typical
EventHandler. They are divided based on the titles of the UI tabs for an
EventHandler in the pre-7.0 Config Editor:

Hooks

The "Prolog" hook of an EventHandler corresponds to the "Prolog - After
Init" hook of an AssemblyLine. This hook is invoked for each incoming
"event".

The "Epilog" hook of an EventHandler corresponds to the "Epilog - After
Close" AssemblyLine hook. This hook is invoked once after each incoming
"event" is processed.

In both the "Prolog" and "Epilog" EventHandler hooks the "event" Entry is
accessible under the names "conn" and "event". However in the
AssemblyLine hooks you should modify your script to use "work" instead
of "conn" or "event".

The "Shutdown Request" hook of an EventHandler corresponds the
"Shutdown Request" AssemblyLine hook.

Action Map

The Action Map of an EventHandler defines what actions should be taken
when an "event" arrives. You should build the same actions into the logic
of the AssemblyLine that you are preparing as a replacement of the
EventHandler.

For example if the Action Map prescribed that a custom script should be
executed if Attribute "x" of the event equals "3", then you could add an "IF"
component to the AssemblyLine that checks for Attribute "x" being equal
to 3 and executes a Script Component.

Logging
If you have configured custom log appenders for the EventHandler, you
should configure the same appenders in the logging settings of the
AssemblyLine(s) that you are preparing as a replacement for the
EventHandler.

Config
These configuration parameters are specific to each EventHandler. See the
subsections below for instructions on how to migrate them. The
subsections are named after the corresponding Connectors.

TCP Server Connector
You can reproduce an old EventHandler's configuration into a new Connector's
configuration with steps provided here.

82 IBM Security Directory Integrator: Installation and Administrator Guide

1. Create a new AssemblyLine and insert the TCP Server Connector in it.
2. Set the tcp.port and debug Connector parameters to the values of the

corresponding EventHandler parameters.
3. Set the useSSL and requireClientAuth Connector parameters to false

(unchecked in the Config Editor).

Mailbox Connector
Configurations that use the Mailbox EventHandler, need to be migrated by using
the steps provided here.

There is no need to migrate existing configurations that use the IBM Security
Directory Integrator v6.0 Mailbox Connector, because the IBM Security Directory
Integrator IBM Security Directory Integrator Mailbox Connector is compatible with
the IBM Security Directory Integrator v6.0 Mailbox Connector.
1. Create a new AssemblyLine and insert the Mailbox Connector in it.
2. Copy the contents of the mailServer EventHandler parameter to the Connector

parameter with the same name.
3. Set the mailProtocol Connector parameter to the value of the EventHandler

parameter with the same name.
4. Copy the contents of the mailUser and mailPassword EventHandler

parameters to the Mailbox Connector parameters with the same names.
5. Copy the contents of the mailFolder EventHandler parameter to the Connector

parameter with the same name.
6. Copy the contents of the pollInterval EventHandler parameter to the

Connector parameter with the same name.
7. If the enabled EventHandler parameter is true, add your AssemblyLine to the

"Config -> AutoStart" folder in the Config Editor; thus the IBM Security
Directory Integrator server will start your AssemblyLine on startup.

8. If the debug EventHandler parameter is true, set the Connector parameter with
the same name to true.

JMX Connector
Existing configurations that use the IBM Security Directory Integrator v6.0 JMX
EventHandler can be transformed into IBM Security Directory Integrator Version
7.2 configurations that use the JMX Connector using the instructions provided
here.
1. Create a new AssemblyLine and insert the JMX Connector in it.
2. Copy the contents of the eventTypes JMX EventHandler parameter to the JMX

Connector parameter with the same name.
3. Select "local" for the mode Connector parameter.
4. Leave the url Connector parameter blank.
5. Set the allMBeans Connector parameter to true.
6. Leave the mBeanTypes Connector parameter blank.

SNMP Server Connector
You can know more about SNMP Server Connector using the information provided
here.

The IBM Security Directory Integrator SNMP Server Connector provides all
features of the IBM Security Directory Integrator v6.0 SNMP EventHandler except

Chapter 5. Migrating 83

support for single-threaded mode. The IBM Security Directory Integrator SNMP
Server Connector works in multi-threaded mode only. If you need to migrate an
existing IBM Security Directory Integrator v6.0 configuration using the SNMP
EventHandler to an IBM Security Directory Integrator v7.0 configuration, which
uses an AssemblyLine with the SNMP Server Connector, you need to do the
following:
1. Create a new AssemblyLine.
2. Insert into the AssemblyLine an instance of the SNMP Server Connector.
3. Set the udp.port Connector parameter to the value this parameter has in your

SNMP EventHandler configuration.
4. Set the snmp.community Connector parameter to the value this parameter has

in your SNMP EventHandler configuration.
5. If your SNMP EventHandler used to be configured to be "Auto-started" by the

IBM Security Directory Integrator Server, add your new AssemblyLine to the
"Config -> AutoStart" folder of the Config Editor.

IBM Security Directory Server Changelog Connector
Existing configuration that use the IBM Security Directory Server EventHandler
can be migrated to use the IBM Security Directory Integrator Changelog Connector
using the information provided here.
1. Set the following Connector parameters to the values of the EventHandler

parameters with the same names: ldapUrl, ldapUsername, ldapPassword,
ldapAuthenticationMethod, ldapUseSSL, ldapSearchBase.

2. Leave the jndiExtraProviderParams Connector parameter empty.
3. Set the iteratorStateKey Connector parameter to some unique identifier, one

that has no corresponding state saved in the System Store.
4. Set the nsChangenumber Connector parameter to the next change number that

the EventHandler would process. The last change number that the
EventHandler has processed is normally stored in an external properties file,
referenced by its ldapChangeNumberFileName parameter.

5. Set the stateKeyPersistence Connector parameter to "After read" (the
EventHandler writes the last received change number to its file backend after it
reads a changelog entry and before it dispatches it for processing).

6. Set the mergeMode Connector parameter to "Merge changelog and changed
data". This will ensure that the changelog attributes (changenumber, targetdn,
...) appear as attributes of the Entry.

7. Set the useNotifications Connector parameter to true.
8. Set the batchRetrieval Connector parameter to false.

Note: As opposed to the EventHandler, the Connector does not let you select a
part of the directory tree, for whose notifications it will listen - it subscribes for
changes in the whole directory tree (the Connector does not have equivalents of
the ldapEventBase and ldapSearchScope EventHandler parameters). If this is
critical for you, you can implement some custom filtering in your solution to
overcome this limitation of the Connector.

HTTP Server Connector
A configuration that uses the HTTP EventHandler can be migrated to use the
HTTP Server Connector suing the steps provided here.
1. Set the tcpPort Connector parameter to the value of the Port parameter of the

EventHandler.

84 IBM Security Directory Integrator: Installation and Administrator Guide

2. Leave the backlog Connector parameter empty.
3. Set the contentType Connector parameter to "text/html".
4. Set the tcpDataAsProperties Connector parameter to true (the EventHandler

always returns the TCP information as properties).
5. Set the headersAsProperties Connector parameter to the value of the

headersAsProperties of the EventHandler.
6. Set the httpAuth Connector parameter to true, if the EventHandler uses HTTP

basic authentication (that is if it has a configured authentication Connector).
7. If the EventHandler uses HTTP basic authentication, set the authRealm

Connector parameter to the value of the authrealm EventHandler parameter.
If the authrealm EventHandler parameter is missing or empty, set the
authRealm Connector parameter to "IBM-Directory-Integrator".

8. Set the authConnector Connector parameter to the value of the
AuthConnector parameter of the EventHandler.

9. Set the useSSL Connector parameter to the value of the useSSL parameter of
the EventHandler.

10. Set the needClientAuth Connector to false (the EventHandler does not
support SSL client authentication).

11. Set the msgChunked Connector parameter to false (the EventHandler does
not support chunking of HTTP responses).

LDAP Server Connector
A configuration that uses the LDAP Server EventHandler can be migrated to use
the LDAP Server Connector using the instructions provided here.
1. Set the ldapPort Connector parameter to the value of the tcp.port parameter of

the EventHandler.
2. Leave the backlog Connector parameter empty.
3. Set the ldapUseSSL Connector parameter to the value of the ldapUseSSL

parameter of the EventHandler.
4. Set the charset Connector parameter to the value of the charset parameter of

the EventHandler.
5. Set the ldapBinaryAttributes Connector parameter to the value of the binary

parameter of the EventHandler.

Sun Directory Change Detection Connector
You can know more about Sun Directory Change Detection Connector using the
information provided here.

The LDAP EventHandler catches notifications about changes in a directory tree.
The EventHandler does not use a changelog, so it receives only real-time
notifications. The Sun Directory Change Detection Connector offers basically the
same functionality when run in real-time delivery mode. There are a few
differences though:

The Connector does not have equivalents for the ldapSearchFilter and
ldapSearchScope EventHandler parameters. To achieve the same functionality as
in the EventHandler, you should implement some custom filtering that limits the
set of received notifications.

The schema of the returned data differs between the Connector and the
EventHandler. The Connector applies delta tagging to each Entry it returns, while

Chapter 5. Migrating 85

the EventHandler provides the type of the change in the "ldap.operation" property.
For details on the schema consult the documentation of each component.

Once the considerations above are resolved, you can migrate an existing
configuration with the LDAP EventHandler to use the Sun Directory Change
Detection Connector like this:
1. Set the following Connector parameters to the values of the EventHandler

parameters with the same names: ldapUrl, ldapUsername, ldapPassword,
ldapAuthenticationMethod, ldapUseSSL, ldapSearchBase.

2. Leave the jndiExtraProviderParams Connector parameter empty.
3. Set the deliveryMode Connector parameter to "Realtime" (the EventHandler

does not use a changelog, it only catches real-time notifications).
4. Set the mergeMode Connector parameter to "Return only changed data" (no

changelog is used in real-time delivery mode by the Connector).

Active Directory Change Detection Connector
You can know more about Active Directory Change Detection Connector through
the information provided here.

The migration from the AD Changelog EventHandler to the Active Directory
Change Detection Connector is straight forward in the most aspects since the
EventHandler itself has incorporated the older version this connector - Active
Directory Changelog Connector in order to obtain changes from the AD.

Similar to the EventHandler the corresponding Connector can also be interrupted
any time during the synchronization process, in that case it will store its state in
the User Property Store. Both the EventHandler and the Connector rely on the
uSNChanged mechanism in this process, by storing the USN number in the
property store. They also offer sn API for retrieving the current USN
synchronization values. The difference is that the EventHandler getUSNvalues
method returns an Entry with Attributes:
START_USN
END_USN
CURRENT_USN_CREATED
CURRENT_USN_CHANGEDT

whereas the Connector returns the current synchronization value as long.

Another difference is that the AD EventHandler initializes internally an LDAP
Connector in order to block and receive change notifications. This behavior can
also be simulated in the ADCD Connector by enabling the useNotifications
parameter.

The following steps should be performed in order to migrate from an
EventHandler-based solution to Connector-based one:
1. 1. Create a new AssemblyLine with an instance of an Active Directory Change

Detection Connector in Iterator mode.
2. Set the ldapUrl, ldapUsername, ldapPassword and ldapAuthenticationMethod

to the values these connection parameters have in the EventHandler
configuration.

3. Specify whether SSL connection is used according to the value in the old
configuration.

4. Copy the content of the ldapSearchBase EH parameter to the same in the
Connector configuration

86 IBM Security Directory Integrator: Installation and Administrator Guide

5. Copy the content of the persistentParameterName EH parameter to the
persistentStateKey Connector parameter.

6. Set the parameter useNotifications to true.
7. Set the startAt parameter according to the value in EH.
8. Leave the other Connector parameters as they are.
9. Transfer any logic in the Action Map section of the EventHandler to be invoked

from the new AL.

DSMLv2SOAPServerConnector
You can know more about DSMLv2SOAPServerConnector using the information
provided here.

The migration from the DSMLv2 EventHandler to the DSML v2 SOAP Server
Connector requires rework of the AssemblyLines that are previously used with the
EventHandler, so that they can be integrated in the solution with the DSMLv2
SOAP Server Connector. This is because the core architecture as changed; now a
single AssemblyLine processes all operations. Therefore, all the old AssemblyLines
logic responsible for handling the different types of DSMLv2 operations should be
incorporated into the new AssemblyLine containing the DSMLv2 Soap Server
Connector, or should be invoked using a AssemblyLine Connector. For this
purpose branching components can be used in order to separate the logic for the
specific DSMLv2 operations (available in the dsml.operation Attribute).

The migration of a configuration with the DSMLv2 EventHandler to a similar one
with the DSMLv2 SOAP Server Connector consists of the following steps:
1. Create a new AssemblyLine with an instance of a DSMLv2 SOAP Server

Connector in Server mode.
2. Copy the content of the EH port parameter to the dsmlPort Connector

parameter.
3. Set the authRealm, useSSL, binaryAttributes and msgChunked to the values

these connection parameters have in the EventHandler configuration.
4. Create a branch component for each of the DSMLv2 operations listed as

parameters in the EH configuration and apply in the branches the logic
implemented in the corresponding old AssemblyLine, either by transferring
there the appropriate AL components or by invoking the old AL itself using an
AssemblyLine connector. In both cases the naming context will no longer be
needed.

5. Copy the content of the twoEH WaySSL parameter to the needClientAuth
Connector parameter.

6. The EH Attribute headerAsProperties cannot be passed to the Connector, since
the HTTP parser it initializes internally is configured to always set this value to
"false". Therefore, in case the solution accesses headers as properties, it should
be modified to use Attributes for this purpose (getAttribute() instead of
getProperty()).

7. For compliance, the soapbinding Connector Attribute should be set to "false"
since the DSMLv2 parser internally used by the EH does not take advantage of
it.

8. In case an authConnector is specified in the configuration of the DSMLv2
EventHandler, then the HTTP basic authentication of the Connector must be
enabled and the appropriate logic must be implemented in the "After Accepting
connection" hook (for example, initialize the authenticator Connector and call
its lookup() method using an Entry with Attributes "username" and "password"

Chapter 5. Migrating 87

as search criteria. Similar to the EventHandler the authentication is to be
considered successful in case an Entry is returned).

9. The indentoutput parameter of the DSMLv2 parser internally used by the
Connector cannot be set in contrast to the one used by the EH.

Migrating BTree tables and BTree Connector to System Store
You can learn to migrate BTree tables and BTree Connector to System Store.

The BTree Connector is deprecated, and is now only provided as an unsupported
example. Therefore, you might decide to move the way your Delta information is
maintained from the old Btree objects to Delta Tables in the System Store. The best
strategy for doing this is engineering a situation where your Delta information is
empty (for example, establishing a new baseline) and then switch from the Btree
objects to the System Store Delta Tables. Note that the parameter that used to hold
the filename of the Btree objects now indicates a table name in a database, so some
editing of this value might be required.

Changing a solution to use the System Store Connector instead of the BTree
Connector for storing IBM Security Directory Integrator Entries is straight forward
since both connectors follow the same logic when specifying Key Attribute Name
and Selection Mode attributes. The only difference is that instead of the underlying
BTree databas,e the System Store Connector has to use predefined a database (for
example the embedded Derby database) and specify a table to store into.

Storing other Java objects using the System Store Connector differs significantly
from storing them with BTree and will require more elaborate transformation. The
following solution, which puts Java objects in the underlying BTree database,
cannot be directly applied to the System Store Connector, since it does not provide
direct access to the backend database:
scripts var bt = system.getConnector("btreedb");
bt.initialze (null); var db = bt.getDatabase();
db.insert ("my key", new java.lang.String("my value"));
var value = db.search ("my key"); value = value + " - modified";
db.replace ("my key", value);

Instead of this the standard methods (put(), find() and modify()) from the
Connector API can be used, but the object should be first wrapped into an Entry
object, which subsequently can be stored in the System Store.

Migrating Cloudscape database to Derby
You can migrate Cloudscape database to Derby using the instructions provided
here.

IBM Security Directory Integrator Version 7.2 uses Apache Derby Version 10.8 as
its bundled database, used by default by the System Store. You will need to
migrate your existing Cloudscape or Derby databases (created using previous
versions of IBM Security Directory Integrator) to be able to use IBM Security
Directory Integrator Version 7.2. Apache Derby Version 10.8 drivers that are
shipped with IBM Security Directory Integrator Version 7.2 cannot be used to
communicate with older versions of Cloudscape.

For details, and information on differences between Cloudscape/Apache Derby
Version 10.8 and its prior versions, refer to the following web page:http://
publibfp.boulder.ibm.com/epubs/html/c1894710.html.

88 IBM Security Directory Integrator: Installation and Administrator Guide

Notable differences that have an immediate impact are as follows:
v The long varbinary data type is no longer supported. Instead, BLOB datatype

has been introduced (making Derby compatible with DB2®). For this reason, all
SQL Statements that made use of long varbinary datatype must now be
modified to use BLOB.

v JDBC Java package names have changed from com.ibm.db2j.* in previous
releases to org.apache.derby.* in Derby Version 10.

v The JDBC URL for Derby (embedded/network mode access) Version 10 is
different from Cloudscape 5.1. Hence the JDBC properties mentioned in
global.properties / solution.properties have also been modified for the
current version of IBM Security Directory Integrator.

Table 12. JDBC URL differences
Connection type Cloudscape Version 5.1 Derby Version 10

Embedded Derby / Cloudscape jdbc:db2j: jdbc:derby:

DB2 JDBC Universal Database Driver (Network
mode)

jdbc:db2j:net jdbc:derby:net (Not recommended to use)

DerbyClient Driver - jdbc:derby (Recommended)

The Derby team has provided a migration utility that migrates a Cloudscape 5.1
database to a new Derby Version 10 database. It migrates all the tables and their
corresponding data into a newly generated Derby Version 10 database. It modifies
all tables with varbinary datatype to BLOB datatype, hence making the migration
process quite painless.

This utility is bundled with IBM Security Directory Integrator, in the
TDI_install_dir/tools/CSMigration folder, along with a wrapper script that
invokes the migration tool, called migrateCS.bat(sh). To migrate a Cloudscape 5.1
System Store Database created using IBM Security Directory Integrator Version 6.0
to Derby Version 10, you have to invoke the migrate script in the following
manner:
migrateCS [Path_of_CloudscapeV51_Database] [Path_of_new_DerbyV10_Database]

Note: This migration utility can be used for migrating only from Cloudscape 5.1 to
Derby Version 10. Hence, the TDI_install_dir/tools/CSMigration/
migratCS.bat(sh) file can be used for migrating system store database from IBM
Security Directory Integrator Version 6.0 to Versions 6.1.1 and later. However, for
migrating system store database from IBM Security Directory Integrator Version
6.1.1 to later versions, you must simply copy the old TDISysStore from the Version
6.1.1 installation directory to the new installation of the new version.

You may need to give some thought to the location of the new Derby database. In
IBM Security Directory Integrator v6.0 and v6.1.x, the System Store database often
was located in the installation directory of IBM Security Directory Integrator; this is
an unfortunate location for many reasons. For IBM Security Directory Integrator
Version 7.2 we strongly recommend you use a Solution Directory, away from the
installation directory.

Besides migration of data, you also need to modify your global.properties /
solution.properties files (using the migration tool or manually) to incorporate the
new JDBC URL parameters.

Chapter 5. Migrating 89

Migrating global and solution properties files using migration tool
Use the tdimiggbl tool located in the TDI_install_dir/bin directory to migrate
any global.properties file starting with IBM Security Directory Integrator 6.x to
Version 7.2.

The filename is tdimiggbl.bat on Windows and tdimiggbl.sh on UNIX/LINUX.
Use the tdimiggbl-4log4j.properties file to control logging for tdimggbl.bat(sh).

The usage if the command is as follows:

tdimiggbl -f propfile [-b backfile] [-n newfile] [-v] [-?]
where:
-f propfile - The name of the file to migrate
-b backfile - Backup the original file with the specified name
-n newfile - Name to give the file that is migrated
-s dir - Working directory where the solution directory is located.
-v - Enable verbose mode
-? - Prints the usage statement

During the installation of IBM Security Directory Integrator, the installer backs up
the existing global.properties file; and then calls this command, in order to
migrate the global.properties.

The migration tool tries to migrate a global.properties file (or
solution.properties file if required) up to the latest IBM Security Directory
Integrator version. The tool (tdimiggbl) makes no assumptions about which release
the global.properties files starts from and can handle global.properties files
starting at IBM Security Directory Integrator version 6.0. The tool also tries to
apply all migration changes unless a particular migration step is specifically
declared inappropriate for migration by the migration tool. For these cases,
perform the migration steps manually.

The activities of the migration tool are broken down into stages. In sequence, the
tool:
1. Checks whether you have to migrate your Derby (Cloudscape) database (IBM

Security Directory Integrator 6.0 migration).
2. Performs all of the migration actions in the following order:

a. Delete actions.
b. Add actions.
c. Derby (Cloudscape) migration file changes (only if necessary and only for

IBM Security Directory Integrator 6.0 migrations).
d. Migration modify actions.

3. Calls the Derby (Cloudscape) migration tool migrateCS to migrate the database
up to the current Derby version (only for IBM Security Directory Integrator 6.0
migrations).
For each action set (migration modify actions for example), the migration tool
tries to perform the migration actions starting from the earliest release to the
latest release. For migration from IBM Security Directory Integrator 6.0, the
caller must separately invoke the Derby (Cloudscape) migration tool to migrate
the database up to the current Derby version. The tdimiggbl tool only makes
the required Derby (Cloudscape) modifications to the properties file itself.

4. Uses log4j logging APIs for logging error messages.

90 IBM Security Directory Integrator: Installation and Administrator Guide

The log4j configuration file is specified in the startup script (the bat or sh) file.
The command uses a file called tdimiggbl-log4j.properties to set up the log4j
logging. The command changes directory to the solution directory and
therefore uses the tdimiggbl-log4j.properties file in the solution directory if
the IBM Security Directory Integrator installation directory is not specified.

Migrating Password plug-ins properties files using migration tool

IBM Security Directory Integrator contains a migration utility to upgrade the
pwsync.props files for each of the installed Password plug-ins. The utility is called
migpwsync and is provided to migrate the pwsync.props files read by both the
native plug-in and the JavaProxy.

The migpwsync utility is shipped in the TDI_install_dir/pwd_plugins/bin
directory.

The utility has the following options:
v -? - using this option the utility will print the help information and will exit.
v -v - using this option the utility will print more verbose information to the

standard output
v -f - this is a required option used to provide the location of the pwsync.props

file.
v -b - this is the option that specifies the location of the file that will be used as

backup. This is an optional field and if not provided the value of the -f option
will be used with ".backup" appended.

v -n - this option specifies the file location where the migrated information will be
written to. This is an optional field and if not provided the value of -f will be
used as the place to output the migrated configuration.

Examples
v Migrating the configuration file of PAM plug-in :

TDI_install_dir/pwd_plugins/bin/migpwsync.sh
-f TDI_install_dir/pwd_plugins/pam/pwsync.props

v Migrating the configuration file of Windows plug-in :
> TDI_install_dir\pwd_plugins\bin\migpwsync.bat

- f TDI_install_dir\pwd_plugins\windows\pwsync.props

Note:

1. The installer will update all the pwsync.props files setup by it in the
TDI_install_dir/pwd_plugins directory during installation. If you have moved
any of the pwsync.props files then you need to be manually migrate it using a
command similar to the ones above.

2. The migpwsync utility changes the current directory to the plug-ins home
directory (TDI_install_dir/pwd_plugins.) The provided file paths will be
considered relative to that directory, if they are not absolute paths.

3. After migrating old pwsync.props file, add the following ActiveMQ related
properties, if you want to configure ActiveMQ as default the JMS Password
store:
v jmsDriverClass=com.ibm.di.plugin.pwstore.jms.driver.ActiveMQ
v jms.broker=<JMS Server address>. For example, jms.broker=tcp://

<activeMQhost>:61616 or jms.broker=ssl://<activeMQhost>:61617
4. To configure ActiveMQ as the default JMS Password store, set the jms.clientId

property in the pwsync.props file.

Chapter 5. Migrating 91

92 IBM Security Directory Integrator: Installation and Administrator Guide

Chapter 6. Security

You can work upon the security features, use those, and take care of the issues,
with the detailed instructions provided here.

Security features are found throughout IBM Security Directory Integrator (IBM
Security Directory Integrator). Some features secure access into remote systems
from IBM Security Directory Integrator, others protect access into IBM Security
Directory Integrator from remote systems, and yet others provide mechanisms to
secure data, such as user credentials into remote systems.

Many of the features described in this section are not necessary when running IBM
Security Directory Integrator in a stand-alone mode in a secured environment.
However, the features come in handy when other systems must communicate with
IBM Security Directory Integrator, such as through the remote Web Admin Console
(AMC) management tool or the IBM Security Directory Integrator Remote Server
API. Furthermore, if multiple people have access to the IBM Security Directory
Integrator server it could be necessary to protect access to confidential data, as well
as maintain the integrity of the integration rules that IBM Security Directory
Integrator executes.

This section explains the following features:
1. “Manage keys, certificates and keystores”
2. “Secure Sockets Layer (SSL) Support” on page 99
3. “Remote Server API” on page 107
4. “IBM Security Directory Integrator Server Instance Security” on page 131
5. “Miscellaneous Config File features” on page 140
6. “Web Admin Console Security” on page 147
7. “Summary of configuration files and properties dealing with security” on page

144
8. “Miscellaneous security aspects” on page 147

This section does not describe all the security capabilities of the individual IBM
Security Directory Integrator components. Some common elements are described in
“Miscellaneous security aspects” on page 147, however for individual elements of
security configuration in the individual IBM Security Directory Integrator
components, consult the Reference section of the IBM Knowledge Center for IBM
Security Directory Integrator.

Manage keys, certificates and keystores
You can learn about managing different type of keys, listing those in a keystore,
and creating keys, through the information provided here.

Background
Refer to the links provided here to know more about keys in SSL, encryption, and
security concepts.

© Copyright IBM Corp. 2003, 2014 93

http://www-01.ibm.com/support/knowledgecenter/SSCQGF/welcome
http://www-01.ibm.com/support/knowledgecenter/SSCQGF/welcome

The main uses of cryptographic keys in the product are SSL (see section “Secure
Sockets Layer (SSL) Support” on page 99) and encryption (see section “IBM
Security Directory Integrator Server Instance Security” on page 131).

For detailed information on security concepts and how they are used in the IBM
JVM, see http://www.ibm.com/developerworks/java/jdk/security/.

Public/private keys and certificates
You can learn more about public/private keys, how do they work independently,
and with each other through the information provided here.

SSL and asymmetric encryption algorithms such as RSA (which is the default
encryption algorithm of the Server) use public/private keys. Public and private
keys have a one-to-one correspondence - matching public and private keys are
called a "key pair".

Normally inside a keystore a public key comes wrapped in an X.509 certificate.
Most keystore operations actually involve the whole public key certificate and not
only the public key.

Again in most cases inside a keystore a private key is accompanied by the
corresponding public key certificate.

Secret keys
You can know about which all algorithms and keystores make use of secret keys
with the knowledge provided here.

Secret keys are used by symmetric encryption algorithms such as DES, AES and
RC4. Note that some keystore formats such as JKS and PKCS#12 do not support
secret keys.

You cannot use secret keys for SSL (the SSL protocol actually generates secret keys
on the fly, but normally you don't have control over them).

Keystores
Learn more about keystores, their file formats, origin and a comparison among
various keystores with the information provided here.

A keystore, as the name implies, provides storage for keys. It can be a file or a
hardware device. The most popular keystore file formats used by Java programs
are JKS, JCEKS and PKCS#12. See the following table for comparison:

Table 13. Keystore file formats

Keystore file format Origin
Store public/private keys and

certificates Store secret keys

JKS Proprietary Yes No

JCEKS Proprietary Yes Yes

PKCS#12 Standard Yes No

Note that the only one of the above keystore formats that can store secret keys is
JCEKS. Also in general JCEKS offers greater protection than JKS. JKS, JCEKS and
PKCS#12 keystores are protected by a password. Furthermore, each private or
secret key inside a keystore can be protected by an individual password. Public
key certificates do not have passwords, because normally there is no need to keep
them secret.

Keys for SSL
You require a set of public/private keys to work with SSL. Learn about the
procedure of setting up this through the information provided here.

94 IBM Security Directory Integrator: Installation and Administrator Guide

About this task

For detailed information on using SSL with the IBM JVM see: http://
www.ibm.com/developerworks/java/jdk/security/60/secguides/jsse2Docs/
JSSE2RefGuide.html.

To use SSL you need to provide a set of public/private keys. You cannot use secret
keys for SSL.

An SSL connection has two sides – the SSL server side and the SSL client side.
Each side has two keystores – an SSL keystore and an SSL truststore. Note that the
word "keystore" is used both to mean a store of keys and an SSL keystore. So SSL
keystore and SSL truststore are both keystores. In fact, the SSL keystore and the
SSL truststore are only logical roles and it is perfectly legal to use the same
physical keystore file for both. The SSL keystore contains a private key that is used
to prove the authenticity of this SSL side to the other side of an SSL connection.
The SSL truststore contains public key certificates of trusted parties.

Procedure
1. To setup keys for your SSL server, you can: Generate a private key and a

corresponding self-signed public key certificate and put it in your SSL keystore.
(see section "Generate a public/private key pair and a self-signed certificate").
This step is needed only if your side of the SSL connection has to prove its
authenticity to its peers – that is if you are the SSL server or if you are the SSL
client and client authentication is required.

2. [Optionally] Obtain a certificate from a Certificate Authority and replace your
self-signed certificate with it. (see section "Import public key certificate in a
keystore")

3. [Optionally] Export the public key certificate of your private key and distribute
it to the SSL parties that will interact with you. (see section "Export public key
certificate from a keystore") If you are using a certificate from a Certificate
Authority then it will be enough for others to have only the certificate of the
Certificate Authority itself.

4. Import certificates of trusted parties in your SSL truststore (see section "Import
public key certificate in a keystore"). This step is mandatory for SSL clients. For
SSL servers it is necessary only if client authentication is required.

Results

Note: If you are using the default properties to configure SSL (javax.net.ssl.*), the
SSL keystore should contain exactly one private key, because there is no way to
specify which key will be used.

Keys for encryption
You can learn about encryption, keys used for encryption and the corresponding
algorithms through the information provided here.

For encryption you have two alternatives:
v use a public/private key pair
v use a secret key

For public key encryption the most popular algorithm is RSA. Note that other
popular public key algorithms such as DiffieHellman (key exchange) and DSA
(digital signature) cannot be used for encryption.

Chapter 6. Security 95

Generally encryption with secret keys is much faster and much more secure than
encryption with public keys. However, by default the Directory Integrator Server
uses public key encryption with RSA to preserve compatibility with earlier
versions.

Tools
You can use keytool and Ikeyman utilities for working with keys and certificates.
Refer to the information provided here to learn more about these tools.

The IBM JVM provides two utilities for working with keys and certificates -
keytool and Ikeyman. keytool is a command-line utility that is popular in the Java
community. Ikeyman is a GUI tool from IBM, which provides many of the features
of 'keytool'. Both tools are located in the TDI_install_dir/jvm/jre/bin folder. For
detailed information about these tools see the documentation of the IBM JVM:
http://www.ibm.com/developerworks/java/jdk/security/

Default keystores shipped with the product:

Table 14. IBM Security Directory Integrator keystores
Keystore location Keystore password Trusted public keys Private keys

TDI_install_dir/testserver.jks server admin server

TDI_install_dir/serverapi/testadmin.jks administrator server admin

List the contents of a keystore
You can use the list command of keytool for listing the contents of a keystore.

For example the following command lists information about the keys (alias and
type) inside the keystore file mystore.jck; the format of the keystore is JCEKS and
its password is "mystorepass":
keytool -list -storetype jceks -keystore mystore.jck -storepass mystorepass

Create keys
You can learn about creating keys, managing keys in a keystore and using those
through the information provided here.

Generate a public/private key pair and a self-signed certificate
For example the following keytool command generates an RSA
public/private key pair with alias "myserverkey" and a X.509 self-signed
public key certificate:
keytool -genkeypair –alias myserverkey -dname cn=myserver.mydomain.com
-validity 365 -keyalg RSA -keysize 1024
-keypass mykeypass -storetype jceks -keystore mystore.jck -storepass
mystorepass

The distinguished name of the owner of the certificate is
"cn=myserver.mydomain.com", which should be the same as the DNS
name of the server that will use the self-signed certificate for SSL (for
public key encryption the content of the certificate does not matter much).
The certificate is valid for 365 days. The size of the generated RSA key is
1024 bytes. The password of the private key is "mykeypass". The key pair
is stored in a keystore file mystore.jck with format JCEKS (if the file does
not exist, it will be created). The password of the keystore is "mystorepass".

The mystore.jck keystore can be used as an SSL keystore of a server
program that runs on the "myserver.mydomain.com" host. The keystore
also contains a public key certificate for the private key, so it can be used

96 IBM Security Directory Integrator: Installation and Administrator Guide

as an SSL truststore for clients that connect to the server on
"myserver.mydomain.com". (Although to give your private key to clients is
completely unnecessary and generally a bad security practice.)

Obtain a certificate from a Certificate Authority
Normally the process of acquiring and using CA-signed certificates goes
like this:

First a key pair and a self-signed certificate is generated (see section
"Generate a public/private key pair and a self-signed certificate"). After
that a certificate for the public key is requested from a Certification
Authority. When the Certification Authority sends back the signed
certificate, the certificate is imported into the appropriate truststore,
replacing the self-signed certificate.

For example using keytool you can generate a Certificate Signing Request
for the "myserverkey" key from the mystore.jck keystore like this:
keytool -certreq -file myreq.csr -alias myserverkey -keypass mykeypass
-storetype jceks
-keystore mystore.jck -storepass mystorepass

This command creates a Certificate Signing Request in the myRequest.csr
file for the public key with alias "myserverkey". The created Certificate
Signing Request now can be sent to a Certification Authority. When the
new certificate arrives, you can import it in the keystore as described in
section "Import public key certificate in a keystore". The following keytool
command generates a 256 bit AES key with alias "myseckey":
keytool -genseckey -keyalg AES -alias myseckey -keysize 256 -keypass mykeypass
-storetype jceks
-keystore mystore.jck -storepass mystorepass

The new key is stored in a JCEKS keystore file mystore.jck with password
"mystorepass". The password that protects the secret key is "mykeypass".

Copy key from one keystore to another
For example you can copy the key pair created in section "Generate a
public/private key pair and a self-signed certificate" with the following
keytool command:
keytool -importkeystore -srckeystore mystore.jck -destkeystore myotherstore.jks
-srcstoretype jceks
-deststoretype jks -srcstorepass mystorepass -deststorepass myotherstorepass
-srcalias myserverkey
-destalias myotherserverkey -srckeypass mykeypass -destkeypass myotherkeypass

The copy will be stored under alias "myotherserverkey" in the JKS keystore
file myotherstore.jks (if it does not exist the file will be created).

Convert keystore from one format to another
For example you can convert the JCEKS keystore created in section
"Generate a public/private key pair and a self-signed certificate" to a JKS
keystore myotherstore.jks with the following keytool command:
keytool -importkeystore -srckeystore mystore.jck -destkeystore
myotherstore.jks -srcstoretype jcek
-deststoretype jks -srcstorepass mystorepass -deststorepass
myotherstorepass

The command will eventually ask for the password of each individual
private or secret key inside the source keystore. Note that JKS and
PKCS#12 keystores cannot hold secret keys. You should not try to convert
a keystore that contains secret keys to either JKS or PKCS#12.

Chapter 6. Security 97

Export public key certificate from a keystore
The following command exports the public key certificate created in
section "Generate a public/private key pair and a self-signed certificate" to
a binary file myserverkey.der:
keytool -exportcert -alias myserverkey -file myserverkey.der
-storetype JCEKS -keystore mystore.jck
-storepass mystorepass

The resulting .der file contains the DER encoding of the X.509 certificate. It
is a binary file. To get the same binary data in text form (base-64 encoded
form of the DER encoding of the X.509 certificate) use the "-rfc" option of
keytool:
keytool -exportcert -alias myserverkey -file myserverkey.arm
-storetype JCEKS -keystore mystore.jck
-storepass mystorepass -rfc

Import public key certificate in a keystore
To import a new trusted certificate in a keystore use a command like this:
keytool -importcert -alias myserverkey -file myserverkey.der
-storetype JCEKS -keystore mystore.jck
-storepass mystorepass

keytool will attempt to verify the signer of the certificate which you are
trying to import. This means constructing a certificate chain from the
imported certificate to some other trusted certificate. If a chain cannot be
established, keytool will ask you whether you are certain that the
certificate needs to be imported.

To import a certificate that is a response from a Certificate Authority to a
Certificate Signing Request (this means you already have a private key in
the keystore for that certificate) use a command like this:
keytool -importcert -alias myserverkey –keypass mykeypass -file
myserverkey.der -storetype JCEKS -keystore mystore.jck
-storepass mystorepass

Note that when you import a certificate for an existing private key, you
have to specify the password of the private key. keytool will attempt to
verify the signer of the certificate by constructing a certificate chain to a
trusted certificate. If a chain cannot be established, the import will fail –
you will not be asked to verify the authenticity of the certificate. To have a
successful import of an answer to a Certificate Signing Request, you have
to trust the Certificate Authority which issued the certificate. If your
Certificate Authority is one of the popular ones (for example, VeriSign or
Thawte) you could rely on the certificates in the default truststore of the
JVM (java.home/lib/security/cacerts) by using the "-trustcacerts" option
of keytool:
keytool -importcert -alias myserverkey –keypass mykeypass -file
myserverkey.der -storetype JCEKS -keystore mystore.jck
-storepass mystorepass –trustcacerts

Extend the validity of a certificate using keytool
Suppose you have a JCEKS keystore called mystore.jck that includes an
expired (or about to expire) self-signed certificate whose alias name is
"myserverkey". The keystore has the associated private key in it. Assume
that the password for the keystore is "mystorepass" and the password for
the private key is "mykeypass". Now, if you want to extend the validity of
this certificate by another 365 days, you can run the following command
using keytool:
keytool -selfcert -v -alias myserverkey –keypass mykeypass -validity 365
–storetype jceks -keystore mystore.jck
-storepass mystorepass

98 IBM Security Directory Integrator: Installation and Administrator Guide

The above operation will generate a new self-signed certificate, that has the
same DN, SIGALG, KEYS as the original certificate but has a new SERIAL
NUMBER and VALIDITY period.

Note: The generated new certificate will automatically replace the original
one.

So if you need the original one later for reference or for any reason, you
must keep a copy of the original keystore before doing the certificate
extension explained above.
Note that this works only for self-signed certificates. It actually generates a
new self-signed certificate for the public key, so you need to export it and
update the truststores of the SSL parties that you are going to
communicate with.

Work with keys stored in PFX/PKCS#12 files
As far as Java is concerned PKCS#12 is just another type of keystore (like
JCEKS and JKS). To work with PKCS#12 keystores just set the "-storetype"
option of keytool to "pkcs12". For example the following command lists
the content of a mystore.p12 PKCS#12 file with password "mystorepass":
keytool –list –storetype pkcs12 –keystore mystore.p12 –storepass mystorepass

Create a keystore file
You don’t need to create keystore files before you use them - keytool will
automatically create a new keystore file, when it needs to write something
to a file that does not exist. For example, if you generate a new key or
import a certificate in a non-existing keystore, keytool will create the
keystore file first.

Run keytool in FIPS mode
To run keytool in FIPS-compliant mode use the "-providerClass" option on
each command like this:
keytool –list –storetype JCEKS –keystore mystore.jck –storepass mystorepass
–providerClass com.ibm.crypto.fips.provider.IBMJCEFIPS

Secure Sockets Layer (SSL) Support
You can encrypt and authenticate the network traffic through SSL security feature.
You can also view a list of supporting connectors and learn about the configuration
through the information provided here.

SSL is an important foundation for many IBM Security Directory Integrator
security features. You need a working-level knowledge of SSL in order to fully
exploit the capabilities in IBM Security Directory Integrator.

The following Connectors support SSL with properly configured IBM Security
Directory Integrator Servers:
v Connectors

– AD Change Detection Connector
– Axis Easy Web Service Server Connector
– Axis2 Web Service Server Connector
– Domino Change Detection Connector
– Domino Users Connector
– DSML v2 SOAP Server Connector
– FTP Client Connector

Chapter 6. Security 99

– HTTP Server Connector
– IDS Changelog Connector
– IBM MQ Series Connector
– JMS Connector
– JMS Password Store Connector
– JNDI Connector
– LDAP Connector
– LDAP Group Connector
– LDAP Server Connector
– Lotus® Notes® connector
– Mailbox Connector
– Sun Directory Change Detection Connector
– LDAP Connector
– TADDM Change Detection Connector
– TADDM Connector
– TCP Connector
– TCP Server Connector
– TPAE IF Change Detection Connector
– Web Service Receiver Server Connector
– zOS LDAP Changelog Connector

SSL provides for encryption and authentication of network traffic between two
remote communicating parties. Most production deployments of IBM Security
Directory Integrator make use of SSL. That is why SSL support is one of the major
security features of IBM Security Directory Integrator. More information on SSL as
well as information on using SSL in Java programs from a development point of
view can be found at http://download.oracle.com/javase/6/docs/technotes/
guides/security/jsse/JSSERefGuide.html

IBM Security Directory Integrator can be used as a client, as a server or as both at
the same time. Configuring IBM Security Directory Integrator for SSL when used
as a client is different from configuring IBM Security Directory Integrator when
used as a server. That is why this section has been divided in two sub-sections –
“Server SSL configuration of IBM Security Directory Integrator components” and
“Client SSL configuration of IBM Security Directory Integrator components” on
page 101.

Server SSL configuration of IBM Security Directory Integrator
components

You need to define a keystore to enable SSL support for IBM Security Directory
Integrator as a server. The steps provided here will help you perform this task.

About this task

When an IBM Security Directory Server component is used as a server (for
example a Server mode Connector) SSL mandates that a keystore to be used by
IBM Security Directory Integrator must be defined. For information on keystores
and truststores, see the documentation at http://download.oracle.com/javase/6/
docs/technotes/guides/security/jsse/JSSERefGuide.html The following steps are
required to enable SSL support for IBM Security Directory Integrator as a server:

100 IBM Security Directory Integrator: Installation and Administrator Guide

Note: RMI is enabled by default in the IBM Security Directory Integrator server.
Properties for server authentication carry the default keystore property values.
1. If you don't have a java (jks) keystore file already in IBM Security Directory

Integrator create a keystore file using keytool (found in TDI_install_dir/jvm/
jre/bin, or TDI_install_dir/jvm/bin depending on your platform). If you
don't have a personal key to be used in IBM Security Directory Integrator get
one from a Certificate Authority or create a self-signed key.

2. If the certificate in the IBM Security Directory Integrator is a self-signed
certificate, export the certificate.

3. If the IBM Security Directory Integrator certificate is a self-signed certificate,
using a key tool, import the exported IBM Security Directory Integrator
certificate to the keystore file in the client as a root authority certificate.

4. Edit TDI_install_dir/etc/global.properties file for the keystore file location,
keystore file password and keystore file type. ## client authentication
javax.net.ssl.keyStore=serverapi\testadmin.jks {protect}-
javax.net.ssl.keyStorePassword=administrator
javax.net.ssl.keyStoreType=jks

5. Enable SSL for the clients (for example, using https in the Web browser).
6. Restart IBM Security Directory Integrator

Note:

1. The IBM Security Directory Integrator server does not manage the
keystores/truststores. All that the IBM Security Directory Integrator server
provides to the IBM Security Directory Integrator components in terms of
keystore support is the global.properties or solution.properties files, in
which the standard Java keystore/truststore properties can be specified.

2. An IBM Security Directory Integrator component can choose to use the default
configured keystore/truststore in global.properties or solution.properties,
or it can choose to implement its own handling of SSL sockets (for example
implementing a custom SSLServerSocket Java class) so that it can use
keystores/truststores different from the default.

3. If IBM Security Directory Integrator needs to use both a client and a server
certificate only the default certificate configured in global.properties or
solution.properties is used, then this must be the same certificate. An
alternative would be to write a custom implementation of the SSLSocket or the
SSLServerSocket Java class and make it use a certificate different from the
default.

4. See section “Certificates for the IBM Security Directory Integrator Web service
Suite” on page 148 for specifics on the certificates for IBM Security Directory
Integrator Web service components.

Client SSL configuration of IBM Security Directory Integrator
components

You need to define a truststore to enable SSL support for IBM Security Directory
Integrator as a client. The steps provided here will help you perform this task.

About this task

When an IBM Security Directory Integrator component is used as a client (for
example the LDAP Connector) SSL mandates that a truststore to be used by IBM
Security Directory Integrator must be defined. For information on keystores and
truststores, see the documentation at http://download.oracle.com/javase/6/docs/
technotes/guides/security/jsse/JSSERefGuide.html

Chapter 6. Security 101

The following steps are required to enable SSL support for IBM Security Directory
Integrator as a client:
1. Configure a server (such as IBM Security Directory Integrator) to enable SSL.
2. If the certificate in the server is a self-signed certificate, export the certificate.
3. If you don't have a Java (jks) keystore file already, create a keystore file using

keytool (found in root_directory/jvm/jre/bin, or root_directory/jvm/bin,
depending on your platform) for IBM Security Directory Integrator.

4. If the server certificate is a self-signed certificate, import the server certificate to
the IBM Security Directory Integrator keystore file as a root authority certificate
using keytool.

5. Edit root_directory/etc/global.properties file for the keystore file location,
keystore file password and keystore file type.

Note: These four lines (comments starting with #) are no longer needed for
client and server authentication to the IBM Security Directory Integrator server.
Stores that belong to IBM Security Directory Integrator are set up to be used by
default. This is part of enabling Remote Method Invocation (RMI) by default.
Keystore file information for the server TDI authentication.
It is used to provide the public key of the TDI to the SSL enabled client.
javax.net.ssl.keyStore=D:\test\clientStore.jks
javax.net.ssl.keyStorePassword=secret
javax.net.ssl.keyStoreType=jks

6. Enable SSL for the Connectors.
7. Restart IBM Security Directory Integrator.

Note: IBM Security Directory Integrator truststore and keystore do not play any
part in SSL configuration for the Domino Change Detection connector. See section
“Lotus Domino SSL specifics” on page 147 for more information.

SSL client authentication
In case you plan to use a IBM Security Directory Integrator component as a client
and a server the SSL mandates to use a keystore and truststore both. Refer to the
information provided here to learn more about it.

If an IBM Security Directory Integrator component is used as a client and the
server with which it communicates requires SSL client authentication, then apart
from a truststore, IBM Security Directory Integrator needs a keystore as well. In
this case the keystore can be defined just like it is defined when IBM Security
Directory Integrator is used a server – see the section “Server SSL configuration of
IBM Security Directory Integrator components” on page 100.

Note: Client IBM Security Directory Integrator components which support SSL
client authentication do not normally need a "SSL client authentication" check box
as do IBM Security Directory Integrator server components. All such a client IBM
Security Directory Integrator component needs in order to prove its identity to the
server is to have its keystore generated and configured in global.properties or
solution.properties. If the server requires an SSL client certificate then the client
SSL library automatically sends the client’s certificate from the keystore configured
in global.properties or solution.properties.

IBM Security Directory Integrator and Microsoft Active
Directory SSL configuration

You can follow the steps provided here to configure SSL for IBM Security Directory
Integrator and Microsoft Active Directory.

102 IBM Security Directory Integrator: Installation and Administrator Guide

About this task
1. Install Certificate Services on the Windows Server and an Enterprise Certificate

Authority in the Active Directory Domain. Details are available at
http://windowsitpro.com/article/articleid/14923/how-do-i-install-an-
enterprise-certificate-authority.html. Make sure you install an Enterprise
Certificate Authority.

2. Start the Certificate Server Service. This creates a virtual directory in Internet
Information Service (IIS) that enables you to distribute certificates.

3. Create a Security (Group) Policy to direct Domain Controllers to get an SSL
certificate from the Certificate Authority (CA).
a. Open the Active Directory Users and Computers Administrative tool.
b. Right-click, under the domain, Domain Controllers.
c. Select Properties.
d. Select the Group Policy tab, and click to edit the Default Domain

Controllers Policy.
e. Go to Computer Configuration->Windows Settings->Security

Settings->Public Key Policies.
f. Right click Automatic Certificate Request Settings.
g. Select New.
h. Select Automatic Certificate Request.
i. Run the wizard. Select the Certificate Template for a Domain Controller.
j. Select your Enterprise Certificate Authority as the CA. Selecting a

third-party CA works as well.
k. Complete the wizard.

Note: All Domain Controllers automatically request a certificate from the CA,
and support LDAP using SSL on port 636.

4. Retrieve the Certificate Authority Certificate to the computer on which you
installed IBM Security Directory Integrator.

Note: You must install IIS before installing the certificate server.
a. Open a Web browser on the computer on which you installed IBM Security

Directory Integrator.
b. Go to http://server_name/certsrv/ (where server_name is the name of the

Windows 2000 server). You are asked to log in.
c. Select the task Retrieve the CA certificate or certificate revocation list.
d. Click Next.

The next page automatically highlights the CA certificate.
e. Click Download CA certificate

A new download window opens.
f. Save the file to the hard drive.

5. Create a certificate store using keytool. Use keytool.exe to create the certificate
store and import the CA certificate into this store.

Note: keytool.exe is found in root_directory/jvm/jre/bin, or
root_directory/jvm/bin, depending on your platform.
Use the following command:
jvm\jre\bin\keytool -import -file
certnew.cer -keystore keystore_name.jks
-storepass password-alias keyalias_name

Chapter 6. Security 103

For example, assume the following values:
Keystorename = idi.jks
Password = secret
Keyalias name = AD_CA

The command looks like this script:
C:\Program Files\IBM\TDI\V7.2\jvm\jre\bin\keytool -import
-file certnew.cer -keystore idi.jks -storepass secret -alias AD_CA

To verify the contents of your keystore, type the following script:
C:\Program Files\IBM\TDI\V7.2\jvm\jre\bin\keytool
-list -keystore idi.jks -storepass secret

The following lines result:
Keystore type: jks
Keystore provider: SUN

Your keystore contains 1 entry:

ad_ca, Mon Nov 04 22:11:46 MST 2002, trustedCertEntry,
Certificate fingerprint (MD5): A0:2D:0E:4A:68:34:7F:A0:21:36:78:65:A7:1B:25:55

6. Configure IBM Security Directory Integrator to use the keystore created in the
previous step. Edit root_directory/global.properties file for the keystore file
location, keystore file password and keystore file type. In the current release,
only jks-type is supported.
#server authentication
#example
javax.net.ssl.trustStore=c:\test\idi.jks
javax.net.ssl.trustStorePassword=secret
javax.net.ssl.trustStoreType=jks
#client authentication
#example
javax.net.ssl.keyStore=c:\test\idi.jks
javax.net.ssl.keyStorePassword=secret
javax.net.ssl.keyStoreType=jks

7. Enable SSL for your LDAP connector.
a. Go to the LDAP Connector configuration window.
b. Change LDAP URL to port 636.
c. Check Use SSL.

8. Restart IBM Security Directory Integrator.

Note: The IBM Security Directory Integrator Windows service wrapper permits
you to start IBM Security Directory Integrator as multiple service instances.

Summary of properties for enabling SSL and PKCS#11
support

Refer to the link and information provided here to learn about configuring SSL
properties.

You can configure SSL properties for server authentication, client authentication,
and PKCS#11 support. See “Using cryptographic keys located on hardware
devices” on page 182 on Public Key Cryptography Standards (PKCS).

Table 15. SSL Server Authentication

Property Default value Description

javax.net.ssl.trustStore serverapi\testadmin.jks Location of the truststore files.

{protect}-
javax.net.ssl.trustStorePassword

administrator (encrypted by
default)

truststore password.

javax.net.ssl.trustStoreType jks Type of the truststore.

104 IBM Security Directory Integrator: Installation and Administrator Guide

Table 16. SSL Client Authentication

Property Default value Description

javax.net.ssl.keyStore serverapi\testadmin.jks keystore files location.

{protect}-
javax.net.ssl.keyStorePassword

administrator (encrypted by
default)

keystore password.

javax.net.ssl.keyStoreType jks Keystore type.

Table 17. PKCS#11 Support

Property Default value Description

com.ibm.di.pkcs11cfg etc\pkcs11.cfg Use this to specify the path of the
configuration file required to initialize the
IBM PKCS11 implementation provider.
Added in IBM Security Directory
Integrator 7.0.

com.ibm.di.server.pkcs11 false Use pkcs11 compliant crypto devices for
ssl. Added in IBM Security Directory
Integrator 7.0.

com.ibm.di.server.pkcs11.library none Specify the path to the PKCS11 client
library. Added in IBM Security Directory
Integrator 7.0.

com.ibm.di.server.pkcs11.slot none Specify the slot number of the device.

{protect}-
com.ibm.di.server.pkcs11.pass

none Access the pkcs11 compliant crypto device
using this password. Encrypted by
default. Added in IBM Security Directory
Integrator 7.0.

SSL example
In order to demonstrate how IBM Security Directory Integrator can be configured
for SSL when used as a server and also when used as a client, two examples are
provided – one deploying the LDAP Server Connector and one deploying the
LDAP Connector.

IBM Security Directory Integrator component as a server
Refer to the steps listed here to configure IBM Security Directory Integrator
component for SSL as a server.

About this task

This example uses the LDAP Server Connector. The LDAP Server Connector listens
for LDAP requests. When an LDAP request arrives the Connector parses the
request and provides the request data to the hosting AssemblyLine. The
AssemblyLine then processes the request and provides the data for the response to
the LDAP Server Connector, so that it can build the LDAP response and send it
back to the LDAP client. The following guidelines explain step by step about how
to configure IBM Security Directory Integrator for SSL when the LDAP Server
Connector is used:
1. Obtain the server keystore either requesting it from a Certification Authority

(CA) or creating a self-signed certificate as explained in the section called
"Generate a public/private key pair and a self-signed certificate".

Chapter 6. Security 105

2. Set the keystore details in global.properties or solution.properties as
described in the "“Server SSL configuration of IBM Security Directory
Integrator components” on page 100" section.

3. Select Use SSL on the Connector GUI configuration window. You may need to
expand the Advanced section to make the parameter visible.

IBM Security Directory Integrator component as a client
Refer to the steps listed here to configure IBM Security Directory Integrator
component for SSL as a client.

About this task

This example uses the LDAP Connector. The LDAP Connector connects to an
LDAP Server and sends an LDAP request. After the Server returns the LDAP
response the LDAP Connector provides that response to the AssemblyLine for
further processing. The following guidelines explain step by step about how to
configure IBM Security Directory Integrator for SSL when the LDAP Connector is
used:
1. Generate the client truststore.
2. Import the LDAP server certificate into the client truststore.
3. Set the truststore details in global.properties or solution.properties as

described in the "“Client SSL configuration of IBM Security Directory Integrator
components” on page 101" section.

The following command line imports an existing certificate into a keystore (the
keystore is created if not already existing):
keytool -import -trustcacerts -file myLDAPServerCert.cer

-keystore myClientTruststore.jks -storepass myclientTruststorePassword
-alias myTrustedLDAPServerAlias

This command line imports a the myLDAPServerCert.cer certificate under alias
myTrustedLDAPServerAlias into the myClientTruststore.jks keystore. The

106 IBM Security Directory Integrator: Installation and Administrator Guide

password to access the keystore is myclientTruststorePassword.

Remote Server API
You can make a client application contact a server in IBM Security Directory
Integrator. A client task can remotely invoke a server task. Learn more about this
though the links and information provided here.

This section does not cover securing an instance of an IBM Security Directory
Integrator Server; this is discussed in “IBM Security Directory Integrator Server
Instance Security” on page 131. Instead, this section discusses how client
applications can contact a server.

IBM Security Directory Integrator supports the concept of a Remote API (also
known as just "Server API"), where client tasks can invoke tasks on a remote IBM
Security Directory Integrator Server by means of an access layer called RMI.

Note: The "remote Server" could very well be running on the same computer as
the client application, for example if you start up a Server instance on your local
computer and then access it using the Remote API through the loopback address,
127.0.01. All concepts discussed below are still valid, even though the remote
Server runs locally.
The Server API calls address the following areas:
v Getting Server information
v Getting information for components installed on the Server
v Reading and writing to configuration(s) loaded by the Server
v Loading new configurations into the Server
v Starting, querying and stopping AssemblyLines
v Cycling through AssemblyLines

Note: Increasing needs for remote server access for each running IBM Security
Directory Integrator server have resulted in a change from local access by default
to remote access by default. As of v7.1.1, the remote server API is enabled by
default. Prior to v7.1.1, the server API was enabled only for local access by default,
where local access means access from the same Java Runtime Environment (JRE).
To ensure security, remote access requires SSL client authentication. SSL access
using client authentication is provided with the sample keystore and truststore
deployed with IBM Security Directory Integrator.

The Server API itself is documented in the IBM Security Directory Integrator Java
API documentation (TDI_install_dir/docs/api; you can launch a browser to display
this documentation by selecting Help -> Welcome -> JavaDocs in the CE). The
package of interest in this context is com.ibm.di.api. Also see the section called
"Using the Server API" under Reference section of the IBM Knowledge Center for
IBM Security Directory Integrator.

The Configuration Editor uses the Remote API to talk to the server you use to
test-run your solutions. If this IBM Security Directory Integrator server is running
on the same machine, it is often called the "local development server". For setups
where the deployment platform does not support the Configuration Editor, you
can run the development server on the deployment server, and the Configuration
Editor on a supported platform like Windows (this way of running we call the
"Remote Configuration Editor"). This design provides a uniform interface for both

Chapter 6. Security 107

http://www-01.ibm.com/support/knowledgecenter/SSCQGF/welcome
http://www-01.ibm.com/support/knowledgecenter/SSCQGF/welcome

remote and local Config files. For some aspects of the Configuration Editor talking
to a remote deployment server, see “Using the Remote Configuration Editor” on
page 143.

The Server API is configured through a set of server properties (see “Configuring
the Server API”). These properties are specified in the global.properties
configuration file of the IBM Security Directory Integrator Server. Some of the
properties, in turn, point to additional configuration files and keystore files.

The Server API provides a number of security-related features (which both IBM
Security Directory Integrator Solution-based clients as well other client applications
have to deal with). There are three aspects to Server API Access Security:
1. “Server API SSL remote access” on page 111 (which secures the transport

channel to a remote IBM Security Directory Integrator Server),
2. “Server API authentication” on page 113 (which handles the client

authentication to an IBM Security Directory Integrator Server),
3. “Server API Authorization” on page 123 (which handles the client authorization

to an IBM Security Directory Integrator Server, that is, what the client is
allowed to do once authenticated).

Configuring the Server API
You can refer to the list of properties that helps configure the server API.

The relevant properties are:

Property Default value Description

api.on true If set to true, the Server API is initialized on startup and can be used;
otherwise the Server API is not initialized and cannot be used. All
other properties whose names start with "api." are only taken into
account if api.on is set to true.

api.audit.on false If set to true, the audit feature is turned on. If it is set to true, an
audit entry is created at each audit point, even if the audit
notifications are suppressed.

api.user.registry serverapi/registry.txt If configured, specifies the Server User Registry file name.

api.user.registry.encryption.on false If set to true, the Server API decrypts the Server User Registry file on
startup.

api.remote.on true If set to true, the remote RMI part of the Server API is initialized and
can be used; otherwise, the remote RMI part of the Server API is not
initialized and cannot be used.

api.remote.ssl.on true If set to true, SSL with client and server authentication is used on
RMI connections of the Server API and its JMX layer; and the Server
API uses the Server certificate and private key (the one specified
through the api.keystore and api.key.alias properties) for SSL
connections. RMI clients must trust that certificate. If set to false, no
SSL is used for client connections and no authentication and
authorization is performed; connections are accepted from the local
host and from hosts listed in the api.remote.nonssl.hosts property;
if api.remote.nonssl.hosts is empty, only connections from the local
host are accepted.

api.remote.ssl.client.auth.on true If set to true, the SSL client authentication for remote Server API is
switched on.

api.remote.naming.port 1099 If specified, the port on which the RMI registry listens for requests.

api.remote.server.ports 8700-8900 The range of ports that may be used by the various RMI services.
Entered as a comma separated list allowing hyphen-marked intervals
(for example 1, 3-5, 10). Port numbers must be > 0 and <= 65536.

The server will use these ports to listen for incoming RMI service
requests, in addition to listening on the ports defined by other
properties. For outgoing RMI service requests, random port numbers
may be used.

108 IBM Security Directory Integrator: Installation and Administrator Guide

Property Default value Description

com.ibm.di.default.bind.address * The default bind address for the whole IBM Security Directory
Integrator Server - the components and the Server API. * means bind
to all available network interfaces. Missing or invalid value binds to
all interfaces, too. Only one IP address should be provided as value.
This property will affect all Server Connectors that create a Server
Socket.

api.remote.bind.address * The bind address for the RMI Server API. Overrides the
com.ibm.di.default.bind.address property. * means connect to all
available network interfaces. Missing or empty value means fall back
to com.ibm.di.default.bind.address. Only one IP address should be
provided as value.

api.truststore testserver.jks If specified, the keystore file that contains the public certificates of all
remote users of the Server API.

{protect}-api.truststore.pass server (encrypted by default) If specified, the password for the keystore file named through the
api.remote.server.truststore property.

api.remote.nonssl.hosts If specified, shows a list of IP addresses to accept non-SSL
connections from (host names are not accepted). Use space, comma or
semicolon as a delimiter between IP addresses. This property is only
taken into account when api.remote.ssl.on is set to false.

api.jmx.on false If set to true, the JMX layer of the Server API is initialized on startup
and can be used; otherwise, the JMX layer is not initialized and
cannot be used.

api.jmx.remote.on false If set to true, the remote JMX interface (as defined by JSR160) is
initialized and can be used; otherwise the remote JMX interface is not
initialized and cannot be used.

api.config.folder configs If set to TDI_root/configs, only the configuration files placed in this
folder can be edited through the Server API.

api.config.lock.timeout 0 If set to 0, there is no timeout.

api.custom.method.invoke.on false The ability to use Session.invokeCustom() methods can be turned on
or off (the default is false, or off). If the value of this property is set to
true then users can use these methods, otherwise an Exception will be
thrown.

api.custom.method.invoke
.allowed.classes

If specified, gives the list of classes that can be invoked directly by
the Server API methods for custom method invocation
(Session.invokeCustom(...)). This property is only taken into account if
api.custom.method.invoke.on is set to true. The classes in this list
must be separated by a space, a comma or a semicolon.

api.custom.authentication. [ldap] If specified, points to a JavaScript text file that contains custom
authentication code. To enable the built-in LDAP/JAAS
Authentication mechanism, set this property to [ldap]/[jaas].

com.ibm.di.server.id If specified, contains the server ID. Assign a unique value for each
server from the set of servers that are running on the same IP and
Port.

api.config.load.timeout 2 If specified, contains the serverapi config load timeout value in
minutes. Added in IBM Security Directory Integrator v7.0.

api.notification.suppress

di.server.api.authenticate
di.server.api.authorize.*

If specified, gives a list of server notification types that you want to
suppress. Notifications of suppressed types are not propagated by the
notifications framework. Notification types in the list are separated by
spaces. You can include wildcards.

Example:

api.notification.suppress=di.al.*
di.ci.start

The above example suppresses all AssemblyLine related notifications
as well as notifications for starting a configuration instance. If the
property is missing or is empty, no notifications are suppressed.
Added in IBM Security Directory Integrator v7.0.

api.client.ssl.custom.properties.on true Enables custom SSL properties for Server API clients. If true, the
api.client.* properties will be used by Server API clients. Otherwise
the default javax.net.ssl.* properties will be used. Added in IBM
Security Directory Integrator v7.1.

api.client.keystore serverapi/testadmin.jks Keystore for Server API clients.

api.client.keystore.pass administrator Password for the keystore specified by the "api.client.keystore"
property.

Chapter 6. Security 109

Property Default value Description

api.client.keystore.type jks Type of the keystore file specified by api.client.keystore; optional
property, if not specified the default keystore format for the JVM will
be used

api.client.key.pass administrator Password for the private key. The key is located in the keystore
specified by the "api.client.keystore" property.

api.client.truststore serverapi/testadmin.jks Truststore for Server API clients.

api.client.truststore.pass administrator Password for the truststore specified by the "api.client.truststore"
property.

api.client.truststore.type jks Type of the keystore file specified by api.client.truststore; optional
property, if not specified the default keystore format for the JVM will
be used

Note: The Java system properties that the Server API uses for its configuration are
the same, regardless of whether the client is a Java program or a different instance
of the IBM Security Directory Integrator Server. What should be noted though is
that the way these Java system properties are set might be different. In IBM
Security Directory Integrator these properties are normally set by editing the
global.properties or solution.properties files, whereas in a Java program they
can be specified either at the command line using the -D Java command line
switch or by using Java code within the Java program using the
java.lang.System.setProperty(key,value) standard Java method.

Remote Server API access on a Virtual Private Network
You can learn to access Remote Server API from a client VPN through the
information provided here.

When the Remote Server API is accessed from a client on a Virtual Private
Network (VPN), the VPN assigns an IP address to the Server API client computer.
This VPN-assigned IP address needs to be specified in an RMI Java system
property. If the Server API client is the Remote Configuration Editor, then this
property can be set in global.properties or solution.properties by adding the
following line to the properties files:
java.rmi.server.hostname=<IP_address>

Where IP_address is the VPN-assigned IP address.

If the Server API client is a custom Java program, then this property can be set
from within the Java code in the following way:
java.lang.System.setProperty("java.rmi.server.hostname", "IP_Address");

where IP_address is the VPN-assigned IP address.

Note that the RMI Java system property needs to be set before any Server API
related RMI code.

Server API access options
You can learn different ways of accessing the server API through the information
provided here.

The Server API can be used in a variety of ways:
v Access the Server API from the Remote Configuration Editor through a network

connection

110 IBM Security Directory Integrator: Installation and Administrator Guide

v Access the Server API from IBM Security Directory Integrator components
running in a remote IBM Security Directory Integrator server (remote Server API
access). Examples of such components are:
– System Queue Connector
– Server Notifications Connector
and so on.

v Access the Server API from within the same Java Virtual Machine of the IBM
Security Directory Integrator Server (local Server API access); in this case the
Server API can be reached from JavaScript in hooks or from the Script
Component in addition to the options above.

v Access the Server API from non-IBM Security Directory Integrator Java
applications. For this to work:
– Java 7.0.4 or higher is required on the client side.
– The following jar files must be included in the CLASSPATH of the remote

side:
- jars/common/diserverapi.jar
- jars/common/diserverapirmi.jar
- jars/3rdparty/others/log4j-1.2.16.jar
- jars/common/miconfig.jar
- jars/common/miserver.jar
- jars/common/mmconfig.jar
- jars/common/tdiresource.jar
- jars/3rdparty/IBM/icu4j-50_1_1.jar
- jars/3rdparty/IBM/jlog.jar

You can copy these jar files from the IBM Security Directory Integrator
installation.

– If custom non-IBM Security Directory Integrator objects are used in the
solution being implemented with the Server API (for example as Attribute
values of an Entry that is transferred over the wire) the corresponding Java
classes have to be available on the client side as well. These classes must be
serializable and they have to be included in the CLASSPATH of the client
JVM.

Server API SSL remote access
The remote interface of Server API can use SSL. Learn more about the remote
access through the information provided here.

The Server API provides two sets of interfaces – local and remote. It is only the
remote interfaces that can use SSL. The local interfaces do not use SSL as the access
is within the boundaries of the Java Virtual Machine. IBM Security Directory
Integrator can act as a server, as a client; as well as both as a client and as a server
in a Server API access scenario. When SSL is used with the Server API, then a
keystore and a truststore must be configured. There are two options for
configuring these. Which of them is used depends on whether the Java System
property api.client.ssl.custom.properties.on exists and on its value.

Using Server API specific SSL properties
Use the listed set of properties to configure the SSL.

Chapter 6. Security 111

When the Java System property api.client.ssl.custom.properties.on is set to true,
then SSL is configured through the following IBM Security Directory Integrator
Server API-specific Java System properties:
v api.client.keystore – specifies the keystore file containing the client certificate
v api.client.keystore.pass – specifies the password of the keystore file specified by

api.client.keystore
v api.client.keystore.type – specifies the type of the keystore file specified by

api.client.keystore; optional property, if not specified the default keystore format
for the JVM will be used

v api.client.key.pass – specifies the password of the private keystored in the
keystore file contained in api.client.keystore; if this property is missing, the
password specified by api.client.keystore.pass is used instead.

v api.client.truststore – specifies the keystore file containing the IBM Security
Directory Integrator Server public certificate.

v api.client.truststore.pass – specifies the password for the keystore file specified
by api.client.truststore.

v api.client.truststore.type – specifies the type of the keystore file specified by
api.client.truststore; optional property, if not specified the default keystore
format for the JVM will be used

Use the Server API specific SSL properties when your client application is using
the standard Java SSL properties. The standard Java SSL properties are properties
used to configure another SSL channel used by the same application.

You can specify these properties as JVM arguments on the command line, for
example:
java MyTDIServerAPIClientApp
-Dapi.client.ssl.custom.properties.on=true
-Dapi.client.truststore=C:\TDI\serverapi\testadmin.jks
-Dapi.client.truststore.pass=administrator
-Dapi.client.keystore=C:\TDI\serverapi\testadmin.jks
-Dapi.client.keystore.pass=administrator

This example refers to the sample "testadmin.jks" keystore file shipped with IBM
Security Directory Integrator. Note that it contains both the client private key and
also the public key of the IBM Security Directory Integrator Server, so we use it
both as a keystore and truststore.

You can specify these properties in global.properties or solution.properties
when the client is an IBM Security Directory Integrator server.

Using the standard SSL Java System properties
Use the listed JVM commands to configure the SSL.

When the Java System property api.client.ssl.custom.properties.on is missing
or when it is set to "false", then the standard JSSE system properties are used for
configuring the SSL channel. Follow the standard JSSE procedure for configuring
the keystore and truststore used by the client application.

You can specify these properties as JVM arguments on the command line, for
example:
java MyTDIServerAPIClientApp
-Djavax.net.ssl.keyStore=C:\TDI\serverapi\testadmin.jks
-Djavax.net.ssl.keyStorePassword=administrator
-Djavax.net.ssl.trustStore=C:\TDI\serverapi\testadmin.jks
-Djavax.net.ssl.trustStorePassword=administrator

112 IBM Security Directory Integrator: Installation and Administrator Guide

Also these properties can be specified in global.properties or
solution.properties when the client is an IBM Security Directory Integrator
server.

Server API authentication
You can use Server API authentication while trying to set a server API session.

Server API authentication is usually referred to in the context of a remote Server
API client establishing a Server API session. This scenario represents the substance
of the Server API authentication logic as the Server API provides several different
kinds of client authentication. But before diving into the different authentication
mechanisms let us discuss the scenario in which a local client establishes a local
Server API session.

Local client session
Use the instructions provided here to work with a client locally. Read the
information to know about the options.

A local client session is a session established by a client which runs in the same
Java Virtual Machine as the IBM Security Directory Integrator server. Examples of
such sessions are local sessions for access to the local Server API established from
JavaScript code in hooks or in a Script component, from Connectors and Function
Components which are executed as part of an AssemblyLine which runs in the
same IBM Security Directory Integrator server, and so on. When a local client
establishes a local Server API session, the client has two options:
v Do not provide a username and password pair – in this case the local Server API

session is established and the client is authorized as having the "admin" role. For
more information about Server API roles, see “Server API Authorization” on
page 123.

v Provide a username and password pair – in this case the Server API session is
established only after the "username" supplied in the username and password
pair is authorized according to the Server API Authorization logic described in
the “Server API Authorization” on page 123 section. This option would normally
be used when a specific user ID is needed for authentication – for demos,
prototyping, and so on.

Remote client session
Use the instructions provided here to workaround with a client remotely. Read the
information to know more about the types of authentications.

A remote client session is a session established by a client which does not run in
the same Java Virtual Machine as the IBM Security Directory Integrator server.
Examples of such sessions are sessions for access to a remote Server API
established from the Configuration Editor, or a Java application wishing to access
an IBM Security Directory Integrator Server. For access of this kind there are the
following methods of authentication to the IBM Security Directory Integrator
Server:

JAAS authentication
You can use JAAS authentication to validate the users access controls. Learn more
about configuring the properties by reading the information provided here.

The Java Authentication and Authorization Service (JAAS) is supported as an
authentication module for IBM Security Directory Integrator Server APIs. JAAS is a
set of APIs that enables services to authenticate and enforce access controls upon

Chapter 6. Security 113

users. The JAAS authentication is facilitated by the IBM Security Directory
Integrator Server API. No changes are required on the IBM Security Directory
Integrator Server API clients such as CLI and AMC in order to use the JAAS
authentication module.

In order to use JAAS authentication, you must configure the appropriate properties
in global.properties or solution.properties and the JAAS Logon should be
installed.

SSL-based authentication
You can use the two-stage verification of the client's credentials through the
SSL-based authentication.

This is the only authentication mechanism available in IBM Security Directory
Integrator 6.0. SSL-based authentication is based on a two-stage verification of the
client's credentials.
1. First the IBM Security Directory Integrator server verifies that a client

(represented by its SSL certificate) has the right to access the IBM Security
Directory Integrator server by checking whether the client's SSL certificate is
contained in the IBM Security Directory Integrator server's truststore, that is,
checks whether the IBM Security Directory Integrator server trusts this client.
Checking whether the client's certificate is contained in the server's truststore is
part of the SSL handshake sequence.
Attention: A client certificate example, corresponding to the Server certificate
example in file testserver.jks is provided in file serverapi/testadmin.jks; the
certificate's password is "administrator". As with all default security parameters
you should not rely upon these and generate your own client/server
certificates and specify these in the properties files. See “Certificates for the IBM
Security Directory Integrator Web service Suite” on page 148.
The truststore is kept in the file indicated by the api.truststore property.

2. If the truststore check is successful then the server verifies that the client SSL
certificate distinguished name (DN) matches a user ID in the “Server API User
Registry” on page 125. If the client certificate's DN does not match any of the
user IDs in the Server API User registry file the connection request from the
client is denied. This second step could be regarded as part of the authorization
sequence as well.

The SSL-based authentication mechanism can be switched off in IBM Security
Directory Integrator. An additional property is available in the IBM Security
Directory Integrator Server configuration file global.properties or
solution.properties: api.remote.ssl.client.auth.on. When this property is set to
"true", the IBM Security Directory Integrator Server requires client authentication
within the SSL handshake (the IBM Security Directory Integrator 6.0 mechanism
for SSL-based authentication). SSL client authentication for IBM Security Directory
Integrator Server API does not depend on whether a username and password pair
is supplied. This means that if no username and password pair is supplied, the
IBM Security Directory Integrator 6.0 mechanism for SSL-based authentication is
used. And if a username and password pair is supplied then the client still needs
to send its SSL certificate for authentication, but the User ID for authentication
(and at a later step authorization) is taken from the username supplied.

When api.remote.ssl.client.auth.on is set to "false", SSL-based authentication
cannot be used. When the property is not specified a value of "false" is assumed.

114 IBM Security Directory Integrator: Installation and Administrator Guide

Username/password based authentication
You can use authentication hook to perform Username/password based
authentication.

This mechanism requires a client to supply a username and password on the
opening of his Server API connection to the IBM Security Directory Integrator
server. In order to configure this authentication method an authentication hook is
used.

Authentication hook

This hook allows the provision of custom JavaScript code that performs username
and password based authentication. This hook allows bundlers/deployers to write
customized JavaScript code, which given a username and password pair
determines whether the authentication should succeed or not.

The property allowing for this custom JavaScript authentication is specified in the
IBM Security Directory Integrator Server configuration file global.properties or
solution.properties: api.custom.authentication. The api.custom.authentication
property points to a JavaScript text file on the disk that contains custom
authentication code. If this property is not specified then the IBM Security
Directory Integrator 6.0 SSL-based authentication mechanism is used. When the
api.custom.authentication property is specified, the JavaScript code contained in
the specified file is executed for each username and password based authentication
request.

The authentication script has access to the predefined script object userdata. This
object provides the following two public members:
v userdata.username - contains the name of the user requesting authentication
v userdata.password - contains the password provided by the user

The script is free to perform whatever checks and authentication actions it needs. It
returns whether the authentication is successful through the ret object:
v set ret.auth = true to specify that the authentication is successful
v set ret.auth = false to specify that the authentication is not successful; in this

case the authentication script can provide additional information for why the
authentication failed through the ret.errordescr attribute (for example
ret.errordescr = "Invalid user name") and ret.errorcode (for example ret.errorcode =
1).

The description and error code fields is provided by the AuthenticationException
thrown by the ServerAPI on unsuccessful authentication.

The authentication script has access to the main script object. It can be used for
logging custom messages in the IBM Security Directory Integrator Server log file
(for example main.logmsg("Authentication failed for user : " + userdata.username)).

An example authentication hook

An example authentication hook JavaScript file is available (in
TDI_install_dir/examples) in order to demonstrate what the JavaScript of an
authentication hook could look like. This example JavaScript can also be used as
the basis of real-world IBM Security Directory Integrator authentication hooks. The
example JavaScript demonstrates how an authentication hook can use an LDAP
server (IBM Security Directory Server, Active Directory, and so on) for
authenticating client requests.

Chapter 6. Security 115

The JavaScript file is named "ldap_auth.js" and is installed in the
examples/auth_ldap IBM Security Directory Integrator Server folder. To deploy this
sample LDAP authentication mechanism users can copy that file to the IBM
Security Directory Integrator solution folder and specify
api.custom.authentication=ldap_auth.js in global.properties or
solution.properties. The JavaScript code in "ldap_auth.js" tries to bind to an
LDAP Server with the specified username and password. If the bind operation is
successful, the script indicates a successful authentication, otherwise the
authentication is rejected. The details for connecting to the LDAP Server like the
server URL are specified in the "ldap_auth.js" script - this means that users have to
edit this file and set the proper connection parameters before using the script. Here
is the sample "ldap_auth.js" script:
env = new Packages.java.util.Hashtable();
env.put("java.naming.factory.initial", "com.sun.jndi.ldap.LdapCtxFactory");
env.put("java.naming.provider.url", "ldap://192.168.113.54:389");
env.put("java.naming.security.principal", userdata.username);
env.put("java.naming.security.credentials", userdata.password);
env.put(Packages.javax.naming.Context.SECURITY_AUTHENTICATION, "simple");

main.logmsg("Authentication request for user: " + userdata.username);

try
{
mCtx = new Packages.javax.naming.directory.InitialDirContext(env);
ret.auth = true;
}
catch(e)
{
ret.auth = false;
ret.errordescr = e.toString();
// ret.errorcode = "49";
}

LDAP Authentication support
The IBM Security Directory Integrator Server API provides support for LDAP
Authentication. This allows you to leverage your existing LDAP infrastructures
that already hold User IDs and Passwords.

LDAP Authentication Configuration:

You can configure the LDAP authentication by working upon the listed properties.

In order to use LDAP authentication the appropriate properties must be configured
in global.properties or solution.properties. The list of these properties along
with their descriptions follows:

api.custom.authentication
This is the same property used for username and password authentication.
For more information on username and password authentication see the
"Username/password based authentication" section. This property points
to a JavaScript text file on the disk that contains custom authentication
code. The user may not specify this property, in which case he can only
use the IBM Security Directory Integrator 6.0 SSL-based authentication
mechanism. The IBM Security Directory Integrator Version 7.2 username
and password authentication does not work. Set this property to "[ldap]" to
enable the IBM Security Directory Integrator Version 7.2 built-in LDAP
Authentication mechanism, like this: api.custom.authentication=[ldap] All
properties starting with "api.custom.authentication.ldap." are only be taken
into account when api.custom.authentication is set to [ldap].

api.custom.authentication.ldap.critical
This parameter specifies the Server API behavior when the LDAP

116 IBM Security Directory Integrator: Installation and Administrator Guide

Authentication module cannot be initialized on startup. If this parameter is
set to "true" the Server API initialization fails and the Server API is not
started.

If this parameter is missing or is set to "false" the Server API logs the
LDAP Authentication initialization error but the Server API is started. An
attempt to initialize the LDAP Authentication module is made on each
authentication request received by the Server API until the LDAP
Authentication module is initialized.

api.custom.authentication.ldap.hostname
The LDAP Server hostname. If LDAP custom authentication is used, this is
a required property.

api.custom.authentication.ldap.port
The LDAP Server port number. For example, 389 for non-SSL or 636 for
SSL. If LDAP custom authentication is used, this is a required property.

api.custom.authentication.ldap.ssl
Specifies whether SSL is used to communicate with the LDAP Server.
When set to "true" SSL is used, otherwise SSL is not used.

api.custom.authentication.ldap.searchbase
Specifies the LDAP directory location where user searches is preformed.
When this property is not specified user searches is not performed.

api.custom.authentication.ldap.admindn
Specifies an LDAP Server administrator distinguished name that is used
for user searches. When this property is not specified anonymous bind is
used for user searches.

api.custom.authentication.ldap.adminpassword
Password for the LDAP Server administrator distinguished name.

api.custom.authentication.ldap.userattribute
Specifies the user id attribute to be used in searches. When this property is
not specified user searches are not performed. An example setting of this
property would be: api.custom.authentication.ldap.userattribute=cn

If a required property is missing an exception is thrown on initialization.

If the value of either api.custom.authentication.ldap.searchbase or
api.custom.authentication.ldap.userattribute is missing no search context is
initialized and no searches is performed during the actual user authentication. (No
search means that the bind to the LDAP Server is attempted directly with the
username and password provided for authentication.)

When api.custom.authentication.ldap.admindn is provided a search context is
created using "simple" authentication. If an error occurs during the search context
initialization, the initialization of the LDAP Authentication module fails and an
exception is thrown.

When api.custom.authentication.ldap.admindn is not provided a JNDI search
context is created using JNDI "anonymous" bind.

Note: If the search context cannot be initialized using
api.custom.authentication.ldap.admindn, authentication fails directly - no
anonymous bind is attempted.

Chapter 6. Security 117

LDAP Authentication Logic:

Use the listed paths to authenticate the credentials for LDAP authentication.

On each attempt to authenticate a user the LDAP Authentication module is passed
the username and the password for the user to be authenticated. The following
authentication paths are possible:
v Both api.custom.authentication.ldap.searchbase and

api.custom.authentication.ldap.userattribute properties are specified :
– If the username given for authentication ends with the value of the

api.custom.authentication.ldap.searchbase property it is assumed that a full
distinguished name is provided and no user search is performed. A bind to
the LDAP Server is attempted directly with the username and password
provided for authentication. If the bind succeeds the authentication is
considered successful, otherwise the authentication is considered failed.

– If the username does not end with the value of the
api.custom.authentication.ldap.searchbase property, a search with a subtree
search scope is executed against the search context created on initialization.
The search query used is "(<LDAPUserIDAttribute>=<username>)" where
LDAPUserIDAttribute is the value of the
api.custom.authentication.ldap.userattribute property and username is the
username given for authentication. If exactly one search result is returned, a
bind to the LDAP Server is performed with the distinguished name of the
returned entry and the password provided for authentication. The
authentication succeeds only if the bind to the LDAP Server is successful. In
all other cases it is considered that the authentication has failed. If multiple
search results are returned, authentication fails.

v At least one of api.custom.authentication.ldap.searchbase or
api.custom.authentication.ldap.userattribute properties is not specified.
In this case no searches are performed and a bind to the LDAP Server is
attempted directly with the username and password provided for authentication.
If the bind succeeds the authentication is considered successful, otherwise it is
considered that the authentication failed.

LDAP Group Support:

You can set permissions in the User Registry for a group the same way as you
would for a user. You can distinguish between users and groups through the listed
properties.

To ease administration, IBM Security Directory Integrator allows permissions to be
configured for groups the same way as they are configured for users. You can set
permissions in the User Registry using exactly the same syntax as you would for a
user. The fact is that the User Registry does not care whether a security entity is a
group or a user. The distinction between users and groups is drawn during the
authentication process.

Group membership is configured in the LDAP directory, against which IBM
Security Directory Integrator authenticates users. If a user is a member of some
LDAP group, all permissions for that group are automatically inherited by the user
when the user is authenticated. Group support is disabled by default, so you must
turn it on.

The system properties that are related to LDAP group support are:

118 IBM Security Directory Integrator: Installation and Administrator Guide

api.custom.authentication.ldap.groupsupport
This is an pptional property - a boolean flag. If this property is missing,
the default value "false" is used. Specifies whether group membership is
resolved when authenticating users. If the group membership is resolved, it
is taken into account during authorization.

api.custom.authentication.ldap.usermembershipattribute
This property is required only if
api.custom.authentication.ldap.groupsupport is set to true. Specifies the
name of the attribute of a user in LDAP that contains a list of the groups
of which the user is a member.

api.custom.authentication.ldap. usermembershipattributecontent
This property is required only if
api.custom.authentication.ldap.groupsupport is set to true. Specifies how
groups are named in the membership attribute of a user. For example, if
the user's membership attribute contains values that correspond to the
"objectSID" attributes of groups, set this property to "objectSID". If the
user's membership attribute contains distinguished names of groups, then
set this property to "dn".

api.custom.authentication.ldap.groupnameattribute
This property is required only if
api.custom.authentication.ldap.groupsupport is set to true. Specifies the
name of a group's attribute in LDAP which corresponds to the way the
group is named in the IBM Security Directory Integrator User Registry. For
example, if LDAP groups are addressed in the IBM Security Directory
Integrator registry by their common name, then set this property to "cn". If
the User Registry contains the distinguished names of the groups, then set
this property to "dn".

api.custom.authentication.ldap.groupsearchbase
This property is required only if
api.custom.authentication.ldap.groupsupport is set to true. Represents the
LDAP directory context, where groups are searched.

api.custom.authentication.ldap.binaryattributes
This is an optional property - it represents a list of space-separated
attribute names. Specifies attributes which have non-string syntax.

Active Directory example

This example shows how to configure group support to work with an Active
Directory server:
api.custom.authentication.ldap.groupsupport=true
api.custom.authentication.ldap.usermembershipattribute=tokenGroups
api.custom.authentication.ldap.usermembershipattributecontent=objectSID
api.custom.authentication.ldap.groupnameattribute=sAMAccountName
api.custom.authentication.ldap.groupsearchbase=DC=mytestadserver,DC=com
api.custom.authentication.ldap.binaryattributes=objectSID tokenGroups

The 'tokenGroups' attribute is a calculated attribute that exists for all users in
Active Directory.

It contains a collection of the Security Identifiers (SIDs) for all security groups that
the user is a member of.

This collection contains only security groups (distribution groups, used for e-mail,
are not included) and it contains all security groups including nested and primary
groups.

Chapter 6. Security 119

The Security Identifiers are binary attributes so they must be set in the
api.custom.authentication.ldap.binaryattributes property.

In the above example, groups are named by their "sAMAccountName" LDAP
attribute in the IBM Security Directory Integrator User Registry.

IBM Security Directory Server example

This example shows how to configure group support to work with IBM Security
Directory Server:
api.custom.authentication.ldap.groupsupport=true
api.custom.authentication.ldap.usermembershipattribute=ibm-allGroups
api.custom.authentication.ldap.usermembershipattributecontent=dn
api.custom.authentication.ldap.groupnameattribute=dn
api.custom.authentication.ldap.groupsearchbase=ou=mytestou,c=mytestcountry

For a given user entry, the "ibm-allGroups" operational attribute enumerates all
static, dynamic and nested groups, to which that user has membership.

Note:

1. IBM Security Directory Integrator determines group membership by directly
examining the LDAP user entry (as opposed to indirectly determining
membership by scanning through all groups). For this approach to work
correctly, the user entry must have an attribute that enumerates the groups, of
which the user is a member. The group support works only with LDAP Servers
that do support such a membership attribute on each user entry.

2. If you modify the group membership of a user, this does not affect existing
Server API sessions. It is, however, reflected in sessions established after the
modification.

3. Group support is currently provided only for LDAP authentication. There is no
group support for JAAS authentication or authentication with custom
JavaScript.

4. When SSL client authentication is enabled in the Server API, clients that do not
specify a username are to be authenticated and authorized based on the owner
of the SSL client certificate. If LDAP authentication with group support is also
enabled (along with the SSL client authentication), group membership is
resolved for the owner of the SSL client certificate.

Host based authentication
Configure the host based properties in order to use the host based authentication.
Learn more about it through the information provided here.

Host based authentication is used, when SSL is turned off by specifying
api.remote.ssl.on=false in global.properties or solution.properties files. Host
based authentication is configured using the api.remote.nonssl.hosts property. This
property specifies the list of host IP addresses from which remote Server API
clients can use the Server API without specifying a username and password.

The syntax of this list of hosts is: a list of IP addresses (host names are not
accepted); use a space, a comma or a semicolon as a delimiter between IP
addresses. An example value of this property would be:
api.remote.nonssl.hosts=192.168.111.222, 192.168.112.158

When a client using host based authentication is successfully authenticated, then
the client is granted admin authorization authority. That is why adding IP
addresses to this list must be done with great care. It is not advisable to use host

120 IBM Security Directory Integrator: Installation and Administrator Guide

based authentication in production environment because of its security issues. Host
based authentication would normally be used while developing a solution or when
doing a demo.

Summary of Server API Authentication options
There are a number of server API authentication options. Here is a summarized list
of the same.

The following authentication options are available:

SSL-based authentication (the mechanism available in IBM Security Directory
Integrator 6.0)

Only works when api.remote.ssl.client.auth.on=true (you also need
api.on=true, api.remote.on=true, api.remote.ssl.on=true). The user is authorized
by the rights assigned to the SSL certificate user ID in the Server API User
Registry.

Note: When SSL is used and the remote client application uses Server API
listener objects, then the client application must have its own certificate
that is trusted by the IBM Security Directory Integrator Server (this is
analogous to the setup for SSL client authentication). If there is no client
certificate trusted by the IBM Security Directory Integrator Server, the
listener objects do not work and the remote client application cannot
receive notifications from the IBM Security Directory Integrator Server.

Username/password based authentication
Only works when api.custom.authentication is set to a JavaScript
authentication file. This authentication method works regardless of
whether SSL is used and whether SSL client authentication is used. The
user is authorized as per the rights assigned to the username user in the
“Server API User Registry” on page 125.

LDAP authentication
This was described in section “LDAP Authentication support” on page 116,
and is dependent on a number of api.custom.authentication settings in the
global.properties or solution.properties.

Host-based authentication
Only works when api.remote.ssl.on=false. Then opening of Server API
sessions without username and password supplied from all hosts specified
by the api.remote.nonssl.hosts property are successfully authenticated and
granted admin authority. The api.remote.nonssl.hosts property can be
specified in the global.properties or solution.properties.

Server API JMX layer
Server API JMX layer does not support username and password authentication.
Use the authentication steps listed here to authenticate the JMX layer.

The remote JMX layer of the Server API does not support username and password
based authentication. It ignores the api.custom.authentication properties. Regardless
of the value of these properties and whether custom authentication is enabled or
not for the Server API, the remote JMX layer performs the following
authentication:
v If SSL is turned on and SSL client authentication is turned on, the remote JMX

layer performs SSL-based authentication (as in IBM Security Directory Integrator
6.0).

v If SSL is turned on and SSL client authentication is turned off, the remote JMX
layer does not work.

Chapter 6. Security 121

v If SSL is turned off, the remote JMX client is successfully authenticated only if its
host is specified on the api.remote.nonssl.hosts property, that is, host-based
authentication is assumed. In this case the client is granted admin authority.

The net result is that the Server API JMX layer does not support username and
password authentication:

Server API authentication setup examples
You can go through a list of Server API authentication examples. This will help
you in configuring the server.

Authentication configuration examples:
1. Non-SSL configuration and custom authentication:

api.remote.ssl.on=false
api.remote.nonssl.hosts=192.168.113.51, 192.168.113.52
api.custom.authentication=ldap_auth.js

SSL is not used.
v Authentication requests with no username and password supplied succeed

only if they are invoked from the localhost or from 192.168.113.51 or
192.168.113.52.

v Authentication requests with username and password supplied succeed only
if the ldap_auth.js successfully authenticates the user specified with the
username and password parameters.

v Remote JMX clients are authenticated only when the request comes from the
localhost or from 192.168.113.51 or 192.168.113.52.

2. SSL (without client authentication) and custom authentication:
api.remote.ssl.on=true
api.remote.ssl.client.auth.on=false
api.custom.authentication=ldap_auth.js

SSL is used for remote Server API communication.
v Authentication requests with no username and password supplied fail

because neither SSL client authentication, nor host-based authentication is
switched on.

v Authentication requests with username and password supplied succeed only
if the ldap_auth.js successfully authenticates the user specified with the
username and password parameters.

v Host-based authentication is not available in this case regardless of the value
of the api.remote.nonssl.hosts parameter, because api.remote.ssl.on is set to
true.

v Remote JMX layer is not accessible. This is because SSL is turned on but SSL
client authentication is not used.

3. SSL with client authentication and custom authentication:
api.remote.ssl.on=true
api.remote.ssl.client.auth.on=true
api.custom.authentication=ldap_auth.js

SSL is used for remote Server API communication and the Server requires SSL
client authentication.
v Authentication requests with no username and password supplied succeed

when the SSL certificate of the client is present in the Server’s truststore (or
verifiable using the certificates in the truststore).

v Authentication requests with username and password supplied succeed only
when the SSL client authentication is successful (the SSL certificate of the

122 IBM Security Directory Integrator: Installation and Administrator Guide

client is present in the Server’s truststore) and the ldap_auth.js script
successfully authenticates the user specified with the username and
password parameters. In this case, authorization is performed based on the
username parameter from the username and password supplied and not
with the user identity from the SSL client certificate.

v Host-based authentication is not available in this case regardless of the value
of the api.remote.nonssl.hosts parameter, because api.remote.ssl.on is set to true.

v Remote JMX clients are authenticated when the SSL certificate of the client is
present in the Server’s truststore (or verifiable using the certificates in the
truststore).

4. SSL with client authentication & no custom authentication:
api.remote.ssl.on=true
api.remote.ssl.client.auth.on=true
api.custom.authentication=

(as an alternative, the "api.custom.authentication" property may be missing
entirely)
SSL is used for remote Server API communication and the Server requires SSL
client authentication.
v Authentication requests with no username and password supplied succeed

when the SSL certificate of the client is present in the Server’s truststore (or
verifiable using the certificates in the truststore).

v Authentication requests with username and password supplied do not
succeed because custom authentication is not configured.

v Host-based authentication is not available in this case regardless of the value
of the api.remote.nonssl.hosts parameter, because api.remote.ssl.on is set to true.

v Remote JMX clients are authenticated successfully only when the SSL
certificate of the client is present in the Server’s truststore.

Server API Authorization
You can assign authorization to a user with the instructions provided here.

After a client Server API session request is authenticated it needs to be authorized.

Users of the Remote API can be assigned several roles; a role defines a list of
Server API calls that can be executed by the user and also defines in what context
these calls can be executed. A Server API method can be executed if there is at
least one role assigned to the user that allows the execution of this method in the
context the user tries to execute it. For example, a role can grant the user rights to
execute only specific AssemblyLines from a specific configuration. Refer to “Server
API User Registry” on page 125 for details on how to create the file that holds
these user rights.

Authorization is based on the user id. Depending on the authentication mechanism
used the user id is retrieved in a different way:
v SSL based authentication - the user id is the distinguished name (DN) of the

client's SSL certificate.
v Username or password based authentication - the user id is the username

supplied in the username and password pair.
v Host based authentication - no user id can be retrieved from the client using this

authentication mechanism; in this case the client session is authorized with the
admin role.

Chapter 6. Security 123

Authorization roles
You can authorize a user with several roles. Here is list of roles that can be applied
to the Server API security model:

Users of the Remote API are assigned roles; a role defines a list of Server API calls
that can be executed by the user and also defines in what context these calls can be
invoked. For example, a role can grant the user rights to invoke only specific
AssemblyLines from a specific configuration.

Several roles can be assigned to a user, including assigning the same role several
times with different parameters. A Server API method can be invoked if there is at
least one role assigned to the user that allows the execution of this method in the
context the user tries to execute it.

There are no deny semantics - actions cannot be explicitly forbidden. The following
roles apply to the Server API security model:

Read role: read
[list_of(configuration)]

The read role allows the user read data from the Server's configuration(s).

If no list of configurations is specified or the list is empy, the user is not
allowed to read any configuration.

A special value * (asterisk) can be specified for the list of configurations and
this means that the user is allowed to read (through Server API calls) all
configurations currently loaded by the Server.

When the list of configurations is not null/empty and does not specify * the
user is allowed to read only the configurations specified.

The read role does not grant permission to start processes (AssemblyLines) or
apply any changes to the Server and its configurations. For example:

[ROLE]:read
[CONFIG]:*

Execute role: execute [
list_of(configuration
[list_of(AssemblyLines)])]

The execute role gives the user permissions to execute AssemblyLines.

If no list of configurations is specified or the list is empty, the user is not
allowed to execute any AssemblyLine from any configuration.

A special value * (asterisk) can be specified for the list of configurations and
this means that the user is allowed to execute all AssemblyLines from all
configurations.

When the list of configurations is present and does not specify * the user is
only allowed to start the processes from the configurations specified in the
list. For each configuration specified in the list:

v If a list of AssemblyLines is not specified, the user is not allowed to
execute any AssemblyLine from this configuration.

v If a special value * (asterisk) is specified for the list of AssemblyLines, the
user is allowed to execute all AssemblyLines from this configuration.

v If the list of AssemblyLines is present and does not specify * the user is
allowed to execute only the AssemblyLines specified in the list.

For example:

[ROLE]:execute
[CONFIG]:C:/TDI/rs.xml

[AL]:*
[CONFIG]:C:/TDI/prototype.xml

[AL]:TestAssemblyLine

124 IBM Security Directory Integrator: Installation and Administrator Guide

Admin role: admin The admin role allows the user to execute all Server API calls in every
possible context.

A user with admin role is allowed to read and modify configurations, to load
new configurations, to execute AssemblyLines, to read and modify server
parameters.

For example:

[ROLE]:admin

Note:

Admin role is required to use the Remote Configuration Editor. Also see
“Using the Remote Configuration Editor” on page 143.

The values specified in a [CONFIG] tag can be either Config file names, or
Solution Names if they have been specified in the Config file.

Server API User Registry
The User registry file encrypts the server certificate. Know more about its structure
through the information provided here.

The User Registry, identified by the api.user.registry property in the
global.properties or solution.properties file is a text file that maintains the
information about all the users of the API and their roles. This file is encrypted
with the Server's certificate specified by the api.key.alias property from the keystore
specified by the api.keystore property. The encryption algorithm employed is
Asymmetric RSA encryption or decryption; that is why the “Certificates for the
IBM Security Directory Integrator Web service Suite” on page 148 specifying the
RSA algorithm, which is the default algorithm of the “The IBM Security Directory
Integrator Encryption utility” on page 136 provided with BM Security Directory
Integrator that you can use for this purpose. On startup, the Server API engine
decrypts and reads this file into its memory structures.

Note:

1. The entire user registry file is encrypted as it is, block by block, in a
straightforward manner using the RSA algorithm and the server public key. A
digital signature or some sort of hashing is not used.

2. The authorization against the user registry is not optional. Currently the BM
Security Directory Integrator Server has no concept of a plug-in authorization
mechanism.

The contents of the Identity Registry text file is structured as follows:
[USER]
[ID]:<user_identifier>
[ROLE]:<role_identifier>

[CONFIG]:<config_identifier>
[AL]:<assembly_line_name>
[AL]:<assembly_line_name>
...

[CONFIG]:<config_id>
...

[ROLE]:<role_identifier>
...

[ROLE]:<role_identifier>
...

[ENDUSER]

[USER]
[ID]:<user_identifier>

Chapter 6. Security 125

[ROLE]:<role_identifier>
...
[ENDUSER]
...

Each tag must span a single line and each tag must be on a separate line. Tabs and
spaces do not matter. Empty lines may appear anywhere. The tags in the Identity
Registry file and their arguments are as follows:

Tag Argument

[USER] This tag takes no arguments, and serves as an opening bracket for the tags below;
a [USER] and [ENDUSER] pair of tags, each placed on a single line, provide the
definition of a single user in the registry file. There can be multiple pairs of this
type, each of which specify a user of the Server API.

[ID]:<user_identifier> This tag is the first tag after the [USER] tag and its argument <user_identifier> is
the unique identifier of the user of the Server API. This ID value is the 118 from
the truststore file. The tag and the argument of the tag are placed on a single line,
and there can be only one [ID]: tag included in a [USER] and [ENDUSER] pair.

[ROLE]:<role_identifier> This tag specifies a role for the user. Possible roles are: read, execute or admin.
Everything after the [ROLE]: tag and its argument and before another [ROLE]:
tag or an [ENDUSER] tag (whichever comes first) specifies details of this user
role. The tag and the argument of the tag are placed on a single line, and there
can be multiple [ROLE]: tags included in a [USER] and [ENDUSER] pair,
specifying multiple roles for that user.

[CONFIG]:<config_id> This tag specifies the identifier of an IBM Security Directory Integrator
configuration, the absolute file path of the configuration. Relative file paths are
not recognized. This tag is subordinate to a [ROLE]: tag, and the tag specifies a
configuration for the role given by the [ROLE]: tag. This tag and its argument are
placed on a single line, and there can be multiple [CONFIG]: tags, all belonging
to the superior [ROLE]: tag.

If no [CONFIG]: tag is associated with a [ROLE]: tag, the list of configurations
for the corresponding role definition is empty.

[AL]:<assembly_line_name> This tag specifies an AssemblyLine name. This tag is subordinate to a [CONFIG]:
tag. The tag and its argument are placed on a single line, and there can be
multiple [AL]: tags, all belonging to the superior [CONFIG]: tag.

If no [AL]: tag is associated with a [CONFIG]: tag, the list of AssemblyLines for
the corresponding configuration ID is empty.

The following text is an example of an Identity Registry file:
USER]
[ID]:CN=Stan, OU=TDI, O=IBM, C=US
[ROLE]:admin
[ENDUSER]

[USER]
[ID]:CN=John, OU=TDI, O=IBM, C=US
[ROLE]:read

[CONFIG]:*
[ROLE]:execute

[CONFIG]:C:/TDI/rs.xml
[AL]:*

[CONFIG]:C:/TDI/prototype.xml
[AL]:TestAssemblyLine

[ENDUSER]

[USER]
[ID]:CN=Peter, OU=TDI, O=IBM, C=US
[ROLE]:execute

[CONFIG]:C:/TDI/rs.xml
[AL]:*

[ENDUSER]

126 IBM Security Directory Integrator: Installation and Administrator Guide

This set of Identity Registry entries implies the following constraints:
v "Stan" is an administrator according to this registry file, and is allowed to

perform each and every Server API operation.
v John is allowed to read all configurations loaded on the Server, but can only

execute processes from two configurations:
– From "rs.xml", John can execute all AssemblyLines.
– From "prototype.xml" John is only allowed to execute the AssemblyLine

named "TestAssemblyLine".
v Peter can only execute all AssemblyLines from the "rs.xml" configuration.

Note: The keytool and/or the Ikeyman utility can be used to obtain the user ID
from the truststore file. The following command line prints all users from the
truststore file:
keytool -v -list -keystore <trust_store_file> -storepass <trust_store_pass>

where <trust_store_file> is the keystore file that contains the certificates of all
trusted users and <trust_store_pass> is the password for this keystore file. This
command line prints something like the text below for each user certificate:
Owner: CN=Stan, OU=TDI, O=IBM, C=US
Issuer: CN=Stan, OU=TDI, O=IBM, C=US
Serial number: 408f6a34
Valid from: 4/28/04 11:24 AM until: 7/27/04 11:24 AM
Certificate fingerprints:

MD5: F6:EF:81:8B:4C:0F:10:E4:A0:16:99:AB:42:29:70:8B
SHA1: FE:37:62:8B:42:2F:54:F8:F6:F3:FC:A1:DD:7D:2A:51:9A:85:09:02

The value of the Owner field must be specified as value for the [ID]: tag in the
Identity Registry as is, including all white space and commas. For this example,
the line with the ID tag looks like:
[ID]:CN=Stan, OU=TDI, O=IBM, C=US

An alternative way to obtain the user ID from the truststore file is to use Ikeyman
in the following way:
1. Start Ikeyman (or select Key Manager from the toolbar).
2. From the Key Database File menu click Open....
3. In the Open field, set the appropriate values and click OK.
4. In the Password field, enter the password for the truststore file.
5. Click on the certificate you are interested in.
6. Click the View/Edit... button. A window opens which contains information on

the subject's DN (user ID).

Chapter 6. Security 127

Server Audit Capabilities
You can audit IBM Security Directory Integrator events. Notifications are created
for each event. You can know more about the audit capabilities through the
information provided here.

The IBM Security Directory Integrator Audit Component enables the IBM Security
Directory Integrator Server to audit events such as authentication and
authorization in the Server API.

Notifications are generated when authentication and authorization (auth*) events
occur. Audit data is packaged into an Entry and provided as user data in the
notification. The "Audit Service" consists of a separate Audit config that is

128 IBM Security Directory Integrator: Installation and Administrator Guide

automatically loaded by the IBM Security Directory Integrator server. The Audit
config contains auto-started Audit AssemblyLines. The Audit ALs iterate on the
notification connector using suitable filters. IBM Security Directory Integrator users
can even generate "user defined notifications" if they want to create audit events
from within their own code.

IBM Security Directory Integrator auditing contains two main parts:
v A way for generating the necessary audit information
v An "Audit service" for handling existing audit data

Generating necessary audit information is implemented by creating IBM Security
Directory Integrator Entries on each audit point in the Server API, and by
broadcasting these Entries wrapped in a notification. For this purpose a new class
is presented in the Server API (com.ibm.di.api.APIAuditor), that generates the
Entry, attaches the Entry as UserData to a notification, and sends it to all interested
listeners.

The "Audit Service" is the main consumer of the audit notifications. The Audit
Service is a config consisting of several ALs that iterate on the Notification
Connector. Using different filters can register to a variety of notification types.

Auditing scope
Only those events can be considered for auditing which pass the listed criteria.

The IBM Security Directory Integrator audit capability follows only what people
do, and does not follow Server events in general. There is a difference between a
user being authorized to perform a task (stop an AL) and the task actually being
performed (AL is terminated). Being authorized is an authorization event and the
performing of a legal action, like stopping an AL, is a Server event. When a user
instructs an AL to stop and the AL terminates, an authorization event is paired
with a Server event. At other times, a Server event occurs by itself, as when an AL
completes naturally. Only events which involve direct user interaction are audited.
This limits the default audit points to authentication and authorization events
inside the Server API. Almost every method exposed by the Server API is
protected by its own piece of authorization code. The Audit component does not
try to send notifications for all authorization events, but selects a reasonable subset
of authorization-guarded Server API methods. The principles for the selection are
to audit all events that:
v Delete logs or tombstones
v Start or stop IBM Security Directory Integrator entities such as configs, ALs, and

the Server
v Replace the config instance configuration: replace the config instance

configuration or the check-in configuration
v Allow the user to change vital IBM Security Directory Integrator data: set

external property, post a message in the System Queue, call custom Java code
inside the IBM Security Directory Integrator JVM

Suppression of notifications
You can know more about suppression of notifications, commands to generate the
suppressed event types, method to do the same through the information provided
here.

The IBM Security Directory Integrator Server API allows certain notification types
to be suppressed for improved performance. The notification framework does not
propagate suppressed events. If you try to broadcast an event of a type suppressed,

Chapter 6. Security 129

the Server API does not issue an error. However, the suppressed event cannot
reach any of the registered notification listeners. The list of suppressed event types
is configured by a system property named:
api.notification.suppress

By default, all authentication and authorization events are suppressed:
api.notification.suppress=di.server.api.authenticate di.server.api.authorize*

The event types in the list are separated by spaces. Wildcards matching multiple
event types are allowed. If the event type property is missing or is empty, no
events are suppressed. You can suppress all custom notifications by typing:
api.notification.suppress=user

Note: Suppression affects the whole IBM Security Directory Integrator Server and
can result in suppression of all kinds of notifications. Even built-in notifications,
such as an AssemblyLine starting or the Server shutting down, can be suppressed.
Improper use of the suppression capabilities can interfere with the work of
components that listen for notifications such as the Tombstone Manager and the
Server Notifications Connector.

Sending notifications
You can deliver a notification to every registered Listener. Here is a list of
notification delivery parameters.

Sending notifications uses a method in com.ibm.di.api.APIEngine:
public static void sendNotification

(String type, String id, Object data, String configInstanceId)

This method creates a DIEvent. By this means, a notification is delivered to every
Listener registered to receive the a particular type of notification. Notification
delivery parameters include:

Table 18. Notification Delivery Parameters
Parameter name Definition

type Notification event type.

id Notification event ID.

data Notification event UserData object in the form of a Java object with additional information.

configInstanceId Notification ConfigInstance ID to which the notification is bound.

The com.ibm.di.api.APIEngine method throws DIException if the type parameter is
null. Calls to the method can be invoked either:
v Locally, from the IBM Security Directory Integrator Server JVM. This type of

access includes scripting in AssemblyLine hooks and also uses the API from new
Connectors implemented in Java and deployed on the IBM Security Directory
IntegratorServer

v Remotely, from another JVM (on the local or a remote network computer),
through Remote Method Invocation (RMI). This type of access uses solutions
that:
– Connect remotely to IBM Security Directory Integrator
– Manage processes within IBM Security Directory Integrator
– Build business logic on top of IBM Security Directory Integrator
– Are applications dedicated only to IBM Security Directory Integrator
– Are applications that use IBM Security Directory Integrator to accomplish

some of their goals

130 IBM Security Directory Integrator: Installation and Administrator Guide

IBM Security Directory Integrator Server Instance Security
You can set up a server instance with help of encryption algorithms and the
miscellaneous configuration files. Learn more about it through the information
provided here.

This section does not deal with the specifics of client (IBM Security Directory
Integrator-based or other) access to an IBM Security Directory Integrator Server,
this is discussed in “Remote Server API” on page 107; instead, it focuses on the
encryption algorithms used, and the miscellaneous configuration files needed to set
up a server instance.

The IBM Security Directory Integrator Server requires a keystore containing both
its private key and associated certificate/public key that is used for PKI encryption
of Config Files, properties in Properties files, Server User registry files and other
objects, as well as being used for SSL communication.

The system properties api.keystore and api.key.alias specify the keystore and the key
alias of the Server's certificate/key within the keystore. The password of the
keystore and the password of the key itself (if different from the keystore
password) are specified in the Server's stash file. Access to a keystore is guarded
by a password, defined at the time the keystore is created, by the person who
creates the keystore, and changeable only when providing the current password. In
addition, each private key in a keystore can be guarded by its own password. For
more information on the stash file of the server, see section “Stash File.”

The RSA algorithm is used for encryption of files and property values. It is used as
a block cipher where the block size is determined by the modulus component of
the RSA key. Encryption is done in ECB (Electronic Codebook) mode. PKCS#1
Padding is applied separately on each block. Note that the same RSA key-pair,
which is used for encryption of files, is also used for SSL communication with the
Server. IBM Security Directory Integrator uses the RSA implementation from the
IBMJCE security provider. All key sizes supported by that provider are also
supported by IBM Security Directory Integrator. From IBM Security Directory
Integrator v7.0, secret key ciphers can also be employed for encryption. RSA is
used as the default for compatibility with earlier versions, but secret key ciphers
are much faster and much more secure than public key ciphers.

DES and AES algorithms are used for encryption of password-protected
configuration files. An encryption key (DES or AES) is derived from the UTF-8
binary representation of the password. The derived encryption key is 64 bit for
DES and 128 bit for AES. ECB mode is used with no padding.

DES/AES keys are derived from passwords, when using password-protected
configuration files. Apart from the above, the IBM Security Directory Integrator
does not generate keys. Existing keys are loaded from an external key store. Key
establishment and key store access are performed through the IBMJCE and
IBMJSSE2 security providers. All key sizes and algorithms supported by those
providers can be used with the IBM Security Directory Integrator.

Stash File
Stash file stores the password of the keystore and the password of the key itself.
Learn to work with a stash file through the information provided here.

Chapter 6. Security 131

The stash file contains the Server keystore password values encrypted with AES128
with a fixed key. The Server stash file is named "idisrv.sth" (the name is not
configurable) and it is loaded by the Server from the Solution Folder. A command
line utility for creating a stash file is available in the IBM Security Directory
Integrator bin folder: createstash.bat or createstash.sh:
createstash <keyStorePassword> [<keyPassword>] [<securityProviderClass>]]

where keyStorePassword is the password of the keystore file specified by the
api.keystore system property and <keyPassword> is the password of the Server's
private key specified by the api.key.alias system property.

keyPassword is an optional parameter if no <securityProviderClass> parameter is
specified. If <keyPassword> is not specified it is assumed that the Server's private
key password is the same as the keystore's password. To use the utility with the
<securityProviderClass> parameter, you must specify both previous parameters:
keyStorePassword and keyPassword. If a security provider is specified then this
provider is used for the cryptography.

The utility creates a stash file named "idisrv.sth" with the specified password(s) in
the current directory.

Attention: IBM Security Directory Integrator comes bundled with a sample stash
file, with a password of "server". For improved security, we strongly advise you to
generate your own stash file using the aforementioned utility. Also, the stash file
must be kept inaccessible, except for the actual IBM Security Directory Integrator
Server that needs it.

Server Security Modes
You can run the IBM Security Directory Integrator Server in two modes: standard
and secure. Learn more about these through the information provided here.

.

Standard mode
When run in standard mode, the Server does not PKI encrypt
configurations saved on disk, unless a specific Server API call that requests
PKI encryption is invoked. When in this mode the Server is able to read
both encrypted and unencrypted configurations.

Secure mode
When run in secure mode the Server encrypts all configurations it saves on
the disk using PKI encryption. In secure mode the Server can only read
and load encrypted configurations. When the system property
com.ibm.di.server.securemode is set to "true", the Server runs in secure mode.
(A system property for the use of the IBM Security Directory Integrator
Server can be set by adding it in the global.properties or
solution.properties file or directly specify it on the java command line
when starting the IBM Security Directory Integrator server:
-Dcom.ibm.di.server.securemode=true)

If the command line option -e is specified on the java command line when
starting the Server, it runs in secure mode regardless of the value of the
com.ibm.di.server.securemode system property.

Note: Pre-IBM Security Directory Integrator 6.0 password-based encryption of
configuration files is supported for compatibility with earlier versions.
Password-based encryption is used when the user specifies a password when

132 IBM Security Directory Integrator: Installation and Administrator Guide

creating the configuration. Pre-IBM Security Directory Integrator 6.0
password-based configuration encryption cannot be combined with PKI
encryption. If you specify a password when the Server is run in secure mode, an
error message is displayed.

Working with encrypted IBM Security Directory Integrator
configuration files

You can perform a cryptographic transformation on the configuration files. You can
know more about the usage of encrypted files and things to take care with the
information provided here.

To provide confidentiality of data, IBM Security Directory Integrator can encrypt
configuration files, property values in properties files, server user registry files and
JavaScript files.

IBM Security Directory Integrator encryption involves a cryptographic
transformation that uses a key or a key-pair. The key/key-pair needs to be hosted
in a keystore file.

The cryptographic transformation can be either public-key encryption or secret key
encryption. By default IBM Security Directory Integrator uses public key
encryption. (The secret key encryption option has been introduced in IBM Security
Directory Integrator 7.0. Before that only public key encryption was supported.)

See:

Public key encryption uses a key-pair that consists of a public key and a private
key. The public key is used for encryption and the private key is used for
decryption. Currently only the RSA cipher is supported for public key encryption.
Public/private key pairs can be generated and managed using the standard JRE
utilities keytool and Ikeyman. See “Manage keys, certificates and keystores” on
page 93 for more information on managing certificates with associated public and
private keys.

IBM Security Directory Integrator data encryption is configured by the following
system properties (these can be set in global.properties or solution.properties):
v com.ibm.di.server.encryption.keystore : the keystore file that contains the

key/key-pair for encryption
v com.ibm.di.server.encryption.keystoretype : the type of the keystore file
v com.ibm.di.server.encryption.key.alias : the alias of the key/key-pair in the keystore
v com.ibm.di.server.encryption.transformation : the name of the encryption

transformation; see remarks below

The password of the keystore and the password of the key/key-pair itself (if
different from the keystore password) are specified in the Server's “Stash File” on
page 131. (Access to a keystore is guarded by a password, defined at the time the
keystore is created, by the person who creates the keystore, and changeable only
when providing the current password. In addition, each private key in a keystore
can be guarded by its own password.)

The name of the transformation can be either RSA or some secret key
transformation (for example, AES/CBC/PKCS5Padding). More detailed discussion of
what is in a transformation name can be found at http://www.ibm.com/
developerworks/java/jdk/security/60/secguides/JceDocs/

Chapter 6. Security 133

api_users_guide.html#trans; general information about Java Security (which is
what IBM Security Directory Integrator uses) can be found at http://www-
128.ibm.com/developerworks/java/jdk/security/60/secguides/jsse2Docs/
JSSE2RefGuide.html.

Note:

1. The "com.ibm.di.server.encryption.*" properties affect not only encryption of
configurations, but also encryption of property files, JavaScript files and the
Server API User Registry.

2. If you change the encryption key and/or the encryption transformation, the
Server cannot decipher previously encrypted files. To work around this
problem, decrypt the old files with the old key (you must have the old key
available in order to do so) and encrypt them with the new key. Encryption
and decryption of files can be done with the cryptoutils tool.

3. The standard RSA algorithm has a restriction on the length of data it can work
on. IBM Security Directory Integrator uses a custom scheme that splits input
data into small enough equally sized blocks and encrypts each of them
separately.

4. Data encrypted with RSA result in different cipher-texts on different
encryption runs. This effect is a feature of the PKCS#1 padding scheme used
with RSA.

5. A secret key (symmetric) cipher can be either a block cipher or a stream
cipher. Stream ciphers encrypt the bits of the message one at a time, and block
ciphers take a number of bits and encrypt them as a single unit (a block).
Block ciphers (for example, AES) use a feedback mode (so that patterns in the
plain-text are not preserved in cipher-text) and a padding scheme (to allow
encryption of data, whose length is not multiple of the block size of the
cipher). Stream ciphers (for example, RC4) do not use a feedback mode and a
padding scheme.

6. If the transformation involves a block cipher, it must use some padding
scheme (for example, "PKCS5Padding"), otherwise the Server not be able to
encrypt data whose length is not multiple of the block size of the cipher.
(Stream ciphers do not use padding, so they are not affected by this
restriction.)

7. The algorithm of the key/key-pair must match the algorithm in the specified
transformation. For example if the transformation is RSA then an RSA key-pair
must be provided; if the transformation is DES/ECB/PKCS5Padding, you must
provide a DES key. You can generate a new secret key using the keytool
utility, see “Manage keys, certificates and keystores” on page 93.

8. JKS keystores do not support secret keys, so you should use some other
keystore type such as JCEKS if you want to use a secret key encryption.

9. When using a block cipher in a feedback mode that requires an initialization
vector (IV), encrypted data is prefixed with the initialization vector as
plaintext. The IV does not have to be kept secret but must be unpredictable.
That is why a random IV is generated for each piece of data that is being
encrypted. Generation of random data can sometimes be resource-intensive, so
you may wish to consider a non-IV feedback mode (ECB) if performance is an
issue.

10. Which secret key transformations are supported for encryption depends on
the capabilities of the Java security provider. By default IBM Security
Directory Integrator uses the IBMJCE provider. Supported block ciphers are:
DES, AES, DESede (Triple DES), Blowfish and RC2. They can be used in any
of the following feedback modes: ECB, CBC, CFB, OFB, PCBC. The only

134 IBM Security Directory Integrator: Installation and Administrator Guide

available padding scheme is "PKCS5Padding". The MARS block cipher should
not be used for encryption, because it does not support padding
(http://www-128.ibm.com/developerworks/java/jdk/security/50/secguides/
JceDocs/api/com/ibm/crypto/provider/Mars.html). Supported stream
ciphers are RC4 and ARCFOUR (basically the same cipher under two different
names). The SEAL stream cipher requires large keys (160 bit) so it can be used
only after configuring unrestricted IBM SDK policy on the IBM Security
Directory Integrator JRE (http://www.ibm.com/developerworks/java/jdk/
security/60/#sdkpol).

Separation of certificates for PKI Encryption and SSL

Creating an encrypted IBM Security Directory Integrator
configuration file from scratch
You can create an encrypted IBM Security Directory Integrator configuration file
from scratch using the cryptoutils command line tool.

This is how you create an encrypted IBM Security Directory Integrator
configuration file from scratch.

Using the cryptoutils command line tool
1. Create a normal un-encrypted IBM Security Directory Integrator configuration

file using the Configuration Editor.
2. Use the cryptoutils command line tool to encrypt this configuration file as

described in the "“The IBM Security Directory Integrator Encryption utility” on
page 136" section.

3. In order to run this encrypted configuration file you must start the IBM
Security Directory Integrator server in secure mode as described in the "Server
Security Modes" section.

4. In order to edit this encrypted configuration file you can use one of two
options described in the "“Editing an encrypted IBM Security Directory
Integrator configuration file”" section.

Editing an encrypted IBM Security Directory Integrator
configuration file
You can perform editing on an encrypted file using the steps discussed here.

You can first decrypt the encrypted configuration file using the cryptoutils
command line tool as described in the "“The IBM Security Directory Integrator
Encryption utility” on page 136" section. Then you can edit the decrypted
configuration using the Configuration Editor and finally you can encrypt back the
modified configuration file using the cryptoutils tool.

Standard encryption of global.properties or
solution.properties

Use the steps described here to encrypt the global.properties or solution.properties
files.

The global.properties and solution.properties files store a number of
properties, some of which can represent sensitive data such as passwords. In order
to protect this sensitive data IBM Security Directory Integrator is capable of
encrypting this data.

Chapter 6. Security 135

All properties whose names are prefixed with {protect}- are PKI encrypted by the
Server using the Server's public key. The Server's key is specified by the
com.ibm.di.server.encryption.key.alias property from the keystore specified by the
api.keystore property. For example, if you want to encrypt a property
com.ibm.di.server.encryption.keystore you can add the following line in the
global.properties or solution.properties file:
{protect}-com.ibm.di.any.property=some_value

The next time the Server runs it detects that this property has to be encrypted and
it immediately overwrites the file, writing the plain text value "some_value" in
encrypted form.

Note: On some operating systems (Linux/UNIX systems if so configured) the
global.properties file might not be accessible for writing. In this case the server
outputs a warning message that the file has not been written/encrypted.

Protecting the properties in global.properties or solution.properties is also
accessible from the "Global-Properties" and "Solution-Properties" Property Stores
accessible from the Browse Server Stores option in the Configuration Editor.

Encryption of properties in external property files
Use a named certificate from the server's keystore to encrypt properties in external
property files .

Properties stored in external property files can be protected by encryption in just
the same way as properties in the global.properties or solution.properties can.

Instead of using the server's default certificate, it is possible to encrypt properties
in external property files using a specifically named certificate from the server's
keystore.

For more information on encrypting properties stored in these files, see the
“Standard encryption of global.properties or solution.properties” on page 135
section. The syntax of properties in an external property file is as follows:
[{protect}-]keyword <colon | equals> [{encr}][{java}]value

v The optional {protect}- prefix signals that the value either is or should be
encrypted. When the value starts with the character sequence {encr} it means
that the value is already encrypted.

v The optional {java} value prefix signals that the value is a serialized java object.
The value must be b64-encoded. For example:
{protect}-api.truststore.pass

={encr}J8AKimpEutu3BblOVg55F/5d5vO2kXWcNUWnCq3vINUc6K0719z9dEk3H43Ot2iTT1dZTI6FSSVin9KsCy
BLmgv+n84w7HelKl3ro2dFmZbTYKMXuxGoqN9nL2VOvZoptNqzoWvs6IN/p3VkIIBtlao/9mEPEKuIwRnKtkQ89Bg=

The IBM Security Directory Integrator Encryption utility
You can edit the files using cryptoutils utility. You should take care of the listed
parameters while performing the same.

In the TDI_install_dir/serverapi directory you find a utility (cryptoutils) which
enable you to decrypt and re-encrypt files, (for example, the Identity Registry file)
such that you can edit the file manually.

The tool recognizes the following command-line parameters:

input {required} Specifies the file to be encrypted or decrypted.

136 IBM Security Directory Integrator: Installation and Administrator Guide

output
{required} Specifies the new file that is created with the resulting data after
the encryption or decryption is done. If the file exists, it is overwritten.

mode {required} Specifies the mode in which the tool operate; it can be one of the
following modes:
v encrypt: encrypt user registry
v decrypt: decrypt user registry
v encrypt_config: encrypt an The IBM Security Directory Integrator

Encryption utility configuration file or a JavaScript file
v decrypt_config: decrypt an The IBM Security Directory Integrator

Encryption utility configuration file or a JavaScript file
v encrypt_props: encrypt the values of all protected properties in an The

IBM Security Directory Integrator Encryption utility properties file
v decrypt_props: decrypt the values of all protected properties in an The

IBM Security Directory Integrator Encryption utility properties file

Note: User Registry files are encrypted differently from configuration and
JavaScript files.

keystore
{required} Specifies the keystore file which contains the key for
encryption/decryption.

storepass
{required} Specifies the password of the keystore file.

alias {required} Specifies the alias of the encryption/decryption key in the
keystore

keypass
{optional} Specifies the password of the encryption/decryption key; by
default, the keystore password is used to access the key

transformation
{optional} Specifies the name of the cryptography transformation used for
encryption/decryption; can be RSA or any secret key transformation (for
example, AES/CBC/PKCS5Padding); the default is RSA.

storetype
{optional} Specifies the type of the keystore file (for example, JKS); this
parameter is case-insensitive (JCEKS and jceks are equivalent); if this
parameter is missing, the default keystore type of the JRE (configured by
the "keystore.type" security property in the java.security file of the JRE) is
used.

cryptoproviderclass
{optional} Specifies the Java security provider which is used for
encryption/decryption (but not for keystore access); by default the
providers from the security provider list of the JRE (configured in
java.security JRE file) is used.

Examples:

Encrypt the User Registry
An IBM Security Directory Integrator Server running in secure mode
requires that the User Registry is encrypted with the Server key.

You can encrypt a plaintext User Registry file like this:

Chapter 6. Security 137

cryptoutils -input registry.txt -output registry.enc -mode encrypt
-keystore ../testserver.jks -storepass server -alias server

Decrypt an IBM Security Directory Integrator configuration
cryptoutils -input myconfig.enc.xml -output myconfig.xml -mode decrypt_config -keystore ../testserver.jks
-storepass server -alias server

This command decrypts the "myconfig.enc.xml" configuration file (possibly
created by an IBM Security Directory Integrator Server, which runs in
secure mode). Now the decrypted configuration "myconfig.xml" can be
easily modified using the Configuration Editor. After modifying the
configuration, it can be encrypted again, so that an IBM Security Directory
Integrator Server in secure mode can read and use it.

Encrypt an IBM Security Directory Integrator configuration using a symmetric
cipher (rather than the default "RSA")

cryptoutils -input myconfig.xml -output myconfig.enc.xml -mode encrypt_config -keystore ../server.jck
-storepass server -alias server -transformation AES/CBC/PKCS5Padding -storetype jceks

The above command assumes that the keystore "server.jck" exists. That
keystore is supposed to contain an AES secret key under alias "server".

Decrypt the global.properties file

The IBM Security Directory Integrator Server automatically encrypts the
values of protected properties when reading the global.properties or
solution.properties file.

You can decrypt all encrypted values in the global.properties file like
this:
cryptoutils -input ../etc/global.properties -output ../etc/global.properties -mode decrypt_props
-keystore ../testserver.jks -storepass server -alias server

Note: When the cryptoutils tool is used to encrypt and decrypt the “Server API
User Registry” on page 125, configuration files (see the "“Server Security Modes”
on page 132" section for details how the server treats encrypted configurations) or
“Encryption of IBM Security Directory Integrator Server Hooks” on page 142, it
encrypts and decrypts a file as a whole.

On the other hand, the encryption/decryption mode for property files
encrypts/decrypt only the values of the protected properties and not the whole
file. Thus after encrypting a .properties file using encrypt_props mode, the property
keys and the comments in the file are still readable by humans. For more
information on protected properties see sections “Standard encryption of
global.properties or solution.properties” on page 135 and “Encryption of properties
in external property files” on page 136.

IBM Security Directory Integrator System Store Security
Use the Derby to define the repository of users and passwords. Refer to the list
provided here to set the property with appropriate value. Further you can also
utilize User Authorization mechanism provided by Derby with the instructions
provided here.

The IBM Security Directory Integrator System Store is the database or persistent
layer where all the information which is required by an IBM Security Directory
Integrator Server is persisted. Traditionally, this layer did not have any security
around itself. Any user was able to access the System Store. However from IBM
Security Directory Integrator 7.0, there is configurable security provided around
the System Store.

138 IBM Security Directory Integrator: Installation and Administrator Guide

In IBM Security Directory Integrator 7.0, the System Store by default is used in
Network Mode. This way, a number of IBM Security Directory Integrator instances
and other applications is able to access the System Store concurrently. In view of
the System Store being available over the Network there is a need to have some
security built around it in order to protect the data which is maintained by the
IBM Security Directory Integrator Server.

Derby (previously known as Cloudscape) provides several ways to define the
repository of users and passwords. To specify which of these services to use with
your Derby system, set the property derby.authentication.provider to the
appropriate value as discussed in the appropriate section listed below.

External Directory Service
A directory service stores names and attributes of those names. Derby uses
the Java naming and directory interface (JNDI) to interact with external
directory services that can provide authentication of users’ names and
passwords.

You can allow Derby to authenticate users against an existing LDAP
directory service within your enterprise. LDAP (lightweight directory
access protocol) provides an open directory access protocol running over
TCP/IP. An LDAP directory service can quickly authenticate a user’s name
and password.

On configuring a set of properties defined by Derby you can start using
the External Directory Service as a repository for user names and
passwords.

User-defined class
The user defined class approach enables you to hook Derby to any other
external authentication service other than LDAP.

Set derby.authentication.provider to the full name of a class that
implements the public interface
org.apache.derby.authentication.UserAuthenticator. By writing your
own class that fulfills some minimal requirements, you can hook Derby up
to an external authentication service.

The class that provides the external authentication service must implement
the public interface org.apache.derby.authentication.UserAuthenticator
and throw exceptions of type java.sql.SQLException where appropriate.

Built-in Derby Users
Derby provides a simple repository for storing the user names and
passwords. For using this built-in repository the property
derby.authentication.provider=BUILTIN should be set..

The IBM Security Directory Integrator System Store is using the Built-in
repository for storing the user name and password. Since IBM Security
Directory Integrator have only one user for accessing the System Store this
is the most viable provider that can be used.

User Authentication

The user authentication details deal with the authentication of users. The user
authentication mechanism only authenticates if the user name is present in the
mentioned repository (it can any one of the repositories which are mentioned
above) and if the password is correct for the specified user. However if you want
to have more control over the access rights, you can use the User Authorization
mechanism provided by Derby.

Chapter 6. Security 139

The master switch for requiring that users be authenticated against provided
parameters is the property derby.connection.requireAuthentication - the default
is TRUE.

The access modes can be set using the property
derby.database.defaultConnectionMode=fullaccess. This property sets the default
access mode for all the users in the Derby repository. This property also defines the
access level for the System Store user. The different access levels supported by
Derby are fullAccess, readOnly, and noAccess. However if you want to have specific
access modes for specific users, you can assign access using the properties
mentioned below:
v derby.database.fullAccessUsers=<usernames> for allowing full access to users.
v derby.database.readOnlyAccessUsers=<usernames> for allowing read only

access to users.
v derby.database.noAccessUsers=<usernames> for not allowing users to access

the database.

The usernames should be a comma separated list of users for example
derby.database.fullAccessUsers=sa, mary

In the current version of IBM Security Directory Integrator we have only one user
accessing the System Store. This user is required to perform all the operations on
the System Store hence we have set the access mode to fullAccess.

Miscellaneous Config File features
You can have a detailed understanding on the miscellaneous Config File features
with the information provided here.

The "password" configuration parameter type

The configuration parameters of an IBM Security Directory Integrator component
in a Config can be "string", "number", "boolean", and so on. One of the available
types is "password". If a configuration parameter is of type password, then the
Configuration Editor shows its value in the component configuration window as a
sequence of '*' characters - both when typing in a new password, and when
opening an existing configuration for editing or running.

Component Password Protection
You can define the component passwords in a default property store by using the
instructions provided here.

IBM Security Directory Integrator saves configuration information in an XML file
which contains clear text for all configuration values. This includes sensitive
information like passwords. IBM Security Directory Integrator supports encryption
of the entire configuration file but does not encrypt or protect sensitive information
when the configuration file is saved in clear text.

IBM Security Directory Integrator provides a way to better protect passwords that
are needed for its various components; it hides the passwords in a clear text
configuration and provides default security for passwords that are stored. In order
to do this component passwords are defined (stored and retrieved) in a default
property store, instead of in the configuration file. In IBM Security Directory
Integrator, a user defined property store can be any system for which there is a
connector and the default property store most likely be an external properties file.

140 IBM Security Directory Integrator: Installation and Administrator Guide

All component passwords will by default go to this default property store, instead
of in the configuration file (as it is in older versions of the product). Thus,
passwords can be isolated from the configuration file unless explicitly overridden
by the user (may be appropriate for initial development).

Saving passwords to configured Properties
Use the instructions provided here to save the password using the password store.

About this task

The password protection mechanism is directly related to the configuration
windows offered to the user. The configuration windows, or forms, contain
descriptions of each parameter and its syntax. One type of syntax is password
which causes the Configuration Editor to use a password text field for editing.
Whenever the value for a password syntax component parameter is changed, the
value of the password is saved in an external repository, called the Password Store.
This external repository for passwords is configured in the Properties page in the
configuration editor (Password-Store) and is specified in the configuration file for
the current IBM Security Directory Integrator solution. If no such property store is
configured the password is saved in clear text in the configuration file.

If a default password store is configured, a unique property name is generated the
first time a protected/password parameter is saved. This key is used as the key in
the password store. The same property name is written to the configuration file as
a standard property reference. When the value is later retrieved, standard property
resolution takes place to retrieve the actual value from the password store.

If a Password Store is specified, a unique key is generated for the password and
the password is saved encrypted in the Password Store under that key. In the
configuration file, the password is referenced only by that key.

If no Password Store is specified, the password appears in plain text in the
configuration file.

For example:
1. Create a new project from the Configuration Editor
2. Right-click on the "Properties" folder in the navigation view and select "New

Property Store" called "MyProps".
3. From the "Connector" tab of the newly created Property Store, type in

"MyProps.properties" in the "Collection Path/URL" field.
4. Specify that the new Property Store is used as the Password Property Store

(right-click on the new properties store in the navigation view and select
Password Property Store).

5. Add a new assembly line with a FTP Client Connector.
6. Enter a password in the "Login Password" field of the FTP Client Connector.
7. Save the solution and close the Configuration Editor.

After the above procedure, in the configuration file of the created solution will
contain lines that resemble the following text:
<parameter name="ftpPass">@SUBSTITUTE{property.MyProps:ftpPass-38ae53e8779cfd65}</parameter>
.........
<PasswordStore>MyProps</PasswordStore>

...and in the "MyProperties.properties" file there is a line like the following text:
{protect}-ftpPass-38ae53e8779cfd65={encr}GVJC0lA7VUiW=

Chapter 6. Security 141

This means that the FTP password configuration in the solution file references an
encrypted property from the current Password Store - "MyProps". The property
key used is "ftpPass-38ae53e8779cfd65".

Protecting attributes from being printed in clear text during
tracing

Use the methods provided here to protect the sensitive data during tracing.

IBM Security Directory Integrator solution builders need a way to protect sensitive
data, such as passwords, from being printed in clear text when tracing on the
solution is needed. Therefore in IBM Security Directory Integrator some of the
methods dealing with the Attribute class have been enhanced to say whether an
attribute is protected or not. If the attribute is marked as protected and tracing is
on, a fixed number of stars '*' is output instead of the actual value.

When connection parameters are found in the TaskCallBlock (TCB), the values
never be logged directly by IBM Security Directory Integrator. The fact that
parameters were given is logged, but not the values themselves. If the solution
needs to be debugged, those values can be dumped manually, for example using
scripting.

Encryption of IBM Security Directory Integrator Server Hooks
You should encrypt the sensitive data before adding it to server hook directory. For
details refer the information provided here.

Server Hook scripts are defined and made available by creating files in the
"serverhooks" subdirectory of the solution directory. Scripts that contain sensitive
information should be encrypted with the Server API before adding it to the
directory. Scripts can be encrypted by using cryptoutils (see “The IBM Security
Directory Integrator Encryption utility” on page 136). Note that the IBM Security
Directory Integrator server only decrypts script files that have the ".jse" filename
extension. The ".jse" extension indicates to the IBM Security Directory Integrator
server that the script file is encrypted. That is why, after you encrypt a Server
Hook script file, make sure to change its filename extension to ".jse".

Remote CE and SSL
You should take care of the listed points here while working with Remote
Configuration Editor and SSL.

The Configuration Editor used to edit remote Config Files (that is, Config files on a
remote system) is called the Remote Configuration Editor (Remote CE). The IBM
Security Directory Integrator Remote CE is capable of starting AssemblyLines in
configurations opened for editing. The Remote Configuration Editor is a client of
the Server API of the remote IBM Security Directory Integrator Server.
Consequently the Remote Configuration Editor is authenticated and authorized as
a client of the Server API. In order for this to work when SSL is used:
1. The server to which the Remote Configuration Editor connects must be

configured to require SSL client authentication. This is a configuration of the
Server API – for details see “SSL-based authentication” on page 114.

2. The Remote Configuration Editor IBM Security Directory Integrator instance
must be configured to supply SSL client authentication. This is configured in a
“SSL client authentication” on page 102.

142 IBM Security Directory Integrator: Installation and Administrator Guide

This SSL client authentication is needed because the Remote Configuration Editor
uses listener objects so that it can be notified when an AssemblyLine has
terminated and for this to work with SSL both the client must trust the server
identity and server must trust the client identity.

Using the Remote Configuration Editor
You can take care of the limitations of using the remote configuration editor.

Using a Remote Configuration Editor is a little different from using a local CE.
When running a remote Configuration Editor to manage a Config on a remote
system, you must be mindful of restrictions that apply to the CE in remote mode.
Notable restrictions include:
v When editing Config files locally, it is sufficient to have appropriate file system

access (read and write) to the Config file. However, when editing a remote
Config, you must have Admin privileges on the remote Config Instance.

v When connecting to a data source (using Connect buttons in mapping
windows), these connections are evaluated locally.
For example: ldap://localhost:389 results in the Configuration Editor (CE)
attempting to connect to the local LDAP server, rather than to the LDAP server
on the remote computer.

v When generating WebServices-related connectors results in function components
that generate the WSDL file, .jar files (using Complex Type Generator), and so
on, you are generating them locally. These components are not generated on the
remote system to which the CE is connected and must be uploaded manually to
the remote system for deployment.

v The remote CE only allows editing and viewing of those Configs that are
present in the folder specified by the api.config.folder property.

v When working with System Store operations (such as deleting the Iterator state
key, and so on) that are available in the CE, work with the local system store
and not with the remote IBM Security Directory Integrator computer's System
Store. Only when the AssemblyLine (AL) is executed does the AL connect to the
remote System Store, because at AL execution time, the AL is running inside the
remote JVM.

v When you use the Parameter Substitution editor (available with Ctrl-E), the
editor shows only the local properties, and not the properties set on the remote
system. Similarly, creating and saving a new property store (file type) stores the
property store (file) locally.

v When using the Configuration Editor to edit remote Config files, you are subject
to Server API authentication and authorization, because the CE is acting as a
client application. Therefore, in order to use the CE in this way, you must have
admin access on the Remote Server.

v When using the Remote Server, the Remote Server itself must have sufficient
access to the local file system where the Config files are stored. If the
ConfigfFiles are stored on a read-only file system or a file storage location where
the user ID under which the Remote Server is running does not have write
access, you cannot edit remote Configs.

Chapter 6. Security 143

Summary of configuration files and properties dealing with security
You can refer the summarized list of configuration files and properties dealing
with security.

Table 19. The table of configuration files that were discussed above and what is contained in each.

Configuration file Location Description

global.properties TDI_home/etc This file is the primary configuration file for the
server.

solution.properties Solution folder This file (solution.properties) is initially a copy of
global.properties used by the current solution.
After you make changes, values in this file override
corresponding values in global.properties.

registry.txt TDI_home/serverapi This file is the User registry for the Server API,
defined by the "api.user.registry" property in
global.properties

build.properties TDI_home/etc This file contains the IBM Security Directory
Integrator build information, build date, version,
and so on; it is a text file, and by default the file is
in the platform-native encoding.

tdisrvctl-log-4j.properties TDI_home/etc This file controls the logging strategy for the
tdisrvctl command line utility.

Log4J.properties TDI_home/etc This file controls the logging strategy for the server
(ibmdisrv) when started from the command line.

jlog.properties TDI_home/etc This file controls the tracing and First Failure Data
Capture (FFDC) strategy

ibmdi.ico TDI_home/etc This file lists the icons for IBM Security Directory
Integrator.

idisrv.sth TDI_home This file contains the IBM Security Directory
Integrator server stash; it is a binary file that
contains the encrypted password for the sample
server keystore file (testserver.jks).

derby.properties TDI_home/etc This file contains the default configuration for the
Derby System Store shipped with IBM Security
Directory Integrator.

reconnect.rules TDI_home/etc This file contains text that defines reconnect rules
for how IBM Security Directory Integrator should
handle reconnect exceptions.

global.properties.v611 TDI_home/etc This file serves as a sample place holder and is
useful during migration.

TDI0701.SYS2 TDI_home/etc This is the product signature (license) file used by
the ITLM agent to recognize IBM Security Directory
Integrator.

pkcs11.cfg TDI_home/etc This file is used for initializing the IBM PKCS11
implementation provider. For details refer to section
PKCS11 Configuration File.

testadmin.der TDI_home/serverapi This file is the exported certificate from
testadmin.jks.

testadmin.jks TDI_home/serverapi This file contains an example keystore and truststore
for a Server API remote client.

144 IBM Security Directory Integrator: Installation and Administrator Guide

Table 19. The table of configuration files that were discussed above and what is contained in each. (continued)

Configuration file Location Description

cryptoutils.bat(sh) TDI_home/serverapi This file is a command line utility (shell script) used
for encrypting and decrypting IBM Security
Directory Integrator configurations and the user
registry file.

testserver.jks TDI_home This file is a sample server keystore and truststore,
referenced as an example.

testserver.der TDI_home This file is an exported sample server certificate,
ready to be imported in a truststore.

am_config.properties TDI_home/ActionManager This file configures the Action Manager.

am_logging.properties TDI_home/ActionManager This file configures Action Manager logging.

ibmdiservice.props TDI_home/win32_service This file configures the Windows service.

mqeconfig.props TDI_home/jars/plugins/ This file allows configuration of the IBM WebSphere
MQ Everyplace service. In IBM Security Directory
Integrator, you can access IBM WebSphere MQ
Everyplace using authentication for the IBM
WebSphere MQ Everyplace Mini-Certificate Server
to issue certificates; the certificates are then used for
authentication. When authenticating, additional
properties available in IBM Security Directory
Integrator that must be added to the
mqeconfig.props properties file.

Note: The file registry.txt can be encrypted and decrypted using the “The IBM
Security Directory Integrator Encryption utility” on page 136. The cryptoutil tool
should not be applied on global.properties or solution.properties. You can
encrypt individual property values but not the whole properties file.

Table 20. The table of properties that are referenced above, characteristics about them, what they do, what their
value can be, what they are used for.

Name Possible values Description

com.ibm.di.server.securemode true/false On or off switch for secure mode.

api.keystore file name Server keystore used for SSL
certificates. Previously
com.ibm.di.server.keystore.

api.key.alias Key alias Key alias from keystore for SSL
certificates. Previously
com.ibm.di.server.key.alias.

{protect}-api.keystore.password SSL keystore password Keystore password for SSL.
Added in IBM Security Directory
Integrator 7.0.

{protect}-api.key.password SSL key password Key password for SSL. Added in
IBM Security Directory Integrator
7.0.

com.ibm.di.server.encryption.keystore file name Data encryption for the keystore
that hosts the key used by the
Server. Added in IBM Security
Directory Integrator 7.0.

com.ibm.di.server.encryption.key.alias Key alias Encryption keystore key alias.
Added in IBM Security Directory
Integrator 7.0

Chapter 6. Security 145

Table 20. The table of properties that are referenced above, characteristics about them, what they do, what their
value can be, what they are used for. (continued)

Name Possible values Description

com.ibm.di.server.encryption.keystoretype Keystore type, that is, "JKS",
"JCEKS", and so on.

Keystore type that hosts the
encryption key of the Server.
Added in IBM Security Directory
Integrator 7.0.

com.ibm.di.server.encryption.transformation "RSA" or some secret key
transformation

Server transformation used for
encryption. Can be set to either
"RSA" (public key encryption) or
to some secret key
transformation. Added in IBM
Security Directory Integrator 7.0.

api.on true/false On or off Server API switch.

api.user.registry file name Server API users registry file

api.user.registry.encryption.on true/false User registry switch for
encrypted or not encrypted.

api.remote.on true/false On or off switch for remote
Server API. The default setting is
true.

api.remote.ssl.on true/false On or off switch requiring, or not
requiring, SSL for the remote
Server API.

api.remote.ssl.client.auth.on true/false On or off switch requiring, or not
requiring, SSL client
authentication for the remote
Server API

api.truststore file name Server truststore.

api.truststore.pass * Trustore password.

api.remote.nonssl.hosts Non-SSL addresses for accepting
non-SSL IP connections.

api.custom.method.invoke.on true/false Server API methods for custom
method invocation =true when
allowed to be used, and =false
when disallowed.

api.custom.method.invoke.allowed.classes Server API classes that can be
directly invoked by the Server
API methods for custommethod
invocation.

api.custom.authentication Script file name or "[ldap]/[jaas]"
for built in LDAP or
JAASAuthentication

Custom authentication method.

api.custom.authentication.ldap.* LDAP authentication
configuration set of properties.

javax.net.ssl.* Standard JSSE set of properties
for keystore, truststore and their
passwords

com.ibm.di.server.pkcs11 false pkcs11 compliant crypto devices
for SSL, required or not required.
Added in IBM Security Directory
Integrator 7.0

146 IBM Security Directory Integrator: Installation and Administrator Guide

Table 20. The table of properties that are referenced above, characteristics about them, what they do, what their
value can be, what they are used for. (continued)

Name Possible values Description

{protect}-com.ibm.di.server.pkcs11.pass administrator Access password for pkcs11
compliant crypto device. Added
in IBM Security Directory
Integrator 7.0

com.ibm.di.server.pkcs11.accl false Hardware cryptographic devices
to be used for encryption when
this property is set to true.

Note: All properties listed in the above table can be set in the configuration file
global.properties, and can be protected by encryption using the {protect}- prefix
(see section "“Standard encryption of global.properties or solution.properties” on
page 135" for details).

Web Admin Console Security
Refer the link provided here to know more about Web Admin Console Security.

See “AMC and Action Manager security” on page 251.

Miscellaneous security aspects
You can refer to the various security aspects listed here.

HTTP Basic Authentication
You can authenticate a component using HTTP basic authentication. Make sure to
check the listed parameters.

Some IBM Security Directory Integrator components give you the opportunity to
use HTTP Basic Authentication as authentication mechanism. As the name says it
is basic (simple) authentication. HTTP Basic Authentication should not be
considered secure for any particularly rigorous definition of secure, because the
credentials are base64 encoded and they can be easily decoded by someone. You
should use more complex schemes to protect their data (for example a combination
of turned on SSL and HTTP Basic Authentication). If the component supports
HTTP Basic Authentication, then you see the following parameter:

authenticationMethod
Specifies the type of HTTP authentication. If the type of HTTP
authentication is set to Anonymous, then no authentication is performed. If
HTTP basic authentication is specified, HTTP basic authentication is used
with user name and password as specified by the username and password
parameters.

Lotus Domino SSL specifics
You can refer to the Lotus Domino SSL specifications provided here.

The Domino APIs for SSL do not use JSSE, and are instead Domino-specific. This
means that the IBM Security Directory Integrator truststore and keystore (see
section “Client SSL configuration of IBM Security Directory Integrator
components” on page 101) do not play any part in SSL configuration for the
Domino Change Detection connector. For SSL configuration of the Domino Change

Chapter 6. Security 147

Detection connector, a TrustedCerts.class file is used. This file is generated every
time the DIIOP process starts (in the Domino Server) and must be in the classpath
of IBM Security Directory Integrator (that is, the ibmdisrv or ibmditk shell scripts
which start the IBM Security Directory Integrator server and IBM Security
Directory Integrator Configuration Editor respectively). You must copy the
TrustedCerts.class to a local path included in the CLASSPATH or have the
Lotus\Domino\Data\Domino\Java of your Domino installation in the classpath.
Whether the IBM Security Directory Integrator truststore or keystore are set or not
in global.properties (or solution.properties) is of no consequence to this
connector.

Note: The above is related to the configuration of SSL for the Notes Connector and
the Domino Change Detection Connector since they use SSL over IIOP.

Certificates for the IBM Security Directory Integrator Web
service Suite

You can use the instructions and example provided here to name the certificate for
the IBM Security Directory Integrator web service suite.

The cn= portion of the distinguished name (dn) of a certificate to be used with the
IBM Security Directory Integrator Web services Server Connectors must match the
DNS name or IP address of the host computer on which IBM Security Directory
Integrator is running. Otherwise an Exception is thrown, because the client not be
able to establish an SSL connection to the IBM Security Directory Integrator Web
services Server Connector. An example of the cn= portion of the distinguished
name of a certificate follows: cn=www.myserver.com. (This constraint about the
distinguished name in the server's certificate comes from the HTTPS protocol - see
rfc2818 "HTTP over TLS.")

Note: If IBM Security Directory Integrator needs to use both a client and a server
certificate only the default certificate configured in global.properties or
solution.properties is used, then this must be the same certificate. An alternative
would be to write a custom implementation of the SSLSocket or the
SSLServerSocket Java class and make it use a certificate different from the default.

Example Server certificate creation

The following command line creates a self-signed server certificate in the keystore
named "MyServerKeyStore.jks".
keytool -alias MyServerCertAlias -keyalg RSA -genkey -dname cn=<server_ip_address>
-validity 365 -keystore MyServerKeyStore.jks -storepass mystorepass -keypass mykeypass

The alias of the created certificate is "MyServerCertAlias". The RSA algorithm is
used to create the key pair. The distinguished name of the certificate is the IP of
the server. The certificate is valid for 365 days (one year). The password of the
keystore is "mystorepass". The password of the created private key is "mykeypass".
The created certificate can then be configured for use by setting the following
properties in the global.properties or solution.properties file:
api.key.alias=MyServerCertAlias
api.keystore=MyServerKeyStore.jks

IBM WebSphere MQ Everyplace authentication with
mini-certificates

You can refer to the instructions provided here to know more about IBM
WebSphere® MQ Everyplace® authentication with mini-certificates.

148 IBM Security Directory Integrator: Installation and Administrator Guide

IBM Security Directory Integrator IBM WebSphere MQ Everyplace components can
be deployed to take advantage of IBM WebSphere MQ Everyplace Mini-Certificate
authenticated access. To use these IBM WebSphere MQ Everyplace features, it is
necessary to download and install IBM WebSphere MQ Everyplace 2.0.1.7 and IBM
WebSphere MQ Everyplace Server Support ES06. Use of certificate authenticated
access prevents an anonymous IBM WebSphere MQ Everyplace client Queue
Manager or application submitting a change password request to the IBM
WebSphere MQ Everyplace Password Store Connector.

For more information on configuring IBM WebSphere MQ Everyplace
authentication with Mini-Certificates, see "Authenticated IBM WebSphere MQ
Everyplace Access" in the Password Synchronization Plug-ins.

Chapter 6. Security 149

150 IBM Security Directory Integrator: Installation and Administrator Guide

Chapter 7. Reconnect Rule Engine

You can refer to the information provided here to understand more about
Reconnect rule engine.

Introduction

The IBM Security Directory Integrator Server supports reconnect rules that apply
to certain error situations during the life of a Connector. The server takes
measures, laid out in rules, based on conditions occurring when communicating
with target systems.

The AssemblyLine polls the Reconnect Rule Engine every time a Connector raises
an exception and the engine recommends a course of action for the current
situation. The AssemblyLine code then acts in the proposed way. The possible
actions to attempt are:
v to reconnect
v to leave the exception unhandled and let further error mechanisms like error

hooks process it.

The reconnect action leads to a reconnect attempt only if reconnect is enabled by
means of the options available in the Connector's "Connection Errors" tab in the
CE. If reconnect is not enabled in this configuration, reconnect is not attempted in
case of error regardless of the decision of the Reconnect Rule Engine.

Reconnecting basically involves automatic restart of the Connector and bringing it
to its previous position (if so configured). This is done by executing terminate for
the Connector, then executing initialize for the Connector and in case of Iterator
Connectors, optionally skipping entries until the position before the reconnect is
reached. On each reconnect attempt the corresponding reconnect hook is invoked.
The script in the hook may eventually change the configuration so that a
subsequent reconnect would be successful. If the user has specified failover, an
automatic failover or failback is attempted when the reconnect attempts fail.

The error action implies that no automatic reconnect is attempted and that the
corresponding error hooks are invoked. The hooks can eventually perform some
custom recovery or error reporting.

Reconnect Rules
You can understand about type of rules, part of rules, part of error situation and
nested exceptions through the information provided here.

The Reconnect Rule Engine makes decisions based on configured rules. Each rule
describes what should be done when a given kind of error situation ensues. The
engine uses two types of rules:
v Built-in rules, which are stored in the tdi.xml files of each connector file and

are packaged in the connector's jar file; as a result these rules are always specific
to the particular connector class and match all connector names; this list of rules
is the default list of the Reconnect Rule Engine when working on an error
situation for a given Connector; if you have programmed your own Connectors
in Java, then for information about how to construct your own built-in rules see

© Copyright IBM Corp. 2003, 2014 151

section "Connector Reconnect Rules definition" in the "Implementing your own
Components in Java" appendix under the Reference section of IBM Knowledge
Center for IBM Security Directory Integrator.

v For compatibility with previous releases of IBM Security Directory Integrator,
when the Reconnect Rule Engine is set up it implicitly adds to the built-in rules,
a set of rules that prescribe to attempt reconnect on all IOException-s and all
CommunicationException-s (java.io.IOException and
javax.naming.CommunicationException);

v User-defined rules, which are loaded from an external text file named
etc/reconnect.rules; this list of rules overrides the built-in rules. See
“User-defined rules configuration” on page 153.

Each rule applies to certain connectors and certain error situations.

A rule has the following parts:
v Connector Class: the Java Class of the connectors to which the rule applies
v Connector Name: the name of the connector component as it is specified in the

configuration file of the currently executed solution
v Exception Class: the base class of the exceptions to which the rule applies
v Regular Expression: a regular expression that matches the messages of the

exceptions to which the rule applies
v Action: the action, prescribed by the rule. Can be error or reconnect.

An error situation is described by the following parts:
v Connector Class: the class of the connector that raised the exception
v Connector Name: the name of the connector that raised the exception
v Exception: the exception raised by the connector - a subclass of

java.lang.Throwable.

A rule applies to an error situation if all of the following conditions are fulfilled at
the same time:
v the rule applies to the connector in the error situation (subclasses of the

connector class, described in the rule are also matched)
v the rule applies to the name of the connector which caused the error situation
v the exception is an instance of the exception class, to which the rule applies
v the rule does not have a regular expression to match the exception message or

the regular expression matches the message of the exception.

When a given error situation occurs, the reconnect rule engine finds the most
specific rule that matches the error situation. First the engine searches through the
user-defined rules and if no matching rule is found, it searches the built-in rules. If
still no matching rule is found, the engine prescribes the default action, which is
"error". If a matching rule is found in the user-defined rules, then the built-in rules
are not searched, even if there exists a more specific rule in the built-in rules.

Note: If two or more rules match an error situation, the most specific rule is
selected; if there are several most-specific rules and none of them is more specific
than the rest, then the first rule in the list is selected. That is why the order of the
rules in the rule lists matters. For example: suppose the following rules exist (this
is pseudo-syntax used for clarity only):
...exceptionClass = "java.io.IOException", exceptionMessageRegExp = ".*", action = "error"...
...exceptionClass = "java.io.IOException", exceptionMessageRegExp = "\w*", action = "reconnect"...

152 IBM Security Directory Integrator: Installation and Administrator Guide

http://www-01.ibm.com/support/knowledgecenter/SSCQGF/welcome
http://www-01.ibm.com/support/knowledgecenter/SSCQGF/welcome

If an exception of type java.io.Exception with message "problem" is raised, then the
first rule is selected, although both rules match the error and no rule is more
specific than the other (the outcome of the regular expression match is not
considered for weighting purposes.)

Nested Exceptions

Some exceptions are nested inside other exceptions. When the reconnect rule
engine searches through a list of rules (for example the built-in rules), the engine
searches for a rule that matches the top-level exception first. If no matching rule is
found, then the engine searches again the same list of rules but this time it
searches for a match for the nested exception (if the top-level exception has no
nested exception this search is skipped). Note that only the first-level nested
exception is attempted to be matched by the reconnect rule engine; if there are
more levels of nested exceptions they are ignored.

Note: Automatic Failover is not possible for Server mode Connectors.

User-defined rules configuration
You should take care of the format of the rule while defining it and should also
take care of some important information listed here. Further you can also refer to
some examples.

The list of user-defined rules is configured in a text file named reconnect.rules in
the "etc" subfolder of the IBM Security Directory Integrator solution folder (or the
IBM Security Directory Integrator installation folder, if no solution folder has been
defined). Each rule is placed on a single line. The format of a rule is as follows:
<connector_class>:<connector_name>:<exception_class>:<action>:<regular_expression>

where
v <connector_class> is the fully qualified name of the Java class of the Connector
v <connector_name> is the name of the Connector as inserted in the AssemblyLine
v <exception_class> is the fully qualified name of the Java class of the exception
v <action> can be either 'error' or 'reconnect'
v <regular_expression> is a Java regular expression as described in the JavaDoc of

the java.util.regex.Pattern class at http://java.sun.com/j2se/1.5.0/docs/api/
java/util/regex/Pattern.html.

Note:

1. Each part except the action can be empty. If a part is empty that means
"match-all".

2. Each part is mandatory - even if it is empty the surrounding colons must be
present. (Consequently on each line there must be at least 4 colons - each colon
separating two adjacent parts of the rule. At least 4, because the regular
expression may contain colons too. These colons do not interfere with the rule
parsing because the regular expression comes last in a rule.)

3. No redundant white space is allowed.
4. The regular expression starts just after the fourth colon and spans until the end

of the line.
5. The user-defined rules file is not a Java properties file. The main reason is that

a key for a rule must include all rule parts, except the reconnect action, in order
to be unique. So the only value from using the Java properties mechanism

Chapter 7. Reconnect Rule Engine 153

would be the separation of the action from the other rule parts. However, it
would come at the price of escaping white-spaces, colons and equal signs
(requirements for a valid property key). Even if the Java property framework
was used, custom parsing of the property key would still be required in order
to extract the rule parts from it.

6. The regular expression (not the reconnect action) comes last on each line. This
pattern is chosen such that it is unneccesary to escape colons (which are
considered rule part delimiters) in the regular expression.

7. The regular expression must match the entire message text: Suppose the
message text you want to match contains the words "Some Error" somewhere
in the message text. A suitable regular expression might then be:
.*Some Error.*

The character "." matches any character except new line, and the * modifier
specifies 0 or more. Now suppose the message ends with a new line. If that is
the case, the previous regular expression does not match. You can try a regular
expression like this instead:
.*Some Error.*\r?\n?

"\r" and "\n" specify return and new line characters, and the ? modifier
specifies 0 or 1 occurrence.

8. You must still configure reconnect in the Connector's configuration; see
“General reconnect configuration” on page 155.

Examples

An example, consisting of two rules:
com.ibm.di.connector.ReconnectTestConnector:myconnname:java.io.IOException:error:.*\Wfatal\W.*
::java.io.IOException:reconnect:

Reconnect with the JDBC Connector

IBM Security Directory Integrator's JDBC connector is configured in
Iterator mode to iterate a table from DB2 and is enabled for the reconnect
feature. However, at the time of running the solution, DB2 instance is not
started yet. In order to have reconnect working, the following exception
details need to be mentioned in the reconnect.rules file:
com.ibm.di.connector.JDBCConnector::com.ibm.db2.jdbc.DB2Exception:reconnect:

Reconnect with the RAC Connector

This connector is deprecated and will be removed in a future version of
IBM Security Directory Integrator.

IBM Security Directory Integrator's RAC connector is configured in Iterator
mode and is enabled for the reconnect feature. In case the Agent Controller
server is down, in order for the RAC connector to try to reattempt
(reconnect), the following exception details need to be mentioned in the
reconnect.rules file:
com.ibm.di.connector.RACConnector::org.eclipse.tptp.platform.execution.exceptions

.AgentControllerUnavailableException:reconnect:

Exception considerations
You can refer to the considerations discussed here while working on exceptions.

Every environment and solution created for a particular environment using IBM
Security Directory Integrator is typically unique. User-defined rules are
custom-built and the functionality is made available so solutions can automatically

154 IBM Security Directory Integrator: Installation and Administrator Guide

attempt to reconnect based on the exceptions specific to the environment or
solution. Refer to the IBM Security Directory Integrator Java API documentation
for information about specific exceptions that are returned by the IBM Security
Directory Integrator APIs for each Connector.

Additionally, some IBM Security Directory Integrator components rely on
underlying libraries and the APIs of these libraries throw exceptions for specific
situations. Below we list a few core IBM Security Directory Integrator components
where you can look for additional information on exceptions and what may be the
cause of the exceptions. This information is helpful when deciding if you want to
attempt to create custom reconnect rules for specific exceptions that may be
encountered:
v LDAP Connector - The LDAP Connector depends on the JNDI libraries shipped

with the JRE. For more information on the JNDI interface, its APIs, and the
exceptions it may throw, see http://java.sun.com/j2se/1.5.0/docs/api/javax/
naming/package-summary.html.

v JDBC Connector - The JDBC Connector depends on the configured JDBC Driver.
The Java API documentation or reference material for the configured JDBC
driver should be consulted for more information on the possible exceptions that
may be thrown. The "Understanding JDBC Drivers" subsection in the JDBC
Connector section in Reference contains links to the JDBC Driver documentation
for a set of commonly used JDBC drivers.

General reconnect configuration
Refer to the configuration options listed here with respect to the reconnect rule.

Specifying a reconnect rule is necessary for a reconnect to be attempted. However
it is not sufficient by itself. The other requirement is enabling reconnect in the
general reconnect configuration. This can be done under the Connection Errors tab
in the Configuration Editor . If reconnect is not enabled in this configuration,
reconnect is not attempted in case of error regardless of the decision of the
Reconnect Rule Engine. Here is a list of Configuration options:

Number Of Retries
The number of times a reconnect attempt is made when a problem occurs,
before giving up. If a new problem occurs later on, the same number of
attempts is made.

Delay Between Retries
The number of seconds to wait between each reconnect attempt, and before
the first reconnect attempt.

Retry Connect on Initial Connection Failure
If this flag is set, and a connection cannot be established when the
connector is being initialized, a "reconnect" attempt is made. Not really
reconnect, since a connection was not established in the first place, but
generally the same mechanism.

Auto Reconnect on Connection Loss
If this flag is set, and the connection is lost after the connector is
initialized, a reconnect attempt is made.

Auto Skip Forward
After a reconnect, automatically skip forward as many times as the number
of successful reads.

Chapter 7. Reconnect Rule Engine 155

Automatic Failover
If this flag is set, an automatic failover is attempted after an automatic
reconnect fails.

FailOver Connector
Name of the Connector in the Resources Library that is used for automatic
failover.

Failback After
If this field is set to a positive value, after the specified seconds have
passed, an automatic failback is attempted. If the failback fails, it is not
attempted again before the specified seconds have passed again.

Note: For both the Retry Connect on Initial Connection Failure and Auto
Reconnect on Connection Loss flags, the reconnect engine is determine if the
exception leads to a reconnect attempt, or is a more general error.

156 IBM Security Directory Integrator: Installation and Administrator Guide

Chapter 8. System Queue

You can store and forward messages between IBM Security Directory Integrator
Servers and AssemblyLines with System Queue.

The System Queue is an IBM Security Directory Integrator JMS messaging
subsystem similar to the IBM Security Directory Integrator System Store. The
System Queue simplifies the development of IBM Security Directory Integrator
solutions in which asynchronous communication is required to share work
amongst multiple AssemblyLines. The System Queue can use either the IBM
WebSphere MQ or IBM WebSphere MQ Everyplace as its underlying JMS
messaging system, as well as any other JMS system provided the JMS Script Driver
can properly address this JMS system.

Note: The System Queue Connector (see Reference) does not talk directly to the
System Queue, but rather uses the Server API as an intermediary.

In IBM Security Directory Integrator, the System Queue is enabled by default by
the install process.

System Queue Configuration
You can know more about System Queue Configuration and the required
properties using the information provided here.

The System Queue is configured using the following driver-specific Java properties
specified in the IBM Security Directory Integrator global.properties or
solution.properties file:

systemqueue.on
This parameter specifies whether the System Queue is to be started and
initialized on IBM Security Directory Integrator Server startup. The valid
values are true and false. The default value is true.

systemqueue.jmsdriver.name
This parameter specifies the fully qualified name of the Java class to be
used as a JMS Driver for the System Queue. This value can be the name of
a user-provided class or one of the following standard IBM Security
Directory Integrator JMS Driver implementations:
v com.ibm.di.systemqueue.driver.ActiveMQ (“Apache ActiveMQ

parameters” on page 158, default JMS Provider)
v com.ibm.di.systemqueue.driver.IBMMQe (“IBM WebSphere MQ

Everyplace parameters” on page 160)
v com.ibm.di.systemqueue.driver.IBMMQ (“IBM WebSphere MQ

parameters” on page 160)
v com.ibm.di.systemqueue.driver.IBMMB (“Microbroker parameters” on

page 161)
v com.ibm.di.systemqueue.driver.JMSScriptDriver (other JMS system by

way of the “JMSScript Driver parameters” on page 161)

The default value is com.ibm.di.systemqueue.driver.ActiveMQ.

© Copyright IBM Corp. 2003, 2014 157

Depending on the systemqueue.jmsdriver.name parameter, one of the following
sections is applicable:

Apache ActiveMQ parameters
You can know more about Apache ActiveMQ parameters using the information
provided here.

To use ActiveMQ as the JMS provider for the System Queue, set the
systemqueue.jmsdriver.name property in global.properties/solution.properties
to com.ibm.di.systemqueue.driver.ActiveMQ. The ActiveMQ driver has the
following parameter.
v jms.broker - the ActiveMQ server address (Protocol, IP address, and TCP port

number). For example,
tcp://localhost:6161 or ssl://localhost:616171 to use SSL connection.

The default value is:
vm://localhost?brokerConfig=xbean:etc/activemq.xml

This value runs the ActiveMQ in embedded mode. The etc/activemq.xml file
holds the default ActiveMQ configuration.

Note:

1. The path to the ActiveMQ configuration XML file (after xbean:) cannot hold
spaces. For more information, see https://issues.apache.org/activemq/browse/
AMQ-1385.
If the path contains spaces, each space character must be URL encoded three
times, thus transforming it to %2520.

2. The System Queue initializes ActiveMQ at startup if the systemqueue.on=true
parameter is set to true in the solution.properties file.

Configuration
You can know more about ActiveMQ configuration and the required parameters
using the information provided here.

ActiveMQ configuration relies on the activemq.xml file, located at
TDI_install_folder/etc. The ActiveMQ configuration parameters are as follows.

broker
This ActiveMQ message broker consists of transport connectors, network
connectors and properties that are used to configure the broker. The
attributes are:
v brokerName="localhost" - the name of the broker.
v dataDirectory="./ActivemqDataStore" - the directory, which is used to

store the data of ActiveMQ.
v useShutdownHook="true" - sets whether or not a shutdown handler is

used to close the broker if the JVM is terminated.
v useJmx="true" - sets whether or not the services of the broker to be

exposed into JMX.

managementContext
This parameter configures how the ActiveMQ is exposed in JMX. The
attributes are:
v createConnector="true" - sets whether or not the ActiveMQ creates its

own JMX connector.

158 IBM Security Directory Integrator: Installation and Administrator Guide

v o connectorPort="1099" - the port of the Connector. The value is 1099 by
default.

persistenceAdapter/kahaDB
This parameter configures message persistence for the broker. The
attributes are:
v journalMaxFileLength="32mb" - sets the maximum size of the message

data logs.
v checksumJournalFiles="true" - creates a checksum for a journal file to

enable checking for the corrupted journals.
v checkForCorruptJournalFiles="true" - if enabled, checks for corrupted

journal files on startup and try and recover them.

transportConnectors
This parameter consists of transport connectors that the ActiveMQ listens
to. The attributes are:
v name="openwire" - the name of the transport connector.
v uri="tcp://localhost:61616" - the address of the transport connector.

Note: For more information about the XML objects used in the XML
configuration file, refer to the ActiveMQ's XBean XML Reference 5.0 at
http://activemq.apache.org/xbean-xml-reference-50.html.

Logging
The ActiveMQ relies on log4j to log information in the broker client and the broker.
The following listed lines inside log4j.properties configure the ActiveMQ logging
by setting the default logging categories of ActiveMQ items.
v log4j.logger.org.apache.activemq=INFO
v log4j.logger.org.apache.activemq.spring=WARN
v log4j.logger.org.apache.activemq.web.handler=WARN
v log4j.logger.org.springframework=WARN
v log4j.logger.org.apache.xbean=WARN
v log4j.logger.org.apache.camel=ERROR

Using SSL with ActiveMQ
You can configure the ActiveMQ to use SSL connection by specifying the
<sslContext> element and the correct transportConnector's URI in the XML
configuration file of ActiveMQ.

ActiveMQ relies on certificates to use SSL connection. By default ActiveMQ is
configured to reuse the IBM Security Directory Integrator Server API certificates
located at the TDI_install_folder/serverapi folder as keyStore and trustStore.
To reuse, the names of the client and server keystore files must be specified in the
<sslContext> element of the configuration file of ActiveMQ. For example:
<sslContext>
<sslContext
keyStore="file:./serverapi/testadmin.jks" keyStorePassword="administrator"
trustStore="file:./serverapi/testadmin.jks" trustStorePassword="administrator"/>

</sslContext>

Where, testadmin.jks is the name of the IBM Security Directory Integrator
certificate and password is the password of the IBM Security Directory Integrator
certificate.

Note: The <sslContext> element and all the parameters are taken into account only
when the javax.net.ssl properties are not set in the IBM Security Directory

Chapter 8. System Queue 159

Integrator solution.properties file. By default, the ActiveMQ reuses the javax
properties from the IBM Security Directory Integrator API instead of the properties
set in the <sslContext> tag.

IBM WebSphere MQ Everyplace parameters
You can know more about IBM WebSphere MQ Everyplace and the required
parameters using the information provided here.

In order to be able to use IBM WebSphere MQ Everyplace as the JMS provider for
the System Queue an IBM WebSphere MQ Everyplace Queue Manager needs to be
created. This can be done using the “IBM WebSphere MQ Everyplace
Configuration Utility” on page 164 bundled with IBM Security Directory Integrator.

systemqueue.jmsdriver.param.mqe.file.ini
This is an IBM WebSphere MQ Everyplace-specific parameter that specifies
the relative file system file name of the IBM WebSphere MQ Everyplace
initialization file. This property is required and takes effect only if the IBM
WebSphere MQ Everyplace JMS driver is specified in the
systemqueue.jmsdriver.name property. The default value is
MQePWStore/pwstore_server.ini. This is the default location for the IBM
WebSphere MQ Everyplace initialization file created by the “IBM
WebSphere MQ Everyplace Configuration Utility” on page 164.

The system queue is turned on by default. If you want to use IBM WebSphere MQ
Everyplace as a system queue you then an abridged enabling procedure is as
follows:
1. Set the systemqueue.on property in the global.properties or

solution.properties file to true.
2. Configure IBM WebSphere MQ Everyplace by invoking:

cd solution_dir (if using the installation directory, use cd TDI_install_dir)
TDI_install_dir/jars/plugins/mqeconfig.sh
TDI_install_dir/jars/plugins/mqeconfig.props create server (one line)

IBM WebSphere MQ parameters
You can know more about IBM WebSphere MQ parameters using the information
provided here.

These are IBM WebSphere MQ-specific parameters; for more information about
these parameters, see the MQ JMS diver initialization properties in the “System
Queue Configuration Example” on page 163 section.

systemqueue.jmsdriver.param.jms.broker
(IP address and TCP port number)

systemqueue.jmsdriver.param.jms.serverChannel
(server channel defined for the MQ server instance)

systemqueue.jmsdriver.param.jms.qManager
(name of the Queue Manager defined for the MQ server instance)

systemqueue.jmsdriver.param.jms.sslCipher
(cipher suite name corresponding to the cipher selected when configuring
the MQ server channel, for example, SSL_RSA_WITH_RC4128_MD5)

systemqueue.jmsdriver.param.jms.sslUseFlag
(true for SSL connection requested, false if not)

160 IBM Security Directory Integrator: Installation and Administrator Guide

Microbroker parameters
You can know more about Microbroker parameters using the information provided
here.

In order to use Microbroker (MB) as the JMS provider for the System Queue, the
systemqueue.jmsdriver.name property in global.properties or
solution.properties must be set to com.ibm.di.systemqueue.driver.IBMMB.

The Microbroker driver has the following parameters (listed here without the
"systemqueue.jmsdriver.param." prefix):

jms.broker
the MB server address (IP address and TCP port number); an example
value would be "9.126.6.120:1883"

jms.clientID
the client ID; it is required.

Note: In order to be able to use Microbroker as the JMS provider for the System
Queue, some Microbroker jars are needed. A sample list of the required jars is
available in section External System Configuration, Microbroker of the JMS
Connector in Reference.

JMSScript Driver parameters
You can know more about JMSScript Driver parameters using the information
provided here.

The JMS Driver allows you to provide connectivity to any JMS provider through
scripting in JavaScript, without writing and building Java code. The JMS Driver
acts as a bridge between the System Queue and a user-specified piece of
JavaScript, residing on the local file system, which is responsible for creating a
javax.jms.QueueConnectionFactory object or a javax.jms.TopicConnectionFactory
object. These objects are obtained in a provider-specific way.

systemqueue.jmsdriver.param.js.jsfile
This is a JMS Script Driver specific parameter (that is, taken into account
when the systemqueue.jmsdriver.name is set to
com.ibm.di.systemqueue.driver.JMSScriptDriver) that a specifies the
name of the file that contains the user-supplied JavaScript code to handle
your JMS system of choice. For more information about this parameter, see
the JMS driver settings in the “System Queue Configuration Example” on
page 163 section. Note that the names of the Java properties do not have
the systemqueue.jmsdriver.param. prefix.

systemqueue.jmsdriver.param.js.jsscript
The script body which contains JavaScript code for interfacing with the
corresponding JMS provider. If this parameter is not provided, then the
systemqueue.jmsdriver.param.js.jsfile parameter is used for loading the
JavaScript to execute.

systemqueue.jmsdriver.param.user.xxxxx
These are user-defined properties which are passed by the System Queue
to the configured JMS Driver implementation. For example if the following
property is set:
systemqueue.jmsdriver.param.user.my.prop1=myvalue1

Chapter 8. System Queue 161

the configured JMS Driver get a property with a name of user.my.prop1
and a value of myvalue1.

systemqueue.auth.username
This is the user name used by the System Queue for authentication to the
configured JMS system. If this parameter has not been set then the System
Queue does not use authentication to the configured JMS system.

systemqueue.auth.password
This is the password used by the System Queue for authentication to the
configured JMS system. This parameter is only used when the
systemqueue.auth.username parameter has been specified.

The env JavaScript object
You can learn more about env JavaScript object using the information provided
here.

The piece of JavaScript executed by the JMS Driver needs access to a JavaScript
object named env. This is an object of type java.util.Hashtable, which contains
provider-specific parameters for connecting to the JMS provider. These parameters
are intended to be used by the JavaScript code in order to access the specific JMS
system server instance.

These parameters can be specified in global.properties or solution.properties
using the systemqueue.jmsdriver.param prefix. For example, if a URL param is
needed for some JMS system, then the following property can be set in
global.properties or solution.properties:
systemqueue.jmsdriver.param.myjmssystem.url=myjmsserver.mydomain.com:12345

This definition would cause the System Queue to pass it to the JavaScript code as
an entry in the env Hashtable, whose key would be "myjmssystem.url" (the System
Queue removes the prefix) and whose value would be
"myjmsserver.mydomain.com:12345".

The ret JavaScript object
You can know more about ret JavaScript object and the required parameters using
the information provided here.

The piece of JavaScript executed by the JMS Driver has access to a JavaScript object
named ret. This is an object of type
com.ibm.di.systemqueue.driver.JMSScriptDriver.Ret. It is an instance of the Ret
inner class of the JMS Script driver class. This ret object is to be used to return to
the JMS Script driver and eventually to the System Queue the provider-specific
objects which the JavaScript code obtains from the JMS system. The ret object can
also be used to return any error information to the JMS Driver and the System
Queue.

This ret object has the following members which can be set from JavaScript:
v queueConnectionFactory - an object of type javax.jms.QueueConnectionFactory.

This is the place where the javax.jms.QueueConnectionFactory object obtained
from the specific JMS system should be stored.

v topicConnectionFactory - an object of type javax.jms.TopicConnectionFactory.
This is the place where the javax.jms.TopicConnectionFactory object obtained
from the specific JMS system should be stored.

162 IBM Security Directory Integrator: Installation and Administrator Guide

v errorcode - an object of type java.lang.Object. This is the place where any error
information object should be stored. An example of such an object would be a
java.lang.Exception object.

v errordescr - an object of type java.lang.String. This is the place where any
textual error description should be stored.

JavaScript example for Fiorano MQ
You can use the example provided here to know more about Fiorano MQ.

An example configuration and JavaScript code to use the third-party Fiorano MQ
system is provided in the TDI_install_dir/examples folder, and reproduced below:
var ctx = new Packages.java.util.Hashtable();
ctx.put("jms.username", "anonymous");
ctx.put("jms.password", "anonymous");
ctx.put("jms.broker", "http://192.168.113.220:1856");
ctx.put("jms.qManager", "fiorano.jms.runtime.naming.FioranoInitialContextFactory");

var ic = new javax.naming.InitialContext(ctx);

var queueFactory = ic.lookup("primaryQCF");
var topicFactory = ic.lookup("primaryTCF");

ret.queueConnectionFactory = queueFactory;
main.logmsg("driverFiorano.js : QueueConnectionFactory : " + queueFactory);

ret.topicConnectionFactory = topicFactory;
main.logmsg("driverFiorano.js : TopicConnectionFactory : " + topicFactory);

Note: This piece of JavaScript demonstrates how the parameters can be
hard-coded in the JavaScript code. An alternative is to use the env JavaScript object
to get any user-supplied parameters from global.properties or
solution.properties. Using the env object for parameter retrieval would make
changing the configuration easier, because only properties in global.properties or
solution.properties would have to be changed, and no JavaScript code editing
would be necessary. This means that users without JavaScript skills would be able
to change the configuration.

System Queue Configuration Example
You can refer to the System Queue Configuration example provided here.
##----------------------
System Queue settings
##----------------------
If set to "true" the System Queue is initialized on startup and can be used;
otherwise the System Queue is not initialized and cannot be used.
systemqueue.on=true

Specifies the fully qualified name of the class that will be used as a JMS Driver.
systemqueue.jmsdriver.name=com.ibm.di.systemqueue.driver.JMSScriptDriver
systemqueue.jmsdriver.name=com.ibm.di.systemqueue.driver.IBMMQ
systemqueue.jmsdriver.name=com.ibm.di.systemqueue.driver.ActiveMQ

MQe JMS driver initialization properties
Specifies the location of the MQe initialization file.
This file is used to initialize MQe on TDI server startup.
systemqueue.jmsdriver.param.mqe.file.ini=MQePWStore/pwstore_server.ini

MQ JMS driver initialization properties
systemqueue.jmsdriver.param.jms.broker=192.168.113.54:1414
systemqueue.jmsdriver.param.jms.serverChannel=S_s04win
systemqueue.jmsdriver.param.jms.qManager=QM_s04win
systemqueue.jmsdriver.param.jms.sslCipher=SSL_RSA_WITH_RC4128_MD5
systemqueue.jmsdriver.param.jms.sslUseFlag=true

JMS Javascript driver initialization properties
Specifies the location of the script file
systemqueue.jmsdriver.param.js.jsfile=driver.js

ActiveMQ driver initialization properties

Chapter 8. System Queue 163

Specifies the location of the ActiveMQ initialization file.
This file is used to initialize ActiveMQ on TDI server startup.
systemqueue.jmsdriver.param.jms.broker=vm://localhost?brokerConfig=xbean:etc/activemq.xml

This is the place to put any JMS provider specific properties needed by a JMS Driver,
which connects to a 3rd party JMS system.
All JMS Driver properties should begin with the ’systemqueue.jmsdriver.param.’ prefix.
All properties having this prefix are passes to the JMS Driver on initialization after
removing the ’systemqueue.jmsdriver.param.’ prefix from the property name.
systemqueue.jmsdriver.param.user.param1=value1
systemqueue.jmsdriver.param.user.param2=value2
...

Credentials used for authenticating to the target JMS system
{protect}-systemqueue.auth.username=<username>
{protect}-systemqueue.auth.password=<password>

Security and Authentication
You can know more about Security and Authentication and their respective
methods through the information provided here.

Encryption

Of the standard JMS Drivers, only the driver for MQ supports SSL. The IBM
WebSphere MQ Everyplace JMS Driver works only with a local Queue Manager -
this is mandated by the IBM WebSphere MQ Everyplace architecture. The JMS
Script Driver is a generic driver which supports whatever the corresponding
user-provided JavaScript supports.

Authentication

Some JMS systems, such as IBM WebSphere MQ,, can use or even require the use
of user name and password authentication. The System Queue provides two
standard properties in global.properties or solution.properties which can be
used to configure and supply a user name and password to the System Queue.
These properties are systemqueue.auth.username and systemqueue.auth.password.
These two properties are protected by the standard IBM Security Directory
Integrator server encrypting of properties which are marked as {protect}-. In this
way after these properties are set and the IBM Security Directory Integrator server
is started the properties' values get encrypted. For more information about these
two properties, see the “System Queue Configuration” on page 157 section.

IBM WebSphere MQ Everyplace Configuration Utility
You can know more about IBM WebSphere MQ Everyplace Configuration Utility
using the information provided here.

To configure and use IBM WebSphere MQ Everyplace as the default system queue,
set up MQ Queue Manager in the new Solution Directory using IBM WebSphere
MQ Everyplace Configuration Utility. The IBM WebSphere MQ Everyplace Queue
Manger setup has two predefined queues:
v _default – serves as a general purposes queue
v passwords – serves as a general purposes queue passwords. This queue is used

by the JMS Password Store components for storage of password changes. This
makes the System Queue more usable.

The IBM Security Directory Integrator IBM WebSphere MQ Everyplace
Configuration Utility (a command line utility) creates a default IBM WebSphere
MQ Everyplace Queue when initially setting up the IBM WebSphere MQ
Everyplace Queue Manager. This default IBM WebSphere MQ Everyplace Queue is

164 IBM Security Directory Integrator: Installation and Administrator Guide

named "_default". This default Queue is created for convenience only – so that a
user can use the IBM WebSphere MQ Everyplace Configuration Utility to set up
IBM WebSphere MQ Everyplace (using the appropriate IBM WebSphere MQ
Everyplace Configuration Utility command) and then start using the System Queue
and the System Queue Connector right away.

Additionally the IBM Security Directory Integrator IBM WebSphere MQ Everyplace
Configuration Utility can be used to create and delete user IBM WebSphere MQ
Everyplace Queues to be used by the System Queue and the System Queue
Connector.

Creating an IBM WebSphere MQ Everyplace Queue using the IBM WebSphere
MQ Everyplace Configuration Utility

Typing the following command line creates an IBM WebSphere MQ
Everyplace Queue named "queue_name" using the mqeconfig.props
configuration file:
mqeconfig mqeconfig.props create queue queue_name

Deleting an IBM WebSphere MQ Everyplace Queue using the IBM WebSphere
MQ Everyplace Configuration Utility

Typing the following command line delete the IBM WebSphere MQ
Everyplace Queue named "queue_name" using the mqeconfig.props
configuration file:
mqeconfig mqeconfig.props delete queue queue_name

If your solution needs any special configuration, then you can use the IBM
WebSphere MQ Everyplace Explorer to fine tune your IBM WebSphere MQ
Everyplace configuration. The IBM WebSphere MQ Everyplace Explorer is not
bundled with IBM Security Directory Integrator, but can be downloaded as part of
the IBM WebSphere MQ Everyplace Server Support ES06 pack at
http://www-1.ibm.com/support/docview.wss?rs=0&dc=D400&q1=MQe
&q2=MQ+Everyplace&uid=swg24007943&loc=en_US&cs=utf-8&cc=us&lang=en.

Authentication of IBM WebSphere MQ Everyplace messages
to provide Queue Security

You can authenticate IBM WebSphere MQ Everyplace messages to provide Queue
Security.

In IBM Security Directory Integrator access to IBM WebSphere MQ Everyplace can
be secured by means of authentication using the IBM WebSphere MQ Everyplace
Mini-Certificate Server to issue certificates to be used for authentication. For that
purpose several additional properties available in IBM Security Directory
Integrator must be added to the mqeconfig.props properties file, which contains
the configuration properties of the IBM WebSphere MQ Everyplace Configuration
Utility.

The certificates issued by the IBM WebSphere MQ Everyplace Mini-Certificate
server have a configurable validity period. The default validity period is 12
months. The IBM WebSphere MQ Everyplace documentation states that issued
certificates should be renewed before the period expires. To enable this, the IBM
WebSphere MQ Everyplace configuration utility include an option to renew
certificates. Typing the following command renews the certificates:
mqeconfig mqeconfig.props renewcert {client | server}

1. When the last command option is "client", the following values must be set in
the mqeconfig.props file:

Chapter 8. System Queue 165

v clientRootFolder - The directory where IBM WebSphere MQ Everyplace
configuration instance is located.

v certServerReqPin - This value is used as a one time authentication PIN for
the given authenticatable entity when requesting certificate renewal from the
IBM WebSphere MQ Everyplace Mini-Certificate server.

v certServerIPAndPort - This value is used as the destination address for IBM
WebSphere MQ Everyplace Mini-Certificate server requests. The format of
the value is "FastNetwork:<host>:<port>", where host must be the computer
name or TCP IP address or hostname where the IBM WebSphere MQ
Everyplace Mini-Certificate server is running.

v certRenewalEntityName - The IBM WebSphere MQ Everyplace
authenticatable entity name requiring certificate renewal. Typical entity
names include those below, however, any entity name configured in the IBM
WebSphere MQ Everyplace Mini-Certificate may be used assuming the entity
does indeed exist in the queue manager registry referred to by the value of
"clientRootFolder":
– PWStoreClient – client side IBM WebSphere MQ Everyplace queue

manager
– PWStoreServer+passwords – remote queue proxy on the client side.

2. When the last command option is "server", the following values must be set in
the mqeconfig.props file:
v serverRootFolder - The directory where IBM WebSphere MQ Everyplace

configuration instance is located.
v certServerReqPin - This value is used as a one time authentication PIN for

the given authenticatable entity when requesting certificate renewal from the
IBM WebSphere MQ Everyplace Mini-Certificate server.

v certServerIPAndPort - This value is used as the destination address for IBM
WebSphere MQ Everyplace Mini-Certificate server requests. The format of
the value is "FastNetwork:<host>:<port>", where host must be the computer
name or TCP IP address or hostname where the IBM WebSphere MQ
Everyplace Mini-Certificate server is running.

v certRenewalEntityName - The IBM WebSphere MQ Everyplace
authenticatable entity name requiring certificate renewal. Typical entity
names include those below, however, any entity name configured in the IBM
WebSphere MQ Everyplace Mini-Certificate may be used assuming the entity
does indeed exist in the queue manager registry referred to by the value of
"serverRootFolder":
– PWStoreServer – server side IBM WebSphere MQ Everyplace queue

manager
– PWStoreServer+passwords – real queue on the server side.

Support for DNS names in the configuration of the IBM
WebSphere MQ Everyplace Queue

There is no additional coding required to support this feature.

It should be noted that DNS support is really an IBM WebSphere MQ Everyplace
feature, since the IBM Security Directory Integrator component implementations
simply pass the configuration properties from mqeconfig.props through to the IBM
WebSphere MQ Everyplace APIs. Themqeconfig.props properties which can accept
DNS name or IP address values are:
v serverIP
v certServerIPAndPort

166 IBM Security Directory Integrator: Installation and Administrator Guide

Configuration of High Availability for IBM WebSphere MQ
Everyplace transport of password changes

You can learn to configure High Availability for IBM WebSphere MQ Everyplace
transport of password changes using the information provided here.

To support high availability deployments, you have the possibility to deploy and
configure multiple instances of the IBM Security Directory Integrator IBM
WebSphere MQ Everyplace components. In some deployments, it may be necessary
to configure multiple IBM WebSphere MQ Everyplace Password Store components
for IBM Security Directory Integrator. For example, if password change plug-ins
have been configured for multiple Windows Domain Controllers—in this case, it is
likely that there separate instances of IBM WebSphere MQ Everyplace client side
Queue Managers with the name "PWStoreClient". Additionally, for each of the
client Queue Managers, there is a remote queue proxy connection to the IBM
WebSphere MQ Everyplace server side Queue Manager queue used by the IBM
WebSphere MQ Everyplace Password Connector for IBM Security Directory
Integrator. The remote queue proxy name is "PWStoreServer+passwords". When
you use this type of deployment scenario, the authentication certificates associated
with these two IBM WebSphere MQ Everyplace entities (that is, "PWStoreClient",
"PWStoreServer+passwords") is requested and issued multiple times. This happens
each time the mqeconfig utility is executed. Before executing the second and each
subsequent instances of the mqeconfig utility, it necessary to re-enable certificate
issue for each of the IBM WebSphere MQ Everyplace entities mentioned above.

For some deployments, you may prefer to configure the IBM WebSphere MQ
Everyplace Password Connector for IBM Security Directory Integrator such that it
supports a particular high availability requirement. You may expect that an
implementation supporting this type of requirement would employ multiple
instances of the IBM WebSphere MQ Everyplace Password Connector for IBM
Security Directory Integrator, each with its own associated IBM WebSphere MQ
Everyplace Queue Manager configuration. In this case you would deploy multiple
identical IBM WebSphere MQ Everyplace server side configurations, allowing a
network load balancer to route requests from the IBM Security Directory Integrator
IBM WebSphere MQ Everyplace Password Store client to an available server
instance. Each IBM WebSphere MQ Everyplace Queue Manager on the server side
is configured using the mqeconfig utility. When this utility executes it
automatically request authentication certificates from the IBM WebSphere MQ
Everyplace Mini-Certificate server for the entities named "PWStoreServer" and
"PWStoreServer+passwords". These represent the Queue Manager and Queue
names respectively. Before executing the second and each subsequent instance of
the mqeconfig utility, it necessary to re-enable certificate issue for the two IBM
WebSphere MQ Everyplace entities mentioned above.

Providing remote configuration capabilities in the IBM
WebSphere MQ Everyplace Configuration Utility

You can use the instructions provided here to provide remote configuration
capabilities in the IBM WebSphere MQ Everyplace Configuration Utility.

Creating a remote IBM WebSphere MQ Everyplace Queue using the
Configuration Utility

Typing the following command line create a remote IBM WebSphere MQ
Everyplace Queue named "queue_name" using the mqeconfig.props
configuration file:
mqeconfig mqeconfig.props create remotequeue queue_name targetQMname [QM_ip_or hostname comm_port]

Chapter 8. System Queue 167

In the above command line QM_ip_or_hostname and comm_port parameters
are optional; if they are missing only a remote queue definition is created.
If you provide these two parameters, a Connection definition also be
created before creating the remote queue definition.

Note: A remote queue is not usable without a Connection definition. In
addition several remote queues can be defined to share a single
Connection. The targetQMname parameter specifies the name of the
remote IBM WebSphere MQ Everyplace Queue Manager.

Deleting a remote IBM WebSphere MQ Everyplace Queue using the IBM
WebSphere MQ Everyplace Configuration Utility

Typing the following command line delete a remote IBM WebSphere MQ
Everyplace Queue named "queue_name" using the mqeconfig.props
configuration file:
mqeconfig mqeconfig.props delete remotequeue queue_name targetQMname

In the above command line the targetQMname parameter specifies the
name of the remote IBM WebSphere MQ Everyplace Queue Manager.

168 IBM Security Directory Integrator: Installation and Administrator Guide

Chapter 9. Encryption and FIPS mode

You can learn about encryption through the information and links provided here.

To provide confidentiality of data, IBM Security Directory Integrator can encrypt:
v configuration files
v property values in properties files
v server user registry files
v JavaScript files

Encryption is the process of selecting some humanly readable text, called plaintext,
and hiding its content and meaning to make the data in the plaintext format more
secure. Plaintext is written in lowercase letters. Encrypted text is called ciphertext.
Ciphertext is written in capital letters.

Note: In Config files, if the {protect}- prefix precedes the name of a property, then
the property value is, or should be, encrypted. The prefix, {protect}- is optional. The
values that are already encrypted values start with {encr}.
See “Working with encrypted IBM Security Directory Integrator configuration files”
on page 133 and “Encryption of properties in external property files” on page 136.

For example:
[{protect}-]keyword <colon | equals> [{encr}][{java}]value

The {java} value must be b64-encoded. For example:
{protect}-api.truststore.pass={encr}J8AKimpEutu3BblOVg55F/5d5vO2kXWcNUWnCq3vINUc6K0719z9dEk3H43Ot2iTT1dZTI6FSSV
in9KsCyBLmgv+n84w7HelKl3ro2dFmZbTYKMXuxGoqN9nL2VOvZoptNqzoWvs6IN/p3VkIIBtlao/9mEPEKuIwRnKtkQ89Bg=

Configuring IBM Security Directory Integrator to run FIPS mode
You can configure IBM Security Directory Integrator to run FIPS mode.

The Federal Information Processing Standard (FIPS) Publication 140-2, FIPS PUB
140-2, is a U.S. government computer security standard used to accredit
cryptographic modules.

When the IBM Security Directory Integrator server is configured to run in FIPS
mode, that Server is using the FIPS 140-2 certified cryptographic modules. IBM
Security Directory Integrator does not generate cryptographic keys – keys are
created using external utilities such as keytool and Ikeyman). For information on
IBM Security Directory Integrator use of encryption, see Chapter 6, “Security,” on
page 93. In order to create, edit, export and overall manage keystores and
truststores the Ikeyman GUI utility or the keytool command line utility can be
used. The executable file, keytool.exe is found in root_directory/jvm/jre/bin, or
root_directory/jvm/bin, depending on your platform.

Symmetric cipher support
You can use Symmetric cipher support for achieving a FIPS 140-2 compliance.

The reason for encrypting a message is to change the message into a meaningless
form of text called cipher text that is meaningless to whoever intercepts the
message. There are many different encryption algorithms called ciphers. One of the

© Copyright IBM Corp. 2003, 2014 169

most widely known ciphers is the symmetric cipher. The symmetric cipher has a
key that both the sender and the receiver can keep. The sender uses that key to
encrypt the message. The receiver uses the same key to decrypt the message.

An optional configuration is provided to use a symmetric cipher (specifically, the
Advanced Encryption Standard, or AES). The symmetric cipher encoded using AES
allows customers that need FIPS-compliant solutions to use a supported cipher
around encryption.

The following property defines the cipher:
com.ibm.di.securityTransformation=DES/ECB/NoPadding

This property defines a cipher for the password-based encryption or decryption of
IBM Security Directory Integrator configurations.

FIPS encryption
You can run IBM Security Directory Integrator and the IBM Security Directory
Integrator server in a secure way using FIPS. You can also configure additional
properties when you want to operate IBM Security Directory Integrator in a
specific mode, for example, FIPS mode.

Connectors, Function Components, Parsers:

You can know more about Connectors, Function Components, Parsers using the
information provided here.

FIPS 140-2 is concerned only with cryptographic functionality such as SSL, digital
signing, encryption, cryptographic hashing and random number generation.

SSL

FIPS 140-2 requires TLS to be the protocol for SSL communication. SSLv3 and its
predecessors are not allowed. When FIPS mode is turned on, IBM Security
Directory Integrator components that use SSL will fail to communicate with
external systems that do not support TLS.

JDBC and the System Store

The DB2 Type 4 JDBC driver (com.ibm.db2.jcc.DB2Driver) that is shipped with
IBM Security Directory Integrator, supports SSL in a FIPS conformant way.

The Apache Derby drivers, network and embedded, do not support SSL in version
10.5.3 (which is the one bundled with IBM Security Directory Integrator versions
prior to 7.2).

However, the Apache Derby Version 10.8 database engine can perform database
encryption. By default IBM Security Directory Integrator uses Derby for its System
Store. If you use database encryption functionality of Apache Derby Version 10.8 in
FIPS mode, be sure to specify the IBM certified cryptographic provider IBMJCEFIPS
as the provider used for encryption and also choose a FIPS approved encryption
cipher. Here is an example of how to configure the System Store to use Derby with
FIPS compliant database encryption:
com.ibm.di.store.database=jdbc:derby://localhost:1527/C:\TDI\TDISysStoreEnc;create=true;

dataEncryption=true;encryptionKey=c566bab9ee8b62a5ddb4d9229224c678;encryptionAlgorithm=AES/CBC/NoPadding;
encryptionProvider=com.ibm.crypto.fips.provider.IBMJCEFIPS

com.ibm.di.store.jdbc.driver=org.apache.derby.jdbc.ClientDriver
com.ibm.di.store.jdbc.urlprefix=jdbc:derby:
com.ibm.di.store.jdbc.user=APP

170 IBM Security Directory Integrator: Installation and Administrator Guide

JMS and the System Queue

IBM WebSphere MQ Everyplace Mini-Certificates involve cryptography that is not
FIPS compliant, so this security feature of IBM WebSphere MQ Everyplace should
not be used in FIPS mode.

The IBM WebSphere MQ 5.3 JMS provider is not capable of running SSL in a FIPS
compliant mode. In FIPS mode SSL should not be used with that provider.

To use FIPS compliant SSL communications between IBM Security Directory
Integrator and IBM WebSphere MQ:
1. Ensure that the IBM WebSphere MQ installation is of Version 7.1 or higher.
2. Ensure that the corresponding Queue Manager on the MQ side requires FIPS

compliant SSL communications.
3. Ensure that the corresponding SSL channel of the Queue Manager uses a FIPS

compliant SSL Cipher Spec.
4. Turn on FIPS mode for IBM Security Directory Integrator. When FIPS mode is

enabled for IBM Security Directory Integrator, it automatically enables FIPS
mode on all JMS SSL connections to IBM WebSphere MQ.

5. Copy the JMS client jars from the IBM WebSphere MQ installation to IBM
Security Directory Integrator; refer to the JMS Connector documentation in
Reference for a list of necessary client libraries for MQ 7.1 and how to deploy
them in IBM Security Directory Integrator.

6. On the IBM Security Directory Integrator side, configure a FIPS compliant SSL
Cipher Suite that is compatible with the SSL Cipher Spec configured on the SSL
channel of the MQ Queue Manager. You can do this using the jms.sslCipher
parameter of the JMS Connector and the
systemqueue.jmsdriver.param.jms.sslCipher system property of the MQ driver
for the System Queue. For more information, see the section about SSL
CipherSpecs and CipherSuites mapping and their FIPS compliance in the
WebSphere MQ documentation.

The IBM Security Directory Integrator server and FIPS:

You can take care of the implications listed here while working on IBM Security
Directory Integrator server and FIPS.

When run in this mode the IBM Security Directory Integrator Server is forced to
use FIPS 140-2 cryptographic modules

Note: If the Server is running with FIPS and SSL enabled, then do not use clients
with SSL for secure sockets communication. In this case the Server uses TLS and a
connection will not succeed. Instead of using SSL make sure you are using TLS like
the Server does for secure sockets communication.

Running the IBM Security Directory Integrator Server in FIPS mode has the
following implications:
v Only FIPS compliant crypto algorithms are allowed for encryption and

decryption of configurations, properties, and so forth.
v Auxiliary tools which use encryption/decryption should be used in FIPS

compliant way - Ikeyman, createstash, cryptoutils, keytool, and so forth.
v Components will not be able to communicate with external systems that do not

use TLS for socket communication.

Chapter 9. Encryption and FIPS mode 171

http://www-01.ibm.com/support/knowledgecenter/SSFKSJ/mapfiles/product_welcome_wmq.html

v Some components should not be used when the Server is in FIPS mode because
they will break the FIPS compliancy. Refer to Table 21 on page 173 for a list
detailing component compliance.

Enabling FIPS mode:

When using FIPS, many IBM Security Directory Integrator configuration options
are changed, so you must keep in mind several rules in order to maintain FIPS
compliancy.

Some of the rules are mentioned in this document and others can be found in
https://w3.webahead.ibm.com/w3ki/download/attachments/370821/
FIPS+140+Guidelines.pdf?version=1 and http://www.ibm.com/developerworks/
java/jdk/security/60/FIPShowto.html.

Enabling FIPS mode in IBM Security Directory Integrator

1. Set the com.ibm.di.server.fipsmode.on property to true in global.properties
or solution.properties.

2. Make sure the com.ibm.di.securityTransformation property value is in an
algorithm which is FIPS compliant, for example, AES/ECB/NoPadding. This
algorithm is used when you attempt to open an encrypted configuration.

3. Hardware cryptography can not be used along with SSL in FIPS mode. The
underlying SSL module – IBMJSSE2 does not support hardware cryptography
in FIPS mode as stated here: http://www-128.ibm.com/developerworks/java/
jdk/security/60/secguides/jsse2Docs/JSSE2RefGuide.html#runfips. You cannot
use hardware-based SSL keys for the Server API in FIPS mode; the
com.ibm.di.server.pkcs11 property must be absent or set to false in
global.properties and solution.properties.

4. Make sure Server encryption uses a transformation that is FIPS 140-2
compliant.

By default the Server uses public key encryption with the RSA algorithm.
However, the RSA encryption option is not compliant with FIPS 140-2. That is why
you must manually configure another cryptographic transformation that is FIPS
allowed. Below are sample steps that setup IBM Security Directory Integrator to
use the AES cipher for encryption:
v Generate an AES secret key and put it in a keystore. This can be done using the

keytool utility located in the bin folder of an IBM Security Directory Integrator
installation like this:
keytool –genseckey –alias server –keyalg AES –keysize 128 –keystore server.jck –storepass mypass –storetype jceks
–keypass mykeypass –providerClass com.ibm.crypto.fips.provider.IBMJCEFIPS

This command creates a new keystore file server.jck of type JCEKS (JKS
keystores cannot host secret keys) with an AES key of size 128 under alias server.
The password for the created keystore is mypass. Pay special attention to the
keygenproviderclass parameter – it is absolutely necessary to specify the FIPS
certified provider if you strive for FIPS 140-2 compliance. Note that this is just
an example, you can use whatever file names, passwords and aliases you wish.

v Change the IBM Security Directory Integrator settings to use secret key
encryption with the newly generated key. For example in global.properties or
solution.properties file, set the following properties:
com.ibm.di.server.encryption.keystore=server.jck
com.ibm.di.server.encryption.keystoretype=jceks
com.ibm.di.server.encryption.key.alias=server
com.ibm.di.server.encryption.transformation=AES/CBC/PKCS5Padding

v Migrate all existing files that have been encrypted with the old key:

172 IBM Security Directory Integrator: Installation and Administrator Guide

All encrypted files that existed prior to the introduction of the new key, need to
be migrated. Migration involves decryption with the old key and (optionally)
re-encryption with the new one (see “Maintaining encryption artifacts - keys,
certificates, keystores, encrypted files” on page 183). For example you can
migrate global.properties as follows:
cryptoutils -input ../etc/global.properties -output ../etc/global.properties
-mode decrypt_props -keystore ../testserver.jks -storepass server -alias server
-transformation RSA -storetype jks -keypass server

cryptoutils -input ../etc/global.properties -output ../etc/global.properties
-mode encrypt_props -keystore ../server.jck -storepass mypass -alias server
-transformation AES/CBC/PKCS5Padding -storetype jceks -keypass mykeypass

v Regenerate the IBM Security Directory Integrator Server “Stash File” on page 131
to reflect the new passwords of the encryption keystore and the encryption key.
This is done using the createstash utility found in the bin folder of an IBM
Security Directory Integrator installation. For example:
createstash mypass mykeypass com.ibm.crypto.fips.provider.IBMJCEFIPS

v Use only FIPS compatible IBM Security Directory Integrator components in your
solutions, as listed in the table below:

Table 21. FIPS compatible components

Directory Integrator
Component

Allowed in
FIPS mode? Remarks

Connectors

Active Directory Change
Detection Connector

yes Uses default JSSE factories for SSL

AssemblyLine Connector yes Operates as a Server API client

Axis Easy Web Service
Server Connector

yes Uses default JSSE factories for SSL

Command line Connector yes Provides no cryptography features

Domino/Lotus Notes
Connectors

no Domino/Notes 7 cryptographic capabilities are
not FIPS conformant.

(Some FIPS enablement may be included in
Notes 8.0.1.)

ITIM DSMLv2 Connector yes Uses default JSSE factories for SSL

DSMLv2 SOAP Connector yes Uses default JSSE factories for SSL

DSMLv2 SOAP Server
Connector

yes Uses default JSSE factories for SSL

Exchange Changelog
Connector

yes Uses default JSSE factories for SSL

File Connector yes Provides no cryptography features

FTP Client Connector yes Provides no cryptography features

GLA Connector yes Provides no cryptography features. This
connector is deprecated and will be removed
in a future version of IBM Security Directory
Integrator.

HTTP Client Connector yes Uses default JSSE factories for SSL

Old HTTP Client Connector yes Uses default JSSE factories for SSL

HTTP Server Connector yes Uses default JSSE factories for SSL

Old HTTP Server Connector yes Provides no cryptography features

Chapter 9. Encryption and FIPS mode 173

Table 21. FIPS compatible components (continued)

Directory Integrator
Component

Allowed in
FIPS mode? Remarks

IBM Security Directory
Integrator Changelog
Connector

yes Uses default JSSE factories for SSL

ITIM Agent Connector yes Provides no cryptography features

JDBC Connector depends If no cryptography features are used (SSL,
encryption), the Connector is FIPS conformant.

Otherwise FIPS conformance depends on the
FIPS conformance of the cryptographic
functionality of the JDBC driver that is used.

See “Connectors, Function Components,
Parsers” on page 170 for a discussion on the
FIPS conformance of JDBC drivers.

JMS Connector depends If no cryptography features are used (SSL,
encryption), the Connector is FIPS conformant.

Otherwise FIPS conformance depends on the
FIPS conformance of the cryptographic
functionality of the JDBC driver that is used.

See “Connectors, Function Components,
Parsers” on page 170 for a discussion on the
FIPS conformance of JMS providers.

JMX Connector yes Provides no cryptography features

JNDI Connector yes Uses default JSSE factories for SSL

LDAP Connector yes Uses default JSSE factories for SSL

LDAP Server Connector yes Uses default JSSE factories for SSL

Mailbox Connector yes Uses default JSSE factories for SSL

Memory Queue Connector depends Depends on the FIPS compliance of the JDBC
driver used for the System Store.

(The Memory Queue uses the System Store for
persistence.)

See “Connectors, Function Components,
Parsers” on page 170 for a discussion on the
FIPS conformance of JDBC drivers.

Memory Stream Connector yes Provides no cryptography features

IBM WebSphere MQ
Everyplace Password Store
Connector

depends Only PKCS#7 is allowed in FIPS mode for
message protection.

The RSA encryption option must not be used.
The IBM WebSphere MQ Everyplace Mini
Certificates are not FIPS compliant, so they
must not be used in FIPS mode.

Sun Directory Change
Detection Connector

yes Uses default JSSE factories for SSL

174 IBM Security Directory Integrator: Installation and Administrator Guide

Table 21. FIPS compatible components (continued)

Directory Integrator
Component

Allowed in
FIPS mode? Remarks

Properties Connector depends If encryption is turned off, the Connector is
FIPS conformant.

Otherwise FIPS conformance depends on the
cipher used for encryption.

An example of a FIPS 140-2 approved cipher is
AES. Other approved ciphers can be found at:
http://csrc.nist.gov/publications/fips/fips140-
2/fips1402annexa.pdf

The Server encryption option will always be
FIPS conformant as long as IBM Security
Directory Integrator is configured correctly for
FIPS mode. (See “Enabling FIPS mode” on
page 172.)

Server Notifications
Connector

yes Operates as a Server API client

System Queue Connector depends If no cryptography features are used by the
System Queue (SSL, encryption), the
Connector is FIPS conformant.

Otherwise FIPS conformance depends on the
FIPS conformance of the JMS provider that is
used by the System Queue.

See “Connectors, Function Components,
Parsers” on page 170 for a discussion on the
FIPS conformance of JMS providers.

Windows Users and Groups
Connector

yes Provides no cryptography features

System Store Connector depends Depends on the FIPS compliance of the JDBC
driver used by the System Store.

RAC Connector yes Provides no cryptography features. This
connector is deprecated and will be removed
in a future version of IBM Security Directory
Integrator.

RDBMS Changelog
Connector

depends Same as the JDBC Connector

SNMP Connector yes Provides no cryptography features

SNMP Server Connector yes Provides no cryptography features

TAM Connector yes IBM Security Directory Integrator Runtime for
Java is FIPS conformant

TCP Connector yes Uses default JSSE factories for SSL

TCP Server Connector yes Uses default JSSE factories for SSL

Timer Connector yes Provides no cryptography features

URL Connector yes Provides no cryptography features

Web Service Receiver Server
Connector

yes Uses default JSSE factories for SSL

z/OS® Changelog
Connector

yes Uses default JSSE factories for SSL

Chapter 9. Encryption and FIPS mode 175

Table 21. FIPS compatible components (continued)

Directory Integrator
Component

Allowed in
FIPS mode? Remarks

Function Components

Castor Java to XML FC yes Provides no cryptography features

Castor XML to Java FC yes Provides no cryptography features

EMF XMLToSDO yes Provides no cryptography features

EMF SDOToXML yes Provides no cryptography features

AssemblyLine FC yes Operates as a Server API client

Java Class Function
Component

depends Depends on the FIPS compliance of the Java
class, whose method will be invoked by the
Function Component.

If the Java class does not use cryptography
(SSL, encryption, signing, cryptographic hash
functions, and so forth) it can be safely used in
FIPS mode.

Parser FC depends Depends on the FIPS compliance of the Parser
that is configured for the Function Component

CBE Generator Function
Component

yes Provides no cryptography features

SendEMail Function
Component

yes Uses default JSSE factories for SSL

Memory Queue FC depends Depends on the FIPS compliance of the JDBC
driver used by the System Store.

(The Memory Queue uses the System Store for
persistence.)

See “Connectors, Function Components,
Parsers” on page 170 for a discussion on the
FIPS conformance of JDBC drivers.

Axis Java To Soap FC yes Provides no cryptography features

WrapSoap FC yes Provides no cryptography features

Invoke Soap WS FC yes Uses default JSSE factories for SSL

Axis Soap To Java FC yes Provides no cryptography features

Axis EasyInvoke Soap WS
FC

yes Uses default JSSE factories for SSL

Complex Types Generator
Function Component

yes Provides no cryptography features

Remote Command Line
Function Component

depends The cryptographic capabilities of the RXA
toolkit are not FIPS compliant.

If no cryptography features are used, the
component can be used in FIPS mode.

z/OS TSO/E Command
Line FC

depends Depends on the FIPS compliance of the
cryptography involved in the TSO command
that is invoked by the Function Component

176 IBM Security Directory Integrator: Installation and Administrator Guide

Table 21. FIPS compatible components (continued)

Directory Integrator
Component

Allowed in
FIPS mode? Remarks

SAP ABAP Application
Server Component Suite

no The SAP cryptographic module has not been
FIPS 140-2 certified.

If no cryptography features are used, the
components can be used in FIPS mode.

Parsers yes None of the IBM Security Directory Integrator
Parser components use cryptography so all of
them can be used in FIPS mode.

Setting com.ibm.di.server.fipsmode.on

To enable FIPS mode in IBM Security Directory Integrator you must specify it in a
property in global.properties or solution.properties. The property is named
com.ibm.di.server.fipsmode.on and can be set to either true or false. When this
property is set to true, the IBM Security Directory Integrator Server runs in FIPS
mode. In this mode, the IBM FIPS security provider is set in the IBM Security
Directory Integrator JVM before the IBM JCE security provider in the providers
list. When the IBM Security Directory Integrator FIPS enabling property is true, it
also enables FIPS mode in the IBM JSSE2 provider and sets the default JSSE SSL
socket factories to be the ones from the IBM JSSE2 provider. By default FIPS mode
is not enabled in IBM Security Directory Integrator, that is, the
com.ibm.di.server.fipsmode.on property is set to false.

Using crypto algorithms in FIPS mode

Only FIPS-compliant crypto algorithms can be used. This means that you must use
only FIPS-compliant algorithms in order to stay in FIPS-compliant mode. Using
other algorithms violates FIPS compliancy.

Setting com.ibm.di.securityTransformation

When opening an encrypted configuration, IBM Security Directory Integrator uses
the com.ibm.di.securityTransformation property to get the algorithm that
decrypts the configuration. If this property is set to an algorithm which is not
FIPS-compliant, and the IBM Security Directory Integrator Server FIPS mode is
turned on, then an Exception is thrown. The Exception message which is shown
would look something like this:
CTGDIC012E Could not load file<FILE_PATH>. No such algorithm: <ALGORITHM_NAME>.

In order to avoid this Exception, always set FIPS-compliant algorithms for this
property when running in FIPS mode. By default the
com.ibm.di.securityTransformation property is set to DES/ECB/Nopadding which is
not a FIPS-compliant algorithm. This property also defines a cipher for the
password-based encryption and decryption of IBM Security Directory Integrator
configurations.

Setting properties automatically when running in FIPS mode

v IBM Security Directory Integrator sets a relevant System property which is not
present in the global.properties file by default. This property is called
com.ibm.di.cryptoProvider and is set to the IBMJCEFIPS security provider

Chapter 9. Encryption and FIPS mode 177

when run in FIPS mode. You should note that if this property is set in
global.properties then that particular value is used; if this property is set to a
non-FIPS compliant provider, then even if IBM Security Directory Integrator is
run in FIPS mode, IBM Security Directory Integrator is not FIPS-compliant.

v When in FIPS mode, specific JSSE Socket Factories are used. These are the
IBMJSSE2 Socket Factories. This is done automatically by the IBM Security
Directory Integrator Server which sets the ssl.SocketFactory.provider and the
ssl.ServerSocketFactory.provider properties to the JSSE implementation
classes in IBMJSSE2 provider.

Using the create stash file command line tool in FIPS mode

To create a stash file that conforms to FIPS 140-2 standards you must provide the
IBMJCEFIPS provider class as the third parameter when using the createstash file
tool. For example:
TDI_install_dir\bin\createstash Password Password com.ibm.crypto.fips.provider.IBMJCEFIPS

Using alternatives to RSA encryption in FIPS mode

In FIPS mode, configure IBM Security Directory Integrator to use the Advanced
Encryption Standard (AES) instead of the RSA encryption algorithm. A secret key
cipher that is FIPS 140-2 compliant is required. As an acronym, RSA stands for
Rivest, Shamir, and Adelman, the inventors of the algorithm. The RSA algorithm is
a strong encryption algorithm used for sending data over the internet. The RSA
cipher is allowed only to encrypt and decrypt keys for transport (SSL, TLS) to stay
within the boundaries of the Approved Mode of FIPS 140-2 Level 1, as stated at:
http://www.ibm.com/developerworks/java/jdk/security/60/FIPShowto.html.

Running auxiliary tools in FIPS mode:

You can use the command line syntax for identifying the appropriate crypto
provider, and when generating a secret key.

createstash

Pass the FIPS 140-2 certified crypto provider IBMJCEFIPS as an explicit provider
parameter on the command-line:
createstash mypass mykeypass com.ibm.crypto.fips.provider.IBMJCEFIPS

cryptoutils

Pass the FIPS 140-2 certified crypto provider IBMJCEFIPS as an explicit provider
on the command-line using the cryptoproviderclass option like this:
cryptoutils –input registry.txt –output registry.enc –mode encrypt –keystore ../testserver.jks –storepass server
–alias server –cryptoproviderclass com.ibm.crypto.fips.provider.IBMJCEFIPS

Configuring FIPS properties for IBM Security Directory Integrator:

You can configuring FIPS properties for IBM Security Directory Integrator using
the instructions provided here.

178 IBM Security Directory Integrator: Installation and Administrator Guide

Running keytool/Ikeyman in FIPS mode

To use the keytool and Ikeyman utilities in FIPS mode, edit the java.security file in
TDI_install_dir/jvm/jre/lib/security. In the first two lines in the java.security
file, set the IBMJCEFIPS provider first and the IBMJCE security provider second.
For example:
security.provider.1=com.ibm.crypto.fips.provider.IBMJCEFIPS
security.provider.2=com.ibm.crypto.provider.IBMJCE

However, on Solaris and HP-UX, the SUN provider should always be the first
provider in the security providers list.

Configuring SSL and PKI certificates
You can know in detail about the SSL and PKI certificates through the information
provided here.

IBM Security Directory Integrator uses both Secure Socket Layer (SSL) and Public
Key Infrastructure (PKI) encryption methods. SSL and PKI provides an important
foundation for many of the IBM Security Directory Integrator and IBM Security
Directory Integrator server features. SSL provides for encryption and authentication
of network traffic between two remote communicating parties. Similarly, PKI
(public key infrastructure) enables users of unsecured networks to securely and
privately exchange data by using a public and a private cryptographic key pair
that is obtained and shared through a trusted authority. See “Configuring SSL and
PKI certificates.”

SSL certificate

An SSL certificate resides on a secure server and is used to encrypt the data that
identifies the server. The SSL certificate helps to prove the site belongs to the entity
who claims it and contains information about the certificate holder, the domain
that the certificate was issued to, the name of the Certificate Authority who issued
the certificate, and the root and the country it was issued in.

PKI certificate

A PKI certificate enables users of an unsecured network to add security and
privacy to data exchanges. PKI uses a cryptographic key pair that it gets and
shares through a trusted authority called a Certificate Authority (CA). Using PKI,
you can obtain a certificate that can identify an individual or an organization and
directory services that can store the certificates. The CA can also revoke the
certificates when necessary. The most common use of a digital certificate is to
verify that a user sending a message is who the sender claims to be, and to
provide the receiver with the encryption of the reply.

Follow these steps to provide separate configuration options for certificates to be
used for PKI Encryption and SSL:
1. Add the following properties:

com.ibm.di.server.encryption.keystore
com.ibm.di.server.encryption.key.alias
api.keystore.password
api.key.password

2. Rename the following properties as shown:
com.ibm.di.server.keystore ----- > api.keystore
com.ibm.di.server.key.alias ------>api.key.alias

Chapter 9. Encryption and FIPS mode 179

Note: Theidisrv.sth file now holds the password only for the encryption file.

Encrypting and decrypting using CryptoUtils
You can learn to encrypt and decrypt using CryptoUtils through the methods
discussed here.

Using IBM Security Directory Integrator, you can PKI encrypt sensitive properties
in the global.properties or in the solution.properties file. One method of
decrypting PKI-encrypted properties is to use the Configuration Editor (CE)
properties editor. The CryptoUtils command-line utility is another method of
decrypting PKI-encrypted properties files. Decryption requires you to give your
PKI credentials so that unauthorized users cannot access sensitive information You
can properties files that contain PKI encrypted properties using CryptoUtils. see
“The IBM Security Directory Integrator Encryption utility” on page 136.

Working with certificates
You can learn to work the certificates using the information provided here.

Someone who wishes to send an encrypted message applies for a digital certificate
from a CA. The CA issues an encrypted digital certificate that contains the
applicant's public key and a other identification data. The CA makes reveals its
own public key through printed media or perhaps on the Internet. The recipient of
an encrypted message uses the CA's public key to decode the digital certificate
attached to the message, verifies the certificate as issued by the CA, and then gets
the sender's public key and identification data from the certificate. With this
information, the recipient can send an encrypted reply.

Digital certificates are of two types:
v CA-signed certificates
v Self-signed certificates

CA-signed certificates are signed by a Certificate Authority such as VeriSign and
thawte. A self-signed certificate is an identity certificate that is signed by its own
creator.

IBM Security Directory Integrator provides separate configuration options for
certificates to be used for public key infrastructure (PKI) encryption and Secure
Socket Layer (SSL) connection. Independent configuration of PKI and SSL
certificates allows you to migrate your encrypted properties separately from the
process of upgrading your SSL certificates.

Under PKI, a Certificate Authority (CA) binds public keys to user identities. The
user identity must be unique for each CA. Public Key certificates collect each user,
user identity, public key, their binding, validity conditions, and other attributes that
are made unforgetable in public key certificates issued by the CA.

The certificates used for SSL may expire, or for security reasons, SSL certificates
may have to be refreshed frequently. Certificates used for PKI encryption can be
persisted longer than it is appropriate to persist SSL certificates. PKI certificates
should be maintained in case there is data that has been encrypted using the
public key certificate. As a result, IBM Security Directory Integrator allows you to
configure PKI and SSL certificates separately. Each server for an SSL connection
and each client performing PKI authentication must issue a request for a certificate
to the local CA, and must add the resulting certificate into its keystore.

180 IBM Security Directory Integrator: Installation and Administrator Guide

These properties are added to the global.properties file:
com.ibm.di.server.encryption.keystore
com.ibm.di.server.encryption.key.alias

These properties variables are set to the same values as the ones already in
global.properties:
api.keystore=truststore
api.key.alias=server

Comparing CA-signed and Self-signed certificates
You will be able to compare CA-signed and Self-signed certificates after reading
the information provided here.

Certificate authority signed certificates

Self-signed certificates

Certificate authorities such as VeriSign require a procedure whereby applicants can
prove their identities and obtain certificates that authenticate both the identity of
the certificate applicants and its own identity as a signer of a certificate.

Typically there is a local certification authority (CA), that is, the certificates do not
come from any of the well known CAs like VeriSign, and so on. The local CA itself
should have a root certificate issued by a well-known CA, but even this is not
always true. If the local CA's root certificate is self-signed, you must import it into
the truststore of each server or client that is using SSL.

In this case, each server for an SSL connection, and each client doing PKI
authentication, generates its own self-signed certificate. It is then necessary to
export the certificate to a file and to import it into various truststores. If a client C
connects to a server S, C must have S's self-signed certificate in its truststore. If a
client C does PKI authentication (symmetric SSL) to a server S, S must have C's
self-signed certificate in its truststore. Note: Self-signed certificates can be used for
either a client or a server certificate. See the “Manage keys, certificates and
keystores” on page 93 on information how to do this. Each server for an SSL
connection and each client doing PKI authentication must then issue a request for
a certificate to the local CA, and must add the resulting certificate into its keystore.

Configuring certificates using PKI and SSL
You can learn to configure certificates using PKI and SSL using the information
provided here.

IBM Security Directory Integrator provides separate configuration options for
certificates to be used for public key infrastructure (PKI) encryption and Secure
Socket Layer (SSL) connection. Independent configuration of PKI and SSL
certificates allows you to migrate your encrypted properties separately from the
process of upgrading your SSL certificates.

Under PKI, a Certificate Authority (CA) binds public keys to user identities. The
user identity must be unique for each CA. Public Key certificates collect each user,
user identity, public key, their binding, validity conditions, and other attributes that
are made unforgetable in public key certificates issued by the CA.

The certificates used for SSL may expire, or for security reasons, SSL certificates
may have to be refreshed frequently. Certificates used for PKI encryption can be
persisted longer than it is appropriate to persist SSL certificates. PKI certificates
should be maintained in case there is data that has been encrypted using the

Chapter 9. Encryption and FIPS mode 181

public key certificate. As a result, IBM Security Directory Integrator allows you to
configure PKI and SSL certificates separately. Each server for an SSL connection
and each client performing PKI authentication must issue a request for a certificate
to the local CA, and must add the resulting certificate into its keystore.

These properties are added to the global.properties file:
com.ibm.di.server.encryption.keystore

com.ibm.di.server.encryption.key.alias

These properties variables are set to the same values as the ones already in
global.properties:
api.keystore=truststore

api.key.alias=server

Using cryptographic keys located on hardware devices
You can learn to use cryptographic keys located on hardware devices using the
instructions provided here.

The RSA signing and encryption algorithm (developed by Ron Rivest, Adi Shamir,
and Leonard Adleman) is a well-known public key cipher. RSA Laboratories (Part
of EMC Corp.) have published the PKCS#11 standard, which defines a
platform-independent API to hardware cryptographic tokens, such as Hardware
Security Modules and smart cards. The PKCS#11 API defines most commonly used
cryptographic object types, including:
v RSA keys
v X.509 Certificates
v Data Encryption Standard (DES)DES/Triple DES keys
v All the functions required for using, creating or generating, modifying, and

deleting the above objects

Public-Key Cryptography Standards (PKCS) PKCS#11 is a standard that provides a
common application interface to cryptographic services on various platforms using
various hardware cryptographic devices. Hardware Cryptographic key storage
devices allow keys to be stored on hardware devices. IBM Security Directory
Integrator supports private keys and certificates on crypto devices that are
PKCS#11 compliant. Support is provided on all hardware devices supported by the
IBM Java PKCS libraries shipped with the Java Runtime Environment (JRE). PKCS
standards are a set of common protocols that allow secure information exchange
over networks using a public key infrastructure (PKI). IBM Security Directory
Integrator can store Secure Socket Layer (SSL) keys on the hardware devices. For
the requirement to store keys on hardware devices, the following new properties
are available in the global.properties file:
##PKCS11 options
##Set the value of following properties to use PKCS11 enabled devices to store TDI servers
##private key /certificate.
com.ibm.di.pkcs11cfg=etc\pkcs11.cfg
com.ibm.di.server.pkcs11=false
com.ibm.di.server.pkcs11.library=
com.ibm.di.server.pkcs11.slot=
{protect}-com.ibm.di.server.pkcs11.password=PASSWORD

The default value of the property com.ibm.di.server.pkcs11 is false. The value
corresponding to the property com.ibm.di.server.pkcs11.password is encrypted.

182 IBM Security Directory Integrator: Installation and Administrator Guide

Using IBMPCKS11
You can use IBMPCKS11 to access devices and to store SSL keys and certificates.

IBM Security Directory Integrator uses IBMPCKS11 to access crypto hardware
devices that store the SSL keys and certificates. Support is provided for all
hardware devices supported by the IBM Java PKCS libraries and shipped with the
Java Runtime Environment.

Table 22. SSL supported properties
Property Default value Description

com.ibm.di.pkcs11.cfg etc\pkcs11.cfg Use CFG file to point to the path of the configuration
file required to initialize the IBM PKCS11
implementation provider.

com.ibm.di.server.pkcs11 false Use PKCS#11 compliant crypto devices for ssl.

com.ibm.di.server.pkcs11.library Use this property to specify the path to the
PKCS11client library.

com.ibm.di.server.pkcs11.slot Specify the slot number of the device.

{protect}-com.ibm.di.server.pkcs11.pass Use this password to access the pkcs11 compliant
crypto device.

com.ibm.di.server.pkcs11.accl false Use =true to set hardware cryptographic devices for
cryptographic operations.

Enabling or disabling padding
You can enable or disable padding using the information and links provided here.

Padding means adding extra bits to a transmission so that the transmission is the
exact, required, size. Some encryption and decryption algorithms require their
input to be an exact multiple of the block size. If the plaintext to be encrypted is
not an exact multiple, you must pad before encrypting by adding a padding string.
When decrypting let the receiving party know how to remove the padding.

Note: All properties listed in the global.properties file can be set in the
configuration file by the same name; it is recommended that you edit your
solution.properties file instead if you have one. These properties can be
protected by encryption using the {protect}- prefix (see section “Standard
encryption of global.properties or solution.properties” on page 135 for details).
When setting the property for padding, the default value is DES/ECB/NoPadding.
The padding property defines an algorithm or cipher for password-based
encryption and decryption of IBM Security Directory Integrator configurations. The
property is: com.ibm.di.securityTransformation.

Maintaining encryption artifacts - keys, certificates, keystores,
encrypted files

You can learn about maintaining encryption artifacts - keys, certificates, keystores,
encrypted files using the information and links provided here.

Note: The default SSL certificates of IBM Security Directory Integrator are changed
in 7.1.1. Therefore, IBM Security Directory Integrator 7.1.1 fails to decrypt the
following items, if encrypted using the default IBM Security Directory Integrator
certificates:
v encrypted passwords in global or solution.properties
v protected properties in external property stores

Chapter 9. Encryption and FIPS mode 183

v encrypted IBM Security Directory Integrator configuration XML files in previous
versions

Therefore, decrypt all the encrypted passwords using your previous version of IBM
Security Directory Integrator. For more information about encryption utility, see
“The IBM Security Directory Integrator Encryption utility” on page 136. Once the
passwords are retrieved as text, use them in the latest version. The passwords are
encrypted with the new default certificates once the server or Configuration Editor
is started.

Changed encryption key

Any change of the key that the Server uses for encryption leads to a need for
migration of existing encrypted files. To migrate an encrypted file, you should
decrypt it with the old encryption key and encrypt it with the new one. Encryption
and decryption can be done using the “The IBM Security Directory Integrator
Encryption utility” on page 136 tool.

Files which are often encrypted or contain encrypted parts are: “Working with
encrypted IBM Security Directory Integrator configuration files” on page 133, the
“Server API User Registry” on page 125 and “Standard encryption of
global.properties or solution.properties” on page 135 (IBM Security Directory
Integrator properties files can contain encrypted properties, although the files are
usually not encrypted as a whole).

Note: By default all sensitive properties (such as passwords) inside
global.properties or solution.properties are encrypted. As a rule of thumb you
should always migrate global.properties and solution.properties files when
you change the Server encryption key.

Changed password for encryption key or keystore

The Server reads the password for the keystore that holds the encryption key and
the password for the encryption key itself from the Server “Stash File” on page
131. Thus if any of those passwords is changed, the stash file must be updated.
This can be done using the createstash tool.

Expired encryption certificate

If the Server uses public-key encryption, the certificate associated with the
encryption key-pair can potentially expire at some point in time. If this happens,
the certificate can be renewed using the procedure described in section "Extend the
validity of a certificate using keytool". That procedure preserves the underlying
keys, so no migration of existing encrypted files is necessary.

184 IBM Security Directory Integrator: Installation and Administrator Guide

Chapter 10. Configuring the IBM Security Directory Integrator
Server API

You can use the information and links provided here to configure the IBM Security
Directory Integrator Server API.

The IBM Security Directory Integrator Server API provides a set of programming
calls that can be used to develop IBM Security Directory Integrator solutions and
interact with the server locally and remotely. It also includes a management layer
that exposes the Server API calls through the Java Management Extensions (JMX)
interface. This section provides information about properties you can use to
configure the Server API.
v For information on using the Server API, see "Appendix C. Server API" in the

Reference.
v For additional information on configuring the server API, see “Configuring the

Server API” on page 108.
v For information on IBM Security Directory Integrator server security, see

“Remote Server API” on page 107.

Server ID
You can know more about server ID and their working using the information
provided here.

Remote clients can identify the server they are talking to if the server can be
distinguished using a unique ID. IBM Security Directory Integrator allows you to
specify unique server IDs that allow remote clients, such as the Administration and
Monitoring Console (AMC), to connect to different IBM Security Directory
Integrator servers at different times using the same IP and port. In order to connect
using the same ID and port but at different times, IBM Security Directory
Integrator client applications must be able to register these client applications as
different IBM Security Directory Integrator servers that you can associate with
different data and databases.

Users are to assign the unique IDs manually, ensuring that any remote client (such
as AMC) can connect to an IBM Security Directory Integrator server based on the
IP address, the port, and the unique ID of the IBM Security Directory Integrator
server. AMC registers every server with a unique ID, so that an IBM Security
Directory Integrator server cannot be registered more than once by mistake or
intentionally. When assigning IDs manually, users must ensure that different IBM
Security Directory Integrator servers have distinguishable IDs.

You can configure the unique server ID property using com.ibm.di.server.id. To
give a server a unique server id for a given server, provide a unique ID string for
this property in the global.properties or solution.properties file on the server
you are identifying. The default value for com.ibm.di.server.id is blank.

Exception for password protected Configs
The server API throws an exception if you use a password protected Config
without using a password. You can know more about it through the information
provided here.

© Copyright IBM Corp. 2003, 2014 185

The IBM Security Directory Integrator server API can detect and handle server
problems when the server is faced with clients trying to access password protected
configurations without supplying a password. A message displays, notifying the
user about the problem. The error message is invoked when no password is
supplied or the when the password entered is wrong. See “AMC and encrypted
configs” on page 255.

Server RMI
You can know more about Server RMI using the information and links provided
here.

Due to increasing needs for remote access to each IBM Security Directory
Integrator server, Remote Method Invocation (RMI) is enabled by default. To
ensure adequate security, default remote access requires Secure Socket Layer (SSL)
for client authentication. The SSL access is facilitated with the sample keystore and
truststore that are deployed with IBM Security Directory Integrator. See “SSL client
authentication” on page 102 and “Summary of Server API Authentication options”
on page 121.

Config load time-out interval
Use the api.config.timeout property to add a time-out interval.

If a config instance does not completely load the configuration file when the server
API makes a call, the server API returns a null object. Add the api.config.timeout
property in the global.properties file to add a time-out interval. The interval for
loading the configuration file is set to two minutes by default. If the config file
does not load within the time interval, an exception is thrown.

186 IBM Security Directory Integrator: Installation and Administrator Guide

Chapter 11. Properties

You can use Properties to configure IBM Security Directory Integrator components
and the IBM Security Directory Integrator Server.

Properties are simple keyword:value pairs of parameters kept outside your
configuration files (configs), stored in External Properties files. This enables you to
keep confidential information like passwords outside of your Config files. The
global.properties file is the main configuration file for IBM Security Directory
Integrator. Properties are defined in the global.properties file or in the
solution.properties file. The solutions.property file is a writable copy of the
global.properties file and is used when the server is started from the solution
directory. If a solution directory different from the installation directory is specified
during installation, then a copy of the global.properties file named
solution.properties is created in the IBM Security Directory Integrator solution
directory. Both files are text files, and are written so that they can be understood
by the operating system that is running on the platform.

Properties are single-valued data containers that hold parameter information, for
example, true or 5000. You can access properties from script using entry functions
like getProperty() and setProperty(). Get and set methods work directly with
property values. Entry objects can also contain properties. Like Attributes,
properties are data containers. Attributes are used to store data content, but
properties hold parametric information. Property values and Attributes can be any
type of Java Object. Properties do not show up in:
v Attribute map selection.
v Work entry lists.

Working with properties
You can learn to work with the Solution Directory in multiple ways using the
information provided here.

This section introduces the primary concepts you need when working with
properties. Properties set in any properties files form a baseline for the entire IBM
Security Directory Integrator installation for all users on that computer. However, if
your Solution Directory is different from the installation directory, you can have a
set of text files in your Solutions Directory that mirror their counterparts in the
installation directory. A property listed in any of those files override anything set
in any of the global installation property files, including the global.properties
and solution.properties files. Futhermore, a Java property set inside a Config file
takes the highest precedence, and overrides anything in a global property file or
the property files in the Solution Directory.

You can specify the Solution Directory in multiple ways:
v Set the environment variable TDI_SOLDIR before starting the Configuration Editor

or the Server.
v Specify the -s parameter to the ibmditk script to start the Configuration Editor

or the ibmdisrv script to start the IBM Security Directory Integrator Server. This
takes precedence over setting TDI_SOLDIR. If TDI_SOLDIR equals the installation
directory, all property files is read from there, and the remarks about property
files in the Solutions Directory do not apply.

© Copyright IBM Corp. 2003, 2014 187

In any other case, the first time you run the IBM Security Directory Integrator
Server, it makes a copy of all the property files into your Solutions Directory (it
does not overwrite these files if they already exist). You can now tailor these files
to your particular needs, without affecting the property files in the installation
directory. The files remaining in the installation directory continue to form a
baseline configuration for other instances of IBM Security Directory Integrator.

Note: The file global.properties is copied to a file called solutions.properties
in your Solutions Directory. Other files, like Log4J.properties and the files in the
amc and serverapi folders are copied under their own names.

For documentation purposes, the original global.properties file from the
installation directory is copied to the <Solution directory>/etc folder; this file is
not used for any other purpose.

Migrating using properties and the tdimiggbl tool

The tdimiggbl tool helps you to migrate your global.properties file from one
version of IBM Security Directory Integrator to a higher version. See the following
section Chapter 5, “Migrating,” on page 61.

Global properties
You can use Global properties to configure the IBM Security Directory Integrator
Server settings that are kept in a file called global.properties in the etc folder of
your installation directory.

All properties included in the global.properties file are listed with their default
values and explained in this section. A reference to more detailed documentation is
provided, where possible, in the beginning of the groups of properties. The
Configuration Editor (CE) (ibmditk) and the IBM Security Directory Integrator
server) ibmdisrv) read the global.properties file on startup. This file is read and
applied before a file called solution.properties from your Solution Directory is
read.

Table 23. Some important IBM Security Directory Integrator global properties
Use of the property Property Default value Description

Add your own .jar or .zip
files

com.ibm.di.loader.userjars c:\myjars Specifies directories or jar files,
separated by the Java Property
"path.separator", which is ":" on Linux
and ";" on Windows. Directories are
searched recursively by the TDILoader
for jar files containing classes and
resources. Only files with a .zip or
.jar extension are searched.

Define cipher com.ibm.di.securityTransformation DES/ECB/NoPadding Defines a cipher for the
password-based encryption or
decryption of IBM Security Directory
Integrator configurations. Changed in
IBM Security Directory Integrator 7.0.

Enable config autoload com.ibm.di.server.autoload autoload.tdi Looks for *.xml files in the directory
specified by the "ibmdisrv –d"
command. Executes each *.xml file
found in the directory defined by -d.

Solution properties
Solution properties typically override global properties and are found in a file in
your solution directory called solution.properties. You can know more about it
through the information provided here.

188 IBM Security Directory Integrator: Installation and Administrator Guide

The solution.properties file is by default a copy of the global.properties file,
and you should edit the solutions.properties file when configuring IBM Security
Directory Integrator, because it is read last out of all the properties files. If you
want to, you can delete properties in your solution.properties file and add
property configuration statements that you specifically want to override the
global.properties defaults.

Java properties
You can know more about Java properties using the information provided here.

Java properties are variables and settings of the Java Virtual Machine (JVM). Java
log (Jlog) file properties are shown in “Useful JLOG parameters” on page 235.

Note: A Java property set inside a Config file takes the highest precedence, and
overrides anything in a global property file or the property files in the Solution
Directory.

Table 24. Java properties
Property Default value Description

javax.net.debug none Sets debug mode for the JSSE provider.

com.ibm.di.javacmd none Overrides the Java interpreter.

com.ibm.di.installdir none Uses this path to the Java executable file when
running AssemblyLines from the
Configuration Editor.

com.ibm.di.jvmdir TDI_root/jvm Defines the directory path where the JRE that
IBM Security Directory Integrator uses is
installed.

com.ibm.di.server.maxThreadsRunning 500 Sets this number of threads IBM Security
Directory Integrator. Must be set higher than 3
to have any effect.

com.ibm.di.server.securemode false Sets the mode in which IBM Security
Directory Integrator is running. (standard or
secure)

com.ibm.di.server.keystore testserver.jks Names the keystore of the Server’s SSL
certificate. Renamed in IBM Security Directory
Integrator 7.0.

com.ibm.di.server.key.alias server Names the key alias of the Server’s SSL
certificate. Renamed in IBM Security Directory
Integrator 7.0.

{protect}-api.keystore.password server (encrypted by default) Provides the password for the server API
keystore. Added in IBM Security Directory
Integrator 7.0.

{protect}-api.key.password Provides the key password. If not specified,
uses server keystore password. Added in IBM
Security Directory Integrator 7.0.

com.ibm.di.server.encryption.keystore testserver.jks Names the keystore of the server encryption
key. Added in IBM Security Directory
Integrator 7.0.

com.ibm.di.server.encryption.key.alias server Provides the key alias of the server encryption
key. Added in IBM Security Directory
Integrator 7.0.

com.ibm.di.server.encryption.keystoretype jks Provides the type of the keystore that hosts
the key used by the server for encryption.
Added in IBM Security Directory Integrator
7.0.

com.ibm.di.server.encryption.transformation RSA Names the cryptographic transformation used
by the server for encryption. Can be set to
either "RSA" (public key encryption) or to
some secret key transformation. Added in IBM
Security Directory Integrator 7.0.

Chapter 11. Properties 189

Table 24. Java properties (continued)
Property Default value Description

com.ibm.di.server.fipsmode.on false Enables or disables FIPS standards in IBM
Security Directory Integrator. If this property
is set to true, IBM Security Directory
Integrator runs in FIPS-compliant mode. For
more information on FIPS mode, see Added in
IBM Security Directory Integrator 7.0.

com.ibm.di.default.bind.address * The default bind address for the whole IBM
Security Directory Integrator Server - the
components and the Server API.

System properties
System properties are stored in the System Store instead of being stored in an
external properties file such as solution.properties. You can know more about
this through the information and link provided here.

Certain system properties and Java properties are read-only. These system
properties are shown in the respective Property Stores (for example, System Store).
Attempting to modify these read-only properties has no effect. See also Chapter 12,
“System Store,” on page 191.

190 IBM Security Directory Integrator: Installation and Administrator Guide

Chapter 12. System Store

You can know more about System Store and its working using the information
provided here.

IBM Security Directory Integrator supports persistent storage (that is, storage of
objects that survive across JVM restarts), by means of a tightly-coupled relational
database, the System Store.

The product deployed by default to implement the system store is a relational
database implemented fully in Java, known as IBM Security Directory Integrator,
and previously known as Cloudscape.

The System Store stores the following objects:
v Delta Tables
v User Property Store
v Password Store

Default location of System Store

The default location of IBM Security Directory Integrator System Store database, in
network mode, is your Solution Directory. Therefore, you can have a System Store
for each of your Solution Directories.

To share a single System Store across all the Solution Directories, replace $soldir$
value with the actual TDI_install_dir in the com.ibm.di.store.database property
of global.properties file and solution.properties file, if already created.

When you create a Solution Directory, update the following properties in the
solution.properties file with unique values to avoid conflicts with other Solution
Directory settings:
v com.ibm.di.store.port=1527
v api.remote.naming.port=1099
v web.server.port=1098
v System Queue port or Active MQ port in <soldir>/etc/activemq.xml

Note:

The following example describes the effect of specifying the same value for
com.ibm.di.store.port property across multiple Solution Directories.

There are two solution directories (soldir1, soldir2) with the same
com.ibm.di.store.port values (1527, 1527), and with unique
api.remote.naming.port values (1099, 41099).

When you start server on soldir1, the server starts on port 1099 and System Store
on port 1527, inside soldir1.

When you start Server on soldir2, the server starts on port 41099 and connects to
the System Store, which is already listening on port 1527 inside soldir1.

© Copyright IBM Corp. 2003, 2014 191

The remainder of this section discusses the operational aspects of using IBM
Security Directory Integrator, in particular in conjunction with using IBM Security
Directory Integrator to hold your System Store.

Note: With regards to third party RDBMSs, in order to hold encrypted password
values you may have to size the fields that hold them quite large. A typical small
password might use as much as 178 characters. It depends on both your server's
key, and the length of the unencrypted data you try to store (in bytes). Since this is
a blocked encoding a larger password might use the same space, or double or
triple that amount. Also, the size of the block depends on the server's key. One
way to find the size you need, is to store the password (protected) to a file first,
and then look at that file to see how many characters were used.

IBM Security Directory Integrator can run in either of two modes: embedded and
networked. By default, as specified in the global.properties file, IBM Security
Directory Integrator runs in networked mode.

The System Store used by IBM Security Directory Integrator releases before V7.0
was IBM Security Directory Integrator(then called Cloudscape) in embedded mode.
There are drawbacks to the way IBM Security Directory Integrator runs in
embedded mode. In embedded mode, IBM Security Directory Integrator runs as a
separate thread within the JVM when required. Startup and shutdown of IBM
Security Directory Integrator is automatic in embedded mode. However, when run
this way, this IBM Security Directory Integrator thread claims exclusive access to
the database files. This can become problematic when different JVMs, each with its
own IBM Security Directory Integrator thread, try to access the same System Store.

In embedded mode, these actions cause a new, independent JVM to be started,
triggering an access conflict when more than one JVM is active at any given time:
v A command line invocation of the IBM Security Directory Integrator Server with

a config file, causing one or more AssemblyLines to run.
v Startup of the Configuration Editor (GUI)
v Startup of an AssemblyLine from within the Configuration Editor

None of these actions by themselves causes the IBM Security Directory Integrator
thread to start. However, the IBM Security Directory Integrator thread does start if
access to any of the objects in the System Store is required (for example, Objects
supported by the System Store such as Delta Tables and the User Property Store).

The solution to the access conflicts as outlined previously is to run IBM Security
Directory Integrator in networked mode, which enables concurrent access to the
System Store. Also enable user authentication in IBM Security Directory Integrator
to avoid security concerns in networked mode. To provide security at the database
level, IBM Security Directory Integrator uses the BUILTIN security provider for
IBM Security Directory Integrator. BUILTIN ensures that only valid users are able
to access the IBM Security Directory Integrator database. When you have IBM
Security Directory Integrator configured in networked mode, you can work with
multiple instances of IBM Security Directory Integrator databases booted as System
Stores. You can also configure a IBM Security Directory Integrator instance to work
with a specific Configuration file instance.

Note: Depending on how IBM Security Directory Integrator was started, instances
of IBM Security Directory Integrator can be left running in networked mode, even
after all other IBM Security Directory Integrator processes have terminated.

192 IBM Security Directory Integrator: Installation and Administrator Guide

When you set the property derby.drda.startNetworkServer to true (by default, this
is the case, in global.properties), the Network Server automatically starts when
you start IBM Security Directory Integrator (in this context, IBM Security Directory
Integrator starts when the embedded driver is loaded). You may have to terminate
IBM Security Directory Integrator manually, if desired.

Cloudscape command-line utility

To make working with the IBM Security Directory Integrator database more
convenient, consider creating a script ("dbserver") with the following line (this
example is for Unix/Linux):
export DB_JAR_DIR=jars/3rdparty/IBM
export DB_CLASSPATH=$DB_JAR_DIR/derby.jar:$DB_JAR_DIR/derbyclient.jar:\
$DB_JAR_DIR/derbynet.jar:$DB_JAR_DIR/derbytools.jar
java -classpath $DB_CLASSPATH org.apache.derby.drda.NetworkServerControl "$@"

You may have to join the middle two lines together at the "\" point.

The equivalent dbserver.bat file for Windows would be:
set DB_JAR_DIR=jars/3rdparty/IBM
set DB_CLASSPATH=%DB_JAR_DIR%\derby.jar;%DB_JAR_DIR%\derbyclient.jar;\
%DB_JAR_DIR%\derbynet.jar;%DB_JAR_DIR%\derbytools.jar;
java -classpath %DB_CLASSPATH% org.apache.derby.drda.NetworkServerControl %*

Note: The script must be started from within the IBM Security Directory Integrator
installation path as the working directory, as the following classpath is relative to
this directory.

The following is an example of usage of this utility script:
Show all available commands: ./dbserver

Start DBServer ./dbserver start -p 1527

Stop DBServer ./dbserver shutdown

The full list of sub-commands that you can specify to the dbserver script, and
which are sent to IBM Security Directory Integrator is:
v start [-h <host>] [-p <portnumber>]: This starts the network server on the

port/host specified or on localhost, port 1527 if no host/port is specified and no
properties are set to override the defaults. By default Network Server will only
listen for connections from the machine on which it is running. Use -h 0.0.0.0 to
listen on all interfaces or -h <hostname> to listen on a specific interface on a
multiple IP machine.

v shutdown [-h <host>][-p <portnumber>]: This shutdowns the network server on
the host and port specified or on the local host and port 1527 (default) if no host
or port is specified.

v ping [-h <host>] [-p <portnumber>]: This will test whether the Network Server
is up.

v sysinfo [-h <host>] [-p <portnumber>]: This prints classpath and version
information about the Network Server, the JVM and the Cloudscape server.

v runtimeinfo [-h <host] [-p <portnumber]: This prints extensive debugging
information about sessions, threads, prepared statements, and memory usage for
the running Network Server.

v logconnections {on | off} [-h <host>] [-p <portnumber>]: This turns logging
of connections and disconnections on and off. Connections and disconnections
are logged to derby.log. Default is off.

Chapter 12. System Store 193

v maxthreads <max> [-h <host>][-p <portnumber>]: This sets the maximum
number of threads that can be used for connections. Default 0 (unlimited).

v timeslice <milliseconds> [-h <host>][-p <portnumber>]: This sets the time
each session can have using a connection thread before yielding to a waiting
session. Default is 0 (no yield).

v trace {on | off} [-s <session id>] [-h <host>] [-p <portnumber>]: This
turns drda tracing on or off for the specified session or if no session is specified
for all sessions. Default is off .

v tracedirectory <tracedirectory> [-h <host>] [-p <portnumber>]: This
changes where new trace files will be placed. For sessions with tracing already
turned on, trace files remain in the previous location. Default is
clousdcape.system.home .

When running in networked mode, the IBM Security Directory Integrator database
is of course reachable over the network, not only by IBM Security Directory
Integrator instances but also by other applications using the appropriate drivers.
The credentials required for such access are defined in the global.properties file,
and might have to be tailored for your particular site needs. Pay particular
attention to the username and password parameters as these govern integrity and
security of the data.

If you often alternate between running IBM Security Directory Integrator in
dedicated mode and in networked mode, consider having two different "prototype"
global.properties files on your file system, one each with the correct set of
parameters for each of the two modes. Just before starting a server instance, copy
in place the appropriate global.properties file, according to your needs.
Alternatively, use separate Solution Directories; in a Solution Directory you can
have a file called solution.properties, which property values defined in there
override the ones defined system-wide in global.properties.

Property stores
Password store and User property stores are types of system stores.

Password Store

The Password Store is an external repository that stores a value which results from
changing the value for a password syntax component. The password protection
mechanism is directly related to the configuration windows offered to the user. The
configuration windows, or forms, contain descriptions of each parameter and its
syntax. One type of syntax is password which causes the Configuration Editor to
use a password text field for editing. This external repository for passwords is
configured in the Properties page in the configuration editor (Password-Store) and is
specified in the configuration file for the current IBM Security Directory Integrator
solution. If no such property store is configured the password is saved in clear text
in the configuration file.

If a default password store is configured, a unique property name is generated the
first time a protected/password parameter is saved. This key is used as the key in
the password store. The same property name is written to the configuration file as
a standard property reference. When the value is later retrieved, standard property
resolution takes place to retrieve the actual value from the password store.

If a Password Store is specified, a unique key is generated for the password and
the password is saved encrypted in the Password Store under that key. In the

194 IBM Security Directory Integrator: Installation and Administrator Guide

configuration file, the password is referenced only by that key.

User property stores

The User Property Store is a System Store table used for maintaining serialized
Java objects associated with a key value. This is where persistent component
parameters and properties (such as the Iterator State Store) are maintained, as well
as any data you store. The System Store implements User property stores as one of
its three types of persistent stores for IBM Security Directory Integrator
components. For information on IBM Security Directory Integrator user interfaces
that allow you to select properties from a property store, see “Add a Solution
View” on page 264.

Third-party RDBMS as System Store
You can configure the System Store to use other multi-user RDBMS systems, as
opposed to using the bundled database, Apache Derby.

This is done by specifying appropriate SQL Data Definition Language (DDL)
statements and driver parameters as system properties in global.properties or
solution.properties. Example statements, commented out, are present in the
distribution version of global.properties in the TDI_install_dir/etc directory, for
the supported configurations of IBM DB2, Oracle and MS SQL*Server.

It is also possible to take advantage of suitable templates built in to the
Configuration Editor, by going to the appropriate IBM Security Directory Integrator
Server document. Right-click on the Server in the Servers pane, and select Edit
system store settings. The Server System Store header in the window is a
context-sensitive menu; it has selections for Derby Embedded, Derby Networked,
Oracle, DB2, MS SQL*Server 2005+ and IBM solidDB.

Note: A System Store can also be configured on a per-project basis in the
Configuration Editor; these settings are then stored in the Config file when the
project is exported, and take precedence over the System Store defined for the
Server.

JDBC Driver parameters provide a path to the database; additional properties are
used to specify tailored SQL for certain operations IBM Security Directory
Integrator must be able to perform in the System Store. Multiple SQL statements
can be specified per property. Each separate statement should be terminated with a
semicolon. An example property could be (note that for display purposes, the
statements in this document are broken up in multiple lines; however, in your
property file all statements for a given property should be on one line):
com.ibm.di.store.create.delta.systable=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH) NOT NULL,

SEQUENCEID int, VERSION int);
ALTER TABLE {0} ADD CONSTRAINT IDI_DS_{UNIQUE} PRIMARY KEY (ID)

where {0} => is replaced by the Table name; and

{UNIQUE} => is a special variable which can be used to generate a unique name
based on the current system time.

The following section lists example connection parameters and statements for each
of the supported RDBMS systems.

Chapter 12. System Store 195

Oracle
You need to drop the JDBC driver client library, ojdbc14.jar, in the
TDI_install_dir/jars directory for using Oracle.

JDBC connection parameters
com.ibm.di.store.database=jdbc:oracle:thin:@itdidev.in.ibm.com:1521:itimdb
com.ibm.di.store.jdbc.driver=oracle.jdbc.OracleDriver
com.ibm.di.store.jdbc.urlprefix=jdbc:oracle:thin:
com.ibm.di.store.jdbc.user=SYSTEM
{protect}-com.ibm.di.store.jdbc.password=password

Where itimdb is the SID of the database to be used as System Store.

Create table statements
com.ibm.di.store.create.delta.systable=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH) NOT NULL,
SEQUENCEID int, VERSION int);ALTER TABLE {0} ADD CONSTRAINT IDI_CS_{UNIQUE} PRIMARY KEY (ID)
com.ibm.di.store.create.delta.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH) NOT NULL,
SEQUENCEID int, ENTRY BLOB);ALTER TABLE {0} ADD CONSTRAINT IDI_DS_{UNIQUE} Primary Key (ID)
com.ibm.di.store.create.property.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH) NOT NULL,
ENTRY BLOB);ALTER TABLE {0} ADD CONSTRAINT IDI_PS_{UNIQUE} Primary Key (ID)
com.ibm.di.store.create.sandbox.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH) NOT NULL,
ENTRY BLOB)
com.ibm.di.store.create.recal.conops=CREATE TABLE {0} (METHOD varchar(VARCHAR_LENGTH), RESULT BLOB,
ERROR BLOB)

MS SQL Server
You should install a number of Microsoft client libraries in the
TDI_install_dir/jars directory to use MS SQL Server.

JDBC connection parameters
com.ibm.di.store.database=jdbc:Microsoft:sqlserver://localhost:1433;

DatabaseName=master;selectMethod=cursor;
com.ibm.di.store.jdbc.driver=com.microsoft.jdbc.sqlserver.SQLServerDriver
com.ibm.di.store.jdbc.user=sa
com.ibm.di.store.jdbc.password=passw0rd

The above connection parameters are used with these Microsoft JDBC jars:
1. Msutil.jar
2. MsBase.jar
3. MSsqlserver.jar

Note: For Microsoft SQL Server 2008, the driver jar file to be placed in the
TDI_install_dir/jars directory is sqljdbc.jar (only one file is required)
and it can be obtained from your SQL Server 2008 installation at
<Microsoft SQL Server 2005-Install-Dir>/sqljdbc_<version>/
<language>/sqljdbc.jar; the JDBC connection parameters need to be
specified as follows:
com.ibm.di.store.database=jdbc:sqlserver://localhost:1433;DatabaseName=name;selectMethod=cursor;
com.ibm.di.store.jdbc.driver=com.microsoft.sqlserver.jdbc.SQLServerDriver
com.ibm.di.store.jdbc.user=sa
com.ibm.di.store.jdbc.password=passw0rd

The selectMethod property is optional to the jdbc URL. When this property
is set to "cursor", a database cursor is created. This is useful when reading
very large result sets that cannot be contained in the clients memory.

The default behavior of selectMethod is not "cursor", but "direct", which
keeps result sets in clients memory, thus providing much faster
performance. So unless memory is a problem, it is better to use the default
"direct" behavior. For more information: http://msdn.microsoft.com/en-
us/library/ms378988(SQL.90).aspx.

JDBC connection parameters (for JSQLConnect driver)

196 IBM Security Directory Integrator: Installation and Administrator Guide

com.ibm.di.store.database= jdbc:JSQLConnect://itdiderver/database=reqpro
com.ibm.di.store.jdbc.driver= com.jnetdirect.jsql.JSQLDriver
com.ibm.di.store.jdbc.urlprefix= jdbc:JSQLConnect:
com.ibm.di.store.jdbc.user=administrator
{protect}-com.ibm.di.store.jdbc.password=password

These connection parameters are used with JSQLConnect drivers. You must
download the JSQLConnect.jar file and copy it into the
TDI_install_dir/jars directory.

Create table statements
The DATA TYPE for MS SQL is IMAGE.
com.ibm.di.store.create.delta.systable=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH) NOT NULL,
SEQUENCEID int, VERSION int);
ALTER TABLE {0} ADD CONSTRAINT IDI_MYCONSTRAINT_{UNIQUE} PRIMARY KEY (ID)
com.ibm.di.store.create.delta.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH) NOT NULL,
SEQUENCEID int, ENTRY IMAGE);
ALTER TABLE {0} ADD CONSTRAINT IDI_DS_{UNIQUE} Primary Key (ID)
com.ibm.di.store.create.property.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH) NOT NULL,
ENTRY IMAGE);
ALTER TABLE {0} ADD CONSTRAINT IDI_PS_{UNIQUE} Primary Key (ID)
com.ibm.di.store.create.sandbox.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH) NOT NULL,
ENTRY IMAGE)
com.ibm.di.store.create.recal.conops=CREATE TABLE {0} (METHOD varchar(VARCHAR_LENGTH),
RESULT IMAGE, ERROR IMAGE)

IBM DB2
You can refer to the parameters and statements listed here to know about DB2
working.

JDBC connection parameters
com.ibm.di.store.database=jdbc:db2:net://localhost:50000/ididb
com.ibm.di.store.jdbc.driver=com.ibm.db2.jcc.DB2Driver
com.ibm.di.store.jdbc.urlprefix= jdbc:db2:net:
com.ibm.di.store.jdbc.user=db2admin
{protect}-com.ibm.di.store.jdbc.password=db2admin

Where ididb in the database URL is the DSN for a DB2 instance.

Create table statements
com.ibm.di.store.create.delta.systable=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH) NOT NULL,
SEQUENCEID int, VERSION int);
ALTER TABLE {0} ADD CONSTRAINT IDI_MYCONSTRAINT_{UNIQUE} PRIMARY KEY (ID)
com.ibm.di.store.create.delta.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH) NOT NULL,
SEQUENCEID int, ENTRY BLOB);
ALTER TABLE {0} ADD CONSTRAINT IDI_DS_{UNIQUE} Primary Key (ID)
com.ibm.di.store.create.property.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH) NOT NULL,
ENTRY BLOB) ;ALTER TABLE {0} ADD CONSTRAINT IDI_PS_{UNIQUE} Primary Key (ID)
com.ibm.di.store.create.sandbox.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH) NOT NULL,
ENTRY BLOB)

IBM solidDB
IBMsolidDB® requires that the SolidDriver2.0.jar file is put in the
TDI_install_dir/jars directory.

This JAR can be obtained from the IBMsolidDB installation (from
SolidDB_install_dir/jdbc/SolidDriver2.0.jar.

JDBC connection parameters
com.ibm.di.store.database=jdbc:solid://localhost:1315
com.ibm.di.store.jdbc.driver=solid.jdbc.SolidDriver
com.ibm.di.store.jdbc.urlprefix=jdbc:solid:
com.ibm.di.store.jdbc.user=dba
{protect}-com.ibm.di.store.jdbc.password=dba

Create table statements
com.ibm.di.store.create.delta.systable=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH)
PRIMARY KEY NOT NULL, SEQUENCEID int, VERSION int)
com.ibm.di.store.create.delta.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH)
PRIMARY KEY NOT NULL, SEQUENCEID int, ENTRY BLOB)
com.ibm.di.store.create.property.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH)
PRIMARY KEY NOT NULL, ENTRY BLOB)

Chapter 12. System Store 197

com.ibm.di.store.create.sandbox.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH)
NOT NULL, ENTRY BLOB)
com.ibm.di.store.create.recal.conops=CREATE TABLE {0} (METHOD VARCHAR(VARCHAR_LENGTH),
RESULT BLOB, ERROR BLOB)

Using Derby to hold your System Store
You can use Derby to hold your System Store.

The remainder of this section discusses the operational aspects of using Derby, in
particular in conjunction with using Derby to hold your System Store.

Note: With regards to third party RDBMSs, in order to hold encrypted password
values you may have to size the fields that hold them quite large. A typical small
password might use as much as 178 characters. It depends on both your server's
key, and the length of the unencrypted data you try to store (in bytes). Since this is
a blocked encoding a larger password might use the same space, or double or
triple that amount. Also, the size of the block depends on the server's key. One
way to find the size you need, is to store the password (protected) to a file first,
and then look at that file to see how many characters were used.
Derby can run in either of two modes: embedded and networked. By default, as
specified in the global.properties file, Derby runs in networked mode.

The System Store used by IBM Security Directory Integrator releases before V7.0
was Derby (then called Cloudscape) in embedded mode. There are drawbacks to
the way Derby runs in embedded mode. In embedded mode, Derby runs as a
separate thread within the JVM when required. Startup and shutdown of Derby is
automatic in embedded mode. However, when run this way, this Derby thread
claims exclusive access to the database files. This can become problematic when
different JVMs, each with its own Derby thread, try to access the same System
Store.

In embedded mode, these actions cause a new, independent JVM to be started,
triggering an access conflict when more than one JVM is active at any given time:
v A command line invocation of the IBM Security Directory Integrator Server with

a config file, causing one or more AssemblyLines to run.
v Startup of the Configuration Editor (GUI)
v Startup of an AssemblyLine from within the Configuration Editor

None of these actions by themselves causes the Derby thread to start. However, the
Derby thread does start if access to any of the objects in the System Store is
required (for example, Objects supported by the System Store such as Delta Tables
and the User Property Store).

The solution to the access conflicts as outlined previously is to run Derby in
networked mode, which enables concurrent access to the System Store. Also enable
user authentication in Derby to avoid security concerns in networked mode. To
provide security at the database level, IBM Security Directory Integrator uses the
BUILTIN security provider for Derby. BUILTIN ensures that only valid users are
able to access the Derby database. When you have Derby configured in networked
mode, you can work with multiple instances of Derby databases booted as System
Stores. You can also configure a Derby instance to work with a specific
Configuration file instance.

Note: Depending on how Derby was started, instances of Derby can be left
running in networked mode, even after all other IBM Security Directory Integrator
processes have terminated. When you set the property

198 IBM Security Directory Integrator: Installation and Administrator Guide

derby.drda.startNetworkServer to true (by default, this is the case, in
global.properties), the Network Server automatically starts when you start Derby
(in this context, Derby starts when the embedded driver is loaded). You may have
to terminate Derby manually, if desired.

Configuring Apache Derby Instances
You can learn to configure Apache Derby Instances using the information provided
here.

To configure and manage multiple Derby instances and to provide facilities to
start, stop and restart Derby servers in networked mode a menu option called
System Store is provided in the IBM Security Directory Integrator Configuration
Editor, as part of Solution Logging and Settings configuration of a project. Many
of the configuration options listed take default values from the global.properties
file, which was the configuration base for previous versions of IBM Security
Directory Integrator; now.

The System Store menu option also provides ways to configure the System Store
to use other databases like IBM DB2 as the backend RDBMS. For more
information, refer to "System Store settings" under The Configuration Editor ->
Solution Logging and Settings in Configuring Directory Integrator.

Starting Apache Derby in networked mode
You can start Apache Derby in networked mode with the instructions listed here.

If the com.ibm.di.store.hostname property is set to localhost then remote
connections are not allowed. If the com.ibm.di.store.hostname property is set to
the IP address of the local computer running IBM Security Directory Integrator,
then remote clients can access this Derby instance by using the IP address. You can
only start the network server for the local computer.

Table 25. Starting Apache Derby in networked mode
Property Default value Description

com.ibm.di.store.start.mode automatic The mode for starting up the Derby server process when
required – set to automatic or manual.

Com.ibm.di.store.hostname localhost The URL of the Derby server.

Com.ibm.di.store.port 1527 The port for connecting to the Derby server.

Com.ibm.di.store.sysibm true The state for using the SYSIBM schema or not; values true or
false.

com.ibm.di.store.varchar.length 512 The varchar(length) for the ID columns used in system store
and System Store (PES) connector tables.

com.ibm.di.store.database jdbc:derby://
localhost:
1527/$soldir$
/TDISysStore;
create=true

Sets your Solution Directory as default location of the System
Store database.
Note: Do not replace $soldir$ value with absolute path of
Solution Directory. The path is automatically updated at
runtime in JVM

Enabling user authentication in System Store
You can add these properties to the global.properties file after the System Store
network mode properties.

Table 26. Enable user authentication in System Store
Property Default value Description

derby.connection.requireAuthentication true Enables user authentication for the System Store.

Chapter 12. System Store 199

Table 26. Enable user authentication in System Store (continued)
Property Default value Description

derby.authentication.provider BUILTIN Sets the user authentication provider to BUILTIN. This is the
most basic and simple authentication provider that Derby has.

derby.database.defaultConnectionMode fullAccess Defines the access level to the System Store user. The different
access levels supported by Derby are "fullAccess", "readOnly"
and "noAccess".

Create statements for System Store tables
You can configure create table SQL statements for the list provided here.
v Delta systable
v Delta table
v Property table
v Sandbox tables
v Record AssemblyLine table
v Tombstone manager table
v ibmsnap_commitseq column name

Table 27. Create statements for System Store

Property Default value Description

com.ibm.di.store.create.delta.systable CREATE TABLE {0}
(ID VARCHAR(VARCHAR_LENGTH)
NOT NULL, SEQUENCEID int,
VERSION int);
ALTER TABLE {0}
ADD CONSTRAINT
IDI_CS_{UNIQUE}
PRIMARY KEY (ID)

Create table SQL statements for
the delta systable.

com.ibm.di.store.create.delta.store CREATE TABLE {0}
(ID VARCHAR(VARCHAR_LENGTH)
NOT NULL, SEQUENCEID int,
ENTRY BLOB);
ALTER TABLE {0}
ADD CONSTRAINT
IDI_DS_{UNIQUE}
Primary Key (ID)

Create table SQL statements for
the delta table.

com.ibm.di.store.create.property.store CREATE TABLE {0}
(ID VARCHAR(VARCHAR_LENGTH)
NOT NULL, ENTRY BLOB);
ALTER TABLE {0}
ADD CONSTRAINT
IDI_PS_{UNIQUE}
Primary Key (ID)

Create table SQL statements for
the property table.

com.ibm.di.store.create.sandbox.store CREATE TABLE {0}
(ID VARCHAR(VARCHAR_LENGTH)
NOT NULL, ENTRY BLOB)

Create table SQL statements for
the Sandbox tables.

com.ibm.di.store.create.recal.conops CREATE TABLE {0}
(METHOD varchar
(VARCHAR_LENGTH),
RESULT BLOB,
ERROR BLOB)

Create table SQL statements for
Record AL.

200 IBM Security Directory Integrator: Installation and Administrator Guide

Table 27. Create statements for System Store (continued)

Property Default value Description

com.ibm.di.store.create.tombstones CREATE TABLE
IDI_TOMBSTONE
(ID INT GENERATED
ALWAYS AS IDENTITY,
COMPONENT_TYPE_ID INT,
EVENT_TYPE_ID INT,
START_TIME TIMESTAMP,
CREATED_ON TIMESTAMP,
COMPONENT_NAME
VARCHAR(1024),
CONFIGURATION
VARCHAR(1024),
EXIT_CODE INT,
ERROR_DESCR
VARCHAR(1024),
STATS LONG VARCHAR
FOR BIT DATA,
GUID VARCHAR(1024)
NOT NULL,
USER_MESSAGE
VARCHAR(1024),
UNIQUE (ID, GUID))

Specify the SQL statement for
creating the Tombstone Manager
table. Keep the same table names
and field names.

com.ibm.di.conn.rdbmschlog.cdcolname ibmsnap_commitseq Provide the ibmsnap_commitseq
column name to be used by the
RDBMS changelog connector.

Backing up Apache Derby databases
You can take a back up of Apache Derby databases by using the method provided
here.

Another matter that needs to be given some thought is backup of the data
contained in a Derby database. The recommended (and simplest) way of doing this
is to
v Shutdown the Derby database (if running in embedded mode, shut down all

IBM Security Directory Integrator instances and Configuration Editor instances)
v Copy the entire Derby directory in your IBM Security Directory Integrator home

directory (or whatever Derby directory your global.properties file is pointing
to) to a different location, and ensure that this data is safe

v Restart the Derby database (if running in networked mode).

To restore a database, reverse source and destination of the copy operation in the
above list of steps.

Troubleshooting Apache Derby issues
This section does not attempt to provide comprehensive troubleshooting guidelines
for Derby, but there are a number of symptoms that are observed sometimes in the
context of usage of Derby as the underlying database in IBM Security Directory
Integrator.

These are:

Schema 'SYSIBM' does not exist error

Chapter 12. System Store 201

Question

I'm trying to use Derby in networked mode and having issues. I've
figured out how to start it up and I'm able to query it with sysinfo
and testconnection, but when I run IBM Security Directory
Integrator and try to open the system store I get an error stating:
[com.ibm.db2.jcc.a.SQLException: Schema ’SYSIBM’ does not exist]

How do I fix this?

Explanation

The reason you get this error is because you are trying to boot a
database that was created in embedded mode into a networked
mode server without starting the server using the -ld flag. Note
that for a networked mode Derby server to open an embedded
mode database, the SYSIBM schema MUST be loaded. The SYSIBM
schema is a special schema loaded by the Derby server. The
SYSIBM contains stored prepared statements that return result sets
to determine metadata information.

Corrective action

To solve this problem start the Derby networked server with the
"-ld" flag, like:
./dbserver start -p 1527 -ld

Another Instance of Derby may already be booted
You may get the following error sometimes, especially when using
Derby in embedded mode:
[ERROR XSDB6: Another instance of Derby may have already booted the database D:\tdi60\Derby.]

Explanation

Derby try to prevent two instances of Derby from booting
the same database (in this case D:\tdi60\Derby). This can
happen if you are running two AssemblyLines which are
trying to update the same Derby database running in
embedded mode. This error might also crop up if you have
an unclosed connection to the database.

Corrective Action
If you want two AssemblyLines to update the same Derby
database, then the correct mode of Derby should be
networked mode; this mode of operation does not have
that limitation.

You can work around this by closing the database using
the Browse Server Stores option and then clicking on the
Close button. Even if the database is not open, just
opening and closing again through the Browse Server
Stores option help solve this problem.

Future versions of IBM Security Directory Integrator
attempt to handle this situation automatically, and stop
and start Derby as required.

Can I use DB2 as a system store?
In IBM Security Directory Integrator it is possible to use DB2 as a
system store, instead of the bundled Derby database system.
However, some modification of system properties files is required
for this to function correctly. You must replace the section on

202 IBM Security Directory Integrator: Installation and Administrator Guide

Derby networked mode with a section similar to the following
(insert the correct parameters for your installation).

If you look at the default global.properties file, there are some
CREATE_TABLE statements for using and setting up the system
store. If you use the right syntax, you can use non-Derby databases
as system store. Here is the DB2 syntax:
Location of the DB2 database (networked mode)
com.ibm.di.store.database=jdbc:db2://168.199.48.4:3700/tdidb
com.ibm.di.store.jdbc.driver=com.ibm.db2.jcc.DB2Driver
com.ibm.di.store.jdbc.urlprefix=jdbc:db2:
com.ibm.di.store.jdbc.user=db2inst1
com.ibm.di.store.jdbc.password=******
com.ibm.di.store.start.mode=automatic
com.ibm.di.store.port=3700
com.ibm.di.store.sysibm=true

the varchar(length) for the ID columns used in system store and PES Connector tables
com.ibm.di.store.varchar.length=512

create statements for DB2 system store tables
com.ibm.di.store.create.delta.systable=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH)
NOT NULL, SEQUENCEID int, VERSION int)

com.ibm.di.store.create.delta.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH)
NOT NULL, SEQUENCEID int, ENTRY BLOB)

com.ibm.di.store.create.property.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH)
NOT NULL, ENTRY BLOB)

com.ibm.di.store.create.sandbox.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH)
NOT NULL, ENTRY BLOB)

Note: Each com.ibm.di.store.create.xxx statement must be
specified on one line, even though they are broken up in this
example for illustration purposes.

Why can't remote connections be made to my Derby network server?
This may be because the Derby Server has been started by passing
"localhost" as the hostname. This disallows any remote connections
to be made to Derby. Stop the Derby server and start it with
hostname parameter specified as the computer's IP address. This
can be done by going to the Configuration Editor's Server System
Store Server Settings window (available from the context menu on
a server in the Servers view).

For more details, check http://db.apache.org/derby/docs/10.5/
adminguide/tadmincbdjhhfd.html

Chapter 12. System Store 203

204 IBM Security Directory Integrator: Installation and Administrator Guide

Chapter 13. Command-line options

Command-line options must have their value followed immediately after the
option. Do not use a space between the option and the value.

There are options for:
v “Configuration Editor”
v “Server” on page 206
v “Command Line Interface – tdisrvctl utility” on page 209

Configuration Editor
You can know more about Configuration Editor and the required properties using
the information provided here.

The CE is launched using the ibmditk wrapper script. This script invokes the
Eclipse launcher for IBM Security Directory Integrator (ce/eclipsece/miadmin)
with the proper settings for the Java VM and the IBM Security Directory Integrator
install location property, both of which are required to run the current CE.

The Eclipse launcher (ce/eclipsece/miadmin) is a standard Eclipse launcher that
takes command line parameters of its own. See Eclipse Command Line Options for
a complete description of the Eclipse command line options.
"%TDI_HOME_DIR%\ce\eclipsece\miadmin" -vm "%TDI_JAVA_BIN_DIR%\javaw"

-vmargs -Dcom.ibm.di.loader.IDILoader.path="%TDI_HOME_DIR%" %*

The above is a fragment of the ibmditk script showing the two required
parameters (eclipse command line parameters) that the CE needs.

Of notable interest is the "-data" command line option that specifies the location of
the workspace to use. If you are going to run multiple instances of the CE, you
have to specify a different workspace for each instance of the CE since the
workspace is locked by each instance. For example:
ibmditk –data c:/instance1_workspace

The above command launches the CE using c:/instance1_workspace as its
workspace location.

Shutdown Servers option

This is a command line option that attempts to stop all running servers that uses
the same installation directory as the CE. When this option is given on the
command line like this:
ibmditk -tdishutdown

then the CE will start and look at every defined server in the IBM Security
Directory Integrator servers project, filtering out those that do not use the same
installation directory as the CE and attempt to stop it. When this is done the CE
will exit the Java VM with an exit code of zero. There is no guarantee that the
servers the CE tried to stop actually did stop. Some servers may linger beyond the
time it takes the CE to complete this command and some servers may simply
refuse to stop for various reasons.

© Copyright IBM Corp. 2003, 2014 205

Perspective option

This is a command line option that instructs the CE to open in an alternative
perspective. Currently, the only perspective other than the default one is the Easy
ETL perspective, and the CE is started with it using the following option:
ibmditk -perspective com.ibm.tdi.rcp.perspective.etl

Server
You can learn to work on server using the information provided here.

The following command-line options are for the IBM Security Directory Integrator
server (ibmdisrv [options]):

Example:
ibmdisrv -c"C:\demos\rs.xml" -r"Access2LDAP" -l"c:\metamerge\mydemo.log"

Note:

1. There is no space between the option letter and the value. Use quotes to save
against possible spaces or commas in the values.

2. The Windows Shell executive allows a maximum of nine (9) arguments, from
the list below. There aren't any limitations on other platforms.

3. Do not use comma (,) in the configuration file name.

-s <dir>
Specifies the working directory where the solution is located; this directory
is known as the Solution Directory. All relative file references in IBM
Security Directory Integrator and in your Configs and so forth will be
relative to this location. Must be the first parameter specified.

If the specified directory does not exists, it will be created by the IBM
Security Directory Integrator server, and populated with a number of
properties files (based upon those in the installation directory) that you can
tailor to your needs. See Appendix A, “Example Property files,” on page
339 for more information.

-c <file...>
Configuration file(s). If you don't specify this option, the items in the
Autostart folder will be loaded and started (unless suppressed by
specifying -D). Wildcards, as in *.xml, are allowed too.

Note: Submitting multiple configuration files is only allowed if the -d
option is also specified.

-n <encoding>
Encoding to be used to write Config files. This must be a valid character
set identifier valid in Java2; refer to the IANA Charset Registry
(http://www.iana.org/assignments/character-sets) for the full list of
values. Note that Java2 only supports a subset of those.

-r <al...>
List of AssemblyLine names to start. To start AssemblyLine a and b, use
the command -r a b. Other syntaxes are supported as well: -ra,b; -ra -rb.

Note: If you use includes and namespaces, the AssemblyLine can be
myNamespace:/AssemblyLines/alName (assuming namespace
myNamespace and AssemblyLine name alName).

206 IBM Security Directory Integrator: Installation and Administrator Guide

-T<name>
Enable JLOG-style tracing to file trace<name>.log, in directory
<Tivoli_Common_Dir>/TDI/logs/. Default is trace to memory (from which it
can be retrieved by the traceback routines of JFFDC in case of an
unhandled exception.)

-D Flag to disable startup of items in the Autostart folder.

-w If -r (or -t) is specified then this flag causes IBM Security Directory
Integrator to wait for each AssemblyLine to complete before starting the
next. If this flag is not specified then IBM Security Directory Integrator
starts all AssemblyLines specified by the -r parameter in parallel. When the
last AssemblyLine has finished, the server stops.

-e Specifying this option causes the server to run in Secure mode. Using the
master password specific to this server, it will decrypt and encrypt all
Config files as well as the server API Registry.

-v Show version information and exit. This is logged in the log file only.

-P <password>
Password if configuration file(s) is/are encrypted.

-p Dump Java properties on startup. Note that you still must provide a
configuration file, which is read before Java properties are dumped.

-d Start a "daemon", or Config Instance on this system.

If you start with -d, you will start one anonymous instance (the daemon),
which will start one config instance for each config file specified on the
command line; this allows you to start multiple config instances on the fly.
You may specify 0 or more config files on the command line. It does not
make sense to specify any AssemblyLines to run in this mode, since it is
impossible to state which config file the AL will be in. You can autostart
AssemblyLines, though, since those belong to the config instance that
specifies the autostart.

If you start without -d, you will get one config instance that loads the
config file specified on the command line. You must specify exactly one
config file on the command line. (If you must use multiple config files,
they may be piped in on standard input.) In this mode, you can specify
any number of AssemblyLines to run. This is the traditional way of
running the server.

-q Takes 1 argument, mode. Mode=1 means run in record mode, mode=2
means run in playback mode.

-l <file>
Log file (default console output). Does very little as few messages go to the
console. To change the log file for most of the logging, change
log4j.properties.

-R Disables the Remote API, regardless of the setting in global.properties.

-W Start all Configs in the same thread; they do not terminate but wait forever.

-M Start AssemblyLines in simulation mode.

-S This option is for internal use for communication between the
Configuration Editor and a server only; it is used to pass Config Files
between them. Do not use this option yourself.

-f extProp1=file1, extProp2=file2
Where extProp is the name of the external Property Store. file specifies from

Chapter 13. Command-line options 207

where to read the properties. This option specifies a user-defined, external
Property Store that can be entered when starting an IBM Security Directory
Integrator server. This optional command-line parameter -f can be used
with the "ibmdisrv" server startup scripts. extProp is the name of the
external Property Store. file specifies from where to read the properties.
When the -f option is used to specify a properties file from the command
line, the server changes the Property Store configuration in memory only,
i.e. the server does not make this change permanent by changing the IBM
Security Directory Integrator Config file on disk - this change is valid for
the current run of the IBM Security Directory Integrator server.

If any property files are specified at the command line, they are valid only
for the Config Instances specified with the -c command-line option (which
are loaded on IBM Security Directory Integrator server startup). The
property files specified at the command line do not have any impact on
Config Instances which have not been explicitly named with the -c
command-line option (these can be Config Instances loaded by remote
server API client for example).

If a Property Store whose name is specified with the -f command-line
switch cannot be found in a Config Instance, an error message is logged in
the server log (ibmdi.log in the Install-directory). When a Property Store
name is specified more than once with the -f command-line switch then
there are two effects: (1) a warning message is logged, and (2) the file
specified last will take effect. This feature is implemented in the
com.ibm.di.server.RS Java class (referenced by way of the main variable
when scripting). After the reload() method is called, the MetamergeConfig
object is loaded, and for each Property Store specified on the command
line, the corresponding PropertyStoreConfig object is updated.

Note:

Although Copy/Paste of Config objects (ALs, Connectors, FCs, and so
forth) are fully supported. You can easily copy ALs and components and
then paste them into another Config. You can also exchange ALs and
components using IM chats, e-mails and text files, because the copy-buffer
is filled with the IBM Security Directory Integrator Config XML definition
of the selected item. This makes passing stuff around simple and easy, and
is a great tool for support and online assistance (for example,
ICT/NotesBuddy, forums, ...).

Note:
Make sure you select the entire <MetamergeConfig> node in your copy
command, including the start and end tags.

-i This option specifies that the IBM Security Directory Integrator server
ignores any properties from the global.properties file, and reads only the
solution.properties file. This option can be used when the
global.properties file is unreadable - for example, when the encoding the
IBM Security Directory Integrator server is started with is different from
the encoding of global.properties.

-? Prints a usage message, showing all options in brief.

-j <file>
This option is used to read regression information from the specified file,
and is compared with the details produced by the AssemblyLine. If there

208 IBM Security Directory Integrator: Installation and Administrator Guide

are variations, warning messages are written to the log file. This option is
useful only when running a single AssemblyLine.

-J<file>
This option is used to write the AssemblyLine regression information to
the specified file.

-k<file>
This option is used to ignore the work Entry when reading the regression
information.

Note:

1. If a property is used as a parameter for a Connector, Parser, or Function
Component, and that property does not exist in the property store, a warning
message is logged.

2. You can load a configuration file into the server without starting the
AssemblyLines. Warning messages are logged for the non-existing properties
that are used.

When IBM Security Directory Integrator ends it returns one of the following exit
codes:

0 No error. The operation has been successful.

1

v Cannot open log file (-l parameter)
v Cannot open Config file
v An AssemblyLine failed. Applicable only if the Server is run in

non-daemon mode, that is, without the "-d" option. For example:
"ibmdirsv -c rs.xml -r al" or "ibmdisrv -c rs.xml -r al1,al2,al3".

2 (Obsolete) Exit after auto-run. When you start IBM Security Directory
Integrator specifying -w, the Server runs the AssemblyLines specified by
the -r parameter and then exits.

Note: AssemblyLines run from the Configuration Editor are started in a
different way and will not exit with status 2.

9 (Obsolete) License expired or invalid.

Note: If the Server is shutdown by an administration request and a custom exit
code is specified, that custom code will be used as the exit code of the Server.

Command Line Interface – tdisrvctl utility
The Command Line Interface (CLI) to IBM Security Directory Integrator, called the
tdisrvctl utility, is designed for remotely managing Configs, AssemblyLines, and so
on.

This utility connects to a remote IBM Security Directory Integrator server using the
Remote Server API, and performs the requested operations. As it is a client
application interfacing to a Remote Server, it is subject to the same connection,
authentication and authorization issues described in Chapter 6, “Security,” on page
93.

It exposes various command line options for the following functions:
v Start, stop, or reload IBM Security Directory Integrator Configs.

Chapter 13. Command-line options 209

v Start or stop AssemblyLines in a particular config.
v Display a list of configs loaded on the server.
v Shutdown server.
v Display config report.
v Manage config properties through TDI-p, the IBM Security Directory Integrator

properties framework
v Send custom notification events.
v View exposed AL Operations.
v View tombstones for terminated Configs and AssemblyLines
v View IBM Security Directory Integrator Server details.

Note:

1. The command line utility is shipped in the TDI_install_dir/bin folder.
2. Remote Method Invocation (RMI) is enabled in the global.properties by default

(api.remote.on=true), with security enabled (api.remote.ssl.on=true). When
api.remote.ssl.on=true, the keystore and truststore general_options must be
included in the command. For example:
tdisrvctl.bat -h mytdiserver.com -p 1099 ..\serverapi\testadmin.jks -P administrator

-T ..\testserver.jks -W server -op srvinfo

If RMI security is disabled (api.remote.ssl.on=false), then the IP Address of
the client executing the tdisrvctl utility must be defined in the property
api.remote.nonssl.hosts. In this case, the tdisrvctl command can be issued
from the identified client without the keystore and truststore parameters. For
example:
tdisrvctl.bat -h mytdiserver.com -p 1099 -op srvinfo

3. The remote IBM Security Directory Integrator server must be running.

Command Line Reference
You can know more the usage of Command Line Reference using the information
provided here.

The command has the following usage:
tdisrvctl [general_options] –op operation [operation_specific_options]

where general_options can be:

-h host Enter the remote server IP address or hostname (default is
localhost).

-K keystore Enter the name of the SSL key database file.
-p port Enter the port number (default is 1099).
-P key_pwd Enter the key file password.
-s Specifiy the working directory where the solution directory is

located.
-T truststore Enter the name of the SSL truststore database file.
-u userID Enter the username (for custom authentication).
-v Run in verbose mode.
-w user_pwd Enter the user password (for custom authentication).
-W trust_pwd Enter the trust file password.
-? Display command usage.

And operation can be:

210 IBM Security Directory Integrator: Installation and Administrator Guide

event Send custom notification events
prop Manage Config properties
queryop Query for AssemblyLine (AL) operations
reload Reload running Configs
report Generate Config report or list Configs on remote server
shutdown Shutdown the server
srvinfo View IBM Security Directory Integrator server information
status View status of Configs or ALs
start Start specific Config or ALs
stop Stop specific Config or ALs
tombstone View tombstone entries for specific Config or AL.
deletetombstone delete a tombstone entry
debug debug components of a running AssemblyLine

You can display help for any particular option like this:
tdisrvctl –op operation -?

Operations
You can refer to the list of operations provided here.

event Use this option to send custom notification events to a particular server.
All listeners registered for the particular event receive this notification. This
allows IBM Security Directory Integrator administrators to trigger listener
applications based on planned custom events.

The usage for the event operation is:

tdisrvctl [general_options] -op event -e event_name [-s source] [-d data]

where:

-e event_name The name of the event to send.
-s source The name of the source invoking the event (default "tdisrvctl").
-d data The data to be passed to an event listener (default is null).

Example:

To send an event "user.process.X.completed" from "admin".
tdisrvctl -h itditest -op event -e "process.X.completed" -s admin -d "Admin triggered event"

Note: All events sent from tdisrvctl using the -e option are prefixed by
"user."

prop The "prop" option exposes the properties of a config via the TDI-p. It
allows the user to get / set / view the properties of a particular config.

The usage for the prop operation is:

tdisrvctl [general_options] -op prop -c config_name
[[-l] |
[-o property_store]
[-g key | all] |
[-s key=value] [-e] |
[-d key]]

where:

-c config_name Name the config to work with.
-l List all the property stores configured.

Chapter 13. Command-line options 211

-o property_store Name the property store to work with.
-g key Get the value of the specified key (or keyword 'all' implying get

all keys).
-s key=value Set the "key" to the specified "value."
-e Encrypt the value when putting in the store (can be used with -s

option only).
-d key Delete the specified "key" from the store.

Note:

1. The '-l', '-g', '-s', '-d' options are mutually exclusive, and cannot be used
together.

2. The '-e' option can only be used with the '-s' option.
3. Managing properties stored in the password store is NOT supported.
4. While specifying the "-c" option specify the COMPLETE configuration

file path on the remote server, or give a path relative to the "configs"
folder. To see the relative paths use the "report" option of tdisrvctl:
tdisrvctl -op report -l

Examples:

To see a list of all the property stores for config C1.xml
tdisrvctl -op prop -c C1.xml -l

To get a list of all the properties for config C1.xml
tdisrvctl -op prop -c C1.xml -g all

To get a list of all the properties for config C1.xml from store MyStore
tdisrvctl -op prop -c C1.xml -o MyStore -g all

To set a property MY_PROP to value MY_VALUE for config C1.xml in
store MyStore and mark it as protected:
tdisrvctl -op prop -c C1.xml -o MyStore -s MY_PROP=MY_VALUE -e

queryop
The queryop option returns the list of AL operations exposed in an
AssemblyLine.

This option is useful in a scripting environment. An IBM Security Directory
Integrator solution developer can develop a script to automatically query
for exposed operations and then use the result to start an AssemblyLine
with a specific operation using the start operation's -r -alop flag. The
output of this operation is such that it can be grepped for or tokenized
easily in a scripted environment.

The usage for the queryop operation is:
tdisrvctl [general_options] -op queryop -c <configFile> -r <ALname>

where

configFile Config file name
ALName Name of the AssemblyLine

Output:
ALOp:{attr_1;attr_2...attr_n;}

212 IBM Security Directory Integrator: Installation and Administrator Guide

Note: While specifying the "-c" option specify the COMPLETE
configuration file path on the remote server, or give a path relative to the
"configs" folder. To see the relative paths use the "report" option of
tdisrvctl:
tdisrvctl -op report -l

Examples:

To query for operations exposed in an AL:
tdisrvctl -h itditest -T trust.kdb
-W secret -op queryop
-c examples/ADCustomConnector.xml
-r ADAssemblyLine

Example Output:
$initialize: {ldapurl;loginPasswd;loginUserName}

reload This option can be used to reload running Configs on a particular server.

The usage for reload operation is:
tdisrvctl [general_options] -op reload -c [config_list]

where:

config_list Comma separated list of Configs to reload.

Note: While specifying the "-c" option specify the COMPLETE
configuration file path on the remote server, or give a path relative to the
"configs" folder. To see the relative paths use the "report" option of
tdisrvctl:
tdisrvctl -op report -l

Example:

To reload Configs C1.xml, C2.xml and C3.xml on remote host itditest:
tdisrvctl -h itditest -T trust.jks -W secret -op reload -c C1.xml,C2.xml,C3.xml

report This option can be used for generating a report for a particular config or
for listing the configs available on the remote server's config folder.

The config report lists details of the particular config. The details are
AssemblyLines, Connectors and Parsers in each AssemblyLine, Connector
library, Parser library, Script library, Function Library. This option gives a
one shot view of all the details of a particular config.

The config listing option helps the user in finding out the list of configs
available on the remote server and what their exact names are. Of course,
only those configs can be seen that are in the "config" folder of the remote
server (see global.properties file for property api.config.folder). This
command cannot obtain list of configs located "anywhere" on the system.

The usage for the report operation is:
tdisrvctl [general_options] -op report [-c config | -l]

where:

-c config Name of the Config whose report is to be generated.
-l The Configs in the remote server's config folder.

The displayed details for each connector or function component part of an
AssemblyLine look like this:

Chapter 13. Command-line options 213

Name : count
Mode : Iterator
State : Enabled
Debug : Disabled
Template : system:/Connectors/ibmdi.Timer
Parser : [parent]
Comment : None

Note:

1. The specified config must be already loaded on the remote server.
2. Only one of the '-c' or '-l' option is allowed. Not both.
3. While specifying the "-c" option specify the COMPLETE configuration

file path on the remote server, or give a path relative to the "configs"
folder.

4. The argument to the -c option is case-sensitive, and must match the
name of the config file exactly as known by the server instance,
reported by for example "tdisrvctl -op status".

Examples:

To get a complete listing of the details of C1.xml on remote server:
tdisrvctl -h remoteserver -op report -c C1.xml

To get a list of the configs available in the "config" folder of the remote
server:
tdisrvctl -h remoteserver -op report -l

shutdown
This option can be used to shutdown the IBM Security Directory Integrator
server.

The format for this command is:
tdisrvctl [general_options] -op shutdown [-o return_code] [-f]

where:

-o return_code The return code with which the remote IBM Security Directory
Integrator server should exit.

-f Force a controlled shutdown and exit all AssemblyLines.

Examples:

To shutdown the local IBM Security Directory Integrator server:
tdisrvctl -op shutdown

To shutdown the local IBM Security Directory Integrator server, with a
controlled shutdown of all AssemblyLines:
tdisrvctl -op shutdown -f

To shutdown the server running on remote host itditest which is
configured for SSL (server-auth only)
tdisrvctl -h itditest -T trust.kdb -W secret -op shutdown

srvinfo
This option is used to display the information of an IBM Security Directory
Integrator server.

The usage of the command is:
tdisrvctl [general_options] -op srvinfo

Example:

214 IBM Security Directory Integrator: Installation and Administrator Guide

To view the server information for an IBM Security Directory Integrator
server running on localhost
tdisrvctl -h localhost -op srvInfo

status This option can be used to view status of AssemblyLines.

The usage for status operation is:

tdisrvctl [general_options] -op status -c [config_list | all]
-r [AL_list | all]

-listen

where:

config_list Comma-separated list of Configs or keyword "all".
AL_list Comma-separated list of ALs or keyword "all".
-listen indicates to start receiving the logs of a running Config or

AssemblyLine.

Note:

1. At least one of the options ('-c' or '-r') must be specified. -
2. The keyword "all" indicates all configs or AssemblyLines.
3. The -listen option requires exactly one Config or AssemblyLine to be

specified.
4. While specifying the "-c" option specify the COMPLETE configuration

file path on the remote server, or give a path relative to the "configs"
folder. To see the relative paths use the "report" option of tdisrvctl:
tdisrvctl -op report -l

Examples:

To see the status of all configs and ALs:
tdisrvctl [general_options] -op status -c all -r all

You can also write
tdisrvctl [general_options] -op status

To see the status of AL1, AL2:
tdisrvctl -h itditest -op status -c c1.xml -r AL1,AL2

Output:
(Component Type # Component Name # RUNNING / STOPPED # Statistics):
1 # AL1 # RUNNING # [get:571] [add:571] [del:3] [requests:2333]....
1 # AL2 # STOPPED #

The Component Types are:
v 0 for Config
v 1 for Assembly line

The Statistics contain the following details (valid for AssemblyLines only):
v Attribute "add" - total number of "add" operations performed
v Attribute "mod" - total number of "modify" operations performed
v Attribute "del" - total number of "delete" operations performed
v Attribute "get" - total number of "getNext" (Iterations®) performed
v Attribute "request" - total number of requests accepted when there is a

Server mode Connector in the AssemblyLine.

Chapter 13. Command-line options 215

v Attribute "callReply" - total number of "callReply" operations performed
v Attribute "err" - total number of errors encountered
v Attribute "skip" - total number of 'skip' operations performed
v Attribute "lookup" - total number of "lookup" operations performed
v Attribute "ignore" - total number of "ignore" operations performed
v Attribute "reconnect" - total number of "reconnect" operations performed
v Attribute "exception" - the exception text if the component terminated

with an exception

To see the details of Configs (running and stopped) on a particular server:
tdisrvctl -h itditest -op status -c all

To see the details of a running AssemblyLine on a particular server and
start receiving its logs:
tdisrvctl -h itditest -op status -c rs.xml -r al1 -listen

start This option can be used to start a config or AssemblyLines.

The usage for the start operation is:

tdisrvctl [general_options] -op start -c [config]
-e [password]

-r [AL_list | all] -alop <alop_Name> [{requiredAttr_1;
requiredAttr_2; ... requiredAttr_n}] | [-f filename]

-s [Simulate mode]
-m [run name] -o [propStore1=filename1,propStore2=filename2...]
-t [temp config instance]
-listen
-sync

where

-c config Name of config to start.
-e password Password of config file if it is encrypted.
-r AL_list Comma-separated list of ALs to start or keyword 'all'.
-o property file list comma separated list of property store names and values
-alop operName The specific AL operation and list of list required attributes for

the specified operation.
-f filename Name of the file where the input attributes and their values are

configured for the operation.
-s Simulate mode Run the specified AssemblyLines in simulate mode
-m multi-instance Run multiple instances of same Config with different run names
-t temp config instance Start temp config instance from the XML in the config file

specified
-listen receive the logs of the specified Config or AssemblyLine
-sync execute AssemblyLine synchronously

Note:

1. The '-c' option is mandatory. -
2. The keyword "all" indicates all AssemblyLines.
3. Required attributes list is mandatory with -alop option.
4. -alop option cannot be used with -r all option. It works only with a

specific AL.

216 IBM Security Directory Integrator: Installation and Administrator Guide

5. When running a temp config with solution or run name it is not
possible to check if another config with the same name is already
running on the server. If this happens an exception will occur. You
could check the running config instances using the status command.

6. The -t option expects the Config specified in the -c option to be
located on the client machine.

7. If the -t option is used and the config specified in the -c option is
relative then it will be searched in the current folder.

8. The -listen option requires exactly one Config or AssemblyLine to be
specified.

9. The -listen option executes an AssemblyLine synchronously. There is
no need to combine it with the -sync option.

10. The -sync option requires exactly one AssemblyLine to be specified.

Examples:
1. To start assembly line AL1 and AL2 of config C1 on remote server

itditest:
tdisrvctl -h itditest -T trust.kdb -W secret -op start -c C1.xml -r AL1,Al2

The -r option requires that -c option should also be specified. This is
because the AssemblyLines mentioned in the command must belong to
one of the Configs in the -c option.

2. To start assembly line AL1 on remote server itditest with AL
operation:
tdisrvctl -h itditest -T trust.kdb -W secret -op start
-c examples/ADCustomConnector.xml
-r ADAssemblyLine
-alop $initialize {ldapurl:ldap://9.182.190.149:390;loginPasswd:password;loginUsrname:cn=root}

3. To start AssemblyLine AL1 on remote server itditest with AL
operation update:
tdisrvctl -h itditest -T trust.kdb -W secret -op start
-c examples/ADCustomConnector.xml -r ADAssemblyLine
-alop search {$init.ldapurl:ldap://9.182.190.149:390;$init.loginPasswd:password;

$init.loginUsrname:cn=root;searchBase:o=ibm,c=us}

Note: All initialization attributes are to be prefixed with $init.
4.

tdisrvctl -h itditest -T trust.kdb -W secret -op start -c examples/ADCustomConnector.xml
-r ADAssemblyLine -alop search -f inputFile

Input file format:
============
Key1:value1
Key2:value2

5. Command to run an AssemblyLine AL1 in simulate mode:
tdisrvctl -h itditest -T trust.kdb -W secret -op start -c examples/ADCustomConnector.xml -r AL1 -s

6. Command to load multiple config instances:
tdisrvctl -op start -c C1.xml -m test -f PropertyStorename=TestProp.properties,

PropStore2=propfile2 ... -r AL1,AL2

7. Command to run temp config instance:
tdisrvctl -op start -c C1.xml -t -r AL1

8. Command to start a config on a particular server and receive its logs:
tdisrvctl -h itditest -op start -c rs.xml -listen

9. Command to start an AssemblyLine on a particular server and receive
its logs:
tdisrvctl -h itditest -op start -c rs.xml -r AL1 -listen

Chapter 13. Command-line options 217

10. Command to execute an assembly line synchronously on a particular
server:
tdisrvctl -h itditest -op start -c rs.xml -r AL1 -sync

stop The usage for the stop operation is:

tdisrvctl [general_options] -op stop -c [config]
-r [AL_list | all]

where:

-c config Name of Config.
-r AL_list Comma-separated list of ALs to stop or keyword "all."
-f Force a controlled shutdown of AssemblyLines.

Note:

1. The '-c' option is mandatory.
2. While specifying the "-c" option specify the COMPLETE configuration

file path on the remote server, or give a path relative to the "configs"
folder. To see the relative paths use the "report" option of tdisrvctl:
tdisrvctl -op report -l

3. The keyword "all"' indicates all AssemblyLines.
4. The -r option requires that -c option should also be specified. This is

because the AssemblyLines mentioned in the command must belong to
one of the Configs in the -c option.

5. The -f option is optional.
6. The argument to the -c option is case-sensitive, and must match the

name of the config file exactly as known by the server instance,
reported by for example "tdisrvctl -op status".

Example:

To stop assembly line AL1 and AL2, of Config C1 on remote server itditest:
tdisrvctl -h itditest -T trust.jks -W secret -op stop -c C1.xml -r AL1,Al2

tombstone
This option can be used to view tombstone details of previously run
Configs, AssemblyLines and EventHandlers (historical).

The usage for the tombstone operation is:

tdisrvctl [general_options] -op tombstone -c [config]
[-r [AL_name]]

[-age n]
[[attribute_list] | all]

where:

-age n Tombstone record for the last 'n' days (default is 1 day).
-c config Name of Config.
-r AL_name Name of AssemblyLine.
all Tombstone attributes: show all.

attribute_list:

-ct Component type.
-cn Component name.

218 IBM Security Directory Integrator: Installation and Administrator Guide

-guid Tombstone entry's guid
-et Event type.
-ex Exit code.
-stime Component's start time.
-ctime Tombstone create time.
-desc Error description.
-um User message.
-stat Statistics (valid for ALs only).

Note:

1. The '-c' option is mandatory.
2. While specifying the "-c" option specify the COMPLETE configuration

file path on the remote server, or give a path relative to the "configs"
folder. To see the relative paths use the "report" option of tdisrvctl:
tdisrvctl -op report -l

3. The argument to the -c option is case-sensitive, and must match the
name of the config file exactly as known by the server instance,
reported by for example "tdisrvctl -op status".

Examples:
1. To see the last 2 days tombstone entries (all attributes) for config

C1.xml
tdisrvctl [general_options] -op tombstone -c C1.xml -age 2 all

2. To see tombstone entries for config C1 for the past 3 days:
tdisrvctl -h itdiserver -op tombstone -c C1 -age 3 all

3. To see tombstone entries for config C1 for the last 24 hours (specific
attributes):
tdisrvctl -h itdiserver -op tombstone -c C1 -ct -ctime -cn -um

4. To see the tombstone entry for AL1 of "rs.xml"
tdisrvctl -h itdiserver -op tombstone -c C1 -r AL1

deletetombstone
This option can be used to delete tombstone entries for previously run
AssemblyLines.

The usage for the delete tombstone operation is:

tdisrvctl [general_options] -op deletetombstone -guid <GUID number>

where

-guid "GUID number" is the unique identifier for the tombstone to be
deleted. The GUID for a tombstone can be obtained by viewing the
contents of the tombstone; see the entry about the tombstone option for
details as to how to obtain the GUID.

debug This option can be used to set the Debug mode values of connectors and
function components of a running AssemblyLine. When you set the Debug
mode of a connector with specified parser, the Debug mode of the parser is
also initialized with the same value.

The usage for the debug operation is as follows:

tdisrvctl [general_options] -op debug -c config
-r assembly_line
[-alc al_component]
-on/off

Chapter 13. Command-line options 219

where:

-c config Name of Config.
-r assembly_line Name of AssemblyLine.
-alc al_component name of the AssemblyLine component.
-on flag to enable debug.
-off flag to disable debug.

Note:

1. The '-c' and '-r' options are mandatory and require exactly one
Config/AssemblyLine to be specified.

2. While specifying the "-c" option specify the COMPLETE configuration
file path on the remote server, or give a path relative to the "configs"
folder. To see the relative paths use the "report" option of tdisrvctl:
tdisrvctl -op report -l

3. The argument to the -c option is case-sensitive, and must match the
name of the config file exactly as known by the server instance,
reported by for example "tdisrvctl -op status".

4. If the -alc option is not specified all components in the specified
AssemblyLine will be affected.

Examples:
1. To view the Debug mode value of the components in the

AssemblyLines of a specified Config:
tdisrvctl -op report -c C1

2. To enable the debug mode for all components in the running
AssemblyLine al2:
tdisrvctl -op debug -c C1-r al2 -on C1-r al2 -on

3. To disable the debug mode for specified components in the running
AssemblyLine al3:
tdisrvctl -op debug -c C1-r al3 -alc comp1,comp2 -off

Other points to note
v If the user specifies the -T option or the -K option, it means the command line

utility must use SSL.
v If no -h (host) option is specified, the command line interface searches for the

environment variable TDI_RSRV. If TDI_RSRV is not set or empty, then it uses
"localhost" as default. This is also the case for the -p (port) option: if -p is not
specified then it searches for TDI_RPORT, and if that is not specified either, it
uses the default of "1099".

v The tdisrvctl command will return an exit code of zero if the operation is
successful and non-zero if the operation fails. Possible reasons for operation
failure are:
– A connection cannot be established to the remote Server.
– The remote Server reported an error (probably related to the operation that

was executed).
– An AssemblyLine, which is executed synchronously, failed (see the "-sync"

option of the "start" operation).
v The tdisrvctl command line utility will use Log4J logging APIs for logging error

messages. The Log4J configuration file is specified in the startup script (the .bat
or .sh) file. The command uses a file called tdisrvctl-log4j.properties to set
up the Log4J logging. If the solution directory is specified the command sets an
environment variable for pointing to the log configuration file in the solution

220 IBM Security Directory Integrator: Installation and Administrator Guide

directory. If the solution directory is not specified then the command uses the
log configuration file present in the install directory.

v The tdisrvctl-log4j.properties file has the complete path of location where
the logs are to be created. The log files are created in the TDI_install_dir/logs
directory by default. The location can be customized as needed.

v All reported error and warning messages are displayed with an error code
prefix. This error code can be used to search the Messages for an explanation of
the error message and operator response.

Chapter 13. Command-line options 221

222 IBM Security Directory Integrator: Installation and Administrator Guide

Chapter 14. Logging and debugging

You can know more about Logging and debugging and its working using the
information provided here.

IBM Security Directory Integrator uses a logging class to record messages to a
number of various log channels. All IBM Security Directory Integrator components
use this logging class which in turn invokes an industry standard logging tool
(Log4J). While Log4J provides a variety of output channels and formats, there are
other logging utilities with overlapping and additional output channels that you as
an IBM Security Directory Integrator user may need. Many of these are open
source libraries that are not bundled with IBM Security Directory Integrator. To
enable inclusion of these 3rd party logging utilities, the IBM Security Directory
Integrator logging component is modeled to act as a proxy between IBM Security
Directory Integrator and the actual logging implementations, called LogInterface
implementations. Refer to the section "Creating additional Loggers" in Reference
section of for more information on how to create, configure and program your own
LogInterface classes.

Note: Enable or disable logging in IBM Security Directory Integrator by
configuring the com.ibm.di.logging.enabled property. To enable logging, use
com.ibm.di.logging.enabled=true (default). To completely disable logging, use
com.ibm.di.logging.enabled=false.

The remainder of this section describes how to use the logging class that is
bundled with IBM Security Directory Integrator, called com.ibm.di.log.TDILog4J.

Logging and debugging by the system is mainly done through the Task object (the
current AssemblyLine). Logging can either be done explicitly (in script) or done by
the various components themselves.

The Log4J logging engine is a very flexible framework that lets you log to file,
eventlog, and syslog. Logging can be tuned so it suits most needs. It can be a great
help when you want to troubleshoot or debug your solution. By means of the
aforementioned logging class, IBM Security Directory Integrator has additional
tracing facilities (discussed in Chapter 15, “Tracing and FFDC,” on page 233),
though in most cases, the logging functionality described here suffice.

IBM Security Directory Integrator components may have specific troubleshooting
guidelines; for more information, always check the particular component's section
in the Reference and Troubleshooting and Support sections of the IBM Knowledge
Center for IBM Security Directory Integrator.

The log scheme for the server (ibmdisrv) is described by the file Log4J.properties
and elements of the Config file, see “Log4J default parameters” on page 229.

Note: Any of the aforementioned properties files can be located in the Solution
Directory, in which case the properties listed in these files override the values in
the file in the installation directory.

You can create your own appenders to be used by the Log4J logging engine by
defining them in the Log4J.properties file. You can use drivers built-in to Log4J
like the default one, which is defined with the statement:

© Copyright IBM Corp. 2003, 2014 223

http://www-01.ibm.com/support/knowledgecenter/SSCQGF/welcome
http://www-01.ibm.com/support/knowledgecenter/SSCQGF/welcome

Log4J.appender.Default=org.apache.Log4J.FileAppender

The phrase org.apache.Log4J.FileAppender defines this appender to use the
FileAppender class. Additional Log4J compliant drivers are available on the
Internet, for example drivers that can log using JMS or JDBC. In order to use those,
they need to be installed into the IBM Security Directory Integrator installation
jars directory after which appenders can be defined using those additional drivers
in Log4J.properties. For more information, refer to http://jakarta.apache.org/
log4j/docs.

In addition to the IBM Security Directory Integrator built-in logging, you can log
by adding script code in your AssemblyLine. This is described in much more detail
in the Configuring section of the IBM Knowledge Center for IBM Security Directory
Integrator, in which you also find out how the interactive debugger works.

Script-based logging
You can issue messages to the AssemblyLine's configured loggers at any time
using JavaScript, at any point where scripting is possible (hooks, script
components, and so on.)

The explicit logmsg() calls available to you (that is, task.logmsg() &
main.logmsg()) can have an optional string parameter indicating the Log4J level at
which the messages are to be logged. Default is INFO. If the log-level given by the
user is invalid for Log4J, the message is logged at DEBUG level. Levels include
DEBUG, INFO, WARN, ERROR, FATAL.

If you use
task.logmsg()

your messages will be logged along with the other messages from the
AssemblyLine. If you are running your AssemblyLine from the Configuration
Editor, that will be in the CE output window. If your AssemblyLine also uses other
logging methods, the messages will be there too.

When you use
main.logmsg()

your message will be logged along with other messages from the Config Instance.
This will be in the log file(s) or other loggers created by the Config Instance, which
are typically not seen in the Configuration Editor.

Logging using the default Log4J class
You can know more about logging using the default Log4J class using the
information provided here.

Configuring the default logging of IBM Security Directory Integrator, which uses
Apache Log4J is done globally (using the file Log4J.properties which specifies
global defaults for Server tasks) or specifically, using the Configuration Editor, for
each AssemblyLine or Config File as a whole. To provide this level of flexibility
and customization, the Java Log4J API is used.

Only the parameters that describe how messages are logged are described here.

224 IBM Security Directory Integrator: Installation and Administrator Guide

http://www-01.ibm.com/support/knowledgecenter/SSCQGF/welcome
http://www-01.ibm.com/support/knowledgecenter/SSCQGF/welcome

All log configuration windows operate in the same way: For each one you can set
up one or more log schemes. These are active at the same time, in addition to
whatever defaults are set in the Log4J.properties file; see “Log4J default
parameters” on page 229.

Many (but not all) loggers support a Character Encoding option, to control what
character set the log files are written in. There are many different character sets; for
an informal overview check http://download.oracle.com/javase/6/docs/
technotes/guides/intl/encoding.doc.html.

The possible log schemes are as follows:

FileRollerAppender
Sometimes, you want to log to file but keep a limited number of files, as
they can fill your disks. FileRollerAppender generates a new file for each
run of the Server. The system saves only the specified number of previous
logs. If your log is called mylog.txt, and you ask for 2 generations, then
after 3 runs you have a mylog.txt (last run) as well as the files mylog.txt.1
and mylog.txt.2, where mylog.txt.2 is the oldest log. From this point, you
do not get more files, only newer versions with the same name. Keep two
generations of backup files.

FileRollerAppender has the following parameters:

File Path
The name of the file to log to. The path is relative to where you
installed IBM Security Directory Integrator The special macro {0}
used in filenames is replaced by the name of the Server. Similarly,
{1} used in filenames is replaced by a unique identifier generated
by the system for you. The {1} macro has no relevance for the
special case where you use FileRollerAppender, but is important
where you want unique file names.

Number of backup files
If your File Path was mylog.txt, and you select 2 backup-files, the
two previous runs have their files renamed to mylog.txt.1 and
mylog.txt.2 when you run a third time.

Layout
Determines the format of the log message. Options are:
v Pattern (used if you want to customize the way the messages are

logged)
v Simple (format containing just the loglevel and the message)
v HTML (creates an HTML file containing some (relative) time

info, thread info, loglevel, category, and message)
v XML (similar to HTML, but generates an XML file (using

namespace-prefix Log4J))

Pattern
Only used when Layout is Pattern. See “Creating your own log
strategies” on page 230.

Log level
Severity level of the log messages. Options are (from maximum to
minimum information):
v DEBUG
v INFO
v WARN

Chapter 14. Logging and debugging 225

v ERROR
v FATAL

Character Encoding
Character Encoding to be used; like Cp1252, ISO-8859-1, and so on.

Log Enabled
Click to enable the use of this Appender.

ConsoleAppender
Logs to the console (standard output). This is in the window where you
started the server (ibmdisrv) or the execute task-window in the
Configuration Editor (ibmditk). Console has the following parameters:

Layout
See FileRollerAppender, previous.

Pattern
See FileRollerAppender, previous.

Log level
See FileRollerAppender, previous.

Log Enabled
See FileRollerAppender, previous.

FileAppender
Logs to a file. File has the following parameters:

File Path
See FileRollerAppender, previous.

Append to file
Click to append log information to file. If option is not enabled, the
file is overwritten.

Layout
See FileRollerAppender, previous.

Pattern
See FileRollerAppender, previous.

Log level
See FileRollerAppender, previous.

Character Encoding
Character Encoding to be used; like Cp1252, ISO-8859-1, and so on.

Log Enabled
See FileRollerAppender, previous.

This is the appender set up by default; see “Log4J default parameters” on
page 229.

SyslogAppender
Enables IBM Security Directory Integrator to log on UNIX Syslog. Syslog
has the following parameters:

Host name/IP Address
Host to log on to.

Syslog Facility
Legal facilities found in the drop-down. Must be supported by the
host you are logging to.

226 IBM Security Directory Integrator: Installation and Administrator Guide

Print Facility String
If set, the printed message includes the facility name of the
application.

Layout
See FileRollerAppender, previous.

Pattern
See FileRollerAppender, previous.

Log level
See FileRollerAppender, previous.

Log Enabled
See FileRollerAppender, previous.

NTEventLog
Enables applications to log to the Windows NT Event Log (on Windows
platforms). NTEventLog has the following parameters:

Source
The "source" name appearing in the NT event log; usually the title
of the application doing the logging.

Layout
See FileRollerAppender, previous.

Pattern
See FileRollerAppender, previous.

Log level
See FileRollerAppender, previous.

Log Enabled
See FileRollerAppender, previous.

DailyRollingFileAppender
The daily rolling file appender rotates the log file every day. When the
output file is rolled it is given a name consisting of the base name plus a
date pattern string; that is, filename.yyyy-mm-dd. It usually is used with
the Append to file parameter set to true. DailyRollingFile has the
following parameters:

File Path
See FileRollerAppender, previous.

Append to file
Create new file or append to existing file, depending on whether
this is checked. You usually want this on when using the
DailyRollingFile.

Date Pattern
How often the file is rotated. Use the drop-down to choose
resolution from minutes to months. For example, if the File Path is
set to example.log and the DatePattern set to ’.’yyyy-MM-dd, on
2003-10-31 at midnight, the logging file example.log is copied to
example.log.2003-10-31. Logging for 2003-11-01 continues in
example.log until it rolls over the next day.

Layout
See FileRollerAppender, previous.

Pattern
See FileRollerAppender, previous.

Chapter 14. Logging and debugging 227

Log level
See FileRollerAppender, previous.

Character Encoding
Character Encoding to be used; like Cp1252, ISO-8859-1, and so on.

Log Enabled
See FileRollerAppender, previous.

Also see the example under “Logging using the default Log4J class” on
page 224.

SystemLogAppender
This Appender creates log files in a catalog hierarchy under
TDI_install_dir/system_logs. For each Config File, there is a
corresponding directory with logfiles named AL_xxx, where xxx is the
name of the AssemblyLine being run.

This Appender has the following parameters:

Pattern
Specifies the format of the log as defined by LOG4J. The default
value is:
"%d{ISO8601} %-5p [%c] - %m%n"

Additional values available in the field are:
"%d{HH:mm:ss} %p [%t] - %m%n"
"%p [%t] %c %d{HH:mm:ss,SSS} - %m%n"

Log level
See FileRollerAppender, previous.

Character Encoding
Character Encoding to be used; like Cp1252, ISO-8859-1, and so on.

Log Enabled
See FileRollerAppender, previous.

Log Levels and Log Level control
You can refer to the log levels listed here.

Log levels can be
v ALL
v DEBUG
v INFO
v WARN
v ERROR
v FATAL
v OFF

ALL logs everything. DEBUG, INFO, WARN, ERROR and FATAL have increasing
levels of message filtration. Nothing is logged on OFF.

You can issue log messages to the system or AssemblyLine logs by using the
logmsg() method from JavaScript, wherever IBM Security Directory Integrator
allows scripting. It can take one or two parameters. See the Java API
documentation for the logmsg() declaration (package com.ibm.di.server, class
AssemblyLine or class RS).

228 IBM Security Directory Integrator: Installation and Administrator Guide

The interface for the logmsg() method (both main and task) with additional log
level parameter is logmsg (String logLevel, String msg). The legal values for
logLevel are: "FATAL", "ERROR", "WARN", "INFO", "DEBUG", corresponding to
the log levels available for log Appenders. Any unrecognized value is treated as
"DEBUG".

Note that the IBM Security Directory Integrator logmsg() JavaScript calls log on
INFO level by default. This means that setting loglevel to WARN or lower silences
your logmsg as well as all Detailed Log settings. However, with the level
parameter to the logmsg() call you can override the log level for individual
logmsg() calls.

Log4J default parameters
You can refer to the default configuration for changing the content.

When IBM Security Directory Integrator is installed, a FileAppender is used for the
default logger. If you want to change the default logger you must change the
content of the log4j.properties file situated in the TDI_installdir/etc folder. The
default configuration is as follows:
This is the default logger, you will see that it logs to ibmdi.log
log4j.appender.Default=org.apache.log4j.FileAppender
log4j.appender.Default.file=logs/ibmdi.log
log4j.appender.Default.layout=org.apache.log4j.PatternLayout
log4j.appender.Default.layout.ConversionPattern=%d{ISO8601} %-5p [%c] - %m%n
log4j.appender.Default.append=false

The FileAppender logger truncates the content of the ibmdi.log file (situated in
TDI_installdir/logs) each time the IBM Security Directory Integrator server is
started. If want to change that behavior you must change the
log4j.appender.Default.append property to true.

In the log4j.properties file you can find also two examples for changing the default
logger to RollingFileAppender or DailyRollingFileAppender. If you want to use
them just uncomment the preferred one and comment the FileAppender logger:
##########ROLLING FILE SIZE APPENDER
##RollingFileAppender rolls over log files when they reach a certain size specified by the
##MaxFileSize parameter

#log4j.appender.Default=org.apache.log4j.RollingFileAppender
#log4j.appender.Default.File=logs/ibmdi.log
#log4j.appender.Default.Append=true
#log4j.appender.Default.MaxFileSize=10MB
#log4j.appender.Default.MaxBackupIndex=10
#log4j.appender.Default.layout=org.apache.log4j.PatternLayout
#log4j.appender.Default.layout.ConversionPattern=%d{ISO8601} %-5p [%c] - %m%n

##########DAILY OUTPUT LOG4J SETTINGS
With the DailyRollingFileAppender the underlying file is rolled over at a user chosen frequency.
##The rolling schedule is specified by the DatePattern option

#log4j.appender.Default=org.apache.log4j.DailyRollingFileAppender
#log4j.appender.Default.file=logs/ibmdi.log
#log4j.appender.Default.DatePattern=’.’yyyy-MM-dd
#log4j.appender.Default.layout=org.apache.log4j.PatternLayout
#log4j.appender.Default.layout.ConversionPattern=%d{ISO8601} %-5p [%c] - %m%n

These are some of the parameters you find in the file Log4J.properties (for
ibmdisrv and ibmditk).

Full documentation can be found at http://jakarta.apache.org/log4j/docs.

Log4J.rootCategory=DEBUG, Default
DEBUG is the loglevel for the named Appender (Log4J term called

Chapter 14. Logging and debugging 229

Default). If you set the loglevel to OFF or to the level above INFO, you do
not get output from your script logmessages (see the following log terms):

Log4J.appender.Default
Defines what type of Appender the named appender Default is. It can be
one of the following:
v FileRollerAppender (generates a new file for each run of the Server)
v ConsoleAppender (log to console)
v FileAppender (log to file)
v SyslogAppender (log to UNIX Syslog)
v NTEventLog (log to Windows NT EventLog)
v DailyRollingFileAppender (saves old files with a datestamp in their

names)
v SystemLogAppender (In a folder structure under root_directory/

system_logs)

Log4J.appender.Default.file
Default log file for FileAppender, relative to your installation directory
(default ibmdi.log).

Log4J.logger.com.ibm.di.*
Log level of various IBM Security Directory Integrator components. Note
that, for example, ibmditk shows the log level of the IBM Security
Directory Integrator Configuration Editor itself (not the processes you are
running inside it). Do not change these.

Creating your own log strategies
You can use this framework to differentiate how the different AssemblyLines log.

You can use this framework to differentiate how the different AssemblyLines log.

Note: This information is intended for users who want to continue using the
global.properties file to customize logging output. You can customize logging
output through the Configuration Editor (ibmditk).

The following section defines a log scheme called CONSOLE, which later can be
used by specific AssemblyLines:
Log4J.appender.CONSOLE=org.apache.Log4J.ConsoleAppender
Log4J.appender.CONSOLE.layout=org.apache.Log4J.PatternLayout
Log4J.appender.CONSOLE.layout.ConversionPattern=%d [%t] %-5p - %m%n0

Now in order to have the AssemblyLines myAL use this, you need the lines:
Log4J.logger.AssemblyLine.myAL=INFO, CONSOLE

Refer to the full Log4J (version 1.2) documentation for description of the
ConversionPattern parameters. Here are some parameters:

%d Date/time depending on format.

%p Priority.

%c Category.

Note: this is typically in the form Type.alName.xxx. Type can be
EventHandler or AssemblyLine, alName is the name of the AssemblyLine
(or EventHandler as named by the creator), and xxx is a unique ID for the
thread. %c{2} outputs alName & unique ID.

230 IBM Security Directory Integrator: Installation and Administrator Guide

%m Message.

%n Newline.

%t Threadname.

Chapter 14. Logging and debugging 231

232 IBM Security Directory Integrator: Installation and Administrator Guide

Chapter 15. Tracing and FFDC

This is a logging library similar to Log4J, but which is used inside IBM Security
Directory Integrator specifically for tracing and First Failure Data Capture (FFDC).

In addition to the user-configurable logging functionality described in Chapter 14,
“Logging and debugging,” on page 223, IBM Security Directory Integrator is
instrumented throughout its code with tracing statements, using the JLOG
framework. To which extent this becomes visible to you, the end user, depends on
a number of configuration options in the global configuration file jlog.properties,
and the Server command line option -T.

Note: Normally, you should be able to troubleshoot, debug and support your
solution using the logging options described in the section, Chapter 14, “Logging
and debugging,” on page 223. However, when you contact IBM Support for
whatever reason, they may ask you to change some parameters related to the
tracing functionality described here to aid the support process.

Tracing Enhancements
Most Connectors and Parsers have entry and exit trace statements. A number of
classes on the IBM Security Directory Integrator server have trace statements
added to the listed items.

Listed items:
v Method entry and exit points.
v Interactions with third party software.
v Thread creations.

Understanding Tracing
Tracing is done in the code of IBM Security Directory Integrator using JLOG's
PDLogger object. PDLogger or the Problem Determination Logger logs messages in
Logxml format (a Tivoli® standard), which IBM Support understands and for
which they have processing tools.

The basic level of information traced, as handled by the PDLogger APIs, is:
Date | Time | ClassName | methodName | MachineName | IP | {Entry/Exit/Exception} | [Parameter]

Basic tracing information means Time, Level (Min, Mid, Max), Location in code,
that is Method name and Entry/Exit. The "|" character serves a documentation
purpose only, it is not part of the actual log.

Tracing is not performed using Log4J Appenders for the following reasons:
1. Trace is always to be enabled
2. You wouldn't want multiple traces enabled in the server (could be several for

each AL if Appenders were used).

The PDLogger is attached to the JLOG SnapMemory handler and the
JlogSnapHandler.

© Copyright IBM Corp. 2003, 2014 233

The SnapMemory Handler logs trace messages to memory. On the trigger of a
LogEvent (that is, an occurrence of a specific Log level Trace message, as defined
by the jlog.levelflt.level filter, or an application crash or on the occurrence of a
specific TMS XML messageID) the Trace memory buffer is written to a file by the
JlogSnapHandler.

To make Tracing and Log messages in IBM Security Directory Integrator unique
across all IBM products, they are prefixed with a unique prefix: CTGDI.

All error messages are prefixed with a unique TMSXML messageID that indicates
the cause of the error and an operator response.

All info messages are also prefixed with a unique TMSXML messageID that may or
may not provide the operator response.

Configuring Tracing
You can use the jlog.logger.level property in the jlog.properties file to set the
desired trace level.

The trace level can be set to any of the following JLOG log level (hierarchy, from
most severe to least severe):
v FATAL
v ERROR
v WARNING
v INFO
v DEBUG_MIN
v DEBUG_MID
v DEBUG_MAX

The default level is FATAL.

Default Trace level as well as whether Tracing is done to file or memory is defined
in the default jlog.properties file. This file is placed in the TDI_install_dir/etc
folder. If you use a solution directory, it is placed in the TDI_Solution_dir/etc
folder.

Setting trace levels dynamically
IBM Security Directory Integrator ships a LogCmd.bat (for Windows) and
LogCmd.sh (for Unixes) scripts. You can use them to set the Trace properties
dynamically.

JLOG logger starts a command server on the default port (9992) to listen for log
commands sent by the logcmd command line utility.

For the logcmd scripts to work, the command server needs to be started first. To
start the log command server, you need to set jlog.noLogCmd=false in the
jlog.properties file.

The listen port of this server can be changed by setting the jlog.logCmdPort
property in the jlog.properties file to the desired value. For more information
about these properties read the comments in the jlog.properties file.

Usage of the logcmd command is as follows:

234 IBM Security Directory Integrator: Installation and Administrator Guide

logcmd -o port_number { [-h] | [help] |
[list {node_name}] |
[config node_name] |
[set node_name key_name=value |
[remove node_name {key_name}] |
[dump handler_name] | [save {all}] }

where

-o port_number
The port number to use to connect to the log command server. If not
specified the default port (9992) is assumed.

-h | help
Displays syntax information for the command.

list Lists the names of all known logging objects (nodes).

list node_name
Lists the names of the children of the node name. Not all logging objects
have children.

config node_name
Lists the all the configuration properties for the node.

set node_name key_name=value
Sets a property key for the node name. If the logging object, node_name,
does not exist, the logging object is created and the property is added.

remove node_name
Removes the configuration object node_name. A logging object that has
been instantiated from this configuration is not affected by removing the
configuration node.

remove node_name key_name
Removes the configuration property key_name from the logging object
node_name. If the object supports a hierarchical inheritance of properties, a
subsequent logcmd config node_name command may show the key just
removed. In that case, it was inherited from an ancestor.

save {all}
Saves the logging configuration to persistent store. If all is specified, the
entire configuration is saved; otherwise, only those configuration nodes
that were originally loaded from the file are saved.

Useful JLOG parameters
You can refer to the listed JLOG parameters here.

Property Value Description

jlog.snapmemory.queueCapacity Default 10000 The number of logevents that can be stored in the
snapmemory handlers queue.

jlog.snapmemory.dumpEvents true The handler immediately sends all the queued events to
its output listeners when the property is set to true. The
property can then be reset to false.

jlog.snapmemory.userSnapDir CTGDI/FFDC/user/ The directory to place the trace dump file when a user
triggers an FFDC action by using the logcmd scripts.

jlog.snapmemory.isSync Default false The log events are dumped to the snap shot file
synchronously when the property is set to true. This
does not spawn a new thread, and causes the logger to
block until the snapshot is complete.

Chapter 15. Tracing and FFDC 235

Property Value Description

jlog.snapmemory.userSnapFile userTrace.log

jlog.snapmemory.triggerFilter jlog.levelflt The level filter to be used to take JFFDC action.

jlog.snapmemory.msgIds *E The TMSXML message filter to be used for JFFDC
action.

jlog.snapmemory.mode PASSTHRU or BLOCK.
Default is PASSTHRU.

The listed IDs are blocked when the msgIDs property is
set to BLOCK. When set to PASSTHRU, the listed IDs
are sent to the filter.

Jlog.snapmemory.msgIDRepeatTime 10000 (in milliseconds) The minimum time in milliseconds, after passing a
logEvent with a given TMS message ID, before another
logEvent with the same id can be passed.

The default value for jlog.snapmemory.triggerFilter sets up a trigger filter named
jlog.levelflt. An attribute of such a filter is the message severity, which takes one of
the JLOG Log values as described above. By default, the entries
jlog.levelflt.className=com.ibm.log.LevelFilter
jlog.levelflt.level=FATAL

set up the FFDC code to cause the memory buffer to be dumped to the trace log
when a trace message of severity FATAL occurs. The jlog.levelflt.level property can
take any of the other Log level values as well, but only values of ERROR or
FATAL make much sense as otherwise the amount of FFDC dumping is very high,
causing huge slowdowns of the IBM Security Directory Integrator Server.

236 IBM Security Directory Integrator: Installation and Administrator Guide

Chapter 16. Administration and Monitoring

You can use the AMC to start, stop and manage IBM Security Directory Integrator
Configs and AssemblyLines remotely. You can know more about the AMC through
the information provided here.

The IBM Security Directory Integrator Administration and Monitoring Console
(AMC) user interface is deployed into the Integrated Solutions Console (ISC).

IBM Security Directory Integrator also ships an Action Manager with the AMC.
The Action Manager is a stand-alone Java application that interacts with the AMC
database and uses the Remote Server API to manage remote AssemblyLines.

The Administration and Monitoring Console is comprised of a Java WAR file (Web
Archive) and a WAB file (Web Bundle) that can be deployed on ISC SE and IBM
Dashboard Application Services Hub.

The current Action Manager, bundled with IBM Security Directory Integrator
AMC, supports IBM Security Directory Integrator Version 7.1.1, 7.1, and 7.0.
Versions of IBM Security Directory Integrator earlier than version 7.0 are not
supported.

Note: IBM Security Directory Integrator and solutions developed and deployed
with it can also be monitored with IBM Tivoli Monitoring (ITM) Server and Portal
or IBM Netcool®/OMNIBus, by virtue of IBM Security Directory Integrator's Java
Management Extension (JMX) interface. You can find supported examples that
show how you can accomplish this in the appendix entitled, Appendix B,
“Monitoring with external tools,” on page 349.

Installation and Configuration
You can use the links provided here to install the Administration and Monitoring
Console.

See “Installing IBM Security Directory Integrator” on page 8 for information about
installing IBM Security Directory Integrator and the Administration and
Monitoring Console. Installing AMC also installs the Action Manager. If you
choose a custom IBM Dashboard Application Services Hub to deploy AMC or
defer deployment of AMC during installation, see “Deploying AMC to a custom
ISC SE or IBM Dashboard Application Services Hub” on page 47 for information
on additional deployment requirements.

Deploying AMC into the Integrated Solutions Console
You can deploy the AMC into the Integrated Solutions Console using the
instructions provided here.

About this task

These instructions require that you be familiar with the IBM Security Directory
Integrator Installation procedures. See “Using the platform-specific IBM Security
Directory Integrator installer” on page 12 for information about IBM Security
Directory Integrator Installation. Installing AMC also installs the Action Manager.

© Copyright IBM Corp. 2003, 2014 237

If you want to deploy IBM Security Directory Integrator Administration and
Monitoring Console into the ISC automatically, select one of the following options:
v Embedded instance of ISC SE
v Existing instance of ISC

If you do not want to deploy AMC into ISC automatically at installation time,
select "Do not specify. I will manually deploy AMC at a later time."

The installer automatically installs ISC and deploys AMC in it if you select
"Embedded instance of ISC SE" or "Existing instance of ISC" during IBM Security
Directory Integrator installation.

To install and deploy the Administration and Monitoring Console into the ISC SE:
1. Invoke the IBM Security Directory Integrator installer.
2. During installation, select the Custom installation. (Typical installation does not

offer the AMC option.)
3. On the "Select Features" window of the installation, select AMC:

Administration Monitoring Console and embedded Web platform (includes
Integrated Solutions Console, Standard Edition (ISC SE).

4. Finish installing IBM Security Directory Integrator.

Deploying AMC as a Windows service or UNIX process using the
IBM Security Directory Integrator installer
You can deploy the AMC as a Windows service or UNIX process using the IBM
Security Directory Integrator installer.

You can register AMC as a Windows service or UNIX process if the following
conditions are satisfied:
v The person installing IBM Security Directory Integrator must have

administrative permissions (Administrators group on Windows or root on
UNIX).

v You have selected to install AMC into an "Embedded instance of ISC Standard
Edition."

v You have selected "Register AMC as a system service" and given the service a
name. The default service name is tdiamc

Deploying AMC on existing IBM WebSphere Application Server
environment
You can deploy the AMC on existing IBM WebSphere Application Server
environment.

To deploy AMC on the existing IBM WebSphere Application Server environment,
modify the tdiISCHome.bat or tdiISCHome.sh script file to set the following
parameters:
v Set the TDI_ISC_RUNTIME parameter to IBM WebSphere Application Server
v Set the TDI_ISC_HOME parameter to WAS_HOME directory

For example:
set TDI_ISC_RUNTIME=WAS
set TDI_ISC_HOME=C:\Program Files\IBM\WebSphere\AppServer

Starting and logging in the AMC and Action Manager
You can start and stop the Administration and Monitoring Console and Action
Manager by running the scripts provided here.

238 IBM Security Directory Integrator: Installation and Administrator Guide

About this task

The scripts are shipped in the TDI_install_dir/bin/amc folder:
v To start AMC, run the start_tdiamc script.
v To start AM, run the startAM script.

For more information about these scripts, see “AMC and AM Command line
utilities” on page 283.

The above will start AMC and AM using a Derby database configured locally on
the machine running in network mode on localhost at port 1528. For more
information on alternate settings and configurations for both AMC and AM, see
sections “Enabling AMC” and “Enabling Action Manager” on page 248.

Once the Administration and Monitoring Console is started, you can access it from
the following URL: http://localhost:13100/ibm/console; for more information, see
“Log in and logout of the console” on page 255.

Stopping AMC and AM can be accomplished by running the stop_tdiamc and
stopAM scripts, respectively.

Note:

1. For information on adding users and user roles, see section “AMC in the
Integrated Solutions Console” on page 242.

2. For information on AM, see section “Action Manager” on page 243.
3. For information on usage of individual panels in AMC, see the online panel

help, or section “Administation and Monitoring Console User Interface” on
page 255.

4. You will be registering IBM Security Directory Integrator Servers in AMC so
that solutions from IBM Security Directory Integrator configurations can be
administered. AMC will only be able to find Configs that each IBM Security
Directory Integrator server has loaded when its started up. By default, IBM
Security Directory Integrator Servers have the remote server API enabled.
Ensure that your TDI_install_dir/configs folder has the Configs you want to
administer and monitor (or put them in the config folder of your solution
directory if your server is using a solution directory).

5. For an example walk through of on using AMC and Action Manager for a few
simple tasks, see “Example walkthrough of creating a Solution View and Rules”
on page 288.

Enabling AMC
Refer to steps listed here to configure the Administration and Monitoring Console.

The configuration file for the Administration and Monitoring Console is the
amc.properties file that is located at the same level as the WEB-INF directory. This
file contains the AMC's database configuration properties, LDAP properties, SSL
related properties and help server details.

By default, the Administration and Monitoring Console makes use of Derby
Version 10 to store data. When AMC is started for the first time, AMC creates a
tdiamcdb folder inside the Web server directory and creates the tables needed for
AMC to function. The Derby database can be accessed in either the network mode

Chapter 16. Administration and Monitoring 239

or embedded mode. By default, AMC is shipped with Derby configured in
network mode. The following properties in amc.properties are applicable to Derby
configured for network mode:
com.ibm.di.amc.jdbc.database=jdbc:derby://localhost:1528/tdiamcdb;create=true
com.ibm.di.amc.jdbc.driver=org.apache.derby.jdbc.ClientDriver
com.ibm.di.amc.jdbc.urlprefix=jdbc:derby:
com.ibm.di.amc.jdbc.user=APP
com.ibm.di.amc.jdbc.password=APP
com.ibm.di.amc.jdbc.start.mode=automatic
com.ibm.di.amc.jdbc.host=localhost
com.ibm.di.amc.jdbc.port=1528
com.ibm.di.amc.jdbc.sysibm=true

The property com.ibm.di.amc.jdbc.database points to Derby in network mode,
running on localhost:1528. The database name being accessed is tdiamcdb, and
create=true, indicating that AMC should create the database if not found.

You should change the create=true to create=false once your environment is set,
so that in case the database path gets modified, AMC does not re-create the
database, but instead throws a "Database not found" exception. You should also
ensure that the database path be set to an absolute path to avoid any confusion
about the database path later.

Other databases than Derby can be configured by setting the appropriate
properties; see “Console Properties” on page 261.

AMC provides a separate startup and shutdown script for Action Manager. AMC
allows the Action Manager to run remotely and provides a separate Derby start or
shutdown script.

The Administration and Monitoring Console can also be configured to connect to
the Derby database in Embedded Mode. In this case, the Action Manager, a
separate application that also talks to the AMC database, is unable to connect to
AMC's database. This is because in Embedded Mode, only one JVM at a time is
allowed to connect to the Derby database. The following example shows the
amc.properties file with Derby configured for embedded mode:
##Location of the database (embedded mode)
configured for embedded mode:
##Location of the database (embedded mode)
com.ibm.di.amc.jdbc.database=tdiamcdb
com.ibm.di.amc.jdbc.driver=org.apache.derby.jdbc.EmbeddedDriver
com.ibm.di.amc.jdbc.urlprefix=jdbc:derby:
com.ibm.di.amc.jdbc.user=APP
com.ibm.di.amc.jdbc.password=APP

The com.ibm.di.amc.jdbc.database property points to the location of the AMC
database. We suggest that this value be set to an absolute path to avoid any
confusion about the database path later.

Running Action Manager remotely
You can use the steps listed here and take care of specified instructions to run the
Action Manager remotely.

Beginning with IBM Security Directory Integrator 7.0, you can run Action Manager
remotely without starting the AMC first. The database for AMC, Derby, must be
running in Network mode in order for Action Manager to connect to it. IBM
Security Directory Integrator 7.0 also provides start and shutdown scripts for the
Derby data store so that a user can start Action Manager remotely without starting
the AMC.

240 IBM Security Directory Integrator: Installation and Administrator Guide

Note:

1. Before you start Action Manager for the first time, you must have run AMC at
least once. This is because AMC creates the necessary database tables required
for AM.

2. You can find the scripts in this section in the following folder of the Install
Directory of the remote computer: TDI_install_dir\bin\amc\ActionManager\.

3. The instructions in the startup and shutdown sections that follow are for Action
Manager and Derby running on different remote computers, and with AMC not
running.

4. To verify that AMC, Action Manager or Derby has stopped, check the logs.

AMC and Action Manager startup

If you want to run Action Manager and Derby with AMC running, start AMC by
typing start_tdiamc.bat(sh) and start the Action Manager by typing
startAM.bat(sh). The tidamc script calls the startNetworkServer.bat(sh) script,
thereby starting the Derby database in network mode.

Note: The startAM.bat(sh) script has the Classpath defined for all the jars required
by the Action Manager. There are two variables namely CLASSPATH and
DB_CLASSPATH. The DB_CLASSPATH has the path separated list of JAR files
required for achieving JDBC Connectivity with the database. When AMC is
configured to use Oracle, MS SQL Server or DB2 the corresponding JDBC JAR files
of these databases should be added to the DB_CLASSPATH variable.

AMC and Derby shutdown

The stop_tdiamc.bat(sh) script calls the stopNetworkServer.bat(sh) script. This
ensures that the Derby Network server is stopped when AMC is shutdown.

Note: If Action Manager (AM) is running, this should be shut down first.

Action Manager remote startup

This section assumes that Action Manager and Derby are running on different
computers.
1. Start Derby using the script startNetworkServer.bat(sh).
2. Start Action Manager using the script startAM.bat(sh).

The startNetworkServer script is used for starting the Derby database server in
Network mode. The Derby server starts in Network mode on port 1528. The port
selected is different from the default port for Derby.

Action Manager shutdown

The Action Manager is stopped using the stopAM.bat(sh) script located in the
TDI_install_dir/bin/amc directory. This script uses the processID of the started
AM to kill it. The processID is obtained by the startAM script and is stored in a
file, which in turn is read by the stopAM script.

To stop the Derby database, type stopNetworkServer, which stops the Derby
database server in Network mode. This should be done after AM is stopped, not
before.

Chapter 16. Administration and Monitoring 241

AMC Logs
The Administration and Monitoring Console logs are stored in the ISC log in the
environment in which AMC runs. You can refer to the information provided here
to configure the logs.
v for ISC SE, the log file is created under ${LWI_HOME}/logs;
v for IBM Dashboard Application Services Hub, the logs are logged in

${WAS_HOME}/profiles/${profileName}/logs/${serverInstance}/SystemOut.log

The configuration of AMC logs can be done by modifying the
WEB-INF/classes/logging.properties file. AMC logging follows the Java logging
standard (java.util.logging).

You can view and delete AssemblyLine logs in the AssemblyLine Logs window.
To reach AssemblyLine Logs on the Monitor Status window: (Monitor Status >
Solution View Details > View Logs.). In the Solution View Details window,
select the AssemblyLine whose logs you want to view. In the AssemblyLine Logs
window, select any logs you want to delete, and select Delete. You can delete one
or multiple logs. To view a log, click its hyperlink.

The Solution View Details window also contains the Action Manager Logs table.
You can select and delete logs from Action Manager Logs.

You can manage all of your logs in the Log Management window. You can specify
criteria for displaying logs, and you can delete logs for all AssemblyLines or for a
single AssemblyLine. You can select to delete all logs for AssemblyLine(s)
specifying a date range, or you can delete then most recent logs, where you enter
the number of most recent logs.

AMC in the Integrated Solutions Console
You can view the list of changes integrated in the AMC, learn to add and remove
users, and different kind of roles that can be assigned through the information
provided here.

The Integrated Solutions Console (ISC) is designed to offer a common console to
organize administrative console functions using industry-standard technologies.
Starting with IBM Security Directory Integrator 7.0, integration of the AMC into
the Integrated Solutions Console (ISC) comes with the following changes. The
primary navigation links for AMC are:
v Administration and Monitoring Console

– Servers
– Solution Views
– Monitor Status
– Action Manager

v Advanced

– Log Management
– Console Properties
– Preferred Solution Views
– Property Stores

242 IBM Security Directory Integrator: Installation and Administrator Guide

Console user authority

Using ISC Console User Authority, you can add and remove users to AMC. In the
AMC for IBM Security Directory Integrator v7.0 and later, the following are the
roles:

Table 28. AMC roles
User Role Description

administrator Users with this role assigned are able to configure the roles other users are assigned to.

iscadmins Users with this role assigned have the ability to control the settings of the ISC console itself.

Security Directory Integrator AMC
Admin

This role is considered by the IBM Security Directory Integrator AMC application deployed in the ISC console.
Users with this role assigned are able to administer Servers, Solutions View roles, Manage Console Properties.
(This was the superadmin role in the AMC prior to IBM Security Directory Integrator 7.0)

Security Directory Integrator AMC
User

This role is considered by the IBM Security Directory Integrator AMC application deployed in the ISC console.
Users with this role assigned are able to use the provided by the IBM Security Directory Integrator AMC
Admin resources.

Within the SDI AMC user role, user privileges are assigned roles found in the
Solution View:
v Admin
v Config Admin
v Execute
v Read

The roles control access to functions on the console. You can see only those
functions for which you have roles assigned. For example, users with the Security
Directory Integrator AMC Admin role automatically have administrator privileges
over all Solution Views. Administrators can configure the properties required for
the Web administration tool (modifying properties related to amc.properties file,
available from Console Properties in the left navigation pane). A user with the
Security Directory Integrator AMC User role in ISC is the same as the current
non-admin AMC user. Security Directory Integrator AMC Users cannot access any
administrative windows such as IBM Security Directory Integrator Servers and
Console Properties.

ISC features the AMC Admin Group or iscadmins. A user in the iscadmins group
has the same privileges as the administrator.

Administrator and the iscadmins group

The administrator, defined as the user who has installed the application, can
manage AMC users. The administrator can add or remove users from the local OS
Registry to the AMC application and assign or edit roles. IBM Security Directory
Integrator v7.0 and later offers a new SDI AMC Admin group. The superadmin
role does not exist after IBM Security Directory Integrator version 6.1.1.

Action Manager
The Action Manager is a standalone Java application that allows you to monitor
multiple IBM Security Directory Integrator Servers and AssemblyLine execution
using user-defined rules, triggering conditions and actions defined in AMC. You
can view the list of different trigger types, actions, and threads here.

The Administration and Monitoring Console (AMC) has an Action Manager
window that allows users to configure various Action Manager rules.

Chapter 16. Administration and Monitoring 243

A rule is a combination of a trigger type and a set of associated actions. A rule
specifies that when a triggering condition is detected, then the associated set of
actions must be executed. The various trigger types available in AMC are
described below:

Table 29. Action Manager triggers

Trigger Type Trigger Details User Input for trigger

No trigger A rule with this triggering type has no triggering
condition, and as a result never gets triggered by
itself. The only way this rule can be executed is if
some other rule executes this rule

No details required

On AssemblyLine start A rule with this triggering type gets triggered
when the Action Manager receives an AL start
event for this particular AL.

"AssemblyLine name"

On AssemblyLine
termination

A rule with this triggering type gets triggered
when the Action Manager receives an AL
termination event for this particular AL.

"AssemblyLine name"

On config load A rule with this triggering type is triggered when
a Config is loaded.

"Name of Config to load"

On config unload A rule with this triggering type is triggered when
a Config is unloaded. The Config must be loaded
to be unloaded.

"Name of Config to unload"

244 IBM Security Directory Integrator: Installation and Administrator Guide

Table 29. Action Manager triggers (continued)

Trigger Type Trigger Details User Input for trigger

On query AssemblyLine
result

Note: A rule with this triggering type should not
be used with a short-running AL. This is because
Action Manager stores the handle of the AL
object on receiving the Start AssemblyLine event.
Later on, receiving the Stop AssemblyLine event,
Action Manager uses this handle to query the
final work entry attributes. If the AL terminates
before Action Manager can store the handle, then
Action Manager is not able to query the work
attributes. Usually an execution time of 10
seconds is sufficient (this can be achieved by
putting a system.sleep(10) before the AL
terminates, for example in the epilog hook).

When running On query AL result, Action
Manager polls the AL continuously for the
specified polling interval. The trigger first checks
for the attribute value, starting the AL after the
specified polling interval. Next, the trigger checks
the AL result entry.

On query AL result is a rule that is triggered
when the last "work" entry of the specified AL
contains the specified "Attribute" matching the
given "condition" and "value". This condition is
checked only when the ActionManager receives a
Stop AssemblyLine event. The user can specify a
time interval. The specified AL run periodically
depending upon the time interval specified A
rule with this triggering type is triggered when
the last "work" entry of the specified AL, contains
the specified "Attribute" matching the given
"condition" and "value". This condition is checked
only when the Action Manager receives a Stop
AssemblyLine event.

To configure the Query on AL result trigger,
enter values for the following fields:

v AssemblyLine name

v Attribute

v Condition

v Value

v Polling Interval

v Polling Unit

"AssemblyLine name",
"Attribute","Condition","Value,
"Polling Interval," and "Polling
Unit."

On server API failure A rule with this triggering type is triggered when
the Action Manager is unable to connect to the
remote server using the Server API. You can
configure different polling time intervals for each
Assembly Line depending upon AL execution
time.

"Polling Interval" and "Polling
Unit."

On received Event A rule with this triggering type is triggered when
the Action Manager receives an event which
satisfies the criteria mentioned.
Note: If any of the criteria are to be ignored, just
leave it blank.

"Event type", "Event Source",
"Event Data". Event Data is
optional. Event type or source -
one of them must be specified.

Chapter 16. Administration and Monitoring 245

Table 29. Action Manager triggers (continued)

Trigger Type Trigger Details User Input for trigger

On Property A rule with this triggering type is triggered when
the specified property meets the specified
condition. The Action Manager periodically
checks for this property. You can configure a
polling interval and polling units when
configuring this trigger.
Note: This rule gets triggered only once, and
gets reset back to ready state only when Action
Manager detects that this property does not meet
the specified criteria any longer. This is done so
that the rule does not repeatedly get triggered for
a single occurrence of the triggering condition.

"Polling Interval," "Polling
Unit"."Property name", "Condition",
and "Value".

On local variable A rule with this triggering type is triggered when
the specified variables meet the specified
condition. The Action Manager periodically
checks for this property .
Note: This rule gets triggered only once, and
gets reset back to the ready state only when
Action Manager detects that this variables does
not meet the specified criteria any longer. This is
done so that the rule does not repeatedly get
triggered for a single occurrence of the triggering
condition.

"Local Variable" ," Condition",
"Value".

Inspect AssemblyLine exit
code

A rule with this triggering type is triggered when
an AssemblyLine terminates with an error.
Inspect AL Exit Code also searches for an error
object string for every abnormal AL termination.
Under Configure Trigger, if the trigger is Inspect
AL Exit Code, you can enable Inspect Error
Object. In the Value field, type the string you
want for Error Object. Note that if the Value field
is empty, then the rule triggers for every
abnormal termination of an AL. If Inspect Error
Object is not selected, the trigger waits for the
AL to terminate and inspects the exit code for an
attribute value (entered by the user). Type values
for both the Attribute Name and Value.

In the Inspect AL Exit code trigger, the Action
Manager no longer starts the AL, and there is no
polling. The trigger only checks the AL result one
time after the AL runs.

"AssemblyLine name"; if "Inspect
Error Object" is enabled, you only
need supply "Value." If "Inspect
Error Object" is disabled, values for
"Attribute," "Condition," and
"Value" are needed.

Time since last execution A rule with this triggering type get triggered
when the Action Manager detects that the
specified assembly line has not run for the
specified period. Note: This rule is triggered only
once. After that Action Manager wait for
receiving a Start AssemblyLine event before
resetting the Rule back to Ready mode. This is
done so that the rule does not repeatedly get
triggered for a single occurrence of the triggering
condition.

"AssemblyLine name", "Not Run
Since" and "Unit".

Timer A rule with this triggering type is triggered
continuously within an interval defined by a
number of units and the measure of seconds,
minutes, hours or days.

"Interval" and "Unit."

246 IBM Security Directory Integrator: Installation and Administrator Guide

When a rule gets triggered, the Actions associated with the rule are executed by
the Action Manager sequentially. The following are the various types of Actions
that are available in AMC:

Table 30. Action Manager actions

Action Action Details User Input for action

Start AssemblyLine This action starts the specified AL of the specified
config file on the specified IBM Security
Directory Integrator server. The Config field
should mention the complete path of the
configuration on the remote server. The Config
Password field is optional and is required only if
the remote config is password protected.

"AssemblyLine", "Of
Configuration", "On Server",
"Config Password".

Stop AssemblyLine This action stops the specified AL of the specified
configuration on the specified IBM Security
Directory Integrator Server. The Config field
should mention the complete path of the
configuration on the remote server.

"AssemblyLine", "Of
Configuration", "On Server".

Enable/Disable Rule This action Enable or Disable the chosen rule. "RuleName" "State"

Execute Rule This action cause the execution of the specified
rule, which in-turn imply execution of all the
actions specified in that particular rule.

"RuleName"

Notify Event This action cause the Action Manager to emit an
event with the specified details to the Server
associated with the current Solution View. See the
Session.sendCustomNotification() API for details.

"Event type", "Source", "Data".

Modify Property This action cause the Action Manager to modify
the selected property based on the specified
operation.

"Property", "Operation", "Value".

Copy Property Value This action cause the Action Manager to copy the
value of the Source property to the Destination
property.

"From Property", "To Property".

Write to Log This action causes a log of the specified
Severity/Message/Description to be logged into
the Action Manager logs and the AMC database.
The same log is shown when the user goes to the
Monitor Status -> Solution View Details -> Action
Manager Results table. It is advised to always
have at least one Log action (containing
descriptive text) in every rule.

"Severity", "Message",
"Description".

Send Email This action causes an email to be sent to the
recipient you specify. You supply the content of
the email. Along with the content, the Action
Manager provides other details before sending
the mail. In the content input area as well as in
the subject line, you can specify the variable
%EVENT_DATA% value. Specifying
%EventData% inserts the actual value of the
Eventdata variable when the mail is sent.
%Action_Error% can also similarly be substituted
here. If Attach Action Manager Log is enabled,
the Action Manager logs (as specified in the
am_logging.properties file) are sent as an email
attachment.

"To", "From", "Subject", "Attach
Action Manager Log"
(Selected/Not Selected), "Content".

Chapter 16. Administration and Monitoring 247

Table 30. Action Manager actions (continued)

Action Action Details User Input for action

Modify local variables This action causes the action manager to
increment, decrement or set the value of the
specified variable to the specified value.

"Variable", "Operation", Value".

Execute command This action causes the specified command to
execute on the target computer. The command
can be any generic command or an IBM Security
Directory Integrator specific command.

"Target Machine", "Port",
"Username", "Password",
"Keystore", "Keystore Password",
"Protocol", and "Command".

Rules that are configured for Solution Views in AMC, are stored in AMC's Derby
Database. When the Action Manager is run, it connects to the AMC database in
network mode, reads the Action Manager-related tables, and creates threads in
memory for every rule specified. Each of these threads listens/polls for its
respective triggering conditions. The moment any thread detects the occurrence of
its respective triggering condition, it queries the database for the set of actions
associated with the rule, and executes them sequentially.

The Action Manager runs the following threads in addition to the rule threads that
are listening for trigger conditions:
1. HealthAssemblyLine - The Health AssemblyLine thread periodically triggers

the Health ALs for querying the status of the solutions, and logging the status
back into the AMC database. The health AL must store the status in the
"healthAL.result" and "healthAL.status" attributes of their final work entry.

2. ServerStatusListener - The ServerStatusListener thread is created for every
server registered with AMC. This thread checks for the server accessibility. If
the server has become inaccessible, all rules threads created for the server are
terminated (except for those with triggering type 'On Server API failure').
Similarly if the server becomes accessible, rule threads are created for any rules
associated with this server.

3. ConfigLoadReloadListener - The ConfigLoadReloadListener thread is created
for every running server registered with AMC. It is registered to the remote
server for any config load unload events. Rule threads are appropriately
terminated, created or refreshed depending on the config event.

4. ServerModificationListener - The ServerModificationListener thread checks for
any updates to the set of servers registered in AMC. Depending on the type of
change (added, removed, and so on.) rule threads are terminated, created or
refreshed.

5. DatabaseModificationListener - This database listener thread continuously
monitors addition, modification or deletion of rules. Whenever any changes in
the rules are detected, the Action Manager threads are added/recreated
appropriately at runtime.

The Action Manager also updates the AMC database with its run details.
Whenever an Action Manager rule is triggered, Action Manager logs an entry into
the AMC database, registering the rule name that got triggered, and the triggering
time. Also, if any Log action is configured for the rule, then that also gets logged
into the AMC database. These database entries are used to show the appropriate
status in Monitor windows of AMC.

Enabling Action Manager
You can use the instructions provided here to enable the Action Manager.

248 IBM Security Directory Integrator: Installation and Administrator Guide

The Action Manager is installed in the TDI_install_dir/bin/amc/Action Manager
folder. It contains the following files:
v am_logging.properties - This file controls Action Manager logging properties.

Just like AMC, it also follows the java.util.logging logging standard.
v am_config.properties - This is the configuration file for the Action Manager.
v testadmin.jks - This is the ActionManager's truststore and keystore file.

Note: This is a sample truststore and keystore file; for added security, you
should generate your own.

The Action Manager connects to AMC's Derby database using the Network Mode
driver.

The following properties (in am_config.properties) must point to the
Administration and Monitoring Console's database:
com.ibm.di.amc.am.jdbc.database=jdbc:derby://localhost:1528/C:/Program Files/IBM/AppSrv
/profiles/amcprofile/tdiamcdb;create=false
com.ibm.di.amc.am.jdbc.driver=org.apache.derby.jdbc.ClientDriver
com.ibm.di.amc.am.jdbc.urlprefix=jdbc:derby:
com.ibm.di.amc.am.jdbc.user=APP
{protect}-com.ibm.di.amc.am.jdbc.password=APP
com.ibm.di.amc.am.jdbc.start.mode=automatic
com.ibm.di.amc.am.jdbc.sysibm=true
com.ibm.di.amc.am.jdbc.networkserver.host=localhost
com.ibm.di.amc.am.jdbc.networkserver.port=1528

Note: Both AMC and AM support alternative databases, like MS SQL, Oracle and
so forth. In order for AMC and AM to connecto to one of those alternative
databases, the configuration statements in amc.properties and
am_config.properties will look very different.

When the Action Manager is started, it attempts to connect to AMC's database. If it
fails in performing any initial setup tasks, it exit with an exception message. Check
the am_config.properties file to ensure it points to the correct database. If the
database settings appear to be correct, then ensure that the database that Action
Manager is attempting to connect to is running in network mode and that AMC
can connect to the same database. You may use the startNetworkServer.bat(sh) to
start the Derby DB in network mode.

SSL settings and encryption properties for AM are configured in the following set
of properties:
Action Manager SSL properties
javax.net.ssl.trustStore=TDI_Install_dir/serverapi/testadmin.jks
{protect}-javax.net.ssl.trustStorePassword=administrator
javax.net.ssl.trustStoreType=jks
javax.net.ssl.keyStore=TDI_Install_dir/serverapi/testadmin.jks
{protect}-javax.net.ssl.keyStorePassword=administrator
javax.net.ssl.keyStoreType=jks
Action Manager encryption properties
com.ibm.di.amc.am.encryption.keystore = TDI_Install_dir/testserver.jks
com.ibm.di.amc.am.encryption.key.alias = server
com.ibm.di.amc.am.encryption.keystoretype = jks
com.ibm.di.amc.am.encryption.transformation = RSA
com.ibm.di.amc.am.stash.file = TDI_Install_dir/idisrv.sth

These properties are similar to the encryption properties used by the server. For
convenience the location of the stash file has been added as a property:
com.ibm.di.amc.am.stash.file. By default the AM will reuse the server's keystore
and stash file for encryption/decryption of AM protected properties.

Chapter 16. Administration and Monitoring 249

Further configuration of run-time rules, triggers and actions is described under
“Action Manager” on page 272.

Action Manager status in real time
You can view the status of Action Manager in a window by following the
instructions provided here. Further you can also view the contents of the window.

When you login to AMC, a one line Action Manager status displays in the
Welcome to AMC panel. The Welcome to AMC panel displays the Action Manager
status in a link, for example, "Action Manager is running" or "Action Manager is
not running." To launch the Action Manager Status window, click the hyperlink.
The Action Manager Status window displays Action Manager Status in real time,
as well as thread details and trigger details. This window displays status
information in real time. This window shows:
v Action Manager Status, for example the Boot Time
v Action Manager Thread Details
v Action Manager Trigger Details

The AMC directly queries the Action Manager using the APIs exposed by Action
Manager. If AMC cannot establish a session with the Action Manager, the AMC
concludes that the Action Manager is not available because the Action Manager
has stopped. In addition to Action Manager status, AMC displays details of thread
information and trigger details.

Action Manager creates a number of threads. Some Action Manager threads
monitor the essential functionality of the Action Manager such as the Database
Modification Listener and the ServerStatusListenerThread. Moreover, from these
threads the Action Manager creates threads for each of the trigger rules that is
configured in AMC. With the Remote Method Invocation (RMI) Layer, AMC can
query the status of the various trigger-related threads. Using the RMI based query,
AMC knows the state of these threads, thread priority, and so on. AMC can also
query the triggers that have been executed over a period of time.

Two new properties belong to the Display real time Action Manager Status
requirement. The properties that allow AMC to display the Action Manager status
in real time are am.api.host and am.api.port. Action Manager status used an RMI
layer around the Action Manager that exposes an API to be used by AMC for
querying the Action Manager for its status.

AMC force trigger for a given rule
You can use the Force Trigger to execute the actions configured for the selected
rule.

AMC allows users to force a trigger for a specific rule. Forcing a trigger gives the
user an idea of what the Action Manager does when the rule is triggered. When
you select Disable Rule, the selected rule is disabled.

Action Manager can execute a set of actions configured for a particular trigger
(rule) explicitly. The AMC user does not have to wait for the triggering condition
of a rule to be satisfied before the configured actions are carried out. Users can
define actions that are to be executed so that they can test those actions. Users can
execute all of the supported actions using Force Trigger. However, the Revert
action is effective for only some (a subset of) the supported actions.
v Modify Property

250 IBM Security Directory Integrator: Installation and Administrator Guide

v Copy Property
v Write to Log
v Enable Disable Rule

AMC and Action Manager security
The Administration and Monitoring Console (AMC) is a web-based application for
monitoring and managing remote IBM Security Directory Integrator solutions. You
can learn about its features and different security combinations through the
information provided here.

Introduction

The following features of AMC have been improved:
v Encryption or concealment of passwords that are stored in the amc.properties

file
v Use of stash files to store keystore passwords
v Enablement of the BUILTIN authentication scheme in the Derby database

AMC uses the Remote Server API to communicate with IBM Security Directory
Integrator. For this reason, all the security restrictions and configuration settings
that are applicable to IBM Security Directory Integrator Remote Server API clients
(as mentioned in previous sections) are valid for AMC too.

Action Manager is installed with AMC. Action Manager configures itself and
behaves based on rules set in the AMC database by AMC users. To monitor remote
AssemblyLines and to take action based on configured rules, Action Manager, just
like AMC, uses the IBM Security Directory Integrator Remote Server API to
communicate with IBM Security Directory Integrator servers.

Note: Communication between AMC and AM using RMI is not protected in any
way.

AMC and SSL
You can run the Administration and Monitoring console in SSL mode by following
the instructions provided here.

Multiple IBM Security Directory Integrator servers can be registered with AMC.
Each IBM Security Directory Integrator server may be configured differently; one
IBM Security Directory Integrator server could be running with SSL off, one with
SSL on, one with Custom Authentication on and SSL on - and various other
combinations. AMC can be used to connect and administer any of these servers
simultaneously. As mentioned earlier, to configure IBM Security Directory
Integrator to run in SSL mode the api.remote.ssl.on property should be set to true
in global.properties (or solution.properties).

As AMC is a web application running inside a Web Container it automatically
inherits some properties and security restrictions from the Web Container. For
instance, if the Web Container has an SSL keystore or SSL truststore configured,
then that would be automatically applicable to AMC. But AMC can also override
that - and specify its own keystore and truststore.

For being able to communicate with IBM Security Directory Integrator Remote
Server API running on SSL, AMC must have a keystore configured which contains

Chapter 16. Administration and Monitoring 251

the certificate that is trusted by the IBM Security Directory Integrator remote
Server API (that is, it must be present in IBM Security Directory Integrator's
truststore's trusted certificates section) and AMC must have a truststore configured
which contains the certificate that is sent by the IBM Security Directory Integrator
remote Server API. In other words - the certificate that is present in IBM Security
Directory Integrator server's keystore must be present in AMC's truststore and the
certificate that is present in IBM Security Directory Integrator truststore must be
present in AMC's keystore.

For example, the default installation of IBM Security Directory Integrator is
shipped with certain stores (.jks files). When you run IBM Security Directory
Integrator in SSL mode, then to connect to AMC its keystore and truststore must
both be set to the same value: TDI_install_dir/serverapi/testadmin.jks and the
password being "administrator". Since testadmin.jks contains both trusted
certificates and signer certificates, a connection gets established. It is recommended
that you set up your own SSL keystores and truststores.

In AMC, the path of the truststore and keystore can be set by logging into AMC as
"SDI AMC Admin" (Console Administrator) and navigating to the following
window: Advanced -> Console Properties -> SSL settings. The settings for
truststore and keystore are written to amc.properties file inside the tdiamc folder
in Web Container. You can alternatively choose to edit the amc.properties file
directly. With IBM Security Directory Integrator 7.0, AMC can be deployed in ISC
Standard Edition (SE) or in ISC Advanced Edition (AE). Depending on the ISC
runtime, the location of the testadmin.jks file varies. For example, if AMC is
deployed in ISC SE, then the location will be ISC_RUNTIME_INSTALL_DIR/runtime/
isc/eclipse/plug-ins/AMC_7.0.0. On the other hand, if AMC is deployed in IBM
Security Directory Integrator, then the location is ISC_RUNTIME_INSTALL_DIR/
systemApps/isclite.ear/tdiamc.war. The keystore and truststore password are set
to "administrator" by default. To establish an SSL based connection with a remote
IBM Security Directory Integrator server, you must start the server in "SSL
enabled" mode, and for a Non SSL based connection, start the server in "SSL
disabled" mode.

Attention: Default SSL settings are provided. However, using the default
certificates does not increase the security more than just using a plain connection,
so after installation, you should replace the default SSL certificates and update the
keystores and truststores accordingly in order to increase security.

For each IBM Security Directory Integrator server running over SSL that you wish
to register with AMC, you must import the necessary certificate into AMC's
truststore and the necessary AMC's key certificate into IBM Security Directory
Integrator's truststore. The idea here is that AMC must trust IBM Security
Directory Integrator and IBM Security Directory Integrator must trust AMC to be
able to make a secured two-way SSL connection.

Since AMC runs inside a Web Container, the URL for AMC is
http://hostname:port/ibm/console.

Action Manager monitors running Configs and AssemblyLines on remote IBM
Security Directory Integrator Servers based on rules configured in AMC. Action
Manager ships with the keystore and truststore required to connect to a remote
IBM Security Directory Integrator server. The SSL properties are defined in the
am_config.properties. See details on how to configure AMC for SSL in previous
sections - the same is applicable for Action Manager.

252 IBM Security Directory Integrator: Installation and Administrator Guide

AMC and remote IBM Security Directory Integrator server
AMC can connect to multiple IBM Security Directory Integrator Servers remotely.
You can learn to configure each Server in many ways.

Configured ways:
v Non SSL
v SSL
v Custom Authentication with Non-SSL
v Custom Authentication with SSL

This section looks at each of these cases in detail.

When a remote IBM Security Directory Integrator server is configured for non SSL
(that is, api.remote.ssl.on=false) then the keystore or truststores of AMC do not
come into play, even if correctly configured - since no SSL connection is being
attempted. In this case the AMC Server's computer IP address must be registered
with the IBM Security Directory Integrator server. This is done by editing the
global.properties (or solution.properties) file. The property to update is:
api.remote.nonssl.hosts. Once the AMC computer's IP address is entered in the
global.properties file of the remote IBM Security Directory Integrator server, AMC
is able to connect to that particular server. It is a way of saying - I trust remote
server connections (AMC connections) from only those computers whose IP
addresses I have mentioned in my api.remote.nonssl.hosts property.

Note: If the IBM Security Directory Integrator server is running on the same
computer as AMC, then editing this property is not required.
When a remote IBM Security Directory Integrator server is configured for SSL (that
is, api.remote.ssl.on=true), then the SSL keystore and truststore for AMC must be
setup appropriately.

For details on this, see the previous section on AMC and SSL. In addition to being
configured for SSL or Non-SSL, a remote IBM Security Directory Integrator server
may also require Custom Authentication - in which a username and password
must be passed while making a connection to the remote IBM Security Directory
Integrator server. The remote IBM Security Directory Integrator server validates
this user name and password against some third party repository like LDAP, file,
database, script, and so on and then make a decision on whether to allow the
Server API client to make a connection or not. In such cases, while registering a
server with AMC (Servers -> Modify Server) in the Authentication mode window
- select LDAP or Custom Authentication and enter the Username and Password
that AMC must pass every time it attempts to connect to the specified remote IBM
Security Directory Integrator Server.

Note: If the Username or Password (in case of custom authentication) or SSL
keystores or truststores (in case of SSL) are not set up correctly, then AMC is
unable to connect to the remote IBM Security Directory Integrator Server and show
that server as "Stopped" or "Not running."

AMC and role management
Every user (or group) in AMC can be assigned a role in AMC for a particular
Solution View. You can learn about the available roles and their meaning through
the information provided here.

Chapter 16. Administration and Monitoring 253

This role assignment can be done in the Solution Views window by selecting a
particular Solution View and by clicking Configure Access Control Lists (ACLs).
The Configure ACLs window displays. Select the Name of the user you want to
configure and click Configure Users on the toolbar. The Configure Users window
displays. Select the User ID and select one of the available roles:
v Read
v Execute
v Admin
v Config Admin

Note: You must reload Solution Views created using the Auto Update option. Use
the Refresh Solution View in the Solution Views window. For Solution Views
marked for auto update, you must reload the config file and refresh the Solution
View by clicking the Refresh Solution View. If a user fails to refresh a Solution
View created using the Simple option and flagged for auto update, the Solution
View may cause inconsistencies in the AMC database. Inconsistencies in Solution
Views that are not updated could result in incorrect behavior by the Action
Manager.

These roles are in increasing order of privilege - indicating that Config Admin is
the highest privilege and Read is the lowest. Any functionality that is available to a
user with "Read" role for a Solution View, definitely is available to a user with
"Execute" privilege on that Solution View. Any functionality that is available to a
user with "Execute" privilege on a Solution View, is available to a user with
"Admin" privilege, and so on.

The following is the meaning of these roles

Read This means that this user can only read the "details" of this Solution View -
such as what are the ALs inside this view, what are properties inside this
view, what is the status of these ALs, and so on. This user cannot modify,
start, stop, or change any detail of this Solution View.

Execute
This is essentially a Read user with one extra privilege - the ability to Start
and Stop AssemblyLines.

Admin
This user can administer the Solution View, without being able to modify
the Solution View itself. This user can do everything that the "Execute"
privilege user can do, and additionally he can modify properties, delete
logs, configure rules, and so on, for this Solution View.

Config_Admin
This user can virtually do anything to the Solution View - including
modifying the view itself, modifying the permissions of other users on this
view, and so on. This is the highest privilege that can be given to a user for
a particular Solution View.

The above roles can be assigned to any Group too. Therefore, if a user "test" and
"tdi" are part of the "DBAdmin" group, and the "DBAdmin" group is given
"ConfigAdmin" privilege over a Solution View "SynchDatabase", then both "test"
and "tdi" automatically get ConfigAdmin privilege over the "SynchDatabase"
Solution View.

Note:

254 IBM Security Directory Integrator: Installation and Administrator Guide

1. If the "test" user is explicitly given "read" privilege for the same Solution View,
then "Read" get precedence over the privilege he gets from being part of the
"DBAdmin" group. This is done so that "specific" role assignment gets priority
over role assignment from groups. This allows people to restrict or give higher
access to individuals - without worrying about inherited access from being part
of some groups.

2. If the "test" user is part of two Groups - where Group1 has "read" access and
Group2 has "admin" access over the same Solution View - then in this case the
test user get the higher of the two privilege - in this case being "admin", unless
a specific role is already assigned to "test" for the same Solution View - in
which case the specific role assigned to "test" is given precedence [point 1
above].

AMC and passwords
You can know about storing passwords through the information provided here.

Any password field that is stored in the amc.properties file, such as LDAP Bind
password, keystore password, and so on, are all encrypted before being written to
the amc.properties file. Also, AMC never displays any Password fields or
protected fields on console. All such fields are masked out.

AMC and encrypted configs
You can learn to use password protected configs through the information provided
here.

AMC allows users to load and connect to password protected configs. On the Load
Reload window of AMC, a password text box has been provided - where the users
must enter the password of the config they are attempting to start before clicking
Start. Similarly, in the Action Manager Screen - for the Start AssemblyLine action, a
password field has been provided where the user can enter the password of the
config. Action Manager passes this password while attempting to start the Config.

Note: AMC cannot detect that the remote config being started is a password
protected config. For this reason, if the password is not specified or incorrectly
specified, then the user just see an error message saying - "Unable to start the
config". The user can see the IBM Security Directory Integrator Server logs where
an exact message is provided.

Administation and Monitoring Console User Interface
You can learn in detail about the AMC user interface through the information
provided here.

Log in and logout of the console
You can use the instructions provided here to login and logout of the console.

Open a Web browser and type the following address:
http://hostname:port/ibm/console

Where port is the port where your Web server is running. When deployed on the
bundled web container the ports by default are 13100 for HTTP and 13101 for
HTTPS communication.

Chapter 16. Administration and Monitoring 255

The login page can also be launched by using the launchAMC.html file which is
placed in the TDI_install_dir/bin/amc folder.

The IBM Security Directory Integrator Administration and Monitoring Console
login page window is displayed.

Logging on to the console as the console administrator

The console administrator is a user who can:
v Configure the properties required for the AMC
v Set the authentication mechanism used for AMC logins
v Add new users and configure users' roles

When logging in for the first time use the system username and password you
have installed IBM Security Directory Integrator, AMC and the embedded web
platform with. If you have deployed AMC in IBM WebSphere Application
Server/IBM Dashboard Application Services Hub then you would need to log in
with a user that has been assigned the iscadmins and administrator roles.

Note: The embedded web platform uses the PAM authentication mechanism on
UNIX and Linux boxes to validate the system username and password provided
on log in. This is why on AIX machines you must have the auth_type parameter
set to PAM_AUTH in the /etc/security/login.cfg file.

To log in to the Integrated Solutions Console, type your user name and password
in the boxes provided in the login window and click the Log in button.

The Logout button is in the upper right hand corner of the console, next to Help.
When you click Logout, you are returned to the Log in page.

AMC Console Layout
You can refer to the listed components of the IBM Security Directory Integrator
Administration and Monitoring Console.

256 IBM Security Directory Integrator: Installation and Administrator Guide

Navigation Area
The Navigation area provides a tree view that allows users to navigate
through the tasks available to the user in the console. You can open and
close folders in the navigation area and select tasks (non-folders) to launch
in the Work Area of the console framework.

Work Area
The Work Area contains the necessary information and input fields to
complete the task you are currently working on.

Logging off the console
To log off of the console, click Logout in the navigation area.

Using AMC tables
You can use the information in AMC tables to search for, organize and perform
actions on these table items.

The IBM Security Directory Integrator Administration and Monitoring Console
displays certain information, such as lists of attributes and entries, in tables.

IBM Security Directory Integrator Administration and Monitoring Console tables
provide icons to help you organize and find information in the table. Some icons
appear on some tables and not on others, depending on the current task. The
following is a comprehensive list of the icons you might encounter:
v Click the Show Filter Row icon to display filter rows for every column in the

table. See “Filtering” on page 259 for more information about filtering.
v Click the Hide Filter Row icon to hide filter rows for every column in the table.

See “Filtering” on page 259 for more information.
v Click the Clear all filters icon clear all filters set for the table. See “Filtering” on

page 259 for more information.
v Click the Edit sort icon to sort the information in the table. See “Sorting” on

page 258 for more information.
v Click the Clear all sorts icon to clear all sorts set for the table. See “Sorting” on

page 258 for more information.
v Click the Collapse table icon to hide the table data.

Chapter 16. Administration and Monitoring 257

v Click the Expand table icon to display the table data.
v Click the Select all icon to select all items in the table.
v Click the Deselect all icon to deselect all selected items in the table.
v Click the Export icon to export the table data.

Select action drop-down menu
You can use the Select action drop-down menu to view a comprehensive list of all
available actions for a selected table and to perform operations on the table
contents.

About this task

For example, instead of using the icons to display and hide sorts and filters, you
can use the Select action drop-down menu. You can also use the Select action
drop-down menu to perform operations on the table contents; for example, on the
Manage attributes window, actions such as View, Add, Edit, Copy and Delete
appear not only as buttons on the toolbar, but also in the Select action drop-down
menu. If the table supports it, you can also display or hide the Show find toolbar
using the Select action drop-down menu. See Finding for more information on
finding table items.

To perform an action using the Select action menu:
1. If necessary, select an item from the table.
2. Click the Select action drop-down menu.
3. Select the action you want to perform; for example Shutdown server.
4. Click Go.

Paging
You can use the navigation controls at the bottom of the table to view different
table pages.

You can enter a specific page number into the navigation field and click Go to
display a certain page. You can also use the Next and Previous arrows to move
from page to page.

Sorting
You can change the way items in a table are sorted.

About this task
1. Do one of the following:

v Click the Edit sort icon on the table.
v Click the Select action drop-down menu, select Edit sort and click Go.

A sorting drop-down menu appears for every column in the table.
2. From the first sort drop-down menu, select the column on which you'd like to

sort. Do the same for any of the other sortable columns on which you'd like to
sort.

3. Select whether to sort in ascending or descending order by selecting
Ascending/ Descending from the drop-down menu. Ascending is the default
sort order. You can also sort using column headers. On every column is a small
arrow. An arrow pointing up means that column is sorted in ascending order.
An arrow pointing down means that column is sorted in descending order. To
change the sort order, simply click on the column header.

258 IBM Security Directory Integrator: Installation and Administrator Guide

4. When you are ready to sort, click Sort.

To clear all the sorts, click the Clear all sorts icon.

Finding
You can find a specific item or items in a table.

About this task

Note: The Show find toolbar option is available on some tables and not on others,
depending on the current task.
1. Select Show find toolbar from the Select action drop-down menu and click

Go.
2. Enter your search criteria in the Search for field.
3. If desired, select a condition upon which to search from the Conditions

drop-down menu. The options for this menu are:
v Contains

v Starts with

v Ends with

v Exact match

4. Select the column upon which you want to base the search from the Column
drop-down menu.

5. Select whether to display results in descending or ascending order from the
Direction drop-down menu. Select Down to display results in descending
order. Select Up to display results in ascending order.

6. Select Match case if you want search results to match the upper and lower case
criteria in the Search for field.

7. When you have entered the desired criteria, click Find to search for the
attributes.

Filtering
You can filter items in a table.

About this task
1. Do one of the following:

v Click the Show filter row icon. Click the Select action drop-down menu,
select Show filter row and click Go.

2. Filter buttons appear above each column. Click Filter above the column on
which you want to filter.

3. Select one of the following conditions from the Conditions drop-down menu:
v Contains
v Starts with
v Ends with

4. Enter the text you want to filter on in the field; for example, if you selected
Starts with, you might enter C.

5. If you want to match case (upper case text or lower case text) select Match
case.

6. When you are ready to filter the attributes, click OK.
7. Repeat the above steps 2-6 for every column on which you want to filter.

To clear all the filters, click the Clear all filters icon.

Chapter 16. Administration and Monitoring 259

To hide the filter rows, click the Show filter icon again.

Servers
You can view the registered server through this window. Additionally, the console
administrator can add, edit, delete and shut down IBM Security Directory
Integrator servers from this window, as well as launch the Config Files window.

When AMC is started , it automatically has a local IBM Security Directory
Integrator server, registered on port 1099 . Therefore, in the Servers window, one
entry in under LOCAL SERVER is already present with its state depicted as
running or unavailable depending on its status.

To load or reload a config, select Servers and click Config Files in the toolbar of
the Servers window. The Config Files window appears.

You can choose the operations you want to perform from the tool bar at the top of
the table or using the Select action drop-down menu, such as:

Add Click Add on the toolbar.

Delete Select the radio button next to the server you want to delete and click
Delete on the toolbar.

Modify
Select the server for which you want to modify information and click
Modify on the toolbar.

Config Files
Select the server for which you want to list configuration files. When you
click the View Config Files link in the Solution Views window, it launches
the Config Files window. Each configuration file is labelled as loaded or
not loaded. The toolbar provides a variety of load, unload, and reload
options.

Shutdown server
Select the server you want to shut down and click the Shutdown Server on
the toolbar.

Shutdown gracefully
Shuts down a running server gracefully (create new Threads that wait for
the AssemblyLines to stop).

Note: Graceful shutdown is not supported for IBM Security Directory
Integrator servers earlier than v7.1.

Add a server
You can add an IBM Security Directory Integrator server to the Administration and
Monitoring Console (AMC).

About this task

Once you have added an IBM Security Directory Integrator server to the AMC,
you can then use features on other AMC windows to add Solution Views to the
IBM Security Directory Integrator server and to create and define views for the
Solution Views associated with the IBM Security Directory Integrator server.

To add a new IBM Security Directory Integrator server:

260 IBM Security Directory Integrator: Installation and Administrator Guide

1. Enter a name for the IBM Security Directory Integrator server in the Name
field.

2. Enter the host name or IP address of the computer on which the IBM Security
Directory Integrator is running in the Hostname field.

3. Enter the port number on which the IBM Security Directory Integrator server is
configured to run.

4. Select the desired authentication mode. If you selected the LDAP or Custom
authentication method, enter the username and password to be used for
authentication.

5. Click OK.

Modify a server
You can edit the information for an existing IBM Security Directory Integrator
server.

About this task

To edit an existing server:
1. Look at the displayed Server ID. If you want to change the Server ID, click

Change Server ID.
2. Type the Name for the server.
3. Enter the host name or IP address of the computer on which the IBM Security

Directory Integrator server is running in the Hostname field.
4. Enter the port number on which the IBM Security Directory Integrator server is

configured to run.
5. Select the desired authentication mode. If you selected the LDAP or Custom

authentication method, enter the username and password to be used for
authentication.

6. Click Cancel to exit the window without making any changes, or click OK to
save the changes.

7. Click Test Connection to see whether the connection to the server succeeds or
not based on the current settings.

Console Properties
Use the Console Properties window of AMC to manage configuration information
such as database configuration of AMC, SSL settings, Action Manager log rotation
frequency, and so on.

General

Use the General window of AMC to set log rotation frequency of Action Manager
in days.

SSL

Use the SSL window to configure SSL settings for AMC. The SSL settings apply to
AMC's SSL connection to the remote IBM Security Directory Integrator server. The
SSL properties that are exposed are only the AMC's keystore and the trust store
properties. If SSL is turned on in the remote server, an administrator needs to
make sure that the required certificate is imported in his store for the connection to
work. An administrator should import each remote server's certificate that he
wishes to connect to in his store.

Chapter 16. Administration and Monitoring 261

JDBC Properties

JDBC properties are used to define the connections settings to the Derby database,
or to other databases compatible with the Administration and Monitoring Console,
such as Oracle and MS-SQL Server. The AMC database stores AMC configuration
information, connection details, and Action Manager rules and results.

The IBM Security Directory Integrator AMC supports alternative databases in
addition to Derby. AMC bundles the Derby database. AMC communicates with its
database using the Java Database Connectivity (JDBC) protocol. JDBC is a generic
protocol and can be easily extended to other databases. AMC support for alternate
databases enables you to have AMC installed and communicating to an existing
database. The database stores Action Manager logs, results, and so forth. The
Integrated Solution Console Advanced -> Console Properties section groups the
JDBC properties to Derby or to another database. In the case of Derby, you can
configure the database to run in both embedded as well as network mode. The
default database is Derby and the default mode is network mode.

From this window you can:
v Select a database from the Database Type field, options are Derby, MS SQL

Server, Oracle and DB2.
v Type the a value for the JDBC URL in the JDBC URL field.
v Type the user name for the database in the Username field.
v Type the password for the database in the Password field.
v Type the JDBC driver name in the JDBC Driver field.

As for the JDBC URL and JDBC Driver parameters, the following table provides
some guidance:

Table 31. Driver parameters
Database JDBC URL JDBC Driver Driver .jar file

Derby jdbc:derby://host:port/database [;create=true |
create=false]

org.apache.derby.jdbc.ClientDriver derby.jar

MS SQL
Server (2005)

jdbc:sqlserver://host:port; databasename=database com.microsoft.sqlserver.jdbc.SQLServerDriver sqljdbc.jar

Oracle jdbc:oracle:thin:@host:port:database oracle.jdbc.driver.OracleDriver ojdbc14.jar

DB2 jdbc:db2://host:port/database com.ibm.db2.jcc.DB2Driver db2jcc.jar

Note:

1. Depending on the database selected the corresponding driver .jar file must be
copied to TDI_install_dir/lwi /libs.

2. Configuration of the Action Manager is also needed in order to specify the new
database from where it will work. The same .jar file must be added to
TDI_install_dir/bin/amc/ActionManager/jars and adjustments must be made
to the am_config.properties file.

3. If you decide not to use Derby, but one of the alternatives, keep in mind that
the database specified in the JDBC URL must already exist before you start
AMC (otherwise AMC won't be able to create one and populate it). This is not
needed if Derby is used because it supports the "create=true" option in the
JDBC URL, thus causing AMC to automatically create the database (if it does
not exist) when started.

262 IBM Security Directory Integrator: Installation and Administrator Guide

Solution Views
Use the Solution Views window to view, Add, Modify, and Delete Solution Views.
v To add a Solution View, click the Add button on the toolbar.
v To modify an existing Solution View, select the Solution View and click Modify .

Follow the steps in the Modify Wizard. Under Modify Solution View, click
Next to go to the next step, and click Finish when you have completed the
steps.

v To configure Access Control Lists for a Solution View, select the Solution View
for which you want to configure ACLs and select Configure ACLs... on the
toolbar.

v To delete an existing Solution View, select the Solution View you want to delete
and click the Delete button on the toolbar.

v To launch a separate panel to Add / Edit / Modify local AM variables for that
Solution View, click Local Variables....

Note: You must reload Solution Views created using the Auto Update option.

When you Modify a Solution View AMC checks to see if the Solution View was
created using Auto Update. If the Solution View selected for modification was
created using Auto Update, a message appears, saying:
The selected Solution View is marked for auto update.
Ensure that auto update is disabled to modify the Solution View.

Solution Views are listed in the Solution Views table. If a specific Solution View
was created using Auto Update, a >> short menu appears when you click on the
arrows up and to the right of the Solution View name. You can select Refresh
Solution View or Disable Auto Update. For Solution Views marked for auto
update, you must reload the config file and refresh the Solution View by clicking
the Refresh Solution View. If a user fails to refresh a Solution View created using
the Simple option and flagged for auto update, the Solution View may cause
inconsistencies in the AMC database. Inconsistencies in Solution Views that are not
updated could result in incorrect behavior by the Action Manager.

Configure ACLs
You can set the Access Control Lists (ACLs) for a user and associate that user with
a specific Solution View.

About this task
v To configure a user or users, select the user or users you want to configure and

click Configure Users on the toolbar.
1. Select the user you want to assign a role to from the User ID drop-down

menu.
2. Select the radio button next to the role or roles you want to assign the

selected user:
– Read - Allows the user to read Solution View details like ALs,

Tombstones, logs, properties belonging to the Config, and so on.
– Execute - Allows the user to read and start/stop AssemblyLines
– Admin - Grants the user Reader and Execute roles. This role also allows

users to delete logs and tombstones.
– Config Admin - Grants the user the ability to start and stop a Config,

modify the Solution View, and assign and modify ACLs for other users.
3. Click Apply.

Chapter 16. Administration and Monitoring 263

v To remove an existing user, select the user from the table and click Remove.

When you are finished making changes, click Apply.

Local variables
You can learn to work with local variables with the information provided here.

Select Solution Views from the AMC left hand navigation pane. The Solution
Views window appears. Select Local Variables from the toolbar. In the Local
Variables window, you can select and Add, Modify, or Delete local variables for a
Solution View.

The Action Manager triggers and actions must provide support for local variables
that you can set or increment using rules and actions. Local variables can be used
as triggering conditions for other rules. For example, a local variable can be set to
a value of 1 and then can be incremented for every occurrence of the event and the
local variable (in this example, the number 1 set to increment for every occurrence
of the event) - the local variable can trigger the rule "Terminate AssemblyLine".
When the variable reaches a value of 10, you can configure a new rule to be
triggered. The new rule could start a new AssemblyLine on a different server. Set
these "local", AM-specific variables to a "Solution View". That means that the one
variable created in a rule belonging to one Solution View can only be used in that
Solution View's rules and is not accessible to rules of another Solution View.

Add a Solution View
You can give users access to information in the configuration file without granting
them the ability to edit the configuration file directly.

About this task

Administrators can use a Solution View to filter a configuration file for specific
information so that only certain information within the configuration file is
displayed. You can create multiple Solution Views for each Config, with each view
exposing different information contained in the configuration file.

To Add a Solution View, select Solution View and select Add on the toolbar of the
Solution Views window.
1. Enter view details:

a. Enter a name for the Solution View in the Solution View Name field.
b. Enter a description of the Solution View in the Description field.

2. Select the Server and Configs (configuration file) you want to use to create a
Solution View:
v From the Server menu, select the IBM Security Directory Integrator server

containing the configuration file you want to use to create a Solution View.
This menu is empty if no IBM Security Directory Integrator servers have
been added to the Administration and Monitoring Console.

v Select the configuration file you want to use to create a Solution View from
the Configs list. The menu contains all currently loaded Configs.

Note: Click the View config files button to go to the Config files window.
You can perform load or unload operations for the configs in this window.

3. Click Add on the Solution Views toolbar.
a. Type the name of the solution view you want to create in the Solution

View Name field.

264 IBM Security Directory Integrator: Installation and Administrator Guide

b. Type an optional Description for the Solution View you are creating.
c. Select the Server that contains the configuration file and AssemblyLines you

want to use for creating a Solution View.
d. Select the configuration file you want to use from the Configs list.
e. Enable or disable Auto Update.

When the AssemblyLines or properties for a configuration change, Auto
Update automatically changes the Solution View.

Note: When Auto Update is selected, you cannot edit the Solution View
you created with Auto Update on, nor can you create Rules and Triggers for
Solution Views made while Auto Update is on. If you want to edit the
Solution View or add Rules and Triggers, you must disable Auto Update.
The users would have to disable the auto update functionality in order to
be able to create a Rules and triggers for Solution Views marked for auto
updation.Review any changes to the config in Solution View by using the
Refresh button on the Solution View window. This button is only be visible
to configs with auto-update set to true. Any config created manually using
the Create Solution View wizard has the auto-update flag set to false.

Note: You must reload Solution Views created using the Auto Update
option. Use the Refresh Solution View in the Solution Views window. For
Solution Views marked for auto update, you must reload the config file and
refresh the Solution View by clicking the Refresh Solution View. If a user
fails to refresh a Solution View created using the Simple option and flagged
for auto update, the Solution View may cause inconsistencies in the AMC
database. Inconsistencies in Solution Views that are not updated could
result in incorrect behavior by the Action Manager.

4. Use the following options in creating a solution view:

Simple
Create a Solution View with common default options.

Auto Update
For Solution Views marked for auto update, you must reload the config
file and refresh the Solution View.

Create Solution View from published solution.
Creates the Solution View from the published solution as specified in
the IBM Security Directory Integrator Configuration Editor (CE). This
option requires that your active configuration instance have a published
solution associated with it, and also requires an IBM Security Directory
Integrator 7.0 server.

Create Solution View with all AssemblyLines exposed.
Creates a Solution View with all AssemblyLines from the config
instance exposed, and no properties and no Health AL defined. Use
this option for a quick start (useful for development purposes).
Available for IBM Security Directory Integrator 6.0 and later servers.

Create Solution View with all AssemblyLines exposed and all properties
exposed.

Creates a Solution View with all AssemblyLines from the config
instance exposed, and all properties and no Health AL defined. This
option does not expose the Java properties. Available for IBM Security
Directory Integrator 6.1 and later servers. Use this option for a quick
start (useful for development purposes).

Chapter 16. Administration and Monitoring 265

Create Solution View with all AssemblyLines exposed and all User
properties exposed.

Creates a Solution View with all AssemblyLines from the config
instance exposed, and all properties and no Health AL defined. This is
similar to a quick start type of option. This option is disabled for IBM
Security Directory Integrator 6.0 servers (because IBM Security
Directory Integrator properties are not available in IBM Security
Directory Integrator 6.0 Servers)

Note: In order to be able to see user defined properties in the Property
Stores panel you should do either of these:
v Place the .properties file in the folder containing the configuration

file
v Specify an absolute path to the properties file when creating the

property store in the CE (New Property Store > Connector tab >
Configuration tab > Collection path/URL parameter)

5. Click OK to finish creating the Solution View.

Config files (allows loading/reloading of configurations)
You can know more about Config files and learn to work on those with the
information provided here.

To reach the Config Files window, and to access options for loading, reloading,
unloading, and refreshing of config files, select Solution Views in the left
navigation area. Select a server and a config file, then click the View Config Files
button. This launches the Config Files window. This window displays loaded
Configs and the Configs in the configs folder of the remote IBM Security Directory
Integrator server. When AMC is connected to an IBM Security Directory Integrator
server, the Config Files window shows a listing of all files in the remote config
folder (whether the files are valid IBM Security Directory Integrator config files or
not). You should perform Load operations on valid IBM Security Directory
Integrator Config files only, otherwise an error message displays in AMC. The
status Loaded or Unloaded displays with green (Loaded) and red (Unloaded) icons
in the Status column. You can select one or more configs from the Select column of
the Confi files table. Once you have selected a config, you can Load, Load As...,
Unload, Reload, or Refresh using the buttons at the top of the table. If you want
to load a password protected Config, select the Config and type the password in
the Password field.

Whether an action is successful or unsuccessful, a message displays after the action
(Load, Load with Run name, Reload, Unload, and Refresh) executes, describing the
outcome. For Load, Reload, and Unload, the new status for the configs that you
selected displays in the Status column.

Note: You must have superadmin or config admin privileges to perform these
actions.
v To load Configs, select the configurations you want to load and click Load.
v To load multiple instances of one Config, select the config you want to load and

click Load As.... The Custom Load window opens, allowing you to specify
Config File, Config Run name, Config Password, and Property Store Value.

v To unload Configs, select the configurations you want to unload and click
Unload.

266 IBM Security Directory Integrator: Installation and Administrator Guide

Note: Loading a server does not automatically start the AssemblyLines
associated with the selected Config. Only those AssemblyLines designated as
AutoStart starts upon loading.

v To reload Config, select the loaded configurations you want to reload and click
Reload. You can only reload a configuration that has the status of Loaded.

v To refresh Configs, click Refresh. Information for all of the configs in the table is
redisplayed.

v Click Close when you are finished making changes.

Note: Users must maintain data integrity.
v For example, if a Solution View and rules have been created for a config named

config1.xml, and with a run name of ABC, do not load a different config, for
example, config2.xml, with the name ABC either as a solution name or a run
name.

v If you want to reuse Solution Views that you created using a specific run name
and set of property files, you must unload this config using the same run name
and property files.

Custom load:

You can use AMC to load multiple config instances by performing the listed steps.

About this task

The IBM Security Directory Integrator server supports loading multiple instances
of the same config with different run names. If you load config instances using
Load As..., you can use these configs to create Solution Views and Rules.
1. From the Welcome page, select Servers -> Config Files.
2. Click Load As....

The Custom Load window appears.
a. Select the Config File from which you want to create multiple instances and

click Go.
b. Type the Config Run name.
c. Type the Config Password.
d. Type the Property Store Value for each Property Store Name.

3. Click OK to use the values you have entered to create an instance of the config
with the Run name you have specified. After an instance of the config is
created, you are returned to the Load Reload window.

4. Click Cancel if you do not want to create the config with the values you have
specified in the Custom Load window.

Monitor Status and Action Manager
You can know what all actions you can perform with Monitor Status through the
information provided here.

If you have not done so already, expand the Monitor Status category in the main
navigation area of the Administration and Monitoring Console.

Do one of the following:
v To view information about each Solution View, see the Monitor Status table.

Information regarding the Solution Views, such as Action Manager Status,

Chapter 16. Administration and Monitoring 267

Health Check Result and Health Check Status, display. You can also display
Solution View Details, Server Information, and Show Preferred Views.

v To add, edit or delete Action Manager rules, click “Action Manager” on page
272.

Monitor Status
You can get displayed high level information about each preferred Solution View.

This window displays the views selected on the Preferred Views window accessed
from Advanced -> Preferred Solution Views. High level information , such as:

Action Manager Status
Displays the status of the Action Manager rules for the selected Solution
View: A blue exclamation mark indicates that no Action Manager rules
have been triggered recently. An yellow triangle containing an exclamation
mark indicates that an Action Manager rule has been triggered recently.

Health Check Result
Displays the health check result obtained from the healthAL.result final
work entry attribute in the Solution View's Health AssemblyLine. This
value is displayed as text.

Health Check Status
Displays the health check status obtained from the healthAL.status
attribute in the Solution View's Health AssemblyLine.

Additionally, if you have designated a .gif file with the same name as the
returned status value in the Administration and Monitoring Console's
resources/amc_images/healthAL directory, the .gif image is also displayed
in this column. For example, if the healthAL.result is returned as "Error",
and you have created an "Error.gif" in the above mentioned directory, the
Error.gif image displays in the table column.

From this window you can:
v View Solution View details - To view the details of a specific Solution View,

select the desired Solution View and click Solution View Details

v View IBM Security Directory Integrator Server Information - To view the details
of the server to which the Solution View belongs, click Server Information.

v Show Preferred Solution Views - Click Show Preferred Views to view preferred
Solution Views. This button is visible only if Preferred Solution Views are
defined. You can define preferred Solution Views on the "Preferred Solution
Views" window under User Preferences.

Solution View Details:

You can view the specific details of Solution view.

The Solution View details panel in turn provides deeper view of the details specific
to a Solution View which an administrator can take a look at and take action upon.

This window contains two tables. The top table displays the AssemblyLines
associated with the selected Solution View and the status of each Solution View.
The bottom table displays log information about recently triggered Action Manager
rules.

When you are through making changes, click Close.

268 IBM Security Directory Integrator: Installation and Administrator Guide

Solution View Details Table:

The Solution View Details table contains the listed columns.

Columns

Select Select the radio button next to the AssemblyLine on which you
want to perform an action.

AssemblyLines
Displays the name of the AssemblyLine.

Status Displays the AssemblyLine's status; for example, Running or
Stopped.

Start Time

AssemblyLine is running
Start Time is when the running AL started. Start Time is
based on the running AL.

AssemblyLine is stopped
The time when the last run of the AL started. Start Time is
based on the most recent tombstone entry for the AL.
(Available only with IBM Security Directory Integrator
servers).

Last Stop Time
The time when the last run of the AL terminated. Stop Time is
based on the most recent tombstone entry for the AL. (Available
only with IBM Security Directory Integrator servers).

Statistics
Displays the current statistics of the running AssemblyLine.

Actions

You can choose the operations you want to perform from the tool bar at
the top of the table or using the Select action drop-down menu, such as:
v View Tombstones - Select the AssemblyLine you want to view and click

the View Tombstones button
v View Logs - Select the AssemblyLine you want to view and do one of

the following:
– Click the View Logs button on the toolbar.
– Select View Logs from the Select action drop-down menu and click

Go.
v Manage Properties - Select the radio button next to the AssemblyLine

with properties you want to manage and click the Manage Properties
button on the toolbar.

v Start AssemblyLine -
1. Select the AssemblyLine you want to start
2. Click the View pop-up button
3. Click Start AssemblyLine.

v Stop AssemblyLine - Select the AssemblyLine you want to stop and do
one of the following:
1. Select the AssemblyLine you want to stop
2. Click the View pop-up button
3. Click Stop AssemblyLine.

Chapter 16. Administration and Monitoring 269

Note: From IBM Security Directory Integrator v7.1 a new option is
available - "Stop AssemblyLine gracefully". When selected the
AssemblyLine will be stopped in a new Thread. Stopping AssemblyLine
gracefully is not available for IBM Security Directory Integrator servers
earlier than v7.1.

v Solution View Details - Click the Solution View Details button. Select
the component you would like to view, for example, AssemblyLines.

Start AssemblyLine

Run the selected AssemblyLine.

Start AssemblyLine synchronously
AMC waits for the AL to terminate and shows the status of the run AL
periodically. The output schema attributes of the AssemblyLine after its
termination are viewable for synchronous AL runs.

Start AssemblyLine in simulate mode

The Assembly Line executes all components except for the connectors in
the add, update, and delete modes. In essence, putEntry, modEntry and
deleteEntry methods of connectors are not invoked in simulate mode. As a
result, an Assembly Line running in simulate mode does not perform any
additions, modifications, or deletions on third party repositories. For more
information on simulate mode, see the corresponding section in Configuring
Directory Integrator.

View Tombstones

If you have tombstones enabled on the remote IBM Security Directory
Integrator server, the Administration and Monitoring Console can display
the tombstone entries for terminated AssemblyLines. This window displays
useful information about tombstone entries, such as when the entry was
changed to the tombstone state.

Delete Tombstones

On the Monitor Status window, select an AssemblyLine. Select the arrow
to the right of the AssemblyLine and select Delete Tombstones from the
menu. This launches the Delete Tombstones window. The component
details section of this window identifies the Solution View and
AssemblyLine that are being worked on. In the choose delete criteria
section, select one of the options to specify which tombstones you want to
delete:
v Select All Tombstones to delete all of the tombstones for the selected

AssemblyLine.
v Use Start Date and End Date to specify the date range from which the

tombstones are to be deleted. AMC calculates the number of days from
the selected date to the current date. AMC then deletes the tombstones
generated for the calculated number of days.

v Use Number of entries to return to indicate a whole number indicating
the number of recent tombstones to delete. When you click Delete, a
confirmation message appears. When you confirm, AMC executes the
delete command.

View Logs

Logs for a given AssemblyLine are displayed on the View Logs
window.Monitor Status -> Solution View Details -> View Logs to view

270 IBM Security Directory Integrator: Installation and Administrator Guide

the list of log files for the selected AssemblyLine, click the radio button
next to the log you want to view and click View Logs.

Note: In order to view an AssemblyLine log in the Administration and
Monitoring Console, the AssemblyLine must log using the SystemLog
logger.

Action Manager results table:

You can know about the Action Manager Results table columns and how to
perform operations on Action Manager Results.

When a rule set in the Action Manager is triggered, information about the violation
is logged, such as the source of the violation, a description of the error and the
time at which the violation occurred. These details are displayed in the Action
Manager Results table.

Columns

The Action Manager Results table contains the following columns:

Select Select the radio button next to the message on which you want to
perform an action.

Source
Displays the name of the Action Manager rule that was triggered.

Severity
Displays the severity of the message.

Message
Displays the message associated with the Action Manager action.

Description

Displays additional information about the message.

Timestamp

Displays the time at which the Action Manager rule was triggered
and the message was generated.

Actions

Select the result or results you want to delete and click Delete.

View Components:

The View Components operation allows you to view the different connectors,
function components and so froth configured in the selected AssemblyLine. N

Note: Branching components (IF, SWITCH, etc.) and Script components are not
displayed. This is intentional design - attention is focused on Connectors/Function
Components which are the key items.

Show Preferred Solution Views:

Preferred Solution Views are the default Solution Views that are displayed on
Monitor Status window.

Refreshing Solution View Details in AMC
You can use the instructions provided here to change the refresh interval.

Chapter 16. Administration and Monitoring 271

The Solution View Details window is refreshed after a set interval of time to view
the current AssemblyLine status. By default, the refresh rate is set to 600 seconds.
The Integrated Solutions Console administrator has the privilege to change the
refresh interval.

To change the refresh interval:
1. Go to the login page of AMC.
2. Type your user name and password, and click Log in. The Welcome page of

Integrated Solutions Console appears.
3. In the left navigation tree, click Settings -> Manage Global Refresh.
4. In the Manage Global Refresh window, click the Monitor Status link.
5. Change the refresh configuration settings and click OK.

Action Manager
You can add, delete or modify rules, triggers and actions to be performed as a
result of rules execution and triggering conditions.

Add/Edit configuration rules:

You can add or edit configuration rules through this window.

Using the settings on this window you can create an “Action Manager” on page
243 (or modify an existing one) for the current Solution View.

A rule consists of two parts:
v The condition under which the rule is to be invoked, called a "trigger."

Some examples of triggers are Server API failure, AssemblyLine failure, or
failure of the AssemblyLine to run at the specified intervals.

v The set of alternate actions to be performed when the trigger is encountered.

Configuration rules settings:

This window is concerned with the first part of the rule: defining triggers. You can
select a name, description, and trigger type.

Name
Enter a name for the rule. If you are adding a rule, this field is required.

Description
Enter an optional description of the rule.

Trigger type
The trigger type defines the conditions under which a rule is invoked.
From the drop-down menu, select a trigger type:

No trigger
Rule has no triggering condition.

On AssemblyLine termination
Rule is triggered when the specified AssemblyLine is terminated.

On Config Load
Rule is triggered when the Action Manager receives a Config load
event for this particular config.

On Config Unload
Rule is triggered when the Action Manager receives a Config
Unload event for this particular config.

272 IBM Security Directory Integrator: Installation and Administrator Guide

On Query AssemblyLine result
Rule is triggered when the last "work" entry of the specified
AssemblyLine contains an attribute matching a given condition
and value.

On server API failure
Rule is triggered when the Action Manager is unable to connect to
the remote server using the Server API. This rule is triggered only
once. The rule resets when it detects that it can reconnect to the
server using the Server API.

On received Event
Rule is triggered when the Action Manager receives an event that
meets the criteria specified in the Event type, Event Source and
Event Data fields.

On Property Trigger
Rule is triggered when the specified property meets the
determined Property name, Condition and Value specifications.

On Local Variable
Rule is triggered when the specified variables meet the specified
condition. The Action Manager periodically checks for this
property.

Note: This rule gets triggered only once, and gets reset back to
ready state only when Action Manager detects that this variables
does not meet the specified criteria any longer. The rechecking
ensures that the rule is not repeatedly triggered for a single
occurrence of the triggering condition.

Inspect AssemblyLine Exit Code
Rule is triggered when an AssemblyLine terminates abnormally.
You can define an error object that Action Manager searches for in
the AssemblyLine Exit Code.

Time since last execution
Rule is triggered when the specified AssemblyLine has not run for
the determined period of time.

Timer Trigger
Rule is triggered continuously within the given interval.

Configure trigger:

Each trigger type has a different selection of settings. Check if you do not see some
of the fields listed below on your window, it is because the trigger type you
currently have selected does not support them.

Source
Enter the source you want to monitor.

Data Enter the data you want to monitor.

Property name
From the drop-down menu, select the property name you want to monitor.

Condition
Select the condition you want to use to compare the property and value.
Possible options are:
v equals

Chapter 16. Administration and Monitoring 273

v not equals
v greater than
v less than

Value Enter the value you want to monitor.

Configured actions:

You can add, delete, and modify actions through this table. You can also move
actions up and down in the table.

For every action in the configured actions table that you can select, there is a
column where you can enable the special trigger Execute on Error. Execute on
error performs the action you have selected when an error condition occurs.
v To select an action to manage, enable the radio button that precedes each action

that is listed.
v To add an action, click Add.
v To delete an action, select the action you want to delete and click Delete

v To modify an action, select the action you want to modify and click Modify .
v To move an action up one position in the table, select the action you want to

move and click Move Up.
v To move an action down one position in the table, select the action you want to

move and click Move Down.

Selecting Execute on Error carries out actions only if an error has occurred during
the execution of any of the previous actions. You can use such actions to take
corrective measures for handling any error that might have occurred during the
execution of any previous actions. Action Error variables: AMC and Action
Manager allow you to make the action error available in the various actions. At
any point of time, if an error occurs during the execution of any configured
actions, this error becomes available to you in the form of special reserved
variables. You can then use these reserved variables in other actions you have
configured. When the following actions are executed, Action Manager replaces the
string %Action_Error% by the actual error that occurred during the execution of
the previous actions. If no error occurs, the variable %Action_Error% is not be
replaced and stays as it is.
v Send Email
v Execute command
v Send event action
v Write Log action

Add/Modify Action:

When a rule is triggered, the Action Manager executes the actions associated with
the rule. You can specify or modify the actions you want Action Manager to take
when the rule is triggered.

From the drop-down menu, select an action type, and configure it. Click OK when
you are finished.

Start AssemblyLine
This action starts an AssemblyLine. If you select this action, you must
specify the name of the AssemblyLine you want to start and its associated
Config (and possibly the Config's password).

274 IBM Security Directory Integrator: Installation and Administrator Guide

Server This is a drop-down list of configured Servers. LocalServer means
the Server on the computer Action Manager is executing.

Select from remote config folder
Check box; if enabled, queries the remote Server for available
Config files. The Config files displayed are those present in the
folder whose path is specified for the api.config.folder property in
the global.properties file.

Config name
Enter the Config to which the AssemblyLine in the AssemblyLine
field belongs. If Select from remote config folder is checked, you
are presented with a list of available Config files on the remote
Server, if unchecked, you must fill in the name of a
locally-available Config file.

This field is required.

Config password
If required, enter the Config password for the selected Config file.
This field is applicable only if the config is password protected.

AssemblyLine
Enter the name of the AssemblyLine to start.

Configure AssemblyLine Operation
This hyperlink launches the 'Select Operation' dialog. If the
AssemblyLine has been defined with one or more custom
Operations, this dialog enables you to select such an Operation.
Subsequently, you are prompted for the AssemblyLine's
Initialization attributes and Operation attributes for this Operation.
This label is shown only for IBM Security Directory Integrator 6.1.X
and IBM Security Directory Integrator servers if configured and is
not applicable for IBM Security Directory Integrator 6.0.

Stop AssemblyLine
This action stops an AssemblyLine. If you select this action, you must
specify the name of AssemblyLine you want to stop and its associated
Config.

Server This is a drop-down list of configured Servers. LocalServer means
the Server on the computer Action Manager is executing.

Select from remote config folder
Check box; if enabled, queries the remote Server for available
Config files.

Config name
Enter the Config to which the AssemblyLine in the AssemblyLine
field belongs. If Select from remote config folder is checked, you
are presented with a list of available Config files on the remote
Server, if unchecked, you must fill in the name of a
locally-available Config file.

This field is required.

AssemblyLine
Enter the name of the AssemblyLine to stop.

Enable/Disable Rule
Select the Enable/Disable Rule to enable or disable an Action Manager
rule.

Chapter 16. Administration and Monitoring 275

Rule name
Select the name of the rule-Solution View pair that you want the
action "Enable/Disable Rule" to execute. In previous versions of
IBM Security Directory Integrator, you selected the rule name
instead of a rule-Solution View pair, which is a feature available in
the current version. This option belongs to the action
"Enable/Disable Rule."

State Select the desired state from the drop-down menu. If you want to
enable the rule in the Rule name field, select Enabled. If you want
to disable the rule, the select Disable.

Execute Rule
This action causes the Action Manager to execute the specified rule. Action
Manager then executes the actions associated with the specified rule. The
trigger condition associated with the specified rule is not required to be
satisfied.

Rule name
Select the name of the rule-Solution View pair that you want the
action "Execute Rule" to execute. In previous versions, you selected
the rule name instead of a rule-Solution View pair, which is a
feature available in the current version. This option belongs to the
action "Execute Rule."

Execute Command
The Execute Command action can execute the command entered in the
Command field on the target computer specified under Target Computer
Name. The command can be any generic command or an IBM Security
Directory Integrator specific command. The Execute Command can be used
when a user configures a rule to execute commands that are specific to the
target computer or to execute IBM Security Directory Integrator commands
that are not exposed by AMC. For example, in AMC we do not have
actions that can restart a server or load a config. The user has to perform
the restart or reload commands using either the IBM Security Directory
Integrator Server or Config Files windows. If any error occurs while
executing the command, it is captured in the %ACTION_ERROR%
variable, which can be further used by the Action Manager,

Target Computer Name
Name or IP address of the target computer. Action Manager
connects to the computer specified in this field. If neither a
computer hostname nor an IP address is specified, the command
executes on the computer where the Action Manager is running.

Port Port specifies the channel over which the Action Manager can
connect to the target computer where the command is to be
executed.

Username
The user name is verified for authentication and authorization
when establishing a connection with the target computer.

Password
The password is verified for authentication and authorization
when establishing a connection with the target computer.

Keystore
Keystore path is entered and used in case certificate authentication
is required when connecting to the target computer.

276 IBM Security Directory Integrator: Installation and Administrator Guide

Keystore Password
Keystore password is required when certificate authentication is
mandatory for connection to the target computer.

Protocol
The protocol that is to be used for establishing a connection with
the remote machine. Protocol can have the following values,
WINDOWS, RSH, SSH OR REXEC (Windows, remote shell, secure
shell, or remote execution protocols).

Command
Command that is to be executed.

Notify Event
This action causes the Action Manager to send an event with the specified
details to the IBM Security Directory Integrator server associated with the
current Solution View. To add this action to the rule, select Notify event. If
you select this action, you must specify an event type.

Event type
Enter an event type. This field is required.

Source
Enter a source for the event type.

Data Enter data for the event type.

Modify property
This action causes the Action Manager to modify a property based on a
specific operation and value. If you select this action, you must also select
a value.

Property name
Select the property you want to modify from the drop-down menu.

Operation
From the drop-down menu, select the operation you want to use to
modify the property. Possible options are:
v Set
v Increment
v Decrement

Value Enter the desired value. This is a required field.

Copy property value
This action causes the Action Manager to copy the value of the source
property to the destination property.

From property
From the drop-down menu, select the property you want to copy
from.

To property
From the drop-down menu, select the property you want to copy
to.

Write to log
This action creates a log of the Action Manager rules that have been
invoked, according to the specified severity, message and description. This
log can be viewed under Monitor Status, on the "Solution View Details"

Chapter 16. Administration and Monitoring 277

window in the AM results table. Having at least one log action for every
rule is recommended. If you select this action, you must enter a message in
the Message field.

Severity
Select the desired severity from the drop-down menu. Possible
options are:
v Severe
v Warning
v Info
v Fine

Message
Enter the desired message.

Description
Optionally, enter a description.

Send Email
This action causes an email to be sent to the recipient you specify. You
supply the content of the email. Along with the content, the Action
Manager provides other details before sending the mail. In the content
input area as well as in the subject line, you can specify the variable
%EVENT_DATA% value. Specifying %EventData% inserts the actual value
of the Eventdata variable when the mail is sent. %Action_Error% can also
similarly be substituted here. If Attach Action Manager Log is enabled, the
Action Manager logs (as specified in the am_logging.properties file) are
sent as an email attachment. In the content input area, you can specify the
variable %EVENT_DATA% value. Specifying %EventData% in the content
puts the actual value of the Eventdata variable when the mail is sent.
%Action_Error% is also similarly be substituted here. If Attach Action
Manager Log is enabled, the Action Manager logs (as specified in the
am_logging.properties file) are sent as an email attachment.

Substitute variable for event data:

You can select data that is output from certain Action Manager triggers, and use
that data in certain actions that are triggered by a rule.

Select Action Manager from the left navigation pane or select Action Manager
from the Welcome screen. Under Action Manager, you can Add a rule to a
Solution View. You can name a new rule, and edit or delete an existing rule. You
can make Event Data available when configuring or sending that data to other
actions.

Use Action Manager to make event data available when configuring actions for a
trigger. In Action Manager, you can Add, Modify, or Delete a rule. When you add
a rule, you name the rule and select the Trigger type. AMC and Action Manager
make the data available to the triggered actions in the form of a reserved variable.
The action then uses the data that is stored in the variable. You can use this
reserved variable in any of the actions you have configured for this trigger.

The following trigger types can produce event data that can be consumed by
actions:
v On Start AssemblyLine: Event data is available as %Event_Data%.
v On AssemblyLine Terminate: Event data from On AssemblyLine Terminate is

available as %Event_Data%.

278 IBM Security Directory Integrator: Installation and Administrator Guide

v On Received Event: Event data from the received event is mapped as
%Event_Data%.

v On Local Variable: Event data from the Local variable event is mapped as
%Event_Data%.

v On Config Load: Event data from the On Config Load event is available as
%Event_Data%.

v On Config Unload: Event data from the trigger would be available as
%Event_Data%.

v On query AssemblyLine result: Event data is available as %attribute_name %.
The %attribute_name% variable is replaced with the details about the actual
attribute from the last work entry.

v Inspect AssemblyLine Exit Code: Event data is available as %attribute_name %
and %Event_Data%.
– Inspect Error Object set to enabled: While configuring the Inspect

AssemblyLine exit code trigger, if the user enables Inspect Error Object (sets
the option to true), the %Event_Data% variable is replaced with actual error
data. The %attribute_name% variable is not available for actions.

– Inspect Error Object set to disabled: While configuring the Inspect
AssemblyLine exit code trigger, if the user sets the Inspect Error object to
disabled (sets the option to false), the %attribute_name% variable is replaced
with the details about the actual attribute from the last work entry. The
%Event_Data% variable is not be available for actions.

Triggers that can produce event data:

You can use the listed trigger types to produce event data that can be consumed
by actions.
v On Start AssemblyLine: Event data is available as %Event_Data%.
v On AssemblyLine Terminate: Event data from On AssemblyLine Terminate is

available as %Event_Data%.
v On Received Event: Event data from the received event is mapped as

%Event_Data%.
v On Local Variable: Event data from the Local variable event is mapped as

%Event_Data%.
v On Config Load: Event data from the On Config Load event is available as

%Event_Data%.
v On Config Unload: Event data from the trigger would be available as

%Event_Data%.
v On query AssemblyLine result: Event data is available as %attribute_name %.

The %attribute_name% variable is replaced with the details about the actual
attribute from the last work entry.

v Inspect AssemblyLine Exit Code: Event data is available as %attribute_name %
and %Event_Data%.
– Inspect Error Object set to enabled: While configuring the Inspect

AssemblyLine exit code trigger, if the user enables Inspect Error Object (sets
the option to true), the %Event_Data% variable is replaced with actual error
data. The %attribute_name% variable is not available for actions.

– Inspect Error Object set to disabled: While configuring the Inspect
AssemblyLine exit code trigger, if the user sets the Inspect Error object to
disabled (sets the option to false), the %attribute_name% variable is replaced
with the details about the actual attribute from the last work entry. The
%Event_Data% variable is not be available for actions.

Chapter 16. Administration and Monitoring 279

Actions that can access event data:

You can know more about Actions that can access event data through the
information provided here.

The actions executed for each of the above triggers can access the event data
produced by the triggers using the %Event_Data% variable. Every occurrence of
%Event_Data% is replaced with the actual event data for that trigger. The
following action types can use event data available from their respective triggers:
v Notify Event: Users can specify the %Event_Data% variable in the Data text field

only.
v Write to log: Users can see a log message that is logged to a database. If the log

message, after substitution for the %Event_Data% variable, exceeds 500
characters, the log message is truncated to the first 500 characters. This is
because the database has a limit of 500 characters only.

v Send E-mail: Any event data specified by %Event_Data% or error data specified
by %Action_Error% is substituted in the subject line of the email. Action
Manager appends other data about execution before sending the mail. You can
specify the variable %EVENT_DATA% value in the content textbox. Specifying
%EventData% in the content substitutes the actual value of the Eventdata
variable when the mail is sent. You can also similarly substitute %Action_Error%
here. If Attach Action Manager Log is enabled, the Action Manager logs (as
specified in the am_logging.properties file) are sent as an email attachment.

For any action being executed, such as the Send E-mail action, the Execute
command action, the Log action, the Start AssemblyLine action, and so on,
executes in response to the same trigger, the string of %Event_Data% automatically
gets replaced by the event data generated by that trigger.

View Rules Summary:

You can view the current Action Manager for the selected AssemblyLine.

Click View Rules Summary. The table lists all the defined rules, triggers and
actions associated with the Solution View. When you are done viewing, click
Close. Only those rules which are in Enabled state are listed here.

Property Stores
You can know more about Property Stores and how to use them using the
information provided here.

If you have not done so already, expand the Property Stores category in the
navigation area of the Administration and Monitoring Console. To add or edit
Java, Solutions, Global, System, User Property and Password Store properties, click
Advanced > Property Stores.

When you are done entering the desired the property values, click OK to save
your changes.

The order in which these Property Stores are listed is significant. The Property
Stores are evaluated from top to bottom, but the last definition of a given Property
is the one that is used. By default, the system is set up such that properties defined
in a solution-specific properties file called solution.properties (residing in the
Solution Directory) override corresponding ones in the system-wide
global.properties file.

280 IBM Security Directory Integrator: Installation and Administrator Guide

Note: Certain System Properties and Java Properties are read-only. These read-only
properties are shown in the respective Property Stores. Trying to modify these
properties has no effect.

Select Solution View

This window allows you select a Solution View. The menu contains only those
Solution Views for which you have any type of access rights amongst Read,
Execute, Config_Admin or Admin. Nothing is displayed if you do not have access to
any of the Solution Views being created. Once you have selected a view, click Set.

After you select a Solution View, you can manage properties by clicking on the
other property tabs, such as Solution Properties and Global Properties.

Solution Properties

This window allows you to add, edit and delete properties in the Solution
Properties list.

Global Properties

This window allows you to add, edit and delete Global Properties.

Java Properties

This window allows you to add, edit and delete Java properties.

System Properties

This window allows you to add, edit and delete System properties.

Password Store

This window allows you to add, edit and delete properties in the Password Store.

User Property Store

This window allows you to add, edit and delete properties in the User Property
Stores list.

The Property Stores drop-down menu contains a list of property stores configured
by the user. Global, Solution, Java and Password Stores properties are not included.
Select the property store whose associated properties you wish to view, add, edit
or delete.

Log Management
You can know more about Log Management and how to use them using the
information provided here.

If you have not done so already, expand the Advanced category in the navigation
area of the Administration and Monitoring Console. To delete log files for all
AssemblyLines, for a particular AssemblyLine, or to delete by date, click Log
Management. When you select a new Solution View, you can click Refresh.
Clicking Refresh lists all of the AssemblyLines that belong to the Solution View
you just selected.

Chapter 16. Administration and Monitoring 281

This window allows you to select the name of a Solution View. The AssemblyLines
listed for deletion are taken from the Solution View you choose. You can choose to
delete log files for all AssemblyLines, or for a particular AssemblyLine. You can
also specify logs to delete by date. To manage display and deletion of logs:
1. Select the Solution View with the AssemblyLines whose logs you want to clean

up from the Solution View menu.
2. In the Choose Component section, do one of the following:

v Select the All AssemblyLines radio button to delete the logs of all
AssemblyLines within the selected Solution View.

v Select the Specific assembly line radio button to delete only those logs
associated with a specific AssemblyLine.

3. If you selected Specific assembly line, select the AssemblyLine with logs you
want to delete from the menu.

4. In the Display Log Files section, do one of the following:
v To delete all logs belonging to the selected AssemblyLine(s), select All.
v To delete logs within a date range, use the Start Date and End Date options.

Logs created within the two dates specified will be deleted. Enter the desired
dates in the date field; its format is locale-dependent. You can also use the
Calender button, which lets you specify a date by choosing from a calender.

v For previous versions of IBM Security Directory Integrator servers, to delete
logs older than a certain date, select the End Date option. All logs older than
the date specified are deleted.

v To preserve your most recent logs, select the Display first radio button.
Enter the number of recent logs you want to save. Used to specify that keep
those log files that are recent and list the others. You draw the line on recent
using the edit box. If you type 20, you are telling AMC to keep the most
recent 20 log files and list the rest of the files in the table so that they are
available for deletion. If you type the number 10, the 10 most recent logs are
saved.

5. In the Logfiles table, a list of log files displays. In the Select column, select any
logs you want to delete and click Delete. In the Select Action menu, you can
choose any of the following options:
v Export data
v Change all selected
v Collapse table
v Restore
When you have selected one of these options, click Go.

6. From the display that results from the criteria you have selected, choose the
logs you want to delete and click Delete to remove the specified logs. When
you are finished deleting logs, click Close to exit this window.

Preferred Solution Views
You can select the Solution Views that you want to be loaded by default in the
monitor window, using the Preferred Solution Views panel.

The "preferred" Configs are shown by default in the monitor status page when it is
opened. If there are no views defined then this panel will simply display a
message saying that there are no views. Once a set of views are defined then a
user can set what he would like to see as the default views. This panel can be
viewed by any user who has a set of views assigned to him by the superadmin.

282 IBM Security Directory Integrator: Installation and Administrator Guide

You can make a Solution View preferred by selecting its checkbox in the Select
column, and click Enable As Preferred.

Conversely, you can disable the Preferred status for a Solution View by selecting its
checkbox in the Select column, and click Disable As Preferred.

AMC and AM Command line utilities
You can know more about AMC and Action Manager command line utilities using
the information provided here.

A number of command line utilities are included with AMC and its associate
product, the Action Manager (AM). These command line utilities help in installing,
uninstalling or re-installing the AMC war file. There are also scripts for backup
and restore, as well as a migration script. The migration script is for migrating to
future versions of AMC and AM, and not for migrating from previous version to
the current version. All these scripts get installed in the TDI_install_dir/bin/amc
directory.

install The install.bat (.sh) script is used to deploy the AMC console module on
ISC SE or IBM Dashboard Application Services Hub. The script relies on
the setupCmdLine script for setting up the necessary environment variables
and the tdiISCHome script for determining the location of the ISC runtime
and also the type of runtime being used, that is, whether it is the
embedded Web platform or IBM WebSphere Application Server. This script
is called by the installer.

Usage: install

This script does not take any parameters.

uninstall
The uninstall.bat (.sh) script uninstalls the AMC console module from ISC
SE or IBM Dashboard Application Services Hub. The script relies on the
setupCmdLine script for setting up the necessary environment variables and
the tdiISCHome script for determining the location of the ISC runtime and
also the type of runtime being used, that is, whether it is the embedded
Web platform or IBM WebSphere Application Server.

Usage: uninstall

This script does not take any parameters.

backupamc
The backupamc.bat (.sh) script backups all the configuration related
information of AMC (configuration files, logs, and so forth.) A
backup_tdiamc folder will be created inside the backup directory.

Usage: backupamc [-d folder_to_create_backup_in]

If the -d option is not specified, the files are copied to the
TDI_install_dir/bin/amc/ActionManager/backup_tdiamc directory.

The following files are backed up:
1. amc.properties

2. logging.properties

3. amcdbschema.xml

Chapter 16. Administration and Monitoring 283

4. amcdbhandler.properties

restoreamc
The restoreamc.bat (.sh)script will restore the backed up files to a fresh
AMC deployment. The backed up files need to be first obtained by using
the backupamc script for this to work.

Usage: restoreamc

This script does not take any parameters.

migrateamc
This provides a single backup, restore, uninstall and install command. This
will backup the old AMC data, uninstall the old AMC plug-in archive,
installs the new AMC and restores the old AMC configuration data.

This script requires the new AMC plug-in archive to be copied into the
TDI_install_dir/amc directory.

Usage: migrateamc.bat [-d backup_directory]

start_tdiamc
This script is a convenient wrapper utility to start AMC. This script
internally starts the ISC runtime. If the runtime is the embedded Web
platform then it calls the lwistart command, else if the runtime is IBM
WebSphere Application Server then it calls the startServer server1
command. Before starting the ISC runtime the script calls the
startNetworkServer command, which is used for starting the Derby
database in secured network mode. If the database type is anything other
than Derby, then this script only starts the ISC Runtime.

On Windows platforms:
Usage: start_tdiamc [Service name]

If a service name is passed, the service will be started instead of
calling lwiStart.

On Unix Platforms:
Usage: start_tdiamc

stop_tdiamc
This script is a convenient wrapper utility to stop AMC. This script
internally stops the ISC runtime. If the runtime is the embedded Web
platform then it calls the lwistop command, else if the runtime is IBM
WebSphere Application Server then it calls the stopServer server1
command. After executing the command the script makes a call to the
stopNetworkServer script to stop the Derby database. If the database type
is anything other than Derby this scripts only stops the ISC Runtime.

On Windows platforms:
Usage: stop_tdiamc [Service name]

If a service name is passed, the service will be stopped instead of
calling lwiStop.

On Unix Platforms:
Usage: stop_tdiamc

startAM
The Action Manager is started using the startAM.bat(.sh) script located in
the TDI_install_dir/bin/amc directory.

284 IBM Security Directory Integrator: Installation and Administrator Guide

Note: The script has the Classpath defined for all the jars required by the
Action Manager. There are two variables, CLASSPATH and
DB_CLASSPATH. The DB_CLASSPATH has the path separated list of .jar
files required for achieving JDBC Connectivity with the database. When
AMC is configured to use Oracle, MS SQL Server or DB2 the
corresponding JDBC .jar files of these databases should be added to the
DB_CLASSPATH variable.
On Windows, the script accepts an optional service name parameter that
can be used to start an already registered service:
startAM.bat [service name]

stopAM
The Action Manager is stopped using the stopAM.bat(.sh) located in the
TDI_install_dir/bin/amc directory. This script uses the processID of the
started AM to kill it. The processID is obtained by the startAM script and
is stored in a file, which in turn is read by the stopAM script.

On Windows, the script accepts an optional service name parameter that
can be used to stop an already registered service:
stopAM.bat [service name]

startNetworkServer
This script is used for starting the Derby database server in network mode,
on port 1528. The port selected is different from the default port of Derby.

Usage: startNetworkServer

stopNetworkServer
This script is used for stopping the Derby database server in network
mode.

Usage: stopNetworkServer

setDBType
This script is used for setting the type of database that you are using. The
script sets the property namely DB_TYPE. If the DB_TYPE is set to Derby,
then on executing the startNetworkServer script the Derby database will
be started on the host and port that you specified in the
startNetworkServer script file. The setDBType also sets the database user
name and password. The database user name and password are required
by startNetworkServer to enable the BUILTIN security mechanism and to
add the user to the list of authorized users.

The setDBType script is called internally by the startNetworkServer and
stopNetworkServer scripts for setting the DB_TYPE and the DB_USER and
DB_PASSWORD properties.

backupamcdb
This script is used during the migration of an AMC database. The script
backs up the AMC database and has the data exported in an IBM Security
Directory Integrator defined XML format. This script is called by the
installer when you choose the migration path.

Usage:
backupamcdb -d folder_which_contains_AMC_backup

-p location_of_the_amc.properties_file

restoreamcdb
This script is used to restore the AMC database during migration. The
scripts are called by the installer when you choose the migration path.

Chapter 16. Administration and Monitoring 285

Usage:
restoreamcdb -d folder_which_contains_AMC_backup

-p location_of_the_amc.properties_file

backupam
This script is used for backing up the Action Manager properties files. The
script backs up the am_config.properties and am_logging.properties file.

Usage: backupam [-d backup_directory]

The archived info is created in the backup folder. If the -d option is not
specified the files are copied to the TDI_install_dir/bin/amc/
ActionManager/backup_tdiamc directory.

restoream
This script is used for restoring the properties files of Action Manager
which were backed up using the backupam script. The restore script
restores the am_config.properties and am_logging.properties files.

Usage: restoream [-d backup_directory]

If the -d option is not specified, the files are copied from the
TDI_install_dir/bin/amc/ActionManager/backup_tdiamc directory.

setAMCRoles
This script is used for mapping the user who is installing IBM Security
Directory Integrator AMC to the ISC admin and SDI AMC Admin roles.
This script is introduced in IBM Security Directory Integrator 7.0.

Once these roles are granted to the install user, that user has the
authorization to add new users and grant them with the necessary roles.
The install user becomes the administrator for the AMC console module.

Usage: setAMCRole username [OS Group]

The OS Group is an optional parameter while deploying AMC on ISC SE.

tdimigam
This script is used for migration of the am_config.properties file.

The usage for this command is:

tdimigam -f propfile [-b backfile] [-n newfile] [-v] [-?]
where:
-f propfile - The name of the file to migrate
-b backfile - Backup the original file with the specified name
-n newfile - Name to give the file that is migrated
-v - Enable verbose mode
-? - Prints the usage statement

Logging for this command is controlled by the tdimigam-Log4J.properties
file.

tdimigamc
This script is used for migration of the amc.properties file. The options of
this script are similar to those of tdimigam and tdimiggbl that are used for
migration of the am_config.properties and global.properties files
respectively.

The usage for this command is:

286 IBM Security Directory Integrator: Installation and Administrator Guide

tdimigamc -f propfile [-b backfile] [-n newfile] [-v] [-?]
where:
-f propfile - The name of the file to migrate
-b backfile - Backup the original file with the specified name
-n newfile - Name to give the file that is migrated
-v - Enable verbose mode
-? - Prints the usage statement

Logging for this command is controlled by the tdimigamc-Log4J.properties
file.

addAMCService
This script is used for adding AMC as a service on a system.

Usage: addAMCService Service_Name

On Windows the script registers the Generic Windows Service executable
(TDI_install_dir/bin/amc/amcwinservice.exe) from the IBM Platform
Integration Toolkit. The Generic Windows Service uses the configuration
file TDI_install_dir/bin/amc/amcwinservice.ini. That file specifies the
name of the service and the start/stop commands. The file is automatically
populated by the installer or the "addAMCService" script.

By default the file looks like this:
[Service]
ServiceName=$service_name$
WorkingDirectory="$install_dir$\bin\amc"
StartCommand=""$install_dir$\bin\amc\amcservice.bat" start amc am"
StopCommand=""$install_dir$\bin\amc\amcservice.bat" stop amc am"

This means that by default the AMC service runs both the AMC and the
Action Manager.

After you call "addAMCService", you can edit the .ini file to customize
which components are run by the service (both AMC and AM, just AMC
or just AM).

For example to run only the AMC, specify start and stop commands like
the following:
StartCommand=""$install_dir$\bin\amc\amcservice.bat" start amc"
StopCommand=""$install_dir$\bin\amc\amcservice.bat" stop amc"

To start/stop the service use the GUI "Services" utility (Control Panel ->
Administrative Tools -> Services) or the Service Controller command line
tool:
sc start <service name>
sc stop <service name>

Beware that in the "Services" utility the display name of the registered
service looks like this:
IBM Tivoli Directory Integrator Administration and Monitoring Console - myamc

where "myamc" is the service name that you specified as an argument to
"addAMCService.bat".

On UNIX the script appends a line like the following at the end of the
/etc/inittab system file:
<service name>::once:"<install dir>/bin/amc/amcservice.sh" start amc am

Chapter 16. Administration and Monitoring 287

To stop the service use the "amcservice.sh" script from the
TDI_install_dir/bin/amc folder:
amcservice.sh stop amc am

or just
amcservice.sh stop amc

if the service runs only AMC.

deleteAMCService
The script is used for removing AMC as a service from a system.

Usage: deleteAMCService Service_Name

setDerbyProps
The script sets the necessary Derby database properties that are used by
the startNetworkServer and stopNetworkServer scripts.

Usage: setDerbyProps

amcservice
This script starts/stops the whole Administration and Monitoring
configuration. The following configurations are supported:
v both AMC and AM
v only AMC
v only AM

Internally the script calls "start_tdiamc"/"stop_tdiamc" and
"startAM"/"stopAM". It is intended to be used when registering an
Operating System service.

Usage: amcservice [start|stop] [amc] [am]

Examples:
amcservice start amc
amcservice stop amc am

Example walkthrough of creating a Solution View and Rules
You can view the steps to create a Solution View, configure a rule and trigger it in
Action Manager.

It is assumed that IBM Security Directory Integrator is installed along with AMC.
The configuration SampleConfig.xml used in this example is the one that you are
supposed to create following the tutorial in the Getting Started, "Introducing IBM
Security Directory Integrator" > "Creating your first AssemblyLine". It should be
copied into the TDI_install_dir/configs folder, where TDI_install_dir is the
installation directory of IBM Security Directory Integrator. This solution reads data
from the 'examples/Tutorial/People.csv' file and writes it to 'examples/Tutorial/
Output.xml'.

This section illustrates all the steps to create a config view, configure rules, and
trigger this rule in Action Manager. It is assumed that IBM Security Directory
Integrator is installed along with AMC. The sample config (SampleConfig.xml) and
associated files are available in the downloads section and should be copied into
the TDI_install_dir/configs folder. This solution reads data from the sample.csv
file and writes to sample.xml.

288 IBM Security Directory Integrator: Installation and Administrator Guide

Steps
1. Start the IBM Security Directory Integrator server in daemon mode.
2. Start AMC using the following command - TDI_install_dir\bin\amc\

start_tdiamc.bat

3. Logon to the AMC console using the URL with the following syntax -
http://hostname:port/ibm/console using the default username and password.

4. After logging on to the AMC console, select the Servers on the navigation panel
and then choose the Server you wish to use. Press the Config files button and
the following panel is shown.

Select the SampleConfig.xml file and click the Load button.
5. Select the Solution View link of the navigation panel to create a solution view

for the loaded config. Select the Add button and the following panel will be
shown.

Chapter 16. Administration and Monitoring 289

Add a suitable name for the config, for example, SampleSolutionView. On
selecting OK, a message indicating that the Solution View SampleSolutionView
was created successfully will be shown.

6. Select the Action Manager link on the navigation panel to reach the Action
Manager rules configuration screen. Select "SampleConfigView" from the Select
solution views dropdown box. When clicking the Add button in the Configured
Rules section, the following panel will be shown.

290 IBM Security Directory Integrator: Installation and Administrator Guide

Enter a name, for example "rule 1". Select trigger type "On AssemblyLine
termination" and click the Add button in the Configured Actions section.

In the Select Action panel, select the "Write to log" option in the Action Type
combo box. Add the text "data copied to out.xml" in the Message text box and
click OK. The following rule panel will be shown.

Chapter 16. Administration and Monitoring 291

Clicking OK completes the creation of this rule and the AMC configuration
required for this example.

7. Start Action Manager using TDI_install_dir\bin\amc\startAM.bat. A thread is
created for the rule "rule1". which should be waiting for the termination of the
specified AL.

8. To trigger this rule, the "read" AssemblyLine of SampleConfig.xml needs to be
executed. Select Monitor Status on the navigation panel. On the Monitor Status
panel, select the SampleSolutionView and click on the Solution View Details
button. The following panel will be shown.

292 IBM Security Directory Integrator: Installation and Administrator Guide

9. Start the AL using the option shown above. The rule will be triggered and the
following status will be displayed on the Action Manager console.

On AMC, the Action Manager logs table on the Solution View Details panel
will be shown as below.

Chapter 16. Administration and Monitoring 293

294 IBM Security Directory Integrator: Installation and Administrator Guide

Chapter 17. Touchpoint Server

You can use Touchpoint server to provide access to IBM Security Directory
Integrator components. Refer to the information provided here to know more
about its implementation.

The Touchpoint Server provides access to IBM Security Directory Integrator
components (Connectors and AssemblyLines) through a ReSTful communication
protocol. Clients send HTTP requests to the Touchpoint Server in order to request
from an IBM Security Directory Integrator Server to create a Touchpoint Instance
which the client can then "talk" to.

A Touchpoint Instance is implemented using standard IBM Security Directory
Integrator Components and allows HTTP based clients to access third party
systems that IBM Security Directory Integrator can "speak" to. In this context the
Touchpoint Instance can be thought of as a "proxy" between a client application
and a remote service, as it allows clients to use a unified protocol for
communication to a variety of systems that don’t have an HTTP based interface.

Touchpoint concepts
You can refer to information provided here to learn more about different
touchpoint concepts.

In essence, the Touchpoint protocol is a provisioning protocol which gives access to
IBM Security Directory Integrator Connectors and AssemblyLines through HTTP.
When you create a Touchpoint, you get a "proxy" through which to work with a
remote system. Once the Touchpoint is created and configured, you only send
HTTP requests and you are completely isolated from the specifics of that system.

The sections below provide details about the different concepts associated with
Touchpoints.

Touchpoint Server
You can use the Touchpoint server to perform various tasks like storing
information, controlling instances. Refer the information provided here to know
more usages of Touchpoint server.

The Touchpoint Server is the application that stores information about the defined
Touchpoints in the particular domain. The Touchpoint Server is used to control the
remote Touchpoint instances. It is responsible for their configuration, starting and
stopping. The Touchpoint Server is provided as a service running inside the IBM
Security Directory Integrator Server.

Clients of the Touchpoint Server are using the Atom Publishing Protocol to access
details for the Touchpoint Providers, Touchpoint Types and Touchpoint Instances.
For more details on the defined schema see section “Touchpoint Schema” on page
306.

© Copyright IBM Corp. 2003, 2014 295

Touchpoint Provider
You can use the Touchpoint provider to create the instances. Refer the information
provided here to know more usages of Touchpoint provider and differences
between a Touchpoint server and provider.

A Touchpoint Provider is a server on which the Touchpoint Server is creating the
Touchpoint Instances. In our case a Touchpoint Provider can be any IBM Security
Directory Integrator Server version 7.1 or later. The Touchpoint Server is only able
to work with IBM Security Directory Integrator Servers, as any other Touchpoint
Provider is not supported.

The Touchpoint Server is shipped as an add-on to the IBM Security Directory
Integrator Server. It runs in the server's JVM which enables it to communicate with
the server through the Local Server API. This is why the IBM Security Directory
Integrator Server has been registered as a local Touchpoint Provider by default. In
order to register a Touchpoint Provider, representing a remote IBM Security
Directory Integrator Server, you must use the RMI settings of the remote server.
The registration for both a Local and a Remote Server is performed in the standard
Touchpoint Server configuration file.

Note: No user interface panels to configure the Touchpoint Server or Touchpoint
Providers currently exist in the Configuration Editor or the Webadmin tool, AMC.
All configuration must be done by means of XML configuration files.

For more details see section “Touchpoint Configuration” on page 310.

Once registered the Touchpoint Provider cannot be changed through the Atom
interfaces. Additionally the Atom interface hides some of the details specifying the
connection the remote IBM Security Directory Integrator Server. Those details are
only used by the Touchpoint Server in order to communicate with the Touchpoint
Provider and are not meant to be seen by the clients of the protocol.

Touchpoint Type
You can know about the categories of touchpoint types through the information
provided here.

A Touchpoint Type is an abstract notation that provides meta-information for each
Touchpoint Instance and determines its behavior. Every Touchpoint Instance has
exactly one Touchpoint Type, while there is no limit to how many Touchpoint
Instances can be created for a particular Type.

There are three categories of Touchpoint Types:

standard
This category corresponds to the IBM Security Directory Integrator
Connectors supported by the chosen Touchpoint Provider and start with
the prefix system. Every Touchpoint Provider has its own set of standard
Touchpoint Types, as it provides different Connectors to you. By choosing
any of these types, you specify that they will rely on the base Touchpoint
Template for the structure of their Touchpoint Instance (for details about
Templates see section “Touchpoint Template” on page 301). Furthermore,
the chosen Type determines the inheritance of Template's Service
Connector (the Connector working with a third-party system). For
example, if you need to read data from a RDBMS, the JDBC Connector can
be used. Hence, you will create a Touchpoint Instance with Type

296 IBM Security Directory Integrator: Installation and Administrator Guide

system:/Connectors/ibmdi.JDBC and configure it appropriately. These
Touchpoint Types support only the Provider and Initiator Touchpoint roles.

custom
This category represents custom Touchpoint Templates provided by you
and are distinguished by the prefix file. Instead of relying on the base
template that comes with IBM Security Directory Integrator, you can create
your own ones, tweaking the Touchpoint behavior according to your
needs. In exchange, though, they lose some of the flexibility offered by the
base Template. Once a custom Template has been created, the type of its
Connectors cannot be changed, limiting the created Touchpoint Instances to
always work with the same type of remote system. An example use of the
custom Touchpoint Type is if you need to work with several data sources,
for example, read data from a RDBMS and add information from an LDAP
server. This cannot be achieved by a single Touchpoint Instance relying on
the base Touchpoint Template. To solve this, you can create a custom
Touchpoint Template and use its corresponding Touchpoint Type (for
example, file:/template_file_name.xml) for creating a Touchpoint
Instance. The only limitation is that all subsequent Touchpoints created
from this Type will also work with a RDBMS and an LDAP server (since
the type of the Service Connector cannot be changed). These Types support
all Touchpoint roles.

virtual
This category consists of only one Touchpoint Type with name
virtual://Intermediary. Unlike the above Types, which are connected to some
actual resource (an IBM Security Directory Integrator Connector for
standard Types and a Template file for custom Types), this Touchpoint
Type is used for providing a way to create an Intermediary Touchpoint
Instance out-of-the-box. For this purpose it relies on the base Touchpoint
Template provided with IBM Security Directory Integrator. This Touchpoint
Type supports only the Intermediary Touchpoint role.

When creating a Touchpoint Instance, you need to provide the configuration of the
Connector that will communicate to the third-party system. If a standard
Touchpoint Type is used, this means providing the configuration of the
corresponding IBM Security Directory Integrator Connector. For custom Types you
must provide configuration for the Service Connector of the custom Template.
Finally, for virtual Types no configuration is needed as Intermediary Touchpoint
Instances rely only on HTTP Components for performing their task.

How do you find out what parameters are needed to create a Touchpoint Instance?
For this purpose the Touchpoint Server supports Property Sheet Definitions - XML
documents providing information for the schema of an IBM Security Directory
Integrator Component. To obtain the URL of the Property Sheet Definition, send a
HTTP GET request to the URL of the particular Touchpoint Type. It defines the
required connector parameters, their default values, as well as other useful
information needed when configuring a Touchpoint Instance.

In general, the information provided by Property Sheet Definitions is similar to the
one available when configuring a Connector in IBM Security Directory Integrator's
Config Editor (except for parameter descriptions). For more details on Property
Sheet Definitions and their usage see section “Property sheet definitions” on page
314.

Chapter 17. Touchpoint Server 297

Touchpoint Instance
You can use a Touchpoint instance to manage access over the HTTP protocol. Refer
the information provided here to know more about this.

By nature, a Touchpoint Instance represents a proxy that enables access to a remote
service over the common HTTP protocol. However, the communication flow varies
significantly, depending on the role of the Touchpoint Instance. Here are more
details for the supported Touchpoint roles:

Provider
This mode provides access of clients to third party services. A client sends
an HTTP request to the Touchpoint Instance (1), which in turn translates
the request to the native language of the remote system and sends that to
it (2). The remote system responds with the proper result to the Touchpoint
Instance (3), which then transmits it back to the client (4) through HTTP.

As can be seen from this diagram, the Provider has a single input
interface, represented by a URL on which you can send your requests
(request-in URL). This URL is intrinsic, meaning that the Touchpoint
Instance creates it and provides it to you.

Initiator
This mode provides transport of information between two ends. The
Touchpoint Instance is the one that requests a piece of data from one
system using the system dependent language (1) and then "pushes" this
data through HTTP to several Data Destination System (2a, 2b) - HTTP
servers capable of receiving data (for example, a Provider Touchpoint).

To achieve this, the Initiator is allowed to have multiple output interfaces
- request-out URLs where the available data is sent. These destination
points (also referred to as Destinations) can be added or removed from the
Initiator at runtime, which gives a lot of flexibility for distributing data
between systems. The Initiator starts working when its first request-out
URL is added and stops when all of them are removed. By default the
Initiator Touchpoint sends data to all of its Destinations, disregarding their
responses. This behavior can be modified (for example, to stop the Initiator,
if any of the Destinations fails to receive the data) by editing the base
Template or providing a custom one.

Intermediary
This mode provides a forwarding service. The Intermediary Touchpoint
Instance accepts requests (1) and then sends them to several Destinations

298 IBM Security Directory Integrator: Installation and Administrator Guide

through HTTP (2a, 2b). The Destinations respond to the Touchpoint
Instance (3a, 3b), it merges their responses and transmits the result back to
the caller (4).

For a Client Application, the Intermediary looks like a Provider giving
access to some third party system, while for the Data Destination Systems
it is an Initiator sending data.

The Intermediary Touchpoint has a single input interface - request-in URL
and multiple output ones - request-out URLs. You configure the output
interfaces the same way as for the Initiator role, and the input interface is
similar to the Provider's one (meaning its URL is set by the Touchpoint
Server). In its simplest form, the Intermediary Touchpoint does not modify
the forwarded data but you may provide such logic by editing the base
Touchpoint Template or by providing a custom one.

Another specific characteristic of the Intermediary Touchpoint can be
noticed when it acts as a proxy for accessing several Providers. As
mentioned above, you can interact with this complex system as if it was a
simple Provider. However, there is an explicit need to merge the responses
returned from the end Providers. The default available logic is:
v if one of the Destinations returns a successful response, it is returned to

the caller;
v if several Destinations return a successful response, the data in the

response bodies is merged and returned with an HTTP code 200;
v if all Destinations return failure responses, an error response with code

500 is returned to the caller. In its HTTP body, it will contain the
following information for each Destination:
– Request to URL 'the URL of the Destination' failed.
– HTTP status: the returned HTTP error code
– HTTP body: the returned HTTP body

To change the merging behavior you need to edit the “Touchpoint
Template” on page 301 used.

For more details on the communication protocol between the Client and the
Touchpoint, see section “Touchpoint Instance communication protocol” on page
312.

Besides the above mentioned roles you must specify two more configuration items
when setting up a Touchpoint Instance. These are:
v Property Sheet of the Touchpoint. Each Touchpoint Instance is representing a

specific Touchpoint Type, which means that every Touchpoint Instance has a
specific configuration. It complies with the one defined by the Touchpoint Type
(the Property Sheet Definition) and reflects the schema of the IBM Security
Directory Integrator Connector working with the remote system for this
Touchpoint (known as the Service Connector).

Chapter 17. Touchpoint Server 299

Note: The Intermediary Touchpoint does not use a Service Connector for its
working, so no such configuration information is needed for it. When setting up
such Touchpoints, users should send an empty property sheet, as any provided
parameters will just be ignored.
For more information about the Property Sheets format see section “Instance
Configuration” on page 310.

v Admin state of the Touchpoint. This item is used for micro managing the state
of the Instance. For example, you may want to disable a running Provider
Touchpoint for a given period of time. Instead of deleting it, you can simply set
its admin state to disabled. This way, when it is needed again, you only have to
update its state to enabled, and it will be running again.
Another possible use case is for the Intermediary and Initiator roles. As soon as
you add the first Destination to such Touchpoints, they start working (and
presumably sending data). Additional Destinations can be added later on, but
this may lead to data lost as some of the data will already be sent. To solve this,
you can create such Touchpoints with disabled admin state (preventing them
from starting) and add as many Destinations as needed. When the configuration
is done, you can change the state to enabled, and the Touchpoint will start
sending data to all the Destinations.

After creating the Touchpoint Instance you can access its current Operational state.
There are two different states a Touchpoint can be in and their meaning varies
with the role of the Instance.

A Provider Touchpoint Instance has the following states:
v Unavailable - when the Touchpoint Instance is intentionally disabled through its

Admin state.
v Available - when the Touchpoint is configured and its admin state is enabled.

The status of a Provider Touchpoint has one additional parameter. Besides the
operational state, you can get the request-in of the Touchpoint - the URL address
where you send your request so that the Provider Touchpoint can communicate
them to the remote system.

An Initiator Touchpoint Instance has the following states:
v Unavailable - the Touchpoint Instance is in this state if:

– it is not fully configured, meaning that it has no Destinations (request-out
URLs);

– it is intentionally disabled, by setting its Admin state;
– its Service Connector has finished reading from the data source.

This specific case is due to the behavior of the Service Connector of the
Initiator Touchpoint Instance. If this Connector is a standard Iterator, it will
read its configured data source and when done will stop, thus stopping the
whole Touchpoint. However, in the case of Change Detection or JMS
Connectors, it will continue to wait for new data and the Touchpoint Instance
will keep running indefinitely (and staying Available). In this case it should
be stopped explicitly by deleting it or setting its Admin state to disabled.

v Available - when in this state, the Touchpoint Instance is actually reading data
from the data source.

As mentioned above, the Intermediary Touchpoint Instance in essence is a
combination of a Provider and an Initiator Touchpoint Instance. This is reflected on
its status as well.
v Unavailable - the Touchpoint Instance is in this state if:

300 IBM Security Directory Integrator: Installation and Administrator Guide

– it is not fully configured, meaning that it has no Destinations (request-out
URLs);

– it is intentionally disabled, by setting its Admin state;
v Available - when in this state, the Touchpoint admin state is enabled and it is

actively forwarding its incoming requests to the Destinations.

Similarly to the Provider Touchpoint, the Intermediary has a request-in URL,
which can be obtained from its Status Entry.

Touchpoint Template
You can use the Touchpoint Template to start the IBM Security Directory Integrator
configuration.

When a Touchpoint Instance is started, the Touchpoint Server creates an IBM
Security Directory Integrator configuration and starts it as a temporary IBM
Security Directory Integrator ConfigInstance on its associated Touchpoint Provider
(IBM Security Directory Integrator Server). The IBM Security Directory Integrator
Configuration is based on a base Template provided with the Touchpoint Server.
The path to this template file is specified in the Touchpoint Server “Configuration”
on page 317, the default being TDI_install_dir/etc/TouchpointTemplate.xml. It is
placed on the Touchpoint Server side and is a general template not associated with
a particular IBM Security Directory Integrator Server. The configuration of each
Touchpoint Instance is the one that is filled into the base template before it is
started as a ConfigInstance.

The default base template contains the following structure:

AssemblyLines:

v ProviderServer - this is the AssemblyLine responsible for receiving
HTTP requests and starting the appropriate handler ALs based on those
requests. It acts as a common entry point for accessing all of the
Provider and Intermediary Touchpoint Instances managed by the
Touchpoint Server.
Using this technique, only one HTTP Server Connector is needed for
communicating with all of these Touchpoints which mean only one TCP
port should be opened (by default this is 1097). This avoids possible
firewall problems that can occur if a large amount of random ports
needs to be opened.
The ProviderServer AssemblyLine uses the following IBM Security
Directory Integrator Components:
– HttpServer - the Connector receiving the requests from client

applications. By default it listens on port 1097, though this can be
changed from the “Configuration” on page 317 of the Touchpoint
Server.

– HandleRequest - an IBM Security Directory Integrator Script
Component that determines which AssemblyLine should be started
depending on the request.

v ProviderHandler - this AssemblyLine is started by the ProviderServer
when a request for the Provider Touchpoint Instance is received. It
performs the actual communication with the remote system. The
Components used are:
– ServiceConnector - this is the Connector that communicates with the

remote system. It is set to Passive state, which means that it is
controlled from a script instead of the AssemblyLine flow. An

Chapter 17. Touchpoint Server 301

important characteristic of this Connector is that it inherits from the
GenericServiceConnector in the library of the base template (Inherit
from: /Connectors/GenericServiceConnector). The role of this parent
Connector is described below.

Note: A Touchpoint AssemblyLine should have only one Service
Connector (or none, as is the case with Intermediary). If several are
provided, they all will have the same configuration.

– HandleRequest - this Script uses a servlet-like structure to handle the
incoming requests. It initializes the ServiceConnector and depending
on the received request performs a different operation over the data
source. For more details on the supported Provider operations see
section “Touchpoint Instance communication protocol” on page 312.

v IntermediaryHandler - when the ProviderServer AL receives a request
for an Intermediary Touchpoint Instance it redirects it to this
AssemblyLine. Since by default the Intermediary just forwards data to
several destinations, it needs only one Component:
– SendToDestinations - this Script Component forwards every request

(passed to the AL in the form of a work Entry) to the configured
Touchpoint Destinations using the call:
sendToDestinations(work, mergeResponsesCallback)

This method is provided by the Sender Script Component located in
the library of the base Template. Besides the entry that will be sent, it
requires a callback function that is used to merge the responses from
each Destination. See section “Touchpoint Instance” on page 298 for
details on the default merging behavior of the Intermediary
Touchpoint.

v Initiator - This AssemblyLine is used to represent an Initiator
Touchpoint Instance - the only Touchpoint role that is not accessed
through the ProviderServer entry point. This AssemblyLine consists of
the following Components:
– ServiceConnector - this is the Connector used to feed the AL with data

from the remote system. As with the ProviderHandler AssemblyLine,
this Connector inherits from the GenericServiceConnector in the
library of the base Template.

Note: Touchpoint AssemblyLines should have only one Service
Connector (or none, as is the case with Intermediary). If several are
provided, they all will have the same configuration.

– ConvertToHTTPContent - a Script Component that transforms the data
read from the Service Connector to an HTTP entry.

– SendToDestinations - this Script Component forwards the received
request to the Touchpoint Destinations using the call:
sendToDestinations(work, null)

The same call is used by the Intermediary Touchpoint Instance. The
only difference is that here no callback function for merging the
responses from the different Destinations is provided. See section
“Touchpoint Instance” on page 298 for details on the default merging
behavior of the Initiator.

Resources (library of the base Template):

v Connectors - several Connectors performing specific tasks for the
various AssemblyLines:

302 IBM Security Directory Integrator: Installation and Administrator Guide

– GenericServiceConnector - this Connector is the parent of all Service
Connectors. When a Touchpoint Instance is being created, the
Touchpoint Server configures this Connector to work with the specific
remote system. Since the Service Connector in each AssemblyLine
inherits from it, they all get the same configuration.

Note:

1. The name of the Service Connector in the AssemblyLine is not
important provided that it inherits from the
GenericServiceConnector.

2. Only one Service Connector per AssemblyLine should be
provided.

The Touchpoint Server handles the GenericServiceConnector
differently, depending on the Touchpoint Type:
- When using a standard Touchpoint Type the

GenericServiceConnector is used for setting both the inheritance
and parameters of the Service Connectors. For example, consider
creating a Provider Touchpoint Instance working with a RDBMS.
You create this Instance from Type system:/Connectors/ibmdi.JDBC,
configure it in Provider mode and pass the parameters needed by
the JDBC Connector. This means that the inheritance of the
GenericServiceConnector will be overridden to
system://Connectors/ibmdi.JDBC and the provided JDBC
parameters will be set to it. This way, both ServiceConnector-s in
the ProviderHandler and Initiator AssemblyLines will get the same
configuration as well (since they inherit from the
GenericServiceConnector). The ProviderHandler AssemblyLine will
be started and you get a Provider Touchpoint Instance for working
with a RDBMS.

- When using a custom Touchpoint Type the
GenericServiceConnector is used for figuring out the type of the
Service Connectors and setting their parameters. This time the
inheritance of the GenericServiceConnector will not be changed.
Instead, it will be used by the Touchpoint Server to determine the
type of the Service Connectors so that you can know their schema.
Next, when the Touchpoint is being configured, the parameters will
again be set to the GenericServerConnector, thus propagating them
to its children.

- When using a virtual Touchpoint Type the
GenericServiceConnector, at least for now, is not used, because so
far only the Intermediary Touchpoint Type is part of this scheme,
and it does not connect to third-party systems.

– HTTPClientConnector - the HTTP Client used for sending data to
Destinations by the Initiator and Intermediary Touchpoints. It is used
by the Sender script and made available to the Touchpoints through
the sendToDestinations() method.

– MemoryPropertiesConnector - a Script Connector used by the
MemoryProperties Store for holding the request-out URLs of the
Destinations. It offers the ability to communicate with a running
Touchpoint Instance and add/remove Destinations to it (for more
details see the description of the MemoryProperties Store). This
Connector mimics the behavior of the Properties Connector with the
major difference that does not store the provided data in a file.

Chapter 17. Touchpoint Server 303

v Properties:

– MemoryProperties - a Properties Store used for communicating to a
running Touchpoint AssemblyLine. It relies on the MemoryProperties
Connector for storing the passed data in memory. A separate
ConfigInstance is started for each Touchpoint, so each one has its own
MemoryProperties Store and there is no risk of interweaving
communication messages.
The Communication procedure is as follows:
1. The Touchpoint Server uses the Remote Server API to store a

specific property - com.ibm.di.tp.destinations, in the
MemoryProperties store. Its value is a java.util.List of
java.util.Maps holding the provided destination parameters (for
example, request-out and request-error URLs) configured for the
Touchpoint.

2. Each time a Destination is added or removed from an Initiator or
Intermediary Touchpoint Instance the Server updates this
property's value, providing the current list of URLs.

3. On each iteration the Initiator or Intermediary Touchpoint
AssemblyLine gets the current value of this property and send its
data to the stored URLs (this is done by the sendToDestinations()
routine).

The base Touchpoint Template provides a properly configured
MemoryProperties Store. Every time a Touchpoint is created the
Touchpoint Server checks if the MemoryProperties is missing and if
so, adds it to the configuration. Thus, if you do not configure this
Store in your custom Templates the default one will still be available.
On the other hand, if you modify the MemoryProperties to alter the
communication behavior (for example, use a Properties Connector, so
that the Destination URLs are persisted to a file), the Touchpoint
Server will not overwrite their new configuration.

v Scripts:

– Sender - a script providing the sendToDestinations() method. This
routine reads the content of the com.ibm.di.tp.destinations property
in the MemoryProperties store to get the Destination
request-out/request-error URLs and sends the provided work entry
using the HttpClientConnector.

Note: The request-error URL is not used by default; it is only
provided to the TouchpointTemplate for you, so you can enhance the
default error recovery mechanism or implement a custom one.

– Utils - this script provides a set of utility functions used by the
Touchpoint AssemblyLines.

Custom templates let you provide complex/customized behavior in an
AssemblyLine and expose it as a new Touchpoint Type. The default base template
is used for direct provisioning of IBM Security Directory Integrator Components
and an Intermediary Touchpoint without requiring you to know anything about
what is happening under the hood of IBM Security Directory Integrator. However,
you may want to add more logic and/or Connectors to a Touchpoint Instance than
a single Component. For this purpose the Touchpoint Server accepts custom
templates to facilitate new custom Touchpoint Types and behavior.

304 IBM Security Directory Integrator: Installation and Administrator Guide

A custom template's structure should be like the one of the base Template.
However, if you do not need your custom Touchpoint Type to support all
Touchpoint roles you may provide only a subset of the AssemblyLines. The
minimum requirements for each role are:
v Provider role. To support it, the custom Template should contain the

ProviderHandler AssemblyLine and the following Library Components: the Utils
Script Component and the GenericServiceConnector.

Note: The base Template's ProviderServer AL is used to delegate request to all
Touchpoint Instances. Thus, even if a ProviderServer AL exists in a custom
template, it won't be used by the Touchpoint Server. The one of the base
template will be used instead.

v Initiator role. This role requires the Initiator AssemblyLine and the following
Library Components: the Sender and Utils Script Components,
MemoryPropertiesConnector, GenericServiceConnector and HttpClientConnector.

Note: The MemoryProperties Store is not listed, because if missing, it will be
added by the Touchpoint Server.

v Intermediary role. This role requires the IntermediaryHandler AssemblyLine and
the following Library Components: the Sender and Utils Script Components,
MemoryPropertiesConnector and HttpClientConnector.

If you try to create a Touchpoint Instance in a role which requirements are not
fulfilled by the custom Type's Template an Exception will be thrown.

You must keep in mind these important points when editing the base Touchpoint
Template or creating a custom one.
1. Their Service Connectors (the ones communicating with a third-party system)

should inherit from the GenericServiceConnector located in the Library.
2. Only one Service Connector should be used in a Touchpoint AssemblyLine. If

several are provided, they all will get identical configurations which will render
them useless.

3. If you want to change the Store used for communicating Destination URLs, it
still should be called MemoryProperties.

Resource Persistence
You can learn about persistence and its uses through the information provided
here. Further, you can also take care of the conditions while restarting the
Touchpoint Instance.

The Touchpoint Server supports persistence of the Atom documents, which could
be either automatically generated by it or provided by a remote client. The
persistence that is used by the server is stored in a configured folder, in a tree-like
structure. The default persistence directory is solution_directory/tp_state.

The persisted resources are read back again when the Touchpoint Server is starting
up. At this point the Touchpoint Server restores the complete resource tree. The
Touchpoint Server persist the Touchpoint Instance configurations in order for a
Touchpoint Instance to survive a restart of the server. A Touchpoint Instance is
restarted when all of the following conditions are met:
v All of the required configurations for that Touchpoint Instance are available in

the persistence storage.
v The remote Touchpoint Provider is up and running.

Chapter 17. Touchpoint Server 305

v There is no other Touchpoint Instance with that configuration running on the
Touchpoint Provider.

In the case when the remote Touchpoint Provider is not running the Touchpoint
Instance will not be automatically started right after the Touchpoint Provider
comes back up. You must either make sure that the Touchpoint Provider is running
prior to starting the Touchpoint Server or send a GET request to the Touchpoint
Types Feed resource to force the Touchpoint Server to refresh the connection to the
remote Touchpoint Provider.

Editing of the files in the persistence directory is not advisable. Currently, those
files should be edited by the Touchpoint Server only.

Touchpoint Schema
Touchpoint Schema comprises of many components. You can know more about the
schema through the information provided here. Further, you can also know about
resource tree and operations allowed.

This section specifies the communication protocol between the Touchpoint Server
and a client that is using it for provisioning of Touchpoint Instances. This section
does not describe the communication between a client and the Touchpoint Instance
itself.

The Touchpoint Server is providing access to the various resources that are
involved in the definition of a Touchpoint Instance. The representation of these
resources is in a tree-like form. The access to each resource is done using Atom
documents over the HTTP/HTTPS protocol.

This is the schema used by the Touchpoint Server:

306 IBM Security Directory Integrator: Installation and Administrator Guide

* These tree nodes are available in certain cases. For details see the table below.

In the above schema the following variables are used:
v tp_server_host - this is the host address the Touchpoint Server is listening on
v tp_server_port - this is the port the Touchpoint Server is listening on (defaults to

1098)
v context_root - this is the context root under which the Touchpoint Server

application is available (defaults to "tp")

The navigation of the tree is done in a ReSTful way, meaning that client
applications should only know the entry point (that is, the URL of the Service
Document) and the type of references (Atom links) the Touchpoint Server defines
for accessing each of the nodes in the resource tree. These references (URLs) are
automatically generated by the Touchpoint Server. Once obtained, the URLs will
stay the same until the Touchpoint Server is updated to a newer version. This
implies that client applications can "remember" the obtained URLs between
updates of the Touchpoint Server, but should work their way back to the particular
resource URL if the Touchpoint Server is updated.

According to the protocol specified in the table below, the following steps should
be performed in order for a client application to navigate to the Touchpoint
Instance Feed starting from the Service Document.
1. Send an HTTP GET request to the Service Document URL. This will return the

Service Document from which the Touchpoint Providers Feed URL could be
obtained.

Figure 1. Touchpoint server schema tree

Chapter 17. Touchpoint Server 307

2. Send an HTTP GET request to the Touchpoint Providers Feed URL. This will
return the Feed Document from which the Touchpoint Provider Entry Reference
URL could be obtained.

3. Send an HTTP GET Touchpoint Provider Entry Reference URL. This will return
the Entry Document representing the particular Touchpoint Provider. This
Entry contains the URL to the Touchpoint Type Feed.

4. Send an HTTP GET request to the Touchpoint Type Feed URL. This will return
the Feed Document containing complete copies of all the Touchpoint Type
Entries valid for this context. From a Touchpoint Type Entry the client
application can obtain the Touchpoint Instance Feed URL.

The table below describes the allowed operations for each resource. Additionally
the following points are applicable for the whole resource tree:
v Each entry has a link with relation "self" that points to the standalone Entry

Document.
v Resources that accept HTTP methods PUT and DELETE have a link with

relation "edit". All such request should be sent to that link (URL).
v Every request to the Touchpoint Server is annotated with the HTTP ETag

response-header as defined by the HTTP specification. The ETag value can be
used in conjunction with the request-headers If-Match, If-None-Match and
If-Range to let the Touchpoint Server know what the client application's
preconditions are before servicing the request.

Table 32. Allowed operations per resource
Resource GET POST PUT DELETE

Service Document Retrieves the Service Document which
contains a list of the available services.
The URL to the Touchpoint Providers
Feed is set as "href" attribute to a
collection that belongs to the category
"connectivity-provider".

N/A N/A N/A

1. Feed: Touchpoint Providers

Categories (term: scheme):

connectivity-provider:
http://www.ibm.com/xmlns/prod/
scmp#resource

Retrieves the list of Touchpoint Provider
Entries. All entries are references to the
actual Entry Documents representing the
available Touchpoint Providers.

N/A N/A N/A

1.1 Entry: Touchpoint Provider Retrieves a Touchpoint Provider Entry
the way it was configured in the
Touchpoint Server configuration file. This
Entry provides some additional details in
the <{http://www.ibm.com/xmlns/
prod/scmp}:data/> element. The link to
the Touchpoint Types Feed is provided
using a link with relation
"http://www.ibm.com/xmlns/prod/
scmp#touchpoint"

N/A N/A N/A

1.1.1 Feed: Touchpoint Types

Categories (term: scheme):

touchpoint: http://www.ibm.com/xmlns/
prod/scmp#resource

Retrieves the list of Touchpoint Type
Entries. These entries are complete copies
of the actual Entry Documents
representing the Touchpoint Types.

N/A N/A N/A

308 IBM Security Directory Integrator: Installation and Administrator Guide

Table 32. Allowed operations per resource (continued)
Resource GET POST PUT DELETE

1.1.1.1 Entry: Touchpoint Type

Categories (term: scheme):

touchpoint: http://www.ibm.com/xmlns/
prod/scmp#resource

resource-type: http://www.ibm.com/
xmlns/prod/scmp#aspect

A term uniquely identifying a
Touchpoint Type: http://www.ibm.com/
xmlns/prod/scmp#touchpoint-type

Retrieves a Touchpoint Type Entry. The
URL to the Touchpoint Instance Feed is
provided as a link with relation
"http://www.ibm.com/xmlns/prod/
scmp#instance-feed"

The URL to the Property Sheet Definition
XML is provided as a link with relation
"http://www.ibm.com/xmlns/prod/
scmp#property-sheet-definition".
Note: The virtual Touchpoint Type does
not have a Property Sheet Definition,
because no Connectors need to be
configured for Intermediary Touchpoints.

N/A N/A N/A

1.1.1.1.1 Feed: Touchpoint Instances

Categories (term: scheme):

touchpoint: http://www.ibm.com/xmlns/
prod/scmp#resource

Retrieves the list of Touchpoint Instance
Entries. All entries are references to the
actual Entry Documents representing the
available Touchpoint Instances.

Creates a new
Touchpoint Instance
Entry. The entry
MUST contain a
“Touchpoint
Configuration” on
page 310 that
contains the
“Touchpoint
Configuration” on
page 310. The entry
must contain a
category from the

"http://
www.ibm.com/
xmlns/prod/
scmp
#touchpoint
-role"
scheme.

N/A N/A

1.1.1.1.1.1 Entry: Touchpoint Instance

Categories (term: scheme):

touchpoint: http://www.ibm.com/xmlns/
prod/scmp#resource

provider-tp OR initiator-tp OR
intermediary-tp: http://www.ibm.com/
xmlns/prod/scmp#aspect

A term uniquely identifying a
Touchpoint Type: http://www.ibm.com/
xmlns/prod/scmp#touchpoint-type

Retrieves the Touchpoint Instance Entry.
This Entry contains three links to the
resources that describe the Touchpoint
Instance:

v An URL used for updating/deleting
this Touchpoint Instance is provided
using a link with relation "edit";

v An URL to the Destination Feed is
provided using a link with relation
http://www.ibm.com/xmlns/prod/
scmp#tp-destination
Note: The Provider Touchpoints do
not support Destinations, so for them
this link is missing.

v An URL to the Status Entry is
provided using a link with relation
http://www.ibm.com/xmlns/prod/
scmp#status.

v An URL to the Touchpoint Type Entry
to which this Touchpoint Instance
belongs. The link has relation
http://www.ibm.com/xmlns/prod/
scmp#resource-type

N/A Updates the
Touchpoint Instance
entry. The provided
entry must contain
the complete copy of
the Entry Document
and not just the
changes. This
operation cannot
change the role of the
Touchpoint Instance.
This operation
restarts a running
Touchpoint Instance
in order to
reconfigure it.

Deletes the
Touchpoint
Instance Entry.

1.1.1.1.1.1.1 Feed: Touchpoint Destinations Retrieves the Touchpoint Instance
Destinations Feed. This Feed could
contain multiple Touchpoint Instance
Destination Entries.

Creates a new
Touchpoint Instance
Destination Entry. It
MUST contain a
data element
configuring the
request-out URL to
the Destination.

N/A N/A

Chapter 17. Touchpoint Server 309

Table 32. Allowed operations per resource (continued)
Resource GET POST PUT DELETE

1.1.1.1.1.1.1.1 Entry: Touchpoint
Destination

Categories (term: scheme):

tp-destination: http://www.ibm.com/
xmlns/prod/scmp#resource

Retrieves the Touchpoint Destination
Entry that contains the request-out URL
to the remote HTTP Service in the
<{http://www.ibm.com/xmlns/prod/
scmp}:data/> element. This entry
provides a link with relation "edit" to
enable updates/deletes on this resource.

N/A Updates the
Touchpoint Instance
entry. The provided
entry must contain
the complete copy of
the Entry Document
and not just the
changes. This
operation cannot
change the role of the
Touchpoint Instance.
This operation does
NOT restart a
running Touchpoint
Instance in order to
alter the request-out
URL.

Deletes the
Touchpoint
Destination
Entry.

1.1.1.1.1.1.2 Entry: Status

Categories (term: scheme):

touchpoint: http://www.ibm.com/xmlns/
prod/scmp#resource

status: http://www.ibm.com/xmlns/
prod/scmp#aspect

Retrieves the Touchpoint Instance Status
Entry which describes the operational
state of the particular Touchpoint
Instance. It is contained inside the
<{http://www.ibm.com/xmlns/prod/
scmp}:data/> element.
Note: For Provider and Intermediary
Touchpoints the status also contains one
request-in URL, which should be used by
clients when querying the Touchpoint.

N/A N/A N/A

1.1.1.1.2 XML: Property Sheet Definition Retrieves the “Property sheet definitions”
on page 314 for the selected Touchpoint
Type. It holds the schema of an IBM
Security Directory Integrator Connector
in the form of an XML document.

N/A N/A N/A

Touchpoint Configuration
You can provide the schema of the configuration data in order to configure and
start a Touchpoint Instance.

Every configuration data element is placed inside a <data> element within the
Atom document. The namespace this data element must belongs to is:
http://www.ibm.com/xmlns/prod/scmp

Instance Configuration
You can refer to the details provided here to know more about configuration data.

This configuration data specifies:
v Role that the Touchpoint Instance will be running in. The Touchpoint Instance

relies on this data to decide which AL from the template to use. In the atom
document below, it is denoted by the "{role}" token.in the category element. Its
supported values are provider-tp, initiator-tp and intermediary-tp.

v Admin state of the created Touchpoint Instance. It is marked by the
"{admin_state}" token in the Atom document. The supported values are enabled
and disabled.

v Property Sheet XML containing the configuration parameters for Touchpoint
Instance's Service Connector. The {param_name} is determined by the Property
Sheet Definition of the chosen Touchpoint Type for standard Types or the
Property Sheet Definition of the Service Connector for custom Types. The
"{param_value}" is determined by the user depending on the wanted
configuration. Besides configuration parameters, you can also set the mode of
the Service Connector by setting a parameter with {param_name} equal to

310 IBM Security Directory Integrator: Installation and Administrator Guide

"$initMode" and a string value with the mode name (for example, Iterator,
AddOnly). For details about this parameter see section “Property sheet
definitions” on page 314.

v The two parameters {TouchpointID} and {version} are provided in order to
allow you to specify additional information for the particular Touchpoint
Instance, which has meaning for the creator only. The creator is responsible for
ensuring these values are valid in the context of the client application. These
values are not interpreted by the Touchpoint Server in any way, it only persists
them.

The POSTed Atom Document when creating a Touchpoint Instance Entry Resource
is:
<entry xmlns="http://www.w3.org/2005/Atom">
<id>{id}</id>
<title>Touchpoint Instance Title</title>
<author><name>Author Name</name></author>
<content/>
<category term="{role}" scheme="http://www.ibm.com/xmlns/prod/scmp#touchpoint-role" />
<scmp:data
xmlns:scmp="http://www.ibm.com/xmlns/prod/scmp"

xsi:schemaLocation="http://www.ibm.com/xmlns/prod/scmp
http://localhost:1098/tp/schema/touchpoint.xsd" >

<scmp:touchpoint>
<scmp:admin-state>{admin_state}</scmp:admin-state>
<touchpointID>{touchpoint_id}</touchpointID>
<version>{version}</version>
<scmp:propertySheet>
<scmp:property propertyName="{param_name}">
<scmp:value>{param_value}</scmp:value>
</scmp:property>
...
</scmp:propertySheet>
</scmp:touchpoint>
</scmp:data>
</entry>

Please note that an ID for the created Touchpoint Instance can also be provided in
place of the "{id}" token. However, no matter what the passed value is, the
Touchpoint Server will overwrite it with an automatically generated one. This way
it guarantees the uniqueness of the Touchpoint Instance ID.

Destination Configuration
You can learn to add a destination in the Touchpoints by working on a Atom
document.

Both the Intermediary and Initiator Touchpoints require a Destination to be
configured, before they become operational. Furthermore, they support multiple
such Destinations and the ability to add and remove them at runtime.

This is done by POSTing an Atom Document on the Touchpoint Destination Feed
URL of the created Touchpoint Instance. Keep in mind that no such URL is
available for Provider Touchpoints. Here is how it should look like:
<entry xmlns="http://www.w3.org/2005/Atom">
<scmp:data
xmlns:scmp="http://www.ibm.com/xmlns/prod/scmp"

xsi:schemaLocation="http://www.ibm.com/xmlns/prod/scmp
http://localhost:1098/tp/schema/touchpoint.xsd" >

<scmp:destination>
<scmp:request-out>{request-out_URL}</scmp:request-out>
<scmp:request-error>{request-error_URL}</scmp:request-error>
</scmp:destination>
</scmp:data>
</entry>

Chapter 17. Touchpoint Server 311

As can be seen from this snippet, only the "{request-out_URL}" is needed for
configuring a Destination; the "{request-error_URL}" is optional.

Touchpoint Instance communication protocol
You can refer the protocol used to communicate with a Touchpoint Instance. In
most cases a Touchpoint Instance will be derived from the Touchpoint Template.

Provider Touchpoint
You can use the Provider Touchpoint which handles HTTP methods described
here.

Table 33. Provider Touchpoint HTTP methods

HTTP Method
URL Query
Parameters Connector mode

HTTP Request
Content

HTTP Response
Content HTTP Response Code

GET - Iterator - all Entries found "200 OK" if at least one
Entry was found

"404 Not Found" if no
Entries are found

GET link criteria Lookup - all Entries found "200 OK" if at least one
Entry was found

"404 Not Found" if no
Entries are found

POST - AddOnly Entry to be added - "201 Created" if the
operation was
successful

PUT* link criteria Update Entry with updated
attributes

- "201 Created" if the
Entry did not exist and
was added

"204 No Content" if a
single Entry matches
the link criteria and
the Entry was updated
successfully

DELETE link criteria Delete - - "204 No Content" if the
operation was
successful (the
operation will fail if
multiple Entries match
the link criteria)

(*) Note that there is a difference in the handling of the PUT method between our
implementation and the HTTP 1.1 specification (http://tools.ietf.org/html/
rfc2616#section-9.6). According to the HTTP specification, a PUT request is
supposed to replace the whole resource. In our implementation if the entry exists
we do not replace it as a whole, but only replace the specified attributes.

The Link Criteria for the Connector operations is derived from the query
parameters of the requested URL. For example, a GET request with URL
"http://localhost/mytp?username=jsmith" will result in a Lookup operation with
link criteria "username=jsmith". Each query parameter corresponds to an EXACT
match criterion. The criteria derived from multiple query parameters are combined
using the 'AND' logic operator. For example: "?firstname=john&age=50"
corresponds to ((firstname equals "john") AND (age equals "50")).

Query parameters are required for PUT and DELETE requests. POST requests are
not expected to contain query parameters. If a GET request contains query
parameters, it is translated to a Lookup mode operation. Otherwise it is translated
to an Iterator mode operation.

312 IBM Security Directory Integrator: Installation and Administrator Guide

On GET requests you can use an optional HTTP header named
"X-TDI-TP-SizeLimit" to limit the number of returned Entries. The value of the
header must be an integer larger than zero.

All HTTP Methods interpreted by the default Touchpoint Template are compliant
with the HTTP Specification according their safety and idempotence characteristics.

Initiator Touchpoint
Refer to the information provided here to know more about the Initiator
Touchpoint.

The Initiator Touchpoint Instance acts as an HTTP client. It has an Iterator
Connector which produces Entry objects that the AssemblyLine sends to a
configured Destination URLs. For each Entry it sends a single POST request, whose
content is an “Representation of Entry objects as HTTP content.”

Intermediary Touchpoint
You can use the Intermediary Touchpoint as a moderator between several
Touchpoint Instances.

The Intermediary Touchpoint Instance is similar to both the Provider and Initiator
roles. It accepts requests on a particular request-in URL as a Provider and sends
the received data to multiple Destinations as an Initiator. Due to this forwarding
functionality it can be used as moderator between several Touchpoint Instances
from the other roles.

Representation of Entry objects as HTTP content
You can refer to the example shown here to view entry objects as HTTP content.

Example:
<tp:data xmlns:tp="http://www.ibm.com/xmlns/prod/tdi/72/tp">
<tp:entry>
<tp:attribute name="username">
<tp:value><![CDATA[jsmith]]</tp:value>
</tp:attribute>

<tp:attribute name="mail">
<tp:value>jsmith@ibm.us.com</tp:value>
<tp:value>john.smith@gmail.com</tp:value>
</tp:attribute>
</tp:entry>
</tp:data>

The HTTP content must be encoded in "UTF-8". It must contain a single data
element which can contain zero or more entry elements.

XML Schema description on the touchpoint data format:
<?xml version="1.0" encoding="UTF-8"?>
<schema
targetNamespace="http://www.ibm.com/xmlns/prod/tdi/72/tp"
elementFormDefault="qualified"
attributeFormDefault="unqualified"
xmlns=http://www.w3.org/2001/XMLSchema xmlns:tns=http://www.ibm.com/xmlns/prod/tdi/72/tp >

<element name="data" type="tns:TouchpointDataType" />

<element name="entry" type="tns:EntryType" />

<element name="attribute" type="tns:AttributeType" />

<element name="property" type="tns:PropertyType" />

<element name="value" type="string" />

Chapter 17. Touchpoint Server 313

<complexType name="TouchpointDataType">
<choice minOccurs="0" maxOccurs="unbounded">
<element ref="tns:entry" />
</choice>
</complexType>

<complexType name="EntryType">
<choice minOccurs="0" maxOccurs="unbounded">
<element ref="tns:property" />
<element ref="tns:attribute" />
</choice>
</complexType>

<complexType name="AttributeType">
<choice minOccurs="0" maxOccurs="unbounded">
<element ref="tns:property" />
<element ref="tns:attribute" />
<element ref="tns:value" />
</choice>
<attribute name="name" type="string" use="required" />
<attribute name="namespaceURI" type="anyURI" />
</complexType>

<complexType name="PropertyType">
<simpleContent>
<extension base="string">
<attribute name="name" type="string" use="required" />
<attribute name="namespaceURI" type="anyURI" />
</extension>
</simpleContent>
</complexType>

</schema>

Touchpoint Status Entry schema
You can retrieve the status of the Touchpoint Instance by sending an HTTP GET
request to the URL of the Status Entry.

“Touchpoint Instance communication protocol” on page 312.
<entry xmlns="http://www.w3.org/2005/Atom">

<id>Status ID</id>
<link href="{touchpoint_instance_status_URL}" type="application/atom+xml;type=entry"

rel="self"/>
<category scheme="http://www.ibm.com/xmlns/prod/scmp#resource" term="touchpoint"/>
<category scheme="http://www.ibm.com/xmlns/prod/scmp#aspect" term="status"/>
<scmp:data

xmlns:scmp ="http://www.ibm.com/xmlns/prod/scmp"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/scmp
http://localhost:1098/tp/schema/touchpoint.xsd" >

<scmp:touchpoint-status>
<scmp:request-in>{request-in_URL}</scmp:request-in>
<scmp:op-state>{op-state}</scmp:op-state>

</scmp:touchpoint-status>
</scmp:data>

</entry>

The returned Atom Entry Document contains a <data> element that describes the
status of the Touchpoint Instance. The data element belongs to the
http://www.ibm.com/xmlns/prod/scmp namespace. It has the following syntax:
v {op-state} - is the string keyword describing the current state of the Touchpoint

Instance as defined in section “Touchpoint Instance” on page 298.
v {request-in_URL} - is the URL for accessing Provider and Intermediary

Touchpoint Instances.

Property sheet definitions
The Property Sheet Definition is an XML document that determines the schema of
an IBM Security Directory Integrator Connector. You can learn more about it
through the information provided here.

314 IBM Security Directory Integrator: Installation and Administrator Guide

It can be obtained from a link inside the Touchpoint Type Entry (as described in
section “Touchpoint Schema” on page 306).

Depending on the Touchpoint Type the Property Sheet Definition varies:
v For standard Types, it contains the schema of the IBM Security Directory

Integrator Connector corresponding to the Touchpoint Type.
v For custom Types, it contains the schema of the Service Connector in the custom

Touchpoint Template.
v For the virtual Type (virtual://Intermediary) there is no Property Sheet

Definition, as there is no third-party system to communicate to (this role relies
solely on HTTP).

Besides the schema parameters of an IBM Security Directory Integrator Connector
the Property Sheet Definition contains the modes, supported by the Connector.
They are stored as optional values for the propertyDefinition with name $initMode.
Their values directly match the Connector mode names - "Iterator", "AddOnly",
"CallReply", and so forth.

Here is an example Property Sheet Definition for the File Connector (Touchpoint
Type system:/Connectors/ibmdi.LDAP):
<?xml version="1.0" encoding="UTF-8"?>
<propertySheetDefinition xmlns="http://www.ibm.com/xmlns/prod/scmp">

<propertyDefinition required="true" hidden="false" readonly="false"
propertyType="string" multiple="false"

propertyName="ldapUrl">
<label label="LDAP URL" lang="en"/>
<!--one label for the different languages supported by TDI -->

</propertyDefinition>
<!--the rest of LDAP Connector’s parameters -->
<propertyDefinition required="false" readonly="false" propertyType="string"
multiple="false" propertyName="$initMode">

<label label="$initMode" lang="en"/>
<!--one label for the different languages supported by TDI -->
<option>

<value>AddOnly</value>
<label label="AddOnly" lang="en"/>
<!--one label for the different languages supported by TDI -->

</option>
<option>

<value>Iterator</value>
<label label="Iterator" lang="en"/>
<!--one label for the different languages supported by TDI -->

</option>
<!--the rest of modes supported by the LDAP Connector -->

</propertyDefinition>
</propertySheetDefinition>

To shorten the listing, only one of its configuration parameters and the $initMode
property definition are included. As can be seen this Connector has a parameter
named ldapUrl which is required and its value is a string. Also, its English label as
can be seen in the CE is LDAP URL (the labels for the rest of the languages
supported by IBM Security Directory Integrator are skipped). The $initMode
parameter is also present, and as can be seen from its optional values this
Connector supports both Iterator and AddOnly modes (and several others which
are skipped).

Property Sheet Definitions significantly assist you when creating Touchpoint
Instances, as you do not need to know the schema of the Connector in advance.
Relying on their information, you can perform this task, much like you configure
Connectors inside IBM Security Directory Integrator's Configuration Editor - by
seeing the needed parameters, checking their expected values (a string, a number
or a set of predefined values) and providing them in the configuration.

Chapter 17. Touchpoint Server 315

XML Schema locations
You can define the location of XML Schema through the information provided
here.

An XML Schema document is provided for each scmp:data element. The document
defines all elements which appear inside the scmp:data element.

The location of the schema document is specified in an xsi:schemaLocation (XML
Schema Instance location) attribute defined on the scmp:data element. For example:
<scmp:data
xmlns:scmp="http://www.ibm.com/xmlns/prod/scmp"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/scmp
http://localhost:1098/tp/schema/tdi-connectivity-provider.xsd">

<scmp:connectivity-provider>

The location of the schema is a valid URL which can be de-referenced by web
clients: Any client of the Touchpoint Server can resolve the URL which appears
inside the xsi:schemaLocation attribute and access the actual schema document.

Moreover if the schema contains a reference to another schema document (for
example, via "import", "include" or "redefine" XML Schema element), the URL in
the reference can be resolved by web clients to obtain the referred schema.

Error flows
Appropriate error messages are issued to the standard log if an error is thrown.
Refer to the information provided here to know more about possible error
situations and XML document syntax.

The possible situations for which an error might be produced are:
v Incorrect configuration of Touchpoint Server.
v Exceptions thrown as result of communication problems with the Persistence

Store (File System errors).
v Error in communication with the clients of the Touchpoint Server.
v Error in communication with of the Touchpoint Server with IBM Security

Directory Integrator.

When the error is due to an invalid information/request sent by the user, and
which violates the Touchpoint Server protocol, it will produce an XML document
with the following syntax:
<?xml version="1.0" encoding="UTF-8"?>
<ns2:error xmlns:ns2="http://www.ibm.com/xmlns/prod/scmp">

<creation-time>2010-02-23T14:49:06.384+02:00</creation-time>
<code>100005</code>
<details>

<detail>
<name>schema</name>
<value>http://www.ibm.com/xmlns/prod/scmp#touchpoint-role</value>

</detail>
</details>
<native-msgid>ABCD1234E</native-msgid>
<summary>Missing role category</summary>

</ns2:error>

Where:
v creation-time element denotes the time the error has occurred in a format

specified by http://www.w3.org/TR/1998/NOTE-datetime-19980827.
v code element is one of the following codes:

316 IBM Security Directory Integrator: Installation and Administrator Guide

– 100000 – unknown error occurred (could not narrow it further)
– 100001 – Missing required atom:link. Details element will provide: rel -

relationship name of expected link
– 100002 – Missing required scmp:data element –Details element will provide:

qname - missing element qname
– 100003 – Invalid atom:entry in POST/PUT operation (for example, parse

error)
– 100004 – Invalid value for scmp:data element – Details element will provide:

qname - invalid element qname; value - invalid supplied value
– 100005 – Missing required atom:category. Details element will provide:

scheme - expected scheme name
– 100006 – Invalid atom:category value. Details element will provide: scheme -

expected scheme name; term - invalid supplied term
– 100007 – Too many atom:link for given relationship. Details element will

provide: rel - relationship name of extra link
– 100008 – Too many atom:category values for scheme. Details element will

provide: scheme - overpopulated scheme name
– 330000 – Default connectivity-provider-specific error (unable to narrow down

further)
v details element is containing more details for the specific error. See the

particular error code to find out what kind of detailed information is expected
for each error.

v native-msgid element denotes the message short id.
v summary element contains the human readable error message.

When the error is not caused by protocol violation but is from a different source, a
human readable representation is returned in a plain text format. The error also
contains the exception stack trace so you can report it to the Touchpoint Server
administrator in order for it to be resolved.

Configuration
You can configure the Touchpoint server with the help of information provided
here.

The Touchpoint Server runs inside a web container. The default web container
shipped with IBM Security Directory Integrator is configured by the following
properties in global.properties or solution.properties:
v tp.server.on - specifies whether the bundled web container and the Touchpoint

Server should be started. Default value: false.
v tp.server.port - specifies the port the web container will be listening on.

Default value: 1098.
v tp.server.auth - specifies whether the Touchpoint Server will use HTTP Basic

authentication. Default value: false.
v tp.server.auth.realm - specifies the realm HTTP basic authentication. Default

value: "IBM Security Directory Integrator Touchpoint Server".

The Touchpoint Server first considers the value of the api.remote.bind.address
property and if that is not set, the value of the com.ibm.di.default.bind.address
property. In this way it is able to effectively filter the access to "multi-homed"
hosts.

Chapter 17. Touchpoint Server 317

The web container is able to use SSL for securing the transportation layer. It reuses
the Remote API's settings and is enabled by setting the api.remote.ssl property.
SSL client authentication is enabled by the api.remote.ssl.client.auth.on
property. The server SSL keys are configured using the well known Remote API
properties:
v api.keystore
v api.client.keystore.pass
v api.client.key.pass
v api.client.keystore.type

HTTP basic authentication (http://tools.ietf.org/html/rfc2617) can be configured
using the tp.server.auth and tp.server.auth.realm properties. It is disabled by
default. See section “Authentication” on page 319 for more information on
authentication.

The configuration of the Touchpoint Server is specified using an XML file. The
path to this file is specified in the global.properties or solution.properties file
using the property tp.server.config. An example Touchpoint Server configuration
file is shipped in the etc directory of the IBM Security Directory Integrator
installation.

The following syntax is used by the Touchpoint Server configuration file:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<tp:tpServerConfig xmlns:tp="http://www.ibm.com/xmlns/prod/tdi/72/tp" tp:version="1.0">

<!-- specifies the entryption settings used when encrypting passwords -->
<tp:encryptionConfig stash="idisrv.sth">
<tp:keyStore>testserver.jks</tp:keyStore>
<tp:keyStoreType>jks</tp:keyStoreType>
<tp:keyAlias>server</tp:keyAlias>
<tp:transformation>RSA</tp:transformation>
</tp:encryptionConfig>

<tp:templateConfig>
<tp:baseTemplate>etc/TouchpointTemplate.xml</tp:baseTemplate>

<!-- Specify the path to the directory that holds the Touchpoint templates. -->
<!--
<tp:customTemplatesDir>templates</tp:customTemplatesDir>
-->
</tp:templateConfig>

<!-- specifies the persistence settings that configure the place to persist the state -->
<tp:persistenceConfig>
<tp:enabled>true</tp:enabled>
<tp:location>tp_state</tp:location>
</tp:persistenceConfig>

<!-- configures the touchpuoint providers (nodes) -->
<tp:nodeConfigs>
<!-- Default connection to the local server -->
<tp:tdiNodeConfig tp:local="true" tp:id="default">
<!-- The host of the remote node which all
Provider Touchpoint Instances will receive requests on -->

<tp:providerHost>localhost</tp:providerHost>
<!-- The port of the remote node which all
Provider Touchpoint Instances will receive requests on -->

<tp:providerPort>1097</tp:providerPort>

<tp:title>Example Touchpoint Provider</tp:title>
<tp:author>John Doe</tp:author>
<tp:email>jdoe@example.org</tp:email>
<tp:summary>Example Touchpoinet Provider Atom Entry</tp:summary>

<tp:conatct>Local Administrator</tp:conatct>
<tp:location>Main building, 5th fl.</tp:location>
<tp:organization>Example Organization</tp:organization>
</tp:tdiNodeConfig>

318 IBM Security Directory Integrator: Installation and Administrator Guide

<!-- Here is an example of a remote server connection -->
<!--

<tp:tdiNodeConfig id="remote" local="false">
<tp:title>Example Touchpoint Provider</tp:title>
<tp:author>John Doe</tp:author>
<tp:email>jdoe@example.org</tp:email>
<tp:summary>Example Touchpoinet Provider</tp:summary>

<tp:host>localhost</tp:host>
<tp:port>1099</tp:port>
<tp:user>username</tp:user>
<tp:password protect="true" encrypted="false">password</tp:password>

<tp:contact>Jack Smith</tp:contact>
<tp:location>5th fl.</tp:location>
<tp:organization>Example Organization</tp:organization>

<tp:providerHost>locahost</tp:providerHost>
<tp:providerPort>1097</tp:providerPort>

</tp:tdiNodeConfig>
-->
</tp:nodeConfigs>
</tp:tpServerConfig>

Authentication
You can learn more about the authentication aspects of the Touchpoint Server
through the information provided here.

There are two aspects of the Touchpoint Server related to authentication:
v being an HTTP server
v being a client of the remote RMI Server API of the IBM Security Directory

Integrator Servers, which are configured as connectivity providers.

As an HTTP server, the Touchpoint Server supports HTTP basic authentication of
HTTP clients. It does not use a separate user registry. Instead the Touchpoint
Server delegates authentication requests to the Server API of the local IBM Security
Directory Integrator Server (the one that hosts the Touchpoint Server).

As a remote Server API client, the Touchpoint Server needs to authenticate against
the remote IBM Security Directory Integrator Server like any other Server API
client would do. Note that authentication is not required when the connectivity
provider is the local IBM Security Directory Integrator Server.

For more on Server API authentication, see the appendix called Server API in
Reference.

Examples
You can refer to the links provided here to use the shipped examples and use the
other examples for creating a Touchpoint Instance using JDBC connector.

Shipped example
You can use the steps provided here to refer the shipped example of creating a
Touchpoint Instance.

The main example demonstrating the use of the Touchpoint Server functionality in
IBM Security Directory Integrator, demonstrating example steps for creating both
Provider and Initiator Touchpoint Instances, is shipped with the installation. The
steps are spelled out in the document found at TDI_Install_dir/examples/
TouchopintClient/Touchpoint_Example.pdf. In addition to that, a sample

Chapter 17. Touchpoint Server 319

implementation of those steps is provided to demonstrate how they might look
when written in the Java programming language. The Java code is structured in
two packages, as follows:
v com.ibm.di.tp.client.api – this package contains the code demonstrating how the

communication with the Touchpoint Server is performed. It contains nothing but
methods used for querying the Touchpoint Server.

Note: This code depends on Apache HttpClient v3.x.
v com.ibm.di.tp.client.gui – this package contains a sample UI client that uses the

com.ibm.di.tp.client.api package to interact with the Touchpoint Server in order
to provide Touchpoint Instances. You can use this UI for testing purposes when
provisioning Touchpoint Instances. You may start this utility using the provided
scripts: startClient.bat and startClient.sh.

Example steps for creating a Touchpoint Instance using a
JDBC Connector

Refer to the instructions provided here to provision a Touchpoint Instance.

In order to provision a Touchpoint Instance, you need to send an HTTP POST
request to the Touchpoint Server. The URLs for the requests are obtainable
according to the application “Touchpoint Schema” on page 306. For the purpose of
this example we are using pseudo URLs as: <Resource Name URL>. You can
obtain the appropriate URL at runtime.

Provider Touchpoint Instance
You can use the example provided here to create a Touchpoint Instance Entry
resource.
POST <Touchpoint Instance Feed URL>

Body:<entry xmlns="http://www.w3.org/2005/Atom">
<id>some ID</id>
<title>Provider Touchpoint Instance</title>
<author><name>author_name</name></author>
<content/>
<category term="provider-tp" scheme="http://www.ibm.com/xmlns/prod/scmp#touchpoint-role" />
<scmp:data xmlns:scmp="http://www.ibm.com/xmlns/prod/scmp" >
<scmp:touchpoint>
<scmp:propertySheet>
<scmp:property propertyName="jdbcSource">
<scmp:value>some source value</scmp:value>
</scmp:property>
<scmp:property propertyName="jdbcDriver">
<scmp:value>the driver class</scmp:value>
</scmp:property>
<scmp:property propertyName="jdbcTable">
<scmp:value>the table name</scmp:value>
</scmp:property>
<!--The rest of the parameters required by a JDBC Connector-->
</scmp:propertySheet>
<scmp:admin-state>enabled</scmp:admin-state>
</scmp:touchpoint>
</scmp:data>
</entry>

The Touchpoint Server will return a response similar to:
201 Created
Location: <Touchpoint Instance Entry URL>
Body:
<entry xmlns="http://www.w3.org/2005/Atom" xmlns:ns2="http://a9.com/-/spec/opensearch/1.1/"
xmlns:ns3="http://www.w3.org/1999/xhtml">

<id>generated_id</id>
<updated>2010-02-17T18:33:55.302+02:00</updated>
<title>Provider Touchpoint Instance</title>
<link href="<Touchpoint Instance Entry URL>" type="application/atom+xml;type=entry" rel="self"/>
<link href="<Touchpoint Instance Entry URL>" type="application/atom+xml;type=entry" rel="edit"/>
<link href="<Touchpoint Type Entry URL>"

320 IBM Security Directory Integrator: Installation and Administrator Guide

type="application/atom+xml;type=entry" rel="http://www.ibm.com/xmlns/prod/scmp#resource-type"/>
<link href="<Touchpoint Instance Status Entry URL>" type="application/atom+xml;type=entry"
rel="http://www.ibm.com/xmlns/prod/scmp#status"/>
<author><name>author_name</name></author>
<category scheme="http://www.ibm.com/xmlns/prod/scmp#touchpoint-type" term="system:/Connectors/ibmdi.JDBC"/>
<category scheme="http://www.ibm.com/xmlns/prod/scmp#touchpoint-role" term="provider-tp"/>
<category scheme="http://www.ibm.com/xmlns/prod/scmp#resource" term="touchpoint"/>
<ns2:data xmlns:ns2="http://www.ibm.com/xmlns/prod/scmp">

<ns2:touchpoint>
<ns2:admin-state>enabled</ns2:admin-state>
<ns2:propertySheet>
<ns2:property propertyName="jdbcSource" xmlns="" xmlns:ns5="http://www.w3.org/2005/Atom">

<ns2:value>some source value</ns2:value>
</ns2:property>

<ns2:property propertyName=" jdbcDriver " xmlns="" xmlns:ns5="http://www.w3.org/2005/Atom">
<ns2:value>the driver class</ns2:value>
</ns2:property>

<!--The rest of the parameters required by a JDBC Connector-->
</ns2:propertySheet>

</ns2:touchpoint>
</ns2:data>

Note that the Touchpoint Server changes the ID of the entry to guarantee its
uniqueness.

The URL used for accessing the created Touchpoint Instance can be retrieved
through the Status Entry URL. To do this, send an HTTP GET request to URL
<Touchpoint Instance Status Entry URL>. The received response looks like this:
200 OK
Location: <Touchpoint Instance Status Entry URL>
Body:
<?xml version="1.0" encoding="UTF-8"?>
<entry xmlns="http://www.w3.org/2005/Atom" xmlns:ns2="http://a9.com/-/spec/opensearch/1.1/"
xmlns:ns3="http://www.w3.org/1999/xhtml">

<id>generated_id</id>
<link href="<Touchpoint Instance Status Entry URL>" type="application/atom+xml;type=entry" rel="self"/>
<category scheme="http://www.ibm.com/xmlns/prod/scmp#resource" term="touchpoint"/>
<category scheme="http://www.ibm.com/xmlns/prod/scmp#aspect" term="status"/>
<ns2:data xmlns:ns2="http://www.ibm.com/xmlns/prod/scmp">

<ns2:touchpoint-status>
<ns2:request-in>Touchpoint Provider Request-in URL</ns2:request-in>
<ns2:op-state>available</ns2:op-state>

</ns2:touchpoint-status>
</ns2:data>

</entry>

Initiator Touchpoint Instance
You can use the example provided here to create a Initiator Touchpoint Instance.
POST <Touchpoint Instance Feed URL>

Body:
<entry xmlns="http://www.w3.org/2005/Atom">
<id>some ID</id>
<title>Initiator Touchpoint Instance</title>
<author><name>author_name</name></author>
<content/>
<category term="initiator-tp" scheme="http://www.ibm.com/xmlns/prod/scmp#touchpoint-role" />
<scmp:data xmlns:scmp="http://www.ibm.com/xmlns/prod/scmp" >
<scmp:touchpoint>
<scmp:propertySheet>
<scmp:property propertyName="jdbcSource">
<scmp:value>some source value</scmp:value>
</scmp:property>
<scmp:property propertyName="jdbcDriver">
<scmp:value>the driver class</scmp:value>
</scmp:property>
<scmp:property propertyName="jdbcTable">
<scmp:value>the table name</scmp:value>
</scmp:property>
<!--The rest of the parameters required by a JDBC Connector-->
</scmp:propertySheet>
<scmp:admin-state>enabled</scmp:admin-state>

</scmp:touchpoint>
</scmp:data>
</entry>

The Touchpoint Server returns a response similar to:
201 Created
Location: <Touchpoint Instance Entry URL>
Body:
<entry xmlns="http://www.w3.org/2005/Atom" xmlns:ns2="http://a9.com/-/spec/opensearch/1.1/"
xmlns:ns3="http://www.w3.org/1999/xhtml">

Chapter 17. Touchpoint Server 321

<id>generated_ID</id>
<updated>2010-02-17T18:33:55.302+02:00</updated>
<title>Initiator Touchpoint Instance</title>
<link href="<Touchpoint Instance Entry URL>" type="application/atom+xml;type=entry" rel="self"/>
<link href="<Touchpoint Instance Entry URL>" type="application/atom+xml;type=entry" rel="edit"/>
<link href="<Touchpoint Type Entry URL>"

type="application/atom+xml;type=entry" rel="http://www.ibm.com/xmlns/prod/scmp#resource-type"/>
<link href="<Touchpoint Instance Status Entry URL>"

type="application/atom+xml;type=entry" rel="http://www.ibm.com/xmlns/prod/scmp#status"/>
<link href="<Touchpoint Instance Destination Feed URL>"

type="application/atom+xml;type=feed" rel="http://www.ibm.com/xmlns/prod/scmp#tp-destination"/>
<author><name>author_name</name></author>
<category scheme="http://www.ibm.com/xmlns/prod/scmp#touchpoint-type" term="system:/Connectors/ibmdi.JDBC"/>
<category scheme="http://www.ibm.com/xmlns/prod/scmp#touchpoint-role" term="initiator-tp"/>
<category scheme="http://www.ibm.com/xmlns/prod/scmp#resource" term="touchpoint"/>
<ns2:data xmlns:ns2="http://www.ibm.com/xmlns/prod/scmp">

<ns2:touchpoint>
<ns2:admin-state>enabled</ns2:admin-state>
<ns2:propertySheet>

<ns2:property propertyName="jdbcSource" xmlns="" xmlns:ns5="http://www.w3.org/2005/Atom">
<ns2:value>some source value</ns2:value>

</ns2:property>
<ns2:property propertyName="jdbcDriver" xmlns="" xmlns:ns5="http://www.w3.org/2005/Atom">

<ns2:value>the driver class</ns2:value>
</ns2:property>

<!--The rest of the parameters required by a JDBC Connector-->
</ns2:propertySheet>

</ns2:touchpoint>
</ns2:data>
<content/>

</entry>

Note that the Touchpoint Server changes the ID of the entry to guarantee its
uniqueness.

Furthermore, this time the Touchpoint Server response contains a Touchpoint
Instance Destination Feed URL, which is needed for configuring the Touchpoint
Destinations.

Next, we will add one Destination to the Initiator Touchpoint:
POST <Touchpoint Instance Destination Feed>

Body:
<entry xmlns="http://www.w3.org/2005/Atom">
<scmp:data xmlns:scmp="http://www.ibm.com/xmlns/prod/scmp" >
<scmp:destination>
<scmp:request-out>Request-out URL</scmp:request-out>

</scmp:destination>
</scmp:data>
</entry>

The Touchpoint Server returns a response similar to:
201 Created
Location: <Touchpoint Instance Destination Entry URL>
Body:
<entry xmlns="http://www.w3.org/2005/Atom" xmlns:ns2="http://a9.com/-/spec/opensearch/1.1/"
xmlns:ns3="http://www.w3.org/1999/xhtml">

<id>generated_id</id>
<updated>2010-02-18T10:52:35.108+02:00</updated>
<link href="<Touchpoint Instance Destination Entry URL>" type="application/atom+xml;type=entry" rel="self"/>
<link href="<Touchpoint Instance Destination Entry URL>" rel="edit"/>
<category scheme="http://www.ibm.com/xmlns/prod/scmp#resource" term="tp-destination"/>
<ns2:data xmlns:ns2="http://www.ibm.com/xmlns/prod/scmp">

<ns2:destination>
<ns2:request-out>Request-out URL</ns2:request-out>

</ns2:destination>
</ns2:data>

</entry>

At this point, the Initiator Touchpoint Instance starts executing.

Intermediary Touchpoint Instance
The steps needed to create a Touchpoint Instance in this Role are a combination of
the ones for the Provider and Initiator roles.

322 IBM Security Directory Integrator: Installation and Administrator Guide

First, we create a Touchpoint Instance Entry resource. This time the Touchpoint
Instance Feed URL is concrete - http://<tp_server_host>:<tp_server_port>/
<context_root>/tp-node/default/tp-type/virtual___Intermediary/tp-inst .
POST <Touchpoint Instance Feed URL>

Body:
<entry xmlns="http://www.w3.org/2005/Atom">
<id>some ID</id>
<title>Intermediary Touchpoint Instance</title>
<author><name>author_name</name></author>
<content/>
<category term="intermediary-tp"

scheme="http://www.ibm.com/xmlns/prod/scmp#touchpoint-role" />
<scmp:data xmlns:scmp="http://www.ibm.com/xmlns/prod/scmp" >
<scmp:touchpoint>
<scmp:propertySheet>
<!--No parameters are required-->
</scmp:propertySheet>
<scmp:admin-state>enabled</scmp:admin-state>

</scmp:touchpoint>
</scmp:data>
</entry>

The Touchpoint Server returns a response similar to:
201 Created
Location: <Touchpoint Instance Entry URL>
Body:
<entry xmlns="http://www.w3.org/2005/Atom" xmlns:ns2="http://a9.com/-/spec/opensearch/1.1/"
xmlns:ns3="http://www.w3.org/1999/xhtml">

<id>generated_ID</id>
<updated>2010-02-18T11:20:00.546+02:00</updated>
<title>Intermediary Touchpoint Instance</title>
<link href="<Touchpoint Instance Entry URL>" type="application/atom+xml;type=entry" rel="self"/>
<link href="<Touchpoint Instance Entry URL>" type="application/atom+xml;type=entry" rel="edit"/>
<link href="<Touchpoint Type Entry URL>" type="application/atom+xml;type=entry"

rel="http://www.ibm.com/xmlns/prod/scmp#resource-type"/>
<category scheme="http://www.ibm.com/xmlns/prod/scmp#touchpoint-type" term="virtual://Intermediary"/>
<link href="<Touchpoint Status Entry URL>" type="application/atom+xml;type=entry"

rel="http://www.ibm.com/xmlns/prod/scmp#status"/>
<link href="<Touchpoint Destinations Feed URL>" type="application/atom+xml;type=feed"

rel="http://www.ibm.com/xmlns/prod/scmp#tp-destination"/>
<author><name>author_name</name></author>
<category scheme="http://www.ibm.com/xmlns/prod/scmp#touchpoint-role" term="intermediary-tp"/>
<category scheme="http://www.ibm.com/xmlns/prod/scmp#resource" term="touchpoint"/>
<ns2:data xmlns:ns2="http://www.ibm.com/xmlns/prod/scmp">

<ns2:touchpoint>
<ns2:admin-state>enabled</ns2:admin-state>
<ns2:propertySheet/>

</ns2:touchpoint>
</ns2:data>
<content/>

</entry>

Note that the Touchpoint Server changes the ID of the entry to guarantee its
uniqueness.

Next, we will add one Destination to the Intermediary Touchpoint:
POST <Touchpoint Instance Destinations Feed>

Body:
<entry xmlns="http://www.w3.org/2005/Atom">
<scmp:data xmlns:scmp="http://www.ibm.com/xmlns/prod/scmp" >
<scmp:destination>
<scmp:request-out>Request-out URL</scmp:request-out>

</scmp:destination>
</scmp:data>
</entry>

The Touchpoint Server should return a response similar to:
201 Created
Location: <Touchpoint Instance Destination Entry URL>
Body:
<entry xmlns="http://www.w3.org/2005/Atom" xmlns:ns2="http://a9.com/-/spec/opensearch/1.1/"
xmlns:ns3="http://www.w3.org/1999/xhtml">

<id>generated_id</id>
<updated>2010-02-18T10:52:35.108+02:00</updated>
<link href="<Touchpoint Instance Destination Entry URL>" type="application/atom+xml;type=entry" rel="self"/>
<link href="<Touchpoint Instance Destination Entry URL>" rel="edit"/>
<category scheme="http://www.ibm.com/xmlns/prod/scmp#resource" term="tp-destination"/>
<ns2:data xmlns:ns2="http://www.ibm.com/xmlns/prod/scmp">

Chapter 17. Touchpoint Server 323

<ns2:destination>
<ns2:request-out>Request-out URL</ns2:request-out>

</ns2:destination>
</ns2:data>

Finally, we will get the URL used for sending request to the Intermediary
Touchpoint Instnace. As for the Provider Touchpoint, this is done through the
Status Entry.

Send an HTTP GET request to the <Touchpoint Instance Status Entry URL>,
available in the Touchpoint Instance Entry.

The Touchpoint Server returns a response similar to:
200 OK
Location: <Touchpoint Instance Status Entry URL>
Body:
<?xml version="1.0" encoding="UTF-8"?>
<entry xmlns="http://www.w3.org/2005/Atom" xmlns:ns2="http://a9.com/-/spec/opensearch/1.1/"
xmlns:ns3="http://www.w3.org/1999/xhtml">

<id>generated_id</id>
<link href="<Touchpoint Instance Status Entry URL>" type="application/atom+xml;type=entry" rel="self"/>
<category scheme="http://www.ibm.com/xmlns/prod/scmp#resource" term="touchpoint"/>
<category scheme="http://www.ibm.com/xmlns/prod/scmp#aspect" term="status"/>
<ns2:data xmlns:ns2="http://www.ibm.com/xmlns/prod/scmp">

<ns2:touchpoint-status>
<ns2:request-in>Touchpoint Intermediary Request-in URL</ns2:request-in>
<ns2:op-state>available</ns2:op-state>

</ns2:touchpoint-status>
</ns2:data>

</entry>

324 IBM Security Directory Integrator: Installation and Administrator Guide

Chapter 18. Tombstone Manager

You can retrieve exit status and other information through tombstones. Read the
information provided here to know more about its features.

IBM Security Directory Integrator can keep track of configurations or
AssemblyLines that have terminated. This way, you can tell when your
AssemblyLines last ran, without going into the log of each one.

This is accomplished by the Tombstone Manager of IBM Security Directory
Integrator that creates tombstones for each AssemblyLine and configuration as they
terminate. Tombstones contain exit status and other information that you can
request through the Server API. Tombstone Manager also:
v Displays the status of an entire IBM Security Directory Integrator configuration

in an AMC status window.
v Ensures repeated runs of AssemblyLines within Action Manager, for example,

every 24 hours.
v Provides status information to Server API clients about AssemblyLines that run

asynchronously.

The Tombstone Manager API is documented in the Java API documentation; look
for class com.ibm.di.api.Tombstone .

Configuring Tombstones
Select the required options to configure the tombstone creation. You can also refer
to the list of switches in your Config.

The creation of Tombstones for AssemblyLines and Config Instances is configured
by means of check boxes in a number of screens in the Configuration Editor (CE),
as well as a number of options in the global.properties or solution.properties
files.

Once configured, your Configs contain the following switches:

At the configuration level:

v Config switch: specifies whether tombstones are created or not for the
Config Instance itself.

v All AssemblyLines switch: specifies whether tombstones are created for
all AssemblyLines from this configuration.

At the AssemblyLine level:
A switch that specifies whether tombstones are created for that particular
AssemblyLine. This switch is only taken into account when the "All
AssemblyLines switch" at the configuration level is switched off.

Configuration Editor Configuration screen
You can configure tombstones creation for an AssemblyLine using the displayed
AssemblyLine Configuration window.

The Create Tombstone option is near the bottom of the window.

© Copyright IBM Corp. 2003, 2014 325

Checking Create Tombstones cause tombstones to be generated for this
AssemblyLine when runs, even when the master switch for AssemblyLines is
disabled.

326 IBM Security Directory Integrator: Installation and Administrator Guide

AssemblyLine Configuration screen
Refer to the tombstone record and list of attributes to enable the tombstone.

When AssemblyLine Tombstones are disabled using the Configuration option
shown above, tombstone generation can still be enabled individually per
AssemblyLine by using the appropriate option in the AssemblyLine configuration
screen, Create Tombstones.

A sample tombstone record could look like this:

Table 34. Tombstone record

Field Name Value

Component Type ID 1

Event Type ID 0

StartTime 11.11.2005 11:11:54

TombstoneCreateTime 11.11.2005 17:22:45

Component Name "ActiveDirectoryChangeLogSynchronizer"

Configuration "C:\TDI_SOL_DIR\rs.xml"

Exit Code 0

Error Description ""

GUID "432640786324026346432"

Statistics
[get:571]
[add:571]
[err:0]

The statistics returned can be one or more of the following attributes:

Table 35. Statistics returned in a Tombstone record

Attribute Description

add Total number of entries the AssemblyLine has added (performed by Connectors in AddOnly
mode)

mod Total number of entries the AssemblyLine has modified (performed by Connectors in Update
mode)

del Total number of entries the AssemblyLine has deleted. (performed by Connectors in Delete
mode)

get Total number of entries the AssemblyLine has retrieved (performed by Connectors in Iterator
mode)

request Total number of requests accepted when there is a Server mode Connector in the AssemblyLine

callReply Total number of Call/Reply operations the AssemblyLine has executed (performed by
Connectors in CallReply mode)

err Total number of errors encountered

skip Total number of entries the AssemblyLine has skipped entries

lookup Total number of Lookup operations the AssemblyLine has executed (performed by Connectors
in Update/Delete/Lookup mode)

ignore Total number of entries the AssemblyLine has ignored (performed by Connectors in
Update/Delta mode)

reconnect Total number of times the AssemblyLine has attempted to reconnect to another client

Chapter 18. Tombstone Manager 327

Table 35. Statistics returned in a Tombstone record (continued)

Attribute Description

exception The exception text if the AssemblyLine terminated with an exception

getTries Total number of times the AssemblyLine has attempted to retrieve an entry (performed by
Connectors in Iterator mode)

getclientTries Total number of times the AssemblyLine has attempted to get the next connected client
(performed by Connectors in Server mode)

nochange Total number of entries the AssemblyLine processed but left unchanged

branchtrue Total number of Branch components executed by the AssemblyLine because their expression
evaluated to true

branchfalse Total number of Branch components skipped by the AssemblyLine because their expression
evaluated to false

loopstart Total number of Loop components executed by the AssemblyLine

loopcycles Total number of cycles executed for all Loop components that had more than one cycle in an
AssemblyLine

reconnectTime Time in ms after last reconnect was attempted by the AssemblyLine

The Tombstone Manager
You can perform a number of tasks with Tombstone Manager. It refers to values of
configuration properties. For more details read the information provided here.

The Tombstone Manager monitor the number of tombstone records at runtime and
delete old records as per the values of the com.ibm.di.tm.autodel.age,
com.ibm.di.tm.autodel.records.trigger.on, com.ibm.di.tm.autodel.records.max
configuration properties.
v The Tombstone Manager tracks Config Instances and AssemblyLines stop events.
v The Tombstone Manager uses the local Server API calls for registering for event

notifications and receiving stop events for Config Instances and AssemblyLines.
v The Tombstone Manager uses the IBM Security Directory Integrator System

Store for data persistence.
v The Server API (documented in the Java API documentation) interfaces contain

calls for querying the Tombstone Manager for various data, like AssemblyLine
and Config Instance Tombstones.

v The Tombstone Manager provides options for deleting old tombstone records.

A possible AssemblyLine tombstone lifecycle could look like:
v The Tombstone Manager receives a Server API event that an AssemblyLine has

terminated (this assumes the Server API and the Tombstone Manager are turned
on and the configuration file specifies that tombstones are created for this
AssemblyLine).

v The Tombstone Manager extracts the required data from the Server API event
and creates a corresponding database tombstone record in the System Store.

v While the tombstone record is available in the System Store, queries can be
executed through the Server API calls that provide all the information contained
in the tombstone record.

v The tombstone record is deleted from the System Store either when an explicit
cleanup Server API call is executed that deletes it, or when the logic for
automatic deletion of old tombstone records collects it. Neither of these events is
required, so theoretically, the tombstone record may live forever.

328 IBM Security Directory Integrator: Installation and Administrator Guide

Tombstone Manager

The Tombstone Manager task is configured by means of properties in the
global.properties or solution.properties file for your Config instance.

Note: In order for the Tombstone Manager to function, the Server API must be
switched on; that is, the property api.on must be set to true.
The relevant properties are:

com.ibm.di.tm.on
Master switch for the Tombstone Manager. Values are on and off - if set to
off, no Tombstones are generated even if specified in the Config file;
neither are they managed (nor can they be queried using the Server API, or
AMC).

The default value for this property is false.

com.ibm.di.tm.autodel.age
The number of days a Tombstone live. When this property is present and
contains an integer value greater than 0 the Tombstone Manager
automatically delete all tombstone records that are older than the specified
number of days.

The logic for tombstone record deletion is triggered on IBM Security
Directory Integrator Server startup and once a day on a long running IBM
Security Directory Integrator Server.

The default value for this property is 0.

com.ibm.di.tm.autodel.records.trigger.on
Specifies the total number of tombstone records that trigger the logic for
trimming the number of tombstone records to a certain number.

The default value for this property is 10000.

com.ibm.di.tm.autodel.records.max
The number of Tombstones to be retained once the trigger specified by the
previous parameter, com.ibm.di.tm.autodel.records.trigger.on is
exceeded.

The default value for this property is 5000.

com.ibm.di.tm.create.all
This property acts as an override switch for the values specified in the
Config files. When this property is set to true, Tombstone Manager create
Tombstones for every AssemblyLine and Config Instance regardless of the
values specified in the configurations. This is useful to turn on Tombstone
creation for pre-6.1 configurations that do not have tombstone values
without modifying the configurations.

The automatic cleanup logic determined by the com.ibm.di.tm.autodel.age
property is independent of the automatic cleanup logic determined by the
com.ibm.di.tm.autodel.records.trigger.on and
com.ibm.di.tm.autodel.records.max properties.

The Tombstone Manager uses the IBM Security Directory Integrator logging
framework and logs its messages in the IBM Security Directory Integrator Server
main log.

An example section in the global.properties or solution.properties file could
look like:

Chapter 18. Tombstone Manager 329

com.ibm.di.tm.on=true
com.ibm.di.tm.autodel.age=90
com.ibm.di.tm.autodel.records.trigger.on=50000
com.ibm.di.tm.autodel.records.max=25000
com.ibm.di.tm.create.all=false

This set of configuration properties specifies that: The Tombstone Manager is
turned on. Tombstones older than 90 days are automatically deleted. Also when
the total number of tombstone records reaches 50000, the oldest 25000 tombstone
records is automatically deleted.

330 IBM Security Directory Integrator: Installation and Administrator Guide

Chapter 19. Multiple IBM Security Directory Integrator
services

IBM Security Directory Integrator services can be registered as different services.
Learn more about these in the information provided here.

IBM Security Directory Integrator as Windows Service
You can perform various tasks with Windows Service. Learn in detail about these
through the information provided here.

In IBM Security Directory Integrator there is a mechanism that allows multiple
IBM Security Directory Integrator server instances to be registered as Windows
services. Each instance requires a separate solution directory. After creating a
solution directory, a utility program should be copied in it. The name of the
program is ibmdiservice.exe. The configuration of the utility program and the
Windows service is made with a properties file named ibmdiservice.props. Each
solution directory should contain a configuration properties file.

Each Windows service must have a different name. A property called
"servicename" in the property file specifies a name that is used in creation of the
Windows service name and the Windows service display name. The Windows
service name is formed by prefixing the value of the "servicename" property with
the "ibmdisrv-" prefix. The Windows service display name is formed by inserting
the value of the "servicename" property between the brackets of "IBM Security
Directory Integrator ()". For example if the "servicename" property is set to "test"
the Windows service name is "ibmdisrv-test" and the Windows service display
name is "IBM Security Directory Integrator (test)". If the "servicename" property is
not present or has no value default names are used. The default names for the
Windows service name and the Windows service display name are "ibmdisrv" and
"IBM Security Directory Integrator".

A property exists so it can be configured whether the Windows service is started
automatically on Windows startup or has to be started manually. The name of the
property is "autostart" and the valid values for it are "true" and "false".

Note: This property is used during installation and uninstallation as well as while
the service is running. That is why the property value must not be changed after
the Windows service has been installed.

For more information about the IBM Security Directory Integrator Windows service
configuration properties file see the "“Configuring the service” on page 333"
section.

Installing and uninstalling the service
Perform the steps listed here to install and uninstall the service.

Installing the service
You can install the service using the steps listed here.

© Copyright IBM Corp. 2003, 2014 331

About this task

Do the following to install the IBM Security Directory Integrator service:

Procedure
1. Make sure the IBM Security Directory Integrator is installed. The installation

folder of the IBM Security Directory Integrator is referred to as root_directory.
See installer for Windows platforms.

2. Choose a solution folder that is used by IBM Security Directory Integrator
when it is started as a Windows service - this can be any folder of your choice.
Once IBM Security Directory Integrator is installed as a service the solution
folder used by the service cannot be changed until it is uninstalled as a service.
Note that choosing the solution folder for the Windows service does not
prevent from running IBM Security Directory Integrator with any other solution
folder.

3. Once the solution folder is chosen copy into that folder all files from the
root_directory/win32_service folder: these are "ibmdiservice.exe",
"ibmdiservice.props" and "Log4J.properties".

4. Execute the following command from the solution folder chosen for the
Windows Service: ibmdiservice.exe -i

Uninstalling the service
You can uninstall the service using the steps listed here.

About this task

Note: In order to use the IBM Security Directory Integrator 7.2 version of the
"ibmdiservice.exe" utility program any registered pre-IBM Security Directory
Integrator 7.2 Windows service must be uninstalled and then the IBM Security
Directory Integrator 7.2 windows service must be installed. This is necessary
because the IBM Security Directory Integrator 7.2 windows service uses a different
default name for the Windows service name – "ibmdisrv" as opposed to the
pre-IBM Security Directory Integrator 7.2 default name of "IBM Security Directory
Integrator".
Do the following to uninstall the IBM Security Directory Integrator service:
1. Make sure the IBM Security Directory Integrator service is stopped.
2. Execute the following command from the solution folder chosen when you

installed the service:
ibmdiservice.exe -u

Note:

1. Uninstalling the IBM Security Directory Integrator service does not uninstall the
IBM Security Directory Integrator itself. You can still use the IBM Security
Directory Integrator but it is not registered and run as a Windows service. You
can install IBM Security Directory Integrator service again later.

2. If the IBM Security Directory Integrator service is installed and you wish to
completely uninstall the IBM Security Directory Integrator (not just the service),
do the following:
a. Uninstall the Windows service.
b. Uninstall the IBM Security Directory Integrator (see uninstaller for Windows

platforms).

332 IBM Security Directory Integrator: Installation and Administrator Guide

Starting and stopping the service
Use the listed options to start and stop the service.

The IBM Security Directory Integrator service automatically starts the IBM Security
Directory Integrator at system boot. The IBM Security Directory Integrator is not,
however, automatically started when the service is installed. After installing the
service you have three options to start the service:
v Restart the computer.
v Start the IBM Security Directory Integrator service from the Windows Services

window.
v Use the command line. See “Command line support” on page 337

Manual start and stop

You can manually start and stop the IBM Security Directory Integrator service from
the Windows Services window.

In the Services window you must select the service IBM Security Directory
Integrator and, depending on the Windows version, either click the Start/Stop
button, or right-click on the service name and select Start/Stop.

You can also use the command line; see “Command line support” on page 337.

Changing service startup type

By default, the IBM Security Directory Integrator service is configured to start
automatically on system boot.

You can manually change the service startup mode from the Windows Services
window to Manual or Disabled.

Logging
The IBM Security Directory Integrator service logs all messages (error, info and
debug) in the Application Windows system log. You can view these messages with
the Windows Event Viewer.

Configuring the service
You can specify the properties in the ibmdiservice.props file to configure the IBM
Security Directory Integrator service.

The IBM Security Directory Integrator service is configured through the
ibmdiservice.props file placed in the solution folder chosen during installation of
the log service.

Note: Before running the service, make sure this file is properly configured as
described in this section. The service could fail if the file contains incorrect values.
The following properties are specified in the ibmdiservice.props file:

path Specifies the PATH environment variable used for running the IBM
Security Directory Integrator process (this property is usually the same as
the PATH variable from ibmdisrv.bat, but you can change it). This is an
optional property.

Chapter 19. Multiple IBM Security Directory Integrator services 333

ibmdiroot
Specifies the root folder of the IBM Security Directory Integrator (for
example, C:\Program Files\IBM\TDI\V7.2). This is a required property.

configfile
Specifies the file path to the IBM Security Directory Integrator
configuration file. This is an optional property.

assemblylines
Specifies in a comma-delimited format the AssemblyLines that are started
automatically when the IBM Security Directory Integrator service is started.
This is an optional property.

cmdoptions
Specifies other options that are directly passed to the IBM Security
Directory Integrator on service startup (see Chapter 13, “Command-line
options,” on page 205 for the full list of IBM Security Directory Integrator
options).

One such option could be the -c option; here you could specify multiple
config files (separated by commas), something which is not allowed by the
configfile parameter.

The requirements when you use this configuration are:
v The full path is required in either \\ for Windows or / for UNIX syntax

for each assembly line
v The names of the configuration files must be contained in one set of

quotes separated by a comma.
v The -d option is required.
v The file names must not contain any spaces.

For example:
cmdoptions=-c"C:/TDI7.1-Solutions/myConfig/Config1.xml ,

C:/TDI7.1-Solutions/AnotherConfig/TechNotes.xml" -d

This is an optional property.

servicename
Specifies a name that is used to form the Windows service name and the
Windows service display name. The windows service name is set to the
value of the servicename property prefixed with the "ibmdisrv-" prefix.
The windows service display name is created by inserting the value of the
servicename property between the brackets of the "IBM Security Directory
Integrator ()" expression.

For example, if the property value is "test" the Windows service name will
be "ibmdisrv-test" and the Windows service display name will be "IBM
Security Directory Integrator (test)". If the servicename property is not
present or has no value, default names are used. The default Windows
service name is "ibmdisrv" and the default Windows service display name
is "IBM Security Directory Integrator".

Note: This property is used during installation and uninstallation as well
as while the service is running. That is why the property value must not
be changed after the Windows service has been installed.

autostart
Specifies whether the Windows service starts automatically on Windows
start-up or whether it has to be started manually. The valid values for this
property are true and false. A value of true specifies that the Windows

334 IBM Security Directory Integrator: Installation and Administrator Guide

service is started on Windows start-up and a value of false specifies that
the service has to be started manually. If this property is not present or has
no value, then the default value of true is used.

This property is used during Windows service installation and changing it
after the Windows service has been installed has no effect.

controlledshutdown
Specifies whether the Windows service will terminate the server gracefully
or will hard kill the server process. The valid values for this property are
"true" and "false". A value of "true" specifies that the Windows service will
stop the IBM Security Directory Integrator server gracefully and a value of
"false" indicates that the server process will be hard killed. If this property
is not present or has no value, then the default value of "false" is used.

debug Specifies true or false to correspondingly turn debug information on or off.
When debug information is turned on, detailed trace messages are dumped
in the Application Windows system log. This is an optional property.

Note: When specifying properties in the configuration file, specify each property
on a single line and use the following format:
<property_name>=<property_value>

There must be no spaces around the equals (=) sign.

An example of a completed ibmdiservice.props file looks like the following:
path=C:\Program Files\IBM\TDI\V7.2\jvm\jre\bin;
C:\Program Files\IBM\TDI\V7.2\libs;
ibmdiroot=C:\Program Files\IBM\TDI\V7.2
configfile=rs.xml
assemblylines=AssemblyLine1,AssemblyLine2
cmdoptions=
debug=false
controlledshutdown=false

Note: If you change any of the properties in ibmdiservice.props, you must restart
the service for the changes to take effect.

IBM Security Directory Integrator as Linux/UNIX Service
You can perform various tasks with Linux/UNIX Service. Learn in detail about
these through the information provided here.

Deployment methods

On Linux and UNIX platforms, there are two different ways of ensuring that
certain system jobs or 'daemons' start and stop at respectively system initiation and
system termination:
1. Using a script in /etc/init.d containing the logic to start and stop the daemons

you are interested in. This script you then (hard)link to scripts in /etc/rc3.d: their
names beginning with SXX... and KXX... - the XX being a numeral which
causing the files to show up in the right sequence in the /etc/rc3.d directory.
The scripts starting with S are called when the system reaches run phase 3 at
system startup, and the scripts starting with K are called when the system
terminates.

2. By editing the /etc/inittab file.

The latter process is what we describe here. Some of the information presented
could be used to construct scripts using the first deployment method.

Chapter 19. Multiple IBM Security Directory Integrator services 335

Tailoring /etc/inittab

In order to start up IBM Security Directory Integrator daemon processes when the
UNIX/Linux OS starts appropriate entries must be added to the /etc/inittab file. The
registering of IBM Security Directory Integrator as a windows service on Windows
translates to adding a line of text to the /etc/inittab file on UNIX/Linux. The
un-installation of the IBM Security Directory Integrator windows service on
Windows translates to removing the corresponding entries from the /etc/inittab file.
For each IBM Security Directory Integrator daemon process that needs to be
started on system startup one line of text must be added to the /etc/inittab file. The
format and meaning of the entries in this file is described below. Each entry in the
/etc/inittab file has the following format:

Identifier:RunLevel:Action:Command

A description of each of these fields is as follows:
v The Identifier field is a string (at least a single character in length) that uniquely

identifies an object. This string is used to uniquely identify the corresponding
command.

v The RunLevel field is the run-level in which this entry can be processed.
Run-levels effectively correspond to a configuration of processes in the system.
Each process started by the init command is assigned one or more run-levels in
which it can exist. A run-level is represented by the numbers 0 through N,
where N is a positive integer different for the different UNIX/Linux operating
Systems (for example on some AIX computers N is 9, on RedHat Linux N is 6,
and so on.). If the OS is running in run-level 3, for example, then only processes
specified for run-level 3 are started.
The RunLevel field can define multiple run-levels for a process by selecting
more than one run-level in any combination from 0 through N. For example, if
IBM Security Directory Integratorneeds to run in run-level 3 and 6, then the
run-level must be specified as "36". If no run-level is specified, the process is
assumed to be valid at all run-levels.
It is recommended that no run-level numbers are specified, unless the specific
IBM Security Directory Integrator solution specifically needs to.

v The Action field is a value from a set of predefined actions which tells the init
command how to treat the process specified in the Command field. There are
many actions recognized by the init command, but for running the IBM Security
Directory Integrator server as a daemon process it is recommended that the once
action be used. The semantics of the once action are:
When the init command enters a run-level that matches the entry's run level,
start the process, and do not wait for its termination. When it dies, do not restart
the process. When the system enters a new run level, and the process is still
running from a previous run level change, the program not be restarted. All
subsequent reads of the/etc/inittab file while the init command is in the same
run level cause the init command to ignore this entry.

v The Command field specifies the shell command to run.

Here are three example IBM Security Directory Integrator-related entries in
/etc/inittab:
tdi1::once:/opt/IBM/TDI711_1/ibmdisrv -c "/opt/IBM/TDI711_1/myconfigs/rs1.xml" -r "testAL1"
tdi2::once:/opt/IBM/TDI711_2/ibmdisrv -c "/opt/IBM/TDI711_2/myconfigs/rs2.xml" -r "testAL2"
tdi3::once:/opt/IBM/TDI711_3/ibmdisrv -c "/opt/IBM/TDI711_3/myconfigs/rs3.xml" -r "testAL3"

This example starts three IBM Security Directory Integrator server instances which
are installed in different folders.

336 IBM Security Directory Integrator: Installation and Administrator Guide

Note: There are some differences in the different UNIX/Linux operating systems
for system startup. That is why the information provided here covers the main
issues of starting IBM Security Directory Integrator on a UNIX/Linux system and
does not refer to any specific UNIX/Linux system.

As an example of an /etc/inittab file, detailed information about the
/etc/inittab configuration file for an AIX system can be found at
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/
com.ibm.aix.files/doc/aixfiles/inittab.htm

Graceful shutdown

On UNIX systems we always perform a graceful shutdown of the service. This is
achieved by a shutdown hook added to the Java Runtime. That way, when the
server is stopped with either SIGINT or SIGTERM signals, this hook is executed
and the server is gracefully terminated.

Another advantage of this approach is that this hook will be invoked on all
platforms when the server is stopped by pressing CTRL+C in its console window.

Note: You can also specify an external program to be started from within the JVM
shutdown Hook. This external program is configured using an optional property in
the global.properties or solution.properties file: jvm.shutdown.hook. If
configured the external program will be started right after the server has shutdown
gracefully.

Command line support
You can use the script for starting and stopping the service with the help of
information provided here.

IBM Security Directory Integrator provides a script for starting and stopping the
IBM Security Directory Integrator service on Windows and UNIX systems. The
script is located in the TDI_install_dir/bin directory, and is named
servicemgr.bat(sh).

The usage of the script is as follows:
servicemgr service_name start|stop

where:

service_name
is the name of the service. For Windows systems this is ibmdisrv by
default or the value of servicename property in the ibmdiservice.props
file. For UNIX systems this is the identifier field from the /etc/inittab
file.

start|stop
the desired command to perform on the service.

Chapter 19. Multiple IBM Security Directory Integrator services 337

338 IBM Security Directory Integrator: Installation and Administrator Guide

Appendix A. Example Property files

You can customize the property files for installing the IBM SDI. Learn more about
the various available text files and the Solution Directory through the information
provided here.

An installation of IBM Security Directory Integrator is to a large extent customized
by means of a set of text files containing one of more properties, usually in the
form of a keyword or identifier followed by a value. The following global property
text files can be found at the root/etc level of the IBM Security Directory
Integrator installation directory:
v “Log4J.properties” on page 340
v “jlog.properties” on page 341
v “derby.properties” on page 342
v “global.properties” on page 342

Properties set in any of those files form a baseline for the entire IBM Security
Directory Integrator installation for all users on that computer. However, if your
Solution Directory is different from the installation directory, you can have a set of
text files in your Solutions Directory that mirror their counterparts in the
installation directory. A property listed in any of those files overrides anything set
in any of the global installation property files mentioned above. Futhermore, a Java
property set inside a Config file takes the highest precedence, and overrides
anything in a global property file or the property files in the Solution Directory.

You can specify the Solution Directory in multiple ways:
v By setting the environment variable TDI_SOLDIR before starting the

Configuration Editor or the Server
v By specifying the -s parameter to the ibmditk script to start the Server. This

takes precedence over setting TDI_SOLDIR.

If TDI_SOLDIR equals the installation directory, the behavior is like in older
versions of IBM Security Directory Integrator: all property files are read from there,
and the remarks about property files in the Solutions Directory do not apply.

In any other case, the first time you run the IBM Security Directory Integrator
Server, it makes a copy of all the property files into your Solutions Directory (it
does not overwrite these files if they already exist). You can now tailor these files
to your particular needs, without affecting the property files in the installation
directory. The files remaining in the installation directory continue to form a
baseline configuration for other instances of IBM Security Directory Integrator.

Note: The file global.properties is copied to a file called solutions.properties
in your Solutions Directory. Other files, like Log4J.properties and the files in the
amc and serverapi folders are copied under their own name.

In addition, if your Solution Directory was setup during product installation using
the IBM Security Directory Integrator installer, the setup will contain a working
System Queue setup. If the Solution Directory is created by any other means
(manually, or by the Server by using the -s option) then you will either have to

© Copyright IBM Corp. 2003, 2014 339

disable the System Queue in your solution.properties file, or setup a System
Queue yourself - see “System Queue Configuration” on page 157.

Log4J.properties
This file sets a baseline for the log-strategy for the server (ibmdisrv).

Log options configured in the Logging tab in the Configuration Editor are written
into the Config file, and are supplementary to or supersede the following:
This file controls the logging strategy for the server (ibmdisrv) when started
from the command line.
Look at executetask.properties for the logging strategy of the server when started
from the Configuration Editor (ibmditk).
Look at ce-log4j.properties for the logging behavior of the Configuration Editor (ibmditk).
#
You will normally configure the logging strategy of the server by adding appenders
using the Configuration Editor (ibmditk). This file only defines the baseline
that is independent of the configuration files you are using.
#
See the IDI documentation for more information on the contents of this file.
#

log4j.rootCategory=INFO, Default

This is the default logger, you will see that it logs to ibmdi.log
log4j.appender.Default=org.apache.log4j.FileAppender
log4j.appender.Default.file=logs/ibmdi.log
log4j.appender.Default.layout=org.apache.log4j.PatternLayout
log4j.appender.Default.layout.ConversionPattern=%d{ISO8601} %-5p [%c] - %m%n
log4j.appender.Default.append=false

#Example settings for changing the default logger

##########ROLLING FILE SIZE APPENDER
##RollingFileAppender rolls over log files when they reach a certain size specified by the
##MaxFileSize parameter

#log4j.appender.Default=org.apache.log4j.RollingFileAppender
#log4j.appender.Default.File=logs/ibmdi.log
#log4j.appender.Default.Append=true
#log4j.appender.Default.MaxFileSize=10MB
#log4j.appender.Default.MaxBackupIndex=10
#log4j.appender.Default.layout=org.apache.log4j.PatternLayout
#log4j.appender.Default.layout.ConversionPattern=%d{ISO8601} %-5p [%c] - %m%n

##########DAILY OUTPUT LOG4J SETTINGS
With the DailyRollingFileAppender the underlying file is rolled over at a user chosen frequency.
##The rolling schedule is specified by the DatePattern option

#log4j.appender.Default=org.apache.log4j.DailyRollingFileAppender
#log4j.appender.Default.file=logs/ibmdi.log
#log4j.appender.Default.DatePattern=’.’yyyy-MM-dd
#log4j.appender.Default.layout=org.apache.log4j.PatternLayout
#log4j.appender.Default.layout.ConversionPattern=%d{ISO8601} %-5p [%c] - %m%n

You may change the logging category of these subsystems to DEBUG
if you want to investigate particular problems. This may
generate a lot of output.
...com.ibm.di.config describes the loading of the configuration file (.xml),
and how the internal configuration structure is built.
...com.ibm.di.loader gives information about jar files, and where classes are found.
It also loads idi.inf files, which provides Connectors/Parsers/EH information
for the Configuration Editor.
log4j.logger.com.ibm.di.config=WARN
log4j.logger.com.ibm.di.loader=WARN

Uncomment the lines below to activate them

Here is an example on how to make a logger that logs to the console
#log4j.appender.CONSOLE=org.apache.log4j.ConsoleAppender
#log4j.appender.CONSOLE.layout=org.apache.log4j.PatternLayout
#log4j.appender.CONSOLE.layout.ConversionPattern=%d [%t] %-5p - %m%n0

Here is an example that logs to myFile.log
#log4j.appender.fileLOG=org.apache.log4j.FileAppender
#log4j.appender.fileLOG.file=myFILE.log
#log4j.appender.fileLOG.layout=org.apache.log4j.PatternLayout
#log4j.appender.fileLOG.layout.ConversionPattern=%d{ISO8601} %-5p [%c] - %m%n
#log4j.appender.fileLOG.append=false

Finally, make use of the loggers defined above:
Tell AssemblyLines myAL to log using CONSOLE logger defined above.

340 IBM Security Directory Integrator: Installation and Administrator Guide

log4j.logger.AssemblyLine.AssemblyLines/myAL=INFO, CONSOLE

Or you could log to myFile.log

log4j.logger.AssemblyLine.AssemblyLines/myAL=INFO, fileLOG

jlog.properties
You can configure and modify the JLOG-based values of the IBM SDI server.

This file configures the JLOG-based Chapter 15, “Tracing and FFDC,” on page 233
of the IBM Security Directory Integrator server. These values can be modified
dynamically (during Server execution) using the LogCmd script if the property
jlog.noLogCmd was set to false when the Server started.

Note: You would normally use Log4J to trace execution flow in your solution; the
JLOG-based tracing and FFDC is meant to aid IBM Support should you have
problems with IBM Security Directory Integrator.
###
This file controls the tracing and First Failure Data Capture (FFDC) strategy for ITDI 7.2
See the IDI documentation for more information on the contents of this file.
###

#--
Enable the JLOG’s command server
#
If the jlog.noLogCmd is set to false, then the JLOG LogManager will listen on the
default port (9992) for JLOG log commands.
Setting this property to false will enable you to modify the JLOG properties dynamically using the
logcmd scripts. The logcmd scripts are placed under ITDI_HOME directory.
The default value is set to true.
#--
jlog.noLogCmd=true

#--
Set listen port for JLOG’s command server
#
If you want LogManager to listen on different port than the default one (9992) you should
uncomment the property jlog.logCmdPort and set it to the desired port. If not uncommented
the LogManager will listen on the default port - 9992.
#--
#jlog.logCmdPort=9992

#--
Configure Jlog FileHandler for tracing into a file.
#
By default the FileHandler is not attached to the Jlog Logger.
Uncomment the properties with the prefix jlog.filehandler below to configure a FileHandler.
After uncommenting this you need to add the filehandler to the logger’s listeners names as shown
below
e.g: jlog.logger.listenerNames=jlog.snapmemory jlog.snaphandler jlog.filehandler
#--
jlog.filehandler.className=com.ibm.log.FileHandler
#jlog.filehandler.description=JLOG File Handler for Logging and Tracing
#jlog.filehandler.encoding=UTF8
#jlog.filehandler.maxFiles=10
#jlog.filehandler.maxFileSize=2048
#jlog.filehandler.appending=true
#jlog.filehandler.fileDir=logs/
#jlog.filehandler.trace.fileName=trace.log
#---

#---
create a level filter.
The level filter is used to define the level at which JFFDC action will be triggered.
For JFFDC to be meaningful this should be set to either FATAL or ERROR (case-insensitive).
NOTE: Setting the trigger level to other levels such as DEBUG_MIN will trigger unwanted JFFDC
action causing a performance drop.
#---
jlog.levelflt.className=com.ibm.log.LevelFilter
jlog.levelflt.level=FATAL

#---
Configure the SnapMemoryHandler for tracing into a memory buffer.
The SnapMemoryHandler traces into a memory buffer and dumps the contents of the memory to a file on
trigger of a event (as defined by the level filter above) and writes the content to the specified
file
Properties:
jlog.snapmemory.queueCapacity : Sets the nnumber of LogEvents that can be buffered in the memory
jlog.snapmemory.snapFile : name of the file to which the contents of the memory will be dumped

Appendix A. Example Property files 341

jlog.snapmemory.baseDir : The directory where the snapFile is placed.
daily subdirectories will be created under this base directory, as:
[baseDir]/[YYYY-MM-DD]/
Note: MS-DOS style path names need to be be escaped with backslashes
eg: c:\\CTGI\\FFDC
jlog.snapmemory.userSnapFile : The name of the file to which the user initiated (from logcmd) dumps
will be written to.
jlog.snapmemory.userSnapDir : The directory where the userSnapfile is placed.
jlog.snapmemory.msgIds : The list of TMS IDs
jlog.snapmemory.msgIDRepeatTime : The minimum time, in milliseconds, after passing a log event with a
given TMS message id, before another log event with the same id can
be passed.
#---
jlog.snapmemory.className=com.tivoli.log.SnapMemoryHandler
jlog.snapmemory.description=Memory handler used to trace to memory
jlog.snapmemory.queueCapacity=10000
jlog.snapmemory.dumpEvents=true
jlog.snapmemory.snapFile=trace.log
jlog.snapmemory.baseDir=CTGDI/FFDC/
jlog.snapmemory.userSnapFile=userTrace.log
jlog.snapmemory.userSnapDir=CTGDI/FFDC/user/
jlog.snapmemory.triggerFilter=jlog.levelflt
jlog.snapmemory.msgIds=*E
jlog.snapmemory.msgIDRepeatTime=10000

#---
Configure the JLogSnapHandler taking a snapshot of the SnapMemoryHanlders buffer
The JLogSnapHanlder takes a snapshot of the associated SnapMemoryBuffer.
#---
jlog.snaphandler.className=com.tivoli.log.JLogSnapHandler
jlog.snaphandler.description=snaphandler to dump the memory trace
jlog.snaphandler.baseDir=CTGDI/FFDC/
jlog.snaphandler.snapMemoryHandler=jlog.snapmemory
jlog.snaphandler.triggerFilter=jlog.levelflt

#---
Configure the PDLogger (Problem Determination) Object and attach the Listeners to it.
jlog.logger.level can be FATAL | ERROR | WARNING | INFO | DEBUG_MIN | DEBUG_MID | DEBUG_MAX
The heirarchy of the log levels is from the most severe (FATAL) to the least severe (DEBUG_MAX)
The value for this property is case-insensitive
#---
jlog.logger.level=FATAL
#jlog.logger.listenerNames=jlog.snapmemory jlog.snaphandler
jlog.logger.listenerNames=jlog.filehandler.trace
jlog.logger.className=com.ibm.log.PDLogger

#---
Configure the PDLogger for the Config Editor and attach the Listeners to it.
By default, no listeners are attached
#---
jlog.logger.config-editor.level=FATAL
jlog.logger.config-editor.listenerNames=

derby.properties
This file contains some defaults for Derby in networked mode.

Most IBM Security Directory Integrator-related Derby parameters are not
maintained here but in global.properties and solution.properties. More
information about these parameters can be obtained from the Derby
documentation.
This is a sample properties file provided to show the proper format.
We’re also setting one property which make sure that
Derby adds to the error log instead of overwriting it.
This mode is useful for development.
derby.drda.logConnections=true
derby.drda.maxThreads=0
derby.drda.portNumber=1527
derby.drda.traceAll=true
derby.drda.timeSlice=0
derby.drda.traceDirectory=/trace

global.properties
This file is read by ibmditk (the CE) and ibmdisrv (the server) on startup.

This file is read and applied before a file called solution.properties from your
Solution Directory is read and applied.

342 IBM Security Directory Integrator: Installation and Administrator Guide

Note:
The rendition here, due to extremely long line lengths, may not be complete. Refer
to an actual global.properties file instead.
##
This file is read by ibmditk/ibmdisrv on startup
##
Enter <name>=<value> to set system properties.
Enter !include <file | url> to include other files
##

com.ibm.di.securityTransformation=DES/ECB/NoPadding

##
Modify the line below to add your own jar/zip files.
The property may specify several directories or jar files, separated by the Java Property "path.separator",
which is ":" on Linux and ";" on Windows
Directories will be searched recursively by the TDILoader for jar files containing classes and resources.
Only files with a ".zip" or ".jar" extension are searched.
com.ibm.di.loader.userjars=c:\myjars

##
Modify the line below to enable the config autoload feature.
When this property is defined, the "ibmdisrv -d" command
line will look for *.xml files in the directory specified by this property and start each one.
##
com.ibm.di.server.autoload=autoload.tdi

##
SYSTEM STORE
##

Location of the database (embedded mode) - Cloudscape 10
#com.ibm.di.store.database=TDISysStore
#com.ibm.di.store.jdbc.driver=org.apache.derby.jdbc.EmbeddedDriver
#com.ibm.di.store.jdbc.urlprefix=jdbc:derby:
#com.ibm.di.store.jdbc.user=APP
#{protect}-com.ibm.di.store.jdbc.password=APP

Location of the database to connect (networked mode) - Cloudscape 10 - DerbyClient driver
The macro $soldir$ will be replaced by the value of the actual Solution Directory
com.ibm.di.store.database=jdbc:derby://localhost:1527/$soldir$/TDISysStore;create=true
com.ibm.di.store.jdbc.driver=org.apache.derby.jdbc.ClientDriver
com.ibm.di.store.jdbc.urlprefix=jdbc:derby://localhost:1527/
com.ibm.di.store.jdbc.user=APP
{protect}-com.ibm.di.store.jdbc.password={encr}n+Vum7tN0ZU0KNp7AGy7pkAZqiJMGgPnqwg

/dBhLEL5pDBj5FY/Qp/2OmOkfWDezdSvYGUKag3UkzV+NuSSBVpJ36s3QCkFDz72VOTzJIa1REhIp/j/u9
/3EllZPIAHlB1gKP772OOFPJIB6mbDUUugFwIZ+FmKFH5CW6Nytp+M=

#
Derby (Cloudscape) properties required for enabling authentication
#
derby.drda.startNetworkServer=true
derby.connection.requireAuthentication=true
derby.authentication.provider=BUILTIN
derby.database.defaultConnectionMode=fullAccess

#
Details for starting Cloudscape in network mode.
Note: If the com.ibm.di.store.hostname is set to localhost then remote connections will not be allowed.
If it is set to the IP address of the local machine - then remote clients can access this Cloudscape
instance by mentioning the IP address. The network server can only be started for the local machine.
#
#com.ibm.di.store.start.mode=automatic
com.ibm.di.store.hostname=localhost
com.ibm.di.store.port=1527
com.ibm.di.store.sysibm=true

the varchar(length) for the ID columns used in system store and pes connector tables
com.ibm.di.store.varchar.length=512

create statements for system store tables (CloudScape 5.1)
#com.ibm.di.store.create.delta.systable=CREATE TABLE {0}

(ID VARCHAR(VARCHAR_LENGTH) NOT NULL, SEQUENCEID int, VERSION int)
#com.ibm.di.store.create.delta.store=CREATE TABLE {0}

(ID VARCHAR(VARCHAR_LENGTH) NOT NULL, SEQUENCEID int, ENTRY long varbinary)
#com.ibm.di.store.create.property.store=CREATE TABLE {0}

(ID VARCHAR(VARCHAR_LENGTH) NOT NULL, ENTRY long varbinary)
#com.ibm.di.store.create.sandbox.store=CREATE TABLE {0}

(ID VARCHAR(VARCHAR_LENGTH) NOT NULL, ENTRY long varbinary)

create statements for system store tables (CloudScape 10)
com.ibm.di.store.create.delta.systable=CREATE TABLE {0}

(ID VARCHAR(VARCHAR_LENGTH) NOT NULL, SEQUENCEID int, VERSION int);
ALTER TABLE {0} ADD CONSTRAINT IDI_CS_{UNIQUE} PRIMARY KEY (ID)

com.ibm.di.store.create.delta.store=CREATE TABLE {0}
(ID VARCHAR(VARCHAR_LENGTH) NOT NULL, SEQUENCEID int, ENTRY BLOB);
ALTER TABLE {0} ADD CONSTRAINT IDI_DS_{UNIQUE} Primary Key (ID)

com.ibm.di.store.create.property.store=CREATE TABLE {0}
(ID VARCHAR(VARCHAR_LENGTH) NOT NULL, ENTRY BLOB);
ALTER TABLE {0} ADD CONSTRAINT IDI_PS_{UNIQUE} Primary Key (ID)

com.ibm.di.store.create.sandbox.store=CREATE TABLE {0}
(ID VARCHAR(VARCHAR_LENGTH) NOT NULL, ENTRY BLOB)

com.ibm.di.store.create.recal.conops=CREATE TABLE {0} (METHOD varchar(VARCHAR_LENGTH), RESULT BLOB, ERROR BLOB)

create statements for system store tables DB2 on z/OS
#com.ibm.di.store.create.delta.systable=CREATE TABLESPACE TS1DSYS LOCKSIZE ROW BUFFERPOOL BP32K;CREATE TABLE {0}

(ID VARCHAR(VARCHAR_LENGTH) NOT NULL, SEQUENCEID int, VERSION int) IN TS1DSYS;CREATE UNIQUE INDEX DSTIX1 ON {0}
(ID ASC);ALTER TABLE {0} ADD CONSTRAINT IDI_DT_{UNIQUE} PRIMARY KEY (ID)

#com.ibm.di.store.create.delta.store=CREATE TABLESPACE TS1DST LOCKSIZE ROW BUFFERPOOL BP32K;CREATE TABLE {0}

Appendix A. Example Property files 343

(ID VARCHAR(VARCHAR_LENGTH) NOT NULL, SEQUENCEID int, ENTRY BLOB) IN TS1DST; CREATE UNIQUE INDEX DSIX1 ON {0}
(ID ASC); ALTER TABLE {0} ADD CONSTRAINT IDI_DS_{UNIQUE} Primary Key (ID);CREATE LOB TABLESPACE DSENT11 BUFFERPOOL
BP32K LOCKSIZE LOB;CREATE AUX TABLE TBDSEN1 IN DSENT11 STORES {0} COLUMN ENTRY;CREATE INDEX IXEN1 ON TBDSEN1

#com.ibm.di.store.create.property.store=CREATE TABLESPACE PS3DST LOCKSIZE ROW BUFFERPOOL BP32K;CREATE TABLE {0}
(ID VARCHAR(VARCHAR_LENGTH) NOT NULL, ENTRY BLOB) IN PS3DST;CREATE UNIQUE INDEX PSIX3 ON {0} (ID ASC);
ALTER TABLE {0} ADD CONSTRAINT IDI_PS_{UNIQUE} Primary Key (ID);CREATE LOB TABLESPACE PSENT31 BUFFERPOOL BP32K
LOCKSIZE LOB;CREATE AUX TABLE TBPSEN3 IN PSENT31 STORES {0} COLUMN ENTRY;CREATE INDEX PSIXEN3 ON TBPSEN3

#com.ibm.di.store.create.sandbox.store=CREATE TABLE {0} (ID VARCHAR(VARCHAR_LENGTH) NOT NULL, ENTRY BLOB)
#com.ibm.di.store.create.recal.conops=CREATE TABLESPACE IM{UNIQUE} LOCKSIZE ROW BUFFERPOOL BP32K;CREATE TABLE {0}

(METHOD VARCHAR(VARCHAR_LENGTH), RESULT BLOB, ERROR BLOB) IN IM{UNIQUE};CREATE LOB TABLESPACE LB{UNIQUE}
BUFFERPOOL BP32K LOCKSIZE LOB;CREATE AUX TABLE AT{UNIQUE} IN LB{UNIQUE} STORES {0} COLUMN RESULT;CREATE INDEX IX
{UNIQUE} ON AT{UNIQUE};CREATE LOB TABLESPACE LS{UNIQUE} BUFFERPOOL BP32K LOCKSIZE LOB;CREATE AUX TABLE
AE{UNIQUE} IN LS{UNIQUE} STORES {0} COLUMN ERROR;CREATE INDEX IN{UNIQUE} ON AE{UNIQUE}

Set a customized SQL statement for creation of the Tombstone Manager table.
Keep the same table and field names. This is the default Derby statement.
#com.ibm.di.store.create.tombstones=CREATE TABLE IDI_TOMBSTONE (ID INT GENERATED ALWAYS AS IDENTITY,

COMPONENT_TYPE_ID INT, EVENT_TYPE_ID INT, START_TIME TIMESTAMP, CREATED_ON TIMESTAMP, COMPONENT_NAME
VARCHAR(1024), CONFIGURATION VARCHAR(1024), EXIT_CODE INT, ERROR_DESCR VARCHAR(1024),
STATS LONG VARCHAR FOR BIT DATA, GUID VARCHAR(1024) NOT NULL, USER_MESSAGE VARCHAR(1024), UNIQUE (ID, GUID))

The following two SQL statements could be used when SolidDB is used as System Store
#com.ibm.di.store.create.tombstones=CREATE TABLE IDI_TOMBSTONE (ID INT PRIMARY KEY, COMPONENT_TYPE_ID INT,

EVENT_TYPE_ID INT, START_TIME TIMESTAMP, CREATED_ON TIMESTAMP, COMPONENT_NAME VARCHAR(1024),
CONFIGURATION VARCHAR(1024), EXIT_CODE INT, ERROR_DESCR VARCHAR(1024), STATS LONG VARBINARY,
GUID VARCHAR(1024) NOT NULL, USER_MESSAGE VARCHAR(1024), UNIQUE (ID, GUID));CREATE SEQUENCE IDI_TOMBSTONE_SEQ

#com.ibm.di.store.update.tombstones=INSERT INTO IDI_TOMBSTONE (ID, COMPONENT_TYPE_ID, EVENT_TYPE_ID, START_TIME,
CREATED_ON, COMPONENT_NAME, CONFIGURATION, EXIT_CODE, ERROR_DESCR, STATS, GUID, USER_MESSAGE)
VALUES (IDI_TOMBSTONE_SEQ.NEXT, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)

the ibmsnap_commitseq column name used by the RDBMS changelog connector
com.ibm.di.conn.rdbmschlog.cdcolname=ibmsnap_commitseq

server authentication
javax.net.ssl.trustStore=serverapi/testadmin.jks
{protect}-javax.net.ssl.trustStorePassword={encr}rI2mxgg5vwrbnooxTCYUFeMSkCKHbl4cGpZuQUW20GeCAyJjqGhiSJLuQJdNQpNNqDNJi+

isW0mJkzwl0qud8l179xlJtwqLh7zEVFgvuqEwx43ACLoSb9gkG8Je07JF0FgpO9thj6zTCCzqB4NCsmUv11agBHvGtEE8QT73Xh8=
javax.net.ssl.trustStoreType=jks

client authentication
javax.net.ssl.keyStore=serverapi/testadmin.jks
{protect}-javax.net.ssl.keyStorePassword={encr}QnVT+6gn66nE3zUnvHQEp9TM8k52BQxJsae85mnwQkecHseSCysd0MrWltXCOMFU2RJoZL

cqLVp3WpGp0QX+n9XQVBXGOXXmIjhwIs7iDr73DpkMloJzSruYhKPQGKOxgfC+80lIAfSoMixNgp76iIYbqiRqJHKV3sSQT9VB0mM=
javax.net.ssl.keyStoreType=jks

##PKCS11 options
##Set the value of following properties to use PKCS11 enabled devices to store SDI servers private key / certificate.
com.ibm.di.pkcs11cfg=etc/pkcs11.cfg
com.ibm.di.server.pkcs11=false
com.ibm.di.server.pkcs11.library=
com.ibm.di.server.pkcs11.slot=
{protect}-com.ibm.di.server.pkcs11.password={encr}iYbgH/Y/pw4YSUXVqpKQnWZzlZHKa52CuCRnHnnBen3/yIt0JlK+nrepEW8jN2KBDhM

8Z+zIPs/0YlIx9y20X/nvp/QgevgPsAvzvxznD7QtWjqAySTKWjT+i1BVCbnkhJOiRXXrIQkwSxtyl/oUcdskk5+wNSYLtvuSUrD3J38=

Turns on java debug
javax.net.debug=true

java interpreter override
com.ibm.di.javacmd=
com.ibm.di.installdir=

Limits the number of threads IDI uses
Must be set higher than 3 to have any effect

com.ibm.di.server.maxThreadsRunning=500

com.ibm.di.server.securemode=false

Following properties modified in SDI 7.1 Added property for
keystore password and keypassword
com.ibm.di.server.keystore
com.ibm.di.server.key.alias

api.keystore=testserver.jks
api.keystore.type=jks
api.key.alias=server
{protect}-api.keystore.password={encr}S8BAYYIIdW1y0FHuslpXHN6F4Xc76gCUvm39ZKZHsjRMmZQmY7S1p+7gh9YHE3AIquLGgf4n0MzFybU

S/C6xy2RIijVbq+HGz2YU+4SNnGjt5o53KAxIegLC2ml+JCUu4UY/P/ASjCXFhfL/iJsRI4hxLhFg266pl3eIJeVxflc=
{protect}-api.key.password={encr}

Encryption properties added in SDI 7.1
com.ibm.di.server.encryption.keystore = testserver.jks
com.ibm.di.server.encryption.key.alias = server
com.ibm.di.server.encryption.keystoretype = jks
com.ibm.di.server.encryption.transformation = RSA

Web container
web.server.port=1098
web.server.ssl.on=true
web.server.ssl.client.auth.on=false
web.server.session.timeout=300

Touchpoint Server properties
tp.server.on=false
tp.server.config=etc/tp.xml
tp.server.auth=false
tp.server.auth.realm=Security Directory Integrator Touchpoint Server

Dashboard properties
##
dashboard.on=true
dashboard.templates.folder=dashboard/templates

Dashboard authentication properties
##

344 IBM Security Directory Integrator: Installation and Administrator Guide

The values for localhost and remotehost can be:
none: No authentication is required
deny: All connections denied
ldap: Authentication is done by logging into an LDAP server and optionally validating group membership
properties: Authentication is done using dashboard.auth.user.[username]=[password] properties
##
dashboard.ldap.url
Specify the LDAP host port and optionally a search base (ldap://<host>:<port>[/<search-base>])
##
dashboard.ldap.url.group
Specify the LDAP host port and optionally a search base (ldap://<host>:<port>[/<search-base>])
##
dashboard.auth=true
dashboard.auth.localhost=properties
dashboard.auth.remote=deny
dashboard.auth.ldap.url=ldap://localhost:389/ou=users,ou=system
dashboard.auth.ldap.url.group=ldap://localhost:389/cn=group1,ou=groups,ou=system
#
Default FDS username/password
{protect}-dashboard.auth.user.admin={encr}SzFT+3+aSNNWrwtySrBcCbhiVp4bB4hKqSJujGuRSSwtn69blf/UiPbRQbWmQhFidmGpxEULtS9

S+x4nX0J7rDY2DPVmDfkOu4xqAWT8euS9NvIEp4MfB/whoipQhTWFT3PSVVt+uCc+ONhKunOQuE55IKwAQKdyHPtz+cJkeNM=

Server API properties

api.on=true
api.audit.on=false
api.user.registry=serverapi/registry.txt
api.user.registry.encryption.on=false

api.remote.on=true
api.remote.ssl.on=true
api.remote.ssl.client.auth.on=true
api.remote.naming.port=1099
api.remote.server.ports=8700-8900
api.truststore=testserver.jks
api.truststore.type=jks
{protect}-api.truststore.pass={encr}DzTmOl+sUaose3wpkbHk9vzZ4JZxHL8aMC2ePUb4tWMuS+D7OVcLI5aS8sayg0/ktcOcH6ozy6+qxhlan

PpYtu1Dh7mZHDsAGDL+Temard/gJUTlxuG4FkAIr5YsDxhZ3nld5fLa8h8YMTVDLd8qx6XZl6f/Ag0a0Yzn882wwFI=

REST API

api.rest.on=true
api.rest.auth=false
api.rest.auth.realm=Security Directory Integrator REST API

api.rest.jmsdriver.name=com.ibm.di.systemqueue.driver.ActiveMQ
api.rest.jmsdriver.queue.sender.persistance=false
api.rest.jmsdriver.queue.sender.timeToLive=60000
api.rest.jmsdriver.param.jms.broker=vm://localhost?brokerConfig=xbean:etc/activemq.xml
api.rest.jmsdriver.auth.username
api.rest.jmsdriver.auth.password

The properties determine the default bind address and the remote bind address for the Server API.
* means bind to all network interfaces. The Remote Bind Address overrides the Default one.
Only one IP address should be set. No hostnames are accepted.
Mind that the java.rmi.server.hostname property is set implicitly to equal the Remote Bind Address property when used.
##This will cause the client stubs to create sockets on the specified Remote Bind Address.
com.ibm.di.default.bind.address=*
api.remote.bind.address=*

Specifies a list of IP addresses to accept non SSL connections from (host names are not accepted).
Use space, comma or semicolon as delimiter between IP addresses. This property is only taken into account
when api.remote.ssl.on is set to false.
api.remote.nonssl.hosts=

api.jmx.on=false
api.jmx.remote.on=false

The configuration files placed in this folder can be edited through the Server API.
Configuration files placed in other folders cannot be edited through the Server API.
api.config.folder=configs

Timeout in minutes for configuration locks. A value of 0 means no timeout.
api.config.lock.timeout=0

Timeout in minutes for loading a configuration.
api.config.load.timeout=2

Specifies if the Server API methods for custom method invocation (Session.invokeCustom(...)) are allowed to be used.
When api.custom.method.invoke.on is set to false and the Server API methods for custom method invocation are used,
then an exception will be thrown.
Only classes listed in api.custom.method.invoke.allowed.classes are allowed to be directly invoked.
The default value is false.
api.custom.method.invoke.on=false

Specifies the list of classes which can be directly invoked by the Server API methods for custom
method invocation (Session.invokeCustom(...)).
This property is only taken into account if api.custom.method.invoke.on is set to true.
The classes in this list must be separated by a space, a comma or a semicolon.
Example:
api.custom.method.invoke.allowed.classes=com.ibm.MyClass,com.ibm.MyOtherClass
In the above example only methods from the com.ibm.MyClass and com.ibm.MyOtherClass classes are
allowed to be directly invoked.
api.custom.method.invoke.allowed.classes=

Specifies a list of Server notification types, which will be suppressed.
Notifications of suppressed types will not be propagated by the notifications framework.
The notification types in the list are separated by spaces. Wildcards may be included.
Example:
api.notification.suppress=di.al.* di.ci.start
The above example will suppress all Assembly Line related notifications as well as
notifications for starting a configuration instance.
If the property is missing or is empty, no notifications will be suppressed.
api.notification.suppress=di.server.api.authenticate di.server.api.authorize.*

Appendix A. Example Property files 345

api.custom.authentication points to a JavaScript text file that contains custom authentication code.
For example: api.custom.authentication=ldap_auth.js.
To enable the built-in LDAP Authentication mechanism, set this property to "[ldap]".
To enable the built-in JAAS Authentication mechanism, set this property to "[jaas]".
For example: api.custom.authentication=[ldap]

##api.custom.authentication=[ldap]

LDAP Authnetication properties

If this parameter is set to "true" and the LDAP Authnetication initialization fails,
the whole Server API will not be started.
If this parameter is missing or is set to "false" any LDAP Authentication initialization errors will be logged
and the Server API will be started.
api.custom.authentication.ldap.critical=false

LDAP Server hostname.
api.custom.authentication.ldap.hostname=

LDAP server port number. For example, 389 for non-SSL or 636 for SSL.
api.custom.authentication.ldap.port=

Specifies whether SSL is used to communicate with the LDAP Server.
When set to "true" SSL will be used, otherwise SSL will not be used.
api.custom.authentication.ldap.ssl=

Specifies the LDAP directory location where user searches will be preformed.
When this property is not specified user searches will not be performed.
api.custom.authentication.ldap.searchbase=

Specifies the user id attribute to be used in searches.
When this property is not specified user searches will not be performed.
api.custom.authentication.ldap.userattribute=

Specifies an LDAP Server administrator distinguished name that will be used for user searches.
When this property is not specified anonymous bind will be used for user searches.
api.custom.authentication.ldap.admindn=

Password for the LDAP Server administrator distinguished name.
{protect}-api.custom.authentication.ldap.adminpassword={encr}

This property specifies whether LDAP Group authentication is turned on.
If it is set to ’true’, the group membership of the authenticating user will be resolved
and will be taken into account during authorization.
If it is missing, the default value ’false’ is used.
api.custom.authentication.ldap.groupsupport=false

Specifies the name of the attribute of a user in LDAP that contains a list of the groups
of which the user is a member.
It is taken into account only if ’api.custom.authentication.ldap.groupsupport’ is set to true.
api.custom.authentication.ldap.usermembershipattribute=

Specifies how groups are named in the membership attribute of a user.
For example, if the user’s membership attribute contains values, which correspond to the ’objectSID’ attributes
of groups, set this property to ’objectSID’.
If the user’s membership attribute contains distinguished names of groups, then set this property to ’dn’.
The property is required in case ’api.custom.authentication.ldap.groupsupport’ is set to true.
api.custom.authentication.ldap.usermembershipattributecontent=

Specifies the name of a group’s attribute in LDAP, which corresponds to the way the
group is named in the SDI User Registry.
For example, if LDAP groups are addressed in the SDI registry by their common name, then set this property to ’cn’.
If the User Registry contains the distinguished names of the groups, then set this property to ’dn’.
api.custom.authentication.ldap.groupnameattribute=

Represents the LDAP directory context, where groups will be searched.
It is required only when LDAP group support is enabled
api.custom.authentication.ldap.groupsearchbase=

Optional property, which represents a list of space-separated attribute names.
Specifies attributes which have non-string syntax.
api.custom.authentication.ldap.binaryattributes=

JAAS Authnetication properties

java.security.auth.login.config=

Enabling/Disabling FIPS Mode in SDI
##------------------------------------
If the below property is set to true then SDI will be enforced to run in FIPS Compliant Mode.
The default value is false, i.e. SDI will not run in FIPS Mode by default.
com.ibm.di.server.fipsmode.on=false

Specify the unique ID for the SDI Server
--
This property helps a client connecting to the SDI server to identify different servers
running on the same IP and the same port in different time. (Default is DEFAULT_ID)
com.ibm.di.server.id=DEFAULT_ID

Tombstone Manager properties

com.ibm.di.tm.on=false
com.ibm.di.tm.autodel.age=0
com.ibm.di.tm.autodel.records.trigger.on=10000
com.ibm.di.tm.autodel.records.max=5000
com.ibm.di.tm.create.all=false

Help system properties

Name of help server. The Tivoli library is at the following URL:

346 IBM Security Directory Integrator: Installation and Administrator Guide

http://www-01.ibm.com/support/knowledgecenter/SSCQGF/welcome

Port for help system
com.ibm.di.helpPort=80

--
AssemblyLinePool: Connector pooling defaults
--
##
Note! These settings are only used when an AssemblyLine uses
an AssemblyLinePool in combination with a Server mode connector.

The number of seconds before a pooled connector times (e.g. is closed and no longer reused)
Less than zero means disable connector pooling
Zero means never timeout
Greater than zero sets the number of seconds before a connector is closed
com.ibm.di.server.connectorpooltimeout=42

Comma separated list of connector interfaces that we never pool
com.ibm.di.server.connectorpoolexclude=com.ibm.di.connector.FileConnector,com.ibm.di.connector.ScriptConnector

Properties for Windows IPv6 communications.
Uncomment these properties for Windows IPv6 communication only.
These properties will not affect IPv4 communication or IPv6 communication on Unices.
#java.net.preferIPv4Stack=false
#java.net.preferIPv6Addresses=true

--
Performance settings
--
##
Enable/Disable performance logging
com.ibm.di.server.perfStats=false

--
Used by Config Report
###---
set this is you want to override the local language for Config Reports
com.ibm.di.admin.configreport.translation=en

##----------------------
System Queue settings
##----------------------
If set to "true" the System Queue is initialized on startup and can be used;
otherwise the System Queue is not initialized and cannot be used.
systemqueue.on=true

Specifies the fully qualified name of the class that will be used as a JMS Driver.
systemqueue.jmsdriver.name=com.ibm.di.systemqueue.driver.IBMMQ
systemqueue.jmsdriver.name=com.ibm.di.systemqueue.driver.JMSScriptDriver
systemqueue.jmsdriver.name=com.ibm.di.systemqueue.driver.ActiveMQ

MQ JMS driver initialization properties
systemqueue.jmsdriver.param.jms.broker=<host:port>
systemqueue.jmsdriver.param.jms.serverChannel=<channel_name>
systemqueue.jmsdriver.param.jms.qManager=<queuemanger_name>
systemqueue.jmsdriver.param.jms.sslCipher=<cipherSuite_name>
systemqueue.jmsdriver.param.jms.sslUseFlag=false

JMS Javascript driver initialization properties
Specifies the location of the script file
systemqueue.jmsdriver.param.js.jsfile=driver.js

ActiveMQ driver initialization properties
Specifies the location of the ActiveMQ initialization file.
This file is used to initialize ActiveMQ on SDI server startup.
systemqueue.jmsdriver.param.jms.broker=vm://localhost?brokerConfig=xbean:etc/activemq.xml

This is the place to put any JMS provider specific properties needed by a JMS Driver,
which connects to a 3rd party JMS system.
All JMS Driver properties should begin with the ’systemqueue.jmsdriver.param.’ prefix.
All properties having this prefix are passes to the JMS Driver on initialization after
removing the ’systemqueue.jmsdriver.param.’ prefix from the property name.
systemqueue.jmsdriver.param.user.param1=value1
systemqueue.jmsdriver.param.user.param2=value2
...

Credentials used for authenticating to the target JMS system
{protect}-systemqueue.auth.username=<username>
{protect}-systemqueue.auth.password=<password>

Logging settings

When false, all log calls made through the SDI Log class will be discarded.
com.ibm.di.logging.enabled=true

IBM JavaScript Engine settings

Set the type of platform - required by the IBM JS Engine when caching is used.
com.ibm.commons.platform=com.ibm.commons.platform.GenericPlatform

##
Set this property to a directory to enable auto dumps of assemblylines that fails
##
com.ibm.tdi.autodump.directory=<dump-directory>

Appendix A. Example Property files 347

##
Server API client properties
##
api.client.ssl.custom.properties.on=true
api.client.keystore=serverapi/testadmin.jks
{protect}-api.client.keystore.pass={encr}E/1TC2+UF4B9BACaVcdKoalYj38LFi26UncEFTsWP+qj68fuJH8EwCs392IoLXvIAKHlPaWVJo7h

ySkeBxESorVACAF8oNbHXIBQOS2nvNPKxlkQZK32CaRlg5Wq8TNamQxHFr++UewBuDEAU1ki5z7zXidD2g8g0sN6cK1IhUo=
api.client.keystore.type=jks
{protect}-api.client.key.pass={encr}EU1+JvyysxVts7Yn236FysDdxV7IP7TmjCOy/siOmGx8H6Hcy1epHJmGyunQcqIQeN/KpL7M0a3uqzwks

cWMURmrOWR+O8xyoN+hMpoAu1EvmXjubtd7jdBJVincesL5BYiSwcxGeTsnQJ/MN84RiCfGc1FzwYxvL53npGeyGXk=
api.client.truststore=serverapi/testadmin.jks
{protect}-api.client.truststore.pass={encr}Y8Npl9khRasEUfwYSaAM5RkJK+N0DOKezRkXgbLyZtU1V0sFiJfCkeLmw8+MndHvtVkPM/3N1n

g/y+zv9NKFABVqBVYTJxK5RZx3YV/IgQJMpJK/YhT2hSR8w5XSM7meJOlJK3NjC+Cy9my42ioyT+svLUgpQfs74DXyL8482ww=
api.client.truststore.type=jks

Mail properties

This property needs to be set to a valid SMTP host to be able
to send mail using the system methods.
mail.smtp.host=

Enabling/Disabling NIST Mode in SDI
##------------------------------------
If the below property is set to true then SDI will be enforced to run in NIST Compliant Mode.
The default value is false, i.e. SDI will not run in NIST Mode by default.
com.ibm.di.server.NIST.on=false

348 IBM Security Directory Integrator: Installation and Administrator Guide

Appendix B. Monitoring with external tools

You can monitor the IBM SDI with external tools like Tivoli Monitoring and Tivoli
Netcool/OMNIbus. Read more about its working and corresponding components
in the information provided here.

This is a "first step" into the integration between IBM Security Directory Integrator
, IBM Tivoli Monitoring and IBM Tivoli Netcool/OMNIbus. It started as a
proof-of-concept of this integration scenario. The IBM Security Directory Integrator
to IBM Tivoli Monitoring and IBM Security Directory Integrator to OMNIbus
integration capabilities shown in this document are fully supported solutions
shipped with IBM Security Directory Integrator. The solutions are shipped in the
examples directory but they are fully supported.

JMX was chosen for communication between IBM Security Directory Integrator
and ITM, because IBM Security Directory Integrator provides a ready-to-use JMX
interface and thus no development was necessary on the IBM Security Directory
Integrator side.

For monitoring IBM Security Directory Integrator via Tivoli Netcool/OMNIbus an
AssemblyLine was developed in order to detect IBM Security Directory Integrator
events and send them to OMNIbus. The purpose of this section is to present how
IBM Security Directory Integrator can be monitored by:
v Tivoli Monitoring using the IBM Security Directory Integrator JMX interface
v Tivoli Netcool/OMNIbus

Both integration scenarios are bundled as official IBM Security Directory Integrator
examples and can be found in TDI_install_dir/examples/Tivoli_Monitoring
directory.

ITM 6.2.0 and Tivoli Netcool/OMNIbus 7.2.1 were used for these examples.

Several software components were necessary in order to realize the experiments
described here. Here is the list of these components, and the reference
documentation used to realize their installation:
v ITM Agent Builder 6.2 - ITM Agent Builder 6.2 User’s Guide
v ITM Tivoli Enterprise Portal - ITM Tivoli Enterprise Portal online documentation
v Tivoli Netcool/OMNIbus 7.2.1 - Tivoli Netcool/OMNIbus online documentation.

JMX is used for communication between IBM Security Directory Integrator and
Tivoli Monitoring. On the IBM Security Directory Integrator side it is the JMX layer
of the Server API that Tivoli Monitoring connects to.

For communication between IBM Security Directory Integrator and Tivoli
Netcool/OMNIbus two connectors are used. A Server Notifications Connector is
used to receive a set of IBM Security Directory Integrator Server Notifications, and
an EIF Connector to send events to OMNIbus.

© Copyright IBM Corp. 2003, 2014 349

Monitoring IBM Security Directory Integrator with ITM
You can refer to the information provided here to know more about the
architecture, importing existing configuration, creating agent, and many more
aspects of ITM.

Short presentation of the ITM architecture
You can use a ITM to collect data and monitor the system. Learn more about the
type of agents through the information provided here.

At its core, the browser provided by ITM presents data that is gathered by agents.

ITM agents are characterized by the following definition:

"The agents (referred to as managed systems) are installed on the system or
subsystem requiring data collection and monitoring. The agents are responsible for
data gathering and distribution of attributes to the monitoring servers, including
initiating the heartbeat status." (Extract from the ITM documentation)

There can be various kinds of agents: agents to monitor operating systems or
specific applications, or specifically tuned agents (that is, using the Universal
Agent interface). The following diagram, taken from the ITM documentation,
describes both the architecture and the deployment process of agents:

TEMS = Tivoli Enterprise Monitoring Services
TEP = Tivoli Enterprise portal

Importing an existing Agent configuration in ITM Agent
Builder 6.2

Follow the steps described here to import an existing agent configuration file.

If you have an ITM Agent configuration XML file, you can import it in the ITM
Agent Builder 6.2 and it will create ITM Agent project automatically. To import
such a file, right-click in the ITM Agent Builder workspace, select Import... and
select IBM Tivoli Monitoring Agent for import. Point to the configuration XML
file (default name: itm_toolkit_agent.xml) and click Finish. This will create an ITM
Agent Builder project with an appropriate name.

Figure 2. ITM Agents diagram

350 IBM Security Directory Integrator: Installation and Administrator Guide

Note: If you wish to create the agent yourself, go to section “Creating an IBM SDI
agent for ITM using ITM Agent Builder 6.2”; otherwise go to section “Generating
the ITM Agent” on page 357.

Creating an IBM SDI agent for ITM using ITM Agent Builder 6.2
You can use the steps listed in the example shown here to create an IBM SDI agent
for ITM using ITM Agent Builder 6.2.

The ITM Agent Builder is an Eclipse based platform for creating ITM Agents. The
Agent that we will create for this example uses the JMX interface. From the ITM
Agent Builder choose File -> New -> IBM Tivoli Monitoring Agent.

The ITM Agent Wizard will show up. The first step is an introduction - click Next.
On the second step you will be asked to enter a project name. In this example we
will use "SDI" as project name. Clicking Next brings us to the following step:

Fill all the fields with appropriate data. The Product code should be between K80
and K99 for JMX agents. click Next. On the next step check the This agent will
gather data from an external data source. option and click Next. On this step the
data source definition window is displayed:

Figure 3. ITM Agent wizard Agent information

Appendix B. Monitoring with external tools 351

In order to make this step easier to configure start an IBM Security Directory
Integrator Server in daemon mode and run an AL that never ends (for example an
AL with an HTTP Server Connector listening for connections). Make sure the JMX
API is enabled in IBM Security Directory Integrator (there is a description on how
to do this later in the example).

Click the New Data Source ... button and then choose the Collect data from Java
Management Extensions (JMX) MBeans option. Click Next. On the next window
click Browse which should display the JMX Browser:

Figure 4. ITM Agent wizard, Data source definition

352 IBM Security Directory Integrator: Installation and Administrator Guide

Click the Edit Connection Definitions button (the green plus button). On the next
step select Standard JMX Connections (JSR-160) and click Next. The new wizard
window will display the available templates. Select JSR-160 -Compliant Server
and again click Next to see the Connection properties of the JMX Server.

Figure 5. JMX Browser

Appendix B. Monitoring with external tools 353

In order to establish a successful connection with the IBM Security Directory
Integrator JMX Service you will need to enter a valid JMX Service URL (the default
IBM Security Directory Integrator JMX Service URL is service:jmx:rmi://
localhost/jndi/rmi://localhost:1099/jmxconnector) and to configure the jar
dependencies that are required for successful JMX MBeans creation (for the IBM
Security Directory Integrator JMX MBeans you will need the jar files in
TDI_install_dir\jars\3rdparty\IBM; TDI_install_dir\jars\3rdparty\others;
TDI_install_dir\jars\common directories). You can test these settings by clicking the
Test Connection button. If the whole configuration is correct a message like this
will be displayed: "The server connection was successful."

After this setup click Finish. The wizard should bring us the previous
configuration step, but this time connected to the IBM Security Directory Integrator
JMX Server and will display additional information:

Figure 6. Server Connection wizard

354 IBM Security Directory Integrator: Installation and Administrator Guide

Select the type MBean Key Property and AssemblyLine from the type values. To
see the MBean Attributes you need to select a row in the table above them. In our
case there is only one row. Click OK and then Finish to complete the setup of this
data source.

Create one more data source with type value ConfigInstance in the same way we
created the AssemblyLine data source. These two data sources will gather
information from the JMX Server for running AssemblyLines and started
Configuration Instances.

Figure 7. Browsing IBM Security Directory Integrator in JMX Browser

Appendix B. Monitoring with external tools 355

The third data source is a little different from the other two. It is a kind of listener
which listens for notifications (events) sent by the IBM Security Directory
Integrator JMX Server. To create one like that, after clicking the New Data Source...
button, you do not need to browse the JMX Server but simply enter
:type=Notifier, for MBean pattern and click Finish. Two data sources will be
created - one for the notification part and one for the static MBean part. Since we
do not need the static part for this data source we need to remove it; right-click
and select Remove Data Source(s).

After completing these steps we should have three data sources created:

Expand the AssemblyLine data source and double-click the ConfigInstance
attribute. In the ConfigInstance attribute configuration check the key attribute
checkbox.

Expand the ConfigInstance data source and double-click the ConfigId attribute. In
the ConfigId attribute configuration check the key attribute checkbox.

Click Next in order to configure the JMX Agent - Wide Options. Uncheck the JMX
monitor attribute groups checkbox and select JSR-160-Compliant Server from the
Server configuration choices.

Figure 8. ITM Wizard, completed Data Source Definition

356 IBM Security Directory Integrator: Installation and Administrator Guide

Click Finish to complete the ITM Agent creation steps and save the Agent.

Generating the ITM Agent
After successfully creating an ITM agent, use the steps provided here to generate
it.

After the successful creation of the ITM Agent configuration, we need to generate
it in order to deploy it in ITM. From the IBM Tivoli Monitoring Agent Editor menu
in the ITM Agent Builder choose Generate Agent. The Generate Agent Wizard will
appear. This wizard has several options of Agent generation. If you use ITM and
ITM Agent Builder on a single machine then the Generate the agent files in an
ITM installation on this machine option is suitable for you. The only field which
needs to be configured is the ITM installation directory. Click Finish to generate
and deploy the ITM Agent in ITM. This may take several minutes to complete.

Note: If you want to have the agent on another machine then you can use another
agent generation option – Create a compressed file so that the agent can be
installed on another system. This will generate an archive that contains the ITM
Agent installation. To install such an archived agent, you first have to copy the file
to the machine where ITM is installed. Extract the files from the archive and from
the command prompt start the InstallIRA.bat file with parameter the ITM install
folder.

Figure 9. JMX Agent-wide options

Appendix B. Monitoring with external tools 357

For example if ITM is installed in C:\IBM\ITM the command will look like:
<AgentDirectory>:\>InstallIRA.bat C:\IBM\ITM

Configuring the ITM Agent
Once the ITM agent has been deployed, you need to configure it. Use the steps
and example provided here to perform this task.

After the successful deployment of the agent (either using an archive file or the
ITM Agent Builder option to deploy it on the same machine) we have to configure
it in ITM. To do so, start Manage Tivoli Monitoring Enterprise Services where
you can manage all ITM Agents:

Right-click the IBM Security Directory Integrator Agent and select Configure
Using Defaults.

On the next configuration window we need to configure the JVM properties for the
Agent. Browse to the Java Home that you wish to use. The log trace level is set to
"Error" by default. It can be changed to higher level in order to log additional
information. After finishing the Java configuration click the Next button.

On the next configuration step you are asked to configure the JSR-160 Compliant
Server properties, that is, enter username, password, Service URL and Class Path
dependencies. For our example we need to enter Service URL and Jar directories
like we did in order to create the agent - Service URL service:jmx:rmi://
localhost/jndi/rmi://localhost:1099/jmxconnector and Jar directories
TDI_install_dir\jars\3rdparty\IBM; TDI_install_dir\jars\3rdparty\others;
TDI_install_dir\jars\common.

Click OK to complete the Agent Configuration.

The IBM Security Directory Integrator Agent should be ready for use. The next
step is to start the Agent. We can start it from the Manage TEMS window by
right-clicking the IBM Security Directory Integrator Agent and choosing Start. If all
steps are successful the IBM Security Directory Integrator Agent will be running
now.

Figure 10. Manage Tivoli Monitoring Enterprise Services

358 IBM Security Directory Integrator: Installation and Administrator Guide

Monitoring IBM Security Directory Integrator data
Use the Tivoli Enterprise Portal (TEP) to monitor the data. For more details refer
the listed steps.

To monitor data, we need to start the Tivoli Enterprise Portal (TEP), which is
available in the ITM installation. In the navigator TEP window we can see the
running Agents. The IBM Security Directory Integrator Agent is also there and we
have to expand it to see the specific monitoring data sources:

We can find our custom made data sources there - AssemblyLine, ConfigInstance,
Event Notifier. If we have a running IBM Security Directory Integrator Server and
a running AL in it, we can see it in the report table of the AssemblyLine data
source.

Note: In order to display data in the Notifier report table, the IBM Security
Directory Integrator Agent has to be running before an IBM Security Directory
Integrator notification is triggered.

This browser can be tuned in several ways: for numeric data it is possible to have
a more human readable presentation (like diagrams). It is also possible to change
the layout of the tables.

Figure 11. Tivoli Enterprise Portal (TEP) - Wizards

Appendix B. Monitoring with external tools 359

This functionality is not very complex, and is well described in the ITM
documentation.

As the aim of this document is not to present the whole ITM product in intricate
detail, but to focus on the usage that can be done in correlation with IBM Security
Directory Integrator, we will present here only the two trickiest concepts: defining
thresholds, and links between tables.

For other functionality, please refer to the ITM documentation.

Defining thresholds
You can learn to work on threshold mechanism by using the example and screen
captures here.

To show how the threshold mechanism works, we will create the following simple
example: display a warning when more than one AssemblyLine is currently
running.

This threshold will depend on data provided by the AssemblyLine table. First we
need to create a situation by right-clicking on the table of the agent, and by
selecting Situations in the contextual menu:

Click on the Create Situation button in the upper-left corner and fill in the
displayed form:

Figure 12. Situations context menu

360 IBM Security Directory Integrator: Installation and Administrator Guide

This will be the name associated to the warning. Here we describe a case study,
but in real situations you would give it meaningful names.

Then we choose with which table attribute our situation will deal:

Figure 13. Situation form

Appendix B. Monitoring with external tools 361

Indeed, we only have to consider the name of the AL to identify it.

Click in one of the cells, for example the one in line number 1:

The display changes:

Figure 14. Situation: select condition

362 IBM Security Directory Integrator: Installation and Administrator Guide

Click on the v, and change it to "Count of group members".

Click on the ==, and change it to >.

Set the cell space remaining on the right to 1.

We have configured a condition to the Name column, which will be true if we
have more than one AssemblyLine running:

And change the following default settings:

To this:

The situation is set, so Apply and validate this window.

Start IBM Security Directory Integrator Server and start at least two AssemblyLines
at the same time; for example two HTTP Server Connectors that are listening on
different ports.

Appendix B. Monitoring with external tools 363

The Warning window is opened while highlighting the warning icon.

Creating links between tables
You can create links between tables in ITM. Learn more about the purpose of
creating links and how to create links with the information provided here.

Purpose of links:

You can filter the data and directly see a subset of a table by following the link.

It is possible to specify links between different tables in ITM. These links can be
based upon some criteria of our choice, as we will see in this example. When a
link is created you can automatically see a subset of a table by following the
specified link. In this example we will create a link from the Event Notifier table
that will show the currently running AssemblyLine in the AssemblyLine table. The
link will be available in the Event Notifier table only for records that have the type
"di.al.start". This type indicates that an AssemblyLine has been started. If the link
is pressed and the AssemblyLine is still running, the AssemblyLine table will be
automatically selected and only the corresponding AssemblyLine will be displayed
in the table. If the AssemblyLine has already finished its execution then the
displayed table will be empty.

This is an example Event Notifier table with defined link to the AssemblyLine
table:

The table has three loaded configurations, three started AssemblyLines (one of
which has been stopped). When the ToTheRunningAssemblyLine link is selected,

Figure 15. ITM displayed warning

Figure 16. Example Event Notifier table

364 IBM Security Directory Integrator: Installation and Administrator Guide

the AssemblyLine is displayed in the AssemblyLine table (no other AssemblyLines
are shown in the table):

Construction of links:

You can follow the steps listed here to construct a link.

First we need to create a key in the AssemblyLine table which will be accessible
from the Event Notifier table and will correspond to the AssemblyLine ID.
Right-click in the AssemblyLine table and select properties.

In the opened window, assign a new query by clicking the Click here to assign a
query button.

The Query Editor will be opened where we must define another query because the
existing one is static and cannot be modified. You will be asked to enter a name for
it (for example "AssemblyLine2").

Go to the Id column of the table and enter $keyid$ as its value.

Figure 17. Example Event

Figure 18. AssemblyLine properties

Figure 19. Create query selection

Appendix B. Monitoring with external tools 365

Click OK and apply the changes in the properties window and then click "OK
button.

This is all that needs to be done in the AssemblyLine table.

Go to the Event Notifier table (you will be asked to save the changed in the
AssemblyLine table - click Yes).

Right-click on the selected row in the Event Notifier table and choose Link To... ->
Link Wizard... (make sure that the type column of the selected row equals
"di.al.start").

The Link Wizard will be displayed and will ask whether a new link will be
created, modify existing link or delete existing link. Select Create a new link and
click Next. On the next screen the name and the description of the link must be
entered. In this example we will use ToTheRunningAssemblyLine as name and
"Display the corresponding AssemblyLine in the AssemblyLine table." as
description. The next step will ask to specify the link type. In the example we will
use Absolute as link type because we are linking to a specified non-dynamic
workspace in the navigator view. Proceed to the next step where we must specify
the workspace to which the link will direct (the AssemblyLine table).

Figure 20. Query Editor

Figure 21. Link Wizard selection

366 IBM Security Directory Integrator: Installation and Administrator Guide

After selecting the AssemblyLine workspace click Next. This is the final step where
we have to create the link conditions. We will modify two parameters in order to
create the link properly - contextIsAvailable and keyid.

Select the contextIsAvailable parameter and click the Modify Expression... button
(or double-click the parameter). The Expression Editor window will be displayed.
Delete the current contents and click the Symbol... button. From the Symbols select
the Type attribute:

Figure 22. Link Wizard - target workspace

Figure 23. Link Wizard - Type attribute

Appendix B. Monitoring with external tools 367

Click OK to return to the Expression Editor window; add == "di.al.start" to
create a conditional expression.

Click OK to confirm the expression value.

Open the Expression Editor of the keyid symbol in Query - AssemblyLine2 and
add the User Data symbol.

Figure 24. Link Wizard - Expression editor

368 IBM Security Directory Integrator: Installation and Administrator Guide

Click OK in the Expression Editor and click Next in the Link Wizard, which will
show you a summary of the created link.

Figure 25. Link Wizard - User attribute

Appendix B. Monitoring with external tools 369

Click Finish to close the Link Wizard. Now you are ready to perform the steps in
section “Purpose of links” on page 364.

Send custom notifications to ITM
Use the code provided here to write script for sending custom notifications.

A configuration file that demonstrates sending custom notifications is shipped with
the example. The file is located at TDI_install_dir/examples/Tivoli_Monitoring/
TDI_Monitored_by_ITM/ custom_notifications.xml.

To send custom notifications you need to write your own script that does it. The
following code demonstrates it:
session.sendCustomNotification(aType, aId, aData);

This piece of code sends a custom, user defined notification to all registered
listeners. The aType parameter is the notification type. aId is the notifications ID.
aData is custom user data. Note that the aType is automatically prefixed with
"user.". This means that if you send a notification of type myType it will be
received as user.myType.

Limitations
You cannot use the created Agent for managing the IBM Security Directory
Integrator Server.

Figure 26. Link Wizard - summary

370 IBM Security Directory Integrator: Installation and Administrator Guide

For example it cannot start/stop AssemblyLines. It can be used for monitoring
purposes only, even though the IBM Security Directory Integrator Server JMX layer
exposes such methods.

Monitoring IBM SDI using OMNIbus
Refer the link provided here to learn about monitoring IBM Security Directory
Integrator using OMNIbus.

Introduction

You can read more about OMNIbus in the section about the EIF Connector, in the
Reference.

Configuring the EIF probe props file
You can set the port on which the EIF probe listens. Use the information provided
here to perform this task.

In order to make sure that the port on which the EIF probe listens is the one that
you expect you can set it manually.

To do this, refer to $OMNIHOME/probes/<arch>/tivoli_eif.props and set the value
of property PortNumber to the number of the port on which the EIF probe will
listen on.

By default if the EIF probe stays inactive (doesn't receive events) for more than 600
seconds, the service stops. You can set the timeout to infinity by setting the value
of the Inactivity property to 0.

Your EIF prop file should look like this:

BufferEvents : "YES"
HandleMalformedAlarms : "true"
EIFCacheFile : ’$OMNIHOME/var/tivoli_eif.cache’ (Unix)
EIFCacheFile : ’%OMNIHOME%\var\tivoli_eif.cache’ (Windows)
EventCopies : 1

Inactivity : 0
MaxEventQueueSize : 10000
PortMapper : "false"
PortMapperNumber : 100033057

PortNumber : 9998
Retry : "false"
StreamCapture : "false"
StreamCaptureFile : ’$OMNIHOME/var/tivoli_eif.stream’ (Unix)
StreamCaptureFile : ’%OMNIHOME%\var\tivoli_eif.stream’ (Windows)

However, if you decide not to modify the EIF probe props file, be aware that the
default port that the EIF probe listens to events is 9999 (according to the OMNIbus
documentation).

Determine the severity for the events
Modify the EIF rules file to determine the severity for the events.

To determine the severity for the events you will need to do a few modifications to
the EIF rules file. Here is a brief description of how you can manage the severity.
For this purpose we will define any start events as low severity and stop events as
high severity. Then you can type the following code in the rules file:

Appendix B. Monitoring with external tools 371

if(regmatch($ClassName, "^.*\.start$"))
{
@Severity = 0
}
if(regmatch($ClassName, "^.*\.stop$"))
{
@Severity = 4
}

Note that custom notifications will have the default severity which is 1. This will
result in the following:

Working with the EventPropertyFile.properties file
You can do a number of things with EventPropertyFile.properties file. Learn more
about it through the information provided here.

EventPropertyFile.properties provides a default set of events that can be
received by the Server Notifications Connector. This will enable the user to
configure the AL using the property file only. The property file has the following
structure:
key=value

key determines the type of event and value determines if this event is received.
Therefore mainly true and false values are used. However, the
event.customNotifications key doesn't expect a Boolean value. It must be set the
names of custom events that will be received. For more detailed information about
custom notifications refer to Sending custom notifications to OMNIbus. A few
other things should be considered as well in order to avoid any misunderstanding.
To clarify, look at the following diagram showing the default set of events:

Figure 27. OMNIbus Event list

372 IBM Security Directory Integrator: Installation and Administrator Guide

|->event.all
| |->event.ci.all
| | |->event.ci.start
| | |->event.ci.stop
| |->event.ci.fileUpdated
| |->event.al.all
| | |->event.al.start
| | |->event.al.stop
| |->event.server.stop
|->event.hasCustomNotofications
| |->event.customNotifications

As shown above some events include sub-events. If you enable an event then all
sub-events will be received, no matter if they are set to true or false. This means
that if you have
event.ci.all=true
event.ci.stop=false

then the event.ci.stop event will be received despite of it is set to false. In other
words event.ci.all overrides its sub-events. However, if you have
event.ci.all=false
event.ci.stop=true
event.ci.start=false

then only the event.ci.stop event will be received.

By default the property file is set to provide all IBM Security Directory Integrator
Server notifications. If you want to modify this set of events you need to change
the Boolean values to true (if you want the event to be received) and false (if you
want the event not to be received). In other words, if you want to receive all
events that notify about the start of some component then your property file
should look like this:

For working with the property file when considering receiving custom notifications
refer to the section below, “Send custom notifications to OMNIbus” on page 374.

Figure 28. OMNIbus Properties

Appendix B. Monitoring with external tools 373

Send custom notifications to OMNIbus
You can customize the notifications sent to OMNIbus. Follow the steps listed here
to perform this task.

To receive custom notifications you must set event.hasCustomNotofications to
true. Then you need to specify the set of events that will be received. Note that all
custom events sent by IBM Security Directory Integrator are prefixed with "user.".
This means that if you send a custom event of type myType then you must set:
event.customNotifications=user.myType

To specify more than one custom event you can use ";" to separate them. To clarify,
imagine the following situation. You want to receive all custom notifications of
type "user.myType1", "user.myType2", "user.myType3". Then your property file
opened with a text editor will look like this:

##Determine if Server Shutdown events are received
event.server.stop=false
##Determine what Custom Notification events are received
##This property is used only if event.hasCustomNotofications is enabled
##Note that all custom notifications are prefixed with "user."
event.customNotifications=user.myType1;user.myType2;user.myType3
##Determine if Custom Notification events are received
event.hasCustomNotifications=true

In order to receive any types of custom events the event.customNotifications
value need to be set to "*". This will not specify the type of custom events that the
Connector will listen to, therefore any custom event detected will be manipulated.
The ITM example provides a configuration that can send custom notifications. It
can be used to send custom notifications to OMNIbus, too. For more information
about custom notifications refer to section “Send custom notifications to ITM” on
page 370.

374 IBM Security Directory Integrator: Installation and Administrator Guide

Appendix C. Accessibility features for IBM Security Directory
Integrator

Accessibility features help users who have a disability, such as restricted mobility
or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in IBM Security
Directory Integrator:
v Keyboard-only operation
v Interfaces that are commonly used by screen readers
v Keys that are discernible by touch but do not activate just by touching them
v Industry-standard devices for ports and connectors
v The attachment of alternative input and output devices

The IBM Security Directory Integrator product documentation, and its related
publications, are accessibility-enabled. The accessibility features of the product
documentation are described at http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/
topic/com.ibm.iehsc.doc/iehs34_accessibility.html.

Keyboard navigation

This product uses standard Microsoft Windows navigation keys for common
Windows actions such as access to the File menu, and to the copy, paste, and
delete actions. Actions that are unique use keyboard shortcuts. Keyboard shortcuts
have been provided wherever required for all actions.

Interface information

The accessibility features of the user interface and documentation include:
v Steps for changing fonts, colors, and contrast settings in the Configuration

Editor:
1. Type Alt-W to access the Configuration Editor Window menu. Using the

downward arrow, select Preferences... and press Enter.
2. Under the Appearance tab, select Colors and Fonts settings to change the

fonts for any of the functional areas in the Configuration Editor.
3. Under View and Editor Folders, select the colors for the Configuration

Editor, and by selecting colors, you can also change the contrast.
v Steps for customizing keyboard shortcuts, specific to IBM Security Directory

Integrator:
1. Type Alt-W to access the Configuration Editor Window menu. Using the

downward arrow, select Preferences... .
2. Using the downward arrow, select the General category; right arrow to open

this, and type downward arrow until you reach the entry Keys.
Underneath the Scheme selector, there is a field, the contents of which say
"type filter text." Type security directory integrator in the filter text field.
All specific IBM Security Directory Integrator shortcuts are now shown.

© Copyright IBM Corp. 2003, 2014 375

http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.iehsc.doc/iehs34_accessibility.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.iehsc.doc/iehs34_accessibility.html

3. Assign a keybinding to any IBM Security Directory Integrator command of
your choosing.

4. Click Apply to make the change permanent.

The Configuration Editor is a specialized instance of an Eclipse workbench. More
detailed information about accessibility features of applications built using Eclipse
can be found at http://help.eclipse.org/help33/topic/
org.eclipse.platform.doc.user/concepts/accessibility/accessmain.htm
v The product documentation and its related publications are accessibility-enabled

for the JAWS screen reader and the IBM Home Page Reader. You can operate all
documentation features using the keyboard instead of the mouse.

Vendor software

IBM Security Directory Integrator includes certain vendor software that is not
covered under the IBM license agreement. IBM makes no representation about the
accessibility features of these products. Contact the vendor for the accessibility
information about its products.

The installer uses the InstallAnywhere 2012 SP1 installer technology.

Related accessibility information

Softcopy Adobe Portable Document Format (PDF) documentation is also available,
as an alternative to the online product documentation. You can view the PDF
publications by using Adobe Acrobat Reader. With PDF documentation, you can
use optional font enlargement, high-contrast display settings, and can navigate by
keyboard alone; however, in this case, alternative text is not provided for
screen-reader users.

You can access or download the PDF publications for IBM Security Directory
Integrator from the IBM Security Directory Integrator documentation."

IBM and accessibility

See the IBM Human Ability and Accessibility Center for more information about
the commitment that IBM has to accessibility.

376 IBM Security Directory Integrator: Installation and Administrator Guide

http://help.eclipse.org/help33/topic/org.eclipse.platform.doc.user/concepts/accessibility/accessmain.htm
http://help.eclipse.org/help33/topic/org.eclipse.platform.doc.user/concepts/accessibility/accessmain.htm
http://www-01.ibm.com/support/knowledgecenter/SSCQGF/welcome
http://www.ibm.com/able

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law :

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2003, 2014 377

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to

378 IBM Security Directory Integrator: Installation and Administrator Guide

IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM's application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information in softcopy form, the photographs and color
illustrations might not be displayed.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, Acrobat, PostScript and all Adobe-based trademarks are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
other countries, or both.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office
of Government Commerce, and is registered in the U.S. Patent and Trademark
Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 379

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are
trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

380 IBM Security Directory Integrator: Installation and Administrator Guide

Index

Special characters
.registry file

components 55

A
access

server API 110
accessibility ix, 375
accessibility features for this

product 375
ACL

configuration 263
Action Manager 239

add 272
Add/Modify action 274
AMC 249
command line utility 283
configuration rules 272
Configure trigger 273
Configured actions 274
delete 272
Derby database 249
enable 249
event data 278
modify 272
Monitor Status 267
remotely 240
Results Table 271
shutdown 240
start up 240
status 250
substitute variable 278
triggers 280

event data 279
window 250

Active Directory 86
ActiveMQ

logging 159
add feature

panel flow 36
Add/Modify action

Action Manager 274
adding

server 260
Administration and Monitoring Console

configuration 237
installation 237

administrator access 5
administrator privileges 5
agent configuration

XML file 350
algorithm

encryption 95
AMC 3, 237, 239, 240, 283

action manager
actions 243
threads 243
triggers 243

Action Manager 237, 250, 251

AMC (continued)
amc.properties 255
config files 260, 267
configuration 239, 242
console properties 261
console user authority 242
Custom Authentication 253
custom load 267
deferred deployment 44
Derby 239
encrypted configs 255
features 251
filtering

tables 259
finding

tables 259
force trigger 250
general information 44
IBM Security Directory Integrator

server 253
Integrated Solutions Console 237
ISC 242
LDAP properties 239
logging off 257
login 255
logout 255
logs 242
navigation area 257
navigation links 242
non SSL 253
paging 258
password 255
remote servers 253
role management 254
Select action 258
server

adding 260
modification 261

servers 260
solution view 263
sorting 258
SSL 251, 253
SSL keystore 251
SSL properties 239
SSL truststore 251
table pages 258
tables 257, 258
user interface 255, 257, 258
web platform deployment 44
work area 257

AMC authentication
non-root user 7

AMC deployment
ISC 47

AMC installation 47
Apache ActiveMQ

parameters 158
Apache Derby

networked mode 199
applyUpdates.bat(sh) 53
assemblyline 151

AssemblyLine 83, 87
View Rules Summary 280

AssemblyLines 81, 230
auditing capability

principles 129
auditing scope 129
authentication

HTTP 147
Authentication 164
authentication hook

Username/password based
authentication 115

authorization roles 124

B
back up

important data 78
Backing up

Apache Derby databases 201
backup

upgrade 7.0 to 7.1 79
upgrade 7.1 to 7.1.1 79
upgrade from 6.0 to 7.1 78
upgrade version 6.1.x to 7.1 78

backup tools
manual migration

backupam/restoream 79
backupamc/restoreamc 79
backupamcdb/restoreamcdb 79

C
CE 50
CE update site

Eclipse deployment 44
certificate

PKI 179
SSL 179

certificate creation 148
certificates

CA 180
CA signed 181
digital 180
PKI 180
self signed 181
SSL 180

Change Detection Connector
EventHandler 86

Changelog Connector
EventHandler 84

command line
installation 41

Command Line Interface
Remote Server API 209
tdisrvctl utility 209

Command Line Reference
general options 210

command line tool
cryptoutils 135

© Copyright IBM Corp. 2003, 2014 381

command line tool (continued)
editing configuration file 135
encryption 135

Command-line options
CE 205
Command Line Interface – tdisrvctl

utility 205
Server 205

command-line parameters
cryptoutils 136

component password 140
components

available 3
config file feature 140
config files 142

solution view 266
configuration

ActiveMQ
parameters 158

AMC logs 242
Apache Derby Instances 199
interval 186
load time-out 186
microsoft active directory 103
password 140
PKI 179
properties 187
solution directory 187
SSL 103, 179
system store 199

configuration editor 3, 8, 143
AIX 7
Eclipse 205
perspective options 205
properties 141
RPM 7
shutdown servers 205
tombstone 325

Configuration Example
System Queue 163

configuration files
encryption 133
summary 144

configuration rules
Action Manager 272

configuration settings
migration 80

configuration window
AssemblyLine 325

configurations 81
Configure trigger

Action Manager 273
Configured actions

Action Manager 274
configuring certificates

PKI 181
SSL 181

connectors 170
console 230
console properties

general 261
JDBC 261
SSL 261

create key 96
create keys 93
Create statements

System Store 200

cryptographic keys 94
hardware devices 182
JRE 182
PKCS 182
RSA 182
SSL 182

cryptoutils
command line tool 135
command-line parameters 136
editing configuration file 135
encryption 135

CryptoUtils
decrypt 180
encrypt 180

Custom Authentication
non SSL 253
SSL 253

custom load
config files 267

custom notifications
OMNIbus 374

D
DB2

JDBC connection parameter 197
table statements 197

default installation
location 51

default parameters 229
deployment

AMC 237
existing environment 238
UNIX process 238
WebSphere Application 238
windows service 238

migration 45
derby

user authorization 138
Derby 240

RDBMS 198
System Store 198

Details Table
Solution View 269

disability 375
disk space requirements

link 3
DNS names

configuration
MQ Everyplace 166

documentation
local 45
online 45
software requirements 59

DSMLv2 87

E
Eclipse Update Manager

installation 48
updation 48

education ix
EIF probe

OMNIbus 371
port 371

EIF rules file
OMNIbus 371

embedded web platform 3
encrypted configs

AMC 255
encrypted data

migration 63
encryption

configuration file 135
configuration files 133
global.properties 135
public/private key 95
public/private keys 133
RSA 133
secret key 95
server hooks 142
solution directory 142
solution.properties files 135
Symmetric cipher support 169

Encryption 169
encryption artifacts 183
encryption key 183
encryption utility 136
error action 151
event data

triggers 279
Event Notifier table 364
EventHandler 83, 84, 85, 87
EventHandlers 81
EventPropertyFile.properties file

structure 372
example

creating Solution View 288
exceptions

JDBC connector 154
LDAP connector 154

expired certificate 183

F
file backup

file list 78
FileAppender 229
Fiorano MQ system

JavaScript
configuration 163

FIPS
auxiliary tools 178
compliance

rules 172
configuration 169, 179
createstash 178
cryptoutils 178
encryption 170
keytool/Ikeyman 179

FIPS mode 169
fix pack 55
force trigger

AMC 250
function components 170

G
general concepts 1
graphical installer

installation 12

382 IBM Security Directory Integrator: Installation and Administrator Guide

graphical installer (continued)
instructions 12

graphics packages
CE 7
UNIX systems 7

H
help system 3
High Availability

configuration 167
host based authentication

global.properties 120
solution.properties 120

HTTP 84, 295
HTTP basic authentication 147

I
IBM

Software Support ix
Support Assistant ix

IBM SDI
client 107
debugging 223
EIF Connector 371
JMS messaging system 157
JMX interface 185
logging 223
OMNIbus 371
server 107
server API 185
system queue 157

IBM SDI data
monitoring 359

IBM SDI installation 339
IBM Security Directory Integrator

web service suite 148
IBM Security Directory Integrator

installation
platform specific 12

IBM Security Directory Integrator server
configuration files 131
cryptographic modules 171
ECB 131
encryption algorithms 131
FIPS 171
local client session 113
RSA 131
server API authentication 113

IBM Security Directory Integrator service
ibmdiservice.props 333
log service 333
logging 333
properties 333
property file 331
service logs 333
service name 331
start script 337
starting 333
stop script 337
stopping 333
UNIX systems 337
windows service 331, 333

installation procedure 332
installation steps 332

IBM Security Directory Integrator
service (continued)

windows service (continued)
uninstallation procedure 332
uninstallation steps 332

windows service installation 331
windows service uninstallation 331
windows systems 337

IBM Security Directory Integrator services
i5/OS 331
Linux/Unix 331
windows 331
z/OS 331

IBM Tivoli Monitoring Agent 351
IBM Tivoli Monitoring Agent editor 357
IBM websphere 149
IBM WebSphere

MQ Everyplace
parameters 160

MQ parameters 160
IBMPCKS11

certificates 183
SSL keys 183

important data
back up 78

installation 5
command line 41
instructions 3
panel flow 12
system requirement 3

installation and administration 1
installation location

Linux and Unix 51
windows 51

installer
migration

automatic 64
manual 64

installing fixes
components 57
manual steps 57

installing help file 45
installing IBM SDI 8
Instance Configuration 310
Integrated Solutions Console

deployment 237
integration external tools 349

Tivoli monitoring 349
Tivoli Netcool/OMNIbus 349

Intermediary
Touchpoint Instance 323

ITM
agent 350
architecture 350
AssemblyLine 364
AssemblyLine table 365
configuration file 370
custom notifications 370
data collection 350
eclipse 351
importing 350
ITM agent 350
link construction 365
monitoring 350
tables

links 364

ITM agent
configuration 357, 358
deployment 357
generation 357
IBM SDI server 371
import 350
limitation 371

ITM agent builder 358
ITM agent builder 6.2 350, 351

J
java API documentation 3
Java properties 157
Java system property 112
JDBC 170
JLOG

parameters 235
JLOG logger 234
JLOG-based 341
JMS 170
JMS driver 157

JavaScript 162
JMS Driver

JMSScript Driver parameters 161
ret JavaScript 162

JMX Connector 83
JMX layer

server API 121
JRE 3, 6
JSSE 147

K
keys

certificate 96
keystore 94, 96, 183

JCEKS 94
JKS 94
list command 96
PKCS#12 94

keytool 96

L
launching installer

direct installer 9
launchpad 9

launching uninstaller
procedure 50
results 50

LDAP 85
LDAP authentication

global.properties 116
password 118
solution.properties 116
username 118

LDAP authentication support 116
LDAP connector

SSL 105, 106
LDAP group support

authentication process 118
group 118
user registry 118
users 118

link creation 364

Index 383

Linux/Unix service
deployment methods 335
shutdown 335
tailoring 335

list command 93, 96
local client session

IBM Security Directory Integrator
server 113

JVM 113
local variable

solution view 264
Log Level control 228
Log Levels 228
Log Management

Solution View 281
log strategies 230
Log4J 229
logging

AssemblyLine 224
CE 224
default Log4J class 224
FFDC 233
script-based 224
Tracing 233

logging in 239
Lotus Domino 147

M
Mailbox Connector 83
manage keys 93
Manage Tivoli Monitoring Enterprise

Services 358
manual backup

Derby database files 80
LDAP 80
OSGI 80
queue manager files 80
SCIM 80
workspace files 80

manual migration 65
backup tools 79
components 65
configurations 65
files 65
properties 65
scripts 65

microsoft active directory 103
migration

another location 61, 62
BTree Connector 88
BTree tables 88
Cloudscape database 88
components 61
configuration settings 80
deployment 45
Derby 88
encrypted data 63
file 61
file types 61, 62, 63
installer

automatic 64
manual 64

installer-assisted
manual 65

modification 62
newer version 64

migration (continued)
panel flow 39
scenario 61
scripts 63
System Store 88
ways to migrate 64
workspace 63

mini-certificates 149
modification

server 261
Monitor Status

Action Manager 267, 268
Health Check 268
Health Check Result 268

MQ Everyplace 164
configuration utility 164, 167
Mini-Certificate Server 165
password changes 167

MQ Everyplace authentication 149
MQ Queue Manager 164
MS SQL Server

JDBC connection parameter 196
table statements 196

N
non-silent installation 43
notification

notification types 129
suppression 129

O
OMNIbus

custom notifications 374
operations

configFile 211
event 211
prop 211
queryop 211

oracle
JDBC driver

client library 196
connection parameters 196

P
padding

disable 183
enable 183

panel flow
add feature 36
installation 12
migration 39
uninstallation 31

parameter type 140
password 140

parameters
MQ Everyplace 160

parsers 170
password configuration 140
password protected Configs

exception 186
password protection 142
password store 141
password synchronization 3

password synchronization (continued)
plug-ins 44

password synchronizer 55
Persistence

Touchpoint Instance 305
PKCS#11 104
platform specific

installation 12
plug-ins

password synchronization 44
post installation

steps 44
post-installation 50
private keys 94
problem-determination ix
properties

CE 187
global 188
Java 189
Jlog file 189
JVM 189
PKCS# 104
Solution 189
solution directory 187
SSL 104
System 190

Property
global 280
Java 280
solution 280

property file 372
Derby parameters 342
derby.properties 342
global.properties 342
ibmdisrv 340
jlog.properties 341
Log options 340
Log4J.properties 340
solution directory 342

property files
encryption

property files 136
external 136
Solution Directory 339

Property stores
Password Store 194
User property stores 194

Property Stores
Global Properties 280
Java Properties 280
Solution Properties 280
Solution View 280

provisioning protocol 295
public key certificate 94, 96
public keys 94

R
reconnect action 151
reconnect rule

CE 155
configuration 155

reconnect rule engine 151
reconnect rules

built-in 151
user-defined 151

384 IBM Security Directory Integrator: Installation and Administrator Guide

refreshing
Solution View Details 272

remote CE
restrictions 143

remote CE limitations 143
remote client session

authentication methods 113
server API authentication 113

remote configuration
MQ Everyplace 167

remote configuration editor 142
remote server API 107
Remote Server API 110
requirements 5
Results Table

Action Manager 271
RHEL 6
RMI 107
role management

admin 254
config admin 254
execute 254
read 254

rollback
update installer 57

RPM
AIX 7

runtime server 3

S
SDI

editions 1
SDI loader 50
secret keys

keystore 94
SSL 94

security
API 93
config files 93
manage keys 93
SSL 93
web admin console 93

Security
Encryption 164

security aspects
various 147

security concepts 94
Security Directory Server 84
security enhanced 6
security properties

summary 144
security tools

Ikeyman 96
JVM 96
keytool 96

Select action
AMC 258

SELinux 6
sending notification

delivery parameters 130
listener 130

Server
command line options 206
IBM SDI 206

server API 111, 112, 116
access 110

server API (continued)
authentication 122
configuration 108
examples 122
properties 108
user registry 125

Server API
authentication 113
JMX 121
JMX layer 121

server API authentication
JAAS authentication 113
remote client session 113, 114
SSL based authentication 114

server API authorization
client server API session 123
remote API 123

Server API security model 124
authorization roles 124

server audit capabilities
authentication 128
authorization 128
notifications 128

server authentication
host based 121
LDAP 121
SSL-based 121
username/password based 121

server connector
TCP 83

Server Connector 84, 85, 87
server ID

AMC 185
IP address 185

Server Notifications Connector 372
Server RMI

SSL access 186
server security mode

secure 132
standard 132

service name
UNIX 43

severity of events 371
Show Preferred

Solution Views 271
silent installation 43
silent uninstallation

console uninstallation 51
GUI 51

SNMP Server Connector
AssemblyLine 83
EventHandler 83

SOAP 87
solidDB

JAR 197
JDBC connection parameter 197
table statements 197

solution directory
server hooks 142

Solution Directory 164
solution view

add 263
addition 264
config files 266
configuration file 264
configure users 263
local variable 264

solution view (continued)
modify 263

Solution View
Details Table 269
Monitor Status 268
Preferred 282

Solution View Details
refreshing 272
View components 271

Solution Views
Show Preferred 271

SSL 94, 112, 142, 170
ActiveMQ 159
client 101, 105, 106
client authentication 102
configuration 99, 103, 147
connectors 99
example 105
IBM Security Directory Integrator

component 105, 106
IBM Security Directory Integrator

components 100, 101
JSSE 112
JVM 112
keys 95
keystore 95, 100, 102
LDAP connector 105, 106
local access 111
properties 104
remote access 111
server 100, 105
system property 112
truststore 95, 100, 101, 102

SSL based authentication 142
SSL client authentication 142
starting 239
stash file

keypassword 132
keystore password 132
server instance security 132

Sun Directory Change Detection
Connector 85

supported platforms
link 59

Symmetric cipher support
encryption 169

system memory requirement
link 3

system platform requirement
link 3

System Queue
Configuration Example 163
Microbroker parameters 161

System Queue Configuration 157
system store

Cloudscape 191
JVM 191
solution directories 191

System Store
DDL 195
JDBC Driver 195
RDBMS 195
user authentication 199

system store security
Built-in Derby Users 138
External Directory Service 138
User-defined class 138

Index 385

T
tables 364

AMC 259
TCB 142
TCP

server connector 83
temporary file space

UNIX/LINUX 43
windows 43

TEP agents 359
threshold

assembyline table 360
defining 360
example 360

Tivoli Enterprise Portal 359
Tivoli monitoring 349
Tivoli Netcool/OMNIbus 349
tombstone

AssemblyLine 327
attributes 327
configuration 327
configuration editor 325
configuration window 325
records 327
statistics 327

tombstone manager
AssemblyLines 325

Tombstone Manager
AssemblyLines 328
Config instance 328
configuration properties 328

tombstones
configuration 325
configuration editor 325
switches 325

touchpoint 295
Touchpoint

authentication 319
communication protocol 312
configuration 295
Entry objects 313
HTTP 312, 313, 314
HTTP content 313
HTTP server 319
Initiator 313
Instance 312
instances 295
Intermediary 313
location 316
Property sheet

definitions 315
Provider 312
RMI Server API 319
server 295
Status Entry 314
Status Entry schema 314
Touchpoint Instances 313
XML Schema 313, 316

Touchpoint Configuration
namespace 310
Touchpoint Instance 310

Touchpoint instance
HTTP 298
initiator 298
intermediary 298
provider 298

Touchpoint Instance 310

Touchpoint Instance (continued)
Entry resource 320, 321
example 319
HTTP POST 320
Initiator 319, 321
Intermediary 323
Provider 319, 320
Resource Persistence 305
resources 305
Shipped example 319
URL 320

Touchpoint provider
instances 296
JVM 296
Touchpoint Server 296

Touchpoint Schema
HTTP 306
instances 306
resource 306
schema tree 306
server 306

Touchpoint server
access 295
components 295
configuration 317
HTTP basic authentication 317
ReSTful communication protocol 295
web container 317

Touchpoint Server
Touchpoint provider 296

Touchpoint Template
AssemblyLines 301
initiator 301
IntermediaryHandler 301
ProviderHandler 301
resources 301

touchpoint type
custom 296
standard 296
virtual 296

Touchpoints
Atom document 311
Destination Configuration 311
Error flows 316
XML document 316

trace levels 234
trace properties

dynamically 234
tracing 142

configuration 234
JLOG log level 234
JLOG's PDLogger object 233
JlogSnapHandler 233
SnapMemory 233

Tracing Enhancements
connectors 233
parsers 233

training ix
troubleshooting ix
Troubleshooting

Apache Derby issues 201

U
uninstallation

IBM Security Directory Integrator 50
panel flow 31

UNIX
service name 43

update installer 53, 55
rollback 57
troubleshooting 58

update site 3
upgrade 8

version 7.1.1 to 7.2 79
user authentication

System Store 199
user registry

server API 125
user-defined rules

examples 153
format 153

Username/password based
authentication

authentication hook 115

V
View components

Solution View Details 271
VPN

properties 110

W
walkthrough

creating Solution View 288
Web Admin Console Security

details 147
windows operating system 8
windows service 331

386 IBM Security Directory Integrator: Installation and Administrator Guide

����

Printed in USA

SC27-2705-03

	Contents
	About this publication
	Access to publications and terminology
	Accessibility
	Technical training
	Support information
	Statement of Good Security Practices

	Chapter 1. Introduction
	IBM Security Directory Integrator Editions

	Chapter 2. Installation instructions for IBM Security Directory Integrator
	Before you install
	Disk space requirements
	Memory requirements
	Platform requirements
	Components in IBM Security Directory Integrator
	Other requirements
	Root or Administrator Privileges
	Security Enhanced (SELinux)
	Authentication of AMC on Unix/Linux
	Graphics packages for UNIX systems
	Prerequisites for CE on AIX operating system
	Prerequisite for upgrading from V7.1.1 to V7.2 on Windows 2012 operating system

	Installing IBM Security Directory Integrator
	Launching the appropriate installer
	Using the platform-specific IBM Security Directory Integrator installer

	Installing using the graphical installer
	Install Panel flow
	Uninstall Panel flow
	Add Feature Panel flow
	Migration Panel flow

	Installing using the command line
	Temporary file space usage during installation
	Performing a silent install
	Service name limitation on UNIX systems

	Post-installation steps
	CE Update Site
	Plug-ins
	Administration and Monitoring Console (AMC)
	Documentation
	Migration

	Installing local Help files
	Deploying AMC to a custom ISC SE or IBM Dashboard Application Services Hub
	Installing or Updating using the Eclipse Update Manager
	Post-installation steps

	Uninstalling
	Launching the uninstaller
	Performing a silent uninstallation

	Default installation locations
	Default solution directory

	Chapter 3. Update Installer
	The .registry file
	Installation of fix packs
	Rollback
	Troubleshooting

	Chapter 4. Supported platforms
	Chapter 5. Migrating
	Migrate files to a different location
	Which files do not need to be modified to be used in another location?
	Which files need to be modified before they can be used in another location?
	Which files should not be used in another location under normal circumstances?
	Migrating files that contain encrypted data

	Migrate files to a newer version
	Installer-assisted migration
	Tool-assisted migration
	Manual migration
	Backing up important data
	Files backed up by the Installer
	Upgrade from version 6.0 to 7.1
	Upgrade from version 6.1.x to 7.1
	Upgrade from version 7.0 to 7.1
	Upgrade from version 7.1 to 7.1.1
	Upgrade from version 7.1.1 to 7.2

	Backup tools
	Manual backup

	Migrating AMC 7.x configuration settings to another AMC deployment
	Converting from EventHandlers to corresponding AssemblyLines
	TCP Server Connector
	Mailbox Connector
	JMX Connector
	SNMP Server Connector
	IBM Security Directory Server Changelog Connector
	HTTP Server Connector
	LDAP Server Connector
	Sun Directory Change Detection Connector
	Active Directory Change Detection Connector
	DSMLv2SOAPServerConnector

	Migrating BTree tables and BTree Connector to System Store
	Migrating Cloudscape database to Derby
	Migrating global and solution properties files using migration tool
	Migrating Password plug-ins properties files using migration tool

	Chapter 6. Security
	Manage keys, certificates and keystores
	Background
	Public/private keys and certificates
	Secret keys
	Keystores
	Keys for SSL
	Keys for encryption
	Tools

	List the contents of a keystore
	Create keys

	Secure Sockets Layer (SSL) Support
	Server SSL configuration of IBM Security Directory Integrator components
	Client SSL configuration of IBM Security Directory Integrator components
	SSL client authentication
	IBM Security Directory Integrator and Microsoft Active Directory SSL configuration
	Summary of properties for enabling SSL and PKCS#11 support
	SSL example
	IBM Security Directory Integrator component as a server
	IBM Security Directory Integrator component as a client

	Remote Server API
	Configuring the Server API
	Remote Server API access on a Virtual Private Network

	Server API access options
	Server API SSL remote access
	Using Server API specific SSL properties
	Using the standard SSL Java System properties

	Server API authentication
	Local client session
	Remote client session
	JAAS authentication
	SSL-based authentication
	Username/password based authentication
	LDAP Authentication support
	LDAP Authentication Configuration
	LDAP Authentication Logic
	LDAP Group Support

	Host based authentication
	Summary of Server API Authentication options
	Server API JMX layer
	Server API authentication setup examples

	Server API Authorization
	Authorization roles
	Server API User Registry

	Server Audit Capabilities
	Auditing scope
	Suppression of notifications
	Sending notifications

	IBM Security Directory Integrator Server Instance Security
	Stash File
	Server Security Modes
	Working with encrypted IBM Security Directory Integrator configuration files
	Creating an encrypted IBM Security Directory Integrator configuration file from scratch
	Editing an encrypted IBM Security Directory Integrator configuration file

	Standard encryption of global.properties or solution.properties
	Encryption of properties in external property files
	The IBM Security Directory Integrator Encryption utility

	IBM Security Directory Integrator System Store Security
	Miscellaneous Config File features
	Component Password Protection
	Saving passwords to configured Properties

	Protecting attributes from being printed in clear text during tracing
	Encryption of IBM Security Directory Integrator Server Hooks
	Remote CE and SSL
	Using the Remote Configuration Editor

	Summary of configuration files and properties dealing with security
	Web Admin Console Security
	Miscellaneous security aspects
	HTTP Basic Authentication
	Lotus Domino SSL specifics
	Certificates for the IBM Security Directory Integrator Web service Suite
	IBM WebSphere MQ Everyplace authentication with mini-certificates

	Chapter 7. Reconnect Rule Engine
	Reconnect Rules
	User-defined rules configuration
	Exception considerations

	General reconnect configuration

	Chapter 8. System Queue
	System Queue Configuration
	Apache ActiveMQ parameters
	Configuration
	Logging
	Using SSL with ActiveMQ

	IBM WebSphere MQ Everyplace parameters
	IBM WebSphere MQ parameters
	Microbroker parameters
	JMSScript Driver parameters
	The env JavaScript object
	The ret JavaScript object
	JavaScript example for Fiorano MQ

	System Queue Configuration Example
	Security and Authentication

	IBM WebSphere MQ Everyplace Configuration Utility
	Authentication of IBM WebSphere MQ Everyplace messages to provide Queue Security
	Support for DNS names in the configuration of the IBM WebSphere MQ Everyplace Queue
	Configuration of High Availability for IBM WebSphere MQ Everyplace transport of password changes
	Providing remote configuration capabilities in the IBM WebSphere MQ Everyplace Configuration Utility

	Chapter 9. Encryption and FIPS mode
	Configuring IBM Security Directory Integrator to run FIPS mode
	Symmetric cipher support
	FIPS encryption
	Connectors, Function Components, Parsers
	The IBM Security Directory Integrator server and FIPS

	Configuring SSL and PKI certificates
	Encrypting and decrypting using CryptoUtils
	Working with certificates
	Comparing CA-signed and Self-signed certificates
	Configuring certificates using PKI and SSL

	Using cryptographic keys located on hardware devices
	Using IBMPCKS11
	Enabling or disabling padding

	Maintaining encryption artifacts - keys, certificates, keystores, encrypted files

	Chapter 10. Configuring the IBM Security Directory Integrator Server API
	Server ID
	Exception for password protected Configs
	Server RMI
	Config load time-out interval

	Chapter 11. Properties
	Working with properties
	Global properties
	Solution properties
	Java properties
	System properties

	Chapter 12. System Store
	Property stores
	Third-party RDBMS as System Store
	Oracle
	MS SQL Server
	IBM DB2
	IBM solidDB
	Using Derby to hold your System Store

	Configuring Apache Derby Instances
	Starting Apache Derby in networked mode
	Enabling user authentication in System Store
	Create statements for System Store tables

	Backing up Apache Derby databases
	Troubleshooting Apache Derby issues

	Chapter 13. Command-line options
	Configuration Editor
	Server
	Command Line Interface – tdisrvctl utility
	Command Line Reference
	Operations

	Chapter 14. Logging and debugging
	Script-based logging
	Logging using the default Log4J class
	Log Levels and Log Level control
	Log4J default parameters
	Creating your own log strategies

	Chapter 15. Tracing and FFDC
	Tracing Enhancements
	Understanding Tracing
	Configuring Tracing
	Setting trace levels dynamically
	Useful JLOG parameters

	Chapter 16. Administration and Monitoring
	Installation and Configuration
	Deploying AMC into the Integrated Solutions Console
	Deploying AMC as a Windows service or UNIX process using the IBM Security Directory Integrator installer
	Deploying AMC on existing IBM WebSphere Application Server environment

	Starting and logging in the AMC and Action Manager
	Enabling AMC
	Running Action Manager remotely

	AMC Logs
	AMC in the Integrated Solutions Console
	Action Manager
	Enabling Action Manager
	Action Manager status in real time
	AMC force trigger for a given rule

	AMC and Action Manager security
	AMC and SSL
	AMC and remote IBM Security Directory Integrator server
	AMC and role management
	AMC and passwords
	AMC and encrypted configs

	Administation and Monitoring Console User Interface
	Log in and logout of the console
	AMC Console Layout
	Logging off the console
	Using AMC tables
	Select action drop-down menu
	Paging
	Sorting
	Finding
	Filtering

	Servers
	Add a server
	Modify a server

	Console Properties
	Solution Views
	Configure ACLs
	Local variables
	Add a Solution View
	Config files (allows loading/reloading of configurations)
	Custom load

	Monitor Status and Action Manager
	Monitor Status
	Solution View Details
	Solution View Details Table
	Action Manager results table

	View Components
	Show Preferred Solution Views

	Refreshing Solution View Details in AMC
	Action Manager
	Add/Edit configuration rules
	Configuration rules settings
	Configure trigger
	Configured actions

	Add/Modify Action
	Substitute variable for event data
	Triggers that can produce event data
	Actions that can access event data

	View Rules Summary

	Property Stores
	Log Management
	Preferred Solution Views

	AMC and AM Command line utilities
	Example walkthrough of creating a Solution View and Rules

	Chapter 17. Touchpoint Server
	Touchpoint concepts
	Touchpoint Server
	Touchpoint Provider
	Touchpoint Type
	Touchpoint Instance
	Touchpoint Template

	Resource Persistence
	Touchpoint Schema
	Touchpoint Configuration
	Instance Configuration
	Destination Configuration

	Touchpoint Instance communication protocol
	Provider Touchpoint
	Initiator Touchpoint
	Intermediary Touchpoint
	Representation of Entry objects as HTTP content

	Touchpoint Status Entry schema
	Property sheet definitions
	XML Schema locations

	Error flows
	Configuration
	Authentication
	Examples
	Shipped example
	Example steps for creating a Touchpoint Instance using a JDBC Connector
	Provider Touchpoint Instance
	Initiator Touchpoint Instance
	Intermediary Touchpoint Instance

	Chapter 18. Tombstone Manager
	Configuring Tombstones
	Configuration Editor Configuration screen
	AssemblyLine Configuration screen
	The Tombstone Manager

	Chapter 19. Multiple IBM Security Directory Integrator services
	IBM Security Directory Integrator as Windows Service
	Installing and uninstalling the service
	Installing the service
	Uninstalling the service

	Starting and stopping the service
	Logging
	Configuring the service

	IBM Security Directory Integrator as Linux/UNIX Service
	Command line support

	Appendix A. Example Property files
	Log4J.properties
	jlog.properties
	derby.properties
	global.properties

	Appendix B. Monitoring with external tools
	Monitoring IBM Security Directory Integrator with ITM
	Short presentation of the ITM architecture
	Importing an existing Agent configuration in ITM Agent Builder 6.2
	Creating an IBM SDI agent for ITM using ITM Agent Builder 6.2
	Generating the ITM Agent
	Configuring the ITM Agent
	Monitoring IBM Security Directory Integrator data
	Defining thresholds
	Creating links between tables
	Purpose of links
	Construction of links

	Send custom notifications to ITM
	Limitations

	Monitoring IBM SDI using OMNIbus
	Configuring the EIF probe props file
	Determine the severity for the events
	Working with the EventPropertyFile.properties file
	Send custom notifications to OMNIbus

	Appendix C. Accessibility features for IBM Security Directory Integrator
	Notices
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

