
IBM Security Directory Integrator
Version 7.2.0.1

Getting Started Guide

GI11-9325-03

���

IBM Security Directory Integrator
Version 7.2.0.1

Getting Started Guide

GI11-9325-03

���

Note
Before using this information and the product it supports, read the general information under “Notices” on page 107.

Edition notice

Note: This edition applies to version 7.2.0.1 of IBM Security Directory Integrator licensed program (5724-K74) and
to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2003, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

About this publication vii
Access to publications and terminology vii
Accessibility ix
Technical training ix
Support information ix
Statement of Good Security Practices ix

Chapter 1. Introduction 1
Simplify and solve 3

Kernel/Component Architecture 4
Entry-Attribute-value data model 4
Data flows = AssemblyLines 6
Getting Started 7

Chapter 2. Introducing IBM Security
Directory Integrator 9
Creating your first AssemblyLine 13
Running your Assemblyline 27
Null Behavior: Dealing with missing
Attributes/values 30
Debugging your AssemblyLine 37
Looking up data from a sequential source 44
Using Lookup Mode 55

Inheritance 59

Lookup search rules = Link Criteria 62
Deciphering Run errors 63

Chapter 3. Event-driven integration . . 67
Scheduling AssemblyLines 68
Service request AssemblyLines 69

Chapter 4. Hardening your Integration
Solutions. 77
Legibility, re-use and configurability 77
Logging and auditing 79
Connectivity problems. 79
AssemblyLine availability 80
Scaling and performance 81
Monitoring 82
The AssemblyLine Debugger 83

Appendix. EasyETL Guide 85
Creating a Project 88
Detecting Changes 99

Notices 107

Index 111

© Copyright IBM Corp. 2003, 2014 iii

iv IBM Security Directory Integrator: Getting Started Guide

Figures

1. The Entry-Attribute-value data model 5
2. Data flowing down an AssemblyLine 6
3. Tutorial scenario 7
4. Starting the Configuration Editor. 9
5. Selecting your workspace 9
6. Configuration Editor Welcome Screen 10
7. Naming your new project 11
8. Config Editor main screen 12
9. Simplified scenario diagram with just two data

sources 13
10. New AssemblyLine dialog box 14
11. Empty AssemblyLine editor 15
12. Inserting a new component 16
13. Choosing the component 17
14. Renaming the Connector and changing its

mode 18
15. File Connector Configuration panel 19
16. Selecting Parser during Insert new object 20
17. Browse Data context menu selection 21
18. The Data Browser 21
19. Interactively discovering schema by browsing

live data 22
20. AL with Iterator Connector in place 23
21. Add component button 24
22. AL with two Connectors in place 24
23. Dragging Attributes to the Output Map 25
24. Renaming an Attribute Map rule 26
25. Adding the 'FullName' Attribute to the Output

Map 26
26. Editing the assignment 27
27. The Run button 27
28. Log Output from the AssemblyLine run 28
29. Button bar for the Log Output window 28
30. Browsing Data created by an Output

Connector 29
31. Browsing the resulting XML 30
32. Null Behavior button for AL-level

configuration 31
33. Null Behavior configuration dialog. 32
34. Result in the XML output of Null Behavior

settings 32
35. Selecting the IF branch component 33
36. Editing conditions for the IF branch 34
37. Adding simple Conditions to the IF branch 35
38. Your first complete AssemblyLine 36
39. Resetting Null Behavior for the AssemblyLine 36
40. Log output with your messages and Work

Entry dump 37
41. Debugging your AssemblyLine 37
42. The AssemblyLine Data Stepper 38
43. Stepping into the AL run 39
44. Stepping to the Write_XML_File Connector 40
45. Advanced Debugger mode 41
46. Debugger buttons 42
47. Setting a breakpoint. 42
48. Setting a Breakpoint in script. 43

49. JavaScript Evaluation commandline 44
50. The scenario flow diagram 45
51. Dragging 'FullName' to the Input Map of your

Iterator Connector 45
52. Editing the assignment for 'FullName' . . . 46
53. Drag the ConnectorLoop 47
54. ConnectorLoop Configuration 47
55. ConnectorLoop Advanced Settings 48
56. Hierarchical Attributes 48
57. Dragging from Schema to Attribute Map 49
58. Condition editor for IF branch 49
59. Scripting the End of Data Hook 50
60. Component list in the AssemblyLine Data

Flow section 51
61. Scripting a Condition for the IF branch 52
62. AssemblyLine complete with FOR-EACH Loop 53
63. Log Output with IF branch statistics 54
64. XML output with 'telephoneNo' Attribute 55
65. AssemblyLine Copy function. 56
66. Copying an AssemblyLine into your project 57
67. Run the CreatePhoneDB AL 57
68. Log output from the 'CreatePhoneDB'

AssemblyLine 58
69. Drag a Connector to Resources 59
70. Drag the new resource into your AssemblyLine 59
71. Setting Inheritance for the Hooks tab 60
72. Restoring inheritance for a mapping rule 61
73. Changing mode, discovering and mapping

Attributes 61
74. A simple Link Criteria 62
75. Error message in log output 63
76. Partial Flow Diagram for Lookup mode 64
77. First tutorial exercise completed. 65
78. IBM Security Directory Integrator Scheduler 69
79. HTTP Server Connector Attribute Map panel 70
80. Add Input Attribute Map item 71
81. Wildcard map item 72
82. TCP and HTTP header properties returned as

Attributes 73
83. Drag in the AssemblyLine Function component

(AL FC) 74
84. Work Entry dump followed by AL statistics 75
85. Completed TINA_WebServer AssemblyLine 76
86. Simple Web Interface to your solution. . . . 76
87. Welcome screen 86
88. Figure 2. EasyETL Workbench 87
89. New Project button 88
90. Simple AssemblyLine editor 88
91. Selecting Source information 89
92. Setting the File Path parameter 90
93. Testing the connection and discovering schema 91
94. Input Source configured 92
95. Renaming an Output Attribute 93
96. One record read and collected 94
97. EasyETL AssemblyLine completed 94
98. Enabling Transformation 95

© Copyright IBM Corp. 2003, 2014 v

99. Show Transformation script 96
100. Evaluate Expression. 96
101. Output collection with computed FullName

Attribute 97
102. XML Output 98
103. Delta configuration 99

104. All entries unchanged and skipped 100
105. Selecting your link criteria 101
106. Creating command line assets to run the ETL

job 102
107. Running your ETL job at full speed 103
108. Defining Link Criteria for an Input Connector 104

vi IBM Security Directory Integrator: Getting Started Guide

About this publication

Use the IBM® Security Directory Integrator Getting Started Guide to learn basic
Security Directory Integrator concepts and to understand the background on
designing effective data integration solutions.

This document introduces conceptual information about IBM Security Directory
Integrator and provides examples to help you get started with the product.

Access to publications and terminology
Read the descriptions of the IBM Security Directory Integrator Version 7.2.0.1
library and the related publications that you can access online.

This section provides:
v A list of publications in the “IBM Security Directory Integrator library.”
v Links to “Online publications” on page viii.
v A link to the “IBM Terminology website” on page viii.

IBM Security Directory Integrator library

The following documents are available in the IBM Security Directory Integrator
library:
v IBM Security Directory Integrator Version 7.2.0.1 Federated Directory Server

Administration Guide

Contains information about using the Federated Directory Server console to
design, implement, and administer data integration solutions. Also contains
information about using the System for Cross-Domain Identity Management
(SCIM) protocol and interface for identity management.

v IBM Security Directory Integrator Version 7.2.0.1 Getting Started Guide

Contains a brief tutorial and introduction to IBM Security Directory Integrator.
Includes examples to create interaction and hands-on learning of IBM Security
Directory Integrator.

v IBM Security Directory Integrator Version 7.2.0.1 Users Guide

Contains information about using IBM Security Directory Integrator. Contains
instructions for designing solutions using the Security Directory Integrator
designer tool (the Configuration Editor) or running the ready-made solutions
from the command line. Also provides information about interfaces, concepts
and AssemblyLine creation.

v IBM Security Directory Integrator Version 7.2.0.1 Installation and Administrator Guide

Includes complete information about installing, migrating from a previous
version, configuring the logging functionality, and the security model underlying
the Remote Server API of IBM Security Directory Integrator. Contains
information on how to deploy and manage solutions.

v IBM Security Directory Integrator Version 7.2.0.1 Reference Guide

Contains detailed information about the individual components of IBM Security
Directory Integrator: Connectors, Function Components, Parsers, Objects and so
forth – the building blocks of the AssemblyLine.

v IBM Security Directory Integrator Version 7.2.0.1 Problem Determination Guide

© Copyright IBM Corp. 2003, 2014 vii

Provides information about IBM Security Directory Integrator tools, resources,
and techniques that can aid in the identification and resolution of problems.

v IBM Security Directory Integrator Version 7.2.0.1 Message Guide

Provides a list of all informational, warning and error messages associated with
the IBM Security Directory Integrator.

v IBM Security Directory Integrator Version 7.2.0.1 Password Synchronization Plug-ins
Guide

Includes complete information for installing and configuring each of the five
IBM Password Synchronization Plug-ins: Windows Password Synchronizer, Sun
Directory Server Password Synchronizer, IBM Security Directory Server
Password Synchronizer, Domino® Password Synchronizer and Password
Synchronizer for UNIX and Linux. Also provides configuration instructions for
the LDAP Password Store and JMS Password Store.

v IBM Security Directory Integrator Version 7.2.0.1 Release Notes

Describes new features and late-breaking information about IBM Security
Directory Integrator that did not get included in the documentation.

Online publications

IBM posts product publications when the product is released and when the
publications are updated at the following locations:

IBM Security Directory Integrator Library
The product documentation site (http://www-01.ibm.com/support/
knowledgecenter/SSCQGF/welcome) displays the welcome page and
navigation for this library.

IBM Security Systems Documentation Central
IBM Security Systems Documentation Central provides an alphabetical list
of all IBM Security Systems product libraries and links to the online
documentation for specific versions of each product.

IBM Publications Center
The IBM Publications Center site (http://www-05.ibm.com/e-business/
linkweb/publications/servlet/pbi.wss) offers customized search functions
to help you find all the IBM publications you need.

Related information

Information related to IBM Security Directory Integrator is available at the
following locations:
v IBM Security Directory Integrator uses the JNDI client from Oracle. For

information about the JNDI client, see the Java Naming and Directory Interface™

Specification at http://download.oracle.com/javase/7/docs/technotes/guides/
jndi/index.html .

v Information that might help to answer your questions related to IBM Security
Directory Integrator can be found at https://www-947.ibm.com/support/entry/
myportal/over-accesspubsview/software/security_systems/
tivoli_directory_integrator.

IBM Terminology website

The IBM Terminology website consolidates terminology for product libraries in one
location. You can access the Terminology website at http://www.ibm.com/
software/globalization/terminology.

viii IBM Security Directory Integrator: Getting Started Guide

http://www-01.ibm.com/support/knowledgecenter/SSCQGF/welcome
http://www-01.ibm.com/support/knowledgecenter/SSCQGF/welcome
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/IBM%20Security%20Systems%20Documentation%20Central/page/Welcome
 http://www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
 http://www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://download.oracle.com/javase/7/docs/technotes/guides/jndi/index.html
http://download.oracle.com/javase/7/docs/technotes/guides/jndi/index.html
https://www-947.ibm.com/support/entry/myportal/over-accesspubsview/software/security_systems/tivoli_directory_integrator
https://www-947.ibm.com/support/entry/myportal/over-accesspubsview/software/security_systems/tivoli_directory_integrator
https://www-947.ibm.com/support/entry/myportal/over-accesspubsview/software/security_systems/tivoli_directory_integrator
http://www.ibm.com/software/globalization/terminology
http://www.ibm.com/software/globalization/terminology

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully. With this product,
you can use assistive technologies to hear and navigate the interface. You can also
use the keyboard instead of the mouse to operate all features of the graphical user
interface.

For additional information, see the Accessibility Appendix in Configuring Directory
Integrator.

Technical training
For technical training information, see the following IBM Education website at
http://www.ibm.com/software/tivoli/education.

Support information
IBM Support provides assistance with code-related problems and routine, short
duration installation or usage questions. You can directly access the IBM Software
Support site at http://www.ibm.com/software/support/probsub.html.

Troubleshooting provides details about:
v What information to collect before contacting IBM Support.
v The various methods for contacting IBM Support.
v How to use IBM Support Assistant.
v Instructions and problem-determination resources to isolate and fix the problem

yourself.

Statement of Good Security Practices
IT system security involves protecting systems and information through
prevention, detection and response to improper access from within and outside
your enterprise. Improper access can result in information being altered, destroyed,
misappropriated or misused or can result in damage to or misuse of your systems,
including for use in attacks on others. No IT system or product should be
considered completely secure and no single product, service or security measure
can be completely effective in preventing improper use or access. IBM systems,
products and services are designed to be part of a comprehensive security
approach, which will necessarily involve additional operational procedures, and
may require other systems, products or services to be most effective. IBM DOES
NOT WARRANT THAT ANY SYSTEMS, PRODUCTS OR SERVICES ARE
IMMUNE FROM, OR WILL MAKE YOUR ENTERPRISE IMMUNE FROM, THE
MALICIOUS OR ILLEGAL CONDUCT OF ANY PARTY.

About this publication ix

http://www.ibm.com/software/tivoli/education
http://www.ibm.com/software/support/probsub.html

x IBM Security Directory Integrator: Getting Started Guide

Chapter 1. Introduction

This book is a simple introduction to a simple system. Make no mistake; the word
simple is used here in its most positive and powerful context, because the best way
to wrap your mind around a complex problem is to simplify it; Break it down into
more manageable pieces and then master those constituent parts. Divide and
conquer. This is a technique you instinctively use to solve everyday problems, and
which is equally relevant for engineering information exchange across an office, an
enterprise or the globe.

If you are impatient to quickly start extracting information from files, directories,
databases or Lotus Notes® and transferring this data someplace else then you may
want to skip directly to the appendix, “EasyETL Guide,” on page 85. This feature
lets you harness the power of IBM Security Directory Integrator without having to
first learn core concepts. Instead you choose your source and target, and then press
Run and watch your data flow. If on the other hand you want more control over
how data is read, filtered, enriched, transformed and moved then continue reading
here; “EasyETL Guide,” on page 85 will still be there for your future reading
pleasure.

IBM Security Directory Integrator1 is designed and built on the premise that even
the most complex integration problems can be decomposed down into three basic
parts:
v The systems involved in the communication – also called data sources,
v The data flows between these systems,
v The events that trigger the data flows.

With IBM Security Directory Integrator you translate this atomic understanding of
the integration problem directly into a solution, building it incrementally, one flow
at a time, with continuous feedback and verification. This approach makes
integration projects easier to estimate and plan, sometimes reducing this effort to
the counting and costing the individual data flows to be implemented. Completing
a task in runnable steps also allows you to regularly demonstrate progress to
stakeholders.

IBM Security Directory Integrator further accelerates development by abstracting
away the technical differences between your data sources, allowing you to spend
more time concentrating on the business requirements.

Leveraging the power of Eclipse, the IBM Security Directory Integrator
development environment is both comprehensive and extensible. Integration
projects result in libraries of components and business logic that can be quickly
reused to address new challenges. As a result, teams across your organization can
share IBM Security Directory Integrator assets, resulting in independent projects –
even point solutions – that immediately fit into a coherently integrated and
managed infrastructure.

1. Don't let the name fool you; IBM Security Directory Integrator is not limited to directory work, and supports all major data stores,
transports, protocols and APIs – including of course LDAP directories.

© Copyright IBM Corp. 2003, 2014 1

This document gives you an introduction to the simplify and solve methodology
described above. You will also take your first steps toward tapping into the elegant
simplicity of the IBM Security Directory Integrator toolset, specifically these two
programs:
v The development environment, called the Configuration Editor, or 'CE' for short,
v The run-time engine, simply referred to as the Server.

You will assemble your IBM Security Directory Integrator solutions with the CE,
while one or more Servers are used to power them. These programs work in
concert, making the user experience seamless, and even allowing you to work
across platforms; for example, developing on your laptop while testing and
debugging solutions running remotely on a mainframe.

Scripting in JavaScript

As mentioned above, IBM Security Directory Integrator lets you rapidly assemble
integration solutions. However, in order to extend built-in automated functionality
with your own custom processing and flow behavior, you will need to write
snippets of script.

Scripting is done in JavaScript, and IBM Security Directory Integrator includes the
IBM JSEngine to provide a fast, reliable scripting environment. As a result, you will
need to use and understand the core JavaScript language. There are several good
online and hardcopy resources for learning JavaScript. Check the IBM Security
Directory Integrator newsgroups and websites for recommendations and links.

For more information about scripting in IBM Security Directory Integrator, see the
Configuring Directory Integrator.

Installing IBM Security Directory Integrator

IBM Security Directory Integrator installs in a few minutes and you can begin
building, testing and deploying solutions immediately. It runs on a wide variety of
platforms, including Microsoft Windows, IBM AIX®, IBM System z®, and a number
of UNIX and Linux environments.

There are three paths of interest when installing IBM Security Directory Integrator,
and the installer will ask you to specify the first two:
1. The Installation Directory, where the program files are kept, along with the

batch-files or scripts used to launch the various tools.
2. The Solution Directory, often abbreviated 'SolDir', which is the current folder

whenever you run IBM Security Directory Integrator. You will notice that the
startup batch-files and scripts for the Config Editor development environment
(ibmditk) and the Server (ibmdisrv) both start with a command to change
directory to the Solution Directory. As a result, all relative paths used in your
solution will be expanded from your Solution Directory.

3. The workspace folder. This is where your project and resource2 files are kept.
This will default to a folder named "workspace" in your Solution Directory.

For more information about installing the IBM Security Directory Integrator, see
IBM Security Directory Integrator installation instructions in the Installing and
Administering.

2. These terms are explained in Chapter 2, “Introducing IBM Security Directory Integrator,” on page 9

2 IBM Security Directory Integrator: Getting Started Guide

Installing the tutorial files

The tutorial exercises in this book require supporting data files that are located in
the examples/Tutorial sub-folder of the IBM Security Directory Integrator
installation directory. For example, a standard Windows installation would place
these files in the following directory:
C:\Program Files\IBM\TDI\V7.2\examples\Tutorial

The 'Tutorial' directory should contain the following files:
v CreatePhoneDB.assemblyline

v index.html

v OtherPage.html

v People.csv

v PhoneNumbers.xml

v readme.txt

v Return web page.script

Note: As mentioned in the previous section, the installer will ask you to specify
the location of your Solution Directory. This is where your project and resource
files will be stored, and it will typically be a sub-directory called My Documents\TDI
under your home area.

Copy the Tutorial folder to your Solution Directory in order to make it more
readily accessible from the Configuration Editor tooling.

Simplify and solve
This section helps you to understand your starting place when designing a data
integration solution. Although the design strategy is incremental, it is suitable for
any size of integration and systems deployment project, including large ones.

Use a strategy like this one for designing a step-by-step data integration solution
using IBM Security Directory Integrator:
v Reduce complexity by breaking the problem up into smaller, manageable pieces.
v Start with a portion of the overall solution, preferably one that can be completed

in a week or two.
v Start with a portion of the overall solution that can be put into production all by

itself.

Handling complex projects

The best approach for digesting large integration and systems deployment projects
is to reduce complexity by breaking the problem up into smaller, more manageable
pieces. Once this is done, you then begin work on a portion of the overall solution,
preferably one that can be deployed independently. That way, it’s already
providing return on investment while you tackle the rest.

After isolating the piece you are going to work with, simplify it further by
focusing on the basic units of communication: the data flows themselves. You are
now poised to start the implementation. Integration development is done using the
IBM Security Directory Integrator Configuration Editor (abbreviated as 'CE')
through a series of try-test-refine cycles, making the process an iterative and even
exploratory one. This not only helps you to discover more about your own

Chapter 1. Introduction 3

installation, but also lets you evolve your integration solution as your
understanding of the problem set and its impact on your infrastructure grows.

Related topics

See the following topics for an explanation of how IBM Security Directory
Integrator allows you to transform data using AssemblyLines.
v “Kernel/Component Architecture”
v “Entry-Attribute-value data model”
v “Data flows = AssemblyLines” on page 6

Kernel/Component Architecture
A fundamental quality of the IBM Security Directory Integrator is its
kernel/component design.

The term kernel here refers to the rapid integration development (RID) framework
that allows you to quickly assemble your integration solutions and provides
automated execution logic to drive them. Features that you would otherwise need
to hand-code (and are therefore often neglected) like log/trace modules, connection
recovery, change detection, error handling and an external management API are
immediately available to even the simplest data flow.

In addition to this generic kernel functionality, IBM Security Directory Integrator
provides a set of data source-specific components: helper objects that abstract away
the technical details of interacting with your data sources. The two types of
components that you will use the most are Connectors and Parsers.

Connectors provide connectivity to a wide variety of data sources, as well as
inherent handling of structured data regardless of its underlying organization.
Some Connectors also serve as event-handlers, for example binding to IP ports and
waiting for incoming connections, or 'listening' for changes to occur in directories,
databases or files.

Parsers on the other hand are used to deal with unstructured data – that is,
bytestreams, like those found in files, POP3/SMTP email, MQ messages and data
streaming across IP ports.

IBM Security Directory Integrator provides an extendable library of Connectors
and Parsers, each designed to work with a specific system, service, API, transport
or format. The interchangeable nature of IBM Security Directory Integrator
components allows you to build a solution based on test data – for example, text
files – and then simply swap out the Connectors used in order to point your
solution at live sources for verification and deployment.

Furthermore, IBM Security Directory Integrator components are straightforward to
use, as well as easy to build and extend. You can augment your library to deal
with custom data sources and services by downloading new components from a
community website, writing your own components in Java™, or by interactively
building and testing them using script directly in the CE.

Entry-Attribute-value data model
The way data is organized and stored differs greatly from system to system:
v Databases store information in rows, typically with a fixed number of columns,

each carrying a single value for that record;

4 IBM Security Directory Integrator: Getting Started Guide

v Directories maintain object-oriented entries that can contain a varying number of
attributes. These in turn hold zero, one or multiple values3;

v Lotus® Domino databases contain Documents that are made up of Fields, each of
which can be defined as single- or multi-valued;

v Still other systems represent their data content as nodes, objects, records,
formatted byte streams or key-value sets.

In order for communication to meaningful to all participants, data formats have to
be compatible or they must be translated to suit each system involved. This is
called data marshalling and is often the first hurdle an integration specialist faces –
and one which can quickly consume a sizeable chunk of project resources to
overcome. IBM Security Directory Integrator Connectors handle this for you by
automatically converting source-specific types to a consistent, canonical
representation. Individual data values are translated to relevant Java objects, with
comparable native types being represented in the same way. For example, lines
read from files, LDAP string attributes, Domino text fields and RDBMS CHAR and
VARCHAR columns are all converted to java.lang.String by their respective
Connectors.

These marshalled values are then accumulated into Attributes: specialized Java
objects defined by IBM Security Directory Integrator. As noted above, some sources
permit only a single value per column or field, while others allow several values to
be stored under the same attribute name. The IBM Security Directory Integrator
Attribute supports both single-valued and multi-valued implementations, and can
even hold no values at all if necessary, for example when representing a nullable
column in a database.

All the Attributes that make up a single unit of data (that is, record, message,
document, and so forth) are collected in another IBM Security Directory Integrator
object called an Entry. An Entry can hold any number of Attributes, or none at all.

3. Consider for a moment the fact that you probably have multiple email addresses, all of which can be stored in the multi-valued
attribute entitled 'mail' in your company's employee directory

Figure 1. The Entry-Attribute-value data model

Chapter 1. Introduction 5

Each data flow has a primary Entry 'bucket' called its Work Entry. Whenever a
Connectors reads in data, it creates Attributes and puts these in the Work Entry.
Any Connector configured for output uses Attributes already found in the Work
Entry to drive changes to target systems.

This two-stage approach provides for almost unlimited flexibility in how data is
transferred, transformed, filtered and enriched. It also means that you can initially
build your data flow entirely with input Connectors and then interactively
examine the data with the CE as it is read and manipulated before you even have
to consider connections to output systems.

As you will see later on, the IBM Security Directory Integrator Entry handles
complex hierarchical data just as easily as it does flat schema.

Data flows = AssemblyLines
Each data flow in your solution is implemented as an IBM Security Directory
Integrator AssemblyLine, also abbreviated as 'AL' in this and other literature.

ALs are ordered lists of components forming a single, continuous path from input
sources to targets. Built-in behavior provided by the kernel ties the components
together and passes data carried in the Work Entry from one to the next.

It's said that a picture is worth a thousand words, and the diagram above is no
exception. The three puzzle pieces represent Connectors linked together to form an
AssemblyLine. The darker 'stem' of each puzzle piece highlights the data source
specific part of the Connector – that is, the interface to the connected system –
known as the Connector Interface (abbreviated as 'CI'). The lighter colored remainder
of each puzzle piece depicts the generic functionality of the kernel that makes all
components work in a similar and predictable fashion, enabling them to be linked
together and providing automated patterns of behaviors with control points for
customization4.

4. As you can see, every AssemblyLine component reflects the kernel/component architecture of IBM Security Directory Integrator.
If you decide to make your own component, it is only its interface that you have to implement. The AL "wrapper" and its wealth
of built-in functionality are available automatically, courtesy of the IBM Security Directory Integrator kernel.

Figure 2. Data flowing down an AssemblyLine

6 IBM Security Directory Integrator: Getting Started Guide

This picture illustrates a few more important concepts. For example, in addition to
the Work Entry shown above flowing from component to component down the
AssemblyLine, there is an additional Java "bucket" nestled in each of the Connector
Interfaces. Each local Entry object is used to cache data during read and write
operations performed by that CI, and is called its Conn Entry.

Now notice the curved arrows illustrating data flowing between the various Conn
Entries and the AL's Work Entry. These are Attribute Maps and each one represents
a set of rules for data movement and transformation on its way either in or out of
the AL. Those that lift data from a Conn Entry into the Work Entry are named
Input Maps since they determine what data is brought into the AssemblyLine. The
arrow in the rightmost puzzle piece that shows data moving in the other direction
– from the Work Entry to the Conn Entry – is called an Output Map.

Since there is only one Work Entry at any time, you can deduce that
AssemblyLines process one item at a time: for example, one database row,
directory entry, MQ message, and so forth. This is another important aspect of IBM
Security Directory Integrator, and although an AssemblyLine can cycle hundreds or
even thousands of Entries per second5, it's an important consideration when
designing your solution. It is of course possible to spread work across multiple
AssemblyLines, and you will find this and other techniques for optimizing AL
performance in other IBM Security Directory Integrator literature.

Getting Started
A good start for any integration project is to make a diagram of the problem at
hand.

Using a pencil and a piece of paper, sketch out the desired flows in broad strokes.
This exercise not only helps you to visualize the scope of the task, it serves as a
blueprint for implementing these flows in IBM Security Directory Integrator.

The first step in creating an IBM Security Directory Integrator solution is
translating data flows between data sources into AssemblyLines made up of
Connectors. The IBM Security Directory Integrator mantra of 'simplify and solve'
prescribes building your solution incrementally, starting as simple as possible.

To illustrate this, consider the example scenario you will use for your first
AssemblyLine. This integration task involves three data sources, labeled D1, D2
and D3. The desired solution is to migrate the contents of D1 to D3, augmenting

5. Performance will depend on the design and complexity of the AssemblyLine and the configuration of the machine running the
Server.

Figure 3. Tutorial scenario

Chapter 1. Introduction 7

this data with values found in D2. Translating this requirement to an
AssemblyLine, you end up with three Connectors, one for each data source:
1. the first Connector to iterate through D1, feeding this data into the flow;
2. followed by a second Connector that looks up related records in D2 and merges

these values with those coming from D1;
3. finally a third Connector configured to add these augmented records to D3.

Instead of attacking the entire problem at once, IBM Security Directory Integrator
allows you to simplify the task by starting with only two Connectors: one that
reads the contents of D1 into the AL and another to write these values to D3. Once
this minimal AssemblyLine is working properly, it can then be extended with the
Connector into D2 to join in additional Attributes. This is precisely how you will
create your first IBM Security Directory Integrator solution, and the steps to guide
you through this process comprise the remainder of this guide.

8 IBM Security Directory Integrator: Getting Started Guide

Chapter 2. Introducing IBM Security Directory Integrator

This section provides information useful in understanding IBM Security Directory
Integrator essentials, as well as a set of tutorial exercises to give you hands-on
experience with the development environment.

Your first step in getting to know the product is to start the IBM Security Directory
Integrator development tooling, known as the Configuration Editor, or CE for
short.

The first time that you start up the CE, you will see get this dialog for specifying
your workspace.

Your workspace is where the Configuration Editor will store your project files,
including components and AssemblyLines, and it is typically located under your
Solution Directory.

Figure 4. Starting the Configuration Editor

Figure 5. Selecting your workspace

© Copyright IBM Corp. 2003, 2014 9

Once you are happy with the location of your workspace press the OK button.
Now the Welcome Screen will appear.

The Welcome screen offers a number of quick-start links6.

Whenever you build, test or modify integration solutions with IBM Security
Directory Integrator, you are working within a project. Projects are collections of
AssemblyLines and their constituent components, and each project appears in its
own sub-folder of your workspace. The AssemblyLines and components that make
up a project are stored as individual files, which in turn are located in
sub-directories of the project folder.

Select the second link from the top of this page7 (Create Security Directory Integrator
Project) to set up your first project. You must now give your new project a name.
Call it 'Tutorial' and press Finish.

6. You can return to this screen at any time by selecting Help > Welcome in the Main Menu.

7. The topmost link, Launch EasyETL, opens a simplified workbench and is covered in the appendix, “EasyETL Guide,” on page 85.

Figure 6. Configuration Editor Welcome Screen

10 IBM Security Directory Integrator: Getting Started Guide

You will now see the main development work area. The panels here can all be
resized, and you can decide how the screen is organized. What you see on screen
here is the default IBM Security Directory Integrator Perspective8.

8. A Perspective is simply an organization of the development environment panels. If you have made changes to layout and want to
return to the default IBM Security Directory Integrator Perspective, simply click on Window in the topmost menu and select the
Reset Perspective option.

Figure 7. Naming your new project

Chapter 2. Introducing IBM Security Directory Integrator 11

Note: The only perspective that you need to use is the Security Directory
Integrator or Easy ETL perspective. If your Config Editor does not look the way
you expect it to do, or does not have the panes you expect, try the following steps:
v Select Window > Open Perspective > Security Directory Integrator. This option

selects the Security Directory Integrator perspective.
v If that does not help, select Window > Reset Perspective.... This command

ensures that all the default panes are positioned as they should be.

This is the main screen where you will spend most of your time when working
with IBM Security Directory Integrator. Without going into the details of all the
navigational elements here9, let's look at the numbered areas highlighted in the
above screenshot:
1. In the middle of the main button row is a set of shortcuts for creating new

Projects, and if a Project is selected in the Navigator, for creating new
AssemblyLines in it. There is also a button for launching the KeyManager tool
to work with certificate key- and truststores; as well as a Browse Server Stores
button for retrieving the various property settings from the IBM Security
Directory Integrator Server associated with this Project.

2. This is the Navigator panel and provides a tree-view of your development
assets. Your new 'Tutorial' Project should appear here.

9. As with most Eclipse-based applications, there will be a number of ways to perform the same operation. The Configuring Directory
Integrator describes all the various options and panels available.

Figure 8. Config Editor main screen

12 IBM Security Directory Integrator: Getting Started Guide

3. The Servers panel displays the status of all configured Servers. You can see by
the arrow icon next to 'Default.tdiserver' that this Server has been started for
you. This panel also provides buttons for defining new Servers, Starting and
Stopping your Servers, as well as for refreshing the list and view a Server's
log10.
Note that whenever you launch an AssemblyLine, both the Config Instance11

and the AL also show up in this panel.
4. Here you will see a set of tabs with the currently selected tab showing console

output coming from your Server. The messages displayed here now tell you
that your Server is running and that its API is initialized and ready for use.

5. The gray area in this screenshot is where editor panels appear as you create and
open AssemblyLines and components. Each type of resource (Connector, Parser,
AssemblyLine, and so forth) has its own specially designed editor.

Creating your first AssemblyLine
Returning to the example scenario outlined in the introduction, you will now
create an AL that migrates information from D1 to D3, ignoring for the moment
the joining of data from D2.

The 'Tutorials' folder (that you should have copied from TDI installation
directory/examples to your Solution Directory) contains a file named People.csv:
First;Last;Title
Bill;Sanderman;Chief Scientist
Mick;Kamerun;CEO
Jill;Vox;CTO
Roger
Gregory;Highpeak;VP Product Development
Ernie;Hazzle;Chief Evangelist
Peter;Belamy;Business Support Manager

You can see from the above listing that this is in character separated value format
(CSV). This file represents our D1 input data source. Your AL will extract this data
and transfer it to an XML document which will be our D3 output target.

Click on New AssemblyLine in the topmost toolbar and call the new AL
'CSV2XML'.

10. If for some reason your server has not been started correctly, open 'TDI Servers' and double-click on 'Default.tdiserver'. This
opens up the associated Server Document. Make sure that the Installation and Solution Directory settings are correct and then
press the Create Solution Directory option at the top of this panel. If this does not correct the problem, then contact support.

11. Whenever the IBM Security Directory Integrator Server loads a Config, it creates a Config Instance that encapsulates the
AssemblyLines of that project and allows these to run in their own contained environment. This means that you can load the
same Config multiple times on the same Server, resulting in separate Config Instances all containing the same set of ALs without
these interfering with each other.

Figure 9. Simplified scenario diagram with just two data sources

Chapter 2. Introducing IBM Security Directory Integrator 13

Now press the Finish button to open the AL in an AssemblyLine editor tab.

Figure 10. New AssemblyLine dialog box

14 IBM Security Directory Integrator: Getting Started Guide

The left part of the AL editor contains the list of components that make up this
AssemblyLine and is empty right now except for the section names: Feed and Data
Flow. The right-hand area displays all Attributes being mapped in and out of the
AL.

To understand these AssemblyLine sections, consider for a moment what we want
this new AL to do: For each line in the CSV file, create a new node in the XML
document. This looping behavior is provided for you automatically by the IBM
Security Directory Integrator kernel, driving components listed under the AL Data
Flow section as long as there is input data coming from Connectors in the Feed
section12.

Let's take advantage of this functionality by adding a Connector to the Feed
section to read in our CSV input file. Do this by right-clicking on the Feed section
folder and selecting Add Component...

12. Note that only one Feeds Connector will be delivering data to the AL at a time. If you put more than one Iterator Connector here
then the topmost one will empty first before the next one in line begins reading from its source.

Figure 11. Empty AssemblyLine editor

Chapter 2. Introducing IBM Security Directory Integrator 15

You will be presented with the Choose Component wizard.

Figure 12. Inserting a new component

16 IBM Security Directory Integrator: Getting Started Guide

This dialog gives you a couple of options to find and select the component you
want:
1. Start typing any part of the name of the component in the text field and the

selection list to the right is filtered accordingly. For this example, type "file".
2. You can optionally limit the selection list to include only a single type of

component – Connectors, Parsers, Scripts, and so forth.
3. Locate and select the component you want from this list. In our example this

will be 'File Connector'.

The new Connector is automatically named 'FileSystemConnector' for you. Change
this to 'Read_CSV_File' so that it has more meaning in the context of your

Figure 13. Choosing the component

Chapter 2. Introducing IBM Security Directory Integrator 17

solution13 and then select Iterator from the Mode drop-down.

It's the Mode setting of a Connector that tells the built-in AL execution logic what
role this component plays in the flow. Iterator Mode results in the for-each behavior
you need in order to drive the data from the CSV file, one entry at a time, to the
components you will add to the Data Flow section.

Now press the Next button to continue on to the configuration panel for the
selected Connector.

13. Although you can name Connectors as you like, it is recommended that you name them in the same way that you would a
script variable: start with a letter, followed with any number of letters, digits and underscore characters. This is because all AL
components are automatically registered as script variables, making it easier if you later want to reconfigure and drive them
from your script code.

Figure 14. Renaming the Connector and changing its mode

18 IBM Security Directory Integrator: Getting Started Guide

Each component provides its own set of configuration parameters. The ones shown
onscreen now are for the File Connector and it has only one required parameter:
File Path. Type in the path to the People.csv file – either the full path, or the
relative path from your Solution Directory as shown in the screenshot above14 – or
press the Select button to bring up a file browser to locate this file.

Because a formatted text file is a byte stream and not a structured data source like
a database or directory, you must set up a Parser to interpret the formatting of the
stream as it is read. IBM Security Directory Integrator provides a powerful and
versatile Data Browser feature for interactively testing your Connector/Parser
selection and configuration.

We'll take a look at this in a moment, but first you need to complete this wizard by
pressing Next again and proceeding to Parser Configuration. Here you click on

14. This technique makes your solution easier to move and share since all you have to do is specify the Solution Directory you want
and all relative paths will work unaltered.

Figure 15. File Connector Configuration panel

Chapter 2. Introducing IBM Security Directory Integrator 19

the CSV Parser to select it.

Once you have selected the CSV Parser then press Finish to close the wizard. You
will now see the Parser Configuration panel. Since you don't need to change the
default settings, simply press Finish again to complete the wizard.

The next step is to have your Connector discover the schema of your input source
in order to map these values into your AssemblyLine. This is where the Data
Browser comes in handy15. Start with the Data Browser by right-clicking on your
new Iterator Connector in the AssemblyLine Components tree and selecting

15. Since you know the file is in CSV format, the quickest approach would be to just click on the Connect and Next button in the
Schema area of the Iterator Connector. Then you drag discovered Attributes into the Input Map as you want. The Data Browser
is useful when you are unsure of the format. But I still thought you ought to try it :)

Figure 16. Selecting Parser during Insert new object

20 IBM Security Directory Integrator: Getting Started Guide

Browse Data from the context menu.

This will open the Data Browser in a new editor tab.

Figure 17. Browse Data context menu selection

Figure 18. The Data Browser

Chapter 2. Introducing IBM Security Directory Integrator 21

The area labeled 1 in the above screenshot is for choosing – and changing – the
selected Parser. Area 2 provides a Details tab that shows you the raw byte stream
that will be parsed. There are also tabs for changing the Connector's Connection
parameters, as well one for configuring the chosen Parser.

The last section of this dialog (#3 in the screenshot) is for connecting to the data
source and discovering which Attributes are available. Do this now by first
pressing Connect and then the Next button.

You have now discovered the schema of this file. Select the Attributes you want to
map in, which in this case is all of them, by either selecting the checkbox next to
each one, or using the Select All button.

Use the Ctrl-W shortcut to close the Data Browser tab, or simply click on the
'Close' symbol (X) at the right edge of the tab and return to the AssemblyLine
editor where your AL should look like the screenshot below16.

16. If for some reason your Connector is in the Data Flow section, simply drag it up to Feed. If the mode setting is not Iterator then
right-click on the Connector, select Mode and then choose Iterator.

Figure 19. Interactively discovering schema by browsing live data

22 IBM Security Directory Integrator: Getting Started Guide

Details for the selected component are shown to the right of the AL component
list, including the three mapping rules you just set up in the Input Map. Each
Attribute Map item has an Assignment, which is a snippet of script that is
evaluated in order to set the value (or values) of the target Attribute.

Before continuing, take a moment to reflect on these Assignments: You will recall
from the “Entry-Attribute-value data model” on page 4 section that the
AssemblyLine has a globally available Work Entry that carries all data being
transported down the AL. This object is referenced in script code by using the
pre-registered script variable work. In addition, the Interface of every Connector
has its own Conn Entry that is used as a cache for reads and writes. This
component-specific object is accessed from script through the pre-registered
variable conn17. To illustrate, consider the first mapping rule. It creates an Attribute
in the Work Entry named 'First'. Its value is derived from the following
assignment:
conn.First

This shorthand notation references the Attribute called 'First' that was just read
into the conn Entry, and its values are used to populate the new Work Entry
Attribute. A comparable assignment script would be:

return conn.getAttribute("First");18

Getting back to the exercise, you now you need to add your output Connector for
creating the target XML document (data source D3). This time try using the Add

17. The conn variable is only available for limited periods, as shown in the IBM Security Directory Integrator Hook Flow Diagrams.
Outside this scope it is still accessible by querying a component for its conn Entry.

18. For users familiar with version 6.x and earlier, you can also use the pre-7.0 syntax:

ret.value = conn.getAttribute("First")

Figure 20. AL with Iterator Connector in place

Chapter 2. Introducing IBM Security Directory Integrator 23

component button at the top of the AssemblyLine Components panel.

Again choose the File Connector, renaming it to 'Write_XML_File'. Leave the Mode
setting as AddOnly and then press Next.

In the Connector Configuration panel, set the File Path parameter to write to a file
called Output.xml in the Tutorial folder. Then choose 'XML Parser' in the next
Wizard panel. Now you can press Finish since you don't need to change the XML
Parser configuration. Note that in the case of your output Connector, you can't do
Schema Discovery since there is no Output.xml file to discover from.

You may have noticed that when you select a component, its details appear in the
right part of the editor screen. Whenever you select either the 'Feed' or the 'Data
Flow' folder, you are presented with the overview of all Attribute Maps for this
AssemblyLine. This is a handy display for copying your input Attributes to the
Output Map of your latest Connector, so bring up this screen now by clicking on
either 'Feed' or 'Data Flow'.

Figure 21. Add component button

Figure 22. AL with two Connectors in place

24 IBM Security Directory Integrator: Getting Started Guide

Here you see the list of Attributes (three in total) that are being brought into your
AL by the Iterator-mode Connector. Select these Input Map Attributes19 and drag
them down to the Output Map of the 'Write_XML_File' Connector, completing the
data flow.

Notice how the Assignment is automatically converted from input format to
output. For example, the first map item in the Input Map of your 'Read_CSV_File'
Connector will create an Attribute in the Work Entry named 'First' to hold any
values found in conn.First (that is, the Attribute called 'First' that was read into
the Conn Entry). When you drag this input mapping rule to an Output Map then
its assignment is changed so that the value now comes from the Work Entry
instead, and it is creating a target Attribute in the Connector's cache (the Conn
Entry).

If you want to change the source for any mapping rule then edit the assignment.
In order to change the name of the Attribute being mapped to, simply right-click
and rename it. Do this now for the first two Output Map rules.

19. You can Control-click to select multiple, or use Shift-click to select a range.

Figure 23. Dragging Attributes to the Output Map

Chapter 2. Introducing IBM Security Directory Integrator 25

Change 'First' to 'FirstName' and 'Last' to 'LastName'.

Now add a new map item to this Output Map by right-clicking on the
'Write_XML_File' Output Map itself and choosing Add Attribute.

Call the target of this new mapping rule 'FullName', press OK and then
double-click on it to edit its assignment.. This opens up the Script editor panel and
presents you with a default assignment script: work.FullName. Of course there is no
'FullName' Attribute in the Work Entry, so this map will not be able to set any
values. Instead, you must compute this value by changing the script so that it
concatenates the First and Last Attributes, leaving a single space between these
values:

Figure 24. Renaming an Attribute Map rule

Figure 25. Adding the 'FullName' Attribute to the Output Map

26 IBM Security Directory Integrator: Getting Started Guide

The script should read as follows:
work.First + " " + work.Last

Note that no terminating semi-colon is required for one-liner Attribute Map
assignment scripts like this20. Press the Close button at the top-right of the Script
editor panel when you are done.

Running your Assemblyline
It's now time to test your AL.

You do this by pressing the Run button at the top of the AssemblyLine Editor.

You will now see a new tab open with a Run window showing the log output
coming from your AssemblyLine.

20. Pre-7.0 syntax is also supported so map assignment scripts can still start with "ret.value =".

Figure 26. Editing the assignment

Figure 27. The Run button

Chapter 2. Introducing IBM Security Directory Integrator 27

The CE actually took your AssemblyLine with all its components and exported a
Config – an XML document that defines work assigned to an IBM Security
Directory Integrator Server. It then piped this Config to the Server and instructed it
to run your AL, capturing all log output for display onscreen.

The Run window includes a button bar with options to stop the AL, restart it once
it has stopped and to clear the log contents. The rightmost button opens the
current log output in an external editor.

The log output of an AssemblyLine ends in statistics for all components involved,
which in your case is just two Connectors. From the above information it's clear
that seven entries were read from the CSV file and seven nodes written to the
XML document.

You could locate your output file on disk and open it in a browser window to
confirm your results. You can also use the Data Browser by right-clicking on your
output Connector (Write_XML_File) and selecting Browse Data.

Figure 28. Log Output from the AssemblyLine run

Figure 29. Button bar for the Log Output window

28 IBM Security Directory Integrator: Getting Started Guide

This brings up the Data Browser for the chosen Connector, configured and ready
to go. Press the Connect button and then Next to read and display the output
data.

Figure 30. Browsing Data created by an Output Connector

Chapter 2. Introducing IBM Security Directory Integrator 29

The output XML should be an accurate representation of the input values, plus
your mapping logic; everything looks good apart from the fourth entry (Roger),
which is missing the 'LastName' and 'Title', and has this computed 'FullName'
value: Roger null.

If you examine the input data more closely then you'll see that one of the CSV
lines is incomplete:
First;Last;Title
Bill;Sanderman;Chief Scientist
Mick;Kamerun;CEO
Jill;Vox;CTO
Roger
Gregory;Highpeak;VP Product Development
Ernie;Hazzle;Chief Evangelist
Peter;Belamy;Business Support Manager

Missing and invalid input data is a common phenomena; your solution will need
to be prepared to either filter out or correct this during processing.

Null Behavior: Dealing with missing Attributes/values
To deal with missing values you can either use the built-in Null Behavior feature
of Attribute Maps, or you can detect and handle this yourself.

Let's start by configuring Null Behavior. Do this by right-clicking on the
'Read_CSV_File' Connector in the Attribute Maps panel (not in the AL components
tree-view) and selecting Null Behavior from the context menu21.

21. Or you can select the Connector itself in the AL component list; press the More... button at the top of the Input Map and choose
'Null Behavior' there.

Figure 31. Browsing the resulting XML

30 IBM Security Directory Integrator: Getting Started Guide

This brings up the Null Behavior dialog where you can configure both how null is
defined – which can vary depending on the type of source you are reading from –
as well as how this situation should be handled. By default, null means that an
Attribute is missing, and the default handling is to remove this Attribute from the
mapping operation. The end result of this is that no Attribute with the specified
name will be found in the receiving Entry.

Once in the Null Behavior dialog, use the radio buttons on the right to define null
as an empty string value, and then those on the left to specify a default value of "*
missing *" to be returned in this case.

Figure 32. Null Behavior button for AL-level configuration

Chapter 2. Introducing IBM Security Directory Integrator 31

Re-run your AssemblyLine and refresh the browser window displaying the
contents of Output.xml. The entry for 'Roger' should now have the special null
value ("* missing *") for 'Title' and 'LastName'.

Figure 33. Null Behavior configuration dialog

Figure 34. Result in the XML output of Null Behavior settings

32 IBM Security Directory Integrator: Getting Started Guide

This is somewhat better – at least it's a conscious choice. However, sometimes an
entry is just too incomplete to continue processing. In our scenario you need at
least values for 'FirstName' and 'LastName' in order to compute 'FullName', so you
will now add filtering logic to your AssemblyLine to ensure that all entries fulfill
this requirement.

Start by clicking the Insert Component button again and then choosing
Control/Flow Components from the radio buttons at the left. Then select 'IF' in the
list, name it 'Incomplete data'22 and press Finish.

Now drag this IF branch above your output Connector. The IF branch editor area
lets you add your conditions.

22. You were previously encouraged to name Connectors as you would a script variable. This also applies to Function components.
However, it is less important for Attribute Map components, Branches, Loops and Scripts, since these are seldom accessed
directly from script. In this guide higher priority has been given to making the AssemblyLine easy to read.

Figure 35. Selecting the IF branch component

Chapter 2. Introducing IBM Security Directory Integrator 33

Here you have the option of adding simple conditions or writing a snippet of
Script – or both. Note the Match All checkbox that decides whether your
Conditions (simple and scripted) are evaluated with an implied OR between them
when this is unchecked, or with AND when it is selected.

Add a simple condition by pressing the Add button. Then pick the 'First' Attribute
from the leftmost drop-down and then the 'has value(s)' operator. Negate this
condition by toggling the not column value. Nothing needs to be specified in the
right-most field when using the 'has value(s)' operator. Now add a similar has no
values condition for the Attribute named 'Last' as well. Finally, make sure the
Match All checkbox is unchecked – which implies Match Any – so that the lack of
values for either Attribute will trigger this branch.

Figure 36. Editing conditions for the IF branch

34 IBM Security Directory Integrator: Getting Started Guide

An IF Branch diverts the execution flow of the AssemblyLine whenever the
specified Conditions evaluate to true. In your case, processing will continue to
those components placed under the branch if either the 'First' or 'Last' Attributes
do not have values assigned to them – or even if either does not exist in the Work
Entry. In other words, the 'has value(s)' operator also includes the check for 'exists'.

Now expand the IF branch and double-click on the placeholder displayed under it
to insert a component here. In the Choose Component dialog, click on the radio
button for Scripts, select the one called 'Script' and press Finish. Rename this
Script component (also called an 'SC') to 'Write to log' and then enter the following
snippet of JavaScript in it23:
task.logmsg("*** Skipping incomplete entry");

The task variable used here references the AssemblyLine itself, and it provides you
with a number of useful functions like the logmsg() method. This scripted call
causes the specified text message to be written to your log output.

To make log output even more informative, let's include the current contents of the
Work Entry as well. Do this by right-clicking on the IF branch, selecting Add
Component... and again choosing the radio button for Scripts. This time select the
pre-defined Script component labeled 'Dump Work Entry'.

Finally, you must instruct the AL to stop the current cycle at this point and return
control to the Iterator Connector so that it can read in the next CSV line, effectively
filtering the current Entry from the XML output. Unless you specify this behavior
yourself then control will continue to the first component after the IF branch. So
once again you must right-click on your IF branch and then on Add Component...
Choose Scripts and then select the SC called 'Exit Flow'. Now your AL should look

23. The Script editor provides a feature called code-completion that shows which options you have. For example, type "tas" in the
Script editor and then press the Ctrl + Space key combination to open the code-completion drop-down, which should provide a
single option: task. If you press Enter then this choice is selected and entered in your script. Now type the period key (.) so your
script becomes "task." and wait just a moment; You will see a new code-completion drop-down appear, this time with a list of all
the methods and properties that you can access in the task object.

Figure 37. Adding simple Conditions to the IF branch

Chapter 2. Introducing IBM Security Directory Integrator 35

like this:

Before running your AssemblyLine again you will need to open the Null Behavior
dialog once more and restore both the default definition and behavior selections –
otherwise your IF Branch conditions will never evaluate to true.

Figure 38. Your first complete AssemblyLine

Figure 39. Resetting Null Behavior for the AssemblyLine

36 IBM Security Directory Integrator: Getting Started Guide

Now when you run your AssemblyLine again you will see your message followed
by the Work Entry dump:

From the statistics you can see that your IF 'Data incomplete' branch was true
once, resulting in only six nodes being added to your XML output. If you again
refresh the Data Browser window then you will see that 'Roger' is indeed gone.

Debugging your AssemblyLine
One of the most powerful features of IBM Security Directory Integrator is its
built-in AssemblyLine Debugger that allows you to walk through the execution of
your AL, viewing and even modifying data in-flight.

Let's step through your first AssemblyLine by clicking the Start Debug session
button.

Figure 40. Log output with your messages and Work Entry dump

Figure 41. Debugging your AssemblyLine

Chapter 2. Introducing IBM Security Directory Integrator 37

Instead of the standard Run Console window, you will find yourself in the
Debugger.

The AssemblyLine Debugger offers two modes: the Data Stepper, which provides
simple, straightforward testing features, and the advanced AL Debugger where
you can dig deeper – like stepping through scripts, interactively working with Java
libraries and modifying data on-the-file.

The Data Stepper is a useful tool for stepping through the execution of your
AssemblyLine Connectors and viewing the data read, written and transformed.
This screen is divided into three main areas:
v The AssemblyLine Outline shows your AL, highlighting where execution is

paused;
v The AssemblyLine Work Bucket which displays all Attributes mapped into the

Work Entry – that is, those found in Input Maps or Attribute Map components.
v AssemblyLine Components, Attributes and Values where you have a button

row for controlling your debug session and a set of data display grids for all
Connectors in the AL.

Along the bottom you can see a Console output window that shows the same
information that you got when you ran your AssemblyLine using the Run button.

At this point your AssemblyLine has been dispatched to the test Server and is
ready to start running at your command. Press the Next button to begin stepping.

Figure 42. The AssemblyLine Data Stepper

38 IBM Security Directory Integrator: Getting Started Guide

Notice how three things happen onscreen: the AssemblyLine Outline shows that
the "Read_CSV_File" Connector is currently active; the AssemblyLine Work
Bucket displays the Attributes just read by this Connector; and the data display
grid for this Connector is also populated with these Attributes. Each time you
press the Next button execution continues to the step and the information displays
are refreshed.

You can also use the Run To Here button at the top of the data grid for a
Connector to jump to this point. Do this now for the "Write_XML_File" Connector.

Figure 43. Stepping into the AL run

Chapter 2. Introducing IBM Security Directory Integrator 39

This data grid then displays the Attributes in the Output Map of this Connector
along with their values – including the computed value for "FullName".

Now let's look at the Data Stepper toolbar buttons to see what options you have:
v Next > moves processing to the next component and updates all data display

areas;
v Continue will cause your AL to continue execution until it is finished;
v Stop terminates the run immediately;
v Show/Hide lets you decide which Connector data grids are displayed;
v Debugger switches you to Full Debugger mode where you can step through

script code, set breakpoints, view and modify any Attributes and script
variables, and interactively execute JavaScript commands in the context of your
running AssemblyLine.

Although the Data Stepper provides a wealth of information about how your
AssemblyLine will perform, sometimes you need the added power of the advanced
Debugger. Note that you can switch between Stepper and Advanced modes as
often as you want during a debugging session. Try it now by pressing the
Debugger button located at the far right of the Data Stepper button row.

Figure 44. Stepping to the Write_XML_File Connector

40 IBM Security Directory Integrator: Getting Started Guide

When you switch modes the screen is redrawn to provide new controls for the
AssemblyLine Outline and the AssemblyLine Work Bucket is replaced with the
Watch List on the right side of the window. The Watch List shows the standard
Attribute buckets: work and conn. There is also a folder called "Global variables"
that if opened displays all variables defined for your AssemblyLine: both the
built-in ones like work and system, plus any that you define in your script code.
The last Watch folder is for your own use and you can add variables or entire
JavaScript expressions that you want to watch by using the Edit Watch List button
at the top of this panel.

Turning our attention to the AssemblyLine Outline, the boxes next to components
in this tree-view are called Breakpoints and you can tell IBM Security Directory
Integrator to pause at any component during execution by clicking on one of these.
You can also right-click on any node in and select Run and break here to bring AL
execution to this point. The toolbar above the outline gives you some of the same
controls that you had in the Data Stepper, plus a couple of new ones:

Figure 45. Advanced Debugger mode

Chapter 2. Introducing IBM Security Directory Integrator 41

Starting from the left these buttons are:
v Step Into which allows you to step into Attribute Maps, scripts and even into

the underlying workflows of the AssemblyLine and its components. These
waypoints in the built-in flows are called "Hooks" are covered in a later exercise;

v Step Over is the same as the Next > button you saw in the Data Stepper. In the
Debugger it also lets you stop over script function calls instead of into them;

v Continue causes the AL to run until completion (just like in the Data Stepper) or
until a Breakpoint is reached;

v Stop halts your AssemblyLine, as it does in the Data Stepper;
v Clear All Breakpoints removes any Breakpoints that you have set for your AL.

To get a feel for how Breakpoints work try setting one for the "Write to log" script
by clicking in the box next to this component.

Figure 46. Debugger buttons

Figure 47. Setting a breakpoint

42 IBM Security Directory Integrator: Getting Started Guide

Now press the Continue button and your AL will run until the IF-Branch is true
and you find control at the "Write to log" Script. IBM Security Directory Integrator
also opens up a Script area allowing you to step through the code here. You can
even set Breakpoints at any script line by double-clicking in the margin to the left
of that line.

Furthermore, you can double-click on any node in the component list to bring up
the Debug display. As you can see in the figure above, there is a button titled
Breakpoint Condition. You can use this to set a JavaScript expression that must
evaluate to either true or false and which will determine if a Breakpoint is active or
not. For example, the Breakpoint shown above could be set to be true if:
work.First.startsWith("R")

or
mycounter > 1000

This is very handy for debugging issues that only occur deep in some input data
set.

And if for some reason you need to go back to a previous step then simply stop
and restart your debug session. You can also switch back to the Data Stepper by
pressing the Data Stepper button.

Figure 48. Setting a Breakpoint in script

Chapter 2. Introducing IBM Security Directory Integrator 43

But before you leave the advanced Debugger there is one more feature worth
noting: the JavaScript Evaluation commandline.

This innocent looking input field above the log output area allows you to execute
any snippet of script in the context of your running AssemblyLine. Try it now by
typing this command and pressing Enter:
task.dumpEntry(work)

This will display the contents of the Work Entry in the log output window. Now
try this:
i = 42

You will see the following message appear in the log: i=42 >> 42.0

This tells you that you have defined a new variable ('i') with the value of 42. The
expression itself evaluates (as all script statements do) to the value of the
assignment. You can also change the values of variable and Attributes already
defined in your AL, for example:
work.First="Rudy"

After executing this line then the value of the "First" Attribute will be "Rudy". The
ability to modify data in-flight means that you can make sure your AssemblyLine
steps into all branch logic, allowing you to thoroughly test your solution.

It is highly recommended that you spend some time to familiarize yourself with
the AssemblyLine Data Stepper and Debugger. Not only does it provide unique
insight into how your AL operates, including all the built-in workflows provided
by the IBM Security Directory Integrator Server kernel, but it will also help you
validate your own implementation and assumptions about your data.

Looking up data from a sequential source
Continuing with our tutorial scenario, the next step is to add the lookup from D2.

Figure 49. JavaScript Evaluation commandline

44 IBM Security Directory Integrator: Getting Started Guide

The Tutorial directory contains a file called PhoneNumbers.xml that will serve as
your D2 data source. This file holds a series of XML entries, each with two
attributes: 'User' and 'telephoneNo'.

Your job will be to include 'telephoneNo' as part of the data written to the output
XML document. Since you can't randomly access this text file to do a Lookup as
you could for a database or directory, the correct telephone number for each CSV
entry will be found by looping through the file and comparing 'User' with
'FullName' coming from the current CSV entry.

However, 'FullName' is first being computed in the Output Map of the
'Write_XML_File' Connector – in other words, too late to do the comparison. That
means you must move this computed Attribute from the Output Map of
'Write_XML_File' to the Input Map of 'Read_CSV_File'. Do this by first dragging
the Attribute Map item up from one map to the other.

Now there will be a 'FullName' Map item in both maps. You need to adjust the
Input Map assignment since you are now mapping from the Conn Entry to Work,
instead of the other way around as is the case for an Output Map. Do this by
double-clicking on 'FullName' under 'Read_CSV_File' and changing the assignment
to be:
conn.First + " " + conn.Last

Figure 50. The scenario flow diagram

Figure 51. Dragging 'FullName' to the Input Map of your Iterator Connector

Chapter 2. Introducing IBM Security Directory Integrator 45

You can also edit the original 'FullName' Output Map item so that its assignment
is simply work.FullName since this Attribute will now be available in the Work
Entry, thanks to your modified Input Map.

Now re-run your AssemblyLine and check Output.xml to make sure it is
unchanged. Once you've confirmed this, you will now use a Loop component to
read through the PhoneNumbers.xml file and search for each user's number24.

Start by adding a new component to the Data Flow section, this time choosing the
component called ConnectorLoop and then naming it 'TelephoneNumber'. A
ConnectorLoop is a looping component that uses a Connector to read information
from a data source and then cycles all components attached under it once for each
entry returned by that Connector. This is similar to the for-each behavior of an
Iterator Connector in the Feed section, which cycles components in the Data Flow
section for each entry read.

Drag your new 'TelephoneNumber' ConnectorLoop between the IF branch and the
'Write_XML_File' Connector. Make sure it does not end up inside the IF branch.

24. There are three types of Loop components: 1) The ConnectorLoop, which lets you cycle on data returned by a Connector in
Iterator or Lookup mode. This is the type of Loop you will use in this exercise; 2) the ForEachAttributeValueLoop, making it easy
to loop through the values of a multi-valued Attribute, such as those you find in systems like Lotus Notes and LDAP
Directories; and 3) the ConditionalLoop, which uses Simple and scripted Conditions – just like those used by Branches – to control
cycling.

Figure 52. Editing the assignment for 'FullName'

46 IBM Security Directory Integrator: Getting Started Guide

Select it now to open its editor, which is similar to a Connector editor.

The main differences are that the Mode drop-down will only ever contain Iterator
and Lookup options. Furthermore, there is a More... button that provides options
for limiting the entries cycled, as well as an Initialize drop-down parameter with
the three selections:

Figure 53. Drag the ConnectorLoop

Figure 54. ConnectorLoop Configuration

Chapter 2. Introducing IBM Security Directory Integrator 47

v Do Nothing, which means that when this Loop is reached during AL processing
then its embedded Connector will not be initialized in any way;

v Initialize and Select/Lookup, to cause the Connector to be initialized whenever
the Loop starts to cycle. Use this option since your ConnectorLoop will be
reading from a file and you want it start from the beginning each time;

v Select/Lookup Only, which is useful when your ConnectorLoop is pointing at a
database, directory or some other randomly accessible data source.
Re-initializing the connection each time is not necessary in this case. All that
must be done is to re-issue the search, which is a Select in the case of Iterator
mode, and a Lookup operation for Lookup mode.

Configure the LoopConnector (which is of type 'FileSystem' by default) to read the
PhoneNumber.xml file and then select the 'XML Parser'. Now bring up the Attribute
Map tab to discover Attributes.

You will do your mapping at the Attribute level by selecting the 'User' and
'telephoneNo' in the Input Schema and dragging them to the Input Map.

Figure 55. ConnectorLoop Advanced Settings

Figure 56. Hierarchical Attributes

48 IBM Security Directory Integrator: Getting Started Guide

As a result, you will have one mapping rule for an Attribute named "User" and
one for "telephoneNo".

You can now close the LoopConnector editor and then add an IF branch
underneath it by right-clicking on the ConnectorLoop and choosing Add
Component.... Call this IF branch 'Matching name found'. Now add a simple
condition that checks if 'User' equals '$FullName'25.

Whenever a match is found then you will want the ConnectorLoop to exit with the
correct values in the 'User' and 'telephoneNo' Attributes. To do this, add a Script
component that you name 'Exit loop' and write the following script into:
system.exitBranch("loop");

But what happens if the ConnectorLoop reaches the end of PhoneNumbers.xml
without finding a match? The 'User' and 'telephoneNo' Attributes contain the
values read from the last entry in the file, so just checking for empty Attributes
won't help. You will need to devise some other way of detecting a failed match.

25. The dollar sign is a special character used here to indicate that 'FullName' is not a literal string to match, but rather the value of
an Attribute found in the Work Entry.

Figure 57. Dragging from Schema to Attribute Map

Figure 58. Condition editor for IF branch

Chapter 2. Introducing IBM Security Directory Integrator 49

The answer is to use a script variable as a flag to indicate that a match was found.
Do this now by inserting a Script component that you call 'Found user' inside the
IF branch, dragging it just before the 'Exit loop' SC. This Script component should
contain the following script snippet:
foundUser = true;

To indicate that a the end of the input file has been reached without finding a
match simply select your ConnectorLoop and open the Hooks tab.

Select the Hook called 'End of Data' and enter this script.
foundUser = false;

The 'End of Data' Hook will only be reached if the Connector attempts to read past
the last entry in its connected source. In this case, no match has been found.

Now your AssemblyLine should have these components:

Figure 59. Scripting the End of Data Hook

50 IBM Security Directory Integrator: Getting Started Guide

You should now be able to ascertain whether or not the search was successful by
checking your script variable. This is important since whenever no match is found
then you must also set a default value for the 'telephoneNo' Attribute; otherwise it
will still have the last value read in by the ConnectorLoop.

So add another IF branch immediately following the ConnectorLoop and call it
'NOT foundUser'. Click on the Script button in the IF Branch details area and
enter this script to check the value of your script variable:
! foundUser

The exclamation mark negates the value of foundUser so if it has been set to false
in the 'End of Data' Hook of your ConnectorLoop, this branch Condition will
evaluate to true.

Figure 60. Component list in the AssemblyLine Data Flow section

Chapter 2. Introducing IBM Security Directory Integrator 51

Insert a new component of type 'Attribute Map' underneath it. Call this Attribute
Map component 'Set default telephoneNo' to make its function clear in the context
of your AssemblyLine. Now use the Add Attribute button to create a single
Attribute named 'telephoneNo' – the same name as that being returned by your
ConnectorLoop. Double-click on this Attribute to set up the assignment script:
"N/A"

This means that any person read from your CSV input and not found in
PhoneNumbers.xml will get a 'telephoneNo' value of "N/A"26.

Finally, include this new 'telephoneNo' Attribute in the Output Map of
'Write_XML_File' by dragging it there and then making sure the assignment is:
work.telephoneNo

Your AssemblyLine should now look like this.

26. If you would prefer these users to have no 'telephoneNo' Attribute at all, simply use an assignment that returns no value. This is
done by returning the special value null:

null

This will cause default Null Behavior will remove the Attribute from the Work Entry. As a result, it will not reach the Output
Map of your 'Write_XML_File' Connector and therefore not appear in the resulting XML document.

Figure 61. Scripting a Condition for the IF branch

52 IBM Security Directory Integrator: Getting Started Guide

Now run your AL again and examine the log output. Your 'NOT foundUser'
branch should have been true twice and false for the other four entries.

Figure 62. AssemblyLine complete with FOR-EACH Loop

Chapter 2. Introducing IBM Security Directory Integrator 53

Note that some component names are highlighted (blue) in the AL statistics of the
log output. If you Ctrl-click on one with left mouse button it opens the selected
component up in the AssemblyLine editor.

As a result, your XML output should look like this:

Figure 63. Log Output with IF branch statistics

54 IBM Security Directory Integrator: Getting Started Guide

So far, so good. It's now time to try using Lookup mode to do the join.

Using Lookup Mode
Rather than modify and potentially mess up your running AssemblyLine, you will
make a copy of it and then change the copy instead. Do this by right-clicking on
the 'CSV2XML.assemblyline' and selecting Copy.

Figure 64. XML output with 'telephoneNo' Attribute

Chapter 2. Introducing IBM Security Directory Integrator 55

Now right-click on the 'AssemblyLines' folder in the Navigator and select the Paste
option. Call this new AssemblyLine 'CSV2XML_LookupMode' and then
double-click on it to open the AL editor.

You can now remove the ConnectorLoop along with all components under it. Just
select it and press the Delete key. In its place you will be dragging in a JDBC
Connector that you will copy from another AssemblyLine.

But first you must build the database table that this Connector will be reading
from; or rather, you must run a pre-built AssemblyLine to build it for you. To do
this, use a file browser to navigate to the 'Tutorials' folder and locate the file called
CreatePhoneDB.assemblyline. Drag it into the CE window on top of the
'AssemblyLines' folder in the Navigator panel.

Figure 65. AssemblyLine Copy function

56 IBM Security Directory Integrator: Getting Started Guide

The AssemblyLine will be imported into your project. Now right-click on it and
choose Run AssemblyLine...

Figure 66. Copying an AssemblyLine into your project

Figure 67. Run the CreatePhoneDB AL

Chapter 2. Introducing IBM Security Directory Integrator 57

This AssemblyLine will first create a Derby27 database under your solution
directory called 'TutorialDB' and then set up a 'PhoneDB' table. It will then loop
through PhoneNumbers.xml and load this information into the new table28.

If all goes well then the log output should look like this:

The 'CreatePhoneDB' AssemblyLine has a JDBC Connector that is already
configured and ready to use. You are going to copy this component to your Project
Resource library (specifically, to the "Connectors" folder) and then reuse it in your
AL.

Open up the 'CreatePhoneDB' AssemblyLine, grab the Connector called 'PhoneDB'
and drag it to the 'Connectors' folder located under 'Resources' in the Navigator
tree.

27. Apache Derby is an open-source relational database, bundled with IBM Security Directory Integrator.

28. Although the AL will not be covered in this guide, it is a good example of advanced scripting techniques used to exploit the
data source-specific functionality found in most Connector Interfaces. Feel free to examine and play with this AssemblyLine.

Figure 68. Log output from the 'CreatePhoneDB' AssemblyLine

58 IBM Security Directory Integrator: Getting Started Guide

Close 'CreatePhoneDB' so that your own AssemblyLine is visible again. Then drag
the new 'PhoneDB.connector' resource into the spot previously occupied by the
ConnectorLoop.

Inheritance
Did you notice how this Connector shows up blue in your AssemblyLine? This is
because it is now inheriting from your resource library. This means that it will

Figure 69. Drag a Connector to Resources

Figure 70. Drag the new resource into your AssemblyLine

Chapter 2. Introducing IBM Security Directory Integrator 59

dynamically retrieve configuration settings at run-time from the Connector you
dragged. This inheritance feature makes it easy to re-use resources like configured
components and scripted logic across multiple AssemblyLines.

You can change the ancestor of a component with the Inherit From button at the
top of its editor panel. Component tabs, like Config, Delta, Input/Output Maps
and Hooks also provide an inheritance option, allowing you to set a different
ancestor than that of the component itself.

Inherited values are displayed in blue type, and if you change it then inheritance is
broken. Inheritance is restored by using the Revert to inherited value option in the
Context menus of Attribute Map rules and Hooks.

Figure 71. Setting Inheritance for the Hooks tab

60 IBM Security Directory Integrator: Getting Started Guide

Returning to the exercise again, first change the Mode setting of the new
"PhoneDB" Connector now from AddOnly to Lookup.

Secondly, since the Attribute Map was originally an Output Map associated with
the previous mode, you will have to discover the input schema by pressing the
Connect and Next buttons above the Connector Schema. The third and last step is
to drag the 'PHONE' Attribute from Schema over to the Input Map, giving you a
simple map for this value.

Once you have the Input Map rule in place, it's important that you rename it from
'PHONE' to 'telephoneNo' so that it fits the assignment of the Output Map of your
'Write_XML_File' Connector.

Figure 72. Restoring inheritance for a mapping rule

Figure 73. Changing mode, discovering and mapping Attributes

Chapter 2. Introducing IBM Security Directory Integrator 61

In case you were wondering, you don't have to map in 'NAME' since you already
have the name of the user. This field will instead be used when defining the search
rule.

Lookup search rules = Link Criteria
When you selected Lookup mode then a new tab labeled 'Link Criteria' appeared in
the Connector editor. Link Criteria is for defining the matching rules for the search.

You can either define these as simple Link Criteria by using the drop-downs,
adding new Link Criteria as needed and setting the Match Any checkbox as you
would for Conditions. Alternatively, you can select the Build criteria with custom
script checkbox and instead write a snippet of script that computes the actual
search rule, like this example of an LDAP search filter:
"(cn=" + work.FullName + ")"

Note that this will tie your solution more closely to the data source being searched
since you have to write the actual syntax expected by the connected system. In our
case it would mean creating a WHERE clause (without the 'WHERE' keyword
itself).

In contrast, simple Link Criteria are translated to native search syntax for you by
the Connector, so you can switch the Connector Interface without having to redo
your Link Criteria.

Simple Link Criteria look similar to Conditions. The first drop-down is populated
with the schema you discovered and the second one shows you which Work Entry
Attributes are available at this point in your AL. Again, just as with Conditions,
the dollar sign is used here to indicate that the value of the named Attribute
should be substituted at run-time in order to create the search filter.

Remember to save your work, for example by pressing CTRL-S29. You will want to
do this regularly so that you don't loose any work.

29. If you have deleted AssemblyLines or resources and wish to undo this, right-click on your project in the Navigator panel and
select Restore from Local History... which will present you with a list of asset versions to restore from. You will of course have
to save something first before it shows up in your Local History.

Figure 74. A simple Link Criteria

62 IBM Security Directory Integrator: Getting Started Guide

It's time to Run your AssemblyLine again.

Deciphering Run errors
Do not panic. You should have gotten an error, indicated by the stack dump
appearing in the log output. Scroll to the top of the very first stack dump. Here
you will see information on both where the problem occurred as well as what
caused it.

The component name is in brackets ('PhoneDB') followed by the error description
that an Entry was not found – in other words, that the Lookup failed.

When a Connector is configured in Lookup mode, the system expects to find one
and only one matching record when the search is performed. If none are found –
or if multiple records match the Link Criteria – then you end up in special Hooks
that must at least be enabled to prevent the AL from stopping. This behavior is
clearly visible in the DataFlow diagrams that are part of the Reference. Here is an
excerpt from the page detailing Lookup mode:

Figure 75. Error message in log output

Chapter 2. Introducing IBM Security Directory Integrator 63

You can take advantage of this behavior to set your foundUser flag variable.
Right-click on the 'PhoneDB' Connector and choose Hooks... to open the Hooks
editor. Select the 'On No Match' Hook and enter the script code to set foundUser to
false.
foundUser = false;

Figure 76. Partial Flow Diagram for Lookup mode

64 IBM Security Directory Integrator: Getting Started Guide

Now choose 'After Lookup' and enter this complimentary Hook script30:
foundUser = true;

Your AssemblyLine should now resemble the one in this screenshot:

It's time to Run this AssemblyLine again, and this time it should complete without
errors. The Output.xml file should be identical to the results you got from your
Loop-based AL.

Congratulations! You have just completed your first IBM Security Directory
Integrator tutorial exercise. Now it's time discuss how AssemblyLines can be
triggered by real-time events.

30. As you can see from the Flow Diagram, the 'After Lookup' Hooks is only executed if the search results in a single match.

Figure 77. First tutorial exercise completed

Chapter 2. Introducing IBM Security Directory Integrator 65

66 IBM Security Directory Integrator: Getting Started Guide

Chapter 3. Event-driven integration

So far you've been running your AssemblyLines as batch processes, manually
starting them each time you want data to flow. You can also run AssemblyLines
from the command line by invoking the IBM Security Directory Integrator Server,
like this31:

ibmdisrv -c examples/Tutorial/Tutorial1.xml -r CSVtoXML

In this way it's a simple task to use scheduling tools (for example, crontab) to
schedule their operation, or to easily launch them from external applications.

IBM Security Directory Integrator provides a number of features for making your
AssemblyLines event-aware, allowing your solutions to handle and respond to a
wide variety of real-time triggers.

Examples of these triggers are:
v protocol requests coming over an IP port, like REST calls, SNMP and web

services;
v new messages appearing on a queue;
v emails arriving in an Inbox;
v changes to data, for example in files, databases, directories, and Notes®

databases;
v schedule or timer-based AssemblyLine operations.

This is not a complete list, and you will find both inspiration and guidance in
other IBM Security Directory Integrator literature, in the community websites and
the newsgroups.

Handling these events in your solution can be done in a number of ways:

Connectors in Iterator Mode
Some Connectors allow you to configure timeout parameters for Iterator
Mode. One example is the FileSystem Connector, which can be set up to
read through a file to the end and then wait for new information to appear
- so-called 'tail read'.

Other Connectors, like those for RDBMS Change detection and LDAP
Changelog, work in a similar way. These Connectors allow you to build
AssemblyLines that run continuously, waiting for new changes to appear
in the connected system.

There is also a Timer Connector that runs in Iterator Mode and can be
configured to drive your AssemblyLine at timed intervals according to a
scheduling parameter. You will be testing this one shortly.

IBM Security Directory Integrator includes a Web Administration console
as part of the standard installation. This browser-based application called
the Administration and Monitoring Console (AMC) lets you monitor the
health of your AssemblyLines, hot-load Configs to running Servers, start
and stop ALs, and configure failure/response behavior to keep your

31. The IBM Security Directory Integrator Server provides a usage message when invoked with no commandline arguments:
ibmdisrv

© Copyright IBM Corp. 2003, 2014 67

integration solutions highly available. It can also be used to set up
schedules for when your AssemblyLines should run. However, the Web
Admin tool is beyond the scope of this Guide.

Note: The AMC feature is deprecated and will be removed in a future
version of IBM Security Directory Integrator.

Connectors in Server Mode
A few specialized Connectors, like the HTTP Server Connector and the
LDAP Server Connector, allow you to build solutions that process
incoming requests from external clients, perform requested actions and
reply with appropriate responses. You will be using the HTTP Server
Connector in the next exercise.

Notifications and properties
IBM Security Directory Integrator has components that can subscribe to
IBM Security Directory Integrator notification events, just as there are
components (and script calls) for sending these events – even between
distinct IBM Security Directory Integrator Servers running on different
platforms.

This guide will take you on a closer look at AL scheduling and at Connector
Server mode.

Scheduling AssemblyLines
Using the user interface in the Configuration Editor, you can create a Scheduler to
run an AssemblyLine at specified times. For example, you can create a Scheduler
to run every day at 3:05 AM, every Saturday at 7AM, or even for more complex
schedules.

To create a Scheduler, in the Configuration Editor, click File > New > Scheduler.
Alternatively, right-click on the AssemblyLine and select Create Schedule.

When the IBM Security Directory Integrator Server loads a configuration file, the
enabled Schedulers contained in the configuration file are automatically started.
The command to load a configuration file is ibmdisrv -c myconfig.xml -d, where
myconfig.xml is the exported configuration file. Stopping the Config Instance stops
all the associated Schedulers.

68 IBM Security Directory Integrator: Getting Started Guide

The IBM Security Directory Integrator Scheduler details are detailed in the IBM
Security Directory Integrator Scheduler section of Reference.

Service request AssemblyLines
In this last exercise you will be building a web server AssemblyLine to provide a
very simple user interface for launching your 'CSV2XML_LookupMode' AL; In
other words, an HTTP service for initiating data transfers.

Start by creating a new AL and call it 'TINA_WebServer'32. Then insert a new
component, choosing the 'HTTP Server Connector' and pressing Finish to end the
wizard. Now open its Input Map tab.

32. TINA here stands for "TINA Is Not Apache" :-)

Figure 78. IBM Security Directory Integrator Scheduler

Chapter 3. Event-driven integration 69

Server Connectors are complementary to Function components. Whereas FC's
make service requests, a Server Connector provides and powers a service. As a
result, the Input Map for a Server Connector is used to receive Attributes coming
from the client making a request, while the Output Map provides a way to reply.
You can also see in the right-hand part of the Attribute Map screen that the Input
Schema is already in place. The same is true for the Output Schema. Server
Connectors provide this information to help you do your mapping. Note however
that some of these Schema Attributes contain wildcard characters, like 'http.qs.*'.
This is design-time information telling you to expect any number of incoming
Attributes whose names start with 'http.qs.'33.

Finally, the Mode drop-down for all Server Connectors offer both Server and
Iterator modes. There is an additional mode (Response) not shown here, bringing
the total to three. The Server Connector switches between these modes at various
stages in its operation:
1. A Server Connector first starts in Server mode, connecting to some resource like

an IP port and waiting for incoming client connections;
2. Once a connection is made, the Connector switches to Iterator mode to retrieve

client data based on the Input Map and passing this to the Data Flow
components;

3. Finally, when the Data Flow components are finished executing, the Connector
goes into Response mode, using the Output Map to form a reply back to the
client.

You don't have to worry about this since it is handled automatically for you.
However, if you do any Hook scripting then you will notice that there are three
sets of Hooks: Server, Iterator and Response.

33. This particular set of Attributes (http.qs.*) will carry any query string parameters passed into the HTTP call by the client.

Figure 79. HTTP Server Connector Attribute Map panel

70 IBM Security Directory Integrator: Getting Started Guide

Continue with the tutorial exercise by adding an Input Map Attribute item.

Simply select the topmost option in the dialog presented. Note that you could also
have typed the asterisk character (*) in the Entry new name field instead. This is
the special wildcard map rule that tells IBM Security Directory Integrator to map
in all Attributes read by the Connector.

Your Input Map will look like this:

Figure 80. Add Input Attribute Map item

Chapter 3. Event-driven integration 71

Add a wildcard map item to the Output map as well to ensure that any Attributes
set up in the Work Entry for the response message will get mapped back to the
client.

To test this component, put a 'Dump Work Entry' Script component in the Flow
section and then Run the AssemblyLine. The log output should display the
message that your HTTP Server Connector is listening for HTTP connections on
port 8034. That means your AL is waiting for clients to connect, which you do now
by opening a browser and navigating to the following URL:
http://localhost:80

Now look at your log output. Here you will see a number of TCP and HTTP
header properties that were returned as Attributes.

34. If for some reason this port is already in use, simply open the Configuration panel for the HTTP Server Connector and choose
another port.

Figure 81. Wildcard map item

72 IBM Security Directory Integrator: Getting Started Guide

http://localhost:80

The only Attribute you will be interested in for this exercise is 'http.base' which
holds that part of the URL appearing after the host and socket. Specifically, you
will be looking for it to contain the text 'RunAL'.

To check for this text, add an IF branch to the Data Flow section of your AL. Call it
'RunAL detected' and set the Condition to be: http.base contains 'RunAL'.

If this branch Condition evaluates to true then you want to launch your
'CSV2XML_LookupMode' AL. To do this you will re-use the AssemblyLine
Function component from your 'Scheduler' AL by first dragging it to Resources >
Functions in the Navigator panel and then back into this AssemblyLine, dropping
it on top of the new IF branch.

Figure 82. TCP and HTTP header properties returned as Attributes

Chapter 3. Event-driven integration 73

Now re-run your AssemblyLine and enter this text into the address field of your
browser:
http://localhost/RunAL

You will now see the Work Entry dump in the log output, followed by the
statistics from the called AssemblyLine.

Figure 83. Drag in the AssemblyLine Function component (AL FC)

74 IBM Security Directory Integrator: Getting Started Guide

http://localhost/RunAL

Your service is working, but the exercise does not end here. First you will make it
a little prettier and a lot easier to use by having your web server AssemblyLine
return some HTML pages. This would normally require a fair bit of scripting.
Fortunately you have been given a few more tutorial files that make this a simple
case of drag-and-drop.

Before you begin, disable the 'Dump Work Entry' Script to minimize the log
output. Then add an ELSE branch immediately after 'IF RunAL detected'. Name it
'Return web page'. Now use a file browser to locate the script file named "Return
web page.script" in the Tutorial directory and drag it into Resources > Scripts.
From there you can pull it into your AL, dropping it on top of the ELSE branch.
Your AL should now look like this:

Figure 84. Work Entry dump followed by AL statistics

Chapter 3. Event-driven integration 75

Run the AssemblyLine again and when you dial up http://localhost you should
see this web page:

The topmost link will navigate to OtherPage.html, while the link at the bottom
should send the required 'RunAL' text in the http.base in order to launch your
AssemblyLine.

And that concludes the hands-on part of this guide.

Figure 85. Completed TINA_WebServer AssemblyLine

Figure 86. Simple Web Interface to your solution

76 IBM Security Directory Integrator: Getting Started Guide

http://localhost

Chapter 4. Hardening your Integration Solutions

As you've seen, creating AssemblyLines can be a pretty quick business. However, a
completed AL run does not mean that your solution is ready for 'prime time'. Even
simple integration tasks warrant a minimum of both forethought and outcome
analysis.

Some pertinent questions to reflect on are:
v Is all source data being processed as expected? How can you confirm this?
v Are anomalies in data content and/or quality detected? Are they handled?
v Does processing affect other data sets, systems or ALs? How?
v Does the integration carry an audit burden?
v Who will be deploying your solution? Who will be using it, and who will

administrate it, as well as how?

For long-running AssemblyLines, like those used for synchronizations and to
power services, you can tack on additional considerations like availability and
fault-tolerance, performance, scalability and security.

The goal of this last section is making you aware of these issues, plus a number of
IBM Security Directory Integrator features and techniques that you can use to
address them.

Note: If you are new to IBM Security Directory Integrator then don't worry if this
section seems complex and difficult to follow. Instead, come back and re-read these
sections as your experience and comfort with the system grows.

Legibility, re-use and configurability
All development work requires troubleshooting, maintenance and extension. IBM
Security Directory Integrator solutions are no exception.

You can facilitate this by following a few basic guidelines.
1. Write your AssemblyLines, keeping in mind that others need to understand,

use and maintain them. That means to keep ALs as short as possible and
naming components clearly and descriptively. Logic implemented in the AL
flow through Branches and Loops will be simpler for non-programmers to read
and debug than Script 'hidden' in Hooks or packed into Script components.

2. A corollary to the Short AL rule is to keep script snippets short as well. Instead
of writing monolithic blocks of code, divide these into smaller units, even
putting these into separate Script components to enhance legibility and
debug-ability. It is possible then to disable an SC in order to skip code.
Another way to improve legibility and avoid code duplication is by using
Script component inheritance (from the 'Scripts' folder in the Navigator
tree-view) and by defining functions for common tasks. An AssemblyLine
executes in the context of its own Script engine, so all variables and functions

© Copyright IBM Corp. 2003, 2014 77

declared in one place are available throughout. A common place to define these
is in the AL Prolog Hooks, or in Scripts that have been selected as "Additional
Prologs"35.

3. Choose legibility over elegance when it comes to your algorithms, keeping in
mind that when you pick up your own work six months from now, it will
probably feel like somebody else's. Consideration for colleagues will be
kindness to self as well.

4. Be aware that people with no Configuration Editor skills may need to modify
settings and run your AssemblyLines. ALs can be easily started from the
command line:
ibmdisrv –c myConfig.xml –r myAssemblyLine

This means that you can prepare scripts or batch-files to facilitate this.
5. Make your ALs simpler to reconfigure by externalizing parameter settings by

using Properties. Properties are key-value pairs that can be stored in files or
databases, and will allow your solution to be reconfigured from outside the
Config Editor. Properties are tied to component parameters by clicking on the
parameter label and pressing Add property.
Properties can also be queried and modified from your scripts with the
system.getTDIProperty() and system.setTDIProperty() calls, allowing you to
make custom logic easily switchable through external property settings as well.
Properties can furthermore be changed in a running Server by using the
command-line utility, bin/tdisrvctl, which also lets you start and stop
AssemblyLines, query status and (re)load Configs – all without stopping the
Server.

6. As mentioned before, using relative paths for files makes it easier to move your
solution to a new installation. It is recommended that you make your paths
relative to the directory where the Config XML file is loaded from. This is
accessible via the {config.$directory} property, which can then be used to
specific path parameters using the Text w/substitution option; for example:

{config.$directory}/html

7. As mentioned before, but especially when building solutions that will be
deployed and run by others, do not anticipate that these users have IBM
Security Directory Integrator skills. Provide batch-files/scripts to start your
AssemblyLines, including test and validation ALs. These could, for example,
simply connect to data sources and report back success or failure. Note that in
order to print messages to the console commandline so that your
batch-files/scripts return status info, use the Server method, main.logmsg(),
instead of the AL version that you used in the tutorial
exercises: task.logmsg(). This latter call will only send your message to the
log.

These are just a few pointers. More can be found in other IBM Security Directory
Integrator literature and in the newsgroups.

35. Additional Prologs are executed before any of the AssemblyLine's own Prolog Hooks are invoked. These are selected in the
AssemblyLine Settings panel which can be accessed by right-clicking on an AL and selecting AssemblyLine Settings...

78 IBM Security Directory Integrator: Getting Started Guide

Logging and auditing
IBM Security Directory Integrator uses log4j to provide flexible log management.
You can choose between a number of standard Appenders including for Unix
syslog, Windows eventlog, daily files and rolling logs. New Appenders can be
created or downloaded and used as well.

By default, only minimal Server logging is enabled. At the very minimum, you
should define logging for your AssemblyLines using the FileRoller Appender,
writing to the 'logs' sub-folder of your Solution Directory and naming the log-file
the same as the AssemblyLine. So for your 'CSV2XML' AL you would define a set
of rolling log-files based on this filepath: logs/CSV2XML.log.

Note that the logmsg() method lets you optionally define the log level for your
message by passing one of the following keywords as the first argument just prior
to your log message: DEBUG, INFO, WARN, ERROR, FATAL. Log levels are
inclusive, so WARN will include ERROR and FATAL, and DEBUG means that
messages of all levels are logged. For example, a message like:
task.logmsg("DEBUG", "Updated: " + conn);

will only be issued by Appenders set for DEBUG level logging.

You can add audit messages to your solution that can be turned on and off from
outside a running Server by prefixing calls to task.logmsg() calls with an
IF-statement that checks the value of a property. For example, this script snippet
might appear in a 'DataFlow - Update Successful' Hook:
if (system.getTDIProperty("MyProps","audit").equalsIgnoreCase("true"))

task.logmsg("DEBUG", "Updated the following data: " + conn);

By using the tdisrvctl command-line utility to change the value of the "audit"
property in the "MyProps" Property Store, you can dynamically turn this type of
audit message on or off for a running Server.

In general, it’s better to log too much information than too little. Although you
ought not to flood the log output either. It can be difficult to locate messages of
interest in cluttered log output.

Connectivity problems
Connectivity problems can generally be divided into two categories: initialization
errors and lost connections.

By default, all components fire up connections at the very start of AL operation
during its initialization phase. If for some reason a connection fails at this point
then the 'Prolog – On Connection Error' Hook is invoked, giving you a script
container from which to send alerts or even change parameter settings and attempt
to connect again. Similarly, if connection errors occur during AL cycling then you
use the 'DataFlow – On Connection Lost' Hook to handle this situation.

In addition to this custom handling, Connectors and Function components also
provide built-in reconnect functionality via a Connection Errors tab. Here you can
instruct the component to attempt to re-establish a lost connection, or in the case of
an initialization problem, to continue trying to set up the connection.

Chapter 4. Hardening your Integration Solutions 79

In the case of initialization errors, it is not common practice to enable reconnect
unless you are experiencing recurring issues like sporadic timeouts during SSL
negotiation, or similar sporadic connection problems.

It is however recommended to enable Auto Reconnect on Connection Loss,
allowing your component to re-establish its connection and then continue as
though nothing had happened. Be aware that in the case of Iterator mode
Connectors, reconnecting will also mean that the iteration 'cursor' may also be
reset, such that cycling begins again at the first entry in the result set. Of course,
for state-aware Iterators, like Change Detection Connectors, this is not a problem
since these components automatically use state information to resume where they
left off.

AssemblyLine availability
Improving AL availability means two things: 1) doing what you can to ensure that
your AssemblyLines do not stop, and 2) restarting ALs that have stopped as
quickly as possible. For scenarios like long-running migrations and
synchronizations, restarted AssemblyLines may also need to continue where they
left off at the point of failure.

An AssemblyLine will stop if an unhandled exception occurs. You can safeguard
against this eventuality by handling all errors, which in IBM Security Directory
Integrator terms amounts to at least enabling the 'Default On Error' Hook of each
Connector and Function component. By enabling Error Hooks you are instructing
the Server to continue in spite of an exception.

As you saw during the tutorial exercises, if an AssemblyLine stops due to an error
then you get a stack trace which is preceded with info on where the error occurred
and why. If you prevent the AL from stopping by enabling Error Hooks then it is
your responsibility to report error status by using special objects available to your
scripts.
task.logmsg("ERROR", "[" + thisConnector.getName() + "] - " +

error);

The above example script makes use of two such objects: thisConnector which
always references the component to which the executing script is tied, and the
pre-defined variable called error. The error object is an Entry, just like work and
conn, and it holds Attributes like 'status', 'connectorname'36 and 'message', plus
other relevant details about any recent error situation. Since it’s an Entry object,
you can use task.dumpEntry(error) to display its contents, as well as direct
references to Attribute names – for example: work.message – or just simply
appending error to a string message like in the above example since all Entry
objects can convert themselves to string representations as required.

To handle exceptions occurring in scripts, like in Attribute Map assignment, Hooks
and Script components, wrap your code in try-catch blocks. This allows you to
catch exceptions and deal with them yourself:

36. You may have noticed that the 'connector' word is sometime synonymous with 'component', such that variables like
thisConnector can also refer to FC’s, SC’s and AttributeMap components. The same applies to the 'connectorname' Attribute of
the error object, which can also hold the name of any type of component.

80 IBM Security Directory Integrator: Getting Started Guide

try {
res = myLib.callToSomeFunctionThatMightFail();
} catch (excptn) {
task.logmsg("Call failed with error: " + excptn);
}

In addition to handling errors, you will want to use the Auto Reconnect feature
described in the previous section. This will prevent your AssemblyLine from
failing due to transient connectivity problems, like being timed out by a data
source or firewall.

If for some reason your AssemblyLine still stops prematurely, your next step is to
get it restarted. One approach is to use the Web Admin tool to define
failure/response behaviors.

Another, even complimentary approach is to make a 'Launcher' AL and leverage
the AssemblyLine Function Component that you used in the tutorial exercises of
the last section. By placing this AL FC in a ConditionalLoop which never stops – in
other words, with a Condition that is always true – and then configuring the AL
FC to call the desired service AL and wait for it to complete, you ensure that
whenever control returns to the 'LauncherAL' then the never-ending Loop will
simply restart your data flow again.

If you apply the restart-loop technique outlined above for a synchronization AL
based on one of the Change Detection Connectors (or the Delta Engine, both
described elsewhere) then the AssemblyLine will automatically continue from the
point where it failed. If not, then the burden of state handling rests on you. A
common technique is to use the System Store to persist state information, like
timestamps or other key values for sorted result sets. Then, whenever the
AssemblyLine initializes, this state information is applied to the Iterator Connector
in order to resume processing immediately after the previously handled entry.

If the iteration data source for the AL does not support sorted returns, then it
might be necessary to start iteration from the very beginning again. In this case,
note that the Connector Update mode offers a Compute Changes feature which
compares Output Mapped Attributes with those currently found in the target
system, skipping the modify operation if no differences are detected.

You can avoid a single point of failure by introducing a secure transport between
multiple IBM Security Directory Integrator Servers, like IBM MQ. In this way, any
number of Servers (and AssemblyLines) can be used to initiate processing by
placing data and even processing instructions into the queue. At the receiving end,
multiple Servers/ALs pick these up on a first-come-first-serve basis and carry out
the requested work. This not only results in a more robust solution, it allows for
easy scaling through adding sender and receiver AssemblyLines.

This has been a very brief discussion of a much larger subject. However, the goal is
more for inspiration than the prescription of a particular approach. It is advised
that you look to community websites and discussion groups for more specific
recommendations and examples.

Scaling and performance
Again, this is a topic that merits a lengthier discussion than you will find here.
However, a few points are worth mentioning, even if in a general fashion.

Chapter 4. Hardening your Integration Solutions 81

The primary gating factor to the speed of your data flows will be I/O; the time it
takes to retrieve data from sources, or to push changes out to targets greatly
overshadows processing time inside your AL. Furthermore, negotiating connections
can also be very costly, especially when security handshaking is involved. Keeping
this in mind when you design and build your AssemblyLines will directly impact
their performance.

For example, imagine a Server Mode-based AL that receives incoming protocol
requests from clients, like the HTTP Server solution you built in the last exercise.
Each request received causes a service AssemblyLine to be launched in order to
carry out the actual work. If this called AL has to initialize components, then the
turnaround for each request will be at least as long as the sum of all connection
times.

Three ways to alleviate this situation are:
v Have the main Server Mode AL do the actual processing instead of dispatching

it, therefore not requiring connections to be set up and broken down for each
request;

v Design the service AssemblyLine(s) so that it can be invoked in Manual/Cycle
Mode. Manual/Cycle mode causes the service AL to initialize when the AL FC
initializes. Furthermore, the AssemblyLine Function component drives the
service AL only a single cycle for each call. In this way, the service AL acts just
like a component of the calling AssemblyLine and must be built to accommodate
this behavior;

v Use Global Connector Pooling. This feature is described in the Reference and
allows you to define a pool of Connectors that are initialized at Server start-up
and shared between AssemblyLines as needed.

Another way to improve performance is to divide heaving processing tasks across
multiple simultaneous AssemblyLines. Take for instance a migration task where
instead of having one AssemblyLine work with the entire source data set, you
launch multiple ALs that each handles a subset. Since you can pass initialization
parameters into an AssemblyLine when you call it, a single AL can be developed
that is started multiple times with a filter parameter for controlling the range of
data that instance should process.

Yet another technique is to incorporate a message bus in your solution, as
described in the previous section. This approach has been used with great success
by some of IBM’s largest clients.

In cases where processing speed is hampered by unstable network links or systems
with low availability, you can deploy additional ALs as background tasks to
synchronize hard-to-reach data to local high-speed stores. Particularly when
implementing real-time services, this technique can help ensure satisfactory
response time for client requests.

Monitoring
Out-of-the-box your IBM Security Directory Integrator solutions are quickly and
simply administrated using the Web Admin tool. This Integrated Service Console
(ISC) plug-in is an AppServer application that can monitor any number of
solutions running on any number of Servers in your infrastructure. In addition to
out-of-the box features for viewing AL statistics, logs and start/stop times, the Web

82 IBM Security Directory Integrator: Getting Started Guide

Admin tool allows you to customize the health and incident console, as well as
defining schedules and failure/response behaviors to keep your AssemblyLines in
flight.

You can also configure your IBM Security Directory Integrator solutions to send
status events, for example as SNMP traps or using the system's custom event
format. The system is readily configured for JMX administration and monitoring,
for example using ITM.

The AssemblyLine Debugger
Although mentioned before, this warrants repeating: The time you spend time
getting skilled with the AssemblyLine Debugger will be rewarded tenfold in
accelerated solution development, troubleshooting and deployment.

Chapter 4. Hardening your Integration Solutions 83

84 IBM Security Directory Integrator: Getting Started Guide

Appendix. EasyETL Guide

‘ETL' stands for Extract, Transform and Load, and boils down to getting data from
one place, changing it as needed and then putting it someplace else. ‘EasyETL' is a
feature of IBM Security Directory Integrator that lets you do this quickly and
interactively in just a few keystrokes.

Common ETL examples are:
v Exporting database records, Notes Documents, directory entries or even

incoming mail or MQ messages to a file;
v Loading data from file into a system or data store;
v Migrating data directly from one system to another, or between versions of the

same system in the case of software/schema updates.

IBM Security Directory Integrator EasyETL lets you solve these and other scenarios
in a few intuitive steps, resulting in solutions suitable for both one-off data
movement needs, as well as for mission critical data flows in your infrastructure.

The first step in creating a new EasyETL task is to choose your Input Source and
select the attributes that you want to transfer. Already at this point, IBM Security
Directory Integrator lets you run your EasyETL job and collect the data read into
your copy buffer for pasting. If the data needs to be transformed or computed then
EasyETL lets you add transformation, re-run the ETL job and copy/paste the
transformed data. And you can also choose an Output Target and have your
EasyETL job write the data directly there.

Once your EasyETL solution is working as desired, IBM Security Directory
Integrator can generate the command line assets (batch-files or scripts) for
launching and scheduling the integration task. Finally, EasyETL leverages the
change detection features of IBM Security Directory Integrator to quickly turn your
ETL job into a data synchronization task.

Note: The good news for IBM Security Directory Integrator users is that each
EasyETL solution is an IBM Security Directory Integrator Project with a single
AssemblyLine, and it can be opened in the full-featured development environment.
However, once you change it there it's no longer available as EasyETL.

Using EasyETL

Launch the IBM Security Directory Integrator Config Editor and select the
workspace to use. When IBM Security Directory Integrator starts the first time it
opens in the Welcome page37.

37. You can return to the Welcome page at any time by selecting Help > Welcome from the main menu.

© Copyright IBM Corp. 2003, 2014 85

As shown in the screenshot above, the topmost link here opens up the EasyETL38

workbench. Click this link now to open the Security Directory Integrator EasyETL
workbench.

38. EasyETL is a Security Directory Integrator perspective, and you can switch between perspectives using the menu selection:
Windows > Open Perspective > Other... If you have made changes to a perspective and would like to reset it back to default,
simply select Windows > Reset Perspective.

Figure 87. Welcome screen

86 IBM Security Directory Integrator: Getting Started Guide

The EasyETL workbench shows you three things:
v The Project Navigator that lists your ETL jobs. You can right-click on any Project

to do things like running it or creating command line assets to launch it;
v A Simple AssemblyLine39 editor for each open project;
v Various Views as tabs along the bottom part of the screen. By default you get

three Views:
– the Console output from the test IBM Security Directory Integrator Server;
– the Server status view where you can monitor both the Server and any

running EasyETL Projects;
– and the Data Collector where the resulting data for each cycle is displayed in

a tabular list.

You will find more information on each section as you work through this
document.

39. An ‘AssemblyLine' is the implementation of a data flow in IBM Security Directory Integrator, so when you create or open an
EasyETL Project then the underlying AssemblyLine is presented in the editor.

Note also that the term ‘AssemblyLine' is abbreviated as ‘AL' in this and other IBM Security Directory Integrator literature.

Figure 88. Figure 2. EasyETL Workbench

Appendix. EasyETL Guide 87

Creating a Project
Create a new EasyETL Project by pressing the New Project button at the top of the
Project Navigator.

Name this Project ‘CSVtoXML' and press Finish. This opens your new Project in
the Simple AL editor.

The editor provides two drop-downs: one for selecting the Input source and one
for the target. The area below is empty (apart from the assistance text) until you
have chosen your source.

Figure 89. New Project button

Figure 90. Simple AssemblyLine editor

88 IBM Security Directory Integrator: Getting Started Guide

Setting up input for your ETL AL

Configure input for your EasyETL AssemblyLine by clicking on the drop-down for
Source Information and selecting the File Connector.

You will then be presented with the configuration dialog for this Connector.

Point the File Path parameter at the ‘People.csv' file found here:
TDI_HOME/examples/Tutorial

where TDI_HOME is replaced with the IBM Security Directory Integrator
installation directory on your machine40.

40. Note that IBM Security Directory Integrator supports both forward slash and backslash as the path separator when running on
Windows. Your IBM Security Directory Integrator solutions will be more portable between Windows and all the other platforms
IBM Security Directory Integrator runs on if you use forward slash.

Figure 91. Selecting Source information

Appendix. EasyETL Guide 89

Now click on the tab labeled Parser and select the CSV Parser, keeping the default
configuration parameters as-is. Finally, press the Connect button at the bottom of
the dialog box to test the connection and discover available Attributes.

Figure 92. Setting the File Path parameter

90 IBM Security Directory Integrator: Getting Started Guide

The schema for the connected system is displayed and from here you can choose
which of these to use in your data flow. For this example, use the Select All button
and then press OK to close the configuration dialog.

Back in the EasyETL workbench you will see that the bottom half of the Simple AL
editor has changed to reflect that you now have an Input Source configured. IBM

Figure 93. Testing the connection and discovering schema

Appendix. EasyETL Guide 91

Security Directory Integrator now presents you with a button for stepping through
this information one record at a time, as well as buttons to run the ETL task to
completion and to stop it.

Below these buttons are two grid boxes called Data Viewers that list the Attributes
handled by your data flow. The Data Viewer on the left shows your input
Attributes. Those that you selected for reading in the previous step are displayed
in bold at the top and are called the Input Map. Below will be any unselected
Attributes displayed in gray, and you can include these for input mapping by
double-clicking on them. Similarly, you remove Attributes from the map by either
double-clicking or deleting them41.

The box to the right is the Output Viewer and it shows the set of Attributes to be
written. In IBM Security Directory Integrator terms, this is your Output Map and
by default it is identical to the list you selected for your Input Map. Note that you
can change the name of any Output Attribute by clicking in the right-hand column
and then editing the value. Use this technique to rename the Attributed called
‘Title' to ‘JobTitle'.

41. You can also right-click and choose Add Attribute or Remove Attribute.

Figure 94. Input Source configured

92 IBM Security Directory Integrator: Getting Started Guide

Your EasyETL project is now ready for its first test.

Running your EasyETL AssemblyLine

Select the Data Collector view at the bottom of the screen and then press the Read
and Write next record button. This causes the following to happen:
1. There is a delay as your EasyETL AssemblyLine is transferred to the running

Server and started;
2. The first record is read and parsed from your CSV input source and the data is

displayed in both the input and output grid displays;
3. The Attributes you selected for output are written and collected in the Data

Collector view42.

So even though you have not selected an Output target yet, you can still run and
test your ETL project, viewing the data as it flows down the AssemblyLine.

42. The leftmost button at the top of the Data Collector view opens a configuration dialog where you can increase the Data
Collector Buffer size. Note that if you plan to collect large amounts of data then you may need to increase the memory available
to IBM Security Directory Integrator. Do this by locating the ‘ibmditk' batch-file/script in the IBM Security Directory Integrator
installation folder and opening it in an editor. Near the bottom is the line that launches ‘miadmin' and you could insert the
following text after the –vmargs option: –Xmx512M This example will allow IBM Security Directory Integrator data memory to
grow to 512 Mbytes.

Figure 95. Renaming an Output Attribute

Appendix. EasyETL Guide 93

Each time your press the Read and Write... button, another record is read,
displayed and collected. If you now press the Run button then your ETL job runs
to completion and you will see this AL report.

As shown in the dialog above, no records were actually written anywhere.
However, the Data Collector still provides handy visual feedback on the
information being extracted and transferred.

Furthermore, you can select rows in the collected data and copy/paste this
information to a file or other target43.

43. Data is copied in CSV format to simplify importing values into spreadsheets and report tables. ‘CSV' stands for Character
Separated Value, and the separator character used by IBM Security Directory Integrator is the semi-colon (;).

Figure 96. One record read and collected

Figure 97. EasyETL AssemblyLine completed

94 IBM Security Directory Integrator: Getting Started Guide

Transformations

Up to now your Output values have been identical to your input. However, there
will be situations where you want to manipulate or even compute these based on
the data read. You do this in IBM Security Directory Integrator EasyETL by writing
Transformations in JavaScript.

In order to work with Transformations you first have to enable them by selecting
the Show data transformations check box.

This causes a new grid box to appear between the Data Viewers: the
Transformation Viewer. Here you see arrows indicating that all three Output
Attributes get their values directly from Input Attributes – in other words, no
transformations. You are going to define a new Output Attribute and then add the
Transformation script to compute its value. Do this now by right-clicking in the
Output Map, choosing Add Attribute and naming it ‘FullName'. Now double-click
on the Transformation to the left of this new Output Attribute and then enter this
script snippet:44 return First + " " + Last

44. Note that you can press Ctrl + Space to get up a list of suggestions to what you can type. This list includes some special objects
like 'task' and 'main' and lists the Attributes being read in from your Input Source at the bottom.

Note also that the notation shown here for accessing Input Attributes only works in EasyETL. In the full IBM Security Directory
Integrator Workbench you must prefix an Attribute name with the Entry object carrying it - for example the Work Entry (work).
As a result, the above example would look like this:

return work.First + " " + work.Last

The Work Entry and other IBM Security Directory Integrator concepts are discussed in the first section of this document.

Figure 98. Enabling Transformation

Appendix. EasyETL Guide 95

There is an Evaluate button in the Transformation Script editor dialog for testing
the script, along with one for bringing up some JavaScript tips and examples.

Press Evaluate now to get an idea how your Transformation works.

The Output value shown was computed using data that you collected when you
ran your AssemblyLine. Close the evaluation results dialog by pressing OK.

Now press OK now to accept this script and close the Transformation Script editor
and re-run your EasyETL AssemblyLine by pressing Run and then viewing
collected entries. Notice how the Data Collector now gives you two Component
Collections to choose from: Output and Input. Choose Output and see how your
Transformation script generated a ‘FullName' value for each entry.

Figure 99. Show Transformation script

Figure 100. Evaluate Expression

96 IBM Security Directory Integrator: Getting Started Guide

So now you know how to set up an Input Source and select the Attributes to
extract, as well as how to transform this data to fit your output needs. The next
step is selecting an Output target and driving the data there.

Selecting an output target

Select the File Connector for your Output target using the drop-down above the
Output View and have it write to a file called ‘Output.xml'45. Choose the XML
Parser and press OK. Note that you could use the Connect button to ensure that
the file path you entered is valid. However, there will be no data to discover –
unless of course you point your Connector at an existing XML file.

Once our Output is configured, run your ETL AssemblyLine again. Once
completed you can open the output file and verify the results.

45. If you do not enter a full path, or a relative one, then IBM Security Directory Integrator will base this from the Solution
Directory that you specified during installation.

Figure 101. Output collection with computed FullName Attribute

Appendix. EasyETL Guide 97

Your Output target could as easily have been a database table, just as your input
could be coming from a Lotus Notes application or LDAP directory. The steps you

Figure 102. XML Output

98 IBM Security Directory Integrator: Getting Started Guide

took to create this example ETL job are the same, regardless of the systems or data
stores you are working with.

Detecting Changes
IBM Security Directory Integrator provides a number of features for detecting
changes in input data. In addition to offering a set of Change Detection
Connectors, you also have the option of enabling the Delta Engine for your Input
source.

The Delta Engine takes snapshots of data as it's read and then compares these with
snapshots taken during the previous run to determine what has changed. Those
entries that are unchanged are skipped, and only modified entries are retrieved for
processing in your EasyETL AssemblyLine.

Press the Configure button for your Input source and then select the Delta tab.

You must first enable the Delta Engine by selecting the check box at the top of the
con-figuration panel. Then use the drop-down to select ‘First' as the Unique
Attribute Name46.

46. As you may have deduced, the Delta Engine uses one of your input attributes to uniquely identify snap-shots. If there is there
is no unique value available in the input data then you can specify multiple attributes that will be concatenated together to from
the snapshot id. You do this by typing in the names of multiple attributes separated by a plus symbol (+). For example: First +
Last

Figure 103. Delta configuration

Appendix. EasyETL Guide 99

There are several other parameters available here, some of which make more sense
when working in the standard IBM Security Directory Integrator Workbench and
not in EasyETL. For example, al-though an EasyETL AL can detect and transfer
new and modified entries, it will not handle deleting a row from a database or
entry in a directory. However, it will write this infor-mation to an Output target
like a File Connector with the LDIF Parser. LDIF files can contain change operation
tags, and some systems support LDIF import.

You can learn more about the full Delta Handling features of IBM Security
Directory Integrator here:

http://www.tdi-users.org/twiki/pub/Integrator/HowTo/
HowTo_SyncData_6.1.1070523.pdf

One change that you may wish to make is to the Commit parameter. This controls
when new and changed snapshots are committed to the IBM Security Directory
Integrator System Store database. By default this is set to ‘After every database
operation' and so occurs during the read phase.

However, if you wish to ensure that a change has been successfully transferred
before committing the snapshot, set this drop-down to ‘On end of AL cycle' instead
so that it happens after the Output target has been updated.

In order for the Delta Engine to do its work it needs a baseline snapshot set. You
create this by running your ETL job the first time after Delta has been enabled.
Once it has completed you will notice that the popup reports twice as many writes
occurring. This is because IBM Security Directory Integrator also counts the
snapshots being written to the System Store, so you get two writes for every entry
processed.

Try running your EasyETL AssemblyLine again and you will see that no entries
were written this time. The Delta Engine detected that input records were all
unchanged and skipped them.

Figure 104. All entries unchanged and skipped

100 IBM Security Directory Integrator: Getting Started Guide

http://www.tdi-users.org/twiki/pub/Integrator/HowTo/HowTo_SyncData_6.1.1070523.pdf
http://www.tdi-users.org/twiki/pub/Integrator/HowTo/HowTo_SyncData_6.1.1070523.pdf

As a final test, bring up the input CSV file and change any of the field values –
except for ‘Last'47. Save the change and then re-run your ETL job and you will see
that only modified entries are processed.

Configuring the output target for Updates

The current setup works fine for output to a file. However, if you were driving
these changes to a directory, RDBMS or similar data store then you will want to
add new data as well as updating existing records. In order for your EasyETL job
to do this you must first select which Output Attribute to use as the criteria for
locating the record to modify.

This is done by right-clicking on the Output Attribute you want and selecting the
Use as link criteria option.

Now when the Output Connector writes to the target, it first searches for a record
using the Link Criteria attribute specified. If no match is found then a new entry is
added. If the match was successful then this record is updated.

It's as simple as that: your ETL job has now been configured to provide ongoing
synchronization between your input source and output target.

Command line assets for running and scheduling your ETL job

Once your ETL AssemblyLine is ready for deployment you can right-click on the
Project in the Navigator and choose the Create files needed... option.

47. Since this is the attribute used to identify snapshots, any change to its value for an entry will cause it to appear as a new record
to the Delta Engine.

Figure 105. Selecting your link criteria

Appendix. EasyETL Guide 101

This brings up an Export Files dialog where to write this script/batch-file. Note
that it will be given the same name as the Project, so in the case of this tutorial
exercise running on Windows it will be called ‘CSV2XML.bat'. Executing your
EasyETL Project from the command line provides maximum performance for your
solution.

You will also get an XML file created in the same location. This is called an IBM
Security Directory Integrator Config file and contains the details of your EasyETL
AssemblyLine that the IBM Security Directory Integrator Server needs to run it. If
you open the generated script in a text editor you will see the one-liner needed to
start an IBM Security Directory Integrator Server, point it at a Config and then
specify the AssemblyLine to run. All you need to do now is set up a scheduled
task or cronjob to periodically invoke this script and your synchronization/
migration service will be in place.

Additional options

High Speed ETL

Although the Data Collector is a powerful tool, your ETL AssemblyLine
runs slower due to data collection and presentation on screen. If instead
you want your EasyETL AL to process as quickly as possible then you can
either select the Project and press the Run button at the top of the
Navigator, or right-click the Project and select the Run fast... option.

Figure 106. Creating command line assets to run the ETL job

102 IBM Security Directory Integrator: Getting Started Guide

Either option will open a console display where log messages from your
AssemblyLine will appear as your AL executes at top speed.

Note that the Run option in the Project context menu runs the ETL job
with data collection.

Filtering the input data set

Another powerful feature is the ability to control the contents of your
Input data set. This is available whenever your Input source is a database
or directory.

For example, select the ‘LDAP Connector' for input and take a look at the
configuration dialog for this component. Next to the Search Filter
parameter is a button labeled with three dots (...). This opens up the Link
Criteria editor where you can define search rules that will be applied to
build the result set for this Connector to read.

Figure 107. Running your ETL job at full speed

Appendix. EasyETL Guide 103

This same feature is available for the Database and JDBC Connectors,
where you'll find the (...) button next to the Select parameter.

Although you can enter the LDAP search syntax yourself directly in the
search parameter, this requires you to know the syntax for LDAP search
filters or JDBC Select statements. It is often simpler to express the selection
you want by using Link Criteria and letting the Connector deal with the
underlying syntax.

Taking your EasyETL AssemblyLine to the next level

Opening your ETL Project in the full-featured IBM Security Directory
Integrator AssemblyLine editor lets you to add custom logging and
auditing, error handling, failover logic, auto-reconnect, data augmentation
(joins) and much more to your migration or synchronization solution. You
do this by right-clicking a Project and choosing the Open with full
AssemblyLine editor option. You'll still be working in the EasyETL
Workbench, but you will be able to reach additional functionality available
to your AssemblyLine.

Figure 108. Defining Link Criteria for an Input Connector

104 IBM Security Directory Integrator: Getting Started Guide

If you find this to your liking and are ready to take the plunge then switch
to the Security Directory Integrator perspective (Windows > Open
Perspective > Security Directory Integrator) and starting working in the
full IBM Security Directory Integrator Workbench. Better yet - now that
you've mastered EasyETL, go back to section 1 and start digging into the
full power of IBM Security Directory Integrator.

Appendix. EasyETL Guide 105

106 IBM Security Directory Integrator: Getting Started Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law :

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2003, 2014 107

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to

108 IBM Security Directory Integrator: Getting Started Guide

IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM's application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information in softcopy form, the photographs and color
illustrations might not be displayed.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, Acrobat, PostScript and all Adobe-based trademarks are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
other countries, or both.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office
of Government Commerce, and is registered in the U.S. Patent and Trademark
Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 109

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are
trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

110 IBM Security Directory Integrator: Getting Started Guide

Index

A
accessibility ix
add 7
AMC 67
appender 79
AssemblyLine 6, 13, 27
Attribute 4
Attribute Map 6
Attribute mapping 13
availability 77, 80

B
beginning very basic solutions 3

C
commandline 67
Conn 6
connectivity 79
console 68

D
Data 4
data flow 6
debugger 83
Debugging 37
designing solutions 1, 3

E
education ix
Entry 4
Event 67
Event handling 69
Events 67
exceptions 80

F
fault-tolerance 77

G
Getting Started 7

H
hardening 77

I
IBM

Software Support ix
Support Assistant ix

IBM Security Directory Integrator
projects 1

inheritance 59
initialization error 79
Input Map 6
iterate 7

J
JavaScript 1
join 44

L
legibility 77
Link Criteria 62
Log output 27
log4j 79
logging 79
lookup 7
Lookup data 44
Lookup mode 62
Lookup Mode 55
lost connection 79

M
maintenance 77
match 62
missing data 30

N
Null behavior 30
Null values 30

O
Output Map 6

P
performance 81
problem-determination ix

R
re-use 77
respond 67
Run 27
Run errors 63

S
scaling 81
scheduler 68
scheduling 68

search 62
security 77
solutions using IBM Security Directory

Integrator 3
stepper 37

T
TINA 69
training ix
trigger 67
troubleshooting ix
tutorial files 1

V
Value 4

W
Web server 69

© Copyright IBM Corp. 2003, 2014 111

112 IBM Security Directory Integrator: Getting Started Guide

����

Printed in USA

GI11-9325-03

	Contents
	Figures
	About this publication
	Access to publications and terminology
	Accessibility
	Technical training
	Support information
	Statement of Good Security Practices

	Chapter 1. Introduction
	Simplify and solve
	Kernel/Component Architecture
	Entry-Attribute-value data model
	Data flows = AssemblyLines
	Getting Started

	Chapter 2. Introducing IBM Security Directory Integrator
	Creating your first AssemblyLine
	Running your Assemblyline
	Null Behavior: Dealing with missing Attributes/values
	Debugging your AssemblyLine
	Looking up data from a sequential source
	Using Lookup Mode
	Inheritance
	Lookup search rules = Link Criteria
	Deciphering Run errors

	Chapter 3. Event-driven integration
	Scheduling AssemblyLines
	Service request AssemblyLines

	Chapter 4. Hardening your Integration Solutions
	Legibility, re-use and configurability
	Logging and auditing
	Connectivity problems
	AssemblyLine availability
	Scaling and performance
	Monitoring
	The AssemblyLine Debugger

	Appendix. EasyETL Guide
	Creating a Project
	Detecting Changes

	Notices
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	V
	W

