
IBM Security Directory Integrator
Version 7.2.0.1

Users Guide

SC27-2706-03

���

IBM Security Directory Integrator
Version 7.2.0.1

Users Guide

SC27-2706-03

���

Note
Before using this information and the product it supports, read the general information under “Notices” on page 231.

Edition notice

Note: This edition applies to version 7.2.0.1 of IBM Security Directory Integrator licensed program (5724-K74) and
to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2003, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this publication v
Access to publications and terminology v
Accessibility vii
Technical training vii
Support information vii
Statement of Good Security Practices viii

Chapter 1. General Concepts. 1
The AssemblyLine 1

Connectors 4
Connector modes 6

Iterator mode 6
Lookup mode 8
AddOnly mode 9
Update mode 9
Delete mode 11
CallReply mode 12
Server mode 12
Delta mode 14
Link Criteria 19

Functions 21
Script Components 21
AttributeMaps 22
Null Behavior 23
Branch Components 25

Exiting a Branch (or Loop or the AL Flow) . . 28
Parsers 29

Character Encoding conversion 29
Accessing your own Java classes 29

Instantiating the classes using the Config
Editor 30
Runtime instantiation of the classes 30

AssemblyLine flow and Hooks 30
Handle termination and cleanup for critical
errors 34

Controlling the flow of an AssemblyLine . . . 34
Expressions 35

Expressions in component parameters 38
Expressions in LinkCriteria 39
Expressions in Branches, Loops and Switch/Case 40
Scripting with Expressions 40

The Entry object 41

Chapter 2. Scripting in IBM Security
Directory Integrator 43
Internal data model: Entries, Attributes and Values 44

Working with hierarchical Entry objects 46
Integrating scripting into your solution 57
Controlling execution with scripting 58

Using variables 58
Using properties 59

Control points for scripting 61
Scripting in an AssemblyLine 61

Script Component 61
AssemblyLine Hooks 61

Server Hooks 61
Calling Server Hooks from script 63

Accessing AL components inside the
AssemblyLine 64

AssemblyLine parameter passing 64
Task Call Block (TCB) 64

Basic Use 64
Starting an AssemblyLine with operations 65
Using an accumulator 65
Disabling AssemblyLine components . . . 66

Providing an Initial Work Entry (IWE) . . . 67
Scripting in a Connector 67
Setting internal parameters by scripting 68
Scripting in a Parser 68

Java + Script ≠ JavaScript 68
Data Representation 68
Ambiguous Function Calls 69
Char/String data in Java versus JavaScript
Strings 70
Variable scope and naming 71
Instantiating a Java class 72
Using binary values in scripting 72
Using date values in scripting 72
Using floating point values in scripting 73

Chapter 3. The Configuration Editor . . 75
The Project Model 75

The IBM Security Directory Integrator Servers
view. 76
The IBM Security Directory Integrator Project . . 77
Configuration Files 78
The Project Builder 79
Properties and substitution 80

The User Interface Model. 81
The User Interface 81

The Application Window 81
Servers view 84
The Expression Editor 86
The AssemblyLine Editor 88

AssemblyLine Options. 91
Component panels 97
User Documentation View 101
Run AssemblyLine window 103
Attribute Mapping and Schema 104

Input Attribute mapping 109
Output Attribute mapping 109

The Connector Editor. 110
Creating a Connector 111
Input and Output Attribute Maps 112
Hooks 112
Connection 113
Parser 114
Link Criteria. 114
Connection Errors 116
Delta 118

© Copyright IBM Corp. 2003, 2014 iii

Pool 119
Connector Inheritance 120

Server Editor 121
Schema Editor 122
Data Browser 122

Generic Data Browser 123
Stream Data Browser 125
JDBC Data Browser 125
LDAP Data Browser 127

Forms Editor 129
Wizards 133

Import Configuration Wizard 134
New Component Wizard 136
Connector Configuration form characteristics 142

Running and Debugging AssemblyLines . . . 144
AssemblyLine Reports 144
Running the AssemblyLine 146
The stepper and debugger 148
Server Debugging 155
Run Options. 156
Choosing the Server 157

Team Support 158
Sharing a project 159
Using a shared project 161

The Problems View 162
JavaScript Enhancements 163

Code Completion 163
Syntax Coloring 165
Syntax Checking 165
Local Evaluation 166
External Editors 166

Solution Logging and Settings 167
System Store settings 168
Logging 170
Tombstones 170
Java Libraries 170
AutoStart. 171
Solution Interface settings 171

Server Properties 173
Inheritance 174
Actions and Key Bindings 175

Chapter 4. Debugging features in IBM
Security Directory Integrator 179
Sandbox 179

Recording AssemblyLine input 180
Sandbox playback of AssemblyLine recordings 180

AssemblyLine Simulation Mode 181
Proxy AssemblyLine workflow 184
Simulation script workflow. 186

Chapter 5. Easy ETL 187

Chapter 6. System Store. 193
User Property Store 193
Delta Store 194

Store Factory methods 194
Property Store methods 196
UserFunctions (system object) methods 196

Chapter 7. Deltas 199
Delta Features 199

Delta Entry 200
Producing Delta Entries 202

Delta feature for Iterator mode 202
Change Detection Connectors 208

Consuming Delta Entries 209
Delta Mode Connectors 209
Update Mode and Delta Entries 210

Examples 210

Chapter 8. IBM Security Directory
Integrator Dashboard 215
Accessing Dashboard application 215

Opening from a browser 216
Opening from the Windows Start menu . . . 216
Internet Explorer settings for remote access . . 217

Uploading a data integration solution 218
Creating a data integration solution 218
Solution Configuration 219

Adding solution description 219
Configuring an AssemblyLine schedule. . . . 220

Creating a schedule 220
Deleting a schedule 220
Running and stopping Dashboard Scheduler 220

Configuring a connector 221
Modifying connection details 221
Modifying attribute mapping 221

Dashboard EasyETL 221
Configuring EasyETL solutions 222

Server Configuration 223
Configuring log settings 223
Configuring tombstones 224
Configuring Dashboard security settings . . . 224
Viewing installed components 224
Viewing system store data 225

Dashboard RunReports 225
Creating RunReports 225

Creating and scheduling a RunReport . . . 225
Deleting a schedule 226
Running and stopping RunReport Scheduler 226

Configuring and browsing connector data 227
Solution Monitor 227

Starting and stopping the AssemblyLines . . . 227
Viewing AssemblyLine execution history . . . 228
Viewing tombstone records 228
Viewing log files 228

Notices 231

Index 235

iv IBM Security Directory Integrator: Users Guide

About this publication

This publication contains the information that you require to develop solutions by
using components that are part of IBM® Security Directory Integrator.

IBM Security Directory Integrator components are designed for network
administrators who are responsible for maintaining user directories and other
resources. It is assumed that you have practical experience with installation and
usage of both IBM Security Directory Integrator and IBM Security Directory Server.

The information is also intended for users who are responsible for the
development, installation, and administration of solutions by usingIBM Security
Directory Integrator. The reader must familiar with the concepts and the
administration of the systems that the developed solution would connect to.
Depending on the solution, these systems might include, but are not limited to,
one or more of the following products, systems, and concepts:
v IBM Security Directory Server
v IBM Security Identity Manager
v IBM Java™ runtime environment (JRE) or Oracle Java runtime environment
v Microsoft Active Directory
v Windows and UNIX operating systems
v Security management
v Internet protocols, including HyperText Transfer Protocol (HTTP), HyperText

Transfer Protocol Secure (HTTPS) and Transmission Control Protocol/Internet
Protocol (TCP/IP)

v Lightweight Directory Access Protocol (LDAP) and directory services
v A supported user registry
v Authentication and authorization concepts
v SAP ABAP Application Server

Access to publications and terminology
Read the descriptions of the IBM Security Directory Integrator Version 7.2.0.1
library and the related publications that you can access online.

This section provides:
v A list of publications in the “IBM Security Directory Integrator library.”
v Links to “Online publications” on page vi.
v A link to the “IBM Terminology website” on page vii.

IBM Security Directory Integrator library

The following documents are available in the IBM Security Directory Integrator
library:
v IBM Security Directory Integrator Version 7.2.0.1 Federated Directory Server

Administration Guide

Contains information about using the Federated Directory Server console to
design, implement, and administer data integration solutions. Also contains

© Copyright IBM Corp. 2003, 2014 v

information about using the System for Cross-Domain Identity Management
(SCIM) protocol and interface for identity management.

v IBM Security Directory Integrator Version 7.2.0.1 Getting Started Guide

Contains a brief tutorial and introduction to IBM Security Directory Integrator.
Includes examples to create interaction and hands-on learning of IBM Security
Directory Integrator.

v IBM Security Directory Integrator Version 7.2.0.1 Users Guide

Contains information about using IBM Security Directory Integrator. Contains
instructions for designing solutions using the Security Directory Integrator
designer tool (the Configuration Editor) or running the ready-made solutions
from the command line. Also provides information about interfaces, concepts
and AssemblyLine creation.

v IBM Security Directory Integrator Version 7.2.0.1 Installation and Administrator Guide

Includes complete information about installing, migrating from a previous
version, configuring the logging functionality, and the security model underlying
the Remote Server API of IBM Security Directory Integrator. Contains
information on how to deploy and manage solutions.

v IBM Security Directory Integrator Version 7.2.0.1 Reference Guide

Contains detailed information about the individual components of IBM Security
Directory Integrator: Connectors, Function Components, Parsers, Objects and so
forth – the building blocks of the AssemblyLine.

v IBM Security Directory Integrator Version 7.2.0.1 Problem Determination Guide

Provides information about IBM Security Directory Integrator tools, resources,
and techniques that can aid in the identification and resolution of problems.

v IBM Security Directory Integrator Version 7.2.0.1 Message Guide

Provides a list of all informational, warning and error messages associated with
the IBM Security Directory Integrator.

v IBM Security Directory Integrator Version 7.2.0.1 Password Synchronization Plug-ins
Guide

Includes complete information for installing and configuring each of the five
IBM Password Synchronization Plug-ins: Windows Password Synchronizer, Sun
Directory Server Password Synchronizer, IBM Security Directory Server
Password Synchronizer, Domino® Password Synchronizer and Password
Synchronizer for UNIX and Linux. Also provides configuration instructions for
the LDAP Password Store and JMS Password Store.

v IBM Security Directory Integrator Version 7.2.0.1 Release Notes

Describes new features and late-breaking information about IBM Security
Directory Integrator that did not get included in the documentation.

Online publications

IBM posts product publications when the product is released and when the
publications are updated at the following locations:

IBM Security Directory Integrator Library
The product documentation site (http://www-01.ibm.com/support/
knowledgecenter/SSCQGF/welcome) displays the welcome page and
navigation for this library.

IBM Security Systems Documentation Central
IBM Security Systems Documentation Central provides an alphabetical list
of all IBM Security Systems product libraries and links to the online
documentation for specific versions of each product.

vi IBM Security Directory Integrator: Users Guide

http://www-01.ibm.com/support/knowledgecenter/SSCQGF/welcome
http://www-01.ibm.com/support/knowledgecenter/SSCQGF/welcome
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/IBM%20Security%20Systems%20Documentation%20Central/page/Welcome

IBM Publications Center
The IBM Publications Center site (http://www-05.ibm.com/e-business/
linkweb/publications/servlet/pbi.wss) offers customized search functions
to help you find all the IBM publications you need.

Related information

Information related to IBM Security Directory Integrator is available at the
following locations:
v IBM Security Directory Integrator uses the JNDI client from Oracle. For

information about the JNDI client, see the Java Naming and Directory Interface™

Specification at http://download.oracle.com/javase/7/docs/technotes/guides/
jndi/index.html .

v Information that might help to answer your questions related to IBM Security
Directory Integrator can be found at https://www-947.ibm.com/support/entry/
myportal/over-accesspubsview/software/security_systems/
tivoli_directory_integrator.

IBM Terminology website

The IBM Terminology website consolidates terminology for product libraries in one
location. You can access the Terminology website at http://www.ibm.com/
software/globalization/terminology.

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully. With this product,
you can use assistive technologies to hear and navigate the interface. You can also
use the keyboard instead of the mouse to operate all features of the graphical user
interface.

For additional information, see the Accessibility Appendix in Configuring Directory
Integrator.

Technical training
For technical training information, see the following IBM Education website at
http://www.ibm.com/software/tivoli/education.

Support information
IBM Support provides assistance with code-related problems and routine, short
duration installation or usage questions. You can directly access the IBM Software
Support site at http://www.ibm.com/software/support/probsub.html.

Troubleshooting provides details about:
v What information to collect before contacting IBM Support.
v The various methods for contacting IBM Support.
v How to use IBM Support Assistant.
v Instructions and problem-determination resources to isolate and fix the problem

yourself.

About this publication vii

 http://www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
 http://www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://download.oracle.com/javase/7/docs/technotes/guides/jndi/index.html
http://download.oracle.com/javase/7/docs/technotes/guides/jndi/index.html
https://www-947.ibm.com/support/entry/myportal/over-accesspubsview/software/security_systems/tivoli_directory_integrator
https://www-947.ibm.com/support/entry/myportal/over-accesspubsview/software/security_systems/tivoli_directory_integrator
https://www-947.ibm.com/support/entry/myportal/over-accesspubsview/software/security_systems/tivoli_directory_integrator
http://www.ibm.com/software/globalization/terminology
http://www.ibm.com/software/globalization/terminology
http://www.ibm.com/software/tivoli/education
http://www.ibm.com/software/support/probsub.html

Statement of Good Security Practices
IT system security involves protecting systems and information through
prevention, detection and response to improper access from within and outside
your enterprise. Improper access can result in information being altered, destroyed,
misappropriated or misused or can result in damage to or misuse of your systems,
including for use in attacks on others. No IT system or product should be
considered completely secure and no single product, service or security measure
can be completely effective in preventing improper use or access. IBM systems,
products and services are designed to be part of a comprehensive security
approach, which will necessarily involve additional operational procedures, and
may require other systems, products or services to be most effective. IBM DOES
NOT WARRANT THAT ANY SYSTEMS, PRODUCTS OR SERVICES ARE
IMMUNE FROM, OR WILL MAKE YOUR ENTERPRISE IMMUNE FROM, THE
MALICIOUS OR ILLEGAL CONDUCT OF ANY PARTY.

viii IBM Security Directory Integrator: Users Guide

Chapter 1. General Concepts

This section introduces some of the basic concepts in IBM Security Directory
Integrator, along with those elements of the architecture that allow you to build
your solutions, their characteristics and behaviors.

The AssemblyLine
An AssemblyLine (AL) is a set of components strung together to move and
transform data; it describes the "route" along which the data will pass. The data
that is been handled through that journey is represented as an Entry object. The
AssemblyLine works with a single entry at a time on each cycle of the
AssemblyLine. It is the unit of work in IBM Security Directory Integrator and
typically represents a flow of information from one or more data sources to one or
more targets.

Overview

Some of the components that comprise the AssemblyLine retrieve data from one or
more connected systems—data obtained this way is said to "feed" the AL. Data to be
processed is fed into the AL one Entry at a time, where these Entries carry
Attributes with values coming from directory entries, database rows, e-mails, Lotus®

Notes® documents, records or similar data objects. Each entry carries Attributes that
hold the data values read from fields or columns in the source system. These
Attributes are renamed, reformatted or computed as processing flows from one
component to the next in the AL. New information can be "joined" from other
sources and all or parts of the transformed data can be written to target stores or
sent to target systems as desired. This can be illustrated thus:

In this diagram, picture the collection of large jigsaw puzzle pieces as the
AssemblyLine, the leftmost blue dots and squares in the grey stream entering from
below as raw data from an input stream, and the purple bits on the top right as
data output on an output stream. The darker orange element intersecting a jigsaw
piece with the bucket in it denotes a Parser, turning raw data into structured data,

© Copyright IBM Corp. 2003, 2014 1

which then can start travelling down the AssemblyLine (as lighter-colored elements
in a bucket). The middle jigsaw piece pictures a Connector reading
already-structured data from for example a database.

Data enters the AssemblyLine from connected systems using “Connectors” on page
4 in some sort of input Mode, and is output later to one or more connected systems
using Connectors in some output Mode.

Data can either be read from record-oriented systems like a database or a message
queue: in this case the various columns in the input are readily mapped into
Attributes in the resulting work Entry, which is depicted as a "bucket" in the
puzzle piece on the left. Or, data can be read from a data stream, like a text file in
a filesystem, a network connection, and so forth. In this case, a Parser can be
prefixed to the Connector, in order to make sense of the input stream, and cut it
up into pieces after which it can be assigned to Attributes in the work Entry.

Once the first Connector has done its work, the bucket of information (the "work
Entry", called, appropriately, work) is passed along the AssemblyLine to the next
Component—in the illustration, another Connector. Since the data from the first
Connector is available, it can now be used as key information to retrieve, or
lookup data in the second connected system. Once the relevant data is found, it
can be merged into work, complementing the data that is still around from the first
Connector.

Finally, the merged data is passed along the AssemblyLine to the third puzzle
piece or Connector this time in some output Mode, which takes care of outputting
the data to the connected system. If the connected system is record-oriented the
various Attributes in work are just mapped to columns in the record; if the
connected system is stream-oriented, a Parser can do the necessary formatting.

Other components, like “Script Components” on page 21 and “Functions” on page
21, can be inserted at will in the AssemblyLine to perform operations on the data
in work.

It is important to keep in mind that the AssemblyLine is designed and optimized
for working with one item at a time. However, if you want to do multiple updates
or multiple deletes (for example, processing more than a single item at the time)
then you must write AssemblyLine scripts to do this. If necessary, this kind of
processing can be implemented using JavaScript, Java libraries and standard IBM
Security Directory Integrator functionality, such as pooling the data to a sorted
data store, for example with the JDBC Connector, and then reading it back and
processing it with a second AssemblyLine.

AssemblyLines are built, configured and tested using the IBM Security Directory
Integrator Config Editor (CE), see Chapter 3, “The Configuration Editor,” on page
75 for more information. The AssemblyLine has a Data Flow tab in the Config
Editor. This is where the list of components that make up this AL are kept.

All components in an AL are automatically registered as script variables. So if you
have a Connector called ReadHRdump then you can access it and its methods
directly from script using the ReadHRdump variable. As a result, you will want to
name your AL components as you would script variables: Use alphanumeric
characters only, do not start the name with a number, and do not use special
national characters (for example, å, ä), separators (apart from underscore '_'), white
space, and so forth.

2 IBM Security Directory Integrator: Users Guide

There is always an alternative method for accessing an AL component (for
example, the task.getConnector() function) but a conscious naming convention is
always advisable.

Starting an AssemblyLine in IBM Security Directory Integrator is a fairly costly
operation, as it involves the creation of a new Java thread and usually sets up
connections to one or more data sources. Consider carefully if your solution design
could be made to work with fewer, rather than more, distinct AssemblyLines,
where each AssemblyLine does more work; for example, by using Branches or
Switches to define multiple operations handled by a single AL. Note that each
operation can still be implemented as a separate AssemblyLine, but these can be
embedded "hot-and-ready" into a single AL that dispatches work to them by using
the AL Connector or AL Function. This also allows you to leverage features like
Global Connector Pools to manage resource usage and boost performance and
scalability.

Components

AssemblyLines can include the following components:
v “Connectors” on page 4
v “Functions” on page 21
v “Script Components” on page 21
v “AttributeMaps” on page 22
v “Branch Components” on page 25

Additionally, Connectors can have “Parsers” on page 29 configured; also, at
System, Config, AssemblyLine, Attribute map and Attribute level there are options
to configure“Null Behavior” on page 23.

Accessing AL components inside the AssemblyLine

Each AL component is available as a pre-registered script variable with the name
you chose for the component.

Note that you can dynamically load components with scripted calls to functions
like system.getConnector(), although this is not for inexperienced users.1

AssemblyLine parameter passing

There are three ways for data to get into an AssemblyLine:
v Generating your own initial entry inside the AssemblyLine; for example, in a

Prolog script.
v Fed from one or more Iterators2.
v Starting the AssemblyLine with parameters from another AssemblyLine using

the AL Connector or AL Function Component, or using an API call.

1. The Connector object you get from this call is a Connector Interface object, and is the data source specific part of an AssemblyLine
Connector. When you change the type of any Connector, you are actually swapping out its data source intelligence (the Connector
Interface) which provides the functionality for accessing data on a specific system, service or data store. Most of the functionality
of an AssemblyLine Connector, including the attribute maps, Link Criteria and Hooks, is provided by the kernel and is kept intact
when you switch Connector types.

2. An Iterator is a shorthand notation of a Connector in Iterator Mode.

Chapter 1. General Concepts 3

If you want to start an AssemblyLine with parameters from another AssemblyLine,
then you have a couple of options:
v Use the Task Call Block (TCB), which is the preferred method. See “Task Call

Block (TCB)” on page 64 for more information. This section also discusses
techniques for dynamically disabling and enabling AssemblyLine components.

v Provide an Initial Work Entry directly; refer to “Providing an Initial Work Entry
(IWE)” on page 7 for details.

Note: These options are provided for compatibility with earlier versions.

Connectors
Connectors are used to access and update information sources. The job of a
Connector is to level the playing field so that you do not have to deal with the
technical details of working with various data stores, systems, services or
transports. As such, each type of Connector is designed to use a specific protocol
or API, handling the details of data source access so that you can concentrate on
the data manipulations and relationships, as well as custom processing like
filtering and consistency control.

Overview

Connectors are used to abstract away the details of some system or store, giving
you the same set of access features. This lets you work with a broad range of
disparate technologies and formats in a consistent and predictable way. A typical
AssemblyLine (AL) has one Connector providing input and at least one Connector
writing out data.

There are two categories of Connectors:
v The first category is where both the transport and the structure of data content

is known to the Connector; that is, the schema of the data source can be queried
or detected using a well known API such as JDBC or LDAP.

v The second category is where the transport mechanism is known, but not the
content structuring—which typically looks like a stream of data. This category
requires a Parser (see “Parsers” on page 29 and the "Parsers" section in Reference)
to interpret or generate the content structure in order for the AssemblyLine to
function properly.

A rich Connector library is one of the strengths of IBM Security Directory
Integrator. The list of all Connectors included with IBM Security Directory
Integrator can be found in the Reference. But you can also write your own
Connector in JavaScript or even Java; see "Implementing your own Components",
Reference.

Each Connector is designed for a specific protocol, API or transport and handles
marshalling data between the native type of the connected system and Java objects.
Unlike the other components, Connectors have a Mode setting that determines
how this Connector accesses its connected system; see “Connector modes” on page
6 for more information. Each Connector supports only a subset of modes that are
suited for its connected system. For example, the File System Connector supports
only a single output mode, AddOnly, and not Update, Delete or CallReply. When
you use a Connector, you must first consult the documentation for this component
for a list of supported modes.

4 IBM Security Directory Integrator: Users Guide

Note: AssemblyLines can consist of as many, or as few, Connectors (and other
Components) as required to implement your specific Data Flow. There is no
limitation in the system. However, best practice is to keep an AssemblyLine as
simple as possible in order to maximize maintainability.

When you select a Connector for your AssemblyLine, a dialog box is displayed
enabling you to choose the type of Connector you want to inherit from. Inheritance
is an important concept when working with IBM Security Directory Integrator
because all the components you include in solutions inherit some or all of their
characteristics from another component—either from one of the basic types, or
from your library of pre-configured components: Connectors, Parsers, Functions
and so forth in the Resources section of your workspace.

When used in an AL, Connectors provide an Initialize option to control when the
component is set up; for example, connections made, resources bound, and so
forth. By default, all Connectors initialize when the AssemblyLine starts up: the AL
Startup Phase.

Connectors in Server or Iterator mode feed the AssemblyLine, and are responsible
for feeding the AL with a new Work Entry for each cycle that the AL makes. The
Work Entry is passed from component to component in the Flow section, following
any Branching logic you've implemented, until the end of the Flow is reached. At
this point, end-of-cycle behavior begins, such as the Iterator getting the next entry
from its source and passing it to the Flow section for a new cycle.

While an Iterator in the Feeds section will actually drive the Flow, an Iterator in
the Flow section will simply get the next entry and offer its data Attributes for
Input Mapping into the Work Entry.

Note: You can put a Connector in Iterator Mode into the Flow section. As such,
the Iterator works in the same way as it would in the Feeds: it is initialized,
including building its result set with the selectEntries call, during AL startup and
retrieves one entry (getNextEntry) on each cycle of the AL. However, an Iterator in
the Flow section does not drive the AL itself, as it would in Feeds.

Feeds section behavior is different for Server and Iterator modes: An Iterator
expects to be the first component running in the AL, and it will only read its next
entry if the Work Entry does not already exist. If the AL is passed an Initial Work
Entry, then Iterators do not read any data for this first cycle. It also means that
Iterators run in a series, with the second one starting to return Entries once the
first one has reached end-of-data and returned nothing (null).

Server Mode, on the other hand, causes the Connector to launch a server listener
thread, for example, to an IP port or event-notification callback, and then pass
control to the next Feeds Connector.

When you call an AL using the AssemblyLine Function component (AL FC), if you
use the manual cycle mode then only the Flow section components are used each
time the FC performs the call.

There is a Connectors folder in your workspace in the IBM Security Directory
Integrator Navigator where you can maintain your library of configured
Connectors. This is also where Connector Pools are defined.

Chapter 1. General Concepts 5

Connector modes
The mode of an AssemblyLine Connector defines what role that Connector plays in
the data flow, and controls how the automated behavior of the AssemblyLine
drives the Component. It determines whether to read from an input source, write
to it or both.

Connectors can be set to one of these standard modes:
v Iterator
v Lookup
v AddOnly
v Update
v Delete
v CallReply
v Server
v Delta

These modes are discussed in the sections below. For a detailed description of
Connector mode behavior, as well as that of the AssemblyLine in general, see
"AssemblyLine and Connector mode flowcharts" in Reference.

Iterator mode:

Connectors in Iterator mode are used to scan a data source and extract its data.
The Connector in Iterator mode actually iterates through the data source entries,
reads their attribute values, and delivers each entry to the AssemblyLine Flow
section components, one at a time. A Connector in Iterator mode is commonly
referred to as an Iterator Connector, or just Iterator.

AssemblyLines (except those called with an IWE; see “Providing an Initial Work
Entry (IWE)” on page 7) typically contain at least one Connector in Iterator mode.
Iterators supply the AssemblyLine with data by building Work Entries and passing
these to the AL Flow section.

Flow section components are powered in order, starting at the top of the Flow list.
When Flow processing completes, control is passed back to the Iterator in order to
retrieve the next entry.

Multiple Iterators in an AssemblyLine: If you have more than one Connector in
Iterator mode, these Connectors are stacked in the order in which they appear in
the Config (and the Connector List in the Config Editor, in the Feeds section) and
are processed one at a time. So, if you are using two Iterators, the first one reads
from its data source, passing the resulting Work Entry to the first non-Iterator, until
it reaches the end of its data set. When the first Iterator has exhausted its input
source, the second Iterator starts reading in data.

An initial Work Entry is treated as coming from an invisible Iterator processed
before any other Iterators. This means an IWE is passed to the first non-Iterator in
the AssemblyLine, skipping all Iterators during the first cycle. This behavior is
visible on the AssemblyLine Flow page in "AssemblyLine and Connector mode
flowcharts" in Reference.

Assume you have an AssemblyLine with two Iterators, a preceding b. The first
Iterator, a, is used until a returns no more entries. Then the AssemblyLine switches

6 IBM Security Directory Integrator: Users Guide

to b, ignoring a. If an Initial Work Entry (IWE) is passed to this AssemblyLine,
then both Iterators are ignored for the first cycle, after which the AssemblyLine
starts calling a.

Sometimes the IWE is used to pass configuration parameters into an
AssemblyLine, but not data. However, the presence of an IWE causes Iterators in
the AssemblyLine to be skipped during the first cycle. If you do not want this to
happen, you must empty out the Work Entry object by calling the
task.setWork(null) function in a Prolog script. This causes the first Iterator to
operate normally.

Using the Iterator mode:

It is very common to have an Iterator drive the AssemblyLine.

The most common pattern for using a Connector in Iterator mode is:
1. Using the Config Editor, add a Connector in Iterator mode to your workspace.

See “Creating a Connector” on page 111.
2. Set the mode (Iterator) and other connection parameters for this Connector in

the Connection tab; required parameters are marked with an asterisk (*). Some
Connectors require you to configure a Parser as well in the Parser tab.

3. Set up the Attribute Map; see “Input Attribute mapping” on page 109.

These mapped Attributes are retrieved from the data source, placed in the Work
entry, and passed to the Connectors in the Flow section in the AssemblyLine.

If you did not create the Connector directly inside an AssemblyLine, then in order
to use this Connector in an AssemblyLine, drag the Connector from its location in
<workspace>/Resources/Connectors to the Feed section of an AssemblyLine.

Providing an Initial Work Entry (IWE): This is an alternative way of passing
parameters using a TCB and is supported for compatibility with earlier versions.

When an AssemblyLine is started with the system.startAL() call from a script, the
AssemblyLine can still be passed parameters by setting attribute or property values
in the Initial Work entry, which is accessed through the work variable. It is then
your job to apply these values to set Connector parameters; for example, in the
AssemblyLine Prolog – Init Hook using the connectorName.setParam() function.

Note: You must clear the Work entry with the task.setWork(null) call, otherwise
Iterators in the AssemblyLine pass through on the first cycle.

You can examine the result of the AssemblyLine, which is the Work Entry when
the AssemblyLine stops, by using the getResult() function. See also "Runtime
provided Connector" in Reference.

Below is an example of passing in a Connector parameter value with an IWE:
var entry = system.newEntry();
entry.setAttribute ("userNameForLookup", "John Doe");

// Here we start the AssemblyLine
var al = main.startAL ("EmailLookupAL", entry);

// wait for al to finish
al.join();

var result = al.getResult();

Chapter 1. General Concepts 7

// assume al sets the mail attribute in its working entry
task.logmsg ("Returned email = " + result.getString("mail"));

Lookup mode:

Lookup mode enables you to join data from different data sources using the
relationship between attributes in these systems. A Connector in Lookup mode is
often referred to as a Lookup Connector.

In order to set up a Lookup Connector in the Config Editor, you must tell the
Connector how you define a match between data already in the AssemblyLine and
that found in the connected system. This is called the Connector's Link Criteria, and
each Lookup Connector has an associated Link Criteria tab where you define the
rules for finding matching entries. See “Link Criteria” on page 19 for more
information.

Using the Lookup mode: The most common pattern for using a Connector in
Lookup mode is:
1. Using the Config Editor, add a Connector in Lookup mode to your workspace.

See “Creating a Connector” on page 111.
2. Set the mode (Lookup) and other connection parameters for this Connector in

the Connection tab; required parameters are marked with an asterisk (*). Some
Connectors require you to configure a Parser as well in the Parser tab.

3. Set up the Attribute Map; see “Input Attribute mapping” on page 109.
4. Open the Link Criteria tab on the Connector configuration window and set up

the rules for attribute matching. The outcome of this process will determine
which entries are retrieved from the connected system, and here you have a
couple of choices:
a. Click Add to add a new Link Criterion and select an attribute from the

connected system, the matching operator (for example, Equals, Begins With,
and so forth) and then the Work Entry attribute to be matched. When the
Connector performs the Lookup, it creates the underlying API or protocol
syntax based on the Link Criteria you have specified, keeping your solution
independent of the type of system used. You can add multiple Link Criteria,
which are connected by the Boolean operator AND, together to build the
search call.

b. You can also select Build criteria with custom script, which opens a script
editor window where you can create your own search string, passing this
back to the Connector using the ret.filter object. For example:
ret.filter = "uid=" + work.getString("uid");

Note that Expressions can also be used to dynamically specify the Attribute or
Value to use for any Link Criteria. See “Expressions” on page 35 for
information. Also see “Link Criteria” on page 19 for more details about Link
Criteria.

The attributes that you read (and compute) in the Input Map are available to other
downstream Connectors and script logic using the Work entry object.

If you did not create the Connector directly inside an AssemblyLine, then to use
the Connector in an AssemblyLine, drag it from its location in
<workspace>/Resources/Connectors to the Flow section of the AssemblyLine.

8 IBM Security Directory Integrator: Users Guide

AddOnly mode:

Connectors in AddOnly mode, commonly referred to as AddOnly Connectors, are
used for adding new data entries to a data source.

This Connector mode requires almost no configuration. Set the connection
parameters and then select (map) the attributes to write from the Work Entry.

Using the AddOnly mode: The most common and simple pattern for using a
Connector in AddOnly mode is:
1. Using the Config Editor, add a Connector in AddOnly mode to your

workspace. See “Creating a Connector” on page 111.
2. Set the mode (AddOnly) and other connection parameters for this Connector in

the Connection tab; required parameters are marked with an asterisk (*). Some
Connectors require you to configure a Parser as well in the Parser tab.

3. Set up the Attribute Map; see “Output Attribute mapping” on page 109.

If you did not create the Connector directly inside an AssemblyLine, then to use
the Connector in an AssemblyLine, drag it from its location in
<workspace>/Resources/Connectors to the Flow section of the AssemblyLine.

Work entry attributes you have mapped are output to the connected system when
the Connector is called by the AssemblyLine.

Update mode:

Connectors in Update mode, usually referred to as Update Connectors, are used
for adding and modifying data in a data source. For each entry passed from the
AssemblyLine, the Update Connector tries to locate a matching entry from the data
source to modify with the values of the entry attributes received. If no match is
found, the Update mode Connector will add a new entry.

As with Lookup Connectors, you must tell the Connector how you define a match
between data already in the AssemblyLine and that found in the connected system.
This is called the Connector's Link Criteria, and each Update Connector has an
associated Link Criteria (see “Link Criteria” on page 19) tab where you define the
rules for finding matching entries. If no such entry is found, a new entry is added
to the data source. However, if a matching entry is found, it is modified. If more
than one entry matches the Link Criteria, the Multiple Entries Found Hook is
called. Furthermore, the Output Map can be configured to specify which attributes
are to be used during an Add or Modify operation.

When doing a Modify operation, only those attributes that are marked as Modify
(Mod) in the Output Map are changed in the data source. If the entry passed from
the AssemblyLine does not have a value for one attribute, the Null Behavior for
that attribute becomes significant. If it is set to Delete, the attribute does not exist
in the modifying entry, thus the attribute cannot be changed in the data source. If
it is set to NULL, the attribute exists in the modifying entry, but with a null value,
which means that the attribute is deleted in the data source.

An important feature that Update Connectors offer is the Compute Changes
option. When turned on, the Connector first checks the new values against the old
ones and updates only if and where needed. Thus you can skip unnecessary
updates which can be valuable if the update operation is a heavy one for the
particular data source you are updating.

Chapter 1. General Concepts 9

Some Update Connectors offer the option to skip unneccessary lookups when
doing Updates. If the Connector supports it, you will see a Skip Lookup check box
next to the Compute Changes check box. When selected, it changes the behavior
of the Connector so that no lookup is performed to find an entry that corresponds
to the link criteria. For this reason no Before/After Lookup hooks are invoked.
Also the On Multiple Entries hook cannot be invoked. With this option turned on
only search criteria is built and modify is called directly. This differs from the
default connector behavior in Update mode because if no entry is found with the
link criteria it is not added as a new one.

Using the Update mode: The most common and simple pattern for using a
Connector in Update mode is:
1. Using the Config Editor, add a Connector in Update mode to your workspace.

See “Creating a Connector” on page 111.
2. Set the mode (Update) and other connection parameters for this Connector in

the Connection tab; required parameters are marked with an asterisk (*). Some
Connectors require you to configure a Parser as well in the Parser tab.

3. Set up the Attribute Map; see “Output Attribute mapping” on page 109.
4. Open the Link Criteria tab on the Connector configuration window and set up

the rules for attribute matching. Here you have a couple of choices:
a. Click Add to add a new Link Criterion and select an attribute from the

connected system, the matching operator (for example, Equals, Begins With,
and so forth) and then the Work entry attribute to be matched. When the
Connector performs the Lookup, it creates the underlying API or protocol
syntax based on the Link Criteria you have specified, keeping your solution
independent of the type of system used. You can add multiple Link Criteria,
which are connected by the Boolean operator AND, together to build the
search call.

b. You can also select Build criteria with custom script, which opens a script
editor window where you can create your own search string, passing this
back to the Connector using the ret.filter object. For example:
ret.filter = "uid=" + work.getString("uid");

Note that Expressions can also be used to dynamically specify the Attribute or
Value to use for any Link Criteria. See “Expressions” on page 35 for
information. Also see “Link Criteria” on page 19 for more details about Link
Criteria.

Entries with the Attributes you have selected to map on input are added in the
data source during the AssemblyLine's execution.

To use the Connector in an AssemblyLine, drag it from its location in
<workspace>/Resources/Connectors to the Flow section of an AssemblyLine. You
can now map Work entry attributes to the output by dragging attributes that were
mapped in previously, onto the Update Connector in the Attribute Maps window
of the AssemblyLine.

You can also create entirely new Attributes by right-clicking on the Connector in
this window, and selecting Add attribute map item.

Note: In Update mode, multiple entries can be updated. See "AssemblyLine and
Connector mode flowcharts" in Reference.

10 IBM Security Directory Integrator: Users Guide

Delete mode:

Connectors in Delete mode, often referred to as Delete Connectors are used for
deleting data from a data source.

For each entry passed to the Delete Connector, it tries to locate matching data in
the connected system. If a single matching entry is found, it is deleted, otherwise
the On No Match Hook is called if none were found, or the On Multiple Entries
hook is more than a single match was found. As with Lookup and Update modes,
Delete mode requires you to define rules for finding the matching entry for
deletion. This is configured in the Link Criteria tab of the Connector.

Some Delete Connectors offer the option to skip unneccessary lookups when doing
Deletes. If the Connector supports it, you will see a Skip Lookup check box next to
the Compute Changes check box. When selected, it changes the behavior of the
Connector so that no lookup is performed to find an entry that corresponds to the
link criteria. For this reason no Before/After Lookup hooks are invoked. Also the
On Multiple Entries hook cannot be invoked. With this option turned on only
search criteria are built and delete is called directly.

Using the Delete mode: The most common and simple pattern for using a
Connector in Delete mode is:
1. Using the Config Editor, add a Connector in Delete mode to your workspace.

See “Creating a Connector” on page 111.
2. Set the mode (Delete) and other connection parameters for this Connector in

the Connection tab; required parameters are marked with an asterisk (*). Some
Connectors require you to configure a Parser as well in the Parser tab.

3. Set up the Attribute Map; see “Input Attribute mapping” on page 109.
4. In the Input Attribute Map tab you can select attributes from the Connector

Attribute list and then drag them into your Input Map. You can also add and
remove attributes manually.

Note: The Input Map is used in Delete mode for reading the matching entry
found in the data source into the conn entry object, which can then be used in
your scripts (for example, to determine if the entry actually is to be deleted).

5. Open the Link Criteria tab on the Connector configuration window and set up
the rules for attribute matching. The outcome of this process will determine
which entries are retrieved from the connected system, and here you have a
couple of choices:
a. Click Add to add a new Link Criterion and select an attribute from the

connected system, the matching operator (for example, Equals, Begins With,
and so forth) and then the Work Entry attribute to be matched. When the
Connector performs the Lookup, it creates the underlying API or protocol
syntax based on the Link Criteria you have specified, keeping your solution
independent of the type of system used. You can add multiple Link Criteria,
which are connected by the Boolean operator AND, together to build the
search call.

b. You can also select Build criteria with custom script, which opens a script
editor window where you can create your own search string, passing this
back to the Connector using the ret.filter object. For example:
ret.filter = "uid=" + work.getString("uid");

See “Link Criteria” on page 19 for more information about Link Criteria.

Chapter 1. General Concepts 11

If you did not create the Connector directly inside an AssemblyLine, then to use
the Connector in an AssemblyLine, drag it from its location in
<workspace>/Resources/Connectors to the Flow section of the AssemblyLine.

CallReply mode:

CallReply mode is used to make requests to data source services, such as Web
services, that require you to send input parameters and receive a reply with return
values.

Unlike the other modes, the CallReply mode gives access to both Input and Output
Attribute Maps.

The Connector first performs an Output map operation, and in doing so calls an
external system, with parameters provided by the Output map operation. This is
immediately followed by an Input map operation, thus picking up the reply from
the external system.

Using the CallReply mode: The most common and simple pattern for using a
Connector in CallReply mode is:
1. Using the Config Editor, add a Connector in CallReply mode to your

workspace. See “Creating a Connector” on page 111. Very few Connectors
support this mode.

2. Set the mode (CallReply) and other connection parameters for this Connector in
the Connection tab; required parameters are marked with an asterisk (*). Some
Connectors require you to configure a Parser as well in the Parser tab.

3. Set up the Output Attribute Map; see “Output Attribute mapping” on page 109.
4. Set up the Input Attribute Map; see “Input Attribute mapping” on page 109.

Keep in mind that Attributes from the Output Map are supplied to the connected
system as input parameters; and Attributes mapped through the Input Attribute
map contain the reply from the connected system.

Server mode:

The Server mode, available in a select number of Connectors, is designed to
provide the functionality of waiting for an incoming event, dispatch a thread
dealing with the event, and send a reply back to the originator.

Currently, all Server Mode connectors are connection-based. As a result, any
AssemblyLine (AL) that uses a Server Mode Connector in its Feeds section will
initialize and then wait for an incoming connection (by means of a TCP, HTTP,
LDAP, Web Services, SNMP connection); when a connection is initiated, the Server
Mode connector clones the AL it is part of, and resumes waiting for the next event
(that is, a new connection initiation). In the cloned worker AL, meanwhile, the
Server Mode Connector places itself in Iterator mode, and starts reading data from
the connection. The data obtained from the connection is then fed to the rest of the
AL in normal Iterator fashion, including following the standard Iterator Hook flow,
reading the event entries one at a time and passing them to the other Flow
components for processing until there is no more data to read. At the end of each
cycle (often there will only be one) the AL headed by the Server Mode connector
sends a reply back to the client—unless you decide to skip the reply phase with,
for example, system.skipEntry();.

12 IBM Security Directory Integrator: Users Guide

Once the AL it feeds is complete (that is, the data source is exhausted) that thread
terminates; at this time, the worker AL is cleared away, and if necessary, the Pool
Manager is informed that this AL instance is available again.

The original Server Mode connector, meanwhile, is still actively listening for more
connection initiations.

Note: Under certain rare conditions, such as when you issue more than 5 client
requests to the server in parallel, primarily on the zOS operating system, SNMP
clients exit, giving bad Protocol Data Unit (PDU) exceptions. However, in a more
realistic real-life situation an agent like the SNMP Server Connector is rarely
queried intensely by multiple managers, like the SNMP Connector.

The SNMP Connector has an undocumented configuration parameter named
snmpWalkTimeout. You can override the default for this parameter, which is 5000
ms. The parameter is not accessible using the Config Editor. You can set the
override value for this parameter using JavaScript. Set the value you want for the
snmpWalkTimeout parameter in the following format:
thisConnector.connector.setParam("snmpWalkTimeout", "100000");

Server Mode and the ALPool: The process of creating a clone AL can be optimized
by using the AssemblyLine Pool (ALPool). On event detection, the Server mode
Connector either proceeds with the Flow section of this AL; or if an ALPool is
configured for this AL, then it contacts the Pool Manager process to request an
available AL instance to handle this event.

When an AssemblyLine with a Server mode Connector uses the ALPool, the
ALPool will execute AL instances from beginning to end. Before the AL instance in
the ALPool closes the Flow Connectors, the ALPool retrieves those Connectors into
a pooled connector set that will be reused in the next AL instance created by the
ALPool. In essence, the ALPool uses the tcb.setRuntimeConnector() method.

There are two system properties that govern the behavior of Connector pooling:

com.ibm.di.server.connectorpooltimeout
This property defines the timeout in seconds before a pooled connector set
is released.

Table 1. Connector Pool Timeout property Value table

Value Significance

< 0 Disable Connector pooling

0 Timeout disabled; pool Connectors never timeout

> 0 Number of seconds before pooled Connectors timeout

com.ibm.di.server.connectorpoolexclude
This property defines the Connector types that are excluded from pooling.
If a Connector's class name appears in this comma separated list it is not
included in the Connector pool set.

When a new AssemblyLine (AL) instance is created by the ALPool, it will look for
an available pooled connector set, which, if present, is provided to the new AL
Instance as runtime-provided connectors. This ensures proper flow of the AL in
general in terms of Attribute Mapping, Hook execution, and so forth.

Chapter 1. General Concepts 13

Connectors are never shared. They are only assigned to a single AL instance when
used.

Using the Server Mode: The most common pattern for using a Connector in Server
Mode is:
1. Using the Config Editor, add a Connector in Server mode to your workspace.

See “Creating a Connector” on page 111.
2. Set the mode (Server) and other connection parameters for this Connector in

the Connection tab; required parameters are marked with an asterisk (*). Some
Connectors require you to configure a Parser as well in the Parser tab.

3. Set up the Attribute Map; see “Input Attribute mapping” on page 109.

These mapped Attributes are retrieved from the data source, placed in the Work
entry, and passed to the Connectors in the Flow section in the AssemblyLine.

Note:

1. Server mode Connectors are special in that they usually need to return some
information to the client that connects to it. Due to this nature, setting up
Attribute Maps by clicking Discover Attributes will in many cases not result in
any meaningful Schema; therefore, you will in most cases need to set up
attribute maps completely by hand by selecting Add new attribute;
alternatively delete unneccessary ones by selecting a mapping and deleting it.
The data mapped out in this manner is sent back to the client, for each cycle of
the AL; though as mentioned before, in a typical request or response way of
operation there will often be only one cycle.

2. Server Mode Connectors based on TCP protocols have a parameter called
Connection Backlog that controls the queue length for incoming connections.

3. In the AssemblyLine component list you can observe sections called Feeds and
Flow. Server Mode Connectors observe a third phase in AssemblyLine
processing, the Response phase. The Output Map and Response Hooks are part
of the Server Mode Connector itself on screen, but the execution of response
behavior is done after Flow section processing is finished.
Note that a system.skipEntry(); call will instruct the AssemblyLine to skip
response behavior, and as such, no reply will be made by a Server Mode
Connector. If you would prefer to simply skip the remaining Flow section
components and yet send the response, use the system.exitBranch("Flow");
call instead.

If you did not create the Connector directly inside an AssemblyLine, then in order
to use this Connector in an AssemblyLine, drag the Connector from its location in
<workspace>/Resources/Connectors to the Feed section of an AssemblyLine.

Delta mode:

The Delta mode is designed to simplify the application of changes to data by
providing incremental modifications to the connected system, based on delta
operation codes.

Delta operation codes are set by either the Iterator Delta engine feature (Delta tab
for Iterators), or Change Detection Connectors like the IBM Security Directory
Server, LDAP, or Active Directory (AD) Connectors, or the ones for RDBMS and
Lotus Domino Changes; or by parsing this delta information with the Lightweight
Directory Interchange Format (LDIF) or Directory Services Markup Language
(DSML) Parsers.

14 IBM Security Directory Integrator: Users Guide

In versions earlier than IBM Security Directory Integrator V6.1, snapshots written
to the Delta Store, a feature of the System Store, during Delta engine processing
were committed immediately. As a result, the Delta engine would consider a
changed entry as handled even though processing the AL Flow section failed. This
limitation is addressed through the Commit parameter on the Connector Delta tab.
The setting of this parameter controls when the Delta engine commits snapshots
taken of incoming data to the System Store.

Delta mode is only available for LDAP and JDBC Connectors.

Note: A Connector in Delta mode must be paired with another Connector that
provides Delta information, otherwise the Delta mode has no delta operation codes
to work with.

The Delta features in IBM Security Directory Integrator (see Chapter 7, “Deltas,” on
page 199) are designed to facilitate synchronization solutions. You can look at the
Delta capabilities of the system as divided into two sections: Detection and
Application.

Delta Detection: IBM Security Directory Integrator provides a number of change, or
delta, detection mechanisms and tools:

Delta Engine
This is a feature available to Connectors in Iterator mode. If enabled from
the Iterator's Delta tab, the Delta engine feature uses the System Store to
take a snapshot of data being iterated. Then on successive runs, each entry
iterated is compared with the snapshot database (the Delta Store) to see
what has changed.

Change Detection Connector
These components leverage information in the connected system to detect
changes, and are either used in Iterator or Server Mode, depending on the
Connector. For example, Iterator mode is used for many of the Change
Detection Connectors, like those for LDAP, IBM Security Directory Server
Changelog, as well as the RDBMS, Active Directory and Notes/Domino
Change Detection Connectors.

The Change Detection Connectors have been designed to make them
behave in a common way, as well as to provide the same parameter labels
for common settings. The Connectors are:
v IBM Security Directory Server Changelog
v AD Change Detection (Active Directory)
v Domino Change Detection
v Sun Directory Change Detection (openLDAP, SunOne, iPlanet, and so

forth)
v RDBMS Change Detection (DB2®, Oracle, SQL server, and so forth)
v z/OS® LDAP Changelog

Note: The z/OS operating system is not supported in IBM Security
Directory Integrator Version 7.2 onwards.

See the "Connectors" section in the Reference for more information about
these Connectors.

The Delta engine feature reports specific changes all the way down to the
individual values of attributes. This fine degree of change detection is also

Chapter 1. General Concepts 15

available when parsing LDIF files. Others components are limited to simply
reporting if an entire entry is added, modified or deleted.

By selecting the Allow Duplicate Delta keys check box in the Iterator's Delta tab,
you indicate that you allow duplicate delta keys, for those cases of long running
AssemblyLines which need to process the same entries more than once. This
means that duplicate entries can be handled for AssemblyLines that use both
Changelog or Change Detection Connectors, Delta mode connectors and the Delta
mode stores, when an entry has already been updated.

Attention: There is a possibility to have, for example, an AssemblyLine with a
number of Changelog and Delta mode Connectors. In this case, if the Delta mode
Connector is pointing to the same underlying system as the Changelog Connector,
the Delta operation could trigger the Changelog again. As there is no way to
differentiate between newly-received changes and those triggered by the Delta
engine, you should carefully consider your scenario in order not to enter into an
endless loop.

The delta information computed by the Delta engine is stored in the Work Entry
object, and depending on the Change Detection component or feature used can be
stored as an Entry-Level operation code, at the Attribute-Level or even at the Attribute
Value-Level.

As an example, set up a File System Connector with the Delta engine feature
enabled. Have it iterate over a simple XML document that you can easily modify
in a text editor. For example:
<?xml version="1.0" encoding="UTF-8"?>
<DocRoot>

<Entry>
<Telephone>

<ValueTag>111-1111</ValueTag>
<ValueTag>222-2222</ValueTag>
<ValueTag>333-3333</ValueTag>

</Telephone>
<Birthdate>1958-12-24</Birthdate>
<Title>Full-Time SDI Specialist</Title>
<uid>jdoe</uid>
<FullName>John Doe</FullName>

</Entry>
</DocRoot>

Be sure to use the special map-all attribute map character, the asterisk (*). This is
the only Attribute you need in your map to ensure that all Attributes returned are
mapped in to the Work entry object.

Now add a Script Component with the following code:
// Get the names of all Attributes in work as a String array
var attName = work.getAttributeNames();
// Print the Entry-level delta op code
task.logmsg(" Entry (" +

work.getString("FullName") + ") : " +
work.getOperation());

// Loop through all the Attributes in work
for (i = 0; i < attName.length; i++) {

// Grab an Attribute and print the Attribute-level op code
att = work.getAttribute(attName[i]);
task.logmsg(" Att (" + attName[i] + ") : " + att.getOperation());
// Now loop through all the Attribute’s values and print their op codes
for (j = 0; j < att.size(); j++) {
task.logmsg(" Val (" +

16 IBM Security Directory Integrator: Users Guide

att.getValue(j) + ") : " +
att.getValueOperation(j));

}
}

The first time you run this AL, your Script Component code will create this log
output:
12:46:31 Entry (John Doe) : add
12:46:31 Att (Telephone) : replace
12:46:31 Val (111-1111) :
12:46:31 Val (222-2222) :
12:46:31 Val (333-3333) :
12:46:31 Att (Birthdate) : replace
12:46:31 Val (1958-12-24) :
12:46:31 Att (Title) : replace
12:46:31 Val (Full-Time SDI Specialist) :
12:46:31 Att (uid) : replace
12:46:31 Val (jdoe) :
12:46:31 Att (FullName) : replace
12:46:31 Val (John Doe) :

Since this entry was not found in the previously empty Delta Store, it is tagged at
the entry-level as new. Furthermore, each of its Attributes has a replace code,
meaning that all values have changed (which makes sense because the Delta is
telling us that this is new data).

Make the following changes to your XML file:
1. Change the last Telephone number value to 333-3334.
2. Delete Birthdate.
3. Add a new Address Attribute.

Your resulting Config should look like this:
<?xml version="1.0" encoding="UTF-8"?>
<DocRoot>

<Entry>
<Telephone>

<ValueTag>111-1111</ValueTag>
<ValueTag>222-2222</ValueTag>
<ValueTag>333-3334</ValueTag>

</Telephone>
<Title>Full-Time SDI Specialist</Title>
<uid>jdoe</uid>
<FullName>John Doe</FullName>
<Address>123 Willowby Lane</Address>

</Entry>
</DocRoot>

Run your AL again. This time your log output should look like this:
13:53:22 Entry (John Doe) : modify
13:53:22 Att (Telephone) : modify
13:53:22 Val (111-1111) : unchanged
13:53:22 Val (222-2222) : unchanged
13:53:22 Val (333-3334) : add
13:53:22 Val (333-3333) : delete
13:53:22 Att (Birthdate) : delete
13:53:22 Val (1958-12-24) : delete
13:53:22 Att (uid) : unchanged
13:53:22 Val (jdoe) : unchanged
13:53:22 Att (Title) : unchanged
13:53:22 Val (Full-Time SDI Specialist) : unchanged
13:53:22 Att (Address) : add

Chapter 1. General Concepts 17

13:53:22 Val (123 Willowby Lane) : add
13:53:22 Att (FullName) : unchanged
13:53:22 Val (John Doe) : unchanged

Now the entry is tagged as modify and the Attributes reflect what the modifications
for each of them. As you can see, the Birthdate Attribute is marked as delete and
Address as add. That's the reason you used the special map-all character for our
Input Map. If you had mapped only the Attributes that existed in the first version
of this XML document, we would not have retrieved Address when it appeared in
the input.

Note especially the last two value entries under the Telephone Attribute, marked
as modify. The change to one of the values of this Attribute resulted in two Delta
items: a value delete and then an add.

To build a data synchronization AssemblyLine in earlier versions of IBM Security
Directory Integrator, you had to script in order to handle flow control. Although
you could be receiving adds, modifies and deletes from your change component or
feature, a Connector could only be set to one of the two required output modes:
Update or Delete. So either you had two Connectors pointing to the same target
system and you put script in the Before Execute Hook of each to ignore the entry if
its operation code did not match the mode of this component; or you could have a
single Connector (either Update or Delete mode) in Passive state, and then control
its execution from script code where you checked the operation code. This still
meant that even though you knew what had changed in the case of a modified
entry, your Update Mode Connector would still read in the original data before
writing the changes back to the data source. This can lead to unwanted network or
datasource traffic when you are only changing a single value in a multi-valued
group-related Attribute containing thousands of values.

Enter the Connector Delta mode.

Delta Application (Connector Delta Mode): The Delta mode is designed to simplify
the application of delta information; that is, make the actual changes in a number
of ways.

Firstly, Delta mode handles all types of deltas: adds, modifies and deletes. This
reduces the number of data synchronization ALs to two Connectors: One Delta
Detection Connector in the Feeds section to pick up the changes, and a second one
in Delta mode to apply these changes to a target system.

Furthermore, Delta mode will apply the delta information at the lowest level
supported by the target system itself. This is done by first checking the Connector
Interface to see what level of incremental modification is supported by the data
source3. If you are working with an LDAP directory, then Delta mode will perform
Attribute value adds and deletes. In the context of a traditional RDBMS (JDBC),
then doing a delete and then an add of a column value does not make sense, so
this is handled as a value replacement for that Attribute.

This is dealt with automatically by the Delta mode for those data sources that
support this functionality4. If the data source offers optimized calls to handle
incremental modifications, and these are supported by the Connector Interface,

3. Note that the only Connectors that support incremental modifications are the LDAP and JDBC Connectors, since LDAP
directories provide this functionality.

4. Also, you can control these built-in behaviors through configuration parameters and Hook code.

18 IBM Security Directory Integrator: Users Guide

then Delta mode will use these. On the other hand, if the connected system does
not offer "intelligent" delta update mechanisms, Delta mode will simulate these as
much as possible, performing pre-update lookups (like Update mode), change
computations and subsequent application of the detected changes.

Link Criteria:

The Link Criteria is used to tell a Connector in Update, Lookup and Delete modes
how you define a match between data attributes in the AssemblyLine and those
found in the connected system.

The Link Criteria is accessible in the Config Editor through the Link Criteria tab,
which is only enabled for Update, Lookup and Delete Connector modes.

There are two types of Link Criteria, Simple and Advanced.

Simple Link Criteria: For each simple Link Criteria, specify the Connector Attribute
(those attributes defined in the Connector Schema), the Operator to use (for
example, Contains, Equals, and so forth), and the Value to use with the operation.
The value you use can be entered directly, or it can refer to the value of an
attribute in the Work entry that is available at this point in the AssemblyLine flow.
When the Connector performs the Lookup operation (for Lookup, Update and
Delete modes) it converts the Link Criteria to the data source-specific call, enabling
you to keep your solution independent of the underlying technology.

If you want to build a Link Criteria using the value of an attribute in the Work
entry, simply use the name of the attribute in the Value field of the Link Criteria,
preceded by the dollar sign ($). So, if you want to match the attribute named cn
with an attribute in the Work entry called FullName, your Link Criteria is specified
as:
cn EQUALS $FullName

If you want to find a specific person directly, set the Link Criteria with a literal
constant value:
cn EQUALS Joe Smith

Note: The dollar sign ($) matches the first value of a multi-valued attribute only.
If you want to match an attribute in the data source with any of the multiple
values stored in a Work entry attribute instead, then use the at symbol (@). For
example:
dn EQUALS @members

This example tries to match the dn attribute in the connected system to any one of
the values of the multi-valued attribute in the Work entry named members.

A Connector can have multiple Link Criteria defined, and these are normally
connected together, by use of the Boolean operator AND, to find the match.

However, if you click Match Any, just one of the Link Criteria needs to match, the
equivalent of an OR operation.

Note that the name of the Attribute to match can be specified as an Expression
(See “Expressions” on page 35 for details). The possible formats for the Value field
of a Simple Link Criteria are:

Chapter 1. General Concepts 19

A text string
Mapped to a constant with that value.

$Name
Corresponds to work.getString("Name"), that is the first value of the
attribute Name.

@Name
Matches one of the values of the multi-valued attribute Name.

An IBM Security Directory Integrator Expression
Described in detail here: “Expressions” on page 35.

Advanced Link Criteria: You can also create your own custom search criteria by
checking the Build criteria with custom script check box. This presents you with a
script editor to write your own Link Criteria expression. Not all Connectors
support the Advanced Link Criteria, and the Connector documentation states
whether Advanced Link Criteria is supported. See "Connectors" in Reference.

The search expression that you build must comply with the syntax expected by the
underlying system. In order to pass your search expression to the Connector, you
must populate the ret.filter object with your string expression.

A simple JavaScript example for an SQL Connector is:
ret.filter = " ID LIKE ’" + work.getString("Name") + "’";

This custom Link Criteria assumes an example where the data source has an
attribute called ID (typically a column name) that we want to match with the Name
attribute in the Work entry.

Note:

1. The first part of the SQL expression, Select * from Table Where, is provided
by IBM Security Directory Integrator.

2. Single quotation marks have been added because work.getString() returns a
string, while SQL syntax asks for single quotation marks around strings
constants.

3. The special syntax with $ and @ is not used here.

Link Criteria errors

The most common error you get when using Link Criteria is:
ERROR> AssemblyLine x failed because
No criteria can be built from input (no link criteria specified)

This error occurs when you have a Link Criteria that refers to an attribute that
cannot be found during the Lookup. For example, with the following Link Criteria:
uid equals $w_uid

Link Criteria setup fails if w_uid is not present in the Work entry. This might be
because it is not read from the input sources (for example, not in an Input Map, or
missing from the input source) or is removed from the Work entry in a script. In
other words, the function call work.getAttribute("w_uid") returns NULL.

One way to avoid this is to write code in the Before Execute Hook of the Lookup,
Delete, or Update mode Connector that skips its operation when the Link Criteria
cannot be resolved due to missing attributes. For example:

20 IBM Security Directory Integrator: Users Guide

if (work.getAttribute("w_uid") == null)
system.ignoreEntry();

Your business rules might require other processing, such as a skipEntry() call
instead of ignoreEntry(), which causes the AssemblyLine to stop processing the
current entry and begin from the top on a new iteration. The ignoreEntry()
function simply skips the current Connector and continues with the rest of the
AssemblyLine.

Functions
A Function, often referred to as a Function Component (FC), is a component much
like a Connector, except that it does not have a mode setting. Whereas Connectors
provide standard access verbs for connected systems (Lookup, Delete, Update, and
so forth), Functions on the other hand only perform a single operation, like
pushing data through a Parser, dispatching work to another AssemblyLine or
making a Web service call.

Overview

Functions can appear anywhere in the Flow section of an AL. The Functions
library folder in the Config browser can be used to manage your library of
Function Components.

Like Connectors, Functions in AssemblyLines provide an Initialize option to
determine when this component starts. By default, Functions initialize during AL
startup.

Script Components
The Script Component (SC) is a user-defined block of JavaScript code that you can
drop any place in the AssemblyLine data Flow list, alongside your Connectors and
Function Components, causing the script code within to be executed for each cycle
at this point in the AL workflow.

Overview

Unlike Hooks, Script Components are easily moved around in the AssemblyLine
flow, making them very powerful tools for everything from debugging to
prototyping and implementing your own flow logic. Also, unlike the other types of
AL components, the Script does not have any predefined behavior or mode; you
can implement behavior and mode with your script. A library of Scripts can be
stored under the Scripts library folder in the Config browser.

Usage

For example, if you want to test and debug only part of an AssemblyLine, you
could put the following code in an SC to limit and control AL flow.
task.dumpEntry(work);
system.skipEntry();

When placed at the appropriate point in the flow of an AssemblyLine, this SC then
displays the contents of the work object by writing it to log output and then skip
the rest of the AL for this cycle. By moving the SC up and down the component
list, you control how much of the AL is actually executed. If you swap out the
system.skipEntry() call with system.skipTo("ALComponentName"), you directly
pass control to a specific AL Component.

Chapter 1. General Concepts 21

You can also use SCs to drive other components. A typical scenario when doing
directory or database synchronization is having to handle both updated and
deleted information. Since Connectors powered by the built-in AL workflow can
only operate in one mode at a time (Update or Delete) you will need to extend this
logic a bit with your own code. One method is to add two Connectors, one in
Update mode and one in Delete mode, and then put code in the Before Execute
Hook in each Connector's to tell it to skip change operations that it should not
handle. For example, in the Before Execute Hook of the Update Connector you
would write something like this:
// The LDAP change log contains an attribute called "changeType"
if (work.getString("changeType").equals("delete"))
system.ignoreEntry();

This will cause your Update mode Connector to skip deleted Entries. You would
have complementary code in the Before Execute Hook of your Delete mode
Connector, skipping everything but deletes.

However, if you are synchronizing updates to multiple targets, this would require
you to have two Connectors per data source. Another approach is to have a single
Connector in Passive state that you power from script. As an example, let's say
you have a Passive AL Connector called synchIDS. You can then add an SC with
the following code to run it:5

if (work.getString("changeType").equals("delete"))
synchIDS.deleteEntry(work)
else

synchIDS.update(work);

As long as you label your SC clearly, indicating that it is running Passive
Connectors, this approach will result in shorter AssemblyLines that will be easier
to read and maintain. This is an example of having to choose between two best
practices: keeping the AL short, and using built-in logic versus custom script.
However, in this case the goals of legibility and simplicity are best served by
writing a little script.

The Script Component also comes in handy when you want to test logic and script
code. Just create an AssemblyLine with a single Script Component in the data Flow
list, put in your code and run it.

See Also

Chapter 2, “Scripting in IBM Security Directory Integrator,” on page 43.

AttributeMaps
Attribute Maps are pathways for data to flow into or out of the AssemblyLine.
Attribute Maps appear in Connectors and Functions as Input and Output Maps,
and are also available as stand-alone components in the AssemblyLine.

Overview

The diagram at the start of the section entitled “The AssemblyLine” on page 1
depicts three Attribute Maps as curved arrows: two Input Maps bringing data into
the AssemblyLine, as well as an Output Map passing data to the Connector's cache
(the Conn Entry) so it can be written.

5. Since Passive Connectors are not run by the AL logic, it does not matter where they appear in the Data Flow list.

22 IBM Security Directory Integrator: Users Guide

Each Attribute Map holds a list of rules that create Attributes in either the Work
Entry or the Conn Entry. A mapping rule specifies two things:
1. The name of the Attribute to be created (or overwritten) in the target Entry.

This is the Work Entry in the case of Input Maps and free-standing Attribute
Map components, while Output Maps target the Conn Entry.

2. The assignment used to populate the Attribute with one or more values. And
assignment can be either assignment script, for example:
work.Title

or it can be a literal text (including newline characters) with optional token
substitution:
<html>

<header>
<title>{work.Title}</title>

</header>
<body>

<p>Look for the "Title" Attribute value in the title of this page</p>
</body>

</html>

Attribute Maps are created using the Config Editor; see “Attribute Mapping and
Schema” on page 104.

Attribute Maps support inheritance, both at the Map level and for individual
mapping rules. Note that you can drag a Script onto an Attribute Map to set up an
inherited JavaScript mapping rule.

Attribute Maps also provide a functionality called “Null Behavior,” which is used
to control how missing data is handled.

See “Internal data model: Entries, Attributes and Values” on page 44 for some
more information on Attribute Maps.

Null Behavior
Occasionally, the system tries to map an attribute that is missing. For example, if
an optional telephone number is not present in the input data source, or an
attribute in an Output Map is removed from the Work entry. Other times although
an attribute is present, it has no values - like a nullable column in an database
table.

Different data sources treat missing values in different ways (null value, empty
string) and the feature described in this section provides a way of customizing
how missing attributes - or attribute values - are treated. This feature is called Null
Behavior and with it you can define both what a "null value" is as well as how it is
to be handled.

Note: The JDBC Connector has the jdbcExposeNullValues parameter setting,
enabling you to map null values to missing Attributes (see "JDBC Connector" in
Reference).

Null behavior can be specified at a number of levels: system, Config,
AssemblyLine, AttributeMap and Attribute. However, since Null Behavior is highly
data source-specific, it makes most sense to set this system property at the
Attribute map level (for example, for all Attributes handled by a Connector's Input
or Output Maps). These possible levels are described here in more detail:

Chapter 1. General Concepts 23

System level
Specifying system level Null Behavior is done in the global.properties file
by setting the rsadmin.attribute.nullBehavior and
rsadmin.attribute.nullDefinition properties, one of the values listed
later in this section.

Config level
This overrides System level Null Behavior, and is configured by setting the
rsadmin.attribute.nullBehavior or rsadmin.attribute.nullDefinition
properties in a Property Store to one of the following values listed later in
this section.

AssemblyLine level
AssemblyLine Null Behavior is specified in by clicking the Options...
button in the AssemblyLine toolbar, select AssemblyLine settings, and
click Null Value Behavior in the dialog box that comes up.

Attribute map level
Defining Null Behavior for all the Attributes in a map is done by clicking
the More... button above the attribute map list, and selecting Null
behavior.

Attribute level
Null Behavior can be configured for a specific attribute by right-clicking on
it in an attribute map and selecting Null behavior. When this has been
defined for an Attribute, then this is indicated by the presence of a blue
bullet symbol in the mapped item.

Null Behavior supports five different settings for defining what a null value is, as
shown below (Note that the text in parenthesis for each setting is the value used to
set the System-level Null Behavior definition, and is typically defined in the
Solution or Global Property Store). Each setting shows the actual property value in
parenthesis. Note that these definitions are listed in inclusive order, so that the
second case also includes the first one; the third one includes the first two; and so
forth:

Attribute is missing (AbsentAttribute)
The Attribute referenced as the source of value(s) in an attribute map is
missing.

Attribute with no values (EmptyAttribute)
The Attribute used as the source of value(s) in an Attribute is found, but
has no values. The previous case is also checked for.

Attribute contains an empty string value (EmptyString)
The Attribute is found, but has only a single string value.

Value (value)
The Attribute contains a specified value. For AssemblyLine, attribute map
and Attribute-level null value definition, this value is set in the Value field
of the Null Behavior dialog. Here you can specify multiple attribute values
if desired by placing values on separate lines. If you use
rsadmin.attribute.nullDefinition for system and Config level setting
then you must also set the rsadmin.attribute.nullDefinitionValue
property.

Note: Several enhancements have been made to the HTTP server
connector. TCP-based components, like the HTTP server Connector, have a

24 IBM Security Directory Integrator: Users Guide

switch in their Config screens for returning TCP headers as Attribute
values. When this flag is cleared, TCP headers are stored as properties in
the returned entry object.

Default Behavior (Default Behavior)
The null value definition must be inherited from a higher level. For
example, an Attribute inherits its null value definition from the attribute
map setting, which in turn inherits it from the AssemblyLine.

Note: Config level Null Behavior overrides any system level settings.
Furthermore, the Default Behavior setting at system level is the same as
specifying delete, while at Config level it is equivalent to value.

The Null Behavior feature also lets you define the action to be taken in case a null
value is detected:

Empty String (empty string)
Missing attributes are mapped with a single value which has an empty
String value ("").

Null (null)
Missing attributes are mapped with no values, meaning that the
att.getValue() call returns null.

Delete (delete)
The attribute is removed from the map.

Value (value)
Missing attributes are mapped with a specified value. For AssemblyLine,
attribute map and Attribute-level Null Behavior, the values are set in the
Value edit of the Null Behavior Dialog. Here you can specify multiple
attribute values if desired by placing values on separate lines. If you use
rsadmin.attribute.nullBehavior for system and Config level settings then
you must also set the rsadmin.attribute.nullBehaviorValue property.

Default Behavior (Default Behavior)
Null Behavior must be inherited from a higher level. For example,
Attribute level inherits from the AttributeMap, which in turn inherits from
the AssemblyLine setting.

Note: Config level Null Behavior overrides any system level settings.
Furthermore, the Default Behavior setting at system level is the same as
specifying delete, while at Config level this is equivalent to value.

Branch Components
Branch components affect the order in which the other components, such as,
Connectors, Scripts, Functions, AttributeMaps and other Branch components, are
executed in the Flow of the AssemblyLine.

Overview

Branch components come in three varieties:
v Simple (also called just Branch)
v Loops (Branches that loop)
v Switches (Branches that share the same expression)

Branches can appear anywhere in the Flow section, but there is no library folder
for them in the Resources section of your workspace.

Chapter 1. General Concepts 25

A Branch does not have to run to completion; the same script call is used to
programmatically exit any type of Branch: system.exitBranch(). See “Exiting a
Branch (or Loop or the AL Flow)” on page 28 for more information.

The three Branch component types are:

Branch

While each type of Branch lets you define alternate routes for
AssemblyLine processing, this simplest form determines the action in case:
"If this situation occurs, then take this action." You define what "situation
occurs" means by setting up Conditions that must be met; for example, by
comparing data values or checking the result of some operation. If the
conditions are true, the components attached under this Branch are
executed.

The Branch allows you to define Conditions based on any data in the IBM
Security Directory Integrator server: Attribute values, parameters settings,
externally accessible properties, and any information available using
JavaScript, such as operating system calls for disk or memory usage.
Multiple Conditions are ANDed or ORed, depending on the Match Any
check box setting.

This simplest form of Branch component also supports three subtype
settings, IF, ELSE-IF and ELSE, that you can select.

IF Can appear anywhere within the AssemblyLine Flow, the IF
Branch provides an alternative track for process to follow if
Conditions are true. Once the components under the Branch are
executed, control passes to the first component after this Branch. If
you do not want this to happen, you must either add an ELSE or
ELSE IF Branch, or exit the Branch with a scripted call to
system.exitBranch().

ELSE-IF
Identical to the IF Branch, except it can only appear immediately
following an IF or ELSE-IF Branch.

ELSE Can only appear immediately after an IF or ELSE-IF Branch, the
ELSE Branch has no Conditions. Its components are processed only
if no preceding IF or ELSE-IF Branch was true. Furthermore, the
ELSE instance always evaluate to true so there are no conditions
evaluated during the cycle.

As mentioned above, you can prematurely exit a Branch by means of
scripting, using system.exitBranch().

Loop

The Loop component provides functionality for adding cyclic logic within
an AssemblyLine. Loops can be configured for three modes of operation:
based on Conditions, based on a Connector or based on the values of an
Attribute:

Conditional
Just as with a simple Branch, you can define Conditions that
control Loop behavior. The Loop will continue to cycle as long as
the Conditions are met, and will stop as soon as they fail. The
details window for Loops is the same as for the simple Branches
described in the previous section.

26 IBM Security Directory Integrator: Users Guide

Connector
This method lets you set up a Connector in either Iterator or
Lookup mode, and will cycle through your Loop flow for each
entry returned. The details window of this type of Loop contains
the Connector tabs necessary to configure it, connect and discover
attributes and set up the Input Map.

Note that you have a parameter called Init Options with which
you can instruct the AL to either:
v Do Nothing means that the Connector will not be prepared in

any way between AL cycles.
v Initialize and Select/Lookup causes the Connector to be

re-initialized for each AL cycle.
v Select/Lookup Only keeps the Connector initialized, but redoes

either the Iterator select or the Lookup, depending on the Mode
setting.

Note also that there is a Connector Parameters tab, which
functions similarly to an Output Map in that you can select which
Connector parameters are to be set from work Attribute values.

This brings us to the topic of how Looping with an Iterator differs
from doing so based on Lookup mode. Both options perform
searches that create a result set returned for looping. For Iterator
mode, the result set is controlled exclusively by the parameter
settings of this component. Lookup mode, on the other hand, uses
Link Criteria to define search or match rules. Since it frees you
from having to code Hooks like On No Match or On Multiple
Found, this is the preferred way of doing searches that may not
always return one (and just one) matched entry.

Attribute Value
By selecting any Attribute available in the work Entry, the Loop
flow will be executed for each of its values. Each value is passed
into the Loop in a new Work Entry attribute named in the second
parameter. This option allows you to easily work with
multi-valued attributes, like group membership lists or e-mail.

You can prematurely exit a Loop by means of scripting, using
system.exitBranch().

Switch
Unlike expressions used in the Conditions of Branches and Loops, the
Switch expression can result in more values than just true or false. For
example, you could Switch on the value of an Attribute, or the operation
requested when this AL was called from another AssemblyLine or process.
Under the Switch component, you add a Case for each constant value of
the Switch expression that you want to handle. So for example, if you set
up the Switch to use the delta operation code in the Work Entry, your
Cases would be for values like "add", "delete" and "modify."

In an AL Switch-Case construct, multiple cases can be active at the same
time. IBM Security Directory Integrator checks each case, just as it would a
series of standard IF Branches. The following example shows how multiple
cases work:

Chapter 1. General Concepts 27

work.setAttribute("test","abc");

Switch work.test
Case startsWith("a"): this is true
Case contains ("bc"): this is true
Case length=3: this is true

The three Switch work.test expressions that are true will trigger Switch
execution.

You can prematurely exit a Switch-Case by means of scripting, using
system.exitBranch();.

Exiting a Branch (or Loop or the AL Flow)
If you want to exit a Branch, Loop, or Switch, or even built-in Branches like the AL
Flow section, you use the system.exitBranch() method from a place where you
can script, for example, a Hook, or even a Script Component. Calling
system.exitBranch() with no parameters (or with an empty string) will cause the
containing Branch to exit, and flow continues with the first component after the
Branch.

You can also provide the method with a string parameter containing either:

One of the reserved keywords: Branch, Loop, Flow, Cycle or AssemblyLine (case
insensitive)

This will break the first Branch of this type, tracing backwards up the
AssemblyLine. So if your script code is in a Branch within a Loop, and you
execute the call system.exitBranch("Loop"), you will exit both the Branch
and the Loop containing it. Using the reserved word Flow causes the flow
to exit the Flow section of the AssemblyLine, continuing either to the
response behavior in the case of a Server Mode Connector or to an active
Iterator to read in the next entry, or to AL shutdown (Epilogs, ...). The
Cycle keyword passes control to the end of the current AL cycle, and does
not invoke response behavior in Server Mode Connectors, while the
AssemblyLine keyword will cause the AL to stop and shutdown.

All other values used in the system.exitBranch() call cause a break out of
the branch/loop having the specified name. So, for example, the call
system.exitBranch("IF_LookupOk") sends the flow after the containing
Branch or Loop called “IF_LookupOk”. Note that unlike system.skipTo(),
which will pass control to any named AL component, system.exitBranch()
will cause processing to continue after the specified Loop/Branch.

The name of a Branch or Loop (case sensitive)
If you pass the name of a Branch or Loop in which your script call is
nested, then control will pass to the component following it in the AL. If
no Branch or Loop with this name is found, tracing backwards from the
point of the call, then an error results.

There is also a continue functionality in Loop Components. The following methods
are available in the system object:
system.continueLoop();
system.continueLoop(name);

where name is a case-sensitive string, indicating a Loop name. In the case where a
Loop name is provided, the program flow is transferred to the Loop Component
with that name.

28 IBM Security Directory Integrator: Users Guide

Parsers
Parsers are used in conjunction with a byte stream component, for example, a File
System Connector, to interpret or generate the structure of content being read or
written.

Note that when the byte stream you are trying to parse is not in harmony with the
chosen Parser, you get a sun.io.MalformedInputException. For example, this error
message can show up when using the Input Map tab to browse a file.

The Config Editor provides two places where you can select Parsers:
1. In the Parser tab of a byte stream Connector.
2. From your own scripts; for example, Hooks and script components.

For more information about individual Parsers, see "Parsers" in Reference.

Character Encoding conversion
Java2 uses Unicode as its internal character encoding. Unicode is a double byte
character set. When you work with strings and characters in AssemblyLines and
Connectors, they are always assumed to be in Unicode. Most Connectors provide
some means of character encoding conversion. When you read from text files on
the local system, Java2 has already established a default character encoding
conversion which is dependent on the platform you are running.

The IBM Security Directory Integrator server has the -n command-line option,
which specifies the character set of Config files it will use when writing new ones;
it also embeds this character set designator in the file so that it can correctly
interpret the file when reading it back in later.

However, occasionally you read or write data from or to text files in which
information is encoded in different character encodings. For example, Connectors
that require a Parser usually accept a Character Set parameter in the Parser
configuration. This parameter must be set to one of the accepted conversion tables
as specified by the IANA Charset Registry (http://www.iana.org/assignments/
character-sets).

Some files, when UTF-8, UTF-16 or UTF-32 encoded, may contain a Byte Order
Marker (BOM) at the beginning of the file. A BOM is the encoding of the
characters 0xFEFF. This can be used as a signature for the encoding used. However,
the IBM Security Directory Integrator File Connector does not recognize a BOM.

If you try to read a file with a BOM, you should add this code to for example, the
Before Selection Hook of the connector:

var bom = thisConnector.connector.getParser().getReader().read(); // skip the BOM = 65279

This code will read and skip the BOM, assuming that you have specified the
correct character set for the parser.

Some care must be taken with the HTTP protocol; see Reference, in the section
about character sets encoding in the description of the HTTP Parser for more
details.

Accessing your own Java classes
You can access your own custom Java classes from inside the IBM Security
Directory Integrator framework as long as the these are public classes and methods.
These libraries must be packaged into a .jar or .zip file, and then be placed in the

Chapter 1. General Concepts 29

http://www.iana.org/assignments/character-sets
http://www.iana.org/assignments/character-sets

TDI_install/jars directory, preferably in your own subdirectory. You can also use
the CLASSPATH environment variable or the Java runtime environment extension
folder, but both of these methods are discouraged. These methods let you call
classes from within your own classes only if the loader happens to load the classes
before your own.

If you are running the server from the Config Editor, you must restart the Config
Editor before it detects new classes in the TDI_install/jars directory and
subdirectories.

After putting the .jar files in the jars subdirectory, you can create an instance of the
class to refer to within the IBM Security Directory Integrator. Note that the Java
Function Component allows you to open .jar files, browse objects contained in
them as well as their methods. Once you have chosen the function to call, the FC
prepares your Input and Output schema to match the parameters needed by the
Java function.

For more information about calling Java classes from script, see “Instantiating a
Java class” on page 72.

Instantiating the classes using the Config Editor
Use the Java Libraries folder of the Solution Logging and Settings window in the
Config Editor to declare your classes. This works only if your class has a
no-argument constructor, which is usually but not always the default constructor.

When adding a class object click Add... and specify two parameters: the script
object name, that is, the name of the scripting variable that is an instance of your
Java class, and the Java class name. For example, you can have a Script Object
Name mycls while the Java Class might be my.java.classname. The mycls object will
be available for any AssemblyLines defined before the Global Prologs execute.

Note: Note that this causes your object to be instantiated for every AssemblyLine
run. If this is not desirable, and if you prefer to instantiate on demand, then see
the next section.

Runtime instantiation of the classes
If you want to instantiate your class at a specific point of execution or for the
classes without no-argument constructors, you need to instantiate the class during
run time. For example:
crytoLib = new com.acme.myCryptoLib();

AssemblyLine flow and Hooks
AssemblyLines provide built-in automated behavior that helps you rapidly build
and deploy your data flows. This automated behavior is detailed in the Flow
Diagrams in the Reference. In addition, Connectors and Functions have their own
behaviors and these are also shown in the Flow Diagrams. Note that Connector
behavior depends on the Mode setting.

Throughout these built-in logic flows are numerous waypoints where you can add
your own scripted logic to extend built-in behavior, or to override it completely.
These waypoints are called "Hooks" and are available for customizing under the
Hooks tab of all Connectors and Functions, as well as of the AssemblyLine itself.

30 IBM Security Directory Integrator: Users Guide

You can enable and disable Hooks according to whether a particular Hook is
applicable to the AssemblyLine you are running. When you disable a Hook, you
do not break its inheritance in the connector of which it is a part.

When an AssemblyLine is launched, it goes through three phases: Startup, Data
flow and Shutdown. During Startup, Prolog Hooks are available for reconfiguring
components before they are initialized. In the Data flow phase, each Work Entry
fed into the AssemblyLine is passed down the Flow components for processing.

Finally, during Shutdown, Epilog Hooks can be used to carry out end-of-job work,
like checking and reporting on error status, or storing state data for the next time
the AL is started.

Startup Phase
At this point the server is instructed to load and run an AssemblyLine. The
server uses the blueprint stored in the Config file to set up the AL. If a
TaskCallBlock (TCB) is passed into the AssemblyLine, then its contents are
evaluated (which can result in changes to AL component parameters). At
this point, Prolog Hook flows are initiated.

Global Prologs
First, if any Global Prologs are defined then these are evaluated.
Global Prologs are Scripts in the Resources folder in the Project
that have been included (in the Solution Logging and Settings
window) in the AssemblyLine. This is typically done in the
AssemblyLine Settings window of the AssemblyLine by selecting
the Scripts to run at AL startup. After all Global Prologs are
finished, the AL Prolog Hooks are called.

AL Prolog Hooks (Before Initialize)
First the AssemblyLine Prolog - Before Initialize Hook is invoked.
After this, all Connectors and Functions configured to Initialize "at
Startup" go through their initialization phase, which also invokes
their Prolog Hooks, as seen in the next point.

Connector/Function Initialization
The initialization sequence is performed for each Connector and
Function with Initialization set to "at Startup." These are started in
turn as defined by their order in the AssemblyLine. For each
Connector or Function the flow is as follows:
1. The Prolog – Before Initialize Hook of the component is called.
2. The component is started; for example, connecting to its

underlying data source, target or API.
3. For Connectors in Iterator mode, the Prolog – Before Selection

Hook is processed, and the Connector performs the entry
selection; this triggers a data source specific call, like
performing an SQL SELECT or an LDAP search.

4. For Iterators, the Prolog – After Selection Hook is evaluated.
5. The Prolog – After Initialize Hook is called, ending the

sequence.

If initialization fails for a Connector, then AssemblyLine flow
passes to the Prolog – On Error Hook where you can deal with
this error.

The Reconnect feature allows you to configure a Connector to
automatically attempt to re-establish its connection if an error

Chapter 1. General Concepts 31

occurs during setup or data access. These settings are found under
the Connector's Connection Failure tab.

Note: Script Connectors, that is, Connectors implemented using
JavaScript, are evaluated at this stage so that required Connector
functions are registered and initialization code is executed.

AL Prolog Hooks (After Initialize)
The AssemblyLine Prolog - After Initialize Hook is executed.
Completion of this Hook signals the end of Start up Phase, and the
beginning of Data flow Phase.

Data flow Phase

AssemblyLine Start of Cycle Hook
This Hook is invoked at the start of every cycle before Feeds or
Flow components.

AssemblyLine Cycle
Control is passed to the first component in the flow, typically a
Server or Iterator mode Connector in the Feeds section.

If you have one or more Iterators in the AssemblyLine, then the
first one starts the cycle by retrieving the next entry from its result
set and mapping Attributes into the Work Entry. The resulting
Work Entry is passed to Flow section components, starting at the
top of the list as seen in the CE.

For Server mode Connectors, a listener process is launched that
waits for incoming client connections. When a connection request
is detected, the Connector clones itself, accepts the connection and
then switches itself to Iterator mode in order to feed data from the
client into the Flow section for processing. Either way, you get an
Iterator driving Work Entries to the Flow components. (Meanwhile,
the original Server mode Connector waits for additional incoming
connection requests.)

If your AssemblyLine neither has an Iterator Mode or Server Mode
Connector, then you have a one-shot AssemblyLine typically used
to process an Initial Work Entry (IWE) fed by another calling
process.

End-of-Cycle
When the last Flow component is executed, one of three things can
happen:
v If the current Work Entry came from an Iterator, control is

passed back to the Iterator to get the next entry from its source.
v In the case of a server mode Connector, a reply is made to the

client.
v For an AL that is called in manual cycle mode, the thread is

passed back to the caller so that results can be accessed.

There is no specific Hook at this point, although this can be added
to your AssemblyLine by inserting a Script at the end.

End-of-Data
End-of-data is an Iterator mode Hook that is called when the end
of the input data set is reached. At this point, control is either
passed to the next Feeds Connector, or the AssemblyLine goes into
Shutdown Phase.

32 IBM Security Directory Integrator: Users Guide

Shutdown Phase
At this point, AL processing has either completed normally, or aborted due
to an error.

AssemblyLine Epilog - Before Close Hook
The AssemblyLine Hook called Epilog – Before Close is processed.

Connectors/Function Close flow
The Epilog Hooks of each Connectors and Function are called in
the order that they appear in the Config Editor:
1. The Before Close Hook.
2. The close operation is carried out; for example, closing a

connection or release an API callback.
3. The After Close Hook.

AssemblyLine Epilog - After Close Hook
Finally, the AssemblyLine Epilog – After Close Hook is run.

Server mode Connector Setup
When a Connector in server mode starts, it goes into event listening mode.
Once an event is received, it clones the AL and resumes waiting for more
events. In the clone, meanwhile, the Connector switches itself to Iterator
mode and passes control to the next component in the Feeds list. This
process allows you to have multiple server mode Connectors active and
feeding data into the flow at the same time—one example would be to
have several HTTP server Connectors in server mode listening to different
ports, but feeding the same AL. Although server mode Connectors are part
of an AssemblyLine configuration, they run as separate processes, as
threads.

There is an additional set of Hooks that is evaluated for Connectors in this
mode. The Hooks specific to server mode functionality for dealing with
incoming connections are:

Before Accepting connection
This Hook is called before the Connector goes into listening mode.

After Accepting connection
Once a connection is received, this Hook is invoked. Note that no
data is available at this time. In order to examine incoming event
information, use the Iterator Hooks like After GetNext or GetNext
Successful.

Error on Accepting connection
This Hook is executed if an error occurs in any of the server mode
Hooks, or received from the data source during event listening.

v As mentioned previously, if you have more than one Connector in Iterator mode
(see “Multiple Iterators in an AssemblyLine” on page 6), these Connectors are
stacked in the order in which they are displayed in the configuration, from top
to bottom. For example, if you have two Iterators, a and b, then a is called until
it returns no more entries before the AssemblyLine switches to b.

v If you have no Connectors in Iterator mode, and no Initial Work Entry (IWE) is
provided to the AssemblyLine when it is started; for example, by a calling from
another AssemblyLine, and if no Work entry is created in an AssemblyLine or
Connector Prolog Hook, then the AssemblyLine still performs a single pass.

Chapter 1. General Concepts 33

Finally, there is a Shutdown Request Hook where you can put code that is
processed if the AssemblyLine is closed down properly due to an external request
to shut down (as opposed to one that crashes), enabling you to make it perform a
graceful shutdown.

Special functions are available from the system object to skip or retry the current
Work entry, as well as to skip over a Connector, and so forth. See “Controlling the
flow of an AssemblyLine” for more details.

Handle termination and cleanup for critical errors
There are a number of methods that allow detecting and handling of IBM Security
Directory Integrator internal errors, as well as errors occurring in IBM Security
Directory Integrator Connectors, Parsers, Function Components and so on. These
methods include:
v Error Hooks, in which JavaScript code can be written to handle an error. This

method is accessible to IBM Security Directory Integrator users. Also see
“Controlling the flow of an AssemblyLine.”

v Java try-catch-finally blocks, which make sure that a minor failure does not
break the Server as well as that all errors are handled appropriately. Such blocks
are already in place in the core IBM Security Directory Integrator server classes.

The JVM shutdown Hook feature improves the reliability of the Server. Java
shutdown Hooks allow a piece of code to perform some processing after Control-C
is pressed, or when the JVM is shutting down for some other reason, even
System.exit.

You can specify an external program to be started when the JVM is shutting down.
This external program is started from within the JVM shutdown Hook. This
external program is configured using an optional property in the
global.properties or solution.properties file:
jvm.shutdown.hook=<external application executable>

Shell scripts and batch files can also be specified as the value of this property.

When the JVM shutdown Hook is called, nothing can be done to prevent the JVM
termination. However, with the execution of an external program it is possible to
perform customizable operations: for example, sending a message that the IBM
Security Directory Integrator server has terminated, carrying out clean up
operations, or even restarting a new server if so desired.

Controlling the flow of an AssemblyLine
Hooks are programmable waypoints in the built-in automated behavior of IBM
Security Directory Integrator, where you can impose your own logic.

Hooks are found in AssemblyLines, Connectors and Function Components. For
example, if you want to skip or restart parts of the AssemblyLine entirely, you
typically do this from within a Hook in a Connector:

Note: The constructs below can be used to exit a Branch Component or Loop, too.

system.ignoreEntry()
Ignore the current Connector and continue processing your existing data
entry with the next Connector.

34 IBM Security Directory Integrator: Users Guide

system.skipEntry()
Skip (drop) the entry completely, aborting the current cycle, return control
to the start of the AssemblyLine and get the next entry from the current
Iterator.

system.exitFlow()
Drop further processing of the current entry, execute end-of-cycle logic; for
example, save the Iterator State Key (if the Connector is configured for
this), return control to the start of the AssemblyLine and get the next entry
from the current Iterator.

system.restartEntry()
Restart from the beginning of the AssemblyLine, forcing the current
Iterator to reuse the current entry.

system.skipTo(String name)
Skip to the named Connector.

system.abortAssemblyLine(String reason)
Abort the entire AssemblyLine with the specified error message.

Note: If you put any code in an Error Hook and do not terminate the current
AssemblyLine or EventHandler, then processing continues regardless of how you
got to the Error Hook. This means that even syntax errors in your script are
ignored. So be sure to check the error object if you want to know what caused the
error.

The methods described in the previous list can be regarded as goto-statements, in
that no further code in this Hook is run. For example:
system.skipEntry(); // Causes the flow to change
// This next line is never executed.
task.logmsg("This will never be reached");

Note: There is a difference between an error Hook that is absent, and one that is
empty – even though this may not always be easy to spot in the Configuration
Editor. An empty error Hook causes the system to reset the error condition that
caused the Hook to be called, after which the server continues processing, whereas
an absent or undefined Hook causes the system to perform default error handling
(typically aborting the AssemblyLine).

Expressions
IBM Security Directory Integrator provides the v.6-compatible Expressions feature
that allows you to compute parameters and other settings at run time, making
your solutions dynamically configurable. This feature expands on the Properties
handling found in previous versions.

In addition to support for simple External Properties references (fully compatible
with earlier versions), Expressions provide more power in manipulating
AssemblyLine and component configuration settings during AL or component
initialization and execution. Expressions can also be used for Attribute maps, as
well as for Conditions and Link Criteria, alleviating much of the scripting
previously required to build dynamically configured solutions. IBM Security
Directory Integrator provides an Expression Editor to facilitate building these
expressions.

The Expressions feature is built on top of the services provided by the standard
Java java.text.MessageFormat class. The MessageFormat class provides powerful

Chapter 1. General Concepts 35

substitution and formatting capabilities. Here is a link to an online page outlining
this class and its features: http://docs.oracle.com/javase/1.6.0/docs/api/java/
text/MessageFormat.html.

Note: The MessageFormat based Expressions shown in this section were the
cornerstone of parameter substitution in IBM Security Directory Integrator v.6; in
v.7 best practice is to use Advanced (JavaScript) expressions instead.

In addition to features described in the above class, IBM Security Directory
Integrator provides a number of runtime objects that can be used in
expressions—although the availability of some objects will depend on runtime
state; for example, whether conn or current defined, or the error entry. The
Expressions syntax provides a shorthand notation for accessing the information in
these objects, like Attributes in a named entry object, or a specific parameter of a
component.

Table 2. Script objects, their usage and availability.

IBM Security Directory
Integrator reference Value Availability

work.attrname[.index] The work entry in the current
AssemblyLine.

The optional index refers to the nth
value of the attribute. Otherwise the
first value is used.

This Advanced attribute map:

ret.value = work.getString
(“givenName”) +
“ “ +
work.getString(“sn”);

can be expressed simply as:

{work.givenName} {work.sn}

AssemblyLine

conn.attrname[.index] The conn entry in the current
AssemblyLine.

The optional index refers to the nth
value of the attribute. Otherwise the
first value is used.

AssemblyLine during
attribute mapping

current.attrname[.index] The current entry in the current
AssemblyLine

The optional index refers to the nth
value of the attribute. Otherwise the
first value is used.

AssemblyLine during
attribute mapping
for Modify

36 IBM Security Directory Integrator: Users Guide

http://docs.oracle.com/javase/1.6.0/docs/api/java/text/MessageFormat.html
http://docs.oracle.com/javase/1.6.0/docs/api/java/text/MessageFormat.html

Table 2. Script objects, their usage and availability. (continued)

IBM Security Directory
Integrator reference Value Availability

config.param The configuration object of the current
component AL. Furthermore, if config is
used in the parameter of a Connector,
Parser or Function, then it refers to the
Config object Interface of that
component, for example, JDBC
Connector, or XML Parser.

param is the name of the parameter
itself, as if you were to make a call to
getParam() or setParam(). For example,
for the JDBC Connector you could
make the following reference:

{config.jdbcSource]

AssemblyLine
EventHandler
Connector
Parser
Function Component

alcomponent.name.param The component Interface parameter
value of a named AssemblyLine
component.

name is the name of the AssemblyLine
component

param is the parameter name of the
name object

So, the following Expression:

{alcomponent.DB2conn.jdbcSource}

is equivalent to the following scripted
call:

DB2conn.connector.getParam
(“jdbcSource”);

AssemblyLine

property[:storename].name

property[:storename/
bidi].name

A TDI-Properties reference.

The optional storename targets a
specific Property Store. If no storename
is specified, then the default store is
used.

name is the property name

bidi will, when present, set the
parameter value to forward the call to
the referenced Property Store. When bidi
is present no other substitution patterns
or text is allowed.

Always

Chapter 1. General Concepts 37

Table 2. Script objects, their usage and availability. (continued)

IBM Security Directory
Integrator reference Value Availability

JavaScript<<EOF
script code ...

// Must contain “return”
EOF
Note: v.6 syntax; use
Advanced (JavaScipt)
option in the Expression
Editor instead

Embedded script code used to generate a
value for the Expression. This script
must return a value.

The “EOF” text used here is an
arbitrary string that terminates the
JavaScript snippet. The JavaScript is
collected until a single line with the
EOF string is encountered, or no EOF is
flag is set – see the note below.

Note that embedded JavaScript is
evaluated using the script engine
instance of the AssemblyLine, so you
have access to all variables otherwise
present for scripting.
Note: There is a shorthand form of
adding JavaScript that works for input
fields that do not support multiple lines
(like Link Criteria or the names of
Attributes in maps) and can therefore
not have the necessary EOF line:

{JavaScript return work.givenName
+ " " + work.surName}

Always

Embedded JavaScript in Expressions have access to the script engine of the
AssemblyLine. As a result, even script variables defined elsewhere in the
AssemblyLine can be accessed. Note that if you reference a variable or object that
is not one of those specifically listed in the tables shown in this section, the
Expression evaluator will check with the script engine of the AL to see if it is
defined there.

Expressions in component parameters
When used for a component parameter, the following objects are of special interest:

Table 3. Special objects usable in Expressions

Object Value

config The Interface configuration object of the component.

mc The MetamergeConfig object of the Config instance
(config.getMetamergeConfig()).

work The Work entry of the AssemblyLine.

task The AssemblyLine object.

As an example, take a JDBC Connector with the Table Name parameter set to
"Accounts". You could then click on the SQL Select parameter label or the Open
parameter value dialog button adjacent to the field, choose Text w/substitution,
and then enter this into the large text field at the bottom of the dialog:
select * from {config.jdbcTable}

This will take the Table Name parameter and create the following SQL Select
statement:
select * from Accounts

38 IBM Security Directory Integrator: Users Guide

Or you could get more advanced, and try something like this for the SQL Select
parameter:
SELECT {JavaScript<<EOF

var str = new Array();
str[0] = "A";
str[1] = "B";
return str.join(",");
EOF

} FROM {property:mystore.tablename} WHERE A = ’{work.uniqueID}’

The embedded JavaScript will return the value “A,B” which is then used to
complete the rest of the Expression. If you have a Property Store called mystore
with a tablename property set to “Accounts”, and a uniqueID Attribute in the Work
entry with the value “42”, the final result will be:
SELECT A,B FROM Accounts WHERE A = ’42’

This evaluated result is not displayed in the CE. Simply entering curly braces will
not cause Expression evaluation to be done for the parameter value. Instead, you
have two choices when tying Expressions to parameters:
1. Press the Open parameter value dialog button adjacent to the field (or click on

the Parameter label) and select Text w/substitution to open the Expressions
dialog while in the parameter input field. You may enter your Expression in the
large text field in this dialog. Click OK to enter your Expression.

2. Type the special preamble, @SUBSTITUTE, manually into the parameter input
field, followed by the Expression. For example:
@SUBSTITUTEhttp://{property.myProperties:HTTP.Host}/

Note:

v This last method of entering expressions directly is not recommended; use
the Expression Editor instead.

v If Text w/substitution is selected for the value of the File Connector's file
path, and {work.fullPath} is entered, then the following error occurs:
"CTGDIC114E Parameter 'File Path' is required." This outcome is expected
because the Configuration Editor is supposed to display the result of
applying the substitution in the text that you specified. In this case, there is
no work object because the work object is only defined in a running
AssemblyLine. Hence, the result is an empty string. For this parameter, an
empty string is an error, and therefore the error message is shown. When the
AssemblyLine is running, though, there might be a work object, and the
evaluation would produce the parameter string as required.

Expressions in LinkCriteria
Expressions in Link Criteria provide a similar list of pre-defined objects. Again,
note that you also have access to any other objects or variables currently defined in
the AssemblyLine’s script engine.

Table 4. Pre-defined objects for use in Expressions in LinkCriteria

Object Significance

config The component’s Interface configuration object

mc The MetamergeConfig object of the Config instance
(config.getMetamergeConfig())

work The Work entry of the AssemblyLine

Chapter 1. General Concepts 39

Table 4. Pre-defined objects for use in Expressions in LinkCriteria (continued)

Object Significance

task The component itself, or a named component

alcomponent The Connector or Function Component

So, for example, let’s say that you want to set up the Link Criteria for a Connector
so that the Attribute to use in the match is determined at run time. In addition to
standard data Attributes in the Work entry, there is also a matchAtt Attribute with
the string value “uid”. In this case, the following Expression used in Link Criteria:
{work.matchAtt} EQUALS {work.uid}

is equivalent to this:
uid EQUALS $uid

Expressions in Branches, Loops and Switch/Case
The list of Expression objects here is similar to that for Link Criteria:

Table 5. Pre-defined objects for use in Expressions in Branch Components

Object Significance

config The Interface configuration object of the component

mc The MetamergeConfig object of the Config instance
(config.getMetamergeConfig())

work The Work Entry of the AssemblyLine

task The AssemblyLine

alcomponent The Connector or Function Component

You have can use Expressions for both the Attribute name and the Operand of a
Condition. You can also use Expressions to configure Switch and Case components.

Scripting with Expressions
You can also use Expressions directly from JavaScript code. Here is an example
that builds an Expression using the new ParameterSubstitution class:
var ps = new com.ibm.di.util.ParameterSubstitution("{work.FullName} -> {work.uid}");

map = new java.util.HashMap();

map.put("mc", main.getMetamergeConfig());
map.put("work", work);

task.logmsg(ps.substitute(map));

The expression that results from the JavaScript code issues the following log
messages when run for several iterations in the test AssemblyLine:
14:35:29 Patty S Duggan -> duggan
14:35:29 Nicholas P Butler -> butler
14:35:29 Henri T Deutch -> deutch
14:35:29 Ivan L Rodriguez -> rodriguez
14:35:29 Akhbar S Kahn -> sahmad
14:35:29 Manoj M Gupta -> gupta

40 IBM Security Directory Integrator: Users Guide

The Entry object
One of the cornerstones of understanding IBM Security Directory Integrator is
knowing how data is stored and transported within the system. This is done using
an object called an entry. The entry object can be thought of as a "Java bucket" that
can hold any number of Attributes: none, one or many.

Attributes are also bucket-like objects in IBM Security Directory Integrator. Each
Attribute can contain zero or more values, these being the actual data values that
are read from, and written to, connected systems. Attribute values are Java objects
as well; they can be strings, integers and timestamps; whatever is needed to match
the native type of this data value. A single Attribute can readily hold values of
different types. However, the values of a single Attribute will tend to be of the
same type in most data sources.

Although this entry-attribute-value paradigm matches nicely to the concept of
Lightweight Directory Access Protocol (LDAP) directory entries, this is also how
rows in databases are represented inside IBM Security Directory Integrator, as are
records in files, IBM Lotus Notes documents and HTTP pages received over the
network. All data, from any source that IBM Security Directory Integrator works
with, are stored internally as entry objects with Attributes and their values.

Contrary to earlier versions of IBM Security Directory Integrator, from v7.0
hierarchical Entry objects are supported, in the AssemblyLine and by some of the
components that can be part of an AssemblyLine. The Entry object is extended to
provide several convenient methods for dealing with hierarchical data, although by
default, this is hidden and only comes into play if you explicitly enable it, or use it
with components that require the hierarchical features. It also implements
org.w3c.dom.Document, which makes it the top level Node in the hierarchy. For
more information on this, see “Working with hierarchical Entry objects” on page
46.

There are a handful of entry objects that are created and maintained by IBM
Security Directory Integrator. The most visible instance is called the Work entry,
and it serves as the main data carrier in an AssemblyLine (AL). This is the bucket
used to transport data down the AL, passing from one component to the next.

The Work Entry is available for use in scripting through the pre-registered variable
work, giving you direct access to the Attributes being handled by an AssemblyLine
(and their values). Furthermore, all Attributes carried by the Work entry are
displayed in the Config Editor, under the Work Attribute header in the Attribute
Maps area in the AssemblyLine Editor window of an AssemblyLine.

Entry types

There are a number of data objects that reside in AssemblyLines that follow the
Entry data model. These are:

Work This is the aforementioned Entry that travels from component to
component in the AssemblyLine, and carries data between them. Its
pre-registered variable name is work, and is available for use in scripting
almost everywhere6.

Conn This is the Entry-like object that a Connector uses as an intermediary

6. When the AssemblyLine you are working with is not called with an Initial Work Entry, then the work object is not available until
after the Prolog hooks. In the Prolog hooks you can have code as follows:

Chapter 1. General Concepts 41

between the connected system and the AssemblyLine, before you make the
data, or a subset thereof, available in the Work Entry. The process of
moving data between Conn and Work is called Attribute Mapping. Its
pre-registered variable name is conn, and is available for use in scripting
inside many of the Hooks in Connectors and Function Components.

Current®

This Entry-like object is available inside certain Hooks in Connectors in
Update mode, and holds the data from the connected system before any
updates have been applied to it. Its pre-registered variable name is current.

Error This Entry-like object only exists in certain Hooks in Components, when
some error condition has occurred and the relevant Error Hook has been
invoked. It contains information about the actual exception that was
thrown, with possibly some additional variables and data, enabling you to
pinpoint what exactly caused the error. Its pre-registered variable name is
error.

The Connector Flow diagrams in Reference will show you which of these objects are
available under which circumstances.

See also

“Internal data model: Entries, Attributes and Values” on page 44.

if (work != null) {
// An Initial work Entry has been provided, we can get values from there
.... some code

} else {
// No initial work Entry has been provided
... some other code

}

42 IBM Security Directory Integrator: Users Guide

Chapter 2. Scripting in IBM Security Directory Integrator

IBM Security Directory Integrator provides its users with a highly-flexible engine
that can be customized both from the user interface controls of the Configuration
Editor, as well as through scripting of custom logic. While the user interface
controls provide a means of controlling the data flow at a higher level, scripting
provides you with the ability to control almost any aspect of the data flow at any
level, including overriding standard IBM Security Directory Integrator processing.
Special functions are available in the system object to reiterate on an AssemblyLine
entry, skip a Connector and start new AssemblyLines. The scripting language used
for implementing this custom logic is JavaScript.

Ready-to-use, IBM Security Directory Integrator provides the tools to quickly snap
together the framework of an integration solution. However, for all but the most
trivial migration jobs, you will need to customize and extend the built-in behavior
of the product by writing JavaScript.

IBM Security Directory Integrator is pure Java. Whenever you issue a command to
IBM Security Directory Integrator, work with components and objects, or
manipulate data in your flow, you are working with Java objects. IBM Security
Directory Integrator uses IBM Java version 7.0.4.

Your customization on the other hand is done in JavaScript, and this marriage of
two ostensibly similar, yet fundamentally different, programming languages
warrants closer examination.

Experience with JavaScript will be very helpful. The examples provided may add
to your experience. However, this manual does not teach JavaScript itself , merely
its application in IBM Security Directory Integrator. You will need to secure your
JavaScript reference materials elsewhere.

There are a number of commercially available reference guides to JavaScript, as
well as documentation, tutorials and examples on the net. Note however that
much of the JavaScript content out on the Web is related to beautifying and
automating HTML content. You need only concern yourself with the core language
itself, as it is described at the following link: http://devedge-temp.mozilla.org/
library/manuals/2000/javascript/1.5/guide/index.html

There is also a handy link on this site for downloading the reference in HTML
format for installation locally. An excellent handbook on JavaScript is The Definitive
JavaScript Guide, 4th Edition by David Flanagan (O'Reilly).

You will also want the Javadocs for Java as well, since all IBM Security Directory
Integrator objects, as well as the data values inside your solution, are in the form
of Java objects. These documents are located online at this URL:
http://docs.oracle.com/javase/1.6.0/docs/api/index.html

The J2SE documentation itself can be found here: http://docs.oracle.com/javase/
1.6.0/docs/index.html

Scripting is necessary when you need to add custom processing to your
AssemblyLine. Examples of where scripting can be helpful include the following
tasks:

© Copyright IBM Corp. 2003, 2014 43

http://devedge-temp.mozilla.org/library/manuals/2000/javascript/1.5/guide/index.html
http://devedge-temp.mozilla.org/library/manuals/2000/javascript/1.5/guide/index.html
http://docs.oracle.com/javase/1.6.0/docs/api/index.html
http://docs.oracle.com/javase/1.6.0/docs/index.html
http://docs.oracle.com/javase/1.6.0/docs/index.html

Attribute manipulation or computation
You need to calculate the value of an output attribute based on one or
more input attributes.

Data filtering
You want to process only entries that match a particular set of criteria.

Data consistency or validity checking
You need to report or correct invalid data values.

Flow control
You want to override the update operation of the Connector you are using.

Initialization
You want to run some initializing procedures before your AssemblyLine
starts.

Each of these cases mentioned, and many others not mentioned, usually require
scripting.

Examples

Go to the examples/scripting subdirectory of your IBM Security Directory
Integrator installation.

Internal data model: Entries, Attributes and Values
When IBM Security Directory Integrator components access information from
connected systems, they convert the data from system-specific types to an internal
representation using Java objects. On output, components convert the other way,
going from this internal data model to the native types of the target system. This
same internal representation is used when you wish to pass data to and from
AssemblyLines. It is therefore vital that you understand how the IBM Security
Directory Integrator internal data model works.

Looking in detail at when a data value is received by a component, a
corresponding IBM Security Directory Integrator Attribute object is created using
the name of the attribute being read. The data value itself (or values, if it is a
multi-valued attribute) are converted to appropriate Java objects—like
Java.lang.String or java.sql.Timestamp —and assigned to the Attribute. If you
take a look in the IBM Security Directory Integrator API documentation, you will
see that the Attribute object provides a number of useful methods, like getValue(),
addValue() and size(). This allows you to create, enumerate and manipulate the
values of an Attribute directly from script. You can also instantiate new Attribute
objects as needed, as shown in this Attribute Map example for advanced mapping
the objectClass attribute of a directory:
var oc = system.newAttribute("objectClass");

oc.addValue("top");
oc.addValue("person");
oc.addValue("organizationalPerson");
oc.addValue("inetOrgPerson");

ret.value = oc;

Attributes themselves are collected in a data storage object called an entry object.
The entry is the primary data carrier object in the system and IBM Security
Directory Integrator gives you access to important entry objects by registering
them as script variables. A prime example is the Work entry object in the

44 IBM Security Directory Integrator: Users Guide

AssemblyLine, used to pass data between AL components (as well as between
AssemblyLines). This entry object is local to each AssemblyLine and available as
the script variable work.

IBM Security Directory Integrator provides some shortcuts and convenience
features when working in JavaScript, so the above specific advanced mapping can
be simply coded as follows:
ret.value = ["top", "person", "organizationalPerson", "inetOrgPerson"];

The advanced mapping feature supports JavaScript arrays and Entries for passing
multiple attribute values.

For example, in an Input Attribute Map (which causes mapped Attributes to show
up in the work Entry on return), suppose you have the assignment
ret.val = anentry;

for the Attribute called "last". Let us further assume that work is empty to start
with, and anentry contains the Attributes "cn", "sn" and "mail".

After attribute mapping work will contain "cn", "sn" and "mail" attributtes, not a
single Attribute called "last" with "anentry" as value. In essence, what happens in
Attribute mapping is that when an attribute map returns an Entry object, it is
merged with the receiving Entry – either work or conn, depending on what map it
is (Input or Output).

Note: In IBM Security Directory Integrator, taking advantage of hierarchical
objects, you can circumvent this behavior by first encapsulating an Entry in an
Attribute before Attribute Mapping takes place. For example,
// this is the entry to return
e = system.newEntry();
e.setAttribute("some", "value");

// Create an Attribute object. We don’t need to provide a name since the mapping will use current map’s name.
attr = system.newAttribute(null);

// add the entry to the Attribute object and return that instead of the Entry object
attr.addValue(e);

return attr;

If this was entered as the Advanced Attribute Map for the "last" Attribute, then
after Attribute Mapping, the work Entry will now contain an Attribute called "last".
This Attribute is an Entry, in turn comprised of two attributes called "some" and
"value".

Looking at the Javadocs, you will see that the entry object offers various functions
for working with Entries and their Attributes and values, including
getAttributeNames(), getAttribute() and setAttribute(). If you wanted to create
and add an Attribute to the AssemblyLine Work entry, you could use the following
script, for example, in a Hook or a Script Component:
var oc = system.newAttribute("objectClass");

oc.addValue("top");
oc.addValue("organizationalUnit")

work.setAttribute(oc);

Note that in this case we do not have the option of using a JavaScript array to set
the value:

Chapter 2. Scripting in IBM Security Directory Integrator 45

oc.addValue(["top", "organizationalUnit"]); // Does not work like Advanced Mapping

This code will result in the oc attribute getting a single value, which in turn is an
array of strings.

Entry objects can also contain properties. Properties are data containers like
Attributes, except that they are only single-valued. While Attributes are used to
store data content, properties hold parametric information, allowing you to keep
this information separated. Properties do not show up for attribute map selection
or in the Work entry list, but can be accessed much like Attributes from script.
entry functions like getProperty() and setProperty() are used for this, and these
work directly with Property values, which can be any type of Java object, just like
Attribute values. There is no intermediate Property object as there is when you
work with Attributes.

In many cases, you can restrict the data model to an entry containing zero or more
Attributes, each with zero or more values—a flat schema.

This is one of the strengths of IBM Security Directory Integrator: simplifying and
harmonizing data representations and schema. It also represents a challenge when
you need to handle information with a more complex structure. However, since an
Attribute value can be any type of Java object, including another entry object (with
its own Attributes and values), IBM Security Directory Integrator allows you to
work with hierarchically structured data.

This more elaborate and structured way of handling hierarchical objects is
described in “Working with hierarchical Entry objects.”

Working with hierarchical Entry objects
An alternative way of working with hierarchically structured data is to take
advantage of the support for hierarchical objects in the IBM Security Directory
Integrator entry object.

Different from earlier versions, IBM Security Directory Integrator Version 7.1.1 and
later support the concept of the hierarchical Entry object. The Entry object
represents the root of the hierarchy and each Attribute represents a node in that
hierarchy. Following this logic the values of every Attribute are leafs in the
hierarchy. An API for traversing the hierarchy exists as well. This API is a partial
implementation of the DOM 3 specification. Only a few classes from that
specification have been implemented:
v Org.w3c.dom.Document – implemented by the Entry class.
v Org.w3c.Element – implemented by the Attribute class.
v Org.w3c.Attr – implemented by the Property class.
v Org.w3c.Text and org.w3c.CDATASection – implemented by the AttributeValue

class.

These classes are the minimum set of classes provided by the DOM specification
that are needed to represent a hierarchical data. The pre-v7.0 API is not hierarchy
aware (for example, it cannot access/modify/remove child Elements) for backward
compatibility reasons. This is why only the DOM API can manipulate a
hierarchical structure.

To keep the Entry structure backward compatible by default the Entry always uses
flat Attributes. The Entry only becomes hierarchical on demand – after you call one
of the newly provided DOM APIs. This allows only components aware of the

46 IBM Security Directory Integrator: Users Guide

hierarchical nature of the Entry to make use of it, the rest of the components don't
need to be changed in order to keep running. Starting from IBM Security Directory
Integrator v7.0, a new name notation is introduced in order for users to have an
easier way of creating hierarchical trees. Every name containing a dot in it is
thought to be a composite name compound of simple names; these names are
separated by dots. When such a composite name is passed to a hierarchical Entry,
it breaks it down to simple names and builds the hierarchy that is described by
that composite name.

For example if you run the following JavaScript code:
// create a new empty Entry object
var entry = new com.ibm.di.entry.Entry(true);
// create a new branch of 2 levels
entry.setAttribute("firstLevelChild.secondLevelChild", "level2Value");
// finds the already existing branch and creates a new node on level 3
entry.setAttribute("firstLevelChild.secondLevelChild.thirdLevelChild", "level3Value");

the following structure will be created:

Note: It is important to know that the names are not broken down to simple
names until the Entry structure is not converted to a hierarchical one. For example
if the entry is a flat one and only the old methods are used that would still create
the same old flat structure:

In some cases it may be necessary to have dots in the names of the Entry's
attributes, so the Entry object also understands escape characters (currently only
\\ and \. are supported).

Figure 1. Simple hierarchical entry

Figure 2. Traditional, flat entry

Chapter 2. Scripting in IBM Security Directory Integrator 47

Note: When working from script the backslash should be properly escaped with
another backlash!
For example if the following hierarchy is needed:

the following script would create it:
var entry = new com.ibm.di.entry.Entry(true);
entry.setAttribute("first\\.level\\.child.second\\.level\\.child", "level2Value");
entry.setAttribute("first\\.level\\.child.second\\.level\\.child.third\\.level\\.child", "level3Value");

In order to maintain backward compatibility with previous releases of IBM
Security Directory Integrator when implicitly working with hierarchical Entries, all
the old methods exposed by both the Attribute and the Entry classes have changed
slightly. For example, the Entry.getAttributeNames() method will return an array
of full paths to the leafs that are available in the tree. In reference to the above
structure the getAttributeNames method returns the array:
["first\.level\.child.second\.level\.child", "first\.level\.child.second\.level\.child.third\.level\.child"]

The Entry.size() method returns the total number of elements in the array
returned by getAttributeNames() method. In our case the size() method would
return 2 (the number of leafs in the whole tree) instead of 1 (as you might expect,
considering that the Entry object has only one attribute as a child).

This is because both getAttributeNames() and size() methods only work with flat
structures. In order to get the real size of the children you would need to use the
DOM API as follows: Entry.getChildNodes().getLength();

If the entry is a flat one the old API will behave as in previous releases.

The Attribute object

The Attribute object is enhanced with the ability to create hierarchical structures.
These structures follow the DOM specification and that is why the Attribute object
is aware of XML Namespace concepts.

The Attribute class also had to be expanded in order to provide new methods for
the hierarchical functionality. The getValue/setValue/addValue methods are also
backward compatible and will return only the values the particular element has.
The difference here is when each value is accessed through the DOM API it will be

Figure 3. Another simple hierarchical entry

48 IBM Security Directory Integrator: Users Guide

wrapped in an AttributeValue class and will be treated as a Text node. In order to
get the child elements of an Attribute (for example, Attributes and AttributeValues)
the DOM API has to be used.

The Attribute child of an Entry is also able to switch the Entry's structure to
hierarchical one when any of its DOM methods are accessed. Unlike the Entry
class the Attribute class does this implicitly and does not provide a way to do the
switching explicitly.

IBM Security Directory Integrator v7.0 supports extensions to scripting capabilities
of the Server to easily access complex structures. Please see the section “Navigation
within scripts” on page 50 for more details.

The AttributeValue object

This class represents a value in the hierarchical tree. As per DOM specification the
values in the tree are always Strings. The AttributeValue class however, has held
objects of any kind for the last few releases. This is valid in the current version as
well. The only difference for the AttributeValue object is that when accessed
through DOM it will return a String representation of the contained object. In
order for the AttributeValue class to represent a Node and have a value at the
same time in the terms that the DOM specification defines, it must implement
either the org.w3c.dom.Text or org.w3c.dom.CDATASection interfaces. The
AttributeValue implements them both, and can represent either of these Nodes
depending on your needs.

The Property object

Attributes can have zero, one or more Property objects. The Property class
implements the org.w3c.dom.Attr interface and thus represents the attributes in
terms of DOM concepts. Using properties you may declare prefixes/namespaces in
terms of XML concepts.

Transferring Objects

Mapping an Attribute from one entry to another will always copy the source
Attribute.

For example:
entry.appendChild(conn.getFirstChild());
// or
entry.setAttribute("name", conn.getFirstChild());

Even when the Attribute is not a first-level child of the Entry it is still copied. This
can also be accomplished by the script:
entry.a.b.c.d.appendChild(conn.e.f.g);

In order to move an Attribute object between entries without cloning it you will
need to first detach it from its old parent and then attach it to a new parent.

For example:
var src = entry1.b.source;
entry1.b.removeChild(src);
entry2.a.target.appendChild(src);

Chapter 2. Scripting in IBM Security Directory Integrator 49

When moving an Attribute object from one parent to another parent in the same
Entry the Attribute is automatically moved. No cloning is done.

For example:
entry.a.target.appendChild(entry.b.source);

In this example the "source" Attribute is detached from its parent ("entry.b") and
then attached to the "entry.a.target" Attribute. No cloning is done.

If you do not want to remove the Attribute object from the source then you can
append a copy of the Attribute like this:
entry.a.target.appendChild(entry.b.source.clone());

Navigation within scripts

The IBM Security Directory Integrator ScriptEngine enables you to easily access the
attributes of an entry just by referring to them by name; for example,
entry.attrName returns the attribute with name attrName.
1. The JavaScript Engine resolves names based on the context object the name was

requested on. For example, if the call entry.a is performed, the entry name is
the context object and a is the name of the child object to resolve. The
JavaScript Engine uses left-to-right interpretation to evaluate each context object
until the final one is resolved. Based on the diagram below the following call,
entry.a.b.c, is resolved using this procedure: Find the entry object to use it as
the context object for the first step.

2. Search the context object for a name a. The entry object has only one child with
name a. Consider that child to be the next context object for the next step.

3. Search the context object for a name b. The context object has two children
named b. Put them in a list and return that list.

4. The final operation searches the list returned in the previous operation for the
name c. Each element in the list has at least one such child. Get them all and
put them in a list, which is the actual result of resolving the full expression.

The following entry object example diagram illustrates this:

50 IBM Security Directory Integrator: Users Guide

The script engine provided by IBM Security Directory Integrator allows more
arbitrary names to be used in child resolving process. For example if the name of
the child contains dots then you can refer to it using the square-bracket syntax as
shown below:
work["{namespace}name:Containing\.invalid\.charaters"]

Notice that the dots are being escaped to denote that they are part of the local
name and that they must not be treated as path separators by the script engine.

Depending on the current context object on which an operation is performed the
end result might differ. IBM Security Directory Integrator adheres to the standard
object manipulation the JavaScript Engine provides by implementing several
enhancements to the following objects:

Entry When the context object is an instance of this type, the name resolving
mechanism will look for the following syntax:
v @<name> – searches the Entry object for a property with the specified

name. The resolved object is either null or the object mapped to that
property.

v <prefix>:<localName> – searches the Entry object for a child that have a
prefix equal to <prefix> and a Local Name equal to <localName>. The
resolved object could be either null or an existing Attribute object.

v <localName> – searches the Entry object for for the first child that has a
Local Name equal to <localName>. The resolved object could be either
null, or an Attribute object.

Figure 4. Hierarchical Entry object example

Chapter 2. Scripting in IBM Security Directory Integrator 51

v {namespaceURI}<localName> – searches the Entry for the first child
Attribute that belongs to the specified namespaceURI and have the same
Local Name as the specified name.

Note: If a prefix is provided, it will be ignored and the name resolving
mechanism will only look for the specified namespaceURI and
localName. The resolved object could be either null or an Attribute
object.

Attribute
When the context object is an instance of this type, the name resolving
mechanism will look for the following syntax:
v @<prefix>:<localName> and @<localName> – searches the Attribute for

Property objects that have the same prefix and/or local name or just the
specified local name. Returns either null if no properties match the
specified name, or a single Property object.

v @{namespaceURI}<localName> – searches the Attribute for a Property that
belongs to the specified namespaceURI and have the same Local Name
as the specified name.

Note: If a prefix is provided it will be ignored and the name resolving
mechanism will only look for the specified namespaceURI and
localName. The resolved object could be either null or a Property object.

v [<index>] – specifies the position of the value in the Attribute to
retrieve. Using this notation you cannot access a child of this Attribute.
Returns either null, or the Object at the specified position.

v <prefix>:<localName> and <localName> – searches the Attribute for a
child(ren) with the specified prefix and/or local name. Returns either
null or the child with the specified name (if only one), or a NodeList
with all the child Attributes that match the criteria.

v {namespaceURI}<localName> – searches the Attribute for all the children
Attributes that belong to the specified namespaceURI and have the same
Local Name as the specified name.

Note: If a prefix is provided it will be ignored and the name resolving
mechanism will only look for the specified namespaceURI and
localName. The resolved object could be null, a single Attribute object or
a NodeList containing all of the Attributes that match the search name.

NodeList
When the context object is an instance of this type the name resolving
mechanism will look for the following syntax:
v [<index>] – specifies the position of the element in the NodeList to

retrieve. Returns either null, or the Object at the specified position.
Throws exception if the index is out of the bounds.

v @<prefix>:<localName> and @<localName> – searches each of the
elements of the NodeList for a property that has the same prefix and/or
local name. Returns either null, a Property object (if only one found), or
a List of all the Property objects found in the NodeList.

v @{namespaceURI}<localName> – searches each of the Attributes for a
Property that belongs to the specified namespaceURI and have the same
Local Name as the specified name.

Note: If a prefix is provided it will be ignored and the name resolving
mechanism will only look for the specified namespaceURI and

52 IBM Security Directory Integrator: Users Guide

localName. The resolved object could be either null or a Property object
(if only one found) or a NodeList of all the Property objects found in the
NodeList.

v <prefix>:<localName> and <localName> – searches each of the elements
of the NodeList for a child that has the same prefix and/or local name.
Returns either null, an Attribute object (if only one found), or a NodeList
of all the Attribute objects found in the NodeList.

v {namespaceURI}<localName> – searches each of the Attributes for all the
children Attributes that belong to the specified namespaceURI and have
the same Local Name as the specified name.

Note: If a prefix is provided it will be ignored and the name resolving
mechanism will only look for the specified namespaceURI and
localName. The resolved object could be null, a single Attribute object or
a NodeList containing all of the Attributes that match the search name.

You now have the following options:
1. Ability to access all the d elements by referring to them starting from the top;

for example, entry.a.b.c.d – this returns an object of type NodeList with all
the d attributes that match that path. In our example this will return all the
three d elements.

2. Ability to access attributes by specifying both prefix and local name; for
example, entry[”a.b.c.pref1:d”] – this will return a single Attribute only, the
one with a prefix of "pref1".

3. Ability to access each Attribute of an NodeList using the [] notation, for
example, entry.a.b.c.d[0] – this returns a single Attribute, namely the first d
element of the structure above.

4. Ability to navigate through elements using the [] notation; for example,
entry.a.b[0].c.d – this returns a List of Attributes, but this time it contains all
the d attributes form the first b branch.

5. Ability to get the property of an attribute (that is, an Attribute of an Element
using the DOM naming convention) using the @ notation; for example,
entry.a.b.c.d[0]["@propPrefix:propName"] – this returns us a String object
containing the value of that property (that is, the Attribute's value according to
DOM). Note here that the propPrefix and the propName are separated by the
colon sign (":"), and that if the property has a prefix, it is mandatory that both
the prefix and the name be specified in order for the property to be found.
Alternatively the namespace and the propertyName can be used to find a
property that has a prefix.

6. Ability to call methods of an Attribute before searching for child with the name
of the method that the user wants to execute; for example,
entry.a.b.[0].getChildNodes() – this returns a NodeList object that holds all
the Attribute values that the first b Attribute contains.

7. Ability to access entry attributes by name; for example, entry.attrName – this
will return the Attribute mapped to the attrName key.

8. Ability to access entry properties using the .@ notation; for example,
entry.@propName – this will return the Object mapped as property to the
propName key.

9. Ability to access child nodes by specifying the namespace those children
belongs to. For example work.a.b[{someNamespace}c] – this will return all the c
objects that belong to the "someNamespace" namespace.

Note:

Chapter 2. Scripting in IBM Security Directory Integrator 53

1. If the name of an attribute is the same as the name of a method of an
Entry/Attribute then the method will be called. If you want to access the
attribute, you must use the object's methods like before (that is,
Entry.getAttribute("getAttribute");.)

2. If a flat entry is used the script engine will not convert the entry to a
hierarchical unless the namespace of the attribute to find is specified. For
example: entry["{ns}element"]. The script engine will automatically convert
the entry to a hierarchical one if the context object is of type Attribute. For
example in this case: entry.attr.child.

3. If the attribute to find contains dots in its name and the entry is flat the you
must use the bracket notation instead of the dot notation, or force the entry to
become hierarchical before resolving the child node. For example if the entry is
flat you cannot access the attribute http.body using the call entry.http.body.
For this to happen you will have to use this instead: entry["http.body"] or call
entry.enableDOM() prior to calling entry.http.body.

4. If you intend to use the reference retrieved from the expression, for example,
a.b.c.d more than once, then it is good practice to assign that reference to a
local variable since each repeating evaluation of the same expression will result
in additional overhead for retrieving the same reference.

5. If, for example, the expression entry.a.b.c[0].d is used, then this will refer to
an Attribute object; but if entry.a.b[0].c.d is used, then this will refer to a
NodeList object. In order to recognize the referenced object you can check the
name of the object, for example:
var obj = a.b.c.d;
if (obj.getClass().getSimpleName().equals("Attribute")) {

// handle this as Attribute
} else {

// handle this as a list of Attributes
}

If, for example, you need to handle each element returned by an expression,
even if only one element is returned then you can use a for/in loop structure
like this:
for (obj in entry.a.b.c.d) {

// the obj will be an object of type Attribute
}

The same usage is now available with the Entry object, for example
for (obj in work) {

// the obj will be an Entry’s attribute
}

6. ScriptEngineOptions also allows assigning values. For example the following
expressions are valid:

entry.a.b.c.d[0]["@propPrefix:propName"] = "new value";
This changes the value of the property. If the property does not exist
then it will be created.

entry.a.b.c.d[0][0] = "new value";
This replaces the attribute value on position 0.

entry.a.b.c.d[0][1] = "another value";
This adds another value to the attribute (if the index is the same as the
size of the array of values.)

entry.a.b.c.d[0][a.b.c.d[0].size()] = "appended value";
If you need to append a new value to the list of objects, but do not

54 IBM Security Directory Integrator: Users Guide

know the last element position you can use Attribute#size() to get the
number of children this element has.

new com.ibm.di.entry.Entry().@propName = "someValue";
This will create a new property in the Entry object with name
propName if it does not exist, and will set its value to the String
"someValue".

entry.a.b.c[1] = "value";
This will resolve entry.a.b.c as a NodeList and will automatically add as
a value the new String object to the second element of the resolved
NodeList object. If, for example, entry.a.b.c resolves to an Attribute, then
the new String value will replace the second value of the resolved c
Attribute.

entry.a.b.c[2]["pref3:d"] = "value";
This will add a new pref3:d child to the third c attribute from the
entry.a.b.c list. Note that entry.a.b.c[2] resolves to an Attribute and to a
list.

entry.a.b.c["{namespaceURI}:d"] = "myTextValue";
This sets a value to the first child Attribute of c that has a local name
equals to d and belongs to the namespace namespaceURI. If no such
attribute is found, a new one is created and the value is assigned to it.
When creating an attribute, you might as well associate the namespace
with a prefix. In our case this could be done with this:
entry.a.b.c["{namespaceURI}prefix:d"] = "myTextValue";.

entry["{http://ibm.com/xmlns/}first.second.third"] = null;
This will first try to find the element with local name "first" from the
namespace "http://ibm.com/xmlns/". When it fails it will create the
element and then will try to resolve its child element "second". When it
fails it will create it and set its namespace to the one of the first
element. Finally an attempt to resolve the third element will be made.
When it fails the last element will be created with no values. This is
equivalent to entry["{http://ibm.com/xmlns/}first.{http://ibm.com/
xmlns/}second.{http://ibm.com/xmlns/}third"] = null;

Creating the above structure with script
// create a new entry that will hold the structure
var entry = new com.ibm.di.entry.Entry();
// create the first branch
var d = entry.newAttribute("a.b.c.d");
// create a new property and assign it a value
d["@propPrefix:PropName"] = "value";
// create a new value of the d Attribute
d[0] = "D1";
// append a new value for the entry.a.b attribute
entry.a.b.appendChild(entry.createElement("c"));
// create a new Attribute d with a prefix on the second c attribute,
// and assign the string "D2" as a first value
entry.a.b.c[1]["pref1:d"] = "D2";
// create a new child of the a Attribute
entry.a.appendChild(entry.createElement("b"));
// choose the second attribute from the entry.a.b NodeList and create a new child named c
entry.a.b[1].appendChild(entry.createElement("c"));
// create the d child of the c Attribute
entry.a.b[1].c["pref2:d"] = "D3";

Navigation using XPath

The Entry class provides convenient methods for navigating and retrieving data
based on XPath expressions. Using XPath for querying data from an Entry is much
more advanced than using any simple navigation within scripts. It is much easier

Chapter 2. Scripting in IBM Security Directory Integrator 55

to implement a searching and/or a value matching logic in a single expression
than writing multi-lined scripts in order to achieve the same results.

The Entry class provides the following methods:
v NodeList getNodeList (String xPath);

v Attribute getFirstAttribute(String xPath);

v String getStringValue(String xPath);

v Number getNumberValue(String xPath);

v Boolean getBooleanValue(String xPath);

Flattening hierarchical structures

When working with hierarchical data it is sometimes necessary to flatten the nodes
of the hierarchy. To do that you can either write a script for traversing the tree, or
use one of the methods:
v getElementsByTagName(String namespace, String localName);

v getElementsByTagName(String tagName);

These methods traverse the tree and search for elements with the specified name
and namespace. The DOM API allows these methods to accept the character "*" for
both names and namespaces. That character represents a wildcard, which is used
to match any element name/namespace. Using that character for name flattens the
tree by returning all the Attribute nodes in a NodeList. It should be noted that the
structure of the hierarchy has not been changed. The returned NodeList is just a
container for the Element nodes that were found in the tree.

If you run the following script on the entry from the structure in section
“Navigation within scripts” on page 50:
var list = entry.getElementsByTagName("*");

then the list variable will hold the following structure:
list

|
+ a
|
+ b
|
+ c
|
+ d
|
+ c
|
+ pref:d
|
+ b
|
+ c
|
+ pref2:d

Exceptions

An exception is thrown in the following cases:
v If the method entry.appendChild(newAttr) is called and the entry already

contains an Attribute with the name of the newAttr object passed to the method.

56 IBM Security Directory Integrator: Users Guide

v If for any of the methods defined by the Document/Node/Element and
implemented by the Entry/Attribute classes a unexpected parameter is passed.

v An ArrayIndexOutOfBoundsException is thrown if the supplied script refers to
an index of an Attribute/NodeList that does not exist.

Integrating scripting into your solution
As already explained, you use script whenever you need custom processing in
your integration solution. Best practices with IBM Security Directory Integrator
divide this custom processing into two categories: attribute transformation and
flow control.

Note: This is convention, and not a limitation or rule enforced by the system. The
need for custom data processing inevitably comes at some identifiable point in the
flow of data (for example, before any processing begins, before processing a
particular entry, after a failure, and so forth), so by placing your code as close to
this point as possible, you can make solutions that are easier to understand and
maintain.

The logical place to do the attribute transformations is in your Attribute Maps,
both Input and Output. If you need to compute a new attribute that is required by
scripted logic or other Connectors downstream in the AssemblyLine, best practice
is to do this in an Input Map if possible. Alternatively, if you must transform
attributes for the sake of a single output source, then you can avoid cluttering the
work entry object with output-specific transformations by putting these in the
Output Map. of the relevant Connector.

The other category of custom logic, flow control, is best implemented in the Hooks
that are invoked at that point in the automated workflow where the logic is
needed. These control points are easily accessed from the Config Editor.
Implementing custom processing is simply a matter of identifying the correct
control point and adding your script in the appropriate edit window.

AssemblyLine Script Components, independent blocks of scripted code, also
provide you with a place to create your own custom processing, and then enable
you to reposition your code within the AssemblyLine. Although Script
Components are frequently used during test and debugging, they can also serve an
important role in a production Config. Just remember to name your components
clearly and to include some documentation in the script itself to explain 7 why you
implemented this logic in a Script Component, and not in an Attribute Map or
Hook.

While it is important to both correctly identify the appropriate control point where
you input your script, it is equally important to limit the scope of your script to
cover just the single goal associated with the control point. If you keep your units
of logic independent of each other, then there is a greater chance that they will be
reusable and less of a chance that they might break when components are
reordered or reused in other contexts. One way to build reusable code is by
creating your own functions in your Script Library (or a Prolog Hook) to
implement frequently used logic, instead of copying and pasting the same code
into multiple places.

7. To others, as well as yourself when you have to revisit your code some time later!

Chapter 2. Scripting in IBM Security Directory Integrator 57

To sum up some of the best practices that you want to keep in mind while
building solutions:
v Do attribute manipulation in Attribute Maps.
v Put flow control (filtering, validation, branching, and so forth) in Hooks, and

where necessary, AssemblyLine script components.
v Use the automated behavior as much as possible; for example, AssemblyLine

workflow and Connector modes.
v Simplify your solution by keeping AssemblyLines short and focused.
v Put often used logic in discrete blocks; for example, Scripts in your Resources

section.
v Think reuse.

It is worth mentioning again that although the methods outlined previously are
best practices, you might encounter situations where you have to deviate from
established convention. If this is the case, your solution documentation is vital for
maintaining and enhancing your work over time.

Controlling execution with scripting
The engine exposes a number of classes and objects that can be accessed, read and
modified from user-created scripts in an AssemblyLine. These objects represent the
state of the AssemblyLine and the whole IBM Security Directory Integrator
environment at any moment. By modifying any of these objects, you modify the
IBM Security Directory Integrator environment and thus affect the execution of the
integration process.

Note: Changes can be applied to either instances of a component or AssemblyLine.
Changes can also be made to operational parameters, such as system or Java
parameters. Changes can also be made to the configuration file, or Config. In this
case, new instances of Config objects reflect these changes.

For more information about global objects, see the Javadocs included as part of the
IBM Security Directory Integrator product by selecting Help > Javadocs in the
Config Editor.

A description of all classes and instances available can be found in the installation
package.

By understanding the classes and interfaces exposed, you can better understand
the elements of the IBM Security Directory Integrator engine as well as the
relations between them.

Using variables
It is important to distinguish between the standard container object for data being
processed (the Entry object) and other generic variables and data types provided to
you by JavaScript, as well as those that you create yourself. Your creativity and the
capabilities of the scripting language are your only restrictions in terms of what
can be placed in scripts inside your IBM Security Directory Integrator solutions.
However, when you manipulate data in the context of the data flow, you must be
aware of and use the structure of the Entry object.

Entry objects carry attributes, which are themselves the container for data values.
Attribute values are themselves objects (java.lang.String, java.util.Date and
more complex structures). An attribute value can even be another entry object with

58 IBM Security Directory Integrator: Users Guide

its own set of attributes and values. It is the job of IBM Security Directory
Integrator to understand how data is stored in the connected system, as well as
how to convert these native types to and from the data representation of the
system, which is in Java objects.

If you know the class of the attribute value, you can successfully access and
interpret this value. For example, if a java.lang.String attribute contains a
floating point value that you want to use as a floating point, you must first
manually transform this value, by means of the scripting language, to some
numeric data type.

When creating variables or processes not directly related to the data flowing in the
integration process and the global objects available, the following principle applies:
You can declare and use any variables (objects) enabled by the scripting language.
The purpose of these variables is to help you achieve the specific goal associated
with the control point in which you script. The variables must serve only as
temporary buffers and not attempt to affect the state of the IBM Security Directory
Integrator environment.

Using properties
During the lifetime of the AssemblyLine, the IBM Security Directory Integrator
Server makes available a number of component Properties, related to the execution
environment of the AssemblyLine, that you can query in your scripts: either from
Script Components or Component Hooks. One property (lastCallStatus) can even be
set.

You access the properties by using an AssemblyLine object, for example, a
Connector and call its method get(property_name) to extract the property_name
value; alternatively, use the put(property_name, property_value) method to set
the property to the desired value. When setting properties, the property name or
property value cannot be null; if one of them is null an Exception with an
appropriate message will be thrown.

The set of properties available is as follows:

Table 6. Component properties available during AssemblyLine Execution

Property Usage

numErrors The number of errors occurred.

numAdd Total number of entries the AssemblyLine has added (performed by
Connectors in AddOnly mode).

numModify Total number of entries the AssemblyLine has modified (performed
by Connectors in Update mode).

numDelete Total number of entries the AssemblyLine has deleted (performed
by Connectors in Delete mode).

numGet Total number of entries the AssemblyLine has retrieved (performed
by Connectors in Iterator mode).

numGetTries Total number of times the AssemblyLine has attempted to retrieve
an entry (performed by Connectors in Iterator mode).

numGetClient Total number of accepted Clients (available for Connectors in
Server mode).

numGetClientTries Total number of times the AssemblyLine has attempted to get the
next connected client (performed by Connectors in Server mode).

Chapter 2. Scripting in IBM Security Directory Integrator 59

Table 6. Component properties available during AssemblyLine Execution (continued)

Property Usage

numCallreply Total number of Call/Reply operations the AssemblyLine has
executed (performed by Connectors in CallReply mode).

numLookup Total number of Lookup operations the AssemblyLine has executed
(performed by Connectors in Update/Delete/Lookup mode).

numNoChange Total number of entries the AssemblyLine processed but left
unchanged.

numSkipped Total number of entries the AssemblyLine has skipped.

numIgnored Total number of entries the AssemblyLine has ignored (performed
by Connectors in Update/Delta mode).

lastCallStatus Contains the status for the AL execution. It is not just a read-only
property and can be modified by you. The value of this property is
“fail” or “success” dependant on the AL execution.

lastConn The Conn entry from the last Connector operation. Before the first
Connector operation, lastConn has a value of null.

lastError The last error as a Java object.

hooksInvoked A java.util.List of the names of the hooks invoked the last time the
Component was invoked. The names are internal names.

success This property is set to true if the last operation was a success, and
false otherwise.

endOfData True when the Iterator Component has reached End of Data, false
otherwise. Changing this property has no effect.

Note: If an attempt is made to change a read-only property then an Exception
with appropriate message will be thrown.

Example

To illustrate the use of these Component Properties, let's assume you have a
FileSystem Connector called FS, and some Script Components. The following
JavaScript Code is in the "GetNext Successful" hook of FS:
if(work.getString("ID") == null)
throw new java.lang.Exception("Missing ID");
//for the AL Cycle to execute properly I need an ID, so throw an Exception

And this JavaScript Code is in the "DefaultOnError" hook of FS:
if(FS.get("lastError").getMessage().equals(“Missing ID”)) {
//I could fix this by adding an ID which would help AL execution
work.setAttribute(“ID”, “SomeID”); //add the ID
if(FS.get("fixErrors") == null) {
var vector = new java.util.Vector();
vector.add(FS.get("lastError"));
FS.put("fixErrors", vector);//save all fixed errors in my custom property
} else {//I have previously fixed similar error
var vector = FS.get("fixErrors");
vector.add(FS.get("lastError"));
FS.put("fixErrors", vector); //save all fixed errors in my custom property
}
FS.put("lastCallStatus", "success");
} else {//I could not fix this error
if(FS.get("notFixErrors") == null) {
var vector = new java.util.Vector();
vector.add(FS.get("lastError"));
FS.put("notFixErrors", vector); //save all not fixed errors in my custom property
} else {
var vector = FS.get("notFixErrors");
vector.add(FS.get("lastError"));

60 IBM Security Directory Integrator: Users Guide

FS.put("notFixErrors", vector); //save all not fixed errors in my custom property
}
FS.put("lastCallStatus", "fail");
}

Finally, in a Script Component, consider the following code:
main.logmsg("AL Cycle status: " + FS.get("lastCallStatus"));
//print the AL status for this AL Cycle
//I can also report all errors which have occurred
// during the AL Execution through my custom property, "vector"

Control points for scripting

Scripting in an AssemblyLine
AssemblyLines provide for a standard, pre-programmed behavior. If you want to
deviate from this standard behavior, you can do so by implementing your own
business logic by means of scripting.

Script Component
You can add Script Components to your AssemblyLine in addition to Connectors
by right-clicking Insert Components... > Scripts > Script on the appropriate
Component or section in the AssemblyLine Components window in the
AssemblyLine Editor. The Script Component is started once for each entry
processed by the AssemblyLine, and can be placed anywhere in the AssemblyLine.

Note: Iterators are still processed first, even if you place your Script Component
before them in the AssemblyLine.

For more information, see “Script Components” on page 21.

AssemblyLine Hooks
AssemblyLine Hooks (that is, Hooks that apply to the AssemblyLine as a whole,
not any individual Component) are found in the Hooks tab of the AssemblyLine.
These Hooks are all executed only once per AssemblyLine run, or, in the case of
Shutdown Request, whenever the AssemblyLine is told to shut down by some
external process. However, if you start your AssemblyLine multiple times (for
example, by using the AssemblyLine Connector), then you start the Hooks
multiple times as well.

Hooks inside a Connector are only evaluated and executed (where defined and
non-empty) when the Connector in which they are defined, is run. See “Scripting
in a Connector” on page 67 for more information.

Server Hooks
Server Hooks allow you to write JavaScript code to respond to events and errors
that occur at the server level. Unlike AssemblyLine and component Hooks, Server
Hooks are stored in separate script files. These files are kept in the serverhooks
folder in the current solution directory and must contain specifically named script
functions. The IBM Security Directory Integrator server and configuration instances
provide a method for IBM Security Directory Integrator components to invoke
custom Server-level Hooks. A Server Hook is a function name that is defined in a
script file. Function implementations are provided by simply dropping script files
in the "serverhooks" directory of the solution directory.

In addition to these Hooks being called by the Server when specific events occur,
they can also be invoked from your scripts. Calls to these Hooks are synchronized
to avoid potential multi-threading issues.

Chapter 2. Scripting in IBM Security Directory Integrator 61

Upon startup, IBM Security Directory Integrator loads and executes all user scripts
in the serverhooks subdirectory. Scripts may or may not contain function
declarations. A script that has no function declarations is executed once at startup
before any configuration instances are started. Code that defines standard IBM
Security Directory Integrator Server Hook functions are prefixed with "SDI_"., and
these are executed at various points during operation.

All IBM Security Directory Integrator Server Hook functions have the following
JavaScript signature:
/**

* @param NameOfFunction The configuration instance invoking the function
* @param source The component invoking the function
* @param user Arbitrary parameter information from the source
*/
function SDI_functionName(Name_of_function, source, user) {
}

The "NameOfFunction" and "source" parameters always provide access to the
Config Instance and calling component, respectively. The "user" parameter is used
for different purposes in the various Hook functions.

The following standard function names are invoked by various IBM Security
Directory Integrator components:

Function Name Called by (source)
User Parameter and
Expected Value

SDI_ALStarted Config Instance Called when an
AssemblyLine is started.

user = The AssemblyLine
that started

return value ignored

SDI_ALStopped Config Instance Called when an
AssemblyLine stopped.

user = The AssemblyLine
that stopped

return value ignored

SDI_ConfigStarted Server Called when a Config
instance started.

user = The configuration
instance

return value ignored

SDI_ConfigStopped Server Called after a Config
instanced stopped.

user = The configuration
instance

return value ignored

62 IBM Security Directory Integrator: Users Guide

Function Name Called by (source)
User Parameter and
Expected Value

SDI_Shutdown Server/Config Instance Called immediately before
the IBM Security Directory
Integrator server is
terminating the JVM (for
example, System.exit()).

user = Exit status (integer)

return value ignored

Access to IBM Security Directory Integrator Server Hook functions is provided
through the main.invokeServerHook() method. This function is synchronized to
prevent more than one thread executing a Hook at a time. All calls are invoked
synchronously so the caller will wait for the function to return. As a result, care
should be taken not to spend too much time in a server Hook.

As mentioned previously, scripts are defined and made available by creating files
in the "serverhooks" subdirectory of the solution directory. Scripts that contain
sensitive information should be encrypted with the Server-API before adding it to
the directory. The serverapi/cryptoutils tool is available for encrypting script
files. Note that IBM Security Directory Integrator automatically tries to decrypt
files with extension .jse, hence encrypted files should preferably have that
extension.

Furthermore, the files in the serverhooks directory are loaded and executed after
first sorting the file names using case-sensitive sort with the standard collating
sequence for the platform. All files in the top-level directory are loaded before files
in any subdirectories are processed.

Some examples Server Hook use are:
v A custom object that you always want loaded in IBM Security Directory

Integrator for use for your own scripting could be instantiated from a JavaScript
snippet hooked into the server Hook on IBM Security Directory Integrator
startup. This gives you more control than simply referring to the class under the
Java Libraries folder in the Config Browser.

v One or more custom ALs that you start creates an audit log for these events or
propagates these events to other systems using some transport (SNMP, HTTP,
JMS, and so forth).

v A corporate security policy you implement that is invoked every time a Config
is loaded or AL started.

Calling Server Hooks from script: The com.ibm.di.server.RS class (script
variable "main") has a method for invoking Server Hooks:
/**
* Invokes a server hook.
*
* @param name The name of the hook (also the filename)
* @param caller The object invoking the hook
* @param userInfo Arbitrary information to the hook from the caller
*/

public Object invokeServerHook(
String name,
Object caller,
Object userInfo) throws Exception;

Chapter 2. Scripting in IBM Security Directory Integrator 63

This call can return a Java Object (any type), so even though IBM Security
Directory Integrator ignores this during Server Hook execution, you can make use
of returned values in your own scripted calls.

In a script in an AssemblyLine you may do this:
main.invokeServerHook("MyCustomHook", this, "custom information");

Accessing AL components inside the AssemblyLine
Each AL component is available as a pre-registered script variable with the name
you chose for the component.

Note that you can dynamically load components with scripted calls to functions
like system.getConnector(), although this is for experienced users.8

AssemblyLine parameter passing
There are three ways to get data into an AssemblyLine:
v Generating your own initial entry inside the AssemblyLine, for example, in a

Prolog script.
v Fed from one or more Iterators.
v Starting the AssemblyLine with parameters from another AssemblyLine using

the AL Connector or AL Function Component, or using an API call.

If you want to start an AssemblyLine with parameters from another AssemblyLine,
then you have a couple of options:
v Use the Task Call Block (TCB), which is the preferred method. The TCB is

detailed below.
v Provide an Initial Work Entry directly.

Note: These two options are provided for compatibility with earlier versions.

Task Call Block (TCB)
The Task Call Block (TCB) is a special kind of Entry object used by a caller to set a
number of parameters for an AssemblyLine.

Basic Use: The Task Call Block (TCB) is a special kind of Entry object used by a
caller to set a number of parameters for an AssemblyLine. The TCB can provide
you with a list of input or output parameters specified by an AssemblyLine,
including operation codes defined in the Operations tab of the AssemblyLine, as
well as enabling the caller to set parameters for the AssemblyLine's Connectors.
The TCB consists of the following logical sections:
v The Initial Work Entry passed to the AssemblyLine: tcb.setInitalWorkEntry()
v The Connector parameters: tcb.setConnectorParameter()
v The input or output mapping rules for the AssemblyLine, which are set in the

Config Editor under the Operations tab
v An optional user-provided accumulator object that receives all work entries from

the AssemblyLine: tcb.setAccumulator()

8. The Connector object you get from this call is a Connector Interface object, and is the data source specific part of an AssemblyLine
Connector. When you change the type of any Connector, you are actually swapping out its data source intelligence (the Connector
Interface) which provides the functionality for accessing data on a specific system, service or data store. Most of the functionality
of an AssemblyLine Connector, including the attribute maps, Link Criteria and Hooks, is provided by the IBM Security Directory
Integrator kernel and is kept intact when you switch Connector types.

64 IBM Security Directory Integrator: Users Guide

For example, starting an AssemblyLine with an Initial Work Entry and setting the
filePath parameter of a Connector called MyInput to d:\myinput.txt is
accomplished with the following code:
var tcb = system.newTCB(); // Create a new TCB
var myIWE = system.newEntry(); // Create a new entry object
myIWE.setAttribute("name","John Doe"); // Add an attribute to myIWE
tcb.setInitialWorkEntry (myIWE); // Set the IWE and parameters
// Note that since this is a JavaScript string, we must "escape" the forward slash
// or use a backslash (Windows syntax)
tcb.setConnectorParameter ("MyInput", "filePath", "d:\\myinput.txt");

var al = main.startAL ("MyAssemblyLine", tcb); // Start the AL with the tcb
al.join(); // Wait for AL to finish

Starting an AssemblyLine with operations: AssemblyLines can be defined with
Operations; a concept whereby a number of Input Maps are defined for the
AssemblyLine. Depending on how the AssemblyLine is invoked, a different Input
Map is activated. Inside the AssemblyLine you will need to check the op-entry to
find out which operation is active, and use Branch Components to tailor the flow
inside the AssemblyLine to the relevant operation.

One of the ways to start an AssemblyLine with an Operation is by means of a
TCB, and script code.

If an AssemblyLine named "al1" has the following operations: "Default", "Op1" and
"Op2", then this script will start the AL with operation set to "Op1":
var tcb = system.newTCB("al1");
tcb.setALOperation("Op1");
main.startAL(tcb);

Not specifying any operation will start the AL with operation set to "Default":
var tcb = system.newTCB("al1");
main.startAL(tcb);

In case the AL doesn't have a Default operation (for example, only "Op1" and
"Op2" operations) the second script will throw an exception.

More information about the AssemblyLine Operations concept is available in the
section entitled "Creating new components using Adapters" in Reference.

Using an accumulator: As noted previously, you can also pass in an accumulator
object to an AssemblyLine with the TCB. An accumulator can be any one of the
following classes or interfaces:

java.util.Collection
All work entries are cloned and added to the collection; for example,
ArrayList, Vector, and so forth.

com.ibm.di.connector.ConnectorInterface (Connector Interface)
The putEntry() method for this Connector Interface is called with the Work
entry at the end of each AssemblyLine cycle.

com.ibm.di.parser.ParserInterface (Parser)
The writeEntry() method is called for this Parser with the Work entry at
the end of each AssemblyLine cycle.

com.ibm.di.server.AssemblyLine Component (AssemblyLine Connector)
The add() method is called for this AssemblyLine Connector with the Work
entry at the end of each AssemblyLine cycle.

Chapter 2. Scripting in IBM Security Directory Integrator 65

If the accumulator is not one of these classes or interfaces, an exception is returned.

For example, to accumulate all work entries of an AssemblyLine into an XML file
you can use the following script:
var parser = system.getParser ("example_name.XML"); // Get a Parser
// Set it up to write to file
parser.setOutputStream (new java.io.FileOutputStream ("d:/accum.xml"));
parser.initParser(); // Initialize it.
tcb.setAccumulator (parser); // Set Parser to tcb

var al = main.startAL ("MyAssemblyLine", tcb); // Start AL with tcb
al.join(); // Wait for AL to finish

parser.closeParser(); // Close the parser - this flushes and
// closes the output file

As well, you can configure a Connector instead of programming the Parser
manually as in the following script:
var connector = system.getConnector("myFileSysConnWithXMLParser");
tcb.setAccumulator (connector);

var al = main.startAL("MyAssemblyLine", tcb);
al.join();

connector.terminate();

Typically, you initialize the TCB and then the TCB is used by the AssemblyLine. If
the AssemblyLine has an Operations specification, the TCB remaps input attributes
to the Initial Work Entry as expected by the AssemblyLine, and likewise for setting
the result object. This is done so that the external call interface to an AssemblyLine
can remain the same even though the internal Work entry names change in the
AssemblyLine. Once the TCB is passed to an AssemblyLine, you must not expect
anything more from the TCB. Use the AssemblyLine's getResult() and getStats()
to retrieve the result object and statistics.

The TCB result mapping is performed before the Epilog so you can still access the
final result before the AssemblyLine caller gets to it.

Disabling AssemblyLine components: In IBM Security Directory Integrator, you
can specify that certain AssemblyLine components must not be created or
initialized on AssemblyLine initialization. This is done by disabling those
components using the TCB.

AssemblyLine components are enabled by default.

In order to enable or disable a component in the AssemblyLine, you must call the
com.ibm.di.server.TaskCallBlock.setComponentEnabled(String name, boolean
enabled) method on the TCB object of the AssemblyLine. The name argument of
the method specifies the name of the component to be enabled or disabled. The
enabled argument of the method specifies whether the component is to be enabled
or disabled.

The actual enabling or disabling of the AssemblyLine components happens in the
com.ibm.di.server.TaskCallBlock.applyALSettings(AssemblyLineConfig alc)
method. This method is invoked upon AssemblyLine initialization. As the
initialization of the AssemblyLine progresses, the components which have been
marked as Disabled do not get created/initialized.

66 IBM Security Directory Integrator: Users Guide

If a LOOP component is disabled then all components contained in that LOOP will
also be disabled.

Even if a component is disabled from the Config Editor, it can be enabled using
this script call:
com.ibm.di.server.TaskCallBlock.setComponentEnabled(String name, boolean enabled)

Providing an Initial Work Entry (IWE)
Providing an Initial Work Entry (IWE) is an alternative way of passing parameters
using a TCB and is supported for compatibility with earlier versions..

When an AssemblyLine is started with the system.startAL() call from a script, the
AssemblyLine can still be passed parameters by setting attribute or property values
in the Initial Work Entry, which is accessed through the work variable. It is then
your job to apply these values to set Connector parameters; for example, in the
AssemblyLine Prolog – Init Hook using the connectorName.setParam() function.

Note: You must clear the Work entry with the task.setWork(null) call, otherwise
Iterators in the AssemblyLine pass through on the first cycle.

You can examine the result of the AssemblyLine, which is the Work entry when the
AssemblyLine stops, by using the getResult() function. See also "runtime
provided Connector" in Reference.

Below is an example of passing in a Connector parameter value with an IWE:
var entry = system.newEntry();
entry.setAttribute ("userNameForLookup", "John Doe");

// Here we start the AssemblyLine
var al = main.startAL ("EmailLookupAL", entry);

// wait for al to finish
al.join();

var result = al.getResult();

// assume al sets the mail attribute in its working entry
task.logmsg ("Returned email = " + result.getString("mail"));

Scripting in a Connector
Input Map and Output Map

Custom attribute mapping is performed in these tabs. When the attribute is
selected, you must select the Advanced Mapping check box, and input
your script in the edit window. Remember that after you have done all
processing necessary, you must assign the result value achieved to
ret.value, for example:

...
ret.value = myResultValue;

Alternatively, in IBM Security Directory Integrator you may use the
keyword return followed by the simple value you would like to pass as
result:
return "mystring";

Connector Hooks
Hooks give you the means to respond to certain events that occur, and
override the basic functionality of a Connector. You have access to the

Chapter 2. Scripting in IBM Security Directory Integrator 67

global objects when scripting Hooks, although some of the standard objects
might not be available in every Hook. For details on temporary object
availability, see "AssemblyLine and Connector mode flowcharts" in
Reference. You also have full control over the environment, the
AssemblyLine, the Connector, entries and attributes. Hooks give you a
diversity of control points for customizing the process flow. See
“AssemblyLine flow and Hooks” on page 30.

Setting internal parameters by scripting
It is possible to set the connection parameters for a Connector using the following
script:
myConnector.setParam ("filePath", "examples/scripting/sample.csv");

This is typically something you do in the Prolog, but it can be very useful while
the AssemblyLine is running as well, provided that you stop and reinitialize the
Connector.
myConnector.terminate();
myConnector.setParam ("filePath", "examples/scripting/sample.csv");
myConnector.initialize(null);

Scripting in a Parser
Scripting in a Parser actually refers to implementing your own Parser by scripting.
A description of this process is included in the section called "Script Parser" in the
Reference.

Java + Script ≠ JavaScript
JavaScript is not Java. It may look like Java, but it is actually just close enough to
really cause confusion. JavaScript was originally called Live!Script back when
Netscape first created it. Although there is broad support for JavaScript, you will
learn that dialects exist; for example, Microsoft's version, called JScript. There is a
standard definition, which is known as ECMAScript, and you can find its
specification at this URL: http://www.ecma-international.org/

Although the syntax is similar, Java and JavaScript deal with data and data types
differently. This is one of the main sources of confusion, and with that, errors when
working with JavaScript.

Data Representation
Java supports something called primitives, which are simple values like signed
integers, decimal values and single bytes. Primitives do not provide any
functionality, only non-complex data content. You can use them in computations
and expressions, assign them to variables and pass them around in function calls.
Java also provides a wealth of objects that not only carry data content (even highly
complex data), but also provide intelligence in the form of object functions, also
known as methods.

When you make the script call to task.logmsg("Hello, World"), you are calling
the task object's logmsg() method.

Many Java primitives have corresponding objects. One example is integers, which
can used in their primitive form (int) or by manipulating java.lang.Integer
objects.

68 IBM Security Directory Integrator: Users Guide

http://www.ecma-international.org/

JavaScript does not employ the concept of primitives. Instead, all data is
represented as JavaScript objects. Furthermore, JavaScript has only a handful of
native objects as compared to Java's rich data vocabulary. So while Java
differentiates between non-fractional numeric objects and their decimal
counterparts – even distinguishing between signed and unsigned types, as well as
offering similar objects for different levels of precision – JavaScript lumps all
numeric values into a single object type called a Number.

As a result, you can get seemingly erroneous results when comparing numeric
values in JavaScript:
if (myVal == 3) {
// do something here if myVal equals 3
}

If myVal was set by an arithmetic operation, or references a Java decimal object, the
object's value could be 3.00001 or 2.99999. Although this is very close to 3, it will
not pass the above equivalency test. To avoid this particular problem, you can
convert the operand to a Java Integer object to ensure a signed, non-fractional
value. Then your Boolean expression will behave as expected.
if (java.lang.Integer(myVal) == 3) { ...

Or you can make sure that your variables reference appropriate Java objects to
begin with. In general, you will want to be conscious of the types of objects you
are using.

Ambiguous Function Calls
Java also provides a primitive type called a char, which can contain a single
character value. A collection of characters could be represented in Java as an array
of character primitives, or it could be handled as a java.lang.String object. As
mentioned before, JavaScript does not savvy primitives. Character data must be
dealt with using the JavaScript string object. Even if you specify a single character
in JavaScript ("a"), this is considered a string.

Now consider that when you call a Java function from your script, this is matched
up to the actual method using the name of the function as well as the number and
types of the parameters used in the call. This matching is carried out by the
LiveConnect extension to JavaScript. LiveConnect does its best to figure out which
function signature you are referring to, which is no small task given that Java and
JavaScript represent parameter types in different ways. But JavaScript and
LiveConnect do some internal conversions for you, trying to match up Java and
JavaScript data types.

A problem arises when you have multiple versions of a single method, each taking
a different set of parameters; in particular, if two functions have the same number
of parameters, but of different types, and if these types are not differentiated in
JavaScript. Let's take a look at an example script that will be performing an MD5
encryption of a string.
// Create MessageDigest object for MD5 hash
var md = new java.security.MessageDigest.getInstance("MD5");

// Get the EID attribute value as byte array.
var ab = java.lang.String("message to encrypt").getBytes();

md.update(ab);

var retHash = md.digest();

Chapter 2. Scripting in IBM Security Directory Integrator 69

The above update() call will fail with an evaluation exception stating that the
function call is ambiguous. This is because the MessageDigest object has multiple
versions of this function with similar signatures: one accepting a single byte and
one expecting a byte array (byte[]). You can get around this if you can find
another variant of the same method taking a different number of parameters, thus
giving it a uniquely identifiable signature. Fortunately, MessageDigest provides
something suitable: a version of update() that takes a byte array plus a couple of
numeric values (offset and length parameters). So you can change your code to use
this call instead:
md.update(ab, 0, ab.length);

Finally, you can always specify the exact signature of the Java method you want to
use by quoting it inside brackets after the object:
md["update(byte[])"](ab);

Here we are calling for the version of the update() function declared with a single
byte array parameter.

Char/String data in Java versus JavaScript Strings
Both Java and JavaScript provide a String object. Although these two types of
String objects behave in a similar fashion and offer a number of analogous
functions, they differ in significant ways. For example, each object type provides a
different mechanism for returning the length of a string. With Java Strings you use
the length() method. JavaScript Strings on the other hand have a length variable.
var jStr_1 = new java.lang.String("Hello, World"); // Java String
task.logmsg("the length of jStr_1 is " + jStr_1.length());

var jsStr_A = "Hello, World"; // JavaScript String
task.logmsg("the length of jsStr_A is " + jsStr_A.length);

This subtle difference can lead to baffling syntax errors. Trying to call
jsStr_A.length() will result in a runtime error, since this object has no length()
method.

Even more confounding mistakes can occur with string comparisons.
var jsStr_A = "Hello, World"; // JavaScript String
var jsStr_B = "Hello, World"; // JavaScript String

if (jsStr_A == jsStr_B)
task.logmsg("TRUE");
else
task.logmsg("FALSE");

As expected, you will get a result of "TRUE" from the above snippet. However,
things work a little differently with Java Strings.
var jStr_1 = java.lang.String("Hello, World"); // Java String
var jStr_2 = java.lang.String("Hello, World"); // Java String

if (jStr_1 == jStr_2)
task.logmsg("TRUE");
else
task.logmsg("FALSE");

This will result in "FALSE", since the equivalency operator above will be
comparing to see if both variables reference the same object in memory, instead of
matching their values. To compare Java String values, you must use the
appropriate String method:

70 IBM Security Directory Integrator: Users Guide

if (jStr_1.equals(jStr_2)) ...

But wait, there's more. This next snippet of code will get you a result of "TRUE":
var jsStr_A = "Hello, World"; // JavaScript String
var jStr_1 = java.lang.String("Hello, World"); // Java String

if (jsStr_A == jStr_1)
task.logmsg("TRUE");
else
task.logmsg("FALSE");

Since JavaScript cannot operate on an unknown type like a Java String object, it
first converts jStr_1 to an equivalent JavaScript String in order to perform the
evaluation.

In summary, be aware of the types of objects you are working with. And remember
that IBM Security Directory Integrator functions always return Java Objects.
Keeping these factors in mind will help minimize errors in your script code.

Variable scope and naming
JavaScript is a relatively informal language and does not require you to define
variables before assigning values to them. Neither does it enforce strict type
checking, or signal when a variable is redefined. This makes JavaScript fast and
easy to work with, but can quickly lead to illegible code and confounding errors,
especially since you can create variables that overwrite built-in ones.

One bug that can defy debugging is when you declare a variable with the same
name as a built-in one, like work, conn and current, so you will need to familiarize
yourself with the reserved names used by IBM Security Directory Integrator.

Another common problem occurs when you create new variables that redefine
existing ones, perhaps used in included Configs or Script Libraries. These mistakes
can be avoided if you are conscious about the naming of variables and their scope.
Scope defines the sphere of influence of a variable, and in IBM Security Directory
Integrator we talk about global variables; those which are available in all Hooks,
Script Components and attribute maps, and those that are local to a function.

To get a better understanding of scope you must first understand that every AL
has its own Script Engine, and therefore runs in its own script context. Any
variable not specifically defined as local inside a function declaration is global for
that Script Engine. So the following code will create a global variable:
myVar = "Know thyself";

This variable will be available from this point on for the life the AL. Making this
variable local requires two steps: using the var keyword when declaring the
variable, and putting the declaration inside a function:
function myFunc() {
var myVar = "Know thyself";
}

Now myVar as defined above will cease to exist after the closing curly brace. Note
that placing the variable inside a function is not enough; you have to use var as
well to indicate that you are declaring a new, local, variable.
var glbVar = "This variable has global scope";
glbVar2 = "Another global variable";

Chapter 2. Scripting in IBM Security Directory Integrator 71

function myFunc() {
var lclVar = "Locally scoped within this block";
glbVar3 = "This is global, since "var" was not used";

};

As long as you declare a local variable within a function then you can call it what
you like. As soon as it goes out of scope, any previous type and value are restored

Even though the var keyword is not required for defining global variables, it is
best practice to do so. And it is recommended that you define your variables at the
top of your script, including enough comments to give the reader an
understanding of what they will be used for. This approach not only improves the
legibility of your code, it also forces you to make conscious decisions about
variable naming and scope.9

Instantiating a Java class
You can call external Java classes ; that is, those you have added to the IBM
Security Directory Integrator runtime environment, or the CLASSPATH, using
script code.

For example, assuming you want to use the standard java.io.FileReader, use the
following script:
var javafile = new java.io.FileReader("myfile");

You now have an object called javafile; using it you can call all of the methods of
the object.

The same technique is used to instantiate your own objects:
var myfile = new my.FileReader("myfile");

Using binary values in scripting
Binary values can be retrieved from Attributes by using the getObject() function
of the entry. The binary Attribute value itself is returned as a byte array. Here is a
JavaScript example:
var x = conn.getObject("objectGUID");
for (i = 0; i < x.length; i++)
{

task.logmsg ("GUID[" + i + "]: " + x[i]);
}

This example writes some numbers varying between -128 and 127 into the log file.
You might want to do something else with your data. If you have read a password
from a Connector, which stored it as a ByteArray, you can convert it to a string
with this code:
password = system.arrayToString(conn.getObject("userpassword"));

Using date values in scripting
When working with dates in IBM Security Directory Integrator, this implies using
instances of java.util.Date. Armed with any of the available scripting languages,
you can implement your own mechanism for handling dates; however, this is not a
common practice.

9. Function naming works a little differently. Programming languages like Java identify a function by the combination of its name
plus the number and types of parameters. JavaScript just uses the name. So if you have multiple definitions of the same function,
JavaScript will only "remember" the last one — regardless of whether that definition has a different number of parameters.

72 IBM Security Directory Integrator: Users Guide

The IBM Security Directory Integrator scripting engine provides you with a
mechanism for parsing dates. The system object has a parseDate(date, format)
method accessible at any time.

Note: When you get an instance of java.util.Date, you can use the standard Java
libraries and classes to extend your processing.

Here is a simple JavaScript example that handles dates. This code can be placed
and started from any scripting control point:
var string_date1 = "07.09.1978";
var date1 = system.parseDate(string_date1, "dd.MM.yyyy");

var string_date2 = "1977.02.01";
var date2 = system.parseDate(string_date2, "yyyy.dd.MM");

task.logmsg(date1 + " is before " + date2 + ": " +
date1.before(date2));

The script code first parses two date values (in different formats) into
java.util.Date. It then uses the standard java.util.Date.before() method to
determine whether the first date instance comes before the second one. The output
of this script is then printed to the log file.

Using floating point values in scripting
The following examples demonstrate how floating point values can be used within
the scripting code you create. All of these examples are implemented in JavaScript.
While the same examples might be repeated using several other scripting
languages, the syntax might be different. The following simple script assigns
floating point values to two variables in order to find their average. This code can
be started from any scripting control point. The log file output is " r = 3.85 ".
var a = 5.5;
var b = 2.2;
var r = (a + b) / 2;
task.logmsg("r = " + r);

The next example extends this simple script. Consider that in your input
Connector is a multi-valued attribute called "Marks" containing string values
(java.lang.String) representing floating point values; a common situation. This
attribute is mapped to an attribute in your output Connector called
"AverageMark", which holds the average value of all values of the "Marks"
attribute. The following code is used in the Advanced Mapping of the
"AverageMark" attribute:
// First return the values of the "Marks" attribute
var values = work.getAttribute("Marks").getValues();

// Zero out counter and sum variables
var sum = 0;
var count = 0;

// Loop through the values, counting and summing them
for (i=0; i<values.length; i++)
{

// use the Double() function to convert value to number
sum = sum + new Number(java.lang.Double(values[i]));
count++;

}

// If count > 0, compute the average

Chapter 2. Scripting in IBM Security Directory Integrator 73

var average = (count > 0) ? (sum / count) : 0;

// Return the computed average
ret.value = average;

The central call in this example is the java.lang.Double(values[i]) used to
convert the currently indexed value of "Marks" into a numeric value that can then
be used in the average computation.

74 IBM Security Directory Integrator: Users Guide

Chapter 3. The Configuration Editor

The IBM Security Directory Integrator Eclipse Configuration Editor (CE) is the
primary tool for developing IBM Security Directory Integrator solutions. It lets you
create, maintain, test and debug Config files; it builds on the Eclipse platform to
provide a development environment that is both comprehensive and extensible.

In order to understand the concepts presented here more easily, you should be
familiar with common Eclipse concepts such as Editors, Views and other common
Eclipse extension points.

The Project Model
With the advent of the Eclipse-based Configuration Editor (CE), development of
solutions in IBM Security Directory Integrator (IBM Security Directory Integrator)
is not, as in pre-V7.0 versions, based upon the development of plain Config files,
but upon a Project model, and Workspaces. Using the Project model and the
Workspace, you can do your development work; once you are ready to deploy the
solution, you extract a Config file from the Workspace and send it to a suitable
IBM Security Directory Integrator Server: the runtime environment. This yields
several benefits, some of which are:
v Cleaner Config files; unnecessary and unused Config elements will not be

exported from the Workspace;
v More efficient editing of IBM Security Directory Integrator configurations;
v Greater re-use of common components;
v The possibility of using source code management systems, for example CVS.

The Workspace

When you start the CE you will be prompted to select a workspace directory. The
workspace directory is where the CE stores all your IBM Security Directory
Integrator projects and files. This is different from the solution directory, though
the workspace directory may very well be contained inside the solution directory.
From the workspace, the CE gathers files to form a runtime configuration file
(rs.xml) that can be executed on an IBM Security Directory Integrator server. Files
and projects in the workspace can be thought of as the source for various runtime
configuration files.

Install Directory, Solution Directory and the Working directory

Some confusion might arise from having three different directories in play. As
stated in the previous section, the workspace directory belongs to the CE where
the project files are stored. The install and solution directories belong to the IBM
Security Directory Integrator server when it executes. However, when you
configure a connector in the CE for example, you will often use the discover
attributes function; this will cause the CE to open the connector and execute
operations on the connector. Since some connectors use file names for multiple
purposes, it can be confusing when relative paths are used. For this reason, the
default working directory for the CE should always be the same as the solution

© Copyright IBM Corp. 2003, 2014 75

directory you are primarily working with10. Primarily, since it is possible to create
several servers and solution directories inside the CE. You can still work with those
and run AssemblyLines on those servers, but relative paths in configurations are
no longer the same when you use connectors in the CE as opposed to using them
when you run the AssemblyLine.

Consider a configuration with a file connector using abc.txt as its input file. When
you use discover attributes in the CE it will look for a file in the working directory
of the CE (the preferred solution directory specified at install time). When you run
the AssemblyLine with this connector everything looks fine. Then you create a new
server with a solution directory pointing somewhere else than the current working
directory. You configure the connector and the connector resolves the file name to
the correct place (that is, the abc file resides in your current working directory).
However, when you run the AssemblyLine it fails, since it can't find the file. This
is because the new server runs in a different working directory (the solution
directory) than the CE.

By default, the working directory of the CE is set to the solution directory of the
default server that is used to execute AssemblyLines. So if you don't change
anything you should not see any of these problems except when you create new
solution directories or change the solution directory of the default server.

The Workbench

The workbench is the main user interface application in which you perform all
configuration and development of IBM Security Directory Integrator solutions. The
workbench consists of a number of views and editors that let you do this.

The IBM Security Directory Integrator Servers view
An IBM Security Directory Integrator server instance is not started every time you
run an AssemblyLine like earlier versions (pre-7.0) did. Instead, an IBM Security
Directory Integrator server is automatically started when you start the CE, which is
used to test and run AssemblyLines that you develop. Contrary to earlier versions,
when the object of your test runs finishes, this server does not terminate but stays
around, waiting for your next test run.

In the Servers View you can manage server definitions. Servers defined here can be
local servers or remote servers and is used by the various IBM Security Directory
Integrator projects you create. Servers that have an installation path defined are
considered “local” servers that can be launched by the CE.

One server is automatically defined and is named Default. This server is the default
server used by new IBM Security Directory Integrator projects. The default server
is created with values from the global properties file using the solution directory as
defined by the user (for example from the SDI_SOLDIR variable, which in turn is
setup by the Installer).

10. The working directory should not be confused with the workspace. The workspace is the area where the project files are stored;
the working directory is the position in the file system that defines all non-fully qualified filenames. For portability reasons, this
should be the solution directory.

76 IBM Security Directory Integrator: Users Guide

The IBM Security Directory Integrator Project
To develop an IBM Security Directory Integrator solution you must first create an
IBM Security Directory Integrator Project. A project in Eclipse is a collection of
related files and resources.

When the project is created, it is populated with a few folders where common
configuration objects are located. The layout of a new IBM Security Directory
Integrator project is shown below.

The AssemblyLines folder contains the AssemblyLines of the project; whereas the
resources folder contains all components that are shared or used by the
AssemblyLines or apply to the solution in general: properties, logging parameters
and so forth. To create new resources either use the File/New... wizard from the
main menu or use the context menus on each folder (that is, right-click
AssemblyLines folder to create a new AssemblyLine).

Figure 5. The default IBM Security Directory Integrator Server definition

Figure 6. The IBM Security Directory Integrator Project tree

Chapter 3. The Configuration Editor 77

The Runtime directory (Runtime-ProjectName) is a special directory that contains
the runtime configuration file as well as custom properties files. Whenever a
component has changed in the project (connector, AssemblyLine, property file and
so forth) the relevant files in this directory are also updated. All generated files are
tagged as derived files, which means that you get a warning if you attempt to
modify the contents. Be aware that if you do change any of these files they will be
overwritten. The intention with the runtime directory is to create a directory of
runtime files for the project that can be copied, or checked out if you use source
control, and used by an IBM Security Directory Integrator server.

Configuration Files
The configuration file (Config) run by a server is a composite XML document in
which AssemblyLines, connectors and so forth are all part of the same document.
In the IBM Security Directory Integrator Eclipse CE each of these components are
allocated their own physical file. These files only contain one configuration object.

One of the reasons for splitting the configuration file into separate files during
solution development was to make sharing of components easier. Also, having
each component in its own file lends itself nicely to source control systems like
CVS and also to multiuser development where different people work on different
parts of the solution at the same time.

Configurations prior to this version can be imported using an import wizard. The
imported configuration splits into individual configuration files as a result of this
process. Another way is to use the File > Open Security Directory Integrator
Configuration File option, which will import the pre-7.0 configuration into a new
project. Be aware though that this option also set the auto update back to the
source file. See the next section for more information on the linked file feature.

Runtime Configuration File

Hidden from normal view is the runtime configuration file. This is the file that
IBM Security Directory Integrator servers use to run the solution and also the file
that previous versions (pre-7.0) would work directly on. Whenever you save a
configuration file in the CE, it will cause an update to the runtime configuration
file as well. This file is also the one that is transferred to an IBM Security Directory
Integrator server for execution. This file is maintained by the Project Builder and
should not be modified by the end user.

You can configure your project to export the runtime configuration file
automatically when it changes. Use the project properties panel to configure the
file the project is linked to.

78 IBM Security Directory Integrator: Users Guide

Whenever the runtime configuration is updated it is also copied to the file
specified in the IBM Security Directory Integrator properties section of the project.
The linked file is automatically set when you use the File > Open Directory
Integrator Configuration command.

The Project Builder
A custom project builder is associated with the project whose purpose is to
assemble all artifacts into a runnable configuration file.

This builder can be run automatically whenever a resource changes, or manually
through the standard Project > Build menu item. Either way, the IBM Security
Directory Integrator project builder maintains a configuration file that is updated
when it is invoked. When a resource has been changed (modified, added or
removed) the builder will update the runnable configuration file with that resource
update. Only recognized configuration files will be acted upon; that is,
AssemblyLines but not .gif files for example. The runnable configuration file is
usually hidden since the file name starts with a dot (.). The file is named .rs.xml,
located under the project folder. This is the compiled configuration file that is sent
to an IBM Security Directory Integrator server for execution.

The builder will relocate and rename components in the target configuration. If the
Resources folder contains both properties and connectors, they will be relocated to
their standard folders in the target configuration (that is, Properties and
Connectors folder).

Figure 7. IBM Security Directory Integrator Project Properties window

Chapter 3. The Configuration Editor 79

The project builder also checks all modified components for obvious errors and
potential problems. These problems are logged to the standard Eclipse Problems
view. Each problem item contains a description of the problem as well as the
location so you can double-click and activate the editor where the problem was
identified.

Properties and substitution
Every IBM Security Directory Integrator project is associated with an IBM Security
Directory Integrator server. The associated server is the server that will be used to
execute the AssemblyLines in the project. Since the server may be located on a
different machine, the project model must provide access to properties through
local copies of chosen property stores.

Property stores can be downloaded from the server as needed where the local copy
contains two values for each property. One value is what was downloaded from
the server (remote value), and the other is the value set by the user (local value).
This is done so as to be able to see which properties are in possible conflict, as well
as being able to extract the set of properties in use by the solution. There is no
requirement to download a property store before adding properties to it though;
however, when you run the solution any properties with a local value will be
checked against the value on the server to prevent unintentional overwrites of
existing properties.

Editing the property files can be done by opening (or creating) the property files in
the Resources folder. After you have created a property file you can modify its
contents and perform upload and download. Upload and Download is what you
do to synchronize the properties locally with those on the server.

Note: IBM Security Directory Integrator currently uses the equal sign "=" or colon
":" as the separator in key/value pairs property files, whichever is first. Using
equal signs or colons in property names and property values is therefore not
supported. The property file key/value separator in IBM Security Directory
Integrator V6.0 and earlier was only the ":" character; therefore, property files
migrated from V6.0 and earlier may require editing.

Note that custom property stores with a relative path (for example, the Connector
configuration uses a relative path) will have a corresponding file generated in the
run time, Project directory. When you create new custom properties the default
path will be set to "{config.$directory}/Filename.properties" where Filename is the
name you give your new property store. The "{config.$directory}" resolves to the
location of the run time file.

Figure 8. Properties view

80 IBM Security Directory Integrator: Users Guide

By default, the shared property stores are not added to a project (for example,
Global, Solution and System store). You can still add those to your project if you
want to maintain changes to those files. To view the shared property stores, you
should use the Servers view or use Browse System Stores on the main toolbar.

The User Interface Model
The user interface (UI) is provided by a set of views, editors and other UI-related
resources. These are provided through standard extension point mechanisms as
defined by the Eclipse platform.

While there are many extension point contributions in the CE, only the most
important ones are listed here.

Table 7. Eclipse CE extension point contributions

Contribution Description

Editors Editors for all major configuration files are
provided:

v AssemblyLine (.assemblyline files)

v Connector (.connector files)

v Function (.function files)

v Scripts (.script files)

v Properties (.tdiproperties files)

v AttributeMap (.attributemap files)

Views Several views are provided to aid in visualizing
various aspects of configuration files.

Menus, Toolbars All actions in the CE that operate on configuration
objects are defined as standard actions.

Wizards Several wizards are provided to aid in creating
new projects and configuration files.

The CE follows the MVC (model, view, controller) paradigm. The editor for a
configuration file creates the widgets that show the contents of the configuration
file. The widgets register toolbars and menus they use with the Eclipse framework
so contributions can be made to these. All actions that affect the configuration file
are implemented and contributed using standard Eclipse mechanisms.

The User Interface

The Application Window
The first time you start the Config Editor (CE), it will prompt you for a workspace
directory. The workspace directory is the filesystem location where your projects
are stored. You can change this directory later from the File menu.

This dialog will show up every time you start the CE unless you select the check
box to make the specified workspace directory the default location.

Chapter 3. The Configuration Editor 81

After this dialog the main workspace window will appear. If this is the first time
you start the CE, it will show the welcome screen:

This welcome screen provides a few quick links to common tasks and information
sites. The documentation link takes you to the configured product documentation
(system property com.ibm.tdi.helpLoc).

The welcome screen can be reopened later by choosing Help > Welcome. When
the welcome screen is closed you will see the workspace window:

82 IBM Security Directory Integrator: Users Guide

This is the main window where you manage your projects and configurations.

In this picture there is one open editor (for the Default.server document) and a
number of views. The most important views are the ones you see in this picture.

The Navigator (upper left) contains all the projects and source files for server
configurations and IBM Security Directory Integrator solutions. The navigator can
also contain other files and projects such as text files and so forth. The CE will
treat IBM Security Directory Integrator projects specifically, so other files and
projects remain unaffected by the CE. You will see how in the section about the
project builder.

The Servers view (lower left) shows the status for each of the servers that are
defined in the "IBM Security Directory Integrator Servers" project. You can have as
many servers defined as you like. The view provides a number of functions to
operate on servers and their configurations. The refresh button will refresh status
for all servers in the view.

The editor area (upper right) is where all editors show up. When you open a
document, such as an AssemblyLine configuration, it ends up in this area. This
area is split vertically with an area (bottom right) that contains various views to
provide other relevant information. Among the most important are the Problems
view that shows potential problems with an IBM Security Directory Integrator
component, the Error Log that shows errors that occur while developing solutions
and finally the Console view that shows the console log for running IBM Security
Directory Integrator servers (for example, those that are started by the CE).

Chapter 3. The Configuration Editor 83

Servers view
The Servers View contains a number of useful functions for managing server
instances. Apart from adding and removing server instances there are many
commands associated with the servers and their active config instances and
AssemblyLines.

The main toolbar shows the following buttons:

Add Server
Use this to add another server

Start Use this to start a "local" server (for example, one that is accessible in your
file system).

If you have a config instance selected you can start one or more of its
AssemblyLines.

Stop Use this to send a stop request to the server, config instance or
AssemblyLine.

Refresh
Use this to refresh the contents of the Servers view

View Log
Use this to view the standard log file, "ibmdi.log" file on a "local" server

The pop-up menu for each item in the view shows additional commands you can
execute based on the selection.

Figure 9. Servers view in the Configuration Editor

Figure 10. Servers view; pop-up menu

84 IBM Security Directory Integrator: Users Guide

The possible commands are:

Start Start server

Stop Stop server, config instance or AssemblyLine.

Refresh
Refresh servers view.

View Log
Opens the ibmdi.log file in a text editor

Start configuration...
When a server is selected you can start a configuration instance on that
server.

Start AssemblyLine....
When a configuration instance is selected you can start an AssemblyLine
from that configuration instance.

Import configuration from server...
Lets you import a configuration from the server to a CE project.

Export configuration to server...
Lets you export a CE project to a runtime configuration on the selected
server.

Edit system store settings
Opens the system store settings for the selected server

Browse System Stores
Opens the system store data browser to view/edit system store tables.

Open AssemblyLine debugger
Attaches a debugger to the selected AssemblyLine. This will let you debug
an AssemblyLine that is already running.

Debug Server
Opens a server debug session for the selected server

Show Installed Components
Shows a list of installed components and their versions for the selected
server

Open AMC console
Opens the AMC console for the selected server. If the server was installed
without AMC this option is grayed out.

Note: The AMC feature is deprecated and will be removed in a future
version of IBM Security Directory Integrator.

Delete server document
Deletes the server from the servers view

Rename server document
Renames the selected server. This has no effect on the server itself; it is
only a local representation of the server.

Menu options are disabled and enabled based on the selection.

Chapter 3. The Configuration Editor 85

The Expression Editor
The expression editor is available in many different contexts. Often, when
specifying parameter values such as connection parameters, link criteria and so
forth you can use the expression editor instead of typing a simple value for the
parameter.

Use Property

This option lets you choose an existing property from your property stores or
create a new property/value pair.

When you select a property, the Name text field below the tree is updated with the
expression for that property. By default, the expression includes the store name
("Example" in this case) followed by a colon and the property name ("Username" in
this case). When you click OK, the expression in the text field is used for the
parameter. This also means that you can type the expression directly in this field
without going through the tree of properties. If you for example know that there is
a property called "FilePath" on the server this solution will run on, you can remove
the store name if you don't know that (that is, type "FilePath" without the "store:"
prefix).

Advanced (JavaScript)

With this option the value is computed as the result of JavaScript code you enter in
the editor.

Figure 11. Expression Editor: simple property

86 IBM Security Directory Integrator: Users Guide

Text with substitution

This is the "IBM Security Directory Integrator Expression" from version 6.x. From
version 7 onwards, it is recommended to use JavaScript for complex evaluation of
variables and properties. This option however is very useful when you want to
enter large amounts of text. The substitution options are compatible with version 6
expressions.

Figure 12. Expression Editor: Advanced (JavaScript)

Figure 13. Expression Editor: text with v.6-style substitution

Chapter 3. The Configuration Editor 87

Reset field to default

The last option is used to reset the parameter value to its default value (also
known as the inherited value). Select this option and press OK to reset the
parameter value.

The AssemblyLine Editor
The AssemblyLine editor is the principal editor used when developing IBM
Security Directory Integrator solutions.

In this editor you build the AssemblyLine by adding and configuring components.
As you go along you can run the AssemblyLine to see the effects of the added
components.

The AssemblyLine editor shows two main sections. The section on the left shows
the AssemblyLine components and hooks. In the toolbar you can choose the level
of detail you want to see in the tree.

The Options... button lets you choose how much of the AssemblyLine is revealed
in the component tree view.

88 IBM Security Directory Integrator: Users Guide

This picture shows all AssemblyLine hooks as well as component attribute maps in
the tree. When you select hooks or attribute map items in this tree, the right hand
side will provide a larger view of the item than you would inside the component
editor itself:

Chapter 3. The Configuration Editor 89

The mapping section on the right shows the maps for all components with an
attribute map. The first level in this tree is the component name with the
individual attribute map items below them. Selecting such an item brings up the
details editor for that item. If you show hooks in the AssemblyLine components
view you can double click those as well to bring up the script editor.

The picture below shows how the quick editor appears with the script for the
attribute map.

The quick editor also shows some additional options. The "Substitution text" is the
version 6 "IBM Security Directory Integrator Expression" format where you can
enter text and some simple expansion macros. From version 7, this format is
primarily intended for large or complex text values since JavaScript provides more
powerful expression syntax.

The component flow section shows all components in the AssemblyLine. When
you select a component the right hand side of the editor is replaced with the
configuration screen for that component. One useful short cut in the CE is the
Ctrl-M short cut that maximizes the current editor or view to fill the application
screen. Ctrl-M will toggle between maximized and normal size.

When you click a component, a configuration screen for that component replaces
the overall attribute mapping view. You can also right-click the component to
access the pop-up menu for the component.

90 IBM Security Directory Integrator: Users Guide

AssemblyLine Options
From the Settings drop down button you can select a number of options.

Available from the drop-down menu are a number of options screens, governing
various aspects of the AssemblyLine, both in terms of design as well as run-time
options. These screens are:
v “AssemblyLine Settings” on page 92
v “Log Settings” on page 92
v “AssemblyLine Hooks” on page 93
v “AssemblyLine Operations” on page 94
v “Simulation Settings” on page 95
v “Sandbox Settings” on page 96

Figure 14. AssemblyLine options menu

Chapter 3. The Configuration Editor 91

AssemblyLine Settings

In this window you can specify options that affect how the AssemblyLine executes.

Log Settings

Figure 15. AssemblyLine Settings

Figure 16. AssemblyLine Log settings

92 IBM Security Directory Integrator: Users Guide

In this window you can add loggers for this AssemblyLine. The loggers are not
global, and only activated for the AssemblyLine.

AssemblyLine Hooks

In this window you can enable/disable AssemblyLine level hooks. Enabled hooks
will also show up in the components panel in the AssemblyLine editor.

Figure 17. AssemblyLine Hooks

Chapter 3. The Configuration Editor 93

AssemblyLine Operations

This window lets you define AssemblyLine operations. See section AL Operations,
in "Creating new components using Adapters" in Reference for a complete
description of operations. The Insert button lets you add a new operation. The
Published AssemblyLine Initialize Parameters, which is available by default, is a
special operation that is used to provide values to an AssemblyLine before
components are initialized.

Figure 18. AssemblyLine Operations

94 IBM Security Directory Integrator: Users Guide

Simulation Settings

This window lets you configure the simulation settings per component. See
“AssemblyLine Simulation Mode” on page 181 for more information. The panel
will show a script editor at the bottom when you choose scripting for simulation:

Figure 19. AssemblyLine simulation settings

Chapter 3. The Configuration Editor 95

Sandbox Settings

The sandbox settings lets you configure which components are record/playback
enabled when you run your AssemblyLine in either Record or Playback mode.

You can also create/update the proxy AssemblyLine used by the simulation code with the Update Proxy
AssemblyLine button.
Figure 20. AssemblyLine simulation settings window, with script editor

Figure 21. AssemblyLine Sandbox settings

96 IBM Security Directory Integrator: Users Guide

For more information about the Sandbox functionality in IBM Security Directory
Integrator, see “Sandbox” on page 179.

Specify Run Options

The run options dialog lets you configure how the AssemblyLine is run.

Component panels
When you open a component in the AssemblyLine you will get a quick editor
panel in the lower part of the AssemblyLine window.

You will get this for the following components:
v “IF/ELSE/ELSE-IF Branch” on page 98
v “Switch/Case Branch” on page 98
v “For-Each Attribute Value” on page 99
v “Conditional Loop” on page 100
v “Connector Loop” on page 100
v “Attribute Map” on page 101

When you select Provide work entry, you can build a static Entry that is fed into the AssemblyLine when it starts.
Figure 22. Specify Run Options dialog

Chapter 3. The Configuration Editor 97

IF/ELSE/ELSE-IF Branch

The IF and ELSE-IF branch lets you specify simple expressions and a custom script
that returns true or false. Use the Match all checkbox to return true only if all
conditions evaluate to true (AND mode). If unchecked only one of the conditions
must match (OR mode).

The ELSE branch has no parameters.

Use the Add button to add new rows of Attribute/Operator/Value controls. You
can remove these rows using the Delete button. The value can be a constant or an
expression. Use the expression editor to configure the expression by clicking the
button following the value text field. The move buttons are used to reorder the
expressions. The expressions are evaluated from top to bottom. You can also
change the branch type (that is, IF, ELSE and so forth) using the drop down below
the title.

Switch/Case Branch

The Switch configuration has a number of options to select a value. This value is
used to match the values in the contained Case branches. When they are equal the
Case branch is executed. The switch branch is always executed.

Figure 23. Quick Editor for IF/ELSE/ELSE-IF Branch

98 IBM Security Directory Integrator: Users Guide

Selection options you can choose for your Switch/Case branch are:

Work Attribute
Select from the list of known work attributes

AssemblyLine Operations
Select from the list of know AssemblyLine operation names.

Work Entry Operations
Uses the operation value from the work entry (for example,
work.getOperation() method).

User Defined
Here you can specify your own value.

Use the Add Case Components... dialog to generate the Case branches inside this
Switch branch. Based on your selection it will automatically suggest those values
that makes sense for the selection. If you choose work entry operations it will
suggest all known operation values (for example, add, modify).

Use the Add Default Case button to add a default case. The default case will
execute in the event that none of the other case branches matched the value from
the Switch component.

For-Each Attribute Value

Figure 24. Switch/Case Branch

Figure 25. Attribute Value loop

Chapter 3. The Configuration Editor 99

This component loops over values in an attribute. Specify the work entry attribute
name to loop over (work attribute name) and the loop attribute name. The loop
attribute name is set to the current loop value from the work entry attribute (for
example, foreach f in work.attr.values; set loopattr = f).

Conditional Loop

The conditional loop lets you specify simple expressions and a custom script that
return true/false.

Use the Addbutton to add new rows of Attribute/Operator/Value controls. You
can remove these rows using the Delete button. The value can be a constant or an
expression. Use the expression editor to configure the expression by clicking the
button following the value text field.

The Match All checkbox determines whether all lines must match (Match all
checked) or if only one needs to be true for the branch to execute.

Connector Loop

The Connector loop uses the Connector editor to configure a connector. There are a
few differences though as shown in the above picture. The initialize option now
shows those options relevant for a connector loop instead of the normal initialize
options. Also, only Iterator and Lookup can be selected from the Mode dropdown.

Apart from the usual tabs you see for a connector, there is also an output attribute
map that lets you configure dynamic assignments of connector parameters in the

Figure 26. Conditional loop

Figure 27. Connector loop

100 IBM Security Directory Integrator: Users Guide

Connector Parameters tab. This is slightly different from the ordinary output map
in that it shows a fixed schema, which is the list of parameters for the chosen
connector. The schema part also has no Connect/Next buttons to affect the schema.

Attribute Map

The attribute map component shows a single panel where you can map attributes
to the work entry, independent from attribute mapping inside other components
like a connector. The component also offers to reuse attribute maps from other
components such as connectors, functions and other attribute map components in
your library. For more information, see “Attribute Mapping and Schema” on page
104.

User Documentation View
Sometimes an AssemblyLine turn out to be quite complex. To aid another in
reading the configuration you can document parts of the AssemblyLine using the
documentation view.

Figure 28. Connector Parameters in Connector Loop

Figure 29. Independent Attribute Map Component

Chapter 3. The Configuration Editor 101

In the AssemblyLine outline you can right-click a component and choose Edit user
comment to bring the documentation view to front:

As the selection changes in the AssemblyLine editor the documentation view
reflects the current selection. The text you type in the view is saved when you save
the AssemblyLine. Components with a comment is decorated in the upper left
corner of the component icon.

The Create AssemblyLine Report button will create a report with all user
comments entered in the AssemblyLine. The report template used is called
UserCommentsReport.xsl in the TDI_Install_dir/XSLT/ConfigReports directory.

Figure 30. User Documentation View

Figure 31. Sample AssemblyLine report

102 IBM Security Directory Integrator: Users Guide

Run AssemblyLine window
When you run the AssemblyLine you will get a window with the log output
shown.

In this screen you can also stop a running AssemblyLine and restart it after it has
terminated.

Note: Stopping an AssemblyLine means that the Config Editor sends a stop
notification to the Config Instance (usually the default local Server) that is running
the AL; it does not immediately kill the thread, but stops execution as soon as the
server regains control. This differs from previous versions where pressing the Stop
button would cause the entire server process that was running the AssemblyLine
to be killed.
The two other buttons are to clear the log window and open the log file in a
separate editor window. The log window only shows the last few hundred lines to
avoid out-of-memory problems.

The log is written to a temporary file with a prefix of "tdi_ce_al_log" and an
extension ".log". The file is placed in the platform specific temporary directory,
which is often defined by the TEMP/TMP environment variable. The log file is
automatically deleted when you close the Run AssemblyLine window, but in case
the application or machine crashes you may have to manually remove these log
files. The editor to use for this file defaults to the simple text editor, but can be
changed by mapping the ".log" extension to a different editor (including external
editors). Use the Windows > Preferences menu option to open the following
dialog:

Figure 32. Console log

Chapter 3. The Configuration Editor 103

Here you can add the “.log” extension and associate it with an editor.

Attribute Mapping and Schema
Attribute mapping is done using either the attribute map panel in the
AssemblyLine or in the component editor.

In the AssemblyLine editor you can add attributes either by right clicking in the
attribute maps section and choosing add attribute, or use the Add button in the
toolbar as shown below.

Figure 33. Configuration Editor File associations preferences

104 IBM Security Directory Integrator: Users Guide

In this window you don't see the schema for the components in the AssemblyLine.
To work with the schema you open the editor for the component by selecting it in
the left tree.

The typical scenario for attribute mapping is to first discover the schema for the
component. When you do a discover schema, the CE will run a background job
that executes the query schema method of the component. If no schema is returned
the CE will ask if you would like to read an entry to attempt to derive the schema
from that. The result is then populated back into the schema for the component
you are editing.

The picture below shows the contents of the input schema for a component after
discovering attributes. If a component for some reason doesn't provide you with a
schema you can add schema items manually using the Add... button on the toolbar
or reuse a schema from another component configuration with the Change
Inheritance option.

Figure 34. Attribute Mapping

Chapter 3. The Configuration Editor 105

You can also use the drop down menu on the title bar to change the inheritance for
the schema configuration.

Having a schema, you can drag and drop individual items into to the attribute
map or use the Map Attribute function from the context menu and modify the
mapping if necessary.

Note: Drag and drop functionality depends to a certain extent on your windowing
environment. In particular, on UNIX systems, the Common Desktop Environment
(CDE) does not provide this, so in order to set up mapping you will need to use

Figure 35. Attribute Mapping, with discovered Attributes

Figure 36. Changing Attribute Map inheritance

106 IBM Security Directory Integrator: Users Guide

the Map Attribute function from the context menu.

If you have no schema or want to add attributes independent of the schema you
can of course do so. Use the Add button to add a new attribute to the map. You
name the attribute, and an expression of either "conn.attribute-name" or
"work.attribute-name" is assigned to the new attribute. This can be done in both the
AssemblyLine editor and in the Connector editor windows.

Figure 37. Attribute Mapping, with JavaScript editing window for individual Attribute

Figure 38. Add Attribute dialog

Chapter 3. The Configuration Editor 107

A dialog appears with an editable text field where you can type the name of the
new attribute. The list above contains all known attribute names from the schema;
you can select those you want added to the attribute map.

As you add more components to the AssemblyLine you can drag attributes
between them where it makes sense. Dragging a component onto another
component will map all mapped attributes to the target component. You can also
drag attributes from the attribute map onto components in the left panel showing
all components in the AssemblyLine. This will perform a simple map of all those
items you drag over. This is similar to dropping them onto the component in the
attribute map panel.

The concept of Attribute Mapping is treated fairly extensively, replete with
examples, in Getting Started.

Depending on the Connector, and the mode it is configured in, there will be
different tabs in the Connector configuration window.
v Connectors in a mode which supports input from a connected system, will have

a section called Input Attributes.
v Connectors in a mode which supports output to a connected system, will have a

section called Output Attributes.
v Some Connectors support modes that can do both Input and Output. If

configured that way, you will see an Input Attributes section as well as an
Output Attributes section.

External attribute maps

Attribute maps can inherit from external attribute map files. An external attribute
map file is a text file that contains attribute map items just like you have it in the
actual mapping screen. The difference is that the external file uses a different
format than the internal XML structure. This makes it easier for you to configure
the attribute map for any connector without even going into the CE. The CE
provides this option in the inheritance dialog for attribute maps:

Click the External attribute map... button to choose an existing file, or type "file:"
followed by the full path to the attribute map file. If you want to use relative path
names, prefix the filename with a dot+slash (./).

Figure 39. Attribute map: inheritance dialog

108 IBM Security Directory Integrator: Users Guide

Input Attribute mapping:

Input Attribute mapping is the process that accomplishes the moving of data from
the input source to the Work entry in the AssemblyLine. Input Attribute maps are
shown in the Attribute Maps window of the Connector, when brought up in the
Connector Editor, with an arrow pointing to the Connector from an entity referred
to as "[Source]". They are also shown in the Schema window, under Input Attribute
map.

Before you begin

In order to be able to set up the Input Attribute map, the Connector must be set to
a mode which supports input, in the toolbar of the Connector. Modes that support
input are typically Iterator, Lookup and Server.

Then, in the Input Map section, you select those Attributes from the input source
that you wish to process in the AssemblyLine.

About this task

Connectors to be set up for Input Attribute mapping can either reside in the
<workspace>/Resources/Connectors, or in their designated position in the
AssemblyLine.

Procedure

1. Click Input Map.
2. Click Connect, followed by Next to get the schema for many datasources. Some

Connectors or Connector-Parser combinations have pre-defined schemas,
whereas others prompt you to read a sample entry from the data source and
examine it to discover attributes.

3. Finally, select Attributes from the Schema list and then drag them into the
Attribute Map, or add these manually with the Add and Delete buttons. The
Attribute Map controls which Attributes are brought into your AL for
processing, as well as any transformations you specify.

What to do next

These mapped Attributes are retrieved from the data source, placed in the Work
entry, and passed to subsequent Connectors in the Flow section in the
AssemblyLine.

If you did not create the Connector directly in an AssemblyLine, then in order to
use this Connector in an AssemblyLine, drag the Connector from its location in
<workspace>/Resources/Connectors to the Feed section of an AssemblyLine.

Output Attribute mapping:

Output Attribute mapping is the process that accomplishes the moving of data
from the Work entry in the AssemblyLine to the output destination in the
connected system. Output Attribute maps are shown in the Attribute Maps
window of the Connector, when brought up in the Connector Editor, with an
arrow pointing from the Connector to an entity referred to as "[Target]". They are
also shown in the Schema window, under Output Attribute map.

Chapter 3. The Configuration Editor 109

Before you begin

In order to be able to set up the Output Attribute map, the Connector must be set
to a mode which supports output, toolbar of the Connector. The typical mode for
output is AddOnly. Some modes, like CallReply, support both input and output.

Then, in the Output Map in the Output Attributes section, you select those
Attributes from the Work entry in the AssemblyLine that you wish to output to the
connected system.

About this task

Connectors to be set up for Output Attribute mapping can either reside in the
<workspace>/Resources/Connectors, or in their designated position in the
AssemblyLine. However, when the Connector is in <workspace>/Resources/
Connectors only, that is, not a member of an AssemblyLine, you cannot easily drag
Work entry attributes into the Output Attribute map. In this case, either drag the
Connector into an AssemblyLine, or create the mappings manually, by clicking
Add in the Attribute Maps window, alternatively by right-clicking on the
Connector in the Attribute Maps window, and select Add attribute map item.

Procedure

1. Click Output Map.
2. Click Connect, to get the schema for the datasource. Some Connectors or

Connector-Parser combinations have pre-defined schemas, which will be
displayed. Many Connectors, however, do not.

3. If your Connector is in an AssemblyLine, drag Work entry attributes mapped in
previously onto the Connector in the Attribute Maps window of the
AssemblyLine editor. Alternatively, create Attributes manually—name matching
occurs at run time. For example, an Output Map Attribute map item created as
some_attribute causes a Work entry attribute named some_attribute to be
mapped to a connected system-attribute of the same name.

What to do next

These mapped Attributes are retrieved from the Work entry when this Connector is
called in the Flow of the AssemblyLine, and are output to the connected system.

If you did not create the Connector directly in an AssemblyLine, then in order to
use this Connector in an AssemblyLine, drag the Connector from its location in
<workspace>/Resources/Connectors to the Flow section of an AssemblyLine.

The Connector Editor
The connector editor is used when you edit connector files or use the Edit function
on a Connector inside the AssemblyLine.

Creating a Connector is outlined in the section “Creating a Connector” on page
111.

The editor uses the same widgets you find in wizards and popup dialogs for
connectors. The editor consists of six tabs in which configuration panels for various
aspects of the connector are shown. At the top are the main attributes of the
connector such as its mode, state and other general connector options.

The tabs are:

110 IBM Security Directory Integrator: Users Guide

1. “Input and Output Attribute Maps” on page 112
2. “Hooks” on page 112
3. “Connection” on page 113
4. “Parser” on page 114
5. “Link Criteria” on page 114
6. “Connection Errors” on page 116
7. “Delta” on page 118
8. “Pool” on page 119
9. “Connector Inheritance” on page 120

Creating a Connector
Creating a Connector involves deciding where the Connector is to reside, and
which initial parameters to assign to it.

Before you begin

Decide upon where the Connector should reside; this is in either of two places:
1. Connectors meant for re-use and resource sharing reside under the

<workspace>/Resources/Connectors directory. This is generally the best place to
create and maintain your Connectors. Connectors defined this way are added
to AssemblyLines by dragging them into the appropriate place.
After this, you can alter those few settings of the Connector such that it plays
its designated role in the AssemblyLine, but leaving the majority of the settings
inherited, and therefore unchanged from their definitions in the Resources
section.

2. You can also create a Connector directly in an AssemblyLine; Connectors
defined this way are ad-hoc definitions that are only valid in the context of that
particular AssemblyLine.

About this task

Connectors form the backbone of any solution created with IBM Security Directory
Integrator, they establish the connection to the systems you wish to exchange data
with.

Procedure
1. Right-click and select Resources > Connectors > New Connector... in your

workspace, or select File > New > Connector

2. Navigate to the location where you want your new Connector, and name your
new Connector.
a. The recommended location is <workspace>/Resources/Connectors.
b. Alternatively, you can create the new Connector directly in your

AssemblyLine. Navigate to the location in the target AssemblyLine; either
the Feed section for Iterator and Server mode Connectors, or Flow for all
other modes.

3. Click Finish to create the Connector.
4. In the Connection tab, set the mode of your new Connector to your desired

mode.
5. Set the connection parameters for this Connector in the Connection tab;

required parameters are marked with an asterisk (*). Some Connectors require
you to configure a Parser as well in the Parser tab.

Chapter 3. The Configuration Editor 111

6. Go to theAttribute Map window in the Connector configuration window to
discover or define the schema for this data source: click Discover Attributes to
get the schema for the datasource. Some Connectors or Connector-Parser
combinations have pre-defined schemas. Those that do not, prompt you to read
a sample entry from the data source and examine it to discover attributes.

What to do next

Once the Connector has been defined, you are ready to set up which pieces of
information known as Attributes are to flow to and from the AssemblyLine. This
process is called Attribute Mapping, and the point of view is from the
AssemblyLine. Hence, the definition of mapping Attributes from the connected
system, through the input Connector to the Work entry in the AssemblyLine is
done in the Input Attribute Map; and the reverse, mapping Attributes from the
Work entry, through the output Connector to the connected system is done in the
Output Attribute Map.

Input and Output Attribute Maps
The Attribute Map tabs show the input and output attribute maps and schemas for
a component.

See section “Attribute Mapping and Schema” on page 104 in the AssemblyLine
editor for a description of this window.

Hooks
The Hooks tab shows all hooks for the connector.

Use the checkbox to enable/disable a hook and select the hook to edit its contents.
When you modify the contents of a hook it is automatically enabled. Hooks that
contains script code will have a script icon in the tree view so you can quickly
identify if a hook has contents or not. Note that if a hook is enabled, it will be
executed when it is reached in the execution flow, whether it contains any script or
not.

Figure 40. Attribute Map window

112 IBM Security Directory Integrator: Users Guide

See the section “AssemblyLine flow and Hooks” on page 30 for a discussion of the
various hooks, both at the AssemblyLine level as well as the individual component
level.

Connection

Parameters in the Connection tab are highly specific to the component you want to
configure. Refer to the individual specification of the component in the Reference.

Figure 41. Connection tab

Chapter 3. The Configuration Editor 113

Parser
If a connector can use (or requires) a parser you will also have a tab for this.

Use the Select Parser toolbar button to change the parser for the connector.

For example, the Line Reader Parser has a configuration screen like the one shown
below:

Link Criteria
When a component requires a link criteria you will see the Link Criteria tab.

Whether a component actually will exhibit a Link Criteria tab depends not only on
the component type, but also on its mode. See “Link Criteria” on page 19 for more
information.

Figure 42. Line Reader parser

114 IBM Security Directory Integrator: Users Guide

Use the Add button to add a new row of controls to the view. Use the Delete
button to remove individual rows. In the view you specify the attribute name, the
operand (for example, equals, contains) and the match value. The match value can

be a constant or an expression. Use the button to bring up the expression
editor:

In the expression editor you can conveniently choose a property from one of your
property files or use advanced mode where you return a value based on JavaScript
code. Check the Advanced (JavaScript) checkbox to toggle between property

Figure 43. Link Criteria tab

Figure 44. Expression Editor window, simple mode

Chapter 3. The Configuration Editor 115

selection and JavaScript code. You can only use one or the other.

Connection Errors
The Connection Errors tab is where you configure connection resilience, that is
automated behavior to take when the connection that your component has made,
fails.

Optionally, when you select Retry Connect on Initial Connection Failure, you can
configure whether your connection attempt will throw an exception when it fails
during startup, or whether it will retry. If this flag is set, and a connection cannot
be established when the connector is being initialized, a "reconnect" attempt will be
made; it is not really a reconnect, since a connection was not established in the first
place, but generally the same mechanism as for the situations that can occur when
an established connection is lost.

Figure 45. Expression Editor window, Advanced (JavaScript) mode

116 IBM Security Directory Integrator: Users Guide

For established connections, the remaining parameters have the following
significance:

Auto Reconnect on Connection Loss
If this flag is set, and the connection is lost after the connector is
initialized, a reconnect attempt will be made.

Number Of Retries
The number of times a reconnect attempt will be made when a problem
occurs, before giving up. If a new problem occurs later on, the same
number of attempts will be made.

Delay Between Retries
The number of seconds to wait between each reconnect attempt, and before
the first reconnect attempt.

Auto Skip Forward
After a reconnect, automatically skip forward as many times as the number
of successful reads.

Built-in reconnect rules
These tie in with the Reconnect Rule Engine; see the corresponding section
in the Installing and Administering

for more information.

Chapter 3. The Configuration Editor 117

Delta

This tab is only available in Iterator mode.

The parameters in this tab have the following significance:

Enable Delta
This is the master switch for the Delta engine for this Connector. If not
selected, the parameters below are not enabled.

Unique Attribute Name
This is the name of an attribute, or a choice of multiple input attributes
separated by "+", that holds a unique value in a given data source. Data
sources with duplicate keys cannot be subjected to the delta function,
except when Allow duplicate Delta keys is enabled. See “Delta Detection”
on page 15 for more information.

Delta Store
The table in the System Store that holds the Delta information from
previous runs for this Connector, so as to be able to detect differences on
subsequent runs.

Read Deleted
If checked, the AssemblyLine will inject deleted entries into the
AssemblyLine run when the Iterator has completed iterating, that is,
finished input. The operation code will indicate that this entry was deleted
in the input source. Note that delete-tagged Entries are not removed from
the Delta Store unless you also enable the Remove Deleted flag.

Remove Deleted
If checked, the deleted entries from the input source are deleted from the
Delta Store, such that they will not be detected again in subsequent runs.

Return Unchanged
If checked, any unchanged entries in this run are injected into the
AssemblyLine.

Commit
Selects when to commit changes to the Delta Store as a result of iterating
through the input. Choices are:

118 IBM Security Directory Integrator: Users Guide

v After every database operation
v On end of AL Cycle
v On Connector close
v No autocommit

The default is After every database operation.

Row Locking
Selects the transaction isolation level for the connection to the Delta Store.
This parameter addresses the need for row locking in a Delta Store table
when multiple DB Clients access the same data, by setting a Transaction
Isolation Level. Setting a higher isolation level reduces the transaction
anomalies known as 'dirty reads', 'non-repeatable reads' and 'phantom
reads' by using row and table locks

Choices are:
v READ_UNCOMMITTED
v READ_COMMITTED
v REPEATABLE_READ
v SERIALIZABLE

The default is READ_COMMITTED.For more information, see section
“Row Locking” on page 205.

Attribute List
This is a list of comma separated attributes whose changes will be detected
or ignored during the compute changes process. The changes in listed
attributes will be affected by the Change Detection Mode parameter, which
specifies whether to ignore or detect them. For more information about this
parameter and the next, see section “Detect or ignore changes only in
specific attributes” on page 206.

Change Detection Mode
Specify whether to detect or ignore changes in Attributes listed in the
Attribute List parameter. Possible values are:
v IGNORE_ATTRIBUTES
v DETECT_ATTRIBUTES
v DETECT_ALL

Faster algorithm
When checked, instructs the AssemblyLine to use a faster algorithm to
compute changes, at the expense of more memory use.

Allow duplicate Delta keys
When the Delta feature is enabled for Changelog/Change Detection
Connector in long running AssemblyLines, it is possible that an Entry can
be modified more than once. These modifications will result in receiving
the Entry second time and this will cause a Duplicate delta key exception
to be thrown. Checking this parameter allows Entries with duplicate key
attributes (specified in the Unique Attribute Name parameter) to be
processed by Iterator Connectors with enabled Delta.

Pool
The pool definition for a connector is only visible when the connector resides in
the connector library (that is, a file in Project/Resources/Connectors). Connectors
that are opened from the AssemblyLine will not have this tab.

Chapter 3. The Configuration Editor 119

When a pooled connector is used in an AssemblyLine it will show the following
tab instead:

Use the Open Pool Connector button to open the pooled connector.

Connector Inheritance
While you can change inheritance at various places in the editor you can also use
the connector inheritance button for a complete list of inheritance settings.

Use the More... button to expand the connector editor's header and click the
Inheritance button.

The Inheritance button will bring up a dialog that shows all inheritance settings
for the connector:

Figure 46. Pool tab: Connector Pool definition

Figure 47. Pool tab: Connector in AssemblyLine

120 IBM Security Directory Integrator: Users Guide

The notation [parent] means that the item is inherited from the component listed in
the Base Inherit (parent) field.

Server Editor
The server editor is where you define how to reach an IBM Security Directory
Integrator server.

One server is always defined by the CE and is named “Default”. In the IBM
Security Directory Integrator servers view you can add new ones to your project.

The server API address is the host:port address of the IBM Security Directory
Integrator server. If you specify the installation directory, the CE can start the
server. Before starting a new IBM Security Directory Integrator server, configure all
parameters and use the Create Solution Directory button to create the necessary
files for the server. You can also specify unique ports for Apache ActiveMQ
transport and management.

Figure 48. Connector Editor: Configure Inheritance

Figure 49. Server Document editor

Chapter 3. The Configuration Editor 121

Schema Editor
The schema editor manages design schema files.

These files can be used by input and output maps in other editors. The schema is
design time only (that is, in the CE only) and is typically used when you have
huge schemas that you don't want to appear in the runtime configuration file.

The editor provides a New button to add a new top level schema item and a
context menu to operate on existing schema items.

Data Browser
The Data Browser provides an in depth look at a target system. Currently there are
only the LDAP and JDBC connectors that provide extra details for a connector. The
data browser is opened by right clicking a Connector in either the library or in an
AssemblyLine.

In the navigator you can right click and choose Browse Data to open a new editor
window where you can browse data within the current connection setup by the
connector.

Figure 50. Schema Editor

122 IBM Security Directory Integrator: Users Guide

In the AssemblyLine you can do the same and have a new window opened for the
data browser:

Generic Data Browser
This is the data browser used for those connectors that the Configuration Editor
has no explicit knowledge of. It provides a simple way to browse a result set from
the data source.

Figure 51. Data Browser

Figure 52. Data Browser

Chapter 3. The Configuration Editor 123

The upper part shows a list of attributes read from the connector and a toolbar.
Attributes in the list have checkboxes; when you check an attribute an attribute
mapping is created for that attribute using a simple conn.attributename ->
work.attributename expression. When you uncheck an attribute the attribute
mapping for that attribute is removed.

The toolbar has the following functions:

Table 8. Data Browser toolbar

Toggle All This command will toggle the checkboxes for every attribute in the list.
This will cause a modification to the attribute map for all attributes listed.

Accumulate This command toggles whether the list of discovered attributes are
accumulated or not. When you accumulate attributes, every record read
from the connector is merged with the existing list of attributes. When
you don’t accumulate, all attributes are removed before the next record is
shown in the list.

Click this button to close the connection. When you close the editor
window for the browser, the connection is automatically closed. You
typically want to close the connection before you read the next record if
you have modified the connection settings in this editor.

Click this button to read the next record from the connector. When there
no more records returned from the connector, a message is shown to the
left of the toolbar to indicate there are no more entries from the connector.
Pressing this button again after this condition causes the connector to start
reading from the beginning of its result set.

The lower part of the screen shows two tabs. The first tab is the Details tab that
contains details about the current selection. For the generic data browser this tab
will always be empty.

The second tab is the Connection tab. This tab shows the connection configuration
for the connector. You can modify the connection parameters and save it just as
you do when you open the Connector editor.

Figure 53. Generic Data Browser

124 IBM Security Directory Integrator: Users Guide

Stream Data Browser
The stream based data browser is used when a connector uses a parser. The stream
based data browser will first initialize the connector and try to obtain the input
stream and show the first 20K of input data in the details tab.

The left side now contains a Select Parser list where you can select a parser, in
order to try to read the contents of the input stream to see if it matches your
expectations. When you select a parser, the Parser tab will be updated with the
configuration form for that parser. Whenever you change the parser, the connector
will be closed so you can easily see if a parser is able to interpret the input by
continuously selecting a parser followed by a read-next.

Note: When you select a parser in the table, you also modify the connector
configuration to use that parser. When you close and save (or use the File > Save
function) you effectively update the configuration with those parameters you have
currently configured.

JDBC Data Browser
The JDBC data browser shows all tables and views in the left hand side. The
details tab shows information for the selected item in that list.

Figure 54. Stream Data Browser

Chapter 3. The Configuration Editor 125

The Details tab shows the system information obtained from the JDBC connection
object. The tree view to the left also shows all tables and views with their columns
as child entries. When you select a table or view the details tab will be populated
with the syntax for the entire table. For example, if you select the
“IDI_PS_DEFAULT” table, you should see something like this:

When you select a column in a table or view you will see the details for that
column only.

Figure 55. JDBC Data Browser

Figure 56. JDBC Table details

126 IBM Security Directory Integrator: Users Guide

You can also right-click a table name and use the Use as table function to update
the Table Name parameter of the JDBC connector configuration.

The button in the toolbar of the JDBC Tables header does a rediscovery of
the connection. You only need to use this if the initial discovery failed, or if you
have changed the JDBC URL in the connection tab.

LDAP Data Browser
The LDAP data browser shows the schema and context prefixes (search bases) that
the LDAP server provides.

The LDAP View contains both server information and search bases that the LDAP
server provides. Based on your selection in this tree you will see different results.
If you select one of the non-schema nodes, you should see a detailed dump for
that specific entry in the details tab as shown below:

Figure 57. "Use as table" option

Figure 58. LDAP Data Browser

Chapter 3. The Configuration Editor 127

When you select a schema item you see the details in the details tab as well as
having your attribute list updated with information from the schema item. This is
very useful if you are going to read or write a specific schema:

Choosing an object class in the schema node lets you quickly create an attribute
mapping for that class. The value column now contains information about the
attribute. The value “MAY” means it is optional, whereas “MUST” means it is
required (when adding entries). The value in parenthesis shows the object class
that defines the attribute; LDAP object classes are hierarchical.

You can also quickly update the Search Base parameter of the LDAP connector by
choosing Use as search base from the context menu.

Figure 59. LDAP Data Browser entry

Figure 60. LDAP Data Browser schema item

128 IBM Security Directory Integrator: Users Guide

Forms Editor
The forms editor is used to customize the connection parameters form for a
component. This can only be applied to components in the Resources folder
(except properties files).

To customize a form, you must open the component with the Forms Editor.

Note that when you choose a different editor for a file than the default, the CE will
remember your choice, so that the next time you double click on the file it will
open the file with the editor you used last. To open the component with the
default editor, simply choose the appropriate editor in this menu (typically the top
most editor).

Figure 61. "Use as search base" context menu choice

Figure 62. Context menu - Forms Editor choice

Chapter 3. The Configuration Editor 129

If the component you open has no custom form, you will be prompted to populate
the form with the default form:

Choosing Yes will create an initial form definition based on the default form for
the component. In this case the FileSystem connector is uesed in the example,
which results in the following screen:

The various elements you see in this form have the following function:

Form Title
This is the main title of the component form (leave blank for no title). This
is what the user sees at the top of the custom form.

Translation file
This is the file used to translate the labels and tooltips in the form. All
labels and tooltips are attempted translated if you define a translation file.
If you create a label with “file_name” as the text, the translation will try to
retrieve a string from the translation file using “file_name” as the key. The
translation files themselves are simple property files with “key=value” on
each line.

To localize a form you must create files with the locale identifier. So, for a
French translation you would create a file called base-name_fr.properties.

Test Form
This button will show a dialog window with the current form definition.

Delete Form
This button will delete the form from the component. You must close and
choose save for this to have permanent effect.

Figure 63. Default Forms Editor screen for FileSystem Connector

130 IBM Security Directory Integrator: Users Guide

Init Script
The init script is executed when the form is loaded. This is where you
place code to initialize the state of the form and any global script variables
for the form.

Events Script
When a field value changes, the Form will execute an event handler
defined in this script. Every field has an internal name the component
uses. For example, the FileConnector uses “filePath” as its internal name
for the File path parameter. You can see all the component parameter
names when you choose to populate your form with the default form in
the Fields section. To react to changes in the form, you write event
handlers in the events script editor using the internal name suffixed by
“_changed” as the script function name. Below you see an example from
the LDAP connector that disables two fields based on the authentication
method:

Sections and Fields
Sections and fields are what make up the form. You manage the sections
and fields by adding, removing and rearranging the order of them using
the toolbar below the tree.

v Add Section – adds a new and empty section to the form
v Add Field – adds a new field to the form. Field names must be unique.
v Delete – removes a section or field from the form.
v Move Up/Down – rearranges the order of sections and forms. When you

have sections defined, the order of fields is defined by the section and
not the list of fields. When no sections are defined, the order in this tree
determines the field order in the form.

Sections
This part is optional. If you don't specify sections then the form
will have all fields displayed in its form, all at once.

Sections are used to arrange fields in the form. Sections are like
folders the user can expand and collapse to display/hide its
contents. When you define a section you specify whether the

Figure 64. Forms Editor, Events Script in LDAP Connector

Chapter 3. The Configuration Editor 131

section is initially expanded and which fields are to be displayed
in it. In the FileSystem connector example, there are two sections.

The first section is the General section. This section has no title,
which means that there will be no section header the user can click
to expand or collapse contents. This makes it a static section since
the section cannot be collapsed or expanded. You can add, remove
and reorder the fields in the list of fields using the toolbar at the
bottom of the panel:

The second section is the Advanced section:

This section does have a title, but it is not initially expanded. This
will cause the form to display the form with this section title
collapsed and the fields within are hidden until the user expands
the section.

Fields Fields are the parameters for the component. If you reuse a
component like the FileSystem connector you should either provide
the required parameters in the form, or set the parameter in the
“Init Script” section so that the component can function properly.
Every field has its definition shown when you select it.

Figure 65. Forms Editor - General section

Figure 66. Forms Editor - Advanced section

132 IBM Security Directory Integrator: Users Guide

In this panel you see the definition for the connector parameter
“filePath”. In the order of appearance:

Table 9. Forms Editor - parameter definition

Field Description

Label The label that the form will show

ToolTip The tooltip displayed when the user mouses over the input field

Field Type The type of input field:

v String for single line text input

v Drop down (editable) for an editable drop down input field

v Drop down (non-editable) for a drop down with a fixed set of
selections

v Boolean for a checkbox

v Text Area for a multi line text input field

v Static Text for simple text display (that is, no input)

v Password for a single line password protected input field

v Script Editor for editing scripts

v Custom Component for a user defined SWT/JFace control

Mode Selection This optional field can specify component modes where the field is
excluded or included. Specify modes separated by a comma with a
minus sign to exclude.

“Iterator” – only show in Iterator mode
“-Iterator” – Do not show in Iterator mode
“Iterator,Lookup” – only show in Iterator and Lookup mode

The three tabs at the bottom let you specify buttons, drop down
values for Drop-down lists and the Java class name for the custom
component.

Wizards
There are a number of Wizards (graphically-assisted stepped procedures) in the
IBM Security Directory Integrator Config Editor. These are:
1. “Import Configuration Wizard” on page 134

Figure 67. Forms Editor - field definitions

Chapter 3. The Configuration Editor 133

2. “New Component Wizard” on page 136
3. “Connector Configuration form characteristics” on page 142

Import Configuration Wizard
You can import configuration files of previous versions using the Import
Configuration wizard.

In this wizard you choose the target project and which components you want to
import.

By default all components are selected for import. You can however check only
those you are interested in. If you check a single AssemblyLine and that
AssemblyLine uses connectors in the configuration file, those connectors will
automatically be imported as well.

Figure 68. Import Configuration wizard

134 IBM Security Directory Integrator: Users Guide

The Project input field is the target project into which the configuration is
imported. Select the blank option to create a new project.

The Configuration File input field is the configuration file you are going to
import. If the configuration is password protected you enter the password in the
Password input field.

When the Linked file field is checked, any changes made to the imported project
are written back to the file the project was imported from. You can change this
setting in the project properties by clearing or changing the file name for the
Linked file field, as illustrated below:

You can also import configurations from servers. Switch to the server view by
checking the Server radio button.

Figure 69. Linked file field

Chapter 3. The Configuration Editor 135

You start this type of import by selecting the server from the list of servers in the
Server name field. Once you have selected a server, the list of configurations on
that server is shown in the list below the server name. Since this is a network
operation you may see some of the controls disabled while the list is being
refreshed. From the list of configurations you select the configuration you want to
import. Selecting a configuration downloads that configuration from the server and
populates the tree below with its contents so you can choose which components to
include in the import.

New Component Wizard
This wizard is invoked when you use Add Component in an AssemblyLine or
when you use File > New... from the main menu bar.

When you create a new component in the Resources folder you will have a slightly
different wizard layout. For a new connector, for example, the wizard looks like
this:

Figure 70. "Import from server" wizard

136 IBM Security Directory Integrator: Users Guide

The component name will be used as the suggested file name in the folder; it is
advisable to change that name into something meaningful.

When you create a new component in an AssemblyLine, you will have many more
options in this wizard.

The first page of the wizard is the component type selection page. In this page you
choose the component type you want to add or create. The left side contains a list
of filters that will select relevant components based on the label in the list.

Figure 71. New Connector in Resources folder wizard

Chapter 3. The Configuration Editor 137

You can filter the contents by typing in the Search field. As you type, the list will
be matched against what you have typed in the search field (case insensitive
contains match).

Figure 72. New Component wizard

138 IBM Security Directory Integrator: Users Guide

At this point you can choose to finish the wizard and the component is inserted
into your AssemblyLine.

When you choose a connector you will be presented with a series of forms to
properly define the connector. For all other types you can only finish the wizard
and configure the component in the AssemblyLine.

After selecting the type you are presented with the Connector configuration panel.

Figure 73. New Component wizard, with filtering

Chapter 3. The Configuration Editor 139

See also “Connector Configuration form characteristics” on page 142 for some
specifics in completing this type of form.

The next step will show the Parser configuration if the connector can use one.

Figure 74. Connector Configuration panel

140 IBM Security Directory Integrator: Users Guide

Use the Select Parser button to choose the parser for the component:

Figure 75. Parser Configuration panel

Chapter 3. The Configuration Editor 141

You can remove the current parser from the component by selecting the
"(Remove)" option.

Connector Configuration form characteristics
Fields in a form can be grouped into optionally titled sections, and fields have a
property that specifies whether the field is required.

In the Connector Configuration window, required fields are indicated by a *
following the field name.

Values that are inherited will have a blue label.

Figure 76. Parser selection dialog

142 IBM Security Directory Integrator: Users Guide

In the sample above, the LDAP connector configuration shows two sections with a
required field. When a required field has no value, the form will mark this in the
title.

When you mouse over the red icon or text, you will see any error messages and
which fields the errors apply to. This is useful when there is more than one error
in the form.

Chapter 3. The Configuration Editor 143

Running and Debugging AssemblyLines
The Config Editor is equipped with a number of mechanisms that aid you in
developing AssemblyLines, including facilities to test and debug the logic of them.

AssemblyLine Reports
AssemblyLine reports can be run from the context menu in the navigator.

Right-click an AssemblyLine and choose the Create AssemblyLine Report
submenu. This menu contains all the report templates that are in the
TDI_Install_dir/XSLT/ConfigReport directory.

Choose the Browse... option to browse the local file system for a report template.

Figure 77. "Create AssemblyLine Report" command

Figure 78. Choose Config Report stylesheet dialog

144 IBM Security Directory Integrator: Users Guide

When you select one and click Open, the report is generated and placed in the
Reports directory of your project as seen in the next picture. The editor associated
with the .html file extension is opened to view the report, typically your default
internet browser.

The AssemblyLine report generates report file names based on the AssemblyLine
with the current date inserted.

Overview of XML based AssemblyLine reports

You can generate a report for the selected configuration element based on a report
style sheet or for the specified report configuration XML file. The following
diagram depicts the architecture of XML based AssemblyLine reports.

Report configuration XML file format

The AssemblyLine report configuration XML file has the following format:
<tdiReport>
<reportClass)com.ibm.di.report.aloverview.AssemblyLineOverview</reportClass>

<reportConfig>
<report specific configuration>

</reportConfig>
</ tdiReport>

The configuration XML file has the following elements:

Figure 79. Reports folder in the Project hierarchy

Chapter 3. The Configuration Editor 145

v reportClass - specifies the Java class name for the report.
v ReportFactory - instantiates an instance of the report.
v reportConfig - contains report specific parameters.
v

Running the AssemblyLine
As you develop the AssemblyLine you can test it by either running to completion
or by stepping through the components one by one.

There are two buttons to run the AssemblyLine. The first button (play icon,)
starts the AssemblyLine and shows the output in a console view. The second
button (Debugger) runs the AssemblyLine with the debugger.

The process of starting an AssemblyLine goes through three steps.

If the AssemblyLine contains errors (like missing output maps and so forth) you
will be prompted to confirm running the AssemblyLine:

If you get this dialog you should check the Problems view to see which errors are
potentially going to break the AssemblyLine. Often though, during development
you are aware of these and still want to run the AssemblyLine, in that case hit
Enter or click the Yes button to run the AssemblyLine.

The next check is whether the IBM Security Directory Integrator server is available.
If the server is unreachable you will see this message:

When running an AssemblyLine from the CE, the first step is when the CE
transfers the runtime configuration to the server and waits for the AssemblyLine to
be started. In this step you will see a progress bar in the upper right part of the
window. The toolbar button to stop the AssemblyLine is also grayed out as it

Figure 80. Three options to start an AssemblyLine

146 IBM Security Directory Integrator: Users Guide

hasn't started yet.

The second step is when the AssemblyLine is running. The progress bar will be
spinning and you should start seeing messages in the log window. You can now
stop the AssemblyLine by hitting the stop button (far left) in the toolbar.

Note: The stop button will only work if the server gains control in the execution of
the thread. If the thread is executing something outside of IBM Security Directory
Integrator, clicking the stop button may not have much effect.

If you have multiple open AssemblyLine windows, you can tell which of the
corresponding AssemblyLines are running because their names will be prefixed by
a '*' (asterisk).

When the AssemblyLine has stopped (either normally or you hitting the stop
button) the progress bar disappears and the toolbar item to rerun the
AssemblyLine is enabled. The stop button is now disabled since the AssemblyLine
is no longer running.

Chapter 3. The Configuration Editor 147

At any one time you can clear the log window. The log window only shows the
last few hundred lines of the AssemblyLine log, but every log message is written
to a temporary log file so you can open the log file in a separate editor window
using the View log button in the toolbar (far right).

Note: You can change the size of the log buffer underlying the log window from
the default 300 lines to another value by going into Window > Preferences >
Security Directory Integrator Preferences > Maximum number of lines for Run
AssemblyLine window.

Once the AssemblyLine has terminated you can rerun the AssemblyLine with the
rerun button.

Notice the blue text in the log window. When you see this, you can hold CTRL
down while clicking the word to take you to that part of the AssemblyLine.

The stepper and debugger
The stepper and debugger are tools built in to the Config Editor that can help you
develop your AcessemblyLines interactively.

You can run the stepper in two modes. One is the normal advanced debugger
(activated by the Debugger button, see “The Debugger” on page 150) where you
have access to all parts of the AssemblyLine and the other is the stepper (activated
by the Data Stepper button, see “The Data Stepper” on page 149) that provides a
simpler view of the components and flow. You can toggle between the two by
clicking the button in the column view:

In the stepper view you can switch to debugger view by clicking the Debugger
button. Conversely, switching from debugger to the stepper you click the Data
Stepper button.

Figure 81. Console log window

148 IBM Security Directory Integrator: Users Guide

The Data Stepper

The data stepper provides a column view of all connectors in the AssemblyLine.
Stepping through the AssemblyLine will show the data read or written for each
component. All data shown in these tables are always after a connector has
completed its operation.

In the right part, the data stepper shows components with an attribute map
vertically. Each component can be removed from the view by clicking the close
button or deselecting it from the Show/Hide dialog. The button to the left of the

close button () in each component is a shortcut for “Run to here”.

The Next and Run buttons are used to step one component at a time or to run the
AssemblyLine to completion. The Stop button is used to pause a running
AssemblyLine, or terminate a paused AssemblyLine. The left part of the data
stepper shows the outline for the AssemblyLine and the work entry below. In the
outline view you can choose to re-launch the AssemblyLine from the context
menu. This will start the debugger in a new session and run until the selected
component. This is a quick way of getting into the debugger from the data stepper.

Figure 82. Data Stepper main window

Chapter 3. The Configuration Editor 149

The Show/Hide Components dialog lets you choose which components to show in
the view.

The Debugger

When you choose the Debugger view you will be presented with a layout very
similar to the stepper view, but in the debugger view you see much more of the
AssemblyLine components and you also have the watch window where you can
have custom expressions. The AssemblyLine components tree has a check box for
each item you can check or uncheck to set or remove a breakpoint. Also, there are
more command buttons that enable stepping into components and hooks.

Figure 83. Show/Hide button in the Data Stepper

Figure 84. Show/Hide components dialog

150 IBM Security Directory Integrator: Users Guide

(In the debugger window it can be useful to maximize the editor with Ctrl-M to
get a better overview.)

The tree to the left shows the AssemblyLine components and hooks. You can
toggle the check box for each item to set a break point there. Double-click the item
to view the script, or to enter the script for a conditional break.

The picture below shows the conditional break tab after double-clicking the Before
GetNext hook. Also note that you can hide all hooks that are inactive. Showing all
hooks lets you set a breakpoint regardless of whether the hook is active or not. The
Attributes check box lets you hide attribute maps from the tree view.

The attribute map panel shows the components and their assignments and also the
value assigned to the work attribute. The value is a snapshot from the last break in

Figure 85. Debugger window

Figure 86. Debugger at Before GetNext

Chapter 3. The Configuration Editor 151

the AssemblyLine and the Previous Value is the snapshot value before that. When
you step through the AssemblyLine, the values will reflect maps and scripts that
affect the work entry.

When an error occurs the stepper will show the exception message and the stack
trace in a separate dialog. The log file (on screen) does not include this stack trace.
You can choose to not show this dialog by selecting the check box or in the
Configuration Editor's preferences page.

Stepping through scripts

When you reach a breakpoint that contains JavaScript you can step into the script
and have it executed line by line. The script tab will show the script about to be
executed; you can follow the flow by using the Step Into command (the leftmost
of the two Stepper buttons).

Figure 87. Error dialog: Stack Trace

152 IBM Security Directory Integrator: Users Guide

As you step through the script, each line will be highlighted before it is executed.
You can also use the Evaluate function to display script engine variables while you
step through a script.

When a script function is about to be executed you can use the StepInto button to
step into the JavaScript function. If the function is defined outside the current
context (for example, hook, attribute map script) the window is replaced.

In this AssemblyLine we have defined a function called myfunc1() in the before
init hook. We will call it from the Script1 component to show how it appears to
you:

Figure 88. Debugger window: stepping through a script line-by-line.

Figure 89. StepInto function

Chapter 3. The Configuration Editor 153

At this point we can press StepOver to continue with the next statement or press
StepInto to follow the JavaScript function call:

Step into causes the script editor to change to the script from the before init hook.
Notice the changed label that shows where the script is defined.

You can also set breakpoints inside scripts. Open the editor for a script or attribute
map and double-click the left margin. A blue bullet will appear to denote that
there is a breakpoint set for that location. Double-click again to remove it. You can
also right-click the left margin or in the text field to toggle break points.

Figure 90. Stepped-into function

Figure 91. Follow the function call

154 IBM Security Directory Integrator: Users Guide

Server Debugging
Debugging an IBM Security Directory Integrator server means that every
AssemblyLine started on an IBM Security Directory Integrator server will
automatically establish a debug session with the Configuration Editor as if it were
started in step mode.

Server debugging is activated by selecting Debug Server from the drop-down
menu on a server in the Servers view. When you choose this option, the CE will
connect to the server and set a Java property pointing to the CE for debugging.

Selecting Debug Server starts a new window where the AssemblyLines appear as
they are started on the server. This is different from actively starting an
AssemblyLine in the CE. When you start a debug session from the CE, it will have
its own window and will not appear in this server debug window.

Figure 92. Debug Server option

Chapter 3. The Configuration Editor 155

Each AssemblyLine started by another CE or component on the targeted server
will have its own stepper panel inside this window. See section “The stepper and
debugger” on page 148 for a description of the stepper panel.

Run Options
You can specify additional options when you run an AssemblyLine. These options
are saved so every time you run the AssemblyLine it will use these options.

You can select the run mode, the AssemblyLine operation and provide an initial
work entry (IWE) to the AssemblyLine.

Use the Attribute and Value buttons to add attributes and values to the initial
work entry.

Figure 93. Run with Options window

156 IBM Security Directory Integrator: Users Guide

Choosing the Server
When you run an AssemblyLine it will execute on the local development server.
This server is started by the CE and its solution directory is located in the TDI
Servers project. When you create a new IBM Security Directory Integrator server,
you can change the preferred server for a given project through the Properties
dialog for the project:

Selecting this item will bring up the properties dialog for the project. Select
Directory Integrator Properties to change the default server for the project.

Figure 94. Project Properties menu choice

Chapter 3. The Configuration Editor 157

Team Support
The IBM Security Directory Integrator Configuration Editor includes the Eclipse
plug-ins that enable sharing of projects between users using a source code control
repository.

IBM Security Directory Integrator includes CVS libraries that support pserver,
pserverssh2, ext and extssh type connections. For more in depth information about
the eclipse CVS plugins consult the Eclipse CVS site at http://www.eclipse.org/
eclipse/platform-cvs.

In order to use the team sharing facilities you need access to a CVS repository.
CVS repositories can be hosted by most operating systems and binary packages are
commonly available on the net. The Eclipse CVS site has an FAQ that will help
you with many common problems you may run into.

Figure 95. Project Properties

158 IBM Security Directory Integrator: Users Guide

http://www.eclipse.org/eclipse/platform-cvs
http://www.eclipse.org/eclipse/platform-cvs

For help with installing and configuring a CVS server consult the CVS wiki site at
http://ximbiot.com/cvs. Searching the web for “how to install a cvs server” will
also bring up a host of web sites that will describe in detail how to install and
configure a CVS repository on a variety of operating systems and platforms.

Sharing a project
You can share a project with other users using CVS.

To share a project you choose the Team > Share Project... option in the drop-down
menu on a project.

This opens another screen, where you can specify parameters for the source control
repository.

Chapter 3. The Configuration Editor 159

http://ximbiot.com/cvs

Complete the wizard to share the project to the CVS server.

Note: Only actual files in the project, and the directory structure containing them,
can be properly controlled by the repository. Empty directories are not taken into
account.

When the project has been shared, you can synchronize with the repository to
commit your own changes as well as receiving changes made by other people.

Figure 96. CVS Share Project window

160 IBM Security Directory Integrator: Users Guide

Select Team > Synchronize with Repository to open the synchronize view:

This view shows which files need to be updated as well as which files there are
updates to. After committing the changes the navigator will show additional info
for the files.

Using a shared project
If you want to use a project someone has shared, you use the CVS project wizard.

Select File > New > New project... from the main menu and choose the CVS
project wizard.

Chapter 3. The Configuration Editor 161

Complete the wizard to retrieve the project into your workspace.

The Problems View
When you save a component, the IBM Security Directory Integrator project builder
will update its runtime configuration file to reflect the changes you made.

The project builder will also perform a validation check on the component and
report warnings and errors in the problems view. In the problems view you will
see warnings like these:

When you double-click a line in this view it will open the location where the
problem was located.

The problems you can expect to see in the problems view are the following items:
v Reference to an undefined schema item

Figure 97. Problems View window

162 IBM Security Directory Integrator: Users Guide

If you use constructs like “conn.abc” and “abc” is not defined in the schema you
get this warning.

v Reference to an undefined work attribute
If you use constructs like “work.abc” and “abc” is not known to exist you get
this warning.

v Syntactical errors in scripts
v AssemblyLines with more than one server mode connector

JavaScript Enhancements
Everywhere you edit scripts in the Configuration Editor, you will get a text editor,
enhanced specifically for editing JavaScript code.

This editor provides code completion, syntax coloring as well as marking
syntactical errors.

Some of the enhancements are:
v “Code Completion”
v “Syntax Coloring” on page 165
v “Syntax Checking” on page 165
v “Local Evaluation” on page 166
v “External Editors” on page 166

Code Completion
The JavaScript editor supports code completion.

As you type, the editor will react to certain keystrokes. The dot (.) activates code
completion that brings up a popup menu showing all relevant methods, fields and
features specific to IBM Security Directory Integrator. Code completion can also be
manually activated by the Ctrl-<Space> key combination. Code completion covers
standard JavaScript script types (that is, string, number and so forth) as well as
custom completion for objects specific to IBM Security Directory Integrator. Objects
like conn and work provide a list of available attributes as well as fields and
methods of the object.

Chapter 3. The Configuration Editor 163

Code completion works as long as the editor can derive the Java class name in the
expression:

The editor will also react to single or double quotation marks and curly ("{}")
braces. When you type a single or double quotation mark, the editor automatically
inserts another quotation mark and positions the caret in between the two. This is
done to make it easier to enter string constants.

Typing curly braces will auto indent to accommodate indentation of blocks. When
you type an opening curly brace and hit enter, tabs will be inserted and the caret
positioned on the next line with proper indentation. Conversely, typing the closing
brace will un-indent the curly brace.

Mapping and Code Completion

When you add attributes in the CE we will generate simple expressions based on
the attribute name. Any name that contains dots or other characters that are not

164 IBM Security Directory Integrator: Users Guide

valid script object identifiers, will be enclosed in ["attribute name"] (for example,
conn["http.body"]). Whether the Entry is hierarchical or not is irrelevant when we
use this notation since it works in both cases. Attributes that are valid javascript
identifiers are used as is (for example, conn.cn). If you have a hierarchical schema
we will still generate a simple expression for the map. If for example you have a
hierarchy of a->b->c and you map the "c" part we generate ["a.b.c"] to reference the
attribute.

In the script editor you will see that code completion works in a similar fashion.
The code completion will show completions in plain text (for example, http.body)
but when you hit enter to complete the expression the same enclosure is used for
attribute names that are not valid script object names.

Syntax Coloring
Syntax coloring in the editor is basic. The editor decorates comments and strings.

Syntax Checking
As you type, the editor performs syntax checking on the script in the background.
When you have errors in the script, it shows the error in the margins and the text
will get a red squiggle under it to mark where the JavaScript interpreter found an
error.

When you mouse over the error mark in the ruler (the left margin) you see the
error message in a popup window.

The ruler on the left is synchronized with the text window, and a mark is directly
related to the line in the text window. If there are no errors in the text you see in
the window, there will be no marks in this ruler either.

However, the overview ruler on the right shows all errors in the entire script
regardless of where the text editor is positioned. When you mouse over the mark
in the ruler you get the same error message popup as you get in the left ruler.
Clicking on the marker repositions the editor to the line where the problem was
identified.

Chapter 3. The Configuration Editor 165

Local Evaluation
When you edit a script, you can right-click and choose Execute Script from the
dropdown menu to do a quick evaluation of the selected text. A more detailed test
environment for scripts is the JavaScript view where you can execute scripts and
look at the script engine variables in a separate window:

External Editors
You can edit the script in your favorite JavaScript editor using the context menu.

Right-click in the text field and choose Open in external editor. The editor is
configured in the Window > Preferences > Security Directory Integrator
preferences tab:

166 IBM Security Directory Integrator: Users Guide

Solution Logging and Settings
The Solution logging and Settings window lets you edit the solution specific areas
of the project.

You can open the window by selecting a project, or a project file, and double-click
Solution Logging and Settings in the project tree.

Under Solution Logging and Settings you can modify the following items:
v “System Store settings” on page 168
v “Logging” on page 170
v “Tombstones” on page 170
v “Java Libraries” on page 170
v “AutoStart” on page 171
v “Solution Interface settings” on page 171

Figure 98. Configuration Editor Preferences window

Chapter 3. The Configuration Editor 167

System Store settings
The system store settings for a project can override the default system store
defined by the IBM Security Directory Integrator server. When this is enabled, the
configured system store will be used by the configuration instead of the system
store of the Server.

System store settings can occur in two places:
1. At the IBM Security Directory Integrator Project level in your workspace; and
2. at the IBM Security Directory Integrator Server level.

The settings at the Project level take precedence over the settings at the Server
level, that is, if you have defined a system store specifically for your project, then
that system store will be used while running your components in the Config
Editor; if you have not defined any system store settings in the project, the system
store of the Server you use to run your components will be used.

Settings for Project level

In the drop-down menu of the title you can choose predefined templates as well as
loading and saving system store settings to files in the workspace. Note that all
tables (delta, properties and so forth) will be stored in this database.

The menu items listed as Derby Embedded and so forth are pre-defined templates
that you can load into the configuration panel, after which you can modify them to
your needs, and subsequently update them in the configuration. You can also Load
Template... from your local filesystem.

Changes made to this panel are saved in the Configuration file (when the project is
exported) and are used by all its AssemblyLines, despite the settings of the server
on which they are executed.

168 IBM Security Directory Integrator: Users Guide

Settings for Server level

The same screen appears when you select Edit system store settings from the
drop-down menu on a server in the Servers view. This will update and save the
system store settings variables to the solution properties file. A server restart is
required to activate the new settings.

Figure 99. Configuration system store settings

Figure 100. Server document context meu

Chapter 3. The Configuration Editor 169

Logging
The Logging view shows the loggers for the solution.

You can add and remove loggers by clicking Insert and Delete in the title bar.

See section "Logging and Debugging" in Installing and Administering for more
information.

Tombstones
The Tombstones configuration for a project is found in the Tombstones tab.

A Tombstone is a record of a run of an AssemblyLine, containing some statistics
like number of entries read by Iterators, number of records skipped, number of
records updated, and so forth.

Selecting Create Tombstones for Configuration causes a Tombstone to be
generated every time the configuration file derived from this project, loaded on an
IBM Security Directory Integrator Server, terminates.

Selecting Create Tombstones for all AssemblyLines causes a Tombstone to be
generated every time an AssemblyLine in this project, run on a Server, terminates.

Java Libraries
The Java Libraries tab shows the Java classes that are automatically loaded and
defined in each instance of the script engine.

170 IBM Security Directory Integrator: Users Guide

AutoStart
The AutoStart tab shows a list where you can enter the name of AssemblyLines
that are automatically started when the configuration instance is started.

You can add items to the list by clicking Insert; this lets you choose from existing
AssemblyLines in your workspace.

You can remove AssemblyLines from the Startup Items list by selecting them, and
clicking Delete.

Solution Interface settings
The solution interface settings can be enabled to provide additional information
about the configuration. This information is typically used by the Webadmin tool
(AMC) but can be used by other clients that have access to the solution interface
configuration.

The first two fields in this panel are the solution name and the enabled status. The
default value for the solution name is the project name itself; if the solution name
is left blank then the exported configuration file will not contain any Solution ID.
The enabled checkbox determines whether the configuration is in use or not.

Solution Interface settings are divided into three sections, each with its
corresponding tab:
v “AssemblyLines” on page 172
v “Properties” on page 172

Figure 101. AutoStart settings

Figure 102. Solution Interface settings

Chapter 3. The Configuration Editor 171

v “Description” on page 173

AssemblyLines

This tab shows all AssemblyLines in the project and you can check those that
should be visible to the user for starting/stopping.

The health AssemblyLine is a special AssemblyLine that is used to report the
health of the running configuration. This AssemblyLine is simply one that can
provide custom feedback to the user as to the state of the configuration. The health
AssemblyLine is called and should return two fields in its work entry to report
status (healthAL.result and healthAL.status). See the Action Manager (AM)
documentation (online in AMC, or in Installing and Administering) for more
information on how these fields are used in that context. The poll interval specifies
how often the client (for example, AMC or AM) will call the health AssemblyLine.

Properties

This tab lets you define which properties the users see, and how it is presented to
the user.

Figure 103. Solution Interface settings: AssemblyLines

172 IBM Security Directory Integrator: Users Guide

Description

This tab lets you enter text that describes the solution. It is for documentation
purposes only; it is not used in any other way by IBM Security Directory
Integrator.

Server Properties
You can edit properties for a project using the Properties editor.

Create a new properties file using the File > New > Properties wizard and type
the name of a property store.

In the properties editor you can exchange the contents of the property store using
the Download and Upload commands:

Figure 104. Solution Interface settings: Properties

Figure 105. Solution Interface settings: Description

Chapter 3. The Configuration Editor 173

Use Download to retrieve all properties from the property store (for example, the
properties file assigned to this store). Note that these values are read and passed to
the CE from the IBM Security Directory Integrator Server currently selected for the
project. Conversely, the Upload button updates the property store (via the current
server) with the values in the editor. Only those properties that have a local value
are updated.

Use the Search text field to show properties matching the text in this field.
Checking Hide non-local properties causes the editor to only show those
properties that have a local value.

The project builder will include the property store configuration in the runnable
configuration file. However, the property values in this document are only
transferred as needed.

Note: The order in which Properties stores are initialized and accessed in the IBM
Security Directory Integrator Server is undefined. Therefore, it is not possible to
reliably store in a Property store any properties that define access parameters (for
example, filenames) of other Property stores.

Inheritance
Components can inherit elements from other components by dragging and
dropping an object onto the title bar of a component or subsection of the
component.

For subsections there is also a menu choice (Change inheritance) available on the
title bar.

Figure 106. Properties editor window

174 IBM Security Directory Integrator: Users Guide

For hooks and attribute maps there is a separate inheritance selection on individual
items where you can choose to inherit from a script or function component in the
workspace.

When a configuration item overrides an inherited item the user interface offers a
way to revert to the inherited value through a dropdown menu action item: Revert
to inherited value.

Actions and Key Bindings
The CE contributes a number of actions to itself as well as to objects in the
workbench. These actions perform specific operations on specific objects.

For example, Run AssemblyLine Report is an action that is contributed to all files
with an extension of .assemblyline. When you right-click an AssemblyLine in the
navigator, the drop-down menu will include this command as well as all other
contributions to this type of object.

Chapter 3. The Configuration Editor 175

These actions also have an associated command definition. A command definition
lets the user define the keyboard shortcut for a command. This is done in the
Window > Preferences > Keys panel:

The picture above shows how keyboard assignments are done in the user interface.
In this example, the Run report command has been assigned Alt+Shift+I as its
shortcut. When you open the menu again on the AssemblyLine you will see this
reflected in the menu.

Figure 107. Key Assignments window

176 IBM Security Directory Integrator: Users Guide

You can obtain a list of all specific IBM Security Directory Integrator commands by
entering the text security directory integrator in the search field, which can be
found underneath the Scheme selector.

Chapter 3. The Configuration Editor 177

178 IBM Security Directory Integrator: Users Guide

Chapter 4. Debugging features in IBM Security Directory
Integrator

Once you have created your IBM Security Directory Integrator solution, usually
using the Config Editor (CE), there are a number of ways you can put it through
its paces and test it. Some of the debugging features IBM Security Directory
Integrator offers are available from within the CE, and some are based on scripts
that are available in the IBM Security Directory Integrator installation directory.

Debugging features in IBM Security Directory Integrator are the Sandbox,
AssemblyLine Simulation Mode and the stepper and debugger.

The stepper and debugger are part of the Configuration Editor; see “The stepper
and debugger” on page 148.

Sandbox
IBM Security Directory Integrator includes a Sandbox feature that enables you to
record the operation of one or more Connectors in an AssemblyLine for later
replay without the necessary data sources being available.

The Sandbox feature uses the System Store. See Chapter 6, “System Store,” on page
193 for more information.

Recording a component means that the AssemblyLine will intercept every call to
the connector instance used by the component. Recording a connector component
for example, will record all calls to its connector instance methods like
selectEntries, getNextEntry and so forth. The result of each of those calls is
recorded in the configured sandbox database. The information recorded is the
return value or the exception thrown by the connector.

To run a test session, create an AssemblyLine and add a file system connector
reading data from a file. Add a script component that dumps the work entry. Then
check the file system connector in this panel and select Run/Record on the Run
button menu. After you have done that you can move the file it just read, and run
the AssemblyLine in Playback mode. You should see the same log output even
though the file connector would normally abort since the file is no longer
accessible.

This feature can be very useful when providing support materials. Often, the time
to reproduce the environment for an AssemblyLine and the state of data sources to
reproduce a condition can be quite comprehensive. With a sandbox database with
a recorded session, a support person can run the AssemblyLine without having
access to all data stores the AssemblyLine requires. In addition, the AssemblyLine
configuration can be modified to print out more information if that is necessary.
The only change that cannot be done to the AssemblyLine configuration is to make
additional calls or reorder the calls to recorded components. This would cause an
error during playback as calls to the connector would not match the next expected
call to the connector.

Before you can record or replay an AssemblyLine, you must first tell IBM Security
Directory Integrator where to store the AssemblyLine recording data. This is done
in the Sandbox window, which you can open by selecting AssemblyLine

© Copyright IBM Corp. 2003, 2014 179

Settings... > Sandbox Settings in the AssemblyLine Editor. At the top of this
window is a field labeled Database where you can enter the directory path for the
system to use.

The Sandbox facility is not supported in AssemblyLines containing a Connector in
Server mode, or an Iterator Connector with Delta enabled. The server will abort
the running of the AssemblyLine if this is discovered.

Recording AssemblyLine input
Recording a component means that the AssemblyLine will intercept every call to
the connector instance used by the component. Recording a connector component
for example, will record all calls to its connector instance methods like
selectEntries, getNextEntry and so forth. The result of each of those call are
recorded in the configured Sandbox database. The information recorded is the
return value or the exception thrown by the connector.

To run a test session, create an AssemblyLine and add a file system connector
reading data from a file. Add a script component that dumps the work entry. Then
check the file system connector in this panel and select Run/Record on the Run
button menu. After you have done that you can move the file it just read and run
the AssemblyLine in Playback mode. You should see the same log output even
though the file connector would normally abort since the file is no longer
accessible.

Sandbox playback of AssemblyLine recordings
When an AssemblyLine is in Sandbox mode, all the Connectors set for playback
are said to be in virtual mode. This means that their Connector Interface operations
(for example, getNext(), findEntry()) are not actually called. Instead, these
operations are simulated during playback.

In order to run an AssemblyLine in Sandbox Playback Mode, you must select the
Connectors to be run in virtual mode by the corresponding Playback Enabled
check box in the AssemblyLine Sandbox settings window.

Note: Not all recorded Connectors need to be enabled for playback. You can
enable them to access live data sources, although this might affect the results of the
playback operation.

To run an AssemblyLine from the command line, start the server with the -q2
switch. An AssemblyLine in Sandbox mode runs with input (including its Initial
Work Entry) coming from a recorded set of data. For example, if you have a Java
Messaging Service (JMS) Connector in your AssemblyLine in Sandbox mode, the
JMS Connector retrieves input from the previously recorded data and is never
actually initialized.

When recording an AssemblyLine, the server creates a Derby database in the
specified Database directory using the AssemblyLine name as the database name.
This database contains tables for each Connector in the AssemblyLine. An
AssemblyLine in Sandbox mode can have one or more of its virtual Connectors
replaced by renaming the recorded Connector and then adding a new one with its
original name.

180 IBM Security Directory Integrator: Users Guide

AssemblyLine Simulation Mode
AssemblyLines can be debugged without actually exchanging data with connected
systems using the AssemblyLine Simulation Mode. When an AssemblyLine has
been started in this mode all AssemblyLine Components which potentially could
cause changes in the target systems will be skipped.

This implies that the AL executes normally, but Connectors in Update, Delta,
Delete and AddOnly Mode do not perform the actual operation.

Note: An AssemblyLine run this way can only approximate what would happen
in normal mode; in many cases the very fact that a connected system does not
receive any updates in Simulation Mode may cause your business logic to behave
differently, negating the usefulness of the simulation.

The simulation state should not to be confused with the state of a component. The
component’s state has higher priority than the component’s simulation state.

The component’s state has two values – Enabled or Disabled. If the component is
in Enabled state then it will initialize and its simulation state will be checked when
the appropriate operation is called. When the state is set to Disabled then no check
for the simulation state will be made since no operation will be called, and the
component’s initialization will not be called.

Connectors and FCs have another state called Passive. When their state is set to
Passive then they only will be initialized. Their operations can be executed only
via a user script. When their specific operation is called then the simulation state is
checked.

There are a number of ways in which an AssemblyLine can be started in
Simulation Mode:

From the Configuration Editor:
A checkbox in the Run-mode drop-down menu is available to enable and
disable simulation for the AL. You must choose the desired run-mode Run
with Options from the drop-down menu and check the checkbox
Simulation mode in the pop-up Options dialog box in order to make the
AL simulate while running. The default state for this checkbox is
unchecked.

Using the Server startup command ibmdisrv:
This command recognizes the the switch –M, and will start the AL with
simulation turned on if this switch is provided.

Using the API:
In order to make an AL run in Simulation Mode, you must set the
property AssemblyLine.TCB_SIMULATE_MODE to true in the TCB object. This
object then should be provided to the startAssemblyLine(String,
TaskCallBlock) method. If no property is set then by default its value is
considered to be false.

In order to run an AssemblyLine in Simulate Mode, a new configuration is created.
It is a child of the AssemblyLine Config. This configuration object contains
parameters that configure the connection to an AL that will be used as a Proxy
AssemblyLine (ProxyAL). The SimulationConfig object has a method that creates
or updates a template of a ProxyAL based on the components’ states of the
AssemblyLine that is being simulated. The SimulateConfig object also contains all

Chapter 4. Debugging features in IBM Security Directory Integrator 181

the hooks defined for Components that are in Scripted simulation state. The name
of each hook is the same as the name of the component in Scripted simulation
state. It also contains the simulation state for each component.

AssemblyLines to be run in Simulation Mode can be configured in more detail;
relevant settings can be configured by selecting AssemblyLine Settings >
Simulation Settings in the AssemblyLine Editor window.

The configuration of the simulation states for each component is done using the
Simulation Settings dialog box. This dialog box configures the ProxyAL to be used
by the components which simulation state is set to ProxyAL. When you click
Update Proxy AssemblyLine the Config Editor will either create a new ProxyAL
in the current project or will update an existing Proxy AssemblyLine. The created
or updated ProxyAL is provided as a template and its structure is based on the
configuration you have done in the Simulation Settings dialog box. Note that in
this process only the name of the Proxy AssemblyLine is taken into account. The
Server Name and Config ID are taken into account during the execution of the
Simulated AssemblyLine. If there is already an existing AssemblyLine with the
name specified in the dialog box, then only new branches will be added and no
old branches will be modified or removed. This is because some of them can
contain a user-specific configuration. Individual components in the AssemblyLine
can be set to one of the following states:

Enabled
This is the equivalent of running this component in the AL in normal
mode (that is, the component is executed as it normally would).

Disabled
This is the equivalent of disabling the component (that is, no operations,
hooks, or anything else except the initialization is executed for the
component).

Figure 108. Simulation Settings window

182 IBM Security Directory Integrator: Users Guide

Simulated
Generally, the statistics for all of the components described below will
contain information for the operation that would have completed if the AL
was not simulating. Since no critical operation is done during simulation,
there is no possible way to predict what would be the result from the
execution of a critical operation (success or error), thus the statistics will
state that the operation has completed successfully.
v Connectors in AddOnly mode: executed as normal, only the potentially

unsafe call to the connector.putEntry() method and the call to the
override_add hook are skipped.

v Connectors in Update mode: executed as normal, only the potentially
unsafe call to the connector.modEntry() method and the call to the
override_modify hook are skipped.

v Connectors in Delete mode: executed as normal, only the potentially
unsafe call to the connector.deleteEntry() method and the call to the
override_delete hook are skipped.

v Connectors in Delta mode: executed as normal, but because of the fact
that this connector relies on calls to the methods described above, it will
be simulated when the above methods and hooks are skipped.

v Connectors in Iterator mode with Delta tagging: executed as normally;
for these components the change is similar to the Connectors described
above, that is, the calls to the potentially unsafe methods of the BTree
class (putEntry, modEntry, deleteEntry) are skipped. For the
CDDeltaTaskComponent the commit state is overridden to disable
commit (“No autocommit”) but committing will still be possible for
users that explicitly call the CSDeltaTaskCoponent#commitDeltaState()
method.

v Function Components (FCs): execute as normal, but the invocation of
“before_functioncall”, “after_functioncall” and “no_reply” hooks as
well as the call to the function.perform() method are disabled. The
invocation of these hooks is disabled because they are associated with an
object that is returned from the perform method which is also disabled.
The only thing that will be done is a change to the statistics that will
indicate that the FC has successfully executed this operation.
Also the Input and Output Maps will be executed but the actual entry
before the InputMap will be an empty one (this could lead to an
exception being thrown, it is better to disable each simple attribute
mapping from the InputMap that relies on an attribute returned from
the Function Component or to add a check for validity of the retrieved
attribute in the advanced attribute Map; alternatively, you can use the
NullBehaviour mechanism to override potential errors).

v Connectors in any other mode run as usual.

Proxy Connectors in this simulation state will start another AL (specified in the
Simulation tab) that will override the potentially unsafe execution of the
operation. This external AL is shared between all the Components in this
simulation mode. It will be executed with different operation which name
matches the name of the Component being simulated. See “Proxy
AssemblyLine workflow” on page 184.

Scripted
A user-defined script will override the potentially unsafe operation. Each
component in this simulation mode has its own hook, unlike the Proxy
state where an AL is shared between the components. See “Simulation
script workflow” on page 186.

Chapter 4. Debugging features in IBM Security Directory Integrator 183

You have the ability to check whether the AL is simulating and also to switch
simulation on and off using the following methods:
v boolean AssemblyLine#isSimulating() Used as follows from a hook:

task.isSimulating();
v void AssemblyLine#setSimulating(boolean) Used as follows from a hook:

task.setSimulating(true);

You have the ability to check the state of each component, and to set it
dynamically by using the following methods:
v String AssemblyLineComponent.getSimulatingState() Used as follows from a

hook: ConnectorName.getSimulatingState();
v void AssemblyLineComponent.getSimulatingState(String) Used as follows from

a hook: ConnectorName.setSimulatingState("Proxy");

Note: Only Connectors and FCs have the full set of simulation states as described
above, the remaining components (and Connectors in Server mode) have only
Enabled and Disabled states.

IBM Security Directory Integrator considers some FCs safe and their default
simulation state will be Enabled, that is by default they will not simulate and will
execute as usual; these are all FCs that are unable to change a target system since
they simply do not connect to any. The list of safe FCs is as follows:
v CBE FC
v JavaToXML FC
v XMLToJava FC
v SDOToXML FC
v XMLToSDO FC
v Parser FC
v MemQueue FC
v JavaToSOAP FC
v SOAPToJava FC
v WrapSOAP FC

Attention: You still can cause changes to underlying datasystems by explicit
coding; this is out of scope of the Simulation Mode.

Any remaining FCs not listed here are considered potentially unsafe and their
default simulate state will be set to Simulated.

Proxy AssemblyLine workflow
In the context of Simulation Mode, the call to a proxy AL works similar to how
you would use the AssemblyLine Connector to drive an AL of your choice,
however some significant differences are observed.

The call to the override hook of the specific operation is disabled when the
component is in Proxy simulation state.

The table below shows the methods that are called when the Connector is in one
of those Modes or when the component is a Function component.

184 IBM Security Directory Integrator: Users Guide

Table 10. Method invocation according to mode

Mode Method

Connector: AddOnly putEntry

Connector: Update findEntry, modEntry, putEntry

Connector: Delete findEntry, deleteEntry

Connector: Delta findEntry, modEntry, putEntry, deleteEntry

Connector: Iterator selectEntries, getNextEntry

Connector: CallReply queryReply

Connector: Lookup findEntry

Function component perform

When the time for the calling of a specific method arrives and the component is in
Proxy simulation state then the call to that method will be delegated to the proxy
AL. When the proxy AL is started an op-entry is passed to it with the following
attributes:
v $operation – this attribute contains the name of the operation to be executed.

When the proxy AL is called instead of a component’s specific method then the
value of this attribute will be the same as the name of the component.

v $method – this attribute contains the name of the method that would be
normally called, but since the component is in Proxy simulation state and
Components in some modes (for example, Update) execute several methods
before actually do the modification (that is, findEntry) then the proxy AL must
recognize which method to implement. This $method attribute just tells the
proxy AL which method it is executed instead so the proxy AL can handle the
operation properly.

v search – this attribute is available when the $method attribute is findEntry. Its
value is an object of type SearchCriteria and represents the Search Criteria
defined by the user. For example if the component is in Proxy simulation state
and its mode is Update, then a Search Criteria must be defined in order to be
able to update the right entry on the target system. Since the simulation state is
Proxy, the actual lookup operation that takes place before the modify operation
delegates its execution to the proxy AL. Then the proxy AL uses this Search
Criteria for proper lookup simulation.

v current – this attribute is only available when the $method attribute is
modEntry. Its value is an entry object that represents the entry found in the
target system before the actual modification occurs. This is the entry that the
findEntry method, executed before modEntry method, returns.

An Initial Work Entry (IWE) is passed to the proxy AL when it is called. When the
$method is findEntry, selectEntry or getNextEntry the IWE is a copy of the work
entry from the calling AL. In any other case the IWE is the entry retrieved from the
OutputMap procedure (a.k.a. the conn entry). In particular, for the deleteEntry
operation the IWE is the entry retrieved from the preceding findEntry operation.

After the proxy AL execution is done and the $method is findEntry, the result
entry is checked for the attribute conn. If it is available then it is assumed that this
attribute contains all the entries found from the findEntry operation and according
to its value, the appropriate hooks will be called, that is, no_match and
multiple_match. If no attribute with the name conn is found then the result entry
of the proxy AL execution is treated as the entry found by the findEntry $method.
The entry retrieved from the proxy AL that overrides the selectEntries $method is

Chapter 4. Debugging features in IBM Security Directory Integrator 185

automatically merged with the work entry of the calling AL. The entry retrieved
from the proxy AL that simulates those methods that expect an entry (that is,
findEntry, getNextEntry, queryReply and perform) is sent to the defined InputMap.
For all other methods that are not expected to return a result, the entry from the
proxy AL is ignored.

Simulation script workflow
Each component which simulation state is set to Scripted has a Simulation Script
(SS) defined in the Simulate tab.

Here is list of objects exposed to you for direct use from a SS:
v work – the work entry.
v conn – the entry retrieved from the lookup operation or directly from the

OutputMap or null.
v resEntry – the entry that is used as a result if the operation being simulated

requires a result to be returned; otherwise if the result will not be used, it is null.
v current – the entry found in the target system that will be modified or null.
v search – the SearchCriteria object defined by the user or null.
v method – a String object containing the name of the method that is being

override by the SS.

The table below explains the methods being simulated, it shows when the SS will
be invoked.

Table 11. Method invocation according to mode

Mode Method

Connector: AddOnly putEntry

Connector: Update modEntry, or putEntry if the entry couldn’t
be found

Connector: Delete deleteEntry

Connector: Delta modEntry, putEntry or deleteEntry (depends
on inner logic)

Connector: Iterator getNextEntry

Connector: CallReply queryReply

Connector: Lookup findEntry

Function component perform

If a Connector is in Server mode with a Scripted simulation state it would still
require to receive a request from a client. The SS will be called when the response
is to be sent.

The internal lookup operation that is executed for Connectors in Update, Delete
and Delta mode will be done internally and it won’t allow overriding from a SS
like it does for the proxy AL.

Connectors in this simulation state will not execute the operation’s override hook if
any.

186 IBM Security Directory Integrator: Users Guide

Chapter 5. Easy ETL

The EasyETL perspective in the Configuration Editor is a highly specialized way of
looking at your IBM Security Directory Integrator configurations, dedicated to get
you up and running fast with projects that revolve around simple tasks to Extract,
Transform and Load data (ETL) into some form of database.

The EasyETL perspective shows EasyETL projects and lets you run, open and
create new ETL projects. The ETL perspective can be shown by choosing Window
> Open Perspective and then selecting the Easy toETL perspective.

To start the CE with this perspective add -perspective
com.ibm.tdi.rcp.perspective.etl to the CE command line (ibmditk).

Use the New Project button to create a new EasyETL project. An EasyETL project
is a normal IBM Security Directory Integrator project with a single AssemblyLine
with two connectors. Double click or select the project and press the Enter key to
open the ETL editor.

The context menu for an ETL project has the following items:

Figure 109. EasyETL main window

© Copyright IBM Corp. 2003, 2014 187

v Open – Open the project in the editor
v Open with full AssemblyLine Editor – Open the project in the advanced

AssemblyLine editor
v Run fast – Run the project without collecting data from the AssemblyLine
v Run– Run the project and display collected data in the Data-Collector view
v Create files ... – Generate files needed to run the project from the command line
v Rename – Rename the project
v Delete – Delete the project

The EasyETL editor shows the two connectors with a table that shows the
mapping between the two connectors. The initial screen shows an empty selection
for both connectors as shown in this picture:

Figure 110. EasyETL project context menu

Figure 111. Initial EasyETL project window

188 IBM Security Directory Integrator: Users Guide

You then typically start by choosing the source connector. There are four options in
the type dropdown:
v File System Connector
v LDAP Connector
v Database Connector (JDBC)
v Select Connector...

The top three are quick selections since they are commonly used. The last option,
Select Connector... brings up the standard connector selection dialog where you
can choose any connector you want. However, the list of connector is limited to
those that implement the mode for the source (Iterator) and target (AddOnly)
connector.

Once the connector is chosen you can configure the connector. The configuration
dialog contains the forms to configure the connector and parser if it is required. In
addition, the Delta screen is available for the source connector.

If you select the LDAP Connector you will see the following window:

Figure 112. LDAP Connector in Easy ETL

Chapter 5. Easy ETL 189

After discovering the attributes in the connector you can check those attributes you
want to read in from the connector. For the target connector, only the list of
schema items is present since the mapping is based on the attributes of the input
connector.

Once the schema and attributes are available they will be shown in the source
attribute column.

Items that are grayed out are attributes that are not mapped. Right click and
choose Map Attribute to map the attribute. You can also double click or press the
Enter key to map the current selection. In the target attribute column you can click
and choose a different output attribute name. Conversely, you can do the same on
a mapped attribute to return it to the list of unmapped attributes.

To customize the mapping between the two attribute check the Show
Transformations checkbox. This will add a new table between the source and
target tables.

The transformation table shown has arrows that denote verbatim copies between
two attributes. Double click a transformation item to bring up the JavaScript editor
for that map.

Figure 113. Input/Output mapping

Figure 114. Input/Output mapping, with Transformations

190 IBM Security Directory Integrator: Users Guide

Enter the script that will perform the custom transformation of the value. Note that
all mapped attributes in the source connector are available as top-level beans. This
means that you can refer directly to cn instead of using the work.cn notation. The
editor is also aware of the Java class based on what has been read by the Read and
Write Next Record action. The last entry read is also used when you test the script
with the Evaluate button so the evaluation of the script can be tested against real
live data as shown in the picture above. The message shows the input value and
the result of the transformation script (output). The JavaScript Help button is a
quick way to access the help page for JavaScript.

The target connector has a checkbox labeled Disable. This checkbox, when
checked, will disable the output connector and instead dump the entry (after
custom transformations) to the console log.

After configuring the connectors you can now run the AssemblyLine either to
completion or by stepping one record at a time through the AssemblyLine. When
stepping through the AssemblyLine the table will reflect the last entry read and
written to the target connector. When you click the Run button the AssemblyLine
will execute continuously until it completes or you press the Stop button. When
the stop button is pressed during execution, the AssemblyLine breaks and gives
control back to you. When the stop button is pressed while you have control, the
AssemblyLine terminates. When the AssemblyLine has terminated it shows a

Figure 115. Transformation script

Chapter 5. Easy ETL 191

completion dialog with some statistics about the run:

Figure 116. Completion dialog

192 IBM Security Directory Integrator: Users Guide

Chapter 6. System Store

The System Store addresses the various needs of IBM Security Directory Integrator
for persistent storage and by default uses the Apache Derby RDBMS (previously
known as IBM Cloudscape) as its underlying storage technology.

Other relational databases, like IBM DB2, can be used to hold the System Store.
The System Store can be shared by multiple instances of IBM Security Directory
Integrator servers if the Derby database runs in networked mode, or if a multiuser
relational database system is used. If Derby runs embedded in an IBM Security
Directory Integrator server, it cannot be shared simultaneously with other servers.

The System Store implements three types of persistent stores for IBM Security
Directory Integrator components:
v “User Property Store”
v “Delta Store” on page 194
v Sandbox tables

Each store offers its own set of features and built-in behavior, as well as a callable
interface that users can access from their scripts, for example, to persist their own
data and state information.

You can configure the “System Store settings” on page 168 for a project by
selecting the project in the IBM Security Directory Integrator Navigator, and select
Solution Logging and Settings. Then select the System Store tab.

You can set up a JDBC Connector to directly access any of the tables in the System
Store, although changing data in these tables must be avoided, as this can cause
your solution to malfunction.

Attention: If you are running Derby embedded in IBM Security Directory
Integrator as opposed to running it in networked mode as a server, then be sure to
Close the database again before trying to test or run your Config. Because the
Config Editor starts up a separate instance of the server, running in its own JVM,
the System Store is not available to this server. Closing the System Store Details
window also closes your connection to the database.

Note: Although the Sandbox feature also uses the System Store technology, you
specify a new database directory for each AssemblyLine.

User Property Store
The User Property Store is a System Store table used for maintaining serialized
Java objects associated with a key value. This is where persistent component
parameters and properties, such as the Iterator State Store are maintained, as well
as data you store.

For example, when you set the Iterator State Store parameter for the Active
Directory Change Detection Connector, you are specifying the key value that the
Connector uses to save and restore the Iterator state. If you want the Iteration to
start with the first (or last) change entry, simply delete the Iterator State Store entry
in the User Property Store; that is, click Delete next to the parameter.

© Copyright IBM Corp. 2003, 2014 193

You can persist your own objects with the following system calls:

system.setPersistentObject(keyValue,obj)
Saves the object obj in the User Property Store using the specified keyValue.
The object is returned if it was saved successfully, otherwise the function
returns null.

system.getPersistentObject(keyValue)
Returns the object with the specified keyValue from the User Property Store.
If the keyValue is not found, then the function returns NULL.

system.deletePersistentObject(keyValue)
Deletes the object with the specified keyValue in the User Property Store.
This function returns the object that was deleted, or NULL if the keyValue
was not found.

These methods access the default User Property Store.

However, you can create and use your own stores using the Store Factory.

If you view the User Property Store from the System Store window, note that it has
the following table definition:

Key The unique key (512 chars)

Entry The object associated with the key

Note: Any object to be persisted in the User Property Store must be serializable.

Delta Store
The Delta Store is found under the Delta Tables folder in the System Store
browser. Each table represents one Delta Store parameter setting (in the Delta tab
of an Iterator). There are a number of classes and methods for working directly
with the Delta Store, although this is not recommended. For more information on
the Delta feature, see the section entitled Chapter 7, “Deltas,” on page 199.

Store Factory methods
The following examples are of methods that can be used with the Store Factory:

public static PropertyStore getDefaultPropertyStore () throws Exception;
Returns the default Property Store.

public static PropertyStore getPropertyStore (String table) throws
Exception;

Returns the Property Store identified by name. Only one instance of a
given name is present at one time.

@param name
The Property Store name.

@return
The Property Store object associated with name.

public static String getSystemDatabaseURL ();
Returns the System Store JDBC URL.

public static Connection getConnection () throws Exception;
Returns a connection object to the default database.

194 IBM Security Directory Integrator: Users Guide

public static Connection getConnection (String database) throws
Exception;

Returns a connection object to the named database with AutoCommit set
to TRUE.

@param database
The database name.

public static Connection getConnection (String database, boolean
autoCommit) throws Exception;

Returns a connection object to the named database.

@param database
The database name.

@param autocommit
The AutoCommit flag.

@return
A connection object to the named database.

public static boolean dropTable (Connection connection, String table);
Drops a table in the database associated with connection.

@param connection
The connection object obtained by getConnection().

@param table
The table to drop.

public static void verifyTable (Connection connection, String table,
Vector sql) throws Exception;

Verifies that a table is accessible in the database.

@param connection
The connection object obtained by getConnection(). If null, a
connection to the default table is obtained.

@param table
The table name to verify.

@param sql
A vector of SQL statements to create the table if it does not exist.

public static Exception dropTable (String tableName);
Drops a table in the default database.

@param tableName
The name of the table to drop.

public static byte[] serializeObject (Object obj) throws Exception;
Serializes an object to a byte array.

@param obj
The object to serialize.

@return
The byte array containing the serialized object.

public static Object deserializeObject (byte[] array) throws Exception;
Deserializes a byte array into a Java object.

@param array
The byte array with the serialized Java object.

Chapter 6. System Store 195

@return
The resurrected Java object.

Property Store methods
The following examples are methods that you can use with the Property Store:

public Object setProperty (String key, Object obj) throws Exception;
Adds or updates a value in the Property Store. If an update is performed
the old value is returned.

@param key
The unique identifier.

@param obj
The value.

@return
The old value in case of an update.

public Object getProperty (String key) throws Exception;
Returns a value in the Property Store.

@param key
The unique identifier.

@return
Value in the store or NULL if not found.

public Object removeProperty (String key) throws Exception;
Removes a value in the Property Store.

@param key
The unique identifier to remove.

@return
The old value or null if key is not in the table.

UserFunctions (system object) methods
The UserFunctions class (for example, the system object) has additional methods
defined to get or set objects in the System Property Store:

public Object getPersistentObject (String key) throws Exception;
This method retrieves a named object from the default system Property
Store.

@param key
The unique key.

public Object setPersistentObject (String key, Object value) throws
Exception;

This method stores a named object in the default system Property Store.

@param key
The unique key.

@param value
The object to store (must be Java serializable).

@return
The old object if any.

196 IBM Security Directory Integrator: Users Guide

public Object removePersistentObject (String key) throws Exception;
This method removes a named object in the default System Property Store.

@param key
The unique key.

@return
The old object if any.

Chapter 6. System Store 197

198 IBM Security Directory Integrator: Users Guide

Chapter 7. Deltas

The Delta Engine feature is available to Connectors in Iterator mode. If enabled
from the Iterator's Delta tab, the Delta engine feature uses the System Store to take
a snapshot of data being iterated. Each successfully read Entry is compared with
the snapshot database called the Delta Store to see what has changed. Based on the
differences between the read Entry and the Entry stored in the Delta store, a new
Entry called a Delta Entry is created by the Delta Engine. This Entry is tagged with
special delta operation codes to indicate what has changed, and how.

Delta mode is a Connector mode which enables a connector to “understand” and
use the delta operation codes. A connector in this mode uses the delta operation
codes of a received Delta Entry to determine what type of change needs to be
applied to the connected system. The Delta mode supports all types of
modifications – add, modify and delete. This mode is used to facilitate
synchronization between different systems (for example, synchronizing two LDAP
servers on different machines).

Attention: The Delta Engine introduces an underlying local repository for storing
snapshots of data in order to compute changes during the synchronization process.
The data source that is being scanned for changes becomes the master in a
master-slave relationship, and it is then vital that all changes made to the slave (for
example, the Delta store) be made using the Delta mechanism, and not by directly
manipulating the underlying database table. Otherwise, the Delta snapshot
information that IBM Security Directory Integrator maintains becomes inconsistent,
and the Delta Engine fails.

Delta Features
Delta features in IBM Security Directory Integrator are the following:

Delta Entry

This is a regular Entry object that has been tagged with special delta operation
codes. These codes describe the type of change (add, modify, delete or unchanged)
and can be assigned on different levels – the Entry, Attribute or AttributeValue
level.

Components producing Delta Entries
v Delta Engine – detects changes in a data source. This is useful when the data

source itself does not provide a convenient access to changes (for example,
changelog or change notification mechanism). Changes are detected by
comparing the current state of the data source against a historical snapshot. The
snapshot is saved in a repository called the "Delta Store". Physically the Delta
Store consists of a number of Delta Tables located in the System Store.
The next time the data is read it will be compared to the one already saved in
the Delta store. After the changes information is computed a Delta Entry is
created and returned by the Connector. This Delta Entry can then be used to
transfer the detected changes to other connected systems by using Connectors in
Update, AddOnly, Delete or Delta mode.

v Change Detection Connectors – these are the LDAP Connectors, RDBMS Change
Detection Connector and Domino Change Detection Connector.

© Copyright IBM Corp. 2003, 2014 199

v LDIF and DSMLv2 Parser – when reading or writing the LDIF and DSMLv2
Parser support Delta tagging at Entry, Attribute and AttributeValue level.

Components consuming Delta Entries
v Delta mode – this Connector mode facilitates synchronization solutions between

systems. It can be used to apply all types of changes to a connected system. The
Delta mode is the only mode that requires (and uses) Delta Entries. This mode
detects change types by using delta operation codes of an Entry.

v Update Connectors with Compute Changes – Connectors in Update mode with
enabled “Compute Changes” parameter do not trigger the “Compute Changes”
logic if the received Entry is delta tagged.

Delta Entry
A Delta Entry is an Entry that posseses all features and functions of a regular
Entry. In addition to that the Delta Entry also contains delta operation codes. They
indicate the type of change applied to the Entry – add, delete, modify or
unchanged. The delta operation codes can be attached to Entries, Attributes and
values to reflect their particular changes.

Overview

The process of assigning delta operation codes is called delta tagging and the delta
codes are referred to as operation codes and delta tags. In a few words, the Delta
Entry is actually a Delta tagged regular Entry. Here is an example of a regular
Entry and a Delta Entry.

Regular Entry:
{
"#type": "generic",
"#count": 3,
"UserName":
"#type": "replace",
"#count": 1,"tanders",
"FullName":
"#type": "replace",
"#count": 1,"Teddy Anderson",
"id":
"#type": "replace",
"#count": 1,"66"

}

Delta Entry:
{
"#type": "modify",
"#count": 3,
"@delta.old": "{
"UserName": "manders",
"FullName": "Mary Anderson",
"id": "66"
}",
"UserName": [
"#type": "modify",
"#count": 2,
"tanders",
"manders"
],
"FullName": [
"#type": "replace",
"#count": 1,

200 IBM Security Directory Integrator: Users Guide

"Mary Anderson"
],
"id":
"#type": "unchanged",
"#count": 1,"66"

}

The process of evaluation of delta codes goes from top to bottom or from Entry
level → Attribute level → AttributeValue level. The operation at the higher level
takes precedence.

If an Entry operation is delete all other delta tags are ignored. If it is replace, modify
or add the evaluation continues with the Attributes delta tags.

If an Attribute is tagged as delete, add or replace the delta tags of its values are
ignored. Only if an Attribute is tagged as modify, the ' delta tags of AttributeValues
will be considered. These delta tags indicate that AttributeValues can have different
operation codes (for example, some of them are added and others deleted).

The AttributeValue delta tags have the following meaning in the context of Delta
tagging:
v add – the value is added to the list of values for the specified Attribute;
v delete – the value is removed from the list of values for the specified Attribute;
v replace – the value is replaced; this is the default delta tag.

Delta Entries are produced by the following components:
1. Connectors in Iterator mode with enabled Delta;
2. Change Detection Connectors;
3. LDIF and DSMLv2 Parser when reading.

They are consumed by these components:
1. Connectors in Delta mode;
2. LDIF and DSMLv2 Parser when writing;
3. Connectors in Update mode.

Getting and setting Delta operation codes using Script

Delta tagging is supported at Entry, Attribute and AttributeValue level. Here is
how you can get/set the Entry operation using script:
var entryOper = work.getOperation(); //get Entry operations as string (e.g. ’add’)
var entryOp = work.getOp(); //get Entry operations as char (e.g. ’a’)

work.setOperation(“modify”); //set Entry operation
work.setOp (’m’);

If you want to set/get the Delta flags for an Attribute you can do that with the
following code:
var attr = work.getAttribute(“sn”); // get Attribute object

var attrOper = attr.getOperation(); // get delta operation as string (e.g. ’replace’)
var attrOp = attr.getOper(); // get delta operation as char (e.g. ’r’)

attr.setOperation(“replace”); // set Attribute delta operation
attr.setOper(’r’);

Delta tags at the AttributeValue level can be set/get using this script:

Chapter 7. Deltas 201

var attr = work.getAttribute(“sn”); // get Attribute object

var valOper = attr.getValueOperation(0);// get value delta operation for first value
var valOp = attr.getValueOper(0);

attr.setValueOperation(1, “add”); // set value delta operation for second value
attr.setValueOper(1, ’a’);

Producing Delta Entries
Delta Entries can be generated either using the Delta feature or suitable parser of
Connectors in Iterator mode, or by IBM Security Directory Integrator's Change
Detection Connectors.

In particular, Delta tagged Entries are returned by the following components:
v Active Directory Change Detection Connector
v Domino Change Detection Connector
v IBM Security Directory Server Changelog Connector
v RDBMS Change Detection Connector
v Sun Directory Change Detection Connector
v z/OS LDAP Changelog Connector

Note: The z/OS operating system is not supported in IBM Security Directory
Integrator Version 7.2 onwards.

v DSMLv2 Parser
v LDIF Parser

Delta feature for Iterator mode
Connectors in Iterator mode can generate Delta entries. This feature uses the Delta
Engine and the Delta Store to detect changes.

Delta Engine

The Delta Engine allows you to read through a data source, and detect changes
from the previous time you did this. This way you can detect new entries, changed
entries and even deleted entries. For certain data sources (such as LDIF files and
LDAP servers), IBM Security Directory Integrator can even detect if attributes and
values within entries have been changed. You can configure Delta settings on
Connectors in Iterator mode only.

The Delta Engine knows whether Entries or Attributes have been added, changed
or deleted by keeping a local copy of each Entry in a persistent store, which is part
of the System Store. This local repository is called a Delta Store and consists of
Delta tables. Each time the AssemblyLine is run, the Delta Engine compares the
data being iterated with its copy in the Delta Table. When a change is detected the
Connector returns a Delta Entry.

Note: Do not manually modify Delta Store tables. Otherwise, the Delta snapshot
information will become inconsistent, and the Delta Engine will fail.

Note: In versions earlier than IBM Security Directory Integrator V6.1, snapshots
written to the Delta Store during Delta engine processing were committed
immediately. As a result, the Delta engine would consider a changed Entry as
handled even though processing the AL Flow section failed. This limitation is

202 IBM Security Directory Integrator: Users Guide

addressed through the Commit parameter on the Connector Delta tab. Setting this
parameter controls when the Delta engine commits snapshots taken of incoming
data to the System Store.

Unique Attribute name

In order for the Delta mechanism to be able to uniquely identify each Entry, you
must specify a unique Attribute to use as a Delta key. The values of this attribute
must be unique in the used data source. You can specify the Delta key in the Delta
tab of the Connector, by entering or selecting an attribute name in the Unique
Attribute Name parameter. This attribute must be found in the Input Map of your
Iterator, and can either be an attribute read from the connected system or a
computed attribute (using script in the Attribute Mapping).

You can also specify multiple attributes by separating them with a plus sign (+):
LastName+FirstName+BirthDate

At least one of the attributes specified in the Unique Attribute Name parameter
must contain a value. When several attributes are specified, their string values are
concatenated into one string, which then becomes the unique Delta identifier.
Attributes with no values (for example, blank or NULL) are skipped when the
Delta key is built for an Entry.

Delta Store

The Delta Store is physically located in the System Store. It consist of one Delta
Systable (DS) and one or more Delta Tables. Each Delta Table is used for the Delta
Store of a different Iterator Connector with enabled Delta.

Although Delta Store tables can be accessed with both the JDBC Connector and the
System Store Connector, it is unadvisable to change them without a deep
understanding of how these tables are structured and handled by the Delta Engine.

Delta Table structure

Every Delta Table (DT) contains information about each Entry processed by the
Delta Engine for a particular Connector. A Delta Systable (DS) maintains a list of
all Delta Tables currently in use by the Delta Store.
v Delta Systable – The Delta Systable (DS) contains information about each Delta

Table (DT) in the System Store. The purpose of the DS is to maintain the
sequence counter for each DT. The structure for the DS is as follows:

Table 12. Delta Systable structure

Column Type Description

ID Varchar The DT identifier (name)

SequenceID Int The sequence ID from the last run

Version Int The DS version (1)

v Delta Table – Each Connector that requests a Delta store needs to specify a
unique Delta identifier to be associated with the Connector. This identifier is also
used as the name of the Delta Table in the System Store. The Delta Table
structure is as follows:

Chapter 7. Deltas 203

Table 13. Delta Table structure

Column Type Description

ID Varchar The unique value identifying an Entry

SequenceID Int The sequence number for the Entry

Entry Long Varbinary The serialized Entry object

Delta process

Given the above Delta Store structure, the sequence number is used to determine
which entries are no longer part of the source data set. Every time an
AssemblyLine is run the sequence number for the Delta Table used in particular by
the Connector is read from the Delta Systable. Then it is incremented, and this
incremented value will be used for marking the updated entries during the entire
AssemblyLine execution.

The Delta Engine process works in two passes.
1. Read → Look up → Compare → Update → Set current SequenceID

a. The Iterator reads entries from the input data source.
b. The Delta process looks for corresponding Entry in the Delta Table using

the unique attribute's value.
c. If a match is found the Delta process compares each Attribute (and its

values) to determine if there have been modifications to the Entry. Based on
the result from the comparison, the Delta Engine returns Delta Entry tagged
with the relevant operation codes: modify or unchanged:
v Modify Entry – the Entry that was read and the corresponding Entry

from the Delta Table are considered different; the Entry is updated in the
Delta Table

v Unchanged Entry – the Entry that was read and the corresponding Entry
from the Delta Table are considered equal.

d. If a match is not found in the Delta Table the Entry is treated as new:
v Add Entry – the Entry is added to the Delta Table.

e. In both case c. and d. the sequence number value in the Delta table is
updated with the sequence number used for the current AssemblyLine
execution.

2. Check for data with (SequenceID < current SequenceID) → Mark as Deleted
Once End of Data is reached by the Iterator, the Delta Engine makes a second
pass through the Delta Table looking for those entries not accessed during the
first pass. These Entries are easily recognized because their sequence number is
not updated with the current sequence number. Therefore any Entries in the
Delta Table with a sequence number lower than the current sequence number
are considered to be deleted entries and are returned as deleted.

Note: This pass happens only when the iteration trough the input data
completes successfully. If for some reason an error occurs during that iteration,
no Entries will be tagged as deleted and returned by the AssemblyLine or
removed from the Delta Table. This will not affect the original data source and
the next time the AssemblyLine is executed successfully the deleted Entries will
be processed correctly.

204 IBM Security Directory Integrator: Users Guide

Row Locking

This parameter is available in the Delta tab for Iterator connectors and the Delta
Function Component configuration. It allows you to set the transaction isolation
level used by the connection established to the Delta Store database. Setting a
higher isolation level reduces the transaction anomalies known as 'dirty reads',
'non-repeatable reads' and 'phantom reads' by using row and table locks. This
parameter has the following values:

READ_UNCOMMITTED
Corresponds to java.sql.Connection.TRANSACTION_READ_UNCOMMITTED;
indicates that dirty reads, non-repeatable reads and phantom reads can
occur. This level allows a row changed by one transaction to be read by
another transaction before any changes in that row have been committed (a
"dirty read"). If any of the changes are rolled back, the second transaction
will have retrieved an invalid row.

READ_COMMITTED
Corresponds to java.sql.Connection.TRANSACTION_READ_COMMITTED;
indicates that dirty reads are prevented; non-repeatable reads and phantom
reads can occur. This level only prohibits a transaction from reading a row
with uncommitted changes in it.

REPEATABLE_READ
Corresponds to java.sql.Connection.TRANSACTION_REPEATABLE_READ;
indicates that dirty reads and non-repeatable reads are prevented; phantom
reads can occur. This level prohibits a transaction from reading a row with
uncommitted changes in it, and it also prohibits the situation where one
transaction reads a row, a second transaction alters the row, and the first
transaction rereads the row, getting different values the second time (a
"non-repeatable read").

SERIALIZABLE
Corresponds to java.sql.Connection.TRANSACTION_SERIALIZABLE; indicates
that dirty reads, non-repeatable reads and phantom reads are prevented.
This level includes the prohibitions in
TRANSACTION_REPEATABLE_READ and further prohibits the situation
where one transaction reads all rows that satisfy a WHERE condition, a
second transaction inserts a row that satisfies that WHERE condition, and
the first transaction rereads for the same condition, retrieving the
additional "phantom" row in the second read. This is generally the slowest
but safest option, and the default value for the Row Locking parameter.

For more information about transaction isolation levels, see the online
documentation of the java.sql.Connection interface: http://docs.oracle.com/javase/
1.6.0/docs/api/java/sql/Connection.html.

Each database server sets a default transaction isolation level; the default value for
Apache Derby, Oracle and Microsoft SQL Server is
TRANSACTION_READ_COMMITTED. However, the default value of the Row
Locking parameter of SERIALIZABLE will override this when using a Delta
component (that is, the Delta functionality in Iterator Connectors or the Delta
Function Component).

Some database servers may not support all transaction isolation levels, therefore
please refer to the specific database documentation for accurate information about
supported transaction isolation levels.

Chapter 7. Deltas 205

http://docs.oracle.com/javase/1.6.0/docs/api/java/sql/Connection.html
http://docs.oracle.com/javase/1.6.0/docs/api/java/sql/Connection.html

Note: Transaction isolation levels are maintained by the database server itself for
every connection established to the database. Therefore when a Delta component
(with Transaction isolation level set to REPEATABLE_READ or SERIALIZABLE
and the Commit parameter set to On Connector Close starts its transaction, all other
queries trying to modify the same data will be blocked. This means that other
components which need to modify the same data will have to wait until the first
component commits its transaction on termination. This waiting may cause the
issued SQL queries to timeout and leave the data unmodified.

Also when a component has the Commit parameter set to No autocommit you
should manually commit the transactions in such manner that other components
will not wait forever to perform a modification.

Detect or ignore changes only in specific attributes

The parameters Attribute List and Change Detection Mode configure the ability of
the Delta Engine to detect changes only in specific attributes instead of in all
received attributes.

The Attribute List parameter is a list of comma separated attributes which will
be affected by Change Detection Mode. This Change Detection Mode parameter
specifies how changes in these attributes will be handled. It has three values:

IGNORE_ATTRIBUTES
(“Ignore changes for the following Attributes”) – Changes in every
attribute specified in the Attribute List parameter will be ignored during
the compute changes process.

DETECT_ATTRIBUTES
(“Detect changes for the following Attributes”) – This option has the
opposite effect – the only detected changes will be in the attributes listed
in the Attribute List parameter.

DETECT_ALL
(“Use all Attributes for change detection”) – This instructs the Delta Engine
to detect changes in all attributes. When this option is selected the
Attribute List parameter is disabled since no list of affected attributes is
needed.

Example use case

When using the Delta Engine, sometimes the received entries contain attributes
that you consider as not important and wish to ignore. In such cases, these
attribute must not affect the result of the Delta computation, as when several
Entries differentiate only by these attribute it leads to unnecessary updates of the
Delta Store table.

The solution for this case is using the Attribute List and Change Detection Mode
parameters

Here is an example scenario where two AssemblyLines are receiving changelog
entries from two replicas of a LDAP server and these changes are applied to one
Delta Store. To illustrate this we will use the following example changelog entries:

Entry1:
Entry attributes:
targetdn (replace): ’cn=Niki,o=IBM,c=us’
changetime (replace): ’20071015094646’

206 IBM Security Directory Integrator: Users Guide

$dn (replace): ’changenumber=78955,cn=changelog’
ibm-changeInitiatorsName (replace): ’CN=ROOT’
changenumber (replace): ’78955’
objectclass (replace): ’top’ ’changelogentry’ ’ibm-changelog’
changetype (replace): ’modify’
cn (replace): ’Niki’ ’Niky’
changes (replace): ’replace: cn

cn: Niki
cn: Niky
-
’

Entry2:
Entry attributes:
targetdn (replace): ’cn=Niki,o=IBM,c=us’
changetime (replace): ’20071015094817’
$dn (replace): ’changenumber=10076,cn=changelog’
ibm-changeInitiatorsName (replace): ’CN=ROOT’
changenumber (replace): ’10076’
objectclass (replace): ’top’ ’changelogentry’ ’ibm-changelog’
changetype (replace): ’modify’
cn (replace): ’Niki’ ’Nikolai’
changes (replace): ’replace: cn

cn: Niki
cn: Nikolai
-
’

Entry3:
Entry attributes:
targetdn (replace): ’cn=Niki,o=IBM,c=us’
changetime (replace): ’20071037454817’
$dn (replace): ’changenumber=112,cn=changelog’
ibm-changeInitiatorsName (replace): ’CN=ADMIN’
changenumber (replace): ’112’
objectclass (replace): ’top’ ’changelogentry’ ’ibm-changelog’
changetype (replace): ’modify’
cn (replace): ’Niki’ ’Nikolai’
changes (replace): ’replace: cn

cn: Niki
cn: Nikolai
-

’

Modified attributes are marked in bold and attributes that can be ignored are
marked in italics. The ignored attributes (such as changenumber, changetime, and
so forth) will not be considered when comparing the received Entry with the
stored Entry. Therefore these attributes have to be listed in the Attribute List
parameter. In order to specify that we want to ignore them the Change Detection
Mode parameter needs to be set to Ignore changes for the following Attributes.

This is the workflow when the AssemblyLines receive the entries:
1. When AL1 receives Entry1, it will be returned as modify and saved in the Delta

Store table.
2. When AL2 receives Entry2 , its changetime, $dn, bm-changeInitiatorsName,

changenumber attributes are modified but will be ignored. However the cn and
changes attributes are also modified and therefore the resulted Delta Entry will
be tagged as modify and saved in the Delta Store table.

3. When AL2 receives Entry3, its changetime, $dn, bm-changeInitiatorsName,
changenumber attributes are modified but will be ignored. The rest of the
attributes are equal so the resulted Delta Entry will be tagged as unchanged and

Chapter 7. Deltas 207

will be returned to the AssemblyLine (only if the Return unchanged parameter
is checked) or skipped. The returned Delta Entry will be identical to the
received Entry3. In this case the Delta Store is not updated. If the Attribute List
and Change Detection Mode parameter were not used, the last Entry3 would
have been tagged as modify and saved in the Delta Store.

Change Detection Connectors
Change Detection Connectors leverage information in the connected system to
detect changes, and are either used in Iterator or Server Mode, depending on the
Connector. For example, Iterator mode is used for many of the Change Detection
Connectors, like those for LDAP, RDBMS, Active Directory and Notes/Domino.
They are designed to behave in a common way, as well as provide the same
parameter labels for common settings.

Change Detection Connectors in IBM Security Directory Integrator are:
v IBM Security Directory Server Changelog
v AD Change Detection (Active Directory)
v Domino Change Detection
v Sun Directory Change Detection (openLDAP, SunOne, iPlanet, and so forth)
v RDBMS Change Detection (DB2, Oracle, SQL server, and so forth)
v z/OS LDAP Changelog

Note: The z/OS operating system is not supported in IBM Security Directory
Integrator Version 7.2 onwards.

The Delta engine feature reports specific changes all the way down to the
individual values of attributes. Delta tagging at the AttributeValue level is also
available when parsing with either LDIF or DSMLv2 Parsers. The LDIF Parser is
used internally by the IBM Security Directory Server Changelog Connector, Sun
Directory Change Detection Connector and z/OS LDAP Changelog Connector,
therefore these connectors support Delta tagging at AttributeValue level as well.
The rest of the change detection connectors are limited to simply reporting if an
entire Entry is added, modified or deleted. For more information about the Delta
tagging support of a particular component refer to the specific description of that
component in the Reference.

In some cases, long running AssemblyLines may need to process the same entries
more than once. These entries will have a duplicate delta key and will cause the
AssemblyLine to throw an exception. If you want to allow duplicate delta keys,
you can select the Allow Duplicate Delta Keys check box in the Iterator's Delta
tab. This means that duplicate entries can be handled by AssemblyLines having
both Iterator Connectors with Delta enabled or Change Detection Connectors and
Delta mode Connectors.

Note: It is possible to have, for example, an AssemblyLine with a number of
Changelog and Delta mode Connectors. In this case, if the Delta mode Connector
is pointing to the same underlying system as the Changelog Connector, the Delta
operation could trigger the Changelog again. As there is no way to differentiate
between newly-received changes and those triggered by the Delta engine, you
should carefully consider your scenario in order not to enter into an endless loop.

The delta information computed by the Delta engine is stored in the Work Entry
object, and depending on the Change Detection component or feature used can be
stored as an Entry-Level, Attribute-Level or Attribute Value-Level operation code.

208 IBM Security Directory Integrator: Users Guide

Consuming Delta Entries
Delta Entries in the AssemblyLine can be acted upon ("consumed") by Connectors
in Delta Mode, and Connectors in Update Mode inside the Compute Changes
logic.

Delta Mode is available in the following Connectors:
v JDBC Connector
v DSMLv2 SOAP Connector
v JNDI Connector
v LDAP Connector

Delta Mode Connectors
The Delta mode is designed to simplify the application of changes to data by
providing incremental modifications to the connected system, based on delta
operation codes. Incremental modifications means to write only the specific values
that have been changed.

Firstly, Delta mode handles all types of deltas: adds, modifies and deletes. The
Delta mode requires receiving a Delta Entry to operate. Therefore when using a
Connector in Delta mode, it must be combined with components that produce
Delta Entries; these are Iterator Connectors with enabled Delta, Change Detection
Connectors or Connector using an LDIF or DSMLv2 Parser. For example, you can
synchronize two systems with the use of only two Connectors: one Change
Detection Connector in the Feeds section to pick up the changes, and a second
Connector in Delta mode to apply these changes to a target system.

Furthermore, Delta mode will apply the delta information at the lowest level
supported by the target system itself. This is done by first checking the Connector
Interface to see what level of incremental modification is supported by the data
source. If you are working with an LDAP directory, then Delta mode will perform
AttributeValue additions and deletes. In the context of a traditional RDBMS
(JDBC), deleting and then adding a column value does not make sense, so this is
handled as a value replacement for that Attribute.

Also, incremental modifications are automatically dealt by the Delta mode for
those data sources that support this functionality. If the data source offers
optimized calls to handle incremental modifications, and these are supported by
the Connector Interface, then Delta mode will use these. On the other hand, if the
connected system does not offer "intelligent" delta update mechanisms, Delta mode
will simulate these as much as possible, performing pre-update lookups (like
Update mode), change computations and subsequent application of the detected
changes.

Note: The only Connectors that support incremental modifications are the LDAP
Connectors, since LDAP directories provide this functionality.

The Delta features in IBM Security Directory Integrator are designed to facilitate
synchronization solutions using not only data sources providing change detection
mechanism but also, for example, flat files. The following diagram shows such a
synchronization solution using Connectors in Iterator and Delta mode. The Iterator
Connector reads entries from a data source. The read entries are compared to the
ones saved in the Delta Store on the previous iteration. The result of the
comparison is a Delta Entry assigned with delta operation codes defining the made
change – add/delete/modify. Then the Delta Entry is used by the Connector in

Chapter 7. Deltas 209

Delta mode to apply the detected changes to a destination system.

The result of the AssemblyLine execution is that the data contained in the data
source is synchronized with the data in the destination system

Update Mode and Delta Entries
Connectors in Update mode have an additional change-control feature called
“Compute Changes”. This feature can be made to work with Delta Entries.

The “Compute Changes” feature can be enabled in an Update mode Connector by
selecting a check box of that name in the Connector Detail pane. When turned on
the Connector will compare its Entry with the actual Entry in the connected
system. If the two Entries are equal no updating is performed by the Connector. So
the “Compute Changes” option allows the Connector in Update mode to skips
unnecessary updates. This is useful for data sources with relatively heavy update
operations.

However when a Connector in Update mode with enabled Compute Changes
parameter receives a Delta Entry, the “Compute Changes” logic will not be
triggered; it will use the delta operation codes assigned to the Delta Entry to apply
the necessary updates to the connected system.

Examples
Simple Delta example

The instructions below will show you how to utilize some of the Delta features
discussed above.

Figure 117. Synchronization AssemblyLine using Delta functionality

210 IBM Security Directory Integrator: Users Guide

Set up a File System Connector with the Delta engine feature enabled. Have it
iterate over a simple XML document that you can easily modify in a text editor.
For example:
<?xml version="1.0" encoding="UTF-8"?>
<DocRoot>

<Entry>
<Telephone>

<ValueTag>111-1111</ValueTag>
<ValueTag>222-2222</ValueTag>
<ValueTag>333-3333</ValueTag>

</Telephone>
<Birthdate>1958-12-24</Birthdate>
<Title>Full-Time SDI Specialist</Title>
<uid>jdoe</uid>
<FullName>John Doe</FullName>

</Entry>
</DocRoot>

Be sure to use the special map-all attribute map character, the asterisk (*). This is
the only Attribute you need in your map to ensure that all Attributes returned are
mapped in to the Work Entry object.

Now add a Script Component with the following code:
// Get the names of all Attributes in work as a String array
var attName = work.getAttributeNames();

// Print the Entry-level delta op code
task.logmsg(" Entry (" +
work.getString("FullName") + ") : " +
work.getOperation());

// Loop through all the Attributes in work
for (i = 0; i < attName.length; i++) {

// Grab an Attribute and print the Attribute-level op code
att = work.getAttribute(attName[i]);
task.logmsg(" Att (" + attName[i] + ") : " + att.getOperation());

// Now loop through all the Attribute’s values and print their op codes
for (j = 0; j < att.size(); j++) {
task.logmsg(" Val (" +

att.getValue(j) + ") : " +
att.getValueOperation(j));

}
}

The first time you run this AL, your Script Component code will create this log
output:
12:46:31 Entry (John Doe) : add
12:46:31 Att (Telephone) : replace
12:46:31 Val (111-1111) :
12:46:31 Val (222-2222) :
12:46:31 Val (333-3333) :
12:46:31 Att (Birthdate) : replace
12:46:31 Val (1958-12-24) :
12:46:31 Att (Title) : replace
12:46:31 Val (Full-Time SDI Specialist) :
12:46:31 Att (uid) : replace
12:46:31 Val (jdoe) :
12:46:31 Att (FullName) : replace
12:46:31 Val (John Doe) :

Chapter 7. Deltas 211

Since this Entry was not found in the previously empty Delta Store, it is tagged at
the Entry-level as new. Furthermore, each of its Attributes has a replace code,
meaning that all values have changed (which makes sense because the Delta is
telling us that this is new data).

Make the following changes to your XML file:
1. Change the last Telephone number value to 333-4444.
2. Delete Birthdate.
3. Add a new Address Attribute.

Your resulting Config should look like this:
<?xml version="1.0" encoding="UTF-8"?>
<DocRoot>

<Entry>
<Telephone>

<ValueTag>111-1111</ValueTag>
<ValueTag>222-2222</ValueTag>
<ValueTag>333-4444</ValueTag>

</Telephone>
<Title>Full-Time SDI Specialist</Title>
<uid>jdoe</uid>
<FullName>John Doe</FullName>
<Address>123 Willowby Lane</Address>

</Entry>
</DocRoot>

Run your AL again. This time your log output should look like this:
13:53:22 Entry (John Doe) : modify
13:53:22 Att (Telephone) : modify
13:53:22 Val (111-1111) : unchanged
13:53:22 Val (222-2222) : unchanged
13:53:22 Val (333-4444) : add
13:53:22 Val (333-3333) : delete
13:53:22 Att (Birthdate) : delete
13:53:22 Val (1958-12-24) : delete
13:53:22 Att (uid) : unchanged
13:53:22 Val (jdoe) : unchanged
13:53:22 Att (Title) : unchanged
13:53:22 Val (Full-Time SDI Specialist) : unchanged
13:53:22 Att (Address) : add
13:53:22 Val (123 Willowby Lane) : add
13:53:22 Att (FullName) : unchanged
13:53:22 Val (John Doe) : unchanged

Now the Entry is tagged as modify and the Attributes reflect what the
modifications for each of them. As you can see, the Birthdate Attribute is marked
as delete and Address as add. That's the reason you used the special map-all
character for our Input Map. If you had mapped only the Attributes that existed in
the first version of this XML document, we would not have retrieved Address
when it appeared in the input.

Pay special attention to the last two value entries under the Telephone Attribute,
marked as modify. The change to one of the values of this Attribute resulted in two
Delta items: a value delete and then add.

To build a data synchronization AssemblyLine in earlier versions of IBM Security
Directory Integrator, you had to script in order to handle flow control. Although
you may receive adds, modifies and deletes from your change component or feature,
a Connector could only be set to one of the two required output modes: Update or
Delete.

212 IBM Security Directory Integrator: Users Guide

So either you need two Connectors pointing to the same target system and put
script in the Before Execute Hook of each to ignore the Entry if its operation code
did not match the mode of this component; or you could have a single Connector
(either Update or Delete mode) in Passive state, and then control its execution from
script code where you checked the operation code. This still meant that even
though you knew what had changed in the case of a modified Entry, your Update
Mode Connector would still read in the original data before writing the changes
back to the data source. This can lead to unwanted network or data source traffic
when you are only changing a single value in a multi-valued group-related
Attribute containing thousands of values.

Further examples

Go to the root_directory/examples/ directory of your IBM Security Directory
Integrator installation.
v In subdirectory deltas you will find a simple IBM Security Directory Integrator

configuration that demonstrates the Delta functionality. This demo runs on MS
Windows systems (Windows 2000) only as it uses MS Access database and the
JDBC:ODBC bridge. If you use another platform, you must create your own
database and configure the JDBC settings of the Connectors for this database.

v In subdirectory delta_tagging you will find an example that demonstrates how
to convert an Entry tagged at value level to a regular Entry and a regular Entry
to a Delta Entry.

Chapter 7. Deltas 213

214 IBM Security Directory Integrator: Users Guide

Chapter 8. IBM Security Directory Integrator Dashboard

Use the IBM Security Directory Integrator Dashboard to install, configure, deploy,
and monitor data integration solutions.

You can also use Dashboard to create and configure EasyETL solutions (ETL stands
for Extract, Transform, and Load) for simple data integrations. An EasyETL
solution contains a single AssemblyLine with a source and a target connector.

Introducing IBM Security Directory Integrator Dashboard

The Dashboard, a web application, is developed by using the Open Service
Gateway Initiative (OSGI) framework. It is used to configure and manage data
integration solutions on a server through RESTful (Representational State Transfer)
interface. From the Dashboard, you can:
v Upload existing data integration solutions and install it as a normal solution or

save as a template
v Configure data integration solutions to reflect changes that are specific to your

local environment
v Add schedules to run AssemblyLines at specified times
v Build simple AssemblyLines with a single source connector and a target

connector
v Browse contents of the selected connector
v Deploy, monitor, and audit the processes of data integration solutions
v View server details, server log, and system store data
v Filter log file data by setting the filter criteria to extract only the required

information
v View AssemblyLine execution history in the form of a graph
v Create reports that contain data on AssemblyLine execution status, sent

automatically to the user through an email

Advantages of IBM Security Directory Integrator Dashboard

The advantages are:
v Facilitates simpler and faster deployment of data integration solutions
v Creates and configures simple integrations without using Configuration Editor
v Generates scheduled email report of the AssemblyLine history, sent by using the

Dashboard RunReport feature. You can use the report to address high
availability/failover requirements of the deployment

v Facilitates integration with Eclipse development environment
v Ensures effective and efficient management of AssemblyLine executions

Accessing Dashboard application
You can access the Dashboard web application from either your browser or from
the Configuration Editor.

© Copyright IBM Corp. 2003, 2014 215

Before you begin

Start IBM Security Directory Integrator Server before accessing the Dashboard.

Opening from a browser
Procedure

From a browser, go to https://<host name>:<rest-api-port>/dashboard. The
Dashboard home page is displayed.

Note: By default, you can access Dashboard on the local host. To authenticate a
user, set the IBM Security Directory Integrator properties file to add LDAP user
name and password for both remote and local access.

Opening from the Windows Start menu
Procedure

From the Windows Start menu, choose Start > All Programs > IBM Security
Directory Integrator v7.2 > Open Dashboard. The IBM Security Directory
Integrator Dashboard home page is displayed.

Table 14. IBM Security Directory Integrator Dashboard Menu Options

Menu Option Description

Browse Data Use this option to configure the selected
connector and browse its contents.

216 IBM Security Directory Integrator: Users Guide

Table 14. IBM Security Directory Integrator Dashboard Menu Options (continued)

Menu Option Description

Solution Monitor Use this option to track the progress of
AssemblyLine execution and view the
execution history of your solution.

Start Use this option to start the selected
solution.

Stop Use this option to terminate a running
solution.

Configure Use this option to open the selected
solution for modification.

Delete Use this option to delete the selected
solution from the server.

Unlock Solution Use this option to unlock a solution.

Actions Browse Data Use this option to configure the selected
connector and browse it contents.

Show System Log Use this option to view the contents of
system log (ibmdi.log).

Create Solution Use this option to choose a template and
create a data integration solution.

Upload Solution Use this option to upload an existing
solution to the IBM Security Directory
Integrator Server.

Show Server Details Use this option to view information about
IBM Security Directory Integrator such as
version, installed components, and other
server information.

Internet Explorer settings for remote access
Add the required configuration settings to access Dashboard from a remote system
in an Internet Explorer browser, where Internet Explorer Enhanced Security
Configuration (IE ESC) is enabled.

By default IE ESC blocks all scripts that are running on a web page. The
Dashboard loads several scripts before it displays anything on the web page.
Hence, an IESC-enabled Internet Explorer browser shows a blank page when you
open the Dashboard. To access the page, you must add sites that host the
Dashboard to the safe list of Internet Explorer.
1. From the Internet Explorer menu, click Tools > Internet Options.
2. Click Security tab.
3. Click Trusted sites.
4. Click Sites.
5. In the Add this website to the zone field, enter the URL of the Dashboard. For

example: https://mydashboard.com/dashboard/*.
6. Click Add.
7. Click Close and then OK to close the page and save the settings.
8. Restart Internet Explorer browser.
9. Access the Dashboard in the Internet Explorer browser.

Chapter 8. IBM Security Directory Integrator Dashboard 217

Uploading a data integration solution
Use the Upload Solutions window of Dashboard to upload an existing data
integration solution to install it on the IBM Security Directory Integrator Server.
You can also save the uploaded solution as a template.

About this task

The Dashboard can be used to upload an existing IBM Security Directory
Integrator data integration solution, which is an XML configuration file, to install it
on the server. You can modify the solution with the requisite properties before
deploying. You can also upload the existing solution to save it as a template. The
saved template can be used to create many instances of the same integration.

Procedure
1. In the navigation pane of Dashboard window, click Actions > Upload

Solutions.
2. Define the following settings on the Upload Solutions window.

Option Description

Browse Browse for the existing solution you want to
upload

Upload as Template Saves the uploaded solution as a template
Note: The saved template in not installed on
IBM Security Directory Integrator Server
(config directory).

Overwrite Existing Solution Overwrites existing installed solutions or
templates

Solution Name Specifies name for the uploaded solution
Note: You can also view names of the
currently installed solutions and template
solutions in the Upload Solutions window.

3. Click OK.

Creating a data integration solution
Use the Create Solutions window of Dashboard to create a data integration
solution, by using various options.

Procedure
1. In the navigation pane of Dashboard window, click Actions > Create Solutions.
2. Select one of the following options in the Create Solutions window.

Option Description

Installed Solution Solution is created based on an already
installed solution on the IBM Security
Directory Integrator Server.

Template Solution is created based on an existing
solution, which is uploaded as a template.

Default EasyETL solution is created having a single
AssemblyLine with two connectors.

3. Type the name of your solution in the Solution Name field.

218 IBM Security Directory Integrator: Users Guide

4. Click OK.

Solution Configuration
The Dashboard consists of various editors to configure the components of your
data integration solution.

In the Dashboard, you can modify the selected solution with appropriate settings
that are specific to your needs before deployment. To facilitate faster
configurations, you can limit the amount of information visible while configuring a
solution. You can also add new configuration pages to include properties that are
specific to the solution.

Only the installed data integration solutions are shown in the navigation panel of
the Dashboard window. Each solution contains components such as AssemblyLines
and associated connectors. These components are shown as a tree structure in the
Solution Editor. From the Solution Editor you can install, create, configure, deploy,
and monitor your solutions by using the following editors:
v AssemblyLine Editor – this editor is used to create and configure schedules in

the AssemblyLines and to run the AssemblyLine with its output in the log
viewer.

v Connector Editor – this editor is used to configure the connectors of the
AssemblyLine.

v EasyETL Editor – this editor is used to configure EasyETL solution, which
contains a single AssemblyLine with two connectors.

v Monitor Editor – this editor is used to monitor information of both current and
past performance of your solution.

The Solution Editor has the following menu options:

Option Description

Edit Solution Interface Use this option to select the components of
the solution, which are visible for editing.

New AssemblyLine Use this option to create an EasyETL
solution and add it the selected solution.

Rename AssemblyLine Use this option to rename the selected
AssemblyLine.

Delete AssemblyLine Use this option to delete AssemblyLines.

Create RunReport Use this option to create RunReport to send
email about status of the AssemblyLine
executions.

Adding solution description
Use the Solution Editor of Dashboard to add important information about your
data integration solution.

Procedure
1. In the navigation pane of Dashboard window, select the solution.
2. Click Solution > Configure.
3. In the Solution Editor, select Solution Description and click Edit Description.
4. Type the description in the text area.

Chapter 8. IBM Security Directory Integrator Dashboard 219

5. Click Close.
6. Click Save.

Configuring an AssemblyLine schedule
Use the AssemblyLine Editor to create or configure the Dashboard scheduler to run
AssemblyLines of your data integration solution at the specified time.

Creating a schedule
Procedure
1. Select the AssemblyLine from the tree structure.
2. In the AssemblyLine Editor, click the Schedule tab.
3. Click Create Schedule.
4. Define the following settings:

Table 15. Schedule options

Setting Option Description

Schedule Automatically start when
solution starts

Use this option to run the
AssemblyLine based on the
execution option selected.Don't start if already

running

Terminate schedule if
assemblyline fails

Month Every Month Use this option to select the
schedule execution months.Select Months

Day Every Day Use this option to select the
schedule execution days.Weekdays

Select Days

Hours/Minutes/Seconds Hours Use this option to select the
schedule execution timing.Minutes

Seconds

Share Logging Use this option to specify
whether the logging between
the scheduler and
AssemblyLines are to be
shared or not.

5. Click Save.

Deleting a schedule
Procedure
1. Select the AssemblyLine from the tree structure.
2. In the AssemblyLine Editor, click the Schedule tab.
3. Click Delete Schedule.
4. Click Save.

Running and stopping Dashboard Scheduler
Procedure
1. Select the AssemblyLine from the tree structure.
2. In the AssemblyLine Editor, click the Run tab.

220 IBM Security Directory Integrator: Users Guide

3. To run the AssemblyLine, click Run. The output is shown in the log viewer.
4. To stop the AssemblyLine, click Stop.

Configuring a connector
Use the Connector Editor to configure connector details such as mapping
information of the attributes and the connection details, to suit your configuration
requirements.

Modifying connection details
Procedure
1. Select the connector from the tree structure of your solution.
2. Click the Connector tab.
3. To view only the important fields, click Less.
4. To change the connector type, click Choose Component and select the

connector from the Select Connector list.
5. Depending on the requirements, modify the connection settings.
6. To test the connection to the data source, click Test Connection.
7. Click Save.

Modifying attribute mapping
Procedure
1. Select the connector from the tree structure of your solution.
2. Click the Attribute Map tab.
3. To add an attribute:

a. Click Add.
b. Select a work attribute from the list or type a new name in the text filed.
c. Click OK.

4. To read connector data and to show it in the attribute map, click Read Next.
5. To close connection to the data source, click Close Connection.
6. To modify the selected attribute, click Actions.

a. To edit the assignment for the selected attribute, click Edit Attribute and
modify the following assignment type:
v Simple Assignment – you can assign an attribute from the source

attribute list.
v Scripted Assignment – you can write a script to the attribute in the text

area.
b. Click Close.
c. To map the selected attribute, click Map attribute.
d. To remove the mapping for the selected attribute, click Unmap attribute.

7. Click Save.

Dashboard EasyETL
The Dashboard EasyETL feature can be used to create and configure simple data
integration solutions.

The Dashboard EasyETL provides a user interface to build and configure simple
AssemblyLines with a single source and a target connector. An EasyETL solution
can be:

Chapter 8. IBM Security Directory Integrator Dashboard 221

v Scheduled in the Dashboard Scheduler
v Saved as a template
v Included in RunReports
v Deployed and monitored in the Dashboard solution monitor

Configuring EasyETL solutions
Use the EasyETL Editor to configure and add schedules to an EasyETL solution.

Procedure
1. In the navigation pane of Dashboard window, select the EasyETL solution.
2. Click Solution > Configure.

Alternatively,
a. Right-click on the selected solution.
b. From the menu, click Configure.

3. In the Solution Editor, select the EasyETL solution.
4. Add a description to the solution. See the “Adding solution description” on

page 219 topic for more details.
5. In the EasyETL Editor, select the solution and click Configure.
6. From the Connector list, select a component for the source connector and

target connectors.
7. Specify the configuration details for the selected connectors in the form.
8. Select a parser from the Parser list.

Note: The Parser list is active only when the selected connector requires or
can use a parser.
To establish the connection and browse the data:
a. To establish a connection and read the first 25 records of the connector,

click Connect.
b. To view the next 25 records, click Next.
c. To toggle the data record view to show one record at a time, click Toggle

View.
d. To view the next records in the toggled view, click Next.
e. To view only the selected attributes in the table:

1) Click the Configure Options icon on the menu bar.
2) In the Configure Options window, select the attributes.
3) To change the order of the attributes, click the up or down arrows.
4) Click OK.

9. Click Back to return to the EasyETL Editor.
10. To view the attributes of the configured connectors, click Discover.
11. To map selected source attributes to the target attributes, click Map. The

following mapping type is created based on your source attribute selection:
v If there is a single selected attribute in the source view and also in the target

view, a one-to-one map is created between the two attributes.
v If multiple attributes are selected in the source view and none selected in

the target view, a one-to-one map is created for each attribute. If there are
no attributes in the target view, they are created.

v If multiple attributes are selected in the source view and a single attribute
selected in the target view, do one of the following tasks:

222 IBM Security Directory Integrator: Users Guide

– Click Copy to copy source attributes to its equivalent target attributes.
– Click Merge to merge all values from source into one attribute in target.
– Click Concatenate to concatenate the values from the source attribute as

a single value to the target attribute.
12. Click Save.

Server Configuration
Use the Server Information window to view and modify the server configuration.

You can view the following server properties and configure the behaviors in the
Server Information window:
v Specifying maximum number of log files to be created and maintained
v Starting and stopping the Tombstone Manager
v Defining LDAP Server settings to authenticate users to access the Dashboard

application
v Viewing server information such as IBM Security Directory Integrator version

with build date, host name, IP address, Server boot time, OS name, and server
ID

v Viewing connectors and parsers installed on the IBM Security Directory
Integrator Server

v Viewing contents of various system stores that are in use by the IBM Security
Directory Integrator Server

At the lower left corner of Dashboard window, you can view the version
information of the application. You can also monitor the following metrics to get a
snapshot of how the application is performing:
v Memory usage pie chart
v Active thread count for server process

Configuring log settings
Use the Log and Tombstones tab to enable or disable the default logger and to
specify the maximum number of log files to save.

Procedure
1. In the Dashboard window, click Actions > Show Server Details or click More.
2. Click the Log and Tombstones tab.
3. Define the following settings:

Option Description

Default Logger Enables the default logger
Note: Use the Default Logger, which is
appended to every AssemblyLine that runs,
if you want individual log files for your
AssemblyLines.

Maximum Number of Log Files Specifies the maximum number of log files
that the logger can save.

4. Click Update.

Chapter 8. IBM Security Directory Integrator Dashboard 223

Configuring tombstones
Use the Log and Tombstones tab to start the Dashboard Tombstone Manager,
which creates tombstone records.

About this task

Tombstone Manager of Dashboard creates tombstone records for each
AssemblyLines as they terminate. A tombstone record contains statistics such as
number of entries read by Iterators, number of records skipped, and number of
records updated. The statistics can be used to graphically show workload over
time.

Procedure
1. In the Dashboard window, click Actions > Show Server Details or click More.
2. To generate the tombstone records, click Start Tombstone Manager.

Note: To stop Tombstone Manager, restart the IBM Security Directory
Integrator Server.

Configuring Dashboard security settings
Use the Security and Connection tab to configure LDAP Server for authenticating
users for both local and remote connections.

Procedure
1. In the Dashboard window, click the Actions > Show Server Details or click

More.
2. Click the Security and Connection tab.
3. Define the following settings:

Option Description

Local Specifies connections from local host

Remote Specifies connections from non-local host

LDAP Host Name Specifies name of the LDAP Server

LDAP Search Base Specifies the LDAP search base name to
locate users

LDAP Group DN Specifies the LDAP Group DN name to
check for the membership of the users

4. Click Update.

Viewing installed components
Use the Installed Components tab to view the components such as connectors and
parsers, which are installed on the IBM Security Directory Integrator Server.

Procedure
1. In the Dashboard window, click the Actions > Show Server Details or click

More.
2. To view the list of components, click the Installed Components tab.

224 IBM Security Directory Integrator: Users Guide

Viewing system store data
Use the Server Stores tab to view the contents of the various system stores that are
in use by the IBM Security Directory Integrator Server.

Procedure
1. In the Dashboard window, click the Actions > Show Server Details or click

More.
2. To view the list of server stores, click the Server Stores tab.

Dashboard RunReports
Use the Dashboard RunReport feature to create automated email reports of the
AssemblyLine execution history.

You to create an AssemblyLine that runs based on the set schedules to generate
automated email reports for the monitored AssemblyLines. The RunReport
AssemblyLine uses IBM Security Directory Integrator tombstones database to
determine whether the AssemblyLines are run since the last time the RunReport
was executed.

The email report contains information about execution history that indicates
whether the monitored AssemblyLines are successfully run or not. This report is
periodically mailed to the specified recipient.

Creating RunReports
Use the Create RunReport window to create a RunReport AssemblyLine. This
AssemblyLine is used to generate automated email reports. The email reports
contain information about execution history for the monitored AssemblyLines and
are periodically sent to the specified recipients.

Creating and scheduling a RunReport
Procedure
1. From the Solution Editor, click Actions > Create RunReport .
2. In the Create RunReport window, type a name for RunReport AssemblyLine in

the Name field.
3. Click OK.
4. In the AssemblyLine Editor, define the following settings:

Table 16. RunReport scheduling options

Setting Option Description

Schedule Automatically start when
solution starts

Runs the AssemblyLine
based on the execution
option selectedDon't start if already

running

Terminate schedule if
assemblyline fails

Month Every Month Specifies the schedule
execution monthsSelected Month(s)

Day Every Day Specifies the schedule
execution daysWeekdays

Selected day(s)

Chapter 8. IBM Security Directory Integrator Dashboard 225

Table 16. RunReport scheduling options (continued)

Setting Option Description

Hours/Minutes/Seconds Hours Specifies the schedule
execution timingMinutes

Seconds

Subject (success) Specifies the email subject
line for successful execution
of the monitored
AssemblyLines
Note: The generated report
uses the subject line based
on whether the monitored
AssemblyLines are run
successfully or not since the
last generated report.

Subject (failure) Specifies the email subject
line to indicate failed
execution of the monitored
AssemblyLines

Sender Address Specifies the email address of
the sender

Recipient Address Specifies the email address of
the recipient
Note: Specify a comma
delimited or semicolon
delimited list for multiple
email addresses.

SMTP Host SMTP host parameter that
accepts SMTP connections
and transfers mail to the
recipient

Monitor AssemblyLines A comma-separated list of
AssemblyLine names to be
monitored

Share Logging Specifies whether the logging
between the scheduler and
AssemblyLines are to be
shared or not

5. Click Save.

Deleting a schedule
Procedure
1. Select the RunReport AssemblyLine from the tree structure.
2. In the AssemblyLine Editor, click the Schedule tab.
3. Click Delete Schedule.
4. Click Save.

Running and stopping RunReport Scheduler
Procedure
1. Select the RunReport AssemblyLine from the tree structure.
2. In the AssemblyLine Editor, click the Run tab.
3. To run the AssemblyLine, click Run. The output is shown in the log viewer.

226 IBM Security Directory Integrator: Users Guide

4. To stop the AssemblyLine, click Stop.

Configuring and browsing connector data
Use Browse Data page in the Solution Editor to configure a connector, browse data
sources of the connector, or to create a data integration solution.

Procedure
1. In the navigation pane of Dashboard window, click Browse Data.
2. In the Browse Data window, from the Connector list, select a connector to

configure and browse its contents.
3. Select a parser from the Parser list.

Note: The Parser list is active only when the selected connector requires or
can use a parser.

4. Configure connector details in the form on the right side of the window.
5. To create a solution for the selected connector, click Create Integration.
6. To establish a connection and read the first 25 records of the connector, click

Connect.
7. To view the next 25 records, click Next.
8. To toggle the data record view to show one record at a time, click Toggle

View.
9. To view the next records in the toggled view, click Next.

10. To view only the selected attributes in the table:
a. Click the Configure Options icon on the Browse Data window.
b. In the Configure Options window, select the attributes.
c. To change the order of the attributes, click the up or down arrows.
d. Click OK.

Solution Monitor
Use the Dashboard Monitor Editor to track progress of AssemblyLine execution
and view execution history of your solution.

You can view AssemblyLines of the selected solution in the Monitor Editor, which
presents information of both current and past performance of the AssemblyLines.
You can monitor the following activities:
v Real-time status monitoring of the AssemblyLines, which includes:

– Start time of the AssemblyLine execution
– End time of the AssemblyLine execution
– Scheduled time for the next run of the AssemblyLine
– Number of data objects that are processed in the AssemblyLines

v Execution history of the AssemblyLines, which is graphically shown as
workload over time

v Log files to record results and issues for each AssemblyLine execution
v Tombstones records for all AssemblyLines in the solution
v Server log file (ibmdi.log)

Starting and stopping the AssemblyLines
Use the Dashboard Monitor Editor to start and stop the AssemblyLines.

Chapter 8. IBM Security Directory Integrator Dashboard 227

Procedure
1. In the Dashboard, select the installed solution.
2. Click Solution > Monitor.

Alternatively,
a. Right-click on the selected solution.
b. From the menu, click Monitor.

3. In the Monitor Editor, select the AssemblyLine to perform the following actions:
v To start an AssemblyLine, click Start.
v To stop an AssemblyLine, click Stop.

The execution details are shown in the editor. The green icon with
AssemblyLine name indicates that the AssemblyLine is active.

Viewing AssemblyLine execution history
Use the Dashboard Monitor Editor to view the AssemblyLine execution history in
the form of a graph.

Procedure
1. In the Monitor Editor, select the AssemblyLine.
2. Click History or double-click the selected AssemblyLine. The AssemblyLine

execution details are shown in a graphical view as workload over time.
3. Select any of the following counters to graph:

v Get
v Errors
v Add
v Delete
v Lookup
v Modify

4. Click the node on the graph to view the log file for a specific run. You can also
view the execution statistics for that run as a tooltip.

Viewing tombstone records
Use the Tombstones tab in the Dashboard Monitor Editor to view the tombstone
records that are created when the execution of AssemblyLines is completed.

Procedure
1. Go to Monitor Editor of Dashboard.
2. To view the recorded tombstones, click the Tombstones tab.

Note: You can view the tombstone records only when the Tombstone Manager
is running. For more information, see the “Configuring tombstones” on page
224 topic.

Viewing log files
Use the Log Files tab in the Dashboard Monitor Editor to view the log files created
for each AssemblyLine execution. The log files are used to quickly and easily
analyze problems and debug any issues.

228 IBM Security Directory Integrator: Users Guide

Procedure
1. In the Monitor Editor, click the Log Files tab. The log files for all the

AssemblyLine execution are shown as a tree structure.
2. To view the contents of the log file, select the log file from the tree structure

and double-click.
3. To search for specific information in the log contents, type the text you want to

search in the Search field.
4. Select the Include source check box to message source or the component that

logged the message.
5. Click Options to set the following details:

Option Description

Page Size

Message Types Select any of the following message types to
be included in the log file:

v INFO

v WARN

v ERROR

v DEBUG

Display Options Select options to show date, time, message
source, or line numbers in the log file:

v Show Date

v Show Time

v Include Source

v Show Line Numbers

Chapter 8. IBM Security Directory Integrator Dashboard 229

230 IBM Security Directory Integrator: Users Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law :

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2003, 2014 231

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to

232 IBM Security Directory Integrator: Users Guide

IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM's application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information in softcopy form, the photographs and color
illustrations might not be displayed.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, Acrobat, PostScript and all Adobe-based trademarks are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
other countries, or both.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office
of Government Commerce, and is registered in the U.S. Patent and Trademark
Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 233

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are
trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

234 IBM Security Directory Integrator: Users Guide

Index

A
accessibility vii
Accumulator 65
Add server 84
AddOnly mode 9
Advanced Attribute Mapping 67
Advanced Link Criteria 20
Advanced mapping 44
AL 1
AL Component 64
AL Pool 13
AMC 171
Application window 81
AssemblyLine 1, 21, 22, 34, 146
AssemblyLine Editor 88
AssemblyLine Flow 30
AssemblyLine Hooks 61
AssemblyLine Options 91
AssemblyLine Pool 13
AssemblyLine Reports 144
AttMap 22
Attribute 41, 44
Attribute map 112
Attribute Map 221
Attribute mapping 57
Attribute Mapping 104, 109, 110
AttributeMap 22

B
Binary values 72
BOM 29
branch 28
Branch components 25

C
CallReply mode 12
catching critical errors 34
CE 75
CE Preferences 166
Change Detection Connectors 208
Change inheritance 174
Char data type 69
Character Encoding 29
Character set 29
Choosing Server 157
Code completion 163
Component Properties 59
Compute Changes 210
Config 78
Config Editor 75
Configuration Editor 75
Configuration files 78
Configuration form 142
Configuration system store settings 168
Conn 41
Connection Errors tab 116
Connection tab 113
Connector 111

Connector (continued)
AssemblyLine 4
Connector Library 4

Connector configuration 113, 221
Connector editor 110
Connector Editor 111
Connector inheritance 120
Connector mode 6
Connector Pool definition 119
contribution 81
Create RunReports 225
Creating a Connector 111
Current 41
Custom Java classes 29
Custom logic 43
CVS 158, 159, 161

D
Dashboard home page 216
Data Browser 122
Data Model 44
Data representation 68
datastepper 148
Date values 72
Dates 72
debugger 148
Debugger 146
debugging 148
Debugging 155, 179
Default Server 157
Delete 11
Delete mode 11
Delete server 84
Delta 15, 118, 199
Delta application 18
Delta concept 199
Delta detection 15
Delta engine 15
Delta entries 202
Delta entry 199, 200, 202, 210
Delta Entry 199
Delta examples 210
Delta features 199
Delta mode 14, 18
Delta Mode 209
Delta operation code 200
Delta store 194
Delta Store 193
Delta tab 118
Deltas 199
Developing AssemblyLines 144
disable 66

E
education vii
entry 44
Entry 41
Entry object 41, 46

Epilog 30
ETL 187
Events script 129
Execution environment 59
exiting 28
Expression Editor 86
expressions 86
Expressions 35, 38, 39
extension point 81
External Editors 166
Extract/Transform/Load 187

F
FC 21
Floating point values 73
Flow 34
Flow components 25
form sections 142
forms 129
Forms editor 129
Function 21
Function Component 21

G
Generic Data Browser 124

H
Health AL 171
hierarchical objects 46
Hook 112
Hooks 30, 34, 61

I
IBM

Software Support vii
Support Assistant vii

Import Configuration 134
Inheritance 120, 174
Init script 129
Initial Work Entry 7, 67
Input Attribute map 109
Install directory 75
Instantiating at runtime 30
Instantiating classes 30
Instantiating Java class 72
Iterator 6, 7
Iterator mode 6, 7, 202
Iterators 6
IWE 7, 67

J
Java libraries 171
JavaScript 43, 163
JavaScript Data Types 68

© Copyright IBM Corp. 2003, 2014 235

JavaScript editing enhancements 163
JDBC 126
JDBC Data Browser 126

K
key bindings 175
keybindings 175

L
LDAP 127
LDAP Data Browser 127
libraries 171
Link criteria 9
Link Criteria 8, 10, 19, 114
Load 187
Lookup 8
Lookup mode 8
Lookup Mode 8

M
main window 81

N
New Component Wizard 136
Null behavior 23
Null values 23

O
object actions 175
Opening Dashboard 216
operations 65
Output Attribute map 110

P
parameters 129
Parser 29, 114, 125
Parser selection 114
Persistent objects 193
Pool 119
Preferences 166, 175
Primitives 68
problem-determination vii
Problems view 162
Project 75, 77
Project builder 162, 173
Project Builder 79
Project Model 75
Project Properties 157
Project sharing 159
Project tree 77
Prolog 30
Properties 80
Properties substitution 80
Property store 80

Q
Quick Editor 97

R
Reconnect 116
Recording AssemblyLine input 180
Reply phase 12
Response phase 14
ruler 165
Run AssemblyLine 103
Run options 156
Running AssemblyLines 144, 146
Runtime directory 77
Runtime Properties 59

S
Sandbox 179, 180
Sandbox playback 180
scheduling RunReport 225
schema 112
Schema 104
Scope 71
Script Component 21, 61
Scripting 43, 57
SDI Project 77
SDI Server 76
SDI Servers view 76
SDI solution 77
search base 127
Server Config import 134
Server debugging 155
Server hooks 61, 63
Server mode 12, 13, 14
Server properties 173
Servers 14
Servers view 84
set parameters 68
shared project 161
Simple Link Criteria 19
Simulation mode 181
Solution directory 75
Solution Interface 171
stepper 148
Stepper 146
Stream Data Browser 125
Syntax checking 165
Syntax coloring 165
system store 168
System Store 193

T
Task Call Block 64
TCB 64, 65
Team Support 158
training vii
troubleshooting vii

U
UI 81
Update mode 9, 210
Update Mode 10
User Interface 81
User Interface Model 81
User Property Store 193

V
Value 44
Variable evaluation 166

W
Wizard 134
Wizards 133
Work 41
Working directory 75
workspace 81

236 IBM Security Directory Integrator: Users Guide

����

Printed in USA

SC27-2706-03

	Contents
	About this publication
	Access to publications and terminology
	Accessibility
	Technical training
	Support information
	Statement of Good Security Practices

	Chapter 1. General Concepts
	The AssemblyLine
	Connectors
	Connector modes
	Iterator mode
	Multiple Iterators in an AssemblyLine
	Using the Iterator mode
	Providing an Initial Work Entry (IWE)

	Lookup mode
	Using the Lookup mode

	AddOnly mode
	Using the AddOnly mode

	Update mode
	Using the Update mode

	Delete mode
	Using the Delete mode

	CallReply mode
	Using the CallReply mode

	Server mode
	Server Mode and the ALPool
	Using the Server Mode

	Delta mode
	Delta Detection
	Delta Application (Connector Delta Mode)

	Link Criteria
	Simple Link Criteria
	Advanced Link Criteria

	Functions
	Script Components
	AttributeMaps
	Null Behavior
	Branch Components
	Exiting a Branch (or Loop or the AL Flow)

	Parsers
	Character Encoding conversion

	Accessing your own Java classes
	Instantiating the classes using the Config Editor
	Runtime instantiation of the classes

	AssemblyLine flow and Hooks
	Handle termination and cleanup for critical errors

	Controlling the flow of an AssemblyLine

	Expressions
	Expressions in component parameters
	Expressions in LinkCriteria
	Expressions in Branches, Loops and Switch/Case
	Scripting with Expressions

	The Entry object

	Chapter 2. Scripting in IBM Security Directory Integrator
	Internal data model: Entries, Attributes and Values
	Working with hierarchical Entry objects

	Integrating scripting into your solution
	Controlling execution with scripting
	Using variables
	Using properties

	Control points for scripting
	Scripting in an AssemblyLine
	Script Component
	AssemblyLine Hooks
	Server Hooks
	Calling Server Hooks from script

	Accessing AL components inside the AssemblyLine

	AssemblyLine parameter passing
	Task Call Block (TCB)
	Basic Use
	Starting an AssemblyLine with operations
	Using an accumulator
	Disabling AssemblyLine components

	Providing an Initial Work Entry (IWE)

	Scripting in a Connector
	Setting internal parameters by scripting
	Scripting in a Parser

	Java + Script ≠ JavaScript
	Data Representation
	Ambiguous Function Calls
	Char/String data in Java versus JavaScript Strings
	Variable scope and naming
	Instantiating a Java class
	Using binary values in scripting
	Using date values in scripting
	Using floating point values in scripting

	Chapter 3. The Configuration Editor
	The Project Model
	The IBM Security Directory Integrator Servers view
	The IBM Security Directory Integrator Project
	Configuration Files
	The Project Builder
	Properties and substitution

	The User Interface Model
	The User Interface
	The Application Window
	Servers view
	The Expression Editor
	The AssemblyLine Editor
	AssemblyLine Options
	Component panels
	User Documentation View
	Run AssemblyLine window
	Attribute Mapping and Schema
	Input Attribute mapping
	Output Attribute mapping

	The Connector Editor
	Creating a Connector
	Input and Output Attribute Maps
	Hooks
	Connection
	Parser
	Link Criteria
	Connection Errors
	Delta
	Pool
	Connector Inheritance

	Server Editor
	Schema Editor
	Data Browser
	Generic Data Browser
	Stream Data Browser
	JDBC Data Browser
	LDAP Data Browser

	Forms Editor
	Wizards
	Import Configuration Wizard
	New Component Wizard
	Connector Configuration form characteristics

	Running and Debugging AssemblyLines
	AssemblyLine Reports
	Running the AssemblyLine
	The stepper and debugger
	Server Debugging
	Run Options
	Choosing the Server

	Team Support
	Sharing a project
	Using a shared project

	The Problems View
	JavaScript Enhancements
	Code Completion
	Syntax Coloring
	Syntax Checking
	Local Evaluation
	External Editors

	Solution Logging and Settings
	System Store settings
	Logging
	Tombstones
	Java Libraries
	AutoStart
	Solution Interface settings

	Server Properties
	Inheritance
	Actions and Key Bindings

	Chapter 4. Debugging features in IBM Security Directory Integrator
	Sandbox
	Recording AssemblyLine input
	Sandbox playback of AssemblyLine recordings

	AssemblyLine Simulation Mode
	Proxy AssemblyLine workflow
	Simulation script workflow

	Chapter 5. Easy ETL
	Chapter 6. System Store
	User Property Store
	Delta Store
	Store Factory methods
	Property Store methods
	UserFunctions (system object) methods

	Chapter 7. Deltas
	Delta Features
	Delta Entry
	Producing Delta Entries
	Delta feature for Iterator mode
	Change Detection Connectors

	Consuming Delta Entries
	Delta Mode Connectors
	Update Mode and Delta Entries

	Examples

	Chapter 8. IBM Security Directory Integrator Dashboard
	Accessing Dashboard application
	Opening from a browser
	Opening from the Windows Start menu
	Internet Explorer settings for remote access

	Uploading a data integration solution
	Creating a data integration solution
	Solution Configuration
	Adding solution description
	Configuring an AssemblyLine schedule
	Creating a schedule
	Deleting a schedule
	Running and stopping Dashboard Scheduler

	Configuring a connector
	Modifying connection details
	Modifying attribute mapping

	Dashboard EasyETL
	Configuring EasyETL solutions

	Server Configuration
	Configuring log settings
	Configuring tombstones
	Configuring Dashboard security settings
	Viewing installed components
	Viewing system store data

	Dashboard RunReports
	Creating RunReports
	Creating and scheduling a RunReport
	Deleting a schedule
	Running and stopping RunReport Scheduler

	Configuring and browsing connector data
	Solution Monitor
	Starting and stopping the AssemblyLines
	Viewing AssemblyLine execution history
	Viewing tombstone records
	Viewing log files

	Notices
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

