IBM High Performance Computing Toolkit

Installation and Usage Guide

Copyright © 2008 IBM Corporation

IBM High Performance Computing Toolkit

Table of Contents

Lo 8o [o] o OSSPSR 7
Installing the IBM High Performance Computing TOOIKIt..........cccooiiiiinincneneneeeee 9
Installing the IBM HPC Toolkit on AIX SySteMS........ccccceevieieiieseeie e 9
ALX Installation USING INSEAITPcoviieiieeee e 10
ALX Installation USING SMIT ...t 10
Installing the IBM HPC Toolkit on LinuX SyStemsS..........ccccoeriririienienencseseseseeees 11
Enabling Hardware Performance Counter SUPPOItcccceeeeveeieeveerieeiee e 13
Using the IBM High Performance Computing TOOIKItccceieieienininineneseeeeee 14
Overview of the IBM High Performance Computing TOOIKit..........cccccvrieererieereennnne 14
UsSING the PEEKPEIT GUI ..o e 16
(= o= g o I VT gAY o] o 1= 1 o o P 17
Loading an appliCatiON........c.c.uiieieeiesiereee e 17
Instrumenting the APPHICALIONc.ccveiieieciere e nne s 21
Running the APPliCaiONooiiiee e e 21
Viewing PerformanCe Data...........cccceveeierieneese e see e e e nns 23
VIBWING MPL TTBCES......eiiiieeiiee ettt sttt s se e sbeeeesneenne s 27
Viewing 1/O ProfiliNg Data.........ccccveieeieeeeseesie e see et 28
Compiling, Editing and Running Programs Using Peekperfccccoevineniennnene. 30
Miscellaneous Peekperf FEALUIES...........coveveieeri e 30
Using Hardware Performance Countersin Peekperf ... e 31
(= o= g0 I VT gAY o] o 1= 1 o o P 31
Instrumenting Y our APPHICALION.........ccoiiriiierieeie et 31
RUNNING Y OUF PrOgraM.......ccviieeiieeie e eee et sse e e seenae s e sse e sneenseenensns 33
Viewing Hardware Performance Counter Data...........ccoveererrieneenieniienee e 34
Using MPI Profiling in PEEKPENTceeieeececee et 35
Preparing Y our APPLICALTON.ccoiiiieeeeee e e 35
Instrumenting Y our APPHICALION........cccciveieieere e sees et aeenee e 35
RUNNING Y OUr APPIICALION. ..ot 37
Viewing MPI Profiling Data..........ccccovveiiiieniee e 38
Using OpenMP Profiling in PEEKPEXT ..o 42
Preparing Y our APPliCaION.ccveieieere e 42
Instrumenting Y our APPlICALION.........ccoiireiieieeie e 43
RUNNING Y OUr APPIICALION........eeiieie e ens 44
Viewing OpenMP Profiling Performance Data...........cccocevervenieneninneeseee e 44
Using [/O Profiling in PEEKPENTeeeeieeeceeeee st 46
Preparing Y our APPLICALTON.ccviiiieeeeee e e 46
Instrumenting Y our APPHICALION.........ccciieieiierieeesees e sie et ae e e e 46
RUNNING Y OUr APPIICALION.......ccuiiiiiieeeeee e e 47
Viewing 1/O ProfiliNg DataL........cccovceieeiieieseeie et 48
XWindows Performance Profiler (XProf) ... 54
BEfOre€ YOU BEJIN ...ttt st enn 54
Comparing Xprof and the gprof Command............cccceierienieninnenereee e 55
Starting the XProf GUIoceee ettt ne e 56
CustomiZing XProf RESOUICES........cceeiueriireerieeie et see e s e s e e eessee e 111

IBM High Performance Computing Toolkit

Hardware Performance COUNtEr TOOISccoiiiiiririenie e 117
Using the hpccount COMMANG..........c.eecueieereeieseesie e e e eee et se e eeesreeneeas 118
Using the hpcstat ComMMEaNG..........cooeeiiieiiinieree e 119
UsiNg the HBNPC LIDIaryccveeeeece e 119
Understanding Hardware Counter MUltipleXingcccoveevineenenieneeneeeeseeens 121
Understanding Derived MELIICS......ccvecueieeieeeciese e se et eae e 123
Understanding INNEritanCe..........ooeeieeiiiiseeeeeee e 124
Understanding Inclusive and Exclusive Event Counts...........ccccevveeeveeneccieseenens 124
Understanding Measurement Overhead..............ccooereieeneniineeneee e 126
Handling Multithreaded Program Instrumentation ISSUES..........cccceevieereeiieseenens 127
Considerations for MPl Programscocoveererieneenie e 127
Specifying LatenCy ESHMELES..........coceveeieiierie et eee et 132

Using the MPI Profiling LiDrary ... 132
Controlling Profiling @and TraCing.........cceceveereeieneeseseeseesieseeseesesee e esseseessens 133
Customizing MPI Profiling Dal@..........ccooeveeieniinieese e 135
Understanding MPI Profiling Utility FUNCLIONScccoviviiiiiere e 135

Using the [/O Profiling Library..........cooeee e e 138
Preparing Y our APPliCALION.........ceeiiee e 138
Setting I/0O Profiling Environment Variables ... 139
Specifying 1/0 Profiling Library Module Options...........cccccevveveveenesiieseenesee e 140
RUNNING Y OUr APPIICALION......cceieieieeie et 146

Instrumenting Y our Application Using hpCtiNSt..........cccoovevevieveeie e 148
Instrumenting Y our Application for Hardware Performance Counters.................. 148
Instrumenting Y our Application for MPI Profiling........ccccecceveveeveicse e, 149
Instrumenting Y our Application for OpenMP Profiling..........ccooevviieieneneenenne 150
Instrumenting Y our Application for 1/0 Profiling.........cccceeevievvsvesecie e, 150

Commands and APl REFEIENCE........cccuiiiiiirieiee e 151

Hardware Performance MONITOrNGcccceveerereresesesesee e 151
1070700 o | OSSR 151
PPCSEAL ... e 155
hpm_error_count, f_error_COUNL.........cccoccueiieieeie e 159
hpMINIE, T_NPMINIT ..o 161
hpmStart, f NPMSLart..........c.ooeeieeece e 165
hpMStartX, f NPMSLArTX.......cooveee e 167
hpMSLOP, f NPMISEOP....cciice e 170
hpmTerminate, f_NpMEErMINGLEooeeerieeeree e 172
hpmTstart, f_ PMESLArt...........ccooiee e 174
hpMTSstartX, T NPMESIAITX.......cooveeeeee e 177
hpMTStOP, f NPMESIOP ... 181

IMPL PrOFHING .t 183
MT _QEL AlITESUITS ... n e e e nne s 183
MT_get_Calleratddress........cooiiiiiieieee e nre s 186
MT_get CallENNFO ..ot 187
MT_get_@lapSed tIME......cceeiieeeeierie e nre s 189
MT_QEL ENVIFONMENLoovieieciecteete ettt e e e be e sreesreenesneenrean 190
MT_get_ MPI_DYTES. ... 191

IBM High Performance Computing Toolkit

MT_QEL MPI_COUNES....c.eeiiiieieeiesiee ettt et st see e e s ne e e 193
MT_QEL MPI_NBIME......eiieieeeieeee et ettt e ste e et ae e s seeseesseesteenaesreesseenseaneensens 194
MT_QEL MPI_TIMIB .ttt ae e e nee s 195
1 o T S0 PSSR 196
MT_get_tracebUffErinfO......cooeieeiee e 197
L o 011 011 | (= PSPPSR 198
MT _OULPUL_TFBCE.ceeieiiee ettt b e e e snreas 200
I (= o =Y o | SRR 201
MT_trace start, Mt_trace Stalt...........ccooeeiiiiiiiee e 203
MT_trace Stop, ME_TraCe SLOPevvvveriiiieiiiee ettt 205
ApPPlication INSErUMENTALIONcoveeieriieie e 207
] 1 OSSP 207
Performance Data ViSUaliZaLiONccoieererienienee e s ne s 211
(072 62 1Y 1= USSR 211
812224 0= o USROS 213
PEEKVIBIW ...ttt e ste e te e se e tesaeesseeseeneesseensesneesreenseaneensens 216

D o (o TSP R 218
N 0= 10 o= 223
Derived MetriCS DESCIIPION.cceiiiriesie ettt s ne s 223
N o= 228
NOTICES AND INFORMATION ..ottt s nne s 231

IBM High Performance Computing Toolkit

List of Figures

Figure 1: Peekperf main window at Startupccveeeeeeieeie s e 18
Figure 2: Additional link options (AIX ONIY) ..o 18
Figure 3: Peekperf Data CollECtiON...........ccoeeiiieecece e 19
Figure 4: Peekperf data collection window with expanded application structure............ 20
Figure 5: Peekperf search resultS WiNdOWccveeeieeiecie e 21
Figure 6:Peekperf environment SettingS WindOWcccooeverireniienenene e 22
Figure 7: Peekperf run diadlog L1 Of 3......cc.ooiieieeee e 22
Figure 8: Peekperf run dialog 2 Of 3........coeiiiiiieee e 22
Figure 9: Peekperf run didlog 3 0f 3......cceeieeiiceeceee e 23
Figure 10: Peekperf data VizualiZationcccoceoveeieiieneerieeeesee s 24
Figure 11: Peekperf expanded data vizualization WindOwccccceeveveeneeieeneesinsnnens 25
Figure 12: Peekperf datafiltering dialogc.ooeeieeiiiiiseeeeee s 26
Figure 13: Peekperf metric browser WindOW...........c.ccovvieieeiieeieneere e 26
Figure 14: Peekperf performance datatable Windowccccoveiiniininnencencenecee 27
Figure 15: Peekperf trace VIeWer WINAOWcccoveeeeieeieeieeceeseesie e seesae e 28
Figure 16: Peekperf trace viewer identifier Window...........ccccoeereeienenennesieneeie s 28
Figure 17: Peekperf 1/0 profiling selection WinNAOWccceeeeveeienieeneere e 29
Figure 18: Peekperf data plot WINGOWcocuiiieieiienie et 29
Figure 19: Peekperf HPM data collection Window............ccccveeeieeieseeseere e 32
Figure 20: Peekperf hardware counter group selection dialogccccceveererieeneeninnenne. 34
Figure 21: Peekperf task rank selection dialog.........ccceveeveeieceeneere e 35
Figure 22: Peekperf MPI profiling data collection Windowccceveereninneeninnenees 36
Figure 23: Peekperf MPI profiling data collection with selected instrumentation............ 37
Figure 24: Peekperf MPI profiling data collection Windowccoceveeneninnenninnenees 39
Figure 25: Peekperf MPI task rank selection dialog........ccceeveeeneeieceveere e 40
Figure 26 Peekperf MPI trace viewer identifier dialogcoceveeienenerieneseeeeee 40
Figure 27: PeeKperf traCe VIBWENccoieereee ettt te ettt 40
Figure 28: Peekperf trace viewer detailed VIEW..........ccoeoveeiiiieiieieeeee e 42
Figure 29: Peekperf OpenMP data collection WindOWcccccveveeieereeresieseesie e 43
Figure 30: Peekperf OpenMP data visualization WindOWccceceeeeeneeneniennenninsenees 44
Figure 31: Peekperf 1/0 profiling data collection Windowccceeeveereecinseesinsenne 47
Figure 32: Peekperf 1/0 profiling data visualization Windowc.ccceeeverinneeninnennne 438
Figure 33: Peekperf 1/0 profiling data selection Window...........ccceceveeveereccnseesie s 49
Figure 34: Peekperf 1/0 profiling data plot WiNdOW...........ccccoeeeieriinienieieeeeeeie e 50
Figure 35: Peekperf 1/0 profiling datatable Windowcccccceveeveeieveene e 52
Figure 36: The Xprof Main WiNAOWcoceiiiiiiieienie e 62
Figure 37. The Load Files Dialog WINAOW.c.ccveiieiieieeie e s 63
Figure 38. The Binary Executable File dial0g.ccouviiiiriineneee e 64
Figure 39. The gmon.out Profile Data File(S) ar€a.ccocveveeeeieeie e 65
Figure 40. The Command Line€ OPtiONS @I€a...........ccoereereriieriesee e see e 66
Figure 41. The Xprof main window with application loaded.ccoevevvecnniernrnenee. 69
Figure 42. Function boxes and arcsin the Xprof display.cccoceverinenneninnieienee 72
Figure 43. The Xprof main window with Left-to-right format selected.............ccccue.ee... 74
Figure 44. The Filter By Function Names Dialog WindOW.ccccvvereereniennesnnsenees 78

IBM High Performance Computing Toolkit

Figure 45. The Filter By CPU Time Dialog WINCOW..........cccerieieriinieneereeee e 79
Figure 46. The Filter By Call Counts Dialog WinOW..........cccecuereeienieeneereeeeseesie e 80
Figure 47. The Xprof main window with functions unclustered.cccceevnieienennne. 83
Figure 48. The Xprof main window with one library cluster box collapsed. 84
Figure 49. The Xprof main window with one library cluster box removed. 85
Figure 50. An example of afunction box [abel.cccooevievecieieece e 88
Figure 51. An exampleof acall arclabel. ... 89
Figure 52. The Function Level Statistics Report Window.cceceveeeveereniensecrieseeees 91
Figure 53. The Flat Profile WINAOW.ooeriiiiniiie e 94
Figure 54. The Call Graph Profile Window.cceoveeieece e 95
Figure 55. The called/total, call/self, called/total field of the Call Graph Profile window.
... 96
Figure 56. The name/index/parents/children field of the Call Graph Profile window. 97
Figure 57. The FUNCtion INAEX WINAOW..........c.cccueiieieiiereesie e 98
Figure 58. The Function Call Summary WindOW...........ccoveeiirieninnene e 99
Figure 59. The Library StatistiCS WINAOW..........ccveieiierieiesiesieceeseeste et 100
Figure 60. The Source Code WINGOW.cceeiiriiiieiieniesee e e 105
Figure 61. The Disassembler Code WINAOW.cccocvereeieneeneeeeseesie e see e 107
Figure 62. The Screen Dump Options Dialog WINAOW...........ccceeeereenenieeneeniesee e 109

IBM High Performance Computing Toolkit

Introduction

The IBM® High Performance Computing Toolkit (IBM HPC Toolkit) is a collection of
tools that you can use to analyze the performance of both parallel and serial applications,
written in C or FORTRAN, over the AIX® or Linux® operating systems on IBM Power
Systems™ Servers. The Xprof GUI also supports C++ applications. These tools perform
the following functions:

e Provide access to hardware performance counters for performing low level
analysis of an application, including analyzing cache utilization and floating point
performance.

e Profile and trace an MPI application for analyzing MPI communication patterns
and performance problems.

e Profile an OpenMP application for analyzing OpenM P performance problems and
to help you determine if an OpenM P application properly structures its processing
for best performance.

e Profile application 1/0O for analyzing an application’s 1/0O patterns and you can
improve the application’s 1/0 performance.

e Profile an application’s execution for identifying hotspots in the application, and
for locating rel ationships between functions in your application to help you better
understand the application’ s performance.

The IBM HPC Toolkit provides two primary interfaces for you to use. Thefirstis
peekperf. Peekperf isa GUI that you can use to run hardware performance counter
analysis, MPI profiling and tracing, OpenMP profiling, and 1/O profiling. Peekperf
allows you to select the parts of your application that are to be instrumented, instrument
those parts of the application, run the instrumented application and view the resulting
performance data. Peekperf alows you to sort and filter the data to help you find the
performance problems in the application.

The second interface is Xprof, which you can useto view low level profiling data for
your application. Xprof allows you to view the performance datain gmon.out files,
generated by compiling your application using the —pg compiler flag. Y ou can view the
profiling data, identify hotspots in the application, view relationships between functions
in the application, zoom in to areas of the application of greater interest, and sort and
filter the datato help identify hotspots in the application.

The IBM HPC Toolkit also provides a utility, hpctInst, which you can use to instrument
the application without using the peekperf GUI. Y ou can specify the types of
instrumentation you want to use as well as the locations within the application which are
to be instrumented. The hpctInst utility rewrites the application binary with the
instrumentation you selected. Then, you can run that instrumented executabl e to obtain
the same types of performance measurements that you could by using peekperf.

Finally, the IBM HPC Toolkit provides commands to get an overview of hardware
performance counters for an application, aswell as libraries that allow you to control the

IBM High Performance Computing Toolkit

performance data obtained using hardware performance counters and by MPI profiling
and tracing.

IBM High Performance Computing Toolkit

Installing the IBM High Performance Computing Toolkit
Installing the IBM HPC Toolkit on AIX Systems

The IBM High Performance Computing Toolkit can be installed on IBM Power Systems
servers which are supported by IBM Parallel Environment (PE).

The IBM HPC Toolkit has the following software requirements:

Function Software AIX 5.3 AlX 6.1

All Operating System | AIX 5.3.9.0or | AIX 6.1.2.00r

later later

Compiling C applications IBM VAC 8.0.0.12 or later | 8.0.0.12 or later
compiler

Compiling FORTRAN IBM xIf Compiler | 11.1.0.0 or later | 11.1.0.0 or later

applications

Access hardware performance | bos.pmapi 5.39.00r later | 6.1.2.00r later

counters

Running the Xprof GUI X11.motif.lib 5.3.0.60 or later | 6.1.1.0 or later

Y ou must install and accept the PE license on each node where you intend to install the
IBM HPC Toolkit installation images before you can install the IBM HPC Toolkit.

Prerequisite software must be installed, following the documentation for that software’s
installation, before you install the IBM HPC Toolkit.

There are two installation images for the AIX version, ppe.hpct and ppe.hpct.rte. The
ppe.hpct.rte installation image must be installed on all nodes where applications
instrumented with the toolkit will run, and a'so on any node where the ppe.hpct
installation image isinstalled. The ppe.hpct installation image must be installed on any
node where you intend to use the GUI tools, instrument an application, or compile an
application where you have coded calls to the instrumentation libraries.

The man pages for the Al X version of the IBM HPC Toolkit are packaged in the ppe.man
installation image. Y ou must install that installation image if you want online man pages
for the IBM HPC Toolkit.

You can install the IBM HPC Toolkit using either the installp command or by using
SMIT. You caninstall using either the installation media, or by copying the installation
images to a directory accessible to the node and installing from that directory.

IBM High Performance Computing Toolkit

AlX Installation using installp

If the PE product license has not been previously accepted, you must have a copy of the
ppe.loc.license installp image in the same directory as the IBM HPC Toolkit installp
images.

To install the ppe.hpct.rte installation image using installp where the installation images
are stored in ~/images:

installp —a -1 —X =Y —d ~/i mages/ppe. hpct.rte ppe. hpct.rte

To install the ppe.hpct installation image using installp where the installation images are
stored in ~/images:

installp —a -1 —X =Y —d ~/i mages/ ppe. hpct ppe. hpct

To install both the ppe.hpct and ppe.hpct.rte images where those images are both located
in ~/images:

installp —a -I -X =Y —-d ~/i nmages ppe. hpct.*

AlX Installation using SMIT

Toinitialy install the installation image using SMIT, follow these instructions:

e Insert the distribution medium in the installation device, unless you are installing
over anetwork.

e Enter smit install latest
This command invokes SMIT, and takes you directly to its window for installing
software.

e Press List
A window opens listing the available INPUT devices and directories for software.

e Select theinstallation device or directory from the list of available INPUT devices.
The window listing the available INPUT devices and directories closes and the
original SMIT window indicates your selection.

e PressDo
The SMIT window displays the default installation parameters.

e Typethe appropriate file name, as shown in the following table:

File names for different types of installations
If you want to install: Type this in the SOF TWARE to install
field:
All the IBM HPC Toolkit software ppe.hpct*
Just ppe.hpct ppe.hpct
Just ppe.hpct.rte ppe.hpct.rte

10

IBM High Performance Computing Toolkit

e After choosing the appropriate software, you might also want to change other
options on the panel, as needed. For example, the panel also asks whether or not
you want to expand the file systems.

e When you are prompted, answer yes to expand the file systems if you want to
allow the filesystem to be expanded.

e Typeyesinthe ACCEPT new license agreementsfield. If the eLicenseis not
accepted, none of the IBM HPC Toolkit software components will be installed.

e PressDo
The system installs the install ation image.

Installing the IBM HPC Toolkit on Linux Systems

The IBM High Performance Computing Toolkit can be installed on IBM Power Systems
servers which are supported by IBM Parallel Environment (PE).

The IBM HPC Toolkit has the following software requirements:

Function Software Red Hat Linux SLES Linux
All Operating Red Hat Enterprise SLES 10 SP2 or later

system Linux version 5 update

2 or later

Compiling C IBM VAC 9.0.0.0 or later 8.0.0.12 or later
applications compiler
Compiling IBM xIf 11.1.0.0 or later 11.1.0.0 or later
FORTRAN compiler
applications
Accessing hardware | perfctr Matching version for | Matching version for
performance counters your Linux kernel your Linux kernel
Using IBM HPC 32-bit 4.1.2-14 or later 4.1.2 20070115-0.11
Toolkit GUIs libstdc++ or later
Using IBM HPC 32-hit 2.3.0.0-3 or later N/A
Toolkit GUIs openmotif
Using IBM HPC 32-bitlibXp | 1.0.0-8.1 or later N/A
Toolkit GUIs
Using IBM HPC 32-bit libXt 1.0.2-3.1 or later N/A
Toolkit GUIs
Using IBM HPC 32-bit libXext | 1.0.1-2.1 or later N/A
Toolkit GUIs
Using IBM HPC 32-hit N/A 6.9.0-50.45 or later
Toolkit GUIs xorg-x11-libs
Using IBM HPC 32-bit N/A 2.2.4-21.12 or later
Toolkit GUIs openmotif-

libs

11

IBM High Performance Computing Toolkit

Y ou must install and accept the PE license on each node where you intend to install the
IBM HPC Toolkit installation images before you can install the IBM HPC Toolkit.

Prerequisite software must be installed, following the documentation for that software’s

installation, before you install the IBM HPC Toolkit.

The Linux version of the IBM HPC Toolkit has several RPM s which must be installed as
described in the following table. The RPM containing the GUIs and instrumentation tools
requires the runtime support RPM to be installed. RPMss providing 64-bit runtime and
hardware performance counter access must be installed only if you will be analyzing 64-
bit applications. If you install the 64-bit RPMs, you must also install the corresponding

32-bit RPM.

Purpose

Where
installed

Red Hat RPM

SLES RPM

IBM HPC
Toolkit GUls
and
instrumentation
tools

Compile/link
and login
nodes only

ppe_hpct_rh500

ppe_hpct_sles1000

IBM HPC
Toolkit
runtime
support

All nodes

ppe_hpct_runtime_rh500

ppe_hpct_runtime_sles1000

IBM HPC
Toolkit

support
runtime for 64-
bit applications

All nodes

ppe_hpct_runtime64 rh500

ppe_hpct_runtime64_sles1000

Hardware
performance
counter access

All nodes

ppe_hpct_hpm_rh500

ppe_hpct_hpm_sles1000

Hardware
performance
counter access
for 64-bit
applications

All nodes

ppe_hpct_hpm64_rh500

ppe_hpct_hpm64_sles1000

You can install the RPMs separately or you can install them as a group. If you install
RPMs individually, you must install the 32-bit runtime support RPM first, followed by
the RPM containing the GUIs and instrumentation tools (on compile, link and login
nodes) and the 32-bit RPM providing support for hardware performance counter access.
After the 32-bit RPMs have been installed, you can install the 64-bit RPMSs.

Toinstall RPMsindividually, use the rpm —i <RPM_name> command, for example

rpom—i ppe_hpct _rh500-5. 1. 0.0. ppc. rpm

12

IBM High Performance Computing Toolkit

Toinstall RPMs as a group, copy the RPMsin to a directory, for instance, ~/images then
issue the command

rom-—i ~/imges/*.rpm

Enabling Hardware Performance Counter Support

Note: The hardware performance counter tools for Linux rely on aLinux kernel patch
and runtime support library (perfctr) that are not included as part of the Red Hat and
SLES Linux distributions. If you choose to use the hardware performance counter tools
for Linux, you must download the perfctr kernel patch and library, build a customized
kernel and boot your system using that kernel. Since the perfctr support is not part of a
standard Red Hat or SLES distribution, the IBM HPC Toolkit hardware performance
counter tools and the perfctr patch are not supported by IBM

If you choose to install the RPMs containing IBM HPC Toolkit support for hardware
performance counters, you must download and install the perfctr kernel patch and
runtime support library. Y ou should download the latest copy of the perfctr source code
from the perfctr distribution website, http://user.it.uu.se/~mikpe/linux/perfctr/2.6/, unpack
the source code tar file and follow the instructionsin the INSTALL file located in the top
level directory of the unpacked tar file.

13

http://user.it.uu.se/%7Emikpe/linux/perfctr/2.6/

IBM High Performance Computing Toolkit

Using the IBM High Performance Computing Toolkit

Overview of the IBM High Performance Computing Toolkit

The IBM High Performance Computing Toolkit is a set of tools that you can use to obtain
performance measurements for your application and to help you understand where there
might be performance problems in your application. Tools are provided to obtain
performance measurements in the following areas:

Hardware performance counters, including measurements for cache misses at al
levels of cache, number of floating point instructions executed, number of load
instructions resulting in TLB misses, and other measurements that that are
supported by your hardware. These measurements help the algorithm designer or
developer identify and eliminate performance bottlenecks. The hardware
performance counter tools allow you to run individual tasks of an MPI application
with different groups of hardware counters monitored in each MPI task, so that
you can obtain measurements for more than one hardware counter group within a
single execution. These tools also alow you to summarize or aggregate hardware
performance counter measurements from a set of MPI tasks, using plug-ins
provided with the IBM HPC Toolkit or provided by you. On AlX, you can
multiplex or time slice multiple hardware counter groups in asingle task,
allowing you to get hardware performance counter events from multiple groupsin
the same application process.

MPI profiling, where you can generate a trace of MPI callsin your application so
you can observe communication patterns and match MPI calls to your source code.
MPI profiling also obtains performance metrics including time spent in each MPI
function and MPI message sizes.

OpenMP profiling, where you can obtain information about time spent in

OpenMP constructs in your program, information about overhead in OpenM P
constructs, and information about how workload is balanced across OpenMP
threads in your application.

Application I/O profiling, where you can obtain information about 1/0 calls made
in your application to help you understand application I/O performance and
identify possible 1/0 performance problems in your application.

Application profiling, where you can identify functionsin your application where
the most time is being spent, or where the amount of time spent is different from
your expectations. Thisinformation is presented in a graphical display that helps
you better understand the rel ationships between functionsin your application.
The IBM HPC Toolkit includes the peekperf GUI which allow you to instrument
the application, run it, and view the performance measurement datafor hardware
performance counters, MPI profiling, OpenMP profiling, and application 1/0
profiling, all from within peekperf. Y ou can also sort and filter performance data
within peekperf to help you better understand you application’ s performance.

Y ou can obtain performance data for more than one type of measurement in asingle
execution of an application. Y ou should use care in obtaining multiple performance
measurements, since in some cases, particularly hardware performance counter

14

IBM High Performance Computing Toolkit

measurements and application profiling, the overhead of obtaining other measurements
might appear in these measurements.

The IBM HPC Toolkit has two instrumentation models. The first model is onein which
the application executable is rewritten with the instrumentation specified by you. Y ou
specify the instrumentation using either the peekperf GUI or the hpetInst command line.
The IBM HPC Toolkit rewrites the application executable, adding the requested calls to
the instrumentation libraries in to the executable. This process does not require any
modifications to the application source code, and does not require the application to be
relinked.

The second instrumentation model can be used when obtaining measurements using the
hardware performance counters (HPM) or to control the generation of the MPI trace and
MPI profiling information when using MPI profiling. In this model, you insert calls to
functions in the instrumentation library in to your application source, then recompile and
relink your application.

When you instrument your application, you should choose only one of the
instrumentation models. Thisis because any calls to instrumentation functions that you
code in your application might interfere with the instrumentation calls that are inserted by
use of the peekperf or hpctlnst tools.

Y ou must ensure that several environment variables required by the IBM HPC Toolkit

are properly set before you can use the toolkit. In order to set these environment variables,
you should run the setup scripts that are located in the top level directory of your IBM
HPC Toolkit installation. On AlX systems, these setup scripts are located in the
lusr/lpp/ppe.hpct directory. On Linux, these setup scripts are located in the
/opt/ibmhpc/ppe.hpct directory. If you are using sh, bash, ksh, or similar shell command,
invoke the env_sh script as. env_sh. If you are using csh, invoke the env_csh script as
source env_csh.

The IBM HPC Toolkit requires your application to be compiled and linked using the —g
compiler and linker flag. If your application has not been compiled and linked using the
—g flag, peekperf and hpctlnst will be unable to instrument your application. If you plan
to use Xprof to view profiling data for your application, your application must also be
compiled and linked using the —pg compiler and linker flag.

After your application has been instrumented, you must ensure that it, and any datafiles
that it requires, are properly distributed on the system on which the application will run.
If your application residesin aglobally accessible filesystem, such as a GPFS™
filesystem, you should not have to do anything to distribute the application. If your
system is set up so that only local filesystems are used, you must manually copy the
application and any datafilesit requires to each node on which the application will run,
using system utilities that are most appropriate for your system.

15

IBM High Performance Computing Toolkit

Y ou aso need to make sure that the application environment has been properly set up.
This includes making sure that any environment variables that are required to control the
instrumentation in your application are properly set.

After you have set up the application environment, you can invoke the application as you
would normally. The performance measurements you requested will be obtained while
the application runs, and the results will be written when the application compl etes.

The performance measurement data is written to the current working directory for the
application. Before you can view the performance data, you must ensure that all the
performance data files are accessible to the node on which you will run the visualization
tools. If the current working directory for the application residesin aglobal filesystem,
you should not need to do anything to make the performance data files accessible to the
visualization tools. If the current working directory residesin local filesystems on each
node on which the application ran, you need to collect all the performance datafiles that
you want to view in to asingle directory that is accessible to the visualization tools. You
can use any system utilities appropriate for your system to move the performance data
filesto adirectory that is accessible to the visualization tools.

The following sections of this chapter first describe how to use the GUI toolsto
instrument, run, and analyze the performance of an application. After that, an explanation
of how to instrument your application by inserting calls to the instrumentation librariesin
your application is provided, followed by information about how to use the command line
instrumentation tools.

Note: The hardware performance counter tools for Linux rely on aLinux kernel patch
and runtime support library (perfctr) that are not included as part of the Red Hat and
SLES Linux distributions. If you choose to use the hardware performance counter tools
for Linux, you must download the perfctr kernel patch and library, build a customized
kernel and boot your system using that kernel. Since the perfctr support is not part of a
standard Red Hat or SLES distribution, the IBM HPC Toolkit hardware performance
counter tools and the perfctr patch are not supported by IBM.

Using the Peekperf GUI
The peekperf GUI isthe user interface for the IBM HPC Toolkit. Y ou use the GUI for
instrumenting your application, running your instrumented application, and obtaining
performance measurements in the following areas:

e Hardware performance counter measurements

e MPI profiling

e OpenMP profiling

e Application /O profiling
The peekperf GUI maps performance measurements to your source code, and allows you
to sort and filter that data.

Peekperf is started by issuing the command peekperf. When you issue the peekperf
command, the peekperf GUI main window is displayed. When the main window opens,

16

IBM High Performance Computing Toolkit

you can load an application executable, open visualization data files containing your
performance measurements, and open application source files.

Y ou can aso invoke peekperf, specifying the name of your application, the name of the
visualization data files, or both. If you invoke peekperf in this manner, peekperf
automatically opens the files you specified when the main window opens.

Y ou must ensure that several environment variables required by the IBM HPC Toolkit

are properly set before you invoke peekperf. In order to set these environment variables,
run the setup scripts that are located in the top level directory of your installation. On

AlX systems, these setup scripts are located in the /usr/Ipp/ppe.hpcet directory. On Linux,
these setup scripts are located in the /opt/ibmhpc/ppe.hpct directory. If you are using sh,
bash, ksh, or similar shell command, invoke the env_sh script as. env_sh. If you are
using csh, invoke the env_csh script assource env_csh.

The following sections explain the individual windows and menus in the peekperf GUI.
Each type of instrumentation has some unigue menus and options in these windows.
Those unique menus and options are explained in later sections, which cover use of
peekperf for each instrumentation type.

Preparing Your Application

Y ou must compile and link your application using the —g compiler option so that
peekperf will have the line number and symbol table information that it needs in order to
show you the instrumentation pointsin your application, and so that the application can
be instrumented.

When you compile a 64-bit application on a Linux system, you might need to use the
—emit-stub-syms compiler option. If you attempt to instrument an application that
requires this option to be used, a message is displayed on the console from which you
invoked peekperf suggesting you set this linker option.

When you attempt to load a Linux 64-bit application, peekperf might be unable to locate
the main entry point for your application. If peekperf cannot locate the main entry point,
it will issue a message on the console from which it was invoked, suggesting that you set
the PSIGMA_MAIN environment variable. If you see this message, you should set
PSIGMA_MAIN to the main entry point for your application, or the name of the main
program for FORTRAN applications.

Loading an application

When you invoke peekperf using the command peekperf, the following window is
displayed.

17

IBM High Performance Computing Toolkit

"X Main Window =/0&d

Eile Manual Automatic Windows Tool

Figure 1: Peekperf main window at startup

Load the application, which must be compiled and linked with the —g option, by clicking
the File menu, then clicking the Open Binary selection. A file selector dialog opens.
Select the executable file to be opened, then click the Open button in that dialog. After
you do this, asmall dialog window opens in which you can specify additional arguments
such aslibrariesto link with your application when loading it in to peekperf. If your
application requires shared libraries other than libpmapi, libpthreads or libxIsmp, you
must specify them here. If your application requires special link options, those must also
be specified here.

X Linking Option g@
Specify arguments to relink with (-lessl, -bmaxdata, etc):

| Ck | Cancel

Figure 2: Additional link options (AIX only)

Specify any linker arguments that you need then click the OK button. The peekperf main
window looks similar to the following:

18

IBM High Performance Computing Toolkit

X Main Window

File Manual Automatic Windows Tool

SOURCE CODE WINDOW

EIE | oPENMP | MIO | cachec | secc.c
Application Structure | 1 ’: : =
: - 2 Returns the total cpu time used in
?--Func. Call Sma_ coconds
?--Func. B, 3 * Emulates the Cray fortran library function of
“User-Defined Regian the same name.
4
3 sifdef LIMUX £ LINUK "/
] #include <stdio.h=
7 #include <stdlib.h=
] #include <sysdime h=
3 #include <sysfrasource b
10 #include <unistd.h=
11 double secondf arg)
12 double "arg;
13 {
14 struct rusage buf,
15 double t1, t2;
16 double 11, t1E;
17 double temp;
18
19 getrusage(RUSAGE_SELF, &huf);
z0
21 /* Get system time and user time in SECONDS.
ptd #ifdef DEBUG
23 temp = (doublejbufi_utimetv_sec +
(doublejbuf_utimety_usec™ .0e-6 +
24 (doublejbufr_stimetv_sec + i
(doublejbuf_stime.tv_usec®1.0e-6; -
25 111 = (doubledbufru_utime.tv_sec; T
4] | (]r]

Figure 3: Peekperf Data Collection

The data collection window has four tabs for the different types of instrumentation that
are available. If you click atab, the data collection window shows you atree view of the
application structure that contains all of the places you can insert that type of
instrumentation in the application.

Y ou can instrument your application with as many of the four types of instrumentation
asyou likein asingle session. Note that each type of instrumentation has a small
overhead associated with it, and that overhead might affect measurements obtained by
other types of instrumentation.

Y ou can expand the tree in the data collection window by clicking the + icons at each
node or by right-clicking in the white space in the data visualization window and then
clicking Expand the Tree in the pop-up menu. This gives you aview showing all the
instrumentation points in the application. Y ou can collapse nodes in the tree by clicking
the ‘—¢ icons at each node or by clicking Collapse the Tree in the same pop-up menu.

Note: The HPM tab in the data collection window is disabled on Linux systems unless
the ppe_hpct hpm RPMs are installed on your system.

19

IBM High Performance Computing Toolkit

If peekperf can find the source files, it opens a source code window showing the
application source code. If there are multiple source files in the application, there are tabs
at the top of the source code window for selecting the source file to view. Asyou select
instrumentation in the source code window, the affected regions of source code are
highlighted in the source code window.

If peekperf cannot find the source code for your application, it displays a pop-up dialog
asking you if you want to specify the location of the sourcefiles. If you choose to do so, a
file selector dialog that you use to select the location of the sourcefilesis also diaplayed

X Main Window
Eile Manual Automatic Windows Toal
SOURCE CODEWINDOW
HFM | MPI | QPENMP | MID | cache | seccco
Application Structure | ! # ; =
= Call Sib z Returns the tatal cpu time used in i
s T ha e seConds
HEACTEE 3 * Emulates the Cray fortran library function of
s the same name.
msecond_43 4
mgeconitt D] WM e e n et e o e s e i =
é::secung_g? 5 #iflef LINUX £ LINUX "
E i B #include <stdio.h>
el i 7 #include <stilib ha-
woL G #include <sysiime he
_"S?CE'C i q #include <sysfresource.h=
= i 10 #includse <unistd.he
”S—dsewn = 11 double second(arg)
eeon 12 double =arg;
- us_second_93 13 (
NG, Ehntrnymt 14 struct rusage bur,
S8 e 15 double 1, 12;
oot 16 double 111, 12;
o 17 double temp;
—~S%BCC.C 15
;second 19 getrusage(RUSAGE_SELF, &buf);
= 15_second 20
bizerlefted Regiom 21 7 Get system time and user time in SECONDS. ™
2z #ifdef DEBUG
23 temp = (doubleibuf ru_utime tv_sec +
(doublejbuf ru_utime tv_usec*] 0e-6 +
24 {doublebur ru_stime tv_sec + -
(doublejbut ru_stime tv_usec™1.0e-E; -
25 1 = (doublelbufiy_utimety_sec; =
1| | [«]»]
.

Figure 4: Peekperf data collection window with expanded application structure

The tree in the data collection window panel presents the program structure and will be

created based on the type of performance data. For example, the tree in the HPM panel

contains two subtrees. The Func. Entry/Exit subtree shows all the functionsin the
application. The call sitesfor each function call are shown in the Func. Call Site subtree.

Peekperf provides some searching capability in this tree. Select the Search option in the
context menu (that appears when you right-click in white space in the data collection

20

IBM High Performance Computing Toolkit

window) and input the keyword. Peekperf searches the entire tree and gives you the
information related to the keyword. Here is an example when the keyword is second.

X Search Results for second g@

Path File |Function | Call Site |
1 Vhuildivootton/STRIDESSIC |secc.c second
il EfbuildMnnﬂnnfSTF!lDEfsrc seCC.C Us_secand
S_EJ‘huildmrnnﬁnm’STHIDEa‘src cache.c main second_43
rifhuiIdMnnﬁun!STHlDEfsrc cache.c main second_51
E_thuildﬁunnﬁnnISTHIDEfsrc cache.c main second_33
-E_ifhuiIdMnnﬁun!STHlDEfsrc cache.c main second_E1
?_!fhuildMnnﬁnnISTHIDEfsrc secc.c dsecnd us_second_G7
EimuiIdMnnﬁun!STHlDEfsrc secc.c second us_second_33

Figure 5: Peekperf search results window

The points you want to instrument are selected by clicking the |eft mouse button on the
nodes in the tree in the data collection window. For example, when you click the cache.c
node, the cache.c node and all the children of the cache.c node are selected and
highlighted. If you want to deselect it, click the left mouse button again on the selected
node. All the children including this node will be deselected. If you want to clear all your
current selected instrumentation, select the Clear Instrumentation option from the Tool
menu. Note that at this point, the instrumented application is not generated yet. You are
only selecting the places to put the instrumentation.

Instrumenting the Application

After you browse through each panel and identify the instrumentation you want, where
you must have at least one instrumentation point selected, click the Generate an
Instrumented Application option from the Automatic menu. When peekperf has
created an instrumented application, it will pop up an aert to indicate that the application
has been instrumented. It will also tell you the name of the instrumented application.

Running the Application

After you have instrumented your application, you can run your application from the
peekperf GUI. The instrumented application will run and generate the data files
containing measurements from the instrumentation that you selected.

If your application requires environment variables, such as those used by Parallel
Environment, and those environment variables were not set before you invoked peekperf,
you must set them before running the application. Y ou set environment variables by
selecting the Set the Environment Variable option from the Automatic menu. After

you select this option, a pop-up dialog appears in which you fill in the name of the
environment variable and the value.

21

IBM High Performance Computing Toolkit

X Set some Environment ... g@

Environment Yariahle “alue

| ik | Cancel

Figure 6:Peekperf environment settings window

After you enter aname and value, click the OK button to set the environment variable.

The environment variable will remain set for the duration of your peekperf session, or
until you change it again.

Run the application by selecting Run an Instrumented Application from the
Automatic menu. Peekperf displays a set of dialogs requesting information needed to
run the application. The first dialog asksif you want to modify a script or other file

before running the application. If you click yes, you can edit any file before running your
application.

X Modify a script? =%
The executable that is going o run is
JbuildAvoottondSTRIDESsro/cachec.g.inst .

Do you want to modify the script or any file befare running the executable?
{":i00 not ask me againl

Y eE Mo Cancel

Figure 7: Peekperf run dialog 1 of 3

If you select Yes, afile selector dialog is displayed allowing you to select the file that you
want to edit. After you select the file, an xterm window running the vi editor opens. Y ou
can edit the file and save your changes. If you select No, peekperf proceeds to the next
dialog. If you select Cancel, the application is not executed.

The next dialog allows you to modify the path of the command you want to run.

X Input the command g@

Input the command:

IJuiIdmrnDttn:unfSTHIDEfsrcfcachec.g.insﬂl

{3 Remember the command!

2k Cancel

Figure 8: Peekperf run dialog 2 of 3

22

IBM High Performance Computing Toolkit

Thisdialog isinitialy filled in with the path name of the instrumented application. Y ou
can change this path to the path of a script that sets up the environment for your
application and invokesit. You can also specify command line arguments for your
application. Click OK to proceed, or Cancel to cancel application execution.

Thethird dialog asks if you want peekperf to attempt to open the instrumentation data
files (*.viz) files after your application runs.

X Load the .viz files? =Jo&3

Do you want the Peekperf to try to open the viz files after the execution
of the following command?
JbuildAwootton/STRIDESsrocécachec. g.inst

{00 not ask me againl}

Yes [Cancel

Figure 9: Peekperf run dialog 3 of 3

Select Yes if you want peekperf to attempt to open the .viz files, No if you do not want
peekperf to try to open the .viz files, or Cancel to cancel application execution. After
you select Yes your application runs to compl etion.

Note: Thefirst and third dialogs above have a button labeled Do not ask me again and
the second dialog has a button labeled Remember the command. If you select any of
these buttons, peekperf remembers the settings in that dialog and does not display the
dialog again in your peekperf session. If you exit and restart peekperf, these dialogs
appear again the first time you run an application.

Viewing Performance Data

After your application completes, if you specified that peekperf should automatically
open the performance data files, peekperf will attempt to open the .viz files generated by
running your instrumented application. If you did not specify that peekperf should
automatically open the .viz files, you can manually open them by selecting the Open
Performance Data option from the File menu. Peekperf displays afile selector dialog in
which you can select one or more .viz files to open.

After the .viz files are opened, peekperf will display them in a data visualization window.

23

IBM High Performance Computing Toolkit

X Main Window

File Manual

Automatic

Windows

DATA COLLECTION WIHDOW

SOURCE CONESWIHDO.

HPM | MPI | OPENMP | MIO | cache.c | secce |
Application Structure | et 2 T N e
- Func Call Site Za #define NREF 1024000
. h 29 #define Pl 3141592654
EACeE 30 #define IZERQ 0
=~ tain 21
i 32 double sM1N], y[M1N
FECONG_ 33 double tic, toc, tir, tor, ttc, tir, tmc, tmr;
;----secund_ﬁ‘l a4
?::SEE;DES—ES 35 main{ arge, argy)
_____ Wat_Bz 36 int argc;
Wl 37 char “argv];
=~§BCC.C o [
s-dsecnd ag int
i =----us_dsecnnd_8? E 40 int len, irep;
Rellh 41 register double t;
DATA VISUALIZATION WINDOW stlalers ocond(), dumnmyy
woicl wotl);
hpmdata

Label User time | Execution time

+-cache.c
“-rusage 18.572

Figure 10: Peekperf data vizualization

The data visualization window has one or more tabs, where each tab contains the data
from one set of .viz files. Y ou can switch between sets of performance data by clicking
the tabs for each set of data.

The data visualization window displays atree view of the data collected. Y ou can expand
nodes in the tree by clicking the + icons next to the nodes or by selecting the Expand the
Tree option from the pop-up menu that appears when you right-click in white spacein
this window. Y ou can collapse nodes by clicking the *-* icon next to the nodes or by
selecting Collapse the Tree from the same pop-up menu.

24

IBM High Performance Computing Toolkit

Eile

Manual Automatic Windows Tool

DATE COLECT OO SOURCE CONESWIHDO.

HPM | MPI | OPENMP | MIO | cache.c | secce |
Application Structure | et 2 T N e
- Func Call Site Za #define NREF 1024000
. h 29 #define Pl 3141592654
EACeE 30 #define IZERQ 0
=~ tain 21
i 32 double sM1N], y[M1N
FECONG_ 33 double tic, toc, tir, tor, ttc, tir, tmc, tmr;
;----secund_ﬁ‘l a4
?::SEE;DES—ES 35 main{ arge, argy)
_____ Wat_Bz 36 int argc;
Wl 37 char “argv];
=~§BCC.C o [
s-dsecnd ag int
i =----us_dsecnnd_8? E 40 int len, irep;
el 41 register double t;
@ DATA VISUALIZATION WINDOW i stlalers ocond(), dumnmyy
woicl wotl);
hpmdata
Label |User time |Executinn time |

37105

37.028

Figure 11: Peekperf expanded data vizualization window

Each leaf node in the tree shows some of the data that was obtained for each instrumented
location in the application that was actually executed. Y ou can sort the tree by any
column. To do this, the column header for the desired column.

If you right-click in white space in the data visualization window, a pop-up menu with
several options appears, including the options to expand and collapse the tree. If you
select the Set Filter option from this menu, a pop-up dialog appears where you can set
filtering criteria to reduce the data shown in this window.

25

IBM High Performance Computing Toolkit

X et Filter ==

Lowrer Bound Column hame Upper Bound

| | ser time | |

| | Execution time | |

|]9 | Apply Cancel

Figure 12: Peekperf data filtering dialog

Thisdialog has fields for upper and lower bounds for each data column in the tree. If you
enter upper and lower bounds for afield then click OK or Apply. Only rows with a data
value within those bounds will be shown. Y ou can also enter only alower bound or an
upper bound. Y ou can enter filter criteriafor one or more columns. Y ou can remove the
filter by either opening the opening the filter dialog, clearing all the fields and clicking
OK or by selecting No Filter from the pop-up menu in the data visualization window.

If you left-click on anode in the tree where data is shown, peekperf highlights the
corresponding code region in the source code window. If you right-click on anodein the
tree in which data is shown, a metric browser window opens, and displays atable
containing additional datafor all application tasks that executed code at that
instrumentation point. Y ou can have more than one of these tables open at the same time.

X Metric Broswser: main g@

| Metric Options ~ Precision v]

Task / |thread User time |Executi0n time: Utilization rate MIPS Instructions per loaddsta

418000 1 a0 37105 99.709 345226 1.253
434346 1 1] 37128 39.505 342782 1.252

77— S— ki

Figure 13: Peekperf metric browser window

Y ou can sort data in this table by any column by clicking the column header for the
desired column.

Y ou can select the columns that you want to display in this table by clicking the Metric
Options menu and then selecting a column from the menu. Selecting a menu option
toggles the display state of the selected column, where checked menu items represent
columns that are already visible.

Y ou can change the floating point precision of the data displayed in thistable by clicking
the Precision menu and then selecting Single or Double from the menu.

26

IBM High Performance Computing Toolkit

Y ou can display the datain the data visualization window in tabular form by clicking the
Show as Table option in the pop-up menu in that window. Selecting that option resultsin
a pop-up window similar to the following window.

X Performance Data Table g@
|Labe| | File |Fun-::tjun ILIser time Systam time FU_MEsrss | ru_irss

1 IFUSHQE (434346 - 13 16.50600 0.01400 9016

2 Imain 434346 -1) cachec 1] 1] 1]

3 |wot(434346-1) cachec 0 0 0

4 Irusage (413000 - 13 18.57200 0.01000 9000

] Imain 416000 -1) cachec 1] 1] 1]

B |wot(418000-1) cachec[| 0 0 0

1| A

Figure 14: Peekperf performance data table window

Y ou can sort this table on any column by clicking the column header for the desired
column. Y ou can hide columns in the table by right-clicking in the data area of the
desired column in the table, then clicking the option in the pop-up menu to hide that
column. Y ou can show hidden columns by right-clicking anywhere in the data area of the
table and then selecting the option to make the desired column visible again. Y ou can
save the table in a CSV format, readable by most spreadsheet programs, by right-clicking
in the data area of the table, then selecting the Save Table to File option. A file selector
dialog appears, in which you can specify the pathname of the file and then click the Save
button to save the table data.

Viewing MPI Traces

Y ou can view atrace of MPI activity in your application if you instrument your
application with MPI instrumentation. After you instrument your application and run it,
you can view the trace by selecting the View Tracer option from the pop-up menu that is
available by right-clicking in the data visualization window. When you do this, the
following windows open to display the MPI trace.

27

IBM High Performance Computing Toolkit

Figure 15: Peekperf trace viewer window

E ldentifier ; | E E

B
»
k.
»
»
»
B
I

Figure 16: Peekperf trace viewer identifier window

Y ou can obtain information about each MPI call, filter the trace display to show only
interesting MPI calls, and zoom in and out of the trace display. The details of how to use
the trace display are described in the Using MPI Profiling in Peekperf section later in
this document.

Viewing I/O Profiling Data

Y ou can view aplot of 1/0 activity in your application if you instrument it with MIO
instrumentation. After you instrument your application and run it, you can view the plot
by selecting the View Tracer option from the pop-up menu available by right-clicking in
the data visualization window. When you do this, the following window is displayed.

28

IBM High Performance Computing Toolkit

X cyguinixx mEx]

Eile Window

Clear ey Plat

IO Activities |
L. Dataiiew
S fhuildfwaottandive_testssifhs e
Z-Ampimio.1
Semio_clainst <-= aix
- open info (1)

g read [2443)

Figure 17: Peekperf I/O profiling selection window

Select the metrics you are interested in, then press the New Plot button to display the
DataView Plot window.

\
X DataView ot 1 ==

Zoaom Ot Zoam In Print Save Refr =

1.103e+07

1.530e+08

5.025e+08

6520e+06

S.016e+08
F.511e+08

L.006e+08

5.016e+05 /

1-003'5-:-&4'!_01 2.546e-01 2568201 2.500e-01 2.612e01 2.634e01 2.656e01 2.67%e01 2.700e-01

Y

Figure 18: Peekperf data plot window

29

IBM High Performance Computing Toolkit

Y ou can view the I/O activity plot, measure 1/O performance at any point in the plot, and
tailor the plot with additional information. The details of how to use this plot are
described in the Using 1/0 Profiling in Peekperf section later in this document.

Compiling, Editing and Running Programs Using Peekperf
Y ou can edit, compile and run applications within the peekperf GUI.

To edit asource file, right-click in the source code window and select the Edit option
from the pop-up menu. Peekperf opens an xterm window, which allows you to edit the
source code using the vi editor. After you save the changes to the sourcefile, if you left-
click in the source code window, peekperf detects the changed file and prompt you with
apop up dialog notifying you that the source file might have changed and asking if you
want to reload the source file in to the source code window. If you click yes, the source
code isreloaded. You can aso edit any file from within peekperf by selecting the Edit
option from the Manual menu. Peekperf displays afile selector dialog prompting you
for the pathname of the file to edit. After you select the file and click the Open button in
the file selector dialog, peekperf opens an xterm window where the vi editor isrun. You
can edit the source file and save the changed file, if needed.

Y ou can compile an application by selecting the Compile command from the Manual
menu. Peekperf displays a pop-up dialog prompting you for the compile command to run.
This can be a compiler invocation, a make command, or any other command that you use
to compile an application. When you click the OK button, peekperf runs the command
you specified, where the current working directory is the directory where you started
peekperf. When your compilation command finishes, peekperf displays adialog
containing all of the error messages issued by that command.

Y ou can run an application in peekperf by selecting the Run option from the Manual
menu. When you do this, peekperf displays afile selector dialog from which you can
select the application to be executed. After you click the Open button, peekperf displays
the same three pop-up dialogs, as previously described in the section Running the
Application, and then runs the application.

Miscellaneous Peekperf Features

The following miscellaneous actions can be performed within peekperf:

e Open one or more source files by selecting the Open Sources option in the File
menu. When you select this option, peekperf displays afile selector dialog in
which you can select one or more source files. When you click the OK button in
the file selector dialog, peekperf |oads the selected source files in to the source
code window, with a separate tab for each sourcefile.

e Open one or more .viz files by selecting the Open Performance Data option in
the File menu. When you select this option, peekperf displays afile selector
dialog in which you can select one or more .viz files. When you click the Open

30

IBM High Performance Computing Toolkit

button in this dialog, peekperf |oads the selected .viz filesin to the data
visualization window, creating a new tab in that window.

e Close the current application binary by selecting Close Binary from the File
menu. Peekperf unloads the application binary and closes the data collection
window. Y ou can select another application to work with by selecting the Open
Binary option in the file menu.

e Closethe sourcefile currently displayed in the source code window by either
selecting the Close the Active Source File option in the File menu or by right-
clicking in the source code window and selecting Close this File from the pop-up
menu that appears.

e Closeall sourcefilesby selecting Close all Sources in the File menu. Peekperf
closes all sourcefilesit hasloaded and then closes the source code window.

e Closethe visuaization datafile, visible in the data visualization window, by
selecting the Close Active Data option from the File menu.

e Closeall visuaization data files and the data visualization window by selecting
the Close All Data option from the File menu.

Using Hardware Performance Counters in Peekperf

Preparing Your Application

Y our application should not contain any callsto functions listed in the Hardware
Performance Monitoring section of the Commands and API Reference chapter of this
document because those calls might interfere with correct operation of the
instrumentation you insert using peekperf. Y our application should not be linked with
the hardware performance counter library, (libhpc.a for AIX or libhpc.so for Linux).

You start peekperf and |oad the application binary as described in the preceding Using
the Peekperf GUI section.

Y ou must ensure that several environment variables that are required by the IBM HPC
Toolkit are properly set before you invoke peekperf. In order to set these environment
variables, you should run the setup scripts that are located in the top level directory of
your IBM HPC Toolkit installation. On AIX systems, these setup scripts are located in
the /usr/Ipp/ppe.hpct directory. On Linux, these setup scripts are located in the
/opt/ibmhpc/ppe.hpct directory. If you are using sh, bash, ksh, or similar shell
command, then invoke the env_sh script as. env_sh. If you are using csh, then you
invoke the env_csh script as source env_csh.

Instrumenting Your Application

After the data collection window opens, you should select the HPM tab in that window.
This tab shows the possible instrumentation, similar to the following:

31

IBM High Performance Computing Toolkit

X Main Window

File Manual Automatic Windows Tool

DT GO ECTIOR SUTH DO O] x SOURCE CODE WINDOW
HPM [1PI | OPENMP | MIO | cache.c |_secc.c |
— TS T w
.-‘-‘?ppllcatlun Stru_cture | 19 #include <stdio h> E
—--F:unc. Call Site 20 #include <stdlib b=
7-eache.c 21 #include <math hx
=-main 22 #include <mpih=
;----secnnd_51 25
;second_ud 24 #define MAX V) (<eyTyx)
second_B1 25 #olefine M iz —
isecond_B3 26 #define M1 [M+1)
g----wut_SZ b #define N 32
; -wot_Bz2 25 #define NREP 1024000
=h-38CC.C 29 #cefine Pl 3.141592654
--dsecnd 30 #define [ZERC 0
= 1%_second_g7y i
—--S?Cﬂnd 3z dauble x[M1H], y[M1N]; =
=----us_s:ecnnd_93 33 double tic, toc, tir, tor, ttc, tr, tmc, tmr;
S-Func. Entry/Exit 34
39 main(arge, argy)
6 int arge;
ar char "argw];
3d {
; 39 int j;
=----us_secnndl 40 int len, irep;
- User-Defined Region 41 register double §;
4z double second(), dummy;
43 void wotf); e
44 =
45 MPI_Init(aarge, &argy)]
)

Figure 19: Peekperf HPM data collection window

Thisimage shows the application structure tree fully expanded. There are three classes of
instrumentation shown in thistree. Thefirst classisinstrumentation of function call sites,
or locations in the application where a function call is made. The leaf nodesin this
section of the tree are labeled with the name of the function being called, with the line
number of the function call appended. The second class of instrumentation is function
entry and exit points. The leaf nodesin this section of the tree are labeled with the name
of the function. The third class of instrumentation is user-defined region, which is a user-
specified region of code, such as aloop, that isinstrumented. Y ou can select any region
of code to be instrumented, but be careful to ensure that the code at both the beginning
and ending of each region is executed in each execution of that region. Leaf nodesin this
section of the table are labeled with the source file name with the starting and ending line
numbers for the region appended.

If you instrument a function call site, the instrumentation obtains hardware performance
counter measurements for that instance of the function being called, and report them
independently of any other function call to that same function. If you instrument function
entry and exit points, the instrumentation obtains hardware performance counter
measurements for that function for every time that function is called, regardless of the

32

IBM High Performance Computing Toolkit

caller. If you instrument a user-defined region, hardware performance measurements are
obtained specifically for that region.

User defined regions are specified by highlighting a region of source code and then
adding that region to the list of user-defined regionsin the data collection window. To
add aregion to the user-defined region list, select that region by selecting the desired
source file in the source code window, left-clicking at the starting line of the region, and
dragging while the left mouse button is pressed until all desired source code lines are
highlighted. After the desired lines are selected, right-click in the source code window
and select the Add to HPM option from the pop-up menu. Y ou may have as many user-
defined regions as you want, and user-defined regions might overlap.

If necessary, you can remove aregion of code from the user-defined region list by
selecting the same lines of source code as you selected when creating the region, right-
clicking, and selecting the Remove from HPM option from the pop-up menu.

Y ou can select any combination of function call sites, function entry and exit points and
user-defined regions that you want to instrument. Y ou can select instrumentation by
individually selecting leaf nodes, or you can select agroup of leaf nodes by selecting a
higher level node in the tree. Y ou can also deselect instrumentation by clicking again on a
highlighted node.

After you have selected the set of instrumentation that you want, you instrument the
application by selecting Generate an Instrumented Application from the Automatic
menul.

Running Your Program

Before you can run your instrumented application, you must ensure that any environment
variables required by the hardware performance counter instrumentation are correctly set.
The description of the hpmInit() function call contains a complete list of environment
variables that can be used. Y ou must ensure that the HPM_VIZ_OUTPUT environment
variableis either unset or set to yes. Y ou should not set the HPM_OUTPUT_NAME
environment variable. If your application is an MPI application from which you are
collecting performance data for multiple tasks, the HPM_UNIQUE_FILE_NAME
environment variable should be set to yes so that each task’s .viz file will be uniquely
named. If you are instrumenting alarge application, you might need to set the
HPM_NUM_INST_PTS environment variable to a value larger than the default of 1000
instrumentation points.

Y ou can set these environment variables before you start peekperf, or you can set them
by selecting the Set the Environment Variable option from the Automatic menu. Any
environment variables you set within peekperf remain set for the remainder of the
peekperf session unless you reset them.

Y ou should also select the hardware counter group before you run your program. Y ou
can do this by selecting the Set the Counter Group option from the pop-up menu that

33

IBM High Performance Computing Toolkit

appears when you right-click in the white space in the data collection window. A pop-up
dialog appears after you do this.

X Set the HPM_EVENT_SET ==

HPM_EVENT_SET (PWRS) |+ [1 |

— e | Cancel Help

Figure 20: Peekperf hardware counter group selection dialog

Select the specific hardware architecture on which your application is running and then
enter the hardware counter group number in the input field. If you click the Help button,
peekperf will pop up another window that contains alist of hardware counter groups, the
hardware counters in each group, and a short description of each counter. Click OK to
select the hardware counter group you want.

After you have set up the environment for your application, you can run it by selecting
the Run an Instrumented Application from the Automatic menu and responding to the
dialogs as described previously.

Viewing Hardware Performance Counter Data

Peekperf attempts to open the .viz files after your application has completed execution if
you reguested peekperf to do so when you ran your application. If peekperf does not
automatically open the .viz files, you can open them manually by selecting Open
Performance Data from the File menu and selecting .viz files from the file selector
dialog.

Y ou can see amore detailed view of the data you obtained by right-clicking over aleaf
node in the data visualization window, which opens a metrics browser window, or by
right-clicking in white space in the data visualization window and selecting Show as
Table from the pop-up, menu which opens atable view of the performance data.

If you load multiple .viz filesin to the data visualization window, you can view each
process's performance data separately. |f you want to see performance datafrom a
different process, right-click in the white space in the window and select Show Other
Rank from the pop-up menu. A pop-up dialog appears containing a dropdown list that
includes the process ids of other tasks that can be selected.

IBM High Performance Computing Toolkit

X Select the rank E]@

-— current rank iz 356416 ---
Flease select the rank:

356416 |v

|] 4 | Cancel

Figure 21: Peekperf task rank selection dialog
Using MPI Profiling in Peekperf

Preparing Your Application

Y our application should not call any of the functions described in the MPI Profiling
section of the Commands and API Reference chapter of this document because those
calls might interfere with the instrumentation you insert using peekperf. Y our application
should not be linked with the MPI profiling library, libmpitrace.afor AlX or
libmpitrace.so for Linux.

Y ou cannot use the MPI profiling library to create a trace for an application that issues
MPI function calls from multiple threads in the application.

Y ou must ensure that several environment variables required by the IBM HPC Toolkit
are properly set before you invoke peekperf. In order to set these environment variables,
you should run the setup scripts that are located in the top level directory of your
installation. On AlX systems, these setup scripts are located in the /usr/Ipp/ppe.hpct
directory. On Linux, these setup scripts are located in the /opt/ibmhpc/ppe.hpct
directory. If you are using sh, bash, ksh, or similar shell command, invoke the env_sh
script as. env_sh. If you are using csh, invoke the env_csh script as source env_csh.

Y ou start peekperf and load the application binary as described in the preceding Using
the Peekperf GUI section.

Instrumenting Your Application

After the data collection window opens, you should select the MPI tab to show the
possible instrumentation points in the application. The data collection window that
appears similar to the following:

35

IBM High Performance Computing Toolkit

X Main Window
File Manual Automatic Windows Tool
DATA COLLECTION WINDOW ' S0URCE CODEMWINDOW,
HPM | MFI [OPENMP | MIO | COMMSTT | ESTCOMS
&pplication Structure | ! LSl fesd
. ESTCOM(ERINF, ESTART,EOYER, MTIME,
TR v Z &
T"mp!—bamfr MY _ID,MASTER_ID,5LAYE_ID, &)
+-mpi_bras ; 3 c
+-mpi_comm_ran 4 INCLUDE "mpif h'
*;--mp!_gﬂml_m_S'ZE 5 INCLUDE ‘dattyp.inc' o
?’""‘p!—_'”_ta Ize B INCLUDE 'comms1.inc'
T"mg:_lrglcv 7 integer send_count,
T recy_count,barrier_count
---cpmmsm: . G
=Comms g C / Timer rautine *f
smpi_tecy_106 10 c
é':mp!—rec"—}?g 11 EXTERNAL DWALLTIMEQD
[TMRL_reCy_ 12 DOUBLE PRECISION DWALLTIMEDD
;----mpl_recv_1 15 13 c
W 14 INTEGER NMAX
e 15 P ARAMETER(NMAX=MAXLEN/ADPLEN)
Lefnpi_recy_2G2 16 c
*'jEST‘;OM'f 17 C # Estimated R-infinity, startup time and loop
~Mmpl_sen i overhead */
+-MpI_s5en 18 &
19 DOUBLE PRECISION ERINF, ESTART,
ECQVER
20 c
21 C /7 Desired measurement time for each test
case *f
22 C
23 DOUBLE PRECISION MTIME
24 c (=]
25 C /" Process IDs ™ -
gH| <)
4

Figure 22: Peekperf MPI profiling data collection window

The data collection window is partially expanded, showing the MPI_Recv() calls that
can be instrumented. For MPI profiling, peekperf |abels each instrumentation location
with the name of the MPI function at that line in the application and the line number
where the MPI function call is located.

Y ou can select as many instrumentation locations in your application as you like. If you
select aleaf node, only that MPI function call isinstrumented. If you select anode
labeled with an application function name or file name, all MPI function calls of the type
identified by the enclosing node are instrumented. If you select a node labeled with an
MPI function name, all MPI callsfor that MPI function in the application are
instrumented. Y ou can instrument all MPI function callsin the application by selecting
the MPI CALLS node. Y ou can deselect an MPI function call by clicking the
corresponding highlighted node in the application structure tree.

Y ou can also select MPI function calls to be instrumented by left-clicking over a starting
line in the source code window and dragging to the end of the region of interest while

36

IBM High Performance Computing Toolkit

holding the left mouse button down. After you have selected aregion of code, you can
select all MPI function callsin that region to be instrumented or not instrumented by
right-clicking in the source code window and selecting either Add to MPI or Remove
from MPI respectively. When you do this, peekperf updates the tree in the application
structure window accordingly.

X Main Window =[x

File Manual Automatic Windows Tool

DATA COLLECTION MARDOW, [<] SOURCE CODE WIHDOW

HPM | MPI | OPENMP | MIO | COMMSTf | ESTCOMS

Application Structure |
2-MPLCALLS
F-mpi_barrier
-mpi_bcast
~mpi_comm_rank
-Mpi_comm_size
-mpi_finalize
-mpi_init
-mpi_recy
-mnpi_send
L. COMMSET f
Zecommsi
- mpi_send_221
- mpi_send_285
- mpi_send_g3
- mpi_send_ag3 5 o
- mpi_send_a7 Lot . J L LEM ' E_ID,20,
~mpi_send_fg &
- mpi_send_92
--ESTCOM.T
Z.estcom

[0S s o O B O Oy OO

OVER*NREPT)/(NREPT"2)

- mpi_send_73
- mpi_send_92

- mpi_send_35

30 CONTINUE
&

+..mm_ 76 [£ Inform the slave we've finished making timings for estimates */
I

78 MREPT =0
79 CALL MPI_SENDINREFT, 1 MFI_INTEGER,SLAVE_ID, 30, F
4|

i} il MR SOk WOBRLD jer

Figure 23: Peekperf MPI profiling data collection with selected instrumentation

After you have selected the set of instrumentation that you want, you instrument the
application by selecting Generate an Instrumented Application from the Automatic
menul.

Running Your Application

Before you can run your instrumented application, you must ensure that any environment
variables required by the MPI profiling library or by Parallel Environment are correctly
set. The environment variables used by the MPI profiling library are listed in the
description of the MT _trace_start() function in the MPI Profiling section of the
Commands and API Reference chapter of this document.

37

IBM High Performance Computing Toolkit

By default, the MPI profiling library will generate trace files only for the application
tasks with the minimum, maximum and median MPI communication time. Thisis also
true for task zero if task zero is not the task with minimum, maximum or median MPI
communication time. If you need trace files generated for additional tasks, set the
OUTPUT_ALL_RANKS environment variable to yes. Depending on the number of
tasks in your application, you might need to set the MAX TRACE_RANK and
TRACE_ALL_TASKS environment variablesto yes. If your application executes many
MPI function calls, you might need to set the value of the MAX TRACE_EVENTS to a
higher number than the default 30,000 MPI function calls.

After you have set up the environment for your application, run it by selecting the Run
an Instrumented Application from the Automatic menu and respond to the dialogs as
described previoudly.

Viewing MPI Profiling Data

Peekperf attempts to open the .viz files after your application has completed execution, if
you requested peekperf to do so when you ran your application. If peekperf does not
automatically open the .viz files, you can open them manually by selecting Open
Performance Data from the File menu and selecting .viz files from the fil e selector
dialog. The following image shows the application structure tree in the data visualization
window partially expanded.

38

IBM High Performance Computing Toolkit

X Main Window g@

File Manual Automatic Windows Tool

HER | MPL | UPERKE | KO | LUMMS LT | ESTCUME | -
o Fdard L L P B R | S = A = L R o
eI R 0 | 283 & MPI_COMM_WORLD status,iem) f
=-MPICALLS 284 recv_count = recy_count + 1 —
?--mp!_barrler 285 CALL MPI_SEND(A,ILEN, MPI_BYTE,D,20,
+-mpi_heast 286 & MPI_COMM_WORLD ier)
?--mp!_comm_rgnk 287 send_count = send_count + 1
+-Mpl_comm_gize i} 30 COMNTIMUE
+-mpi_finalize 759 EMDIF
- mpl_ini 290 50 CONTINUE
£ [
292 C 7 Print result summary
293 [
294 IF{ my_rank.EG.0 JTHEM
295 C
296 i f* Stare long message result =/
mpidata e’ «C
298 RIBPS(2)=RINF*1.0E-06
Lahel |Count IWaIICIock Transfered Bytes I_ 209 HMHALF(Z)=XN12
=g C_OMM51.f 300 TETART(E)=HMNHALF(2WRMEFS(2)
= comms1(COMRET T 3 i
- MPI_Recy_106 302 [
- MPI_Recv_109 303 C
- MPI_Recy_112 304 WRITE{MW,9590)
~MPI_Recy_115 305 990 FORMAT(, 22K, -mmmmmmmm e L
- MPI_Recy_118 A06 & 22¥,'COMMS1: Message Pingpong' 7,
-~ MPI_Recy_224 25644 0.2053 3.6433e+07 307 2 B H 4
- MPI_Recy_2&z2 308 & 22¥,' Result Summmary ',
- MPI_Send_221 25644 0127132 3.8433e+07 309 a i)
-MP|_Send 2G5 a0 IF{ MZBYTEEC.0)THEM
- MPI_Send_g3 1 1e-05 4 311 WRITE(MW1,996)
- MPI_Send_85 1 fie-08 4 RMEBPS(2), KMHALF(2), TSTART(E) o
- MPI_Send_&7 1 4e-06 4 e 996 FORMAT(rinf = F10.3,' MBytess, nhalf =",
- MPI_Zend_§3 1 4e-06 G 13 & F10.3," Byte, startup =",F10.3," us'.A
- MPI_Send_92 1 4e-06 a 34 ELSE L[]
~ESTCOMT 15 WRITE{NYW1,997)
- SURMRARY MSBYTE,RMEPS(1), XMNHALF (1), TSTART(1), =]
316 & !-:!7
< i | GRHI
4|

Figure 24: Peekperf MPI profiling data collection window

The data visualization window shows the number of times each function call was
executed, the total time spent executing that function call, and the amount of data
transferred by that function call. Y ou can see amore detailed view of the data you
obtained by right-clicking over aleaf node in the data visualization window, which opens
ametrics browser window, or by right-clicking in white space in the data visualization
window and selecting Show as Table from the pop-up menu, which opens a table view
of the performance data.

The data visualization window shows performance data from a single task at one time. If
you want to see performance data from a different task, right-click in the white spacein
the window and select Show Other Rank from the pop-up menu. A pop-up dialog
appears containing a dropdown list that allows you to select the task indices of other tasks
that can be selected.

39

IBM High Performance Computing Toolkit

R Select the rank ||; |§ E

-— current rank is 0 -—-
Flease select the rank:

0 |+

] 4 Cancel

Figure 25: Peekperf MPI task rank selection dialog

Select the desired task and click OK to view adifferent task’ s performance data.

Y ou can view atrace of MPI activity in your application by right-clicking in white space
in the data visualization window and selecting View Tracer from the pop-up menu.
When you do this, the following two windows appear.

E ldentifier |; |§ E

Figure 27: Peekperf trace viewer

Y ou can use the first window, labeled Identifier, to select the types of MPI function calls
that are displayed in the PeekPerf Trace Viewer window. Initially, all MPI function calls

IBM High Performance Computing Toolkit

that were executed are displayed. Y ou can hide or display trace events for specific MPI
functions by clicking on the MPI function labels in the identifier window. Trace events
are displayed for MPI functions that have their labels checked while trace events are
hidden for MPI functions with unchecked labels.

The second window isthe MPI trace viewer window. Thiswindow displays atimeline-
based view of your application’s execution, wherethe Y axisis the application task rank
and the X axisis elapsed time. Each MPI function call is represented by ablock drawn in
the color matching the MPI function label in the identifier window.

Y ou can use the icons at the top of the PeekPerf Trace Viewer window to navigate
through the trace. From left to right, the icons have the following purposes.
e Scroll the trace data | eft.
Scroll the trace data right.
Zoom the trace display in to display a more detailed level of the X axis.
Zoom the trace display out to display aless detailed level of the X axis.
Reset the X axisto itsinitial, non zoomed, view.
Enlarge the trace display along the Y axis.
Shrink the trace display along the Y axis.
Reset the Y axisto itsinitial, nonzoomed view.
Close the trace display windows.

Y ou can use the keyboard to navigate through the trace using the following keys

Scroll trace data | eft
Scroll trace data right
Scroll trace data up
Scroll trace data down

Left arrow
Right arrow
Up arrow
Down
arrow
PageUp

e PageDown
o ‘Zor'y

Scroll trace data |eft rapidly

Scroll trace dataright rapidly

Zoom trace display in to display a more detailed view of the

X axis

o ‘X e Zoom trace display out to display aless detailed view of the
X axis

e ‘A e Enlargethetrace display alongtheY axis

o 'S e Shrink the trace display along the Y axis

Y ou can also scroll the trace data horizontally and vertically using the scrollbars at the
left and bottom of the trace window. Y ou can zoom in to display a more detailed view of
the trace by picking a starting point in the trace, left-clicking, and dragging the mouse to
the end of the region of interest while holding the left mouse button down. When you
release the mouse button, peekperf zoomsin to display the selected region.

41

IBM High Performance Computing Toolkit

The following window shows aregion of the trace that has been zoomed in to where
there are alternating MPI_Send() and MPI_Recv() calls.

o4
4] MPT Send : 233.05 MBvtes/Sec

Figure 28: Peekperf trace viewer detailed view

If you left-click over arectangle for a specific MPI call, peekperf displays the name of
the MPI function and the data rate for a communications function call in the lower right
hand corner of the trace window. Peekperf also positions the source code window to the
specific MPI function call in the source code and highlights that MPI function call.

If you right-click over arectangle for a specific MPI function call, peekperf will display
a pop-up dialog box that displays additional detail for the MPI function call, aslong as
the right mouse button is pressed.

Using OpenMP Profiling in Peekperf

Preparing Your Application

Y ou must ensure that several environment variables required by the IBM HPC Toolkit
are properly set before you invoke peekperf. In order to set these environment variables,
you should run the setup scripts that are located in the top level directory of your IBM
HPC Toolkit installation. On AlX systems, these setup scripts are located in the
/usr/lpp/ppe.hpct directory. On Linux, these setup scripts are located in the
/opt/ibmhpc/ppe.hpct directory. If you are using sh, bash, ksh, or smilar shell
command, invoke the env_sh script as. env_sh. If you are using csh, invoke the env_csh
script as source env_csh.

42

IBM High Performance Computing Toolkit

You start peekperf and load the application binary as described in the preceding Using
the Peekperf GUI section. There are no additional compiler or linker options that are
required to use OpenMP profiling.

Instrumenting Your Application

After the data collection window opens, select the OPENMP tab in that window. This
tab shows you the instrumentation locations, similar to the following example in which
the application structure tree has been fully expanded.

rX Main Window g@

File Manual Automatic Windows Tool

DTS COLLECTIONIWIND O A Gl E SOURCE CODE WINDOW,
OPENMP

arraybench.c [araydelay.c | getclock.c |

Application Structure | 29 yoidl delay(nt, double”); 4
- OPEMMP 30 int main {int argy, char *“argc) i |
Z-arraybench.c 31

%--main 3z nthreads = 1; it
main@ oL@ 33 #pragma omp parallel
i main@OoL@1@oL@e 34 1

<-testiirstprivnew 33 #pragma omp master
i betestlirstprivnew@OL@3 36 i
S-testprivnew a7 #ifdef _OPEMMP
i testprivnew@OL@d 38 nthreads = omp_get_num_threads{);
Z-testthrprivnew 39 #endif =
L-testthrprivnew@OL@S 40 1
4 1]
4z - lTI
1] i [Eﬁj‘ﬂ]
7

Figure 29: Peekperf OpenMP data collection window

Thiswindow shows you the locations in your application that can be instrumented for
OpenMP profiling. Leaf nodesin this tree represent individual OpenMP regions in your
application. Leaf nodes are |abeled with the function name generated by the compiler for
that OpenMP region. Y ou can select instrumentation at any level in the tree. If you select
aleaf node, only that location will be instrumented. If you select anonleaf node, all |eaf
nodes that are children of the selected node will be instrumented.

Note: The IBM HPC Toolkit only supports OpenMP profiling instrumentation for
OpenMP regions that are not nested within other OpenMP constructs at runtime. If you
set up instrumentation so that nested parallel constructs are instrumented, results will be
unpredictable.

Y ou can control the level of instrumentation for each class of OpenMP constructs by
setting the POMP_LOOP, POMP_PARALLEL, and POMP_USER environment
variables before you instrument the application. Refer to the hpctInst command, in the
Commands and API Reference section of this document, for the description of each
environment variable' s settings. Y ou set these environment variables by selecting the Set
the Environment Variable option from the Automatic menu, and filling in the name of
each environment variable and its value in the pop-up dialog that appears.

43

IBM High Performance Computing Toolkit

After you have selected the set of instrumentation that you want, you instrument the
application by selecting Generate an Instrumented Application from the Automatic
menul.

Running Your Application

Y ou can run your instrumented application by selecting the Run an Instrumented
Application option from the Automatic menu and responding to the pop-up dialogs that
were described in the Using the Peekperf GUI section earlier in this document. There
are no special steps that must be followed to run an application with OpenM P
instrumentation.

Viewing OpenMP Profiling Performance Data

After your application completes, the peekperf GUI displays your performance
measurements in the data visualization window, if you requested peekperf to open
the .viz files on application completion. The main GUI window looks similar to the
following:

" Main Window JoEd

File Marwal Automatic Windows Tool

DA COTEEC TION MIRDOAY. o € SOURCE CODE WINDOAY

| HFM | MFL | OPENMP | HIO | arrayhench.c | arravdelay.c | setelocke | atodc |
—r Ticroseconds +1- %10 a1, meantime, COMFas sy, -
Apieatiof Struchre | | 157 printf('COPYPRIVATE overhead = 2103 2
=~ OFENMP microseconcts +- 10300, meantime-reftime, COMPIS*(sc+rafsdy);
—--ar_raybench.c 158 i
T--te_stﬂrstprivnew 189 '
i rtestfirstpriviesd. 0L$.3 190 —
= -testthrprivies 191
" estthrprivnews. OL$.S 192 void testthrprivnes()
193 {
194
195 int n,ik;
—_— || 195 double start;
183 double getclock{woid;
pompcata | 199 n=|0nd,;
L.abel IEch. Time I%Tota] Overhead ICUunt IAvg. Thread Sg? E::ggﬁn » Y
= arrayhench.c 202 printf{ "Computing COPYIM %d timen”, n; |
i pregion_114 062435 348651 2100 0602204 03 5
pregion_207 0 B04804 344782 2100 055421 204 far (k=0; k<= OUTERREF ; k++
205 start = getclock();
206 far {j=0; j<innerreps; j++H
207 #pragrma omp parallel copyindbtest)
205 { =
209 delaydelaylength, btest);
P : e | | # 11z Z
1] i |
Vi

Figure 30: Peekperf OpenMP data visualization window

The datais displayed in atree format in which source files are the magjor nodes in the tree
and the individual instrumentation points are the leaf nodes. Individual |eaf nodes are
labeled with the type of OpenMP instrumentation and the starting line number of the
instrumented OpenMP construct.

IBM High Performance Computing Toolkit

Y ou can view detailed datafor aleaf node by right-clicking over aleaf node. A metric
browser window contains data for each process and thread that executed the OpenMP
construct. Y ou can view all of your performance measurements in a tabular form by
selecting the Show as Table option from the pop-up menu that appears when you right-
click on white space within the data visualization window.

The data displayed in the data visualization window is a summary view of the
performance data, displaying the maximum value from all threads for the following
statistics:

Count: the number of times the event was executed

Exclusive time (Excl. Time): The total time (Does not include time inside of other
events)

Inclusive time (Incl. Time): Wall clock time for the event (including other
events).

Percentage of total overhead (% Overhead): 100 * (thread time — computation
time) / thread time

Percentage of imbalance (% imbalance): 100 * (comp time — MIN(comp time(i)))
/ MIN(comp time(i))

Average thread time (Avg. Comp Time): SUM(comp time(i)) / Number of threads

The metrics browser window shows the following statistics for each OpenMP thread:

Task (Task): MPI Task ID

Thread (thread): OpenMP thread ID

Timein master: (Timein Master): Time in the master thread (Wall Clock Time)
Thread time: (TT: Thread Time): Wall clock time for the execution of each thread
Computation time: (CT: Comp. Time) Time per thread in the body of the
OpenMP construct

Percentage of imbalance (% imbalance): 100 * (comp time — MIN(comp time(i)))
/ MIN(comp time(i))

Total overhead: (TO: TT — CT): thread time — comp time

Percentage of the total overhead due to barrier (%TO (Barrier)): 100 * barrier
time/ incl time.The barrier time is measured as the time between the end of the
thread execution and end of the last thread.

Percentage of the total overhead due to the runtime library (%TO (RTL)): 100 *
(RTL time —barrier time) / incl time

The performance data table window shows the following statistics for each process and
thread in the application:

Count: The number of times the event was executed.

Exclusive time (Excl. Time): The total time (Does not include time inside of other
events)

Inclusive time (Incl. Time): Wall clock time for the event (including other
events).

Percentage of total overhead (% Overhead): 100 * (thread time — computation
time) / thread time

Thread time: (TT: Thread Time): Wall clock time for the execution of each thread

45

IBM High Performance Computing Toolkit

e Computation time: (CT: Comp. Time) Time per thread in the body of the
OpenMP construct

e Percentage of imbalance (% imbalance): 100 * (comp time — MIN(comp time(i)))
/ MIN(comp time(i))

e Averagethread time (Avg. Comp Time): SUM (comp time(i)) / Number of threads

e Total overhead: (TO: TT —CT): thread time — comp time

e Percentage of the total overhead dueto barrier (%TO (Barrier)): 100 * barrier
time/ incl time.The barrier time is measured as the time between the end of the
thread execution and end of the last thread.

e Percentage of the total overhead due to the runtime library (%TO (RTL)): 100 *
(RTL time — barrier time) / incl time

Using I/O Profiling in Peekperf

Preparing Your Application

Y ou must ensure that several environment variables required by the IBM HPC Toolkit
are properly set before you invoke peekperf. In order to set these environment variables,
run the setup scripts that are located in the top level directory of your IBM HPC Toolkit
installation. On AlX systems, these setup scripts are located in the /usr/Ipp/ppe.hpct
directory. On Linux, these setup scripts are located in the /opt/ibmhpc/ppe.hpct
directory. If you are using sh, bash, ksh, or similar shell command, invoke the env_sh
script as. env_sh. If you are using csh, invoke the env_csh script as source env_csh.

Y ou start peekperf and load the application binary as described in the preceding Using
the Peekperf GUI section. There are no additional compiler or linker options that are
required to use I/O profiling.

Instrumenting Your Application

After the data collection window opens, select the MIO tab. Thistab shows the possible
instrumentation, similar to the following:

46

IBM High Performance Computing Toolkit

X Main Window E]@@

File Marwal Automatic Windows Tool

DATA COLLECTION SOy —Ofx SOURCE CODE MWINDOW
[(HPW [MPI [OPEMMP | MO | | mio_gla.c
|Applica1ion Structure | 1 £
Z.MIO CALLS ¥ * Test case mio_c1: Read one or two files sequentially. Setup
-mia clae for tests using
= -_process_ﬁle) * this program set the appropriate MO environment variables
{ beplose 51 to generate the
Dpen:SQ 4 * requires test data
—-process_file64 5 i =
] i-close_72 5} #include <sysitypes he
: openBd_B0 7 #include <sysistat b
Z.read data 8 #inclucle <fentlh>
berpad B0 9 #incluce <stdio by
T 10 #incluce <unistd h» b
1 #include <errno.hz =
12 24
1] B | T
i

Figure 31: Peekperf 1/O profiling data collection window

This image shows the application structure tree fully expanded. The leaf nodes are
labeled with the name of the system call at that |ocation and the line number in the source
file. If you select leaf nodes, instrumentation is placed only at those specific
instrumentation points. If you select a nonleaf node, instrumentation is placed at all |eaf
nodes that are child nodes of the selected nonleaf node.

In order for I/O profiling to work correctly, you must instrument at least the open and
close system calls that open and close any file for which you want to obtain performance
measurements.

After you have selected the set of instrumentation that you want, you instrument the
application by selecting Generate an Instrumented Application from the Automatic
menu.

Running Your Application

1/O profiling works by intercepting I/O system calls for any files that you want to obtain
performance measurements for. In order to obtain the performance measurement data, the
IBM HPC Toolkit usesthe MIO_STATS and MIO_FILES environment variables. See
the I/0O Profiling Environment Variables section for a description of the MIO-related
environment variables and their settings.

Asaminimum, you must set the MIO_FILES environment variable to
e specify afile name matching pattern
e usethe MIO trace module
e specify the xml and events options to the trace module.

Setting MIO_FILESto *[trace/xml/events={./mio.evt}] setsup MI1O to collect the
performance data that peekperf requires. Setting MIO_FILES to thisvalue
e tellsMIO to apply the options to all files opened by the application

47

IBM High Performance Computing Toolkit

e to generate the performance datain the XML file format required by peekperf
e that the /O trace file will be written to ./mio.evt.

After you have set the appropriate environment variables, you can run your instrumented
application by selecting the Run an Instrumented Application from the Automatic
menu and responding to the pop-up dialogs that were described in the Using the
Peekperf GUI section earlier in this document

Viewing I/O Profiling Data

After your application completes, peekperf attempts to display the 1/0 profiling data that
was collected when the application was run (if you requested the data be displayed).
Peekperf displays the datain atree format, in which the top level node isthe file that the
application read or wrote and the leaf nodes are the 1/0 function calls your application
issued for that file. The following image shows the data visualization window with this
tree fully expanded.

- 1
X Main Window M=%
Fle Marwal Automatic Windows Tool
DATA COLLECTION SHIHDOMW, | SOUBCE CODEWINDOW
HFW | MPI_| OPENMP | MO | mio_c1a.
= R e T e e T —
Application Structure I a5 i (=]
—-MIO CALLS 35 int fd;
+-rio_clac i int count;
35
39 Tl = openifn, O_RDOMLY, 0%
40 if (fdd==-13¢
41 forintfistderr, "Can't open file s %sin”, fn, strerror(errnoy;
42 exit{1)
43 1
44 read_count = 0;
45 byte_count = 0; =1
| | || 46 printf{"Reading %0, fh
r r 47 count = read_dataifd, buf, sizeaf buf;
@) DATA VISUALIZATION WINDOW 45 while {oount > 0 {
iaEEts | 49 count = read _datadfd, buf, sizeof buf);
50 1
Lakel CUMULATIVE TIME[SECS] | EVENT COURNT 51 clozedfd)
=n 52 printf{"Fead %d bytes in %d reads'n”, byte_count, read_count); WY
i~close O 1 53 H
“efertl 0 1 54
i-gpen 0 1 55 woidl process_fileB4(char “fn}
ergad O 257 26 i
57 int fd;
55 int count;
53
0 fd = openG4ifn, O_RDOMLY, 0} =
&1 if (fd==-13§ H
(51 forintfi'stoderr "Can't ooen file ¥ %ain" o strerrorferenn i)
A

Figure 32: Peekperf I/0O profiling data visualization window

Each row shows the time spent in an 1/0 function call and the number of times that
function call was executed.

Y ou can view detailed data for aleaf node by right-clicking over it. A metric browser

window contains data for each process that executed that 1/O function. Y ou can view all
of your performance measurementsin atabular form by selecting the Show as Table

48

IBM High Performance Computing Toolkit

option from the pop-up menu that appears when you right-click on white space within the
data visualization window.

Y ou can view aplot of your I/0O measurements by right-clicking in white space in the
data visualization window and then selecting View Tracer from the pop-up menu that
appears. Peekperf displays awindow that looks similar to the following:

X cygwin/x X ==

File Winciow

0 Activities |
—|- Dratal e
— |- uildiwaottonive_testsiimio.evt
|- #trap/mia. 1
—-mic_clainst <> aix
b-apen infa {15
read (257

Figure 33: Peekperf I/O profiling data selection window

The window contains atree view of the M10 performance data files. The top level nodes
represent individual performance datafiles. The next level nodes represent individual
files that the application accessed. The next level nodes represent the application program,
and the leaf nodes represent the I/O function calls executed in the application. Y ou can
select nodes at any level of the tree to include the data from those nodes in the plot
window.

The File menu has severa options:
¢ Read Event opens afile selector dialog in which you can select afile containing
I/O profiling data. Peekperf adds the selected /O profiling datafile to the 10
Activitiestree.
e New Plot opens anew I/O profiling graph, displaying the I/O profiling data from
the selected nodesin the IO Activitiestree.
e Add to Current Plot addsthe I/O profiling data from the selected nodesin the 1O
Activities tree to the data plotted in the currently active 1/0 profiling graph.
e Remove from Current Plot removes the I/O profiling data for the selected nodes
in the 10 Activities tree from the currently active I/O profiling graph.
e Edit Table opens atable view of the 1/O profiling data for the selected nodes in
the 10 Activities tree.
The Window menu displays alist of open I/O profiling graph and data view tables. Y ou
can select awindow that you want to view from this menu.

49

IBM High Performance Computing Toolkit

The Clear button just below the menu bar clears the selection state for al nodesin the 1O
Activitiestree. The New Plot button just below the menu bar opens anew 1/O profiling
graph using data for the nodes selected in the 10 Activities tree. At least one node must
be selected in the 10 Activitiestree in order to display a new plot.

When you select a node from the |O Activities tree and then select New Plot from thefile
menu or click the New Plot button, an 1/0 profiling graph window, similar to the
following example, showing data from reading afile sequentially, opens.

X DataView Plot 2 mE X

Zoom Dut ' Zoom In | Print ' Save ' Fefresh

1.155e+06

1.000e+06
.421e+05
6542 e+05
5.263e+05
3.654e+05

Z.105e+05

E.263e+0 /,r'

-1'05351'%2-01 244501 2.447e-01 244001 2.451e-01 2.453e-01 2.455e01 2.45Te-01 2.450e01

Figure 34: Peekperf I/O profiling data plot window

When the graph isinitially displayed, the Y axis represents the file position, in bytes. The
X axis of the graph always represents time in seconds.

Y ou can zoom in to an area of interest in the graph by left-clicking at one corner of the
desired area and dragging the mouse while holding the left button to draw a box around
the area of interest and releasing the left mouse button. When you rel ease the left mouse
button, peekperf redraws the graph, showing the area of interest. Y ou can then zoomin

50

IBM High Performance Computing Toolkit

and out of the graph by clicking the Zoom In and Zoom Out buttons at the top of the
graph window. Asyou drag the mouse, peekperf displaysthe X and Y coordinates of the
lower left corner of the box and the upper right corner of the box and the slope of the line
between those two corners as text in the status bar area at the bottom of the window.

Y ou can determine the 1/O data transfer rate at any areain the plot by right-clicking over
the desired starting point in the plot and holding down the right mouse button, while
tracing over the section of the plot of interest. The coordinates of the starting and ending
points of the selection region and the data transfer rate (slope) are displayed in the status
area at the bottom of the plot window.

Y ou can save the current plot to a jpeg file by clicking the Save button at the top of the
plot window. A file selector dialog appears, which allows you to select the pathname of
the file to which the screen image will be written to.

Y ou can print the current plot, either to a printer or to a PDF file, by clicking the Print
button at the top of the plot window. A printer setup dialog appears, where you can
specify how the file should be printed.

Y ou can select the printer from the list of available printersin the drop down box at the
top of the dialog. If you select the Print to file checkbox, you can specify the path to the
fileinwhich the plot will be written as a PDF file.

Y ou can view the I/O profiling data in tabular form and modify the characteristics of the
current plot by selecting Edit Table from the File menu in the window that appeared
when you selected the View Tracer option from the pop-up menu in the data
visualization window. A window appears, similar to the following example, showing the
1/O profiling data.

51

IBM High Performance Computing Toolkit

X DataView Table 1 (/tmp/mio.1: mio_c1a.inst <-= aix: read:) E]@

. file position activity |v 1 |v Maone |v

start delta pos hbytes |new_pns |ﬂnish |data rate
2 5744e-01 1.0741e-05 0 4096 4.0960e+03 2.5745e-01 3.5134e+08
2 5747e-01 5.2630e-06 4096 4096 5.1920e+03 2.5748e-01 7.7738e+08
? 5748e-01 4 6650e-06 5192 4096 1.2288e+04 2.5748e-01 8.7803e+08
2 5749@-01 4 6550e-06 12288 4096 1.6384e+04 2.5749e-01 5.7428e+08
2 5749-01 4 7520e-06 16384 4096 2.0480e+04 2.5750e-01 8.5655e+08
2 5750e-01 4.52109-05 4096 2.4576e+04 2.5751e-01 9.0599e+08
2 5751e-01 4.5640e-06 24576 4096 2.8672e+04 2.5751e-01 5.9746e+08
2 5752e-01 4 6560e-06 28672 4096 3.2768e+04 2.5752e-01 5.7973+08
2 5752e-01 4.4970e-06 32768 4096 3.6864+04 2.5753e-01 9.1083e+08
2 5753e-01 4 6270e-06 36864 4096 4.0960e+04 2.5753e-01 5.8524e+08
25754e-01 44770e-06 40960 4096 4.5056+04 2.5754e-01 9.1490e+08
25754e-01 4 5630e-06 45056 4096 4.9152e+04 2.5755e-01 5.9648e+08
?5755e-01 4 6330e-06 49152 4096 5.3248+04 2.5756e-01 8.7167e+08
2 5756e-01 4 7430e-06 53248 4096 5.7344+04 2.5756e-01 5.6359e+08
2 5757e-01 4.5500e-06 57344 4096 B.1440e+04 2.5757e-01 9.0022e+08

2.a7a7e-01 4. 4650e-06 61440 4036 6.5336e+04 2.5738e-01 9.1674e+05[*
2 L7580 01 4 54505 Foosk AN9F F9RSeed 2 5708019 91012 -

Figure 35: Peekperf I/O profiling data table window

There are four widgets at the top of the table window that you can use to modify the
characteristics of the current plot. Y ou can change the values in these widgets as desired,
then click the Plot button in the current plot window to apply the selections you made to
the current plot.

The colored square at the upper |eft specifies the color to use when drawing the plot. If
you click this square, a color selector dialog appears, which allows you to select the color
you want to be used in drawing the plot.

The second widget from the | eft, |abeled file position activity, selects the metric to be
used for the Y and X axis of the plot and also affects the format of the plot. If you select
file position activity, the Y axis represents file position and the X axis represents time.
If you select data delivery rate, the Y axisrepresentsthe data transfer rate and the X
axis represents time. If you select rate vs pos, the Y axis represents data transfer rate
and the X axis represents the start position in thefile

The third widget from the |eft specifies the pixel width for the graph that is drawn when
the file position metric has been selected from the second widget from the | eft.

52

IBM High Performance Computing Toolkit

The rightmost widget specifies the metric that will have its numeric value displayed next
to each data point. You can select any column displayed in the table, or none to plot each
point with no accompanying data value.

53

IBM High Performance Computing Toolkit

XWindows Performance Profiler (Xprof)

The XWindows Performance Profiler (Xprof) tool helps you analyze your parallel or
serial application’s performance. It uses procedure-profiling information to construct a
graphical display of the functions within your application. Xprof provides quick access
to the profiled data, which lets you identify the functions that are the most CPU-intensive.
The graphical user interface (GUI) aso lets you manipulate the display in order to focus
on the application’ s critical areas.

The following Xprof topics are covered in this chapter:
e Before You Begin
e Starting the Xprof GUI
e Customizing Xprof resources

The word function is used frequently throughout this chapter. Consider it to be
synonymous with the terms routine, subroutine, and procedure.

Before You Begin

About Xprof

Xprof lets you profile both serial and parallel applications. Serial applications generate a
single profile data file, while a parallel application produces multiple profile data files.
Y ou can use Xprof to analyze the resulting profiling information.

Xprof provides a set of resource variables that let you customize some of the features of
the Xprof window and reports.

Requirements and Limitations

To use Xprof, your application must be compiled with the -pg flag. For more information,
see the Compiling Applications to be Profiled make link below.

Y ou must ensure that several environment variables required by the IBM HPC Toolkit
are properly set before you invoke Xprof. In order to set these environment variables,
you should run the setup scripts that are located in the top level directory of your
installation. On AlX systems, these setup scripts are located in the /usr/Ipp/ppe.hpct
directory. On Linux, these setup scripts are located in the /opt/ibmhpc/ppe.hpct directory.
If you are using sh, bash, ksh, or similar shell command, you should invoke the env_sh
script as. env_sh. If you are using csh, you should invoke the env_csh script as source
env_csh.

Note: Beginning with AIX 5.3, you can generate a new format of the thread-level
profiling gmon.out files. Xprof does not support this new format, so you must set the
GPROF environment variable to ensure that you produce the previous format of the
gmon.out files. For more information, please see the gprof Command.

IBM High Performance Computing Toolkit

Like the gprof command, Xprof lets you analyze CPU (busy) usage only. It does not
provide other kinds of information, such as CPU idle, 1/0, or communication information.

If you compile your application on one processor, and analyze it on another, you must
first make sure that both processors have similar library configurations, at least for the
system libraries used by the application. For example, if you run aFORTRAN
application on a server, then try to analyze the profiled data on aworkstation, the levels
of FORTRAN runtime libraries must match and must be placed in alocation on the
workstation that Xprof recognizes. Otherwise, Xprof produces unpredictable results.

Because Xprof collects data by sampling, functions that run for a short amount of time
might not show any CPU use. Xprof does not give you information about the specific
threads in a multithreaded program.

Xprof presents the data as a summary of the activities of all the threads.

Comparing Xprof and the gprof Command

With Xprof, you can produce the same tabular reports that you might be accustomed to
seeing with the gprof command. As with gprof, you can generate the Flat Profile, Call
Graph Profile, and Function Index reports.

Unlike gprof, Xprof provides a GUI that you can use to profile your application. Xprof

generates a graphical display of your application’s performance, as opposed to a text-
based report. Xprof aso lets you profile your application at the source statement level.

From the Xprof GUI, you can use al of the same command line flags as gprof, aswell as
some additional flags that are unique to Xprof.

Compiling Applications to be Profiled

To use Xprof, you must compile and link your application with the -pg flag of the
compiler command. This applies regardless of whether you are compiling a serial or
parallel application. Y ou can compile and link your application all at once, or perform the
compile and link operations separately. The following is an example of how you would
compile and link all at once:

cc -pg -o foo foo.c

The following is an example of how you would first compile your application and then
link it. To compile, do the following:

cc -pg -c foo.c

To link, do the following:

cc -pg -o foo foo.o

55

IBM High Performance Computing Toolkit

Notice that when you compile and link separately, you must use the -pg flag with both
the compile and link commands.

The -pg flag compiles and links the application so that when you run it, the CPU usage
data is written to one or more output files. For a serial application, this output consists of
only onefile called gmon.out, by default. For parallel applications, the output is written
in to multiple files, one for each task that is running in the application. To prevent each
output file from overwriting the others, the task ID is appended to each gmon.out file
(for example: gmon.out.10).

Note: The -pg flag is not a combination of the -p and the -g compiling flags.

To get acomplete picture of your parallel application’ s performance, you must indicate
al of its gmon.out files when you load the application in to Xprof. When you specify
more than one gmon.out file, Xprof shows you the sum of the profile information
contained in each file.

The Xprof GUI lets you view included functions. Y our application must also be
compiled with the -g flag in order for Xprof to display the included functions.

In addition to the -pg flag, the -g flag is also required for source-statement profiling.

Starting the Xprof GUI

To start Xprof, enter the Xprof command on the command line. Y ou must also specify
the binary executable file, one or more profile data files, and optionally, one or more
flags, which you can do in one of two ways. Y ou can either specify the files and flags on
the command line aong with the Xprof command, or you can enter the Xprof command
alone, then specify the files and flags from within the GUI.

Y ou will have more than one gmon.out file if you are profiling a parallel application,
because agmon.out fileis created for each task in the application when it isrun. If you
arerunning aseria application, there might be times when you want to summarize the
profiling results from multiple runs of the application. In these cases, you must specify
each of the profile data files you want to profile with Xprof.

To start Xprof and specify the binary executable file, one or more profile datafiles, and
one or more flags, type:

Xprof a.out gnon.out... [flag...]
where: a.out isthe binary executable file, gmon.out... isthe name of your profile data

file (or files), and flag... is one or more of the flags listed in the following section on
Xprof command-line flags.

56

IBM High Performance Computing Toolkit

Specifying Xprof Command-line Flags
Y ou can specify many of the same command-line flags with the Xprof command that

you do with gprof, aswell as one additional flag (-disp_max), which is specific to Xprof.
The command-line flags let you control the way Xprof displays the profiled outpuit.

Y ou can specify the flagsin Table 2 from the command line or from the Xprof GUI (see
Specifying Command Line Options (from the GUI) for more information).

Table 2. Xprof command-line flags

Userthis To: For example:
flag:
-a Add alternative paths to search for source To set an alternativefile

code and library files, or changes the current | search path so that Xprof
path search order. When using thisflag, you | searches pathA, the default
can usethe "at" symbol (@) to represent the | path, then pathB, type:

default file path, in order to specify that Xprof -a
other paths be searched before the default pat hA: @ pat hB
path.
-b Suppress the printing of the field Type: Xprof -b a. out
descriptions for the Flat Profile, Call gnon. out

Graph Profile, and Function Index reports
when they are written to afile with the Save
As option of the File menu.

-C L oad the specified configuration file. If this | To load the configuration
flag is used on the command line, the file myfile.cfg, type: Xpr of
configuration file name specified with it a.out gnon.out -c

will appear in the Configuration File (-¢): | nmyfile.cfg
text field in Load Files Dialog window and
in the Selection field of the Load
Configuration File Dialog window. When
both the -c and -disp_max flags are
specified on the command line, the -
disp_max flag isignored, but the value that
was specified with it will appear in the
Initial Display (-disp_max): field in the
Load Files Dialog window the next time
this window is opened.

-disp_max | Set the number of function boxes that To display the function
Xprof initialy displaysin the function call | boxes for the 50 most CPU-
tree. The value supplied with thisflag can intensive functionsin the
be any integer between 0 and 5000. Xprof | function call tree, type:
displays the function boxes for the most Xprof -disp_max 50
CPU-intensive functions through the a.out gnon. out

number you specify. For example, if you
specify 50, Xprof displays the function
boxes for the 50 functionsin your program

57

IBM High Performance Computing Toolkit

with the highest CPU usage. After this, you
can change the number of function boxes
that are displayed using the Filter menu
options. This flag has no effect on the
content of any of the Xprof reports.

Deemphasize the general appearance of the
function box for the specified function in
the function call tree, and limits the number
of entriesfor this function in the Call
Graph Profile report. This also appliesto
the specified function's descendants, as long
as they have not been called by
nonspecified functions.

In the function call tree, the function box for
the specified function is made unavailable.
The box size and the content of the label
remain the same. Thisalso appliesto
descendant functions, aslong as they have
not been called by nonspecified functions.
In the Call Graph Profile report, an entry for
a specified function only appears whereit is
achild of another function, or as a parent of
afunction that also has at least one
nonspecified function as its parent. The
information for this entry remains
unchanged. Entries for descendants of the
specified function do not appear unless they
have been called by at least one
nonspecified function in the program.

To deemphasize the
appearance of the function
boxes for foo and bar and
their qualifying descendants
in the function call tree, and
limit their entriesin the Call
Graph Profile report, type:
Xprof -e foo -e bar
a. out gnon. out

Change the general appearance and label
information of the function box for the
specified function in the function call tree.
Thisflag also limits the number of entries
for this function in the Call Graph Profile
report, and changes the CPU data associated
with them. These results also apply to the
specified function's descendants, aslong as
they have not been called by nonspecified
functionsin the program.

In the function call tree, the function box for
the specified function is made unavailable,
and the box size and shape also changes so
that it appears as a square of the smallest
permitted size. In addition, the CPU time
shown in the function box label, appears as

To change the display and
label information for foo
and bar, aswell astheir
qualifying descendantsin
the function call tree, and
limit their entries and datain
the Call Graph Profile
report, type: Xpr of -E
foo -E bar a.out
gnon. out

58

IBM High Performance Computing Toolkit

0. The same applies to function boxes for
descendant functions, aslong as they have
not been called by nonspecified functions.
Thisflag also causes the CPU time spent by
the specified function to be deducted from
the CPU total on the left in the label of the
function box for each of the specified
function's ancestors.

In the Call Graph Profile report, an entry for
the specified function only appears where it
isachild of another function, or as a parent
of afunction that also has at |east one
nonspecified function as its parent. When
thisisthe case, thetimein the self and
descendants columns for this entry is set to
0. In addition, the amount of time that was
in the descendants column for the specified
function is subtracted from the time listed
under the descendants column for the
profiled function. As aresult, be aware that
the value listed in the % time column for
most profiled functions in this report will
change.

Deemphasize the general appearance of all
function boxes in the function call tree,
except for that of the specified function and
its descendants. In addition, the number of
entries in the Call Graph Profile report for
the nonspecified functions and
nondescendant functionsis limited. The -f
flag overrides the -e flag.

In the function call tree, al function boxes
except for that of the specified function and
its descendants are made unavailable. The
size of these boxes and the content of their
labels remain the same. For the specified
function and its descendants, the appearance
of the function boxes and labels remain the
same.

In the Call Graph Profile report, an entry for
anonspecified or nondescendant function
only appears whereit is a parent or child of
a specified function or one of its
descendants. All information for this entry
remains the same.

To deemphasize the display
of function boxes for all
functionsin the function call
tree except for foo, bar, and
their descendants, and limit
their types of entriesin the
Call Graph Profile report,
type: Xprof -f foo -f
bar a.out gnon. out

59

IBM High Performance Computing Toolkit

-F Change the general appearance and label To change the display and
information of all function boxesin the label information of the
function call tree except for that of the function boxes for all
specified function and its descendants. In functions except the
addition, the number of entriesin the Call functions foo and bar and
Graph Profile report for the nonspecified their descendants, and limit
and nondescendant functionsislimited, and | their types of entries and
the CPU data associated with them is datain the Call Graph
changed. The -F flag overridesthe -E flag. | Profile report, type: Xpr of
In the function call tree, the function box for | - F foo - F bar a. out
the specified function is made unavailable, | gnon. out
and its size and shape also changes so that it
appears as a square of the smallest
permitted size. In addition, the CPU time
shown in the function box label appears as
0.

In the Call Graph Profile report, an entry for
anonspecified or nondescendant function
only appears whereit is aparent or child of
a specified function or one of its
descendants. When thisisthe case, thetime
in the self and descendants columns for this
entry is set to 0. Asaresult, be aware that
the value listed in the % time column for
most profiled functions in this report will
change.

-hJ-? Display the Xprof command's usage Xprof -h
statement.

-L Specify an alternative path name for To specify
locating shared libraries. If you planto /lib/profiled/libc.a:shr.o as
specify multiple paths, use the Set File an alternative path name for
Search Path option of the File menu on the | your shared libraries, type:
Xprof GUI. See Setting the File Search Xprof -L
Sequence for more information. /1ib/profiled/libc.

a:shr.o

-S Produce the gmon.sum profile datafile (if | To write the sum of the data

multiple gmon.out files are specified when
Xprof is started). The gmon.sum file
represents the sum of the profile
information in all the specified profile files.
Note that if you specify a single gmon.out
file, the gmon.sum file contains the same
data as the gmon.out file.

from three profile datafiles,
gmon.out.1, gmon.out.2,
and gmon.out.3, into afile
called gmon.sum, type:
Xprof -s a.out
gnhon. out . 1

gnon. out . 2

gnon. out . 3

60

IBM High Performance Computing Toolkit

-Z Include functions that have both zero CPU | To include all functions
usage and no call counts in the Flat Profile, | used by the application that
Call Graph Profile, and Function Index have zero CPU usage and no
reports. A function will not have a call call countsin the Flat

count if the file that containsits definition Profile, Call Graph

was not compiled with the -pg flag, which | Profile, and Function

is common with system library files. Index reports, type: Xpr of
-z a.out gnon. out

After you enter the Xprof command, the Xprof main window appears and displays your
application's data.

Loading Files from the Xprof GUI

If you enter the Xprof command on its own, you can then specify an executablefile, one
or more profile data file(s), and any flags, from within the Xprof GUI. Y ou use the Load
File option of the File menu to do this.

If you enter the Xpr of - h or Xpr of -? command, Xprof displays the usage
statement for the command and then exits.

When you enter the Xprof command alone, the Xprof main window appears. Because
you did not load an executable file or specify a profile datafile, the window will be
empty, as shown below. All that is visible is amenu bar at the top with dropdowns for
File, View, Filter, Report and Utility.

61

IBM High Performance Computing Toolkit

File ¥ fow £iiter Repors geitiey

~ I El
= i
Enpty display, use "File-*Load Files" option to load a walid file set

Figure 36: The Xprof main window

From the Xprof GUI, select File, then Load File from the menu bar. The Load Files
Dialog window will appear, as shown below. The Load Files Dialog window is split in to
three different sections. There are two boxes, side by side at the top, and one long box at
the bottom that are described in more detail in the following three figures.

62

IBM High Performance Computing Toolkit

oad Files Dialog

Binary Executable File:

gnon,out Profile File{s}:

Filter

Filter

Zbuild/Xprof 7hu/=

Directc Files

Zbuild/Xprof /hu/=

Directc Files

V. | A gron, 0, out A i, | A gron, 0, out A
L grnon.1,out L grnon, 1, out
gnon.2.out ghon.2.out
gnon, 3, out gnon, 3, out
host.list host.list
hu,c hu,c
hu_npcc hu_npcc
' ' ' £
ETE -] J =] EE =] R =]
Selection Selection

Filterl

Filterl

Connand Line Options:

- Ho Description {(-b} - gmon,sun File {-s)} -l Show Zero Usage (-=z}

Alt File Search Path{s) {-a):

Configuration File {-c):

Chuices...l

Initial Display {-disp_mnax}:

Exclude Function{s) {-el:

Include Function{s) {-f:

Include Function{s) {-F:

Alt Library Path {-L):

Exclude Function{s) {-E): IE

oK | Eancell

Figure 37. The Load Files Dialog window.

Resetl

The Load Files Dialog window lets you specify your application’s executable file and its
corresponding profile data (gmon.out) file(s). When you load afile, you can also specify
the various command-line options that et you control the way Xprof displays the
profiled data.

To load the files for the application you want to profile, you must specify the following:

o thebinary executablefile
e oneor more profile datafiles

63

IBM High Performance Computing Toolkit

Optionally, you can also specify one or more command-line flags.

Specifying the Binary Executable File

Y ou specify the binary executable file from the Binary Executable File: area of the
Load Files Dialog window. There is a Filter box at the top that shows the path of thefile
to load. Underneath the Filter box, there are two selection boxes, side by side that are
labeled Directory and Files. The one on the |eft is to select the Directory in which to
locate the executable file, and the one on theright is alisting of the files that are
contained in the directory that is selected in the Directory selection box. Thereisa
Selection box that shows the file selected and at the bottom there is a Filter button.

Binary Executahle File:

Filter

me/holly/xprofilers/s

Directi File=z

| gmon, out
L gmomn , ouwt . n
hello,old
hello_world
hello_world.c
naive
7
1.~ = —_
Selection

| halla world

Filter |

Figure 38. The Binary Executable File dialog.

Use the scroll bars of the Directories and Files sel ection boxes to locate the executable
file you want to load. By default, all of the filesin the directory from which you called
Xprof appear in the Files selection box.

To make locating your binary executable files easier, the Binary Executable File: area
includes a Filter button. Filtering lets you limit the files that are displayed in the Files
selection box to those of a specific directory or of a specific type. For information about
filtering, see Filtering what Y ou See.

IBM High Performance Computing Toolkit

Specifying Profile Data Files

Y ou specify one or more profile data files from the gmon.out Profile Data File(s): area
of the Load Files Dialog window. There is a Filter box at the top that shows the path of
the file to use as input. Underneath the Filter box, there are two selection boxes, side by
side that are labeled Directory and Files. The one on the left isto select the Directory in
which to locate the profile file, and the one on theright isalisting of the filesthat are
contained in the directory that is selected in the Directory selection box. Thereisa
Selection box that shows the file selected and at the bottom there is a Filter button.

gmon.out Profile File(s):

Filter

ne/holly/cprofilers/s

Direct: Files

4 | gmon, out
i oo gron ,ouwt . n
hello.old
hello_world
hello world.c
naive
7
Hi1- I~ —_—
Belection
| gmon, out |

Tiltarl

Figure 39. The gmon.out Profile Data File(s) area.

When you start Xprof using the Xprof command, you are not required to indicate the
name of the profile datafile. If you do not specify a profile data file, Xprof searches your
directory for the presence of afile named gmon.out and, if found, placesit in the
Selection field of the gmon.out Profile Data File(s) area, as the default. Xprof then uses
thisfile asinput, even if it is not related to the binary executable file you specify.
Because thiswill cause Xprof to display incorrect data, it isimportant that you enter the
correct filein to thisfield. If the profile datafile you want to use is named something

other than what appears in the Selection field, you must replace it with the correct file
name.

Use the scroll bars of the Directories and Files selection boxes to locate one or more of

the profile data (gmon.out) files you want to specify. The file you use does not have to
be named gmon.out, and you can specify more than one profile datafile.

65

IBM High Performance Computing Toolkit

To make locating your output files easier, the gmon.out Profile Data File(s) area
includes a Filter button. Filtering lets you limit the files that are displayed in the Files
selection box to those in a specific directory or of a specific type. For information about
filtering, see Filtering what Y ou See.

Specifying Command Line Options (from the GUI)

Specify command-line flags (see Xprof command-line flags) from the Command Line
Options area of the Load Files Dialog window. There are three check boxes side by side
at the top:

e No description (-b)

e gmon.sum File (-s)

e Show Zero Usage (-2)

Below that, there are eight boxes corresponding to Xprof GUI command-line flags;:
e Alt File Search Paths (-a)
e Configuration File (-¢)
e |nitial Display (-disp_max)

Exclude Functions (-€)

Exclude Functions (-E)

Include Functions (-f)

Include Functions (-F)

Alt Library Path (-L)

Thereis aso a Choices button next to the Configuration File (-c) box which will bring up
adialog that allows you to choose a configuration file.

Command Line Options:
Ko Degcription (-h) _l gmon.sun File (-g) Ehow Zevo Uzage (-z)

Alt File Search Path(s) (-a): | 3

Configuration File (-c): |' Choices. . .|

Initial Display [-disp max): |§5mn

Exclude Function(s) (-e): [

Exclude Function(=) (-E)

Include Function(=z) (=f)

Alt Likrary Path (<L)

Include Function(s) (-E): |
- |

Figure 40. The Command Line Options area.

After you have specified the binary executable file, one or more profile data files, and
any command-line flags you want to use, click the OK button to save the changes and
close the window. Xprof |oads your application and displays its performance data.

66

IBM High Performance Computing Toolkit

Setting the File Search Sequence
Y ou can specify where you want Xprof to look for your library files and source code

files by using the Set File Search Paths option of the File menu. By default, Xprof
searches the default paths first and then any alternative paths you specify.

Setting Default Paths

For library files, Xprof uses the paths recorded in the specified gmon.out files. If you use
the -L flag, the path you specify with it will be used instead of those in the gmon.out
files.

Note: The -L flag enables only one path to be specified and you can use this flag only
once.

For source code files, the paths recorded in the specified a.out file are used.

Setting Alternative Paths
Y ou specify the alternative paths with the Set File Search Paths option of the File menu.

For library files, if everything else failed, the search will be extended to the path (or
paths) specified by the LIBPATH environment variable associated with the executable
file.

To specify aternative paths, do the following:

1. Select the File menu, and then the Set File Search Paths option. The Alt File
Search Path Dialog window appears.

2. Enter the name of the path in the Enter Alt File Search Path(s) text field. You
can specify more than one path by separating each path name with acolon (:) or a
space.

Notes:

a. Youcanusethe“at” symbol (@) with this option to represent the default file
path, in order to specify that other paths be searched before the default path.
For example, to set the alternative file search paths so that Xprof searches
pathA, the default path, then pathB, type pat hA: @ pat hB in the Alt File
Search Path(s) (-a) field.

b. If @ isusedin the aternative search path, the two buttonsin the Alt File
Search Path Dialog window will be unavailable, and will have no effect on the
search order.

3. Click the OK button. The paths you specified in the text field become the
aternative paths.

Changing the Search Sequence

67

IBM High Performance Computing Toolkit

Y ou can change the order of the search sequence for library files and source code files
using the Set File Search Paths option of the File menu. To change the search sequence:

1. Select the File menu, and then the Set File Search Paths option. The Alt File
Search Path Dialog window appears.

2. Toindicate that the file search should use alternative pathsfirst, click the Check
alternative path(s) first button.

3. Click OK. This changes the search sequence to the following:
a. Alternative paths
b. Default paths
c. Paths specified in LIBPATH (library files only)

To return the search sequence back to its default order, repeat steps 1 through 3, but in
step 2, click the Check default path(s) first button. When the action is confirmed (by
clicking OK), the search sequence will start with the default paths again.

If afileisfound in one of the alternative paths or a path in LIBPATH, this path now
becomes the default path for this file throughout the current Xprof session (until you exit
this Xprof session or load a new set of data).

Understanding the Xprof Display

The primary difference between Xprof and the gprof command is that Xprof givesyou a
graphical picture of your application's CPU consumption in addition to textual data.

Xprof displays your profiled program in asingle main window. It uses several types of
graphical images to represent the relevant parts of your program. Functions appear as
solid green boxes (called function boxes), and the calls between them appear as blue
arrows (called call arcs). The function boxes and call arcs that belong to each library
within your application appear within afenced-in area called a cluster box.

The Xprof Main Window

The Xprof main window contains a graphical representation of the functions and calls
within your application, as well as their interrel ationships. The window provides five
menus.

After an example application has been |oaded, the Xprof main window shows one cluster

box displaying a function call tree, with an arc pointing down to another cluster box
displaying afunction call tree.

68

IBM High Performance Computing Toolkit

File Yiew Filter Report Utility

adio

#lib/profiled/libc. atshr.o

=l I - ¥
~ i

Progran: frog Total CPU Usage; 0,15 seconds {summary of 1 gnon,out profile files)
Display Status: showing 56 out of 56 nodes and 77 out of 77 arcs

Figure 41. The Xprof main window with application loaded.

In the main window, Xprof displays the function call tree. The function call tree displays
the function boxes, call arcs, and cluster boxes that represent the functions within your
application.

Note: When Xprof first opens, by default, the function boxes for your application will be
clustered by library. A cluster box appears around each library, and the function boxes
and arcs within the cluster box are reduced in size. To see more detail, you must uncluster
the functions. To do this, select the File menu and then the Uncluster Functions option.

Xprof’s Main Menus
The Xprof menus are as follows:

The File menu

The File menu lets you specify the executable (a.out) files and profile data (gmon.out)
files that Xprof will use. It also lets you control how your files are accessed and saved.

69

IBM High Performance Computing Toolkit

The View menu

The View menu lets you focus on specific portions of the function call tree in order to get
a better view of the application’s critical areas.

The Filter menu

The Filter menu lets you add, remove, and change specific parts of the function call tree.
By controlling what Xprof displays, you can focus on the objects that are most important
to you.

The Report menu

The Report menu provides severa types of profiled datain atextual and tabular format.
In addition to presenting the profiled data, the options of the Report menu let you do the
following:

Display textual data

Saveitto afile

View the corresponding source code

L ocate the corresponding function box or call arc in the function call tree

The Utility menu

The Utility menu contains one option, Locate Function By Name, which lets you
highlight a particular function in the function call tree.

Xprof’sHidden Menus

The Function menu

The Function menu lets you perform a number of operations for any of the functions
shown in the function call tree. Y ou can access statistical data, ook at source code, and
control which functions are displayed.

The Function menu is not visible from the Xprof window. Y ou access it by right-
clicking on the function box of the function in which you are interested. By doing this,
you open the Function menu, and select this function as well. Then, when you select
actions from the Function menu, the actions are applied to this function.

The Arc menu

The Arc menu lets you locate the caller and callee functions for a particular call arc. A
call arcisthe representation of a call between two functions within the function call tree.

The Arc menu is not visible from the Xprof window. Y ou access it by right-clicking on
the call arc in which you are interested. By doing this you open the Arc menu, and select
that call arc aswell. Then, when you perform actions with the Are menu, they are applied
to that call arc.

The Cluster Node menu

The Cluster Node menu lets you control the way your libraries are displayed by Xprof.
To access the Cluster Node menu, the function boxes in the function call tree must first

70

IBM High Performance Computing Toolkit

be clustered by library. For information about clustering and unclustering the function
boxes of your application, see Clustering Libraries. When the function call treeis
clustered, all the function boxes within each library appear within a cluster box.

The Cluster Node menu is not visible from the Xprof window. Y ou access it by right-
clicking on the edge of the cluster box in which you are interested. By doing this you
open the Cluster Node menu, and select that cluster as well. Then, when you perform
actions with the Cluster Node menu, they are applied to the functions within that library
cluster.

The Display Status Field

At the bottom of the Xprof window isasingle field that provides the following
information:
e Name of your application
e Number of gmon.out files used in this session
e Tota amount of CPU used by the application
e Number of functions and callsin your application, and how many of these are
currently displayed

How Functions are Represented

Functions are represented by solid green boxes in the function call tree. The size and
shape of each function box indicates its CPU usage. The height of each function box
represents the amount of CPU time it spent on executing itself. The width of each
function box represents the amount of CPU time it spent executing itself, plusits
descendant functions.

This type of representation is known as summary mode. In summary mode, the size and
shape of each function box is determined by the total CPU time of multiple gmon.out
files used on that function alone, and the total time used by the function and its
descendant functions. A function box that is wide and flat represents a function that uses
arelatively small amount of CPU on itself (it spends most of its time on its descendants).
The function box for a function that spends most of its time executing only itself will be
roughly square-shaped.

Functions can also be represented in average mode. In average mode, the size and shape
of each function box is determined by the average CPU time used on that function alone,
among all loaded gmon.out files, and the standard deviation of CPU time for that
function among all loaded gmon.out files. The height of each function node represents
the average CPU time, among all the input gmon.out files, used on the function itself.
The width of each node represents the standard deviation of CPU time, among the
gmon.out files, used on the function itself. The average mode representation is available
only when more than one gmon.out fileis entered. For more information about summary
mode and average mode, see Controlling the Representation of the Function Call Tree.

71

IBM High Performance Computing Toolkit

Under each function box in the function call treeis alabel that contains the name of the
function and related CPU usage data. For information about the function box labels, see
Obtaining Basic Data.

The following figure shows the function boxes for two functions, sub1 and printf, as
they would appear in the Xprof display.

"

TltRe R 040

Figure 42. Function boxes and arcs in the Xprof display.

Each function box has its own menu. To access it, place your mouse cursor over the
function box of the function you are interested in and press the right mouse button. Each
function also has an information box that lets you get basic performance numbers quickly.
To access the information box, place your mouse cursor over the function box of the
function you are interested in and press the left mouse button.

How Calls Between Functions are Depicted

The calls made between each of the functionsin the function call tree are represented by
blue arrows extending between their corresponding function boxes. These lines are called
call arcs. Each call arc appears as a solid blue line between two functions. The arrowhead
indicates the direction of the call; the function represented by the function box it pointsto
isthe one that receives the call. The function making the call is known as the caller, while
the function receiving the call is known as the callee.

Each call arc includes a numeric label that indicates how many calls were exchanged
between the two corresponding functions.

72

IBM High Performance Computing Toolkit

Each call arc has its own menu that lets you locate the function boxes for its caller and
callee functions. To access it, place your mouse cursor over the call arc for the call in
which you are interested, and press the right mouse button. Each call arc aso has an
information box that shows you the number of times the caller function called the callee
function. To access the information box, place your mouse cursor over the call arc for the
call inwhich you are interested, and press the left mouse button.

How Library Clusters are Represented

Xprof lets you collect the function boxes and call arcs that belong to each of your shared
librariesin to cluster boxes.

Because there will be abox around each library, the individual function boxes and call
arcswill be difficult to see. If you want to see more detail, you must uncluster the
function boxes. To do this, select the Filter menu and then the Uncluster Functions
option.

When viewing function boxes within a cluster box, note that the size of each function box
isrelative to those of the other functions within the same library cluster. On the other
hand, when all the libraries are unclustered, the size of each function box isrelative to all
the functionsin the application (as shown in the function call tree).

Each library cluster has its own menu that lets you manipulate the cluster box. To access
it, place your mouse cursor over the edge of the cluster box you are interested in, and
press the right mouse button. Each cluster also has an information box that shows you the
name of the library and the total CPU usage (in seconds) consumed by the functions
within it. To access the information box, place your mouse cursor over the edge of the
cluster box you are interested in and press the left mouse button.

Controlling how the Display is Updated

The Utility menu of the Overview Window lets you choose the mode in which the
display is updated. The default is the Immediate Update option, which causes the
display to show you the itemsin the highlight area as you are moving it around. The
Delayed Update option, on the other hand, causes the display to be updated only when
you have moved the highlight area over the areain which you are interested, and released
the mouse button. The Immediate Update option applies only to what you see when you
move the highlight areg; it has no effect on the resizing of itemsin highlight area, which
isalways delayed.

Other Viewing Options

Xprof lets you change the way it displays the function call tree, based on your personal
preferences.

Controlling the Graphic Style of the Function Call Tree

Y ou can choose between two-dimensional and three-dimensional function boxesin the
function call tree. The default style istwo-dimensional. To change to three-dimensional,

73

IBM High Performance Computing Toolkit

select the View menu, and then the 3-D Image option. The function boxesin the function
call tree now appear in three-dimensional format.

Controlling the Orientation of the Function Call Tree

Y ou can choose to have Xprof display the function call tree in either top-to-bottom or
left-to-right format. The default is top-to-bottom. To see the function call tree displayed
in left-to-right format, select the View menu, and then the Layout: Left—Right option.
The function call tree now displaysin left-to-right format, as shown below.

File View Filter Report. Utility

0,000 = 0,000 0,000 x 0,000 0,000 = 0,000
.free_conwon [20] free_y [21] .splay [17]

100

2,700 % 2,700
.inner- [5]

1.680 x 0,060
.sprintf [E]

5,503 x 1,280
,oompute [3]

0,000 x 0,000
Lprintf [16]

1,620 x 1,620
. _doprnt [7]

I~] =l
=

Program: l=ft . Total CPU Usage: 7,00 seconds (summary of 1 amon. out profile files)
Display Status: showing 39 out of 39 nodes and 32 out of 32 arcs

Figure 43. The Xprof main window with Left-to-right format selected.

Controlling the Representation of the Function Call Tree

Y ou can choose to have Xprof represent the function call treein either summary mode or
average mode. These choices are only available when processing more than one
gmon.out file.

When you select the Summary Mode option of the View menu, the size and shape of
each function box is determined by the total CPU time of multiple gmon.out files used

74

IBM High Performance Computing Toolkit

on that function alone, and the total time used by the function and its descendant
functions. The height of each function node represents the total CPU time used on the
function itself. The width of each node represents the total CPU time used on the function
and its descendant functions. When the display isin summary mode, the Summary
Mode option is unavailable and the Average Mode option is activated.

When you select the Average Mode option of the View menu, the size and shape of each
function box is determined by the average CPU time used on that function alone, among
all loaded gmon.out files, and the standard deviation of CPU time for that function
among all loaded gmon.out files. The height of each function node represents the
average CPU time, among all the input gmon.out files, used on the function itself. The
width of each node represents the standard deviation of CPU time, among the gmon.out
files, used on the function itself.

The purpose of average mode isto reveal workload balancing problems when an
application isinvolved with multiple gmon.out files. In general, afunction node with
large standard deviation has a wide width, and a node with small standard deviation has a
slim width.

Both summary mode and average mode affect only the appearance of the function call
tree and the labels associated with it. All the performance data in Xprof reports and code
displays are dways summary data. If only one gmon.out file is specified, the Summary
Mode and Average Mode options of the View menu will be unavailable, and the display
isawaysin Summary Mode.

Filtering what You See

When Xprof first opens, the entire function call tree appears in the main window. This
includes the function boxes and call arcs that belong to your executable file as well asthe
shared libraries that it uses. Y ou can simplify what you see in the main window, and there
are several waysto do this.

Note: Filtering options of the Filter menu let you change the appearance only of the
function call tree. The performance data contained in the reports (through the Reports
menu) is not affected.

Restoring the Status of the Function Call Tree

Xprof enables you to undo operations that involve adding or removing nodes and arcs
from the function call tree. When you undo an operation, you reverse the effect of any
operation which adds or removes function boxes or call arcs to the function call tree.
When you select the Undo option which is available from the Filter menu, the function
call treeisreturned to its appearance just prior to the performance of the add or remove
operation.

Whenever you invoke the Undo option, the function call tree loses its zoom focus and

zooms all the way out to reveal the entire function call tree in the main display. When
you start Xprof, the Undo option is unavailable. It is activated only after an add or

75

IBM High Performance Computing Toolkit

remove operation involving the function call tree takes place. After you undo an
operation, the option is made unavailable again until the next add or remove operation
takes place.

The options that activate the Undo option include the following:
In the main File menu:

Load Configuration

In the main Filter menu:

Show Entire Call Tree

Hide All Library Calls

Add Library Cals

Filter by Function Names

Filter by CPU Time

Filter by Call Counts

In the Function menu:

Immediate Parents

All Paths To

Immediate Children

All Paths From

All Functions on The Cycle

In the Function Display Options submenu of the Function menu:
Show This Function Only

Hide This Function

Hide Descendant Functions

Hide This & Descendant Functions

If adialog such as the Load Configuration Dialog or the Filter by CPU Time Dialog is
invoked and then canceled immediately, the status of the Undo option is not affected.
After the option is available, it stays that way until you invoke it, or anew set of filesis
loaded in to Xprof through the Load Files Dialog window.

Displaying the Entire Function Call Tree

When you first open Xprof, by default, all the function boxes and call arcs of your
executable and its shared libraries appear in the main window. After that, you can choosel
to filter out specific items from the window. However, there might be times when you
want to see the entire function call tree again, without having to reload your application.
To do this, select the Filter menu, and then the Show Entire Call Tree option. Xprof
erases whatever is currently displayed in the main window and replaces it with the entire
function call tree.

Excluding and including specific objects

There are anumber of ways that Xprof lets you control the items that display in the main
window. Y ou will want to include or exclude certain objects so that you can more easily
focus on the things that are of most interest to you.

76

IBM High Performance Computing Toolkit

Filtering Shared Library Functions

In most cases, your application will call functions that are within shared libraries. By
default, these shared libraries display in the Xprof window aong with your executable
file. Asaresult, the window can get crowded and obscure the items that you most need to
see. If thisisthe case, you can filter the shared libraries from the display. To do this,
select the Filter menu, and then the Remove All Library Calls option.

The shared library function boxes disappear from the function call tree, leaving only the
function boxes of your executable file visible.

If you removed the library calls from the display, you might want to restore them. To do
this, select the Filter menu and then the Add Library Calls option.

The function boxes again appear with the function call tree. Note, however, that all of the
shared library calls that werein the initial function call tree might not be added back.
Thisis because the Add Library Calls option only adds back in the function boxes for
the library functions that were called by functions that are currently displayed in the
Xprof window.

To add only specific function boxes back in to the display, do the following:

1. Select the Filter menu, and then the Filter by Function Names option. The Filter
By Function Names dialog window appears.

2. From the Filter By Function Names Dialog window, click the add these
functions to graph button, and then type the name of the function you want to
add in the Enter function name(s) field. If you enter more than one function
name, you must separate them with a blank space between each function name
string. Regular expressions are also supported.

If there are multiple functions in your program that include the string you enter in
their names, the filter applies to each one. For example, if you specified sub and
print, and your program also included functions named sub1, psub1, and printf.
The sub, subl, psubl, print, and printf functions would al be added to the

graph.

3. Click OK. One or more function boxes appear in the Xprof display with the
function call tree.

Filtering by Function Characteristics
The Filter menu of Xprof offers the following options that enable you to add or subtract
function boxes from the main window, based on specific characteristics.

e Filter by Function Names

e Filter by CPU Time

e Filter by Cal Counts

77

IBM High Performance Computing Toolkit

Each option uses a different window to let you specify the criteria by which you want to
include or exclude function boxes from the window.

To filter by function names, do the following:

1. Select the Filter menu and then the Filter by Function Names option. The
following Filter By Function Names Dialog window appears:

{Filter By Function Names Dialog [= |[0]X]

#* add these functions to graph
+ renove these functions from graph

+ display only these functions

Enter function name{s}: {regular expressions supported}

I

| w |

Apply | Eancell

Figure 44. The Filter By Function Names Dialog window.

The Filter By Function Names Dialog window includes the following options:
e add these functions to graph
e remove these functions from the graph
e display only these functions
e Enter function names() field for specifying a set of function names

2. From the Filter By Function Names Dialog window, select the option, and then
type the name of the function (or functions) to which you want it applied in the
Enter function name(s) field.

For example, if you want to remove the function box for afunction called printf
from the main window, click the remove this function from the graph button, and
type printf in the Enter function name(s) field.

Y ou can enter more than one function name in thisfield. If there are multiple
functionsin your program that include the string you enter in their names, the
filter will apply to each one. For example, if you specified sub and print, and
your program also included functions named subl, psub1, and printf, the option
you chose would be applied to the sub, sub1, psubl, print, and printf functions.

3. Click OK. The contents of the function call tree now reflect the filtering options
you specified.

78

IBM High Performance Computing Toolkit

To filter by CPU time, do the following:

1. Select the Filter menu and then the Filter by CPU Time option. The following
Filter By CPU Time Dialog window appears:

=1k

57
| R

Slider Yalue: |57

»% Filter By CPU Time Dialog

Hunber OFf Functions To Be Displayed:

“* chow functions conzuning the mozt CPU time

+ show functions consuning the least CPU time

0K | Apply | Ean-::ell

Figure 45. The Filter By CPU Time Dialog window.

The Filter By CPU Time Dialog window includes the following options:
adlider bar to select the number of functions to display

avalue field to select the number of functionsto display

show functions consuming the most CPU time

show functions consuming the least CPU time

2. Select the option you want (show functions consuming the most CPU time is
the default).

3. Select the number of functions to which you want it applied. Y ou can move the
slider in the Number Of Functions To Be Displayed bar until the desired
number appears, or you can enter the number in the Slider Value field. The slider
and Slider Value field are synchronized so when the slider is updated, the text
field value is updated a so. If you enter avalue in the text field, the slider is
updated to that value when you click Apply or OK. For example, to display the
function boxes for the 10 functions in your application that consumed the most
CPU, you would select the show functions consuming the most CPU button,
and specify 10 with the slider or enter the value 10 in the text field.

4. Click Apply to show the changes to the function call tree without closing the
dialog. Click OK to show the changes and close the dialog.

79

IBM High Performance Computing Toolkit

To filter by call counts, do the following:

1. Select the Filter menu and then the Filter by Call Counts option. The Filter By
Call Counts Dialog window appears.

. Filter By Call Counts ... [|[O|X]

Hunber Of Call Arcs To Be Displayed:
78
L J

S5lider Yalue: |73

“# ghow arcs with the nost call counts

+~ show arcs with the least call counts

1] 4 | Cancel |

Figure 46. The Filter By Call Counts Dialog window.

The Filter By Call Counts Dialog window includes the following options:
adlider bar to select the number of functions to display

avalue field to select the number of functionsto display

show arcs with the most call counts

show arcs with the least call counts

2. Select the option you want (show arcs with the most call counts is the default).

3. Select the number of call arcsto which you want it applied. If you enter avaluein
the text field, the slider is updated to that value when you click Apply or OK. For
example, to display the 10 call arcsin your application that represented the least
number of calls, you would select the show arcs with the least call counts button,
and specify 10 with the slider or enter the value 10 in the text field.

4. Click Apply to show the changes to the function call tree without closing the
dialog. Click OK to show the changes and close the dialog.

I ncluding and excluding parent and child functions

When tuning the performance of your application, you will want to know which functions
consumed the most CPU time, and then you will need to ask several questionsin order to
understand their behavior:

e Where did each function spend most of the CPU time?

80

IBM High Performance Computing Toolkit

e What other functions called this function? Were the calls made directly or
indirectly?

e What other functions did this function call? Were the calls made directly or
indirectly?

After you understand how these functions behave, and are able to improve their
performance, you can proceed to analyzing the functions that consume less CPU.

When your application islarge, the function call tree will also be large. As aresult, the
functions that are the most CPU-intensive might be difficult to see in the function call
tree. To avoid this situation, use the Filter by CPU option of the Filter menu, which lets
you display only the function boxes for the functions that consume the most CPU time.,
After you have done this, the Function menu for each function lets you add the parent
and descendant function boxes to the function call tree. By doing this, you create a
smaller, ssimpler function call tree that displays the function boxes associated with the
most CPU-intensive area of the application.

A child function is one that is directly called by the function of interest. To see only the
function boxes for the function of interest and its child functions, do the following:

1. Place your mouse cursor over the function box in which you are interested, and
press the right mouse button. The Function menu appears.

2. From the Function menu, select the Immediate Children option, and then the
Show Child Functions Only option. Xprof erases the current display and
replaces it with only the function boxes for the function you chose, as well asits
child functions.

A parent function is one that directly calls the function of interest. To see only the
function box for the function of interest and its parent functions, do the following:

1. Place your mouse cursor over the function box in which you are interested, and
press the right mouse button. The Function menu appears.

2. From the Function menu, select the Immediate Parents option, and then the
Show Parent Functions Only option. Xprof erases the current display and
replaces it with only the function boxes for the function you chose, as well asits
parent functions.

Y ou might want to view the function boxes for both the parent and child functions of the
function in which you are interested, without erasing the rest of the function call tree.
Thisis especidly trueif you chose to display the function boxes for two or more of the
most CPU-intensive functions with the Filter by CPU option of the Filter menu (you
suspect that more than one function is consuming too much CPU). Do the following:

81

IBM High Performance Computing Toolkit

1. Place your mouse cursor over the function box in which you are interested, and
press the right mouse button. The Function menu appears.

2. From the Function menu, select the Immediate Parents option, and then the
Add Parent Functions to Tree option. Xprof |eaves the current display asit is,
but adds the parent function boxes.

3. Place your mouse cursor over the same function box and press the right mouse
button. The Function menu appears.

4. From the Function menu, select the Immediate Children option, and then the
Add Child Functions to Tree option.

Xprof leaves the current display asit is, but now adds the child function boxesin
addition to the parents.

Clustering Libraries

When you first open the Xprof window, by default, the function boxes of your
executable file, and the libraries associated with it, are clustered. Because Xprof shrinks
the call tree of each library when it placesit in a cluster, you must uncluster the function
boxesif you want to look closely at a specific function box label.

Y ou can see much more detail for each function, when your display isin the unclustered
or expanded state, than when it isin the clustered or collapsed state. Depending on what
you want to do, you must cluster or uncluster (collapse or expand) the display.

The Xprof window can be visually crowded, especially if your application calls functions
that are within shared libraries; function boxes representing your executable functions as
well as the functions of the shared libraries are displayed. As aresult, you might want to
organize what you see in the Xprof window so you can focus on the areas that are most
important to you. Y ou can do this by collecting all the function boxes of each library in to
asingle area, known as alibrary cluster.

The following figure shows an application with its function boxes unclustered.

82

IBM High Performance Computing Toolkit

File Yiew Filter Report Utility

~ i El
-

Progran: frog Total CPU Usage: 0.13 seconds {sunnary of 1 gnon.out profile files}
Display Status: showing 57 out of 57 nodes and 78 out of 78 arcs

Figure 47. The Xprof main window with functions unclustered.

Clustering Functions

If the functions within your application are unclustered, you can use an option of the
Filter menu to cluster them. To do this, select the Filter menu and then the Cluster
Functions by Library option. The libraries within your application appear within their
respective cluster boxes.

After you cluster the functionsin your application you can further reduce the size (also
referred to as collapse) of each cluster box by doing the following:

1. Place your mouse cursor over the edge of the cluster box and press the right
mouse button. The Cluster Node menu appears.

2. Select the Collapse Cluster Node option. The cluster box and its contents now

appear as asmall solid green box. In the following figure, the
/Nlib/profiled/libe.a:shr.o library is collapsed.

83

IBM High Performance Computing Toolkit

File Yiew Filter Report Utility
AR
Frpg
9584
flib/profiled/libe,asshr,0
7]
~ I El
= I
Progran: frog Total CPU Usage: 0.13 seconds {sunnary of 1 gnon.out profile files}
Display Status: showing 57 out of 57 nodes and 78 out of 78 arcs

Figure 48. The Xprof main window with one library cluster box collapsed.

To return the cluster box to its original condition (expand it), do the following:

1. Place your mouse cursor over the collapsed cluster box and press the right mouse
button. The Cluster Node menu appears.

2. Select the Expand Cluster Node option. The cluster box and its contents appear
again.

Unclustering Functions

If the functions within your application are clustered, you can use an option of the Filter
menu to uncluster them. To do this, select the Filter menu, and then the Uncluster
Functions option. The cluster boxes disappear and the functions boxes of each library
expand to fill the Xprof window.

IBM High Performance Computing Toolkit

If your functions have been clustered, you can remove one or more (but not all) cluster
boxes. For example, if you want to uncluster only the functions of your executable file,
but keep its shared libraries within their cluster boxes, you would do the following:

1. Place your mouse cursor over the edge of the cluster box that contains the
executable and press the right mouse button. The Cluster Node menu appears.

2. Select the Remove Cluster Box option. The cluster box is removed and the
function boxes and call arcs that represent the executabl e functions, now appear in
full detail. The function boxes and call arcs of the shared libraries remain within
their cluster boxes, which now appear smaller to make room for the unclustered
executable function boxes. The following figure shows an application with its
cluster box removed. Its shared library remains within its cluster box.

File Yiew Filter Report Utility

/

=l ! -
| T
Progran: frog Total CPU Usage; 0,13 seconds {summary of 1 gnon,out profile files)

Display Status: showing 25 out of 57 nodes and 43 out of 78 arcs

Figure 49. The Xprof main window with one library cluster box removed.

85

IBM High Performance Computing Toolkit

Locating Specific Objects in the Function Call Tree

If you are interested in one or more specific functions in a complex program, you might
need help locating their corresponding function boxesin the function call tree.

If you want to locate a single function, and you know its name, you can use the Locate
Function By Name option of the Utility menu. To locate a function by name, do the
following:

1. Select the Utility menu, and then the Locate Function By Name option. The
Search By Function Name Dialog window appears.

2. Typethe name of the function you want to locate in the Enter function name
field. The function name you type here must be a continuous string (it cannot
include blanks). Regular expressions are supported.

3. Click OK or Apply. The corresponding function box is highlighted (its color
changesto red) in the function call tree and Xprof zoomsin onitslocation. To
display the function call treein full detail again, go to the View menu and use the
Overview option.

Y ou might want to see only the function boxes for the functions that you are concerned
with, in addition to other specific functionsthat are related to it. For example, if you want
to see all the functions that directly called the function in which you are interested, it
might not be easy to separate these function boxes when you view the entire cal tree.

Y ou would want to display them, as well as the function of interest, alone.

Each function has its own menu. Through the Function menu, you can choose to see the
following for the function you are interested in:
e Parent functions (functions that directly call the function of interest)
e Child functions (functions that are directly called by the function of interest)
e Ancestor functions (functions that can call, directly or indirectly, the function of
interest)
e Descendant functions (functions that can be called, directly or indirectly, by the
function of interest)
e Functionsthat belong to the same cycle

When you use these options, Xprof erases the current display and replaces it with only
the function boxes for the function of interest and all the functions of the type you
specified.

Locating and Displaying Parent Functions

A parent is any function that directly calls the function in which you are interested. To
locate the parent function boxes of the function in which you are interested:

1. Click the function box of interest with the right mouse button. The Function
menu appears.

86

IBM High Performance Computing Toolkit

2. From the Function menu, select Immediate Parents then Show Parent Functions
Only. Xprof redraws the display to show you only the function boxes for the
function of interest and its parent functions.

Locating and Displaying Child Functions

A child isany function that is directly called by the function in which you are interested.
To locate the child functions boxes for the function in which you are interested:

1. Click the function box of interest with the right mouse button. The Function
menu appears.

2. From the Function menu, select Immediate Children then Show Child
Functions Only. Xprof redraws the display to show you only the function boxes
for the function of interest and its child functions.

Locating and Displaying Ancestor Functions

An ancestor is any function that can call, directly or indirectly, the function in which you
are interested. To locate the ancestor functions:

1. Click the function box of interest with the right mouse button. The Function
menu appears.

2. From the Function menu, select All Paths To then Show Ancestor Functions
Only. Xprof redraws the display to show you only the function boxes for the
function of interest and its ancestor functions.

Locating and Displaying Descendant Functions

A descendant is any function that can be called, directly or indirectly, by the function in
which you are interested. To locate the descendant functions (all the functions that the
function of interest can reach, directly or indirectly):

1. Click the function box of interest with the right mouse button. The Function
menu appears.

2. From the Function menu, select All Paths From then Show Descendant
Functions Only. Xprof redraws the display to show you only the function boxes
for the function of interest and its descendant functions.

Locating and Displaying Functions on a Cycle

To locate the functions that are on the same cycle as the function in which you are
interested:

1. Click the function box of interest with the right mouse button. The Function
menu appears.

87

IBM High Performance Computing Toolkit

2. From the Function menu, select All Functions on the Cycle then Show Cycle
Functions Only. Xprof redraws the display to show you only the function of
interest and all the other functions on its cycle.

Obtaining Performance Data for Your Application

With Xprof, you can get performance data for your application on a number of levels,
and in anumber of ways. You can easily view data pertaining to asingle function, or you
can use the reports provided to get information on your application as awhole.

Obtaining Basic Data

Xprof makesit easy to get data on specific items in the function call tree. After you have
located the item you are interested in, you can get data a number of ways. If you are
having trouble locating a function in the function call tree, see L ocating Specific Objects
in the Function Call Tree.

Understanding Basic Function Data

Below each function box in the function call treeis alabel that contains basic
performance data, similar to the following:

.subl ¢(cycle 1> [5]

Figure 50. An example of a function box label.

The label contains the name of the function, its associated cycle, if any, and itsindex. In
the preceding figure, the name of the function is subl. It is associated with cycle 1, and
itsindex is 5. Also, depending on whether the function call tree is viewed in summary
mode or average mode, the label will contain different information.

If the function call treeis viewed in summary mode, the label will contain the following
information:

e Thetotal amount of CPU time (in seconds) this function spent on itself plus the
amount of CPU time it spent on its descendants (the number on the left of the x).

88

IBM High Performance Computing Toolkit

e The amount of CPU time (in seconds) this function spent only on itself (the
number on the right of the x).

If the function call treeisviewed in average mode, the label will contain the following
information:
e Theaverage CPU time (in seconds), among al the input gmon.out files, used on
the function itself
e The standard deviation of CPU time (in seconds), among al the input gmon.out
files, used on the function itself

For more information about summary mode and average mode, see Controlling the
Representation of the Function Call Tree.

Because |abels are not always visible in the Xprof window when it is fully zoomed out,
you might need to zoom in on it in order to see the labels. For information about how to
do this, see Information Boxes.

Understanding Basic Call Data

Call arc labels appear over each call arc. The label indicates the number of calls that were
made between the two functions (from caller to callee). For example, in the screen
capture below, there are three arcs pointing to afunction box. Each arc hasa call arc label
that indicates the number of calls that were made between the two functions, and in this
examplethe arc labelsare 3, 4, and 4.

Figure 51. An example of a call arc label.

Toseeacal arclabel, you can zoom in on it. For information about how to do this, see
Information Boxes.

Basic Cluster Data

Cluster box labels indicate the name of the library that is represented by that cluster. If it
isashared library, the label showsitsfull path name.

Understanding | nformation Boxes

89

IBM High Performance Computing Toolkit

For each function box, call arc, and cluster box, a corresponding information box gives
you the same basic data that appears on the label. Thisis useful when the Xprof display
isfully zoomed out and the labels are not visible. To access the information box, click on
the function box, call arc, or cluster box (place the mouse pointer over the edge of the
box) with the left mouse button. The information box appears.

For afunction, the information box contains the following:

e The name of the function, its associated cycle, if any, and itsindex.

e Theamount of CPU used by this function. There are two values supplied in this
field. Thefirst isthe amount of CPU time spent on this function plus the time
spent on its descendants. The second val ue represents the amount of CPU time
this function spent only on itself.

e The number of times this function was called (by itself or any other functionin
the application).

For acall, the information box contains the following:
e Thecaler and callee functions (their names) and their corresponding indexes
e The number of times the caller function called the callee

For acluster, the information box contains the following:
e The name of thelibrary
e Thetotal CPU usage (in seconds) consumed by the functions within it

Using the Function Menu Statistics Report Option

Y ou can get performance statistics for a single function through the Statistics Report
option of the Function menu. This option lets you see data on the CPU usage and call
counts of the selected function. If you are using more than one gmon.out file, the
Statistics Report option breaks down the statistics for each gmon.out file you use.

When you select the Statistics Report menu option, the Function Level Statistics Report
window appears.

90

IBM High Performance Computing Toolkit

Function Level Statistics Report

File
Function Mame: conpute s
Sunnary Data: {sunnary of 1 gnon.out profile files}
CPU Usage: 0,02 seconds {self+desc} = 0,02 seconds {(self}
Call Counts: 3 tines {call itself+being called)}
Statistics Data: {statistics of 1 gnon.out profile files?
CPU Usage {self}:
Average = 00,0200 seconds
Std Dev = 0,000 zeconds
Haximnun = 0,02 seconds in file “gnon,out™
Hinimun = 0,02 seconds in file “gnon,out™
Call Counts:
Being Called:
Average = 3,00 tines
5td Dev = 0.00 tines
Haximun = 3 times in file "gnon.out™
Hinimun = 3 times in file "gnon.out™ =
£
| 3] =
Search Engine: {regular expresszions supported)

Figure 52. The Function Level Statistics Report window.

The Function Level Statistics Report window provides the following information:

Function Name
The name of the function you selected.

Summary Data

The total amount of CPU used by this function. If you used multiple gmon.out files, the
value shown here represents their sum.

The CPU Usage field indicates:

e Theamount of CPU time used by this function. There are two values supplied in
thisfield. Thefirst is the amount of CPU time spent on this function plus the time
spent on its descendants. The second val ue represents the amount of CPU time
this function spent only on itself.

The Call Countsfield indicates:
e The number of times this function called itself, plus the number of timesit was
called by other functions.

Statistics Data

The CPU usage and calls made to or by this function, broken down for each gmon.out
file.

91

IBM High Performance Computing Toolkit

The CPU Usage field indicates:
e Average
The average CPU time used by the data in each gmon.out file.

e Std Dev
Standard deviation. A value that represents the difference in CPU usage
samplings, per function, from one gmon.out file to another. The smaller the
standard deviation, the more balanced the workload.

e Maximum
Of all the gmon.out files, the maximum amount of CPU time used. The
corresponding gmon.out file appears to the right.

e Minimum
Of all the gmon.out files, the minimum amount of CPU time used. The
corresponding gmon.out file appears to the right.

The Call Countsfield indicates:
e Average
The average number of calls made to this function or by this function, for each
gmon.out file.

e Std Dev
Standard deviation. A value that represents the differencein call count sampling,
per function, from one gmon.out file to another. A small standard deviation value
in this field means that the function was almost always called the same number of
timesin each gmon.out file.

e Maximum
The maximum number of calls made to this function or by thisfunctionina
single gmon.out file. The corresponding gmon.out file appears to the right.

e Minimum
The minimum number of calls made to this function or by this functionin asingle
gmon.out file. The corresponding gmon.out file appears to the right.

Getting Detailed Data from Reports
Xprof provides performance data in textual and tabular format. This datais provided in

various tables called reports. Similar to the gprof command, Xprof generates the Flat
Profile, Call Graph Profile, and Function Index reports, as well as two additional reports.

Y ou can access the Xprof reports from the Report menu. The Report menu displays the
following reports:

e Flat Profile

e Call Graph Profile

92

IBM High Performance Computing Toolkit

e Function Index
e Function Call Summary
o Library Statistics

Each report window includes a File menu. Under the File menu is the Save As option,
which lets you save the report to afile. For information about using the Save File Dialog
window to save areport to afile, see Saving the Call Graph Profile, Function Index, and
Flat Profile reportsto afile.

Note: If you select the Save As option from the Flat Profile, Function Index, or Function
Call Summary report window, you must either complete the save operation or cancel it
before you can select any other option from the menus of these reports. Y ou can,

however, use the other Xprof menus before completing the save operation or canceling it,
with the exception of the Load Files option of the File menu, which remains unavailable.

Each of the Xprof reports are explained as follows.

Understanding the Flat Profile Report

When you select the Flat Profile menu option, the Flat Profile window appears. The Flat
Profile report shows you the total execution times and call counts for each function
(including shared library calls) within your application. The entries for the functions that
use the greatest percentage of the total CPU usage appear at the top of the list, while the
remaining functions appear in descending order, based on the amount of time used.

Unless you specified the -z flag, the Flat Profile report does not include functions that
have no CPU usage and no call counts. The data presented in the Flat Profile window is
the same data that is generated with the gprof command.

The Flat Profile report looks similar to the following:

93

Flat Profile

IBM High Performance Computing Toolkit

File Code Display Utility
cunulative self self total
Ktine seconds seconds calls ns/call nsfcall nane

84.6 0,11 0,11 29655 0,00 0,00 ,pow [3] AR Al
15.4 0,13 0,02 3 6,67 6.67 .conpute [3] frogl.c
0,0 0,13 0,00 9885 0,00 0,00 ,expinner2 [23] o L e
0,0 0,13 0,00 9885 0,00 0,00 ,loginner2 [24]1 A e 7 S O
0,0 0,13 0,00 9884 0,00 0,00 ,_Errno [25] e ey e e
0,0 0,13 0,00 3000 0,00 0,00 ,conpute? [261 frogl.c
0,0 0,13 0,00 15 0,00 0,00 furite [271] i ol AT e e U
0,0 0,13 0,00 15 0,00 0,00 ,furite_b_4 [2B8] ey e e
0,0 0,13 0,00 15 0,00 0,00 ,furite_unlocked [291 st aaliestiad vataats
0,0 0,13 0,00 15 0,00 0,00 _.nenchr [30] i ot i T e S U
0,0 0,13 0,00 b 0,00 0,00 ,_doprnt [311 alnnlinlinat vatisat
0,0 0,13 0,00 b 0,00 0,00 ,_xflsbuf [321 A ey e e
0,0 0,13 0,00 6 0,00 0,00 ,_uxwrite [33] i ot i A S
0,0 0,13 0,00 B 0,00 0,00 nf2x2 [34]1 vl mnlinlinnd vat watn
0,0 0,13 0,00 b 0,00 0,00 ,printf [351 ol nntinslinat vutizata
0,0 0,13 0,00 b 0,00 0,00 ,write [36]1 P T e e G
0,0 0,13 0,00 3 0,00 0,00 ,__nl_langinfo_std [371 .. /.. ../ ..77.
0,0 0,13 0,00 3 0,00 0,00 ,nyecvt [381 el malinslinat vatizata
0,0 0,13 0,00 3 0,00 0,00 ,nl_langinfo [39] el wntiastinad vutisata
0,0 0,13 0,00 3 0,00 0,00 .nsleep [40] PO U SR O e O Al

J=d | P

Search Engine; {regular expressions supported)

Figure 53. The Flat Profile window.

Flat Profile window fields

The Flat Profile window contains the following fields:
e %time
The percentage of the program's total CPU usage that is consumed by this
function.

e cumulative seconds
A running sum of the number of seconds used by this function and those listed
aboveit.

e self seconds
The number of seconds used by this function alone. Xprof uses the self seconds
values to sort the functions of the Flat Profile report.

e cals
The number of times this function was called (if this function is profiled).
Otherwise, it is blank.

e saf me/cal

The average number of milliseconds spent in this function per call (if thisfunction
is profiled). Otherwise, it is blank.

94

IBM High Performance Computing Toolkit

e total mg/call
The average number of milliseconds spent in this function and its descendants per
call (if thisfunction is profiled). Otherwise, it is blank.

e name
The name of the function. The index appearsin brackets ([]) to the right of the
function name. The index serves as the function's identifier within Xprof. It also
appears below the corresponding function in the function call tree.

Understanding the Call Graph Profile Report

The Call Graph Profile menu option lets you view the functions of your application,
sorted by the percentage of total CPU usage that each function, and its descendants,
consumed. When you select this option, the Call Graph Profile window appears.

Unless you specified the -z flag, the Call Graph Profile report does not include functions
whose CPU usageis 0 (zero) and have no call counts. The data presented in the Call
Graph Profile window is the same data that is generated with the gprof command.

The Call Graph Profile report looks similar to the following:

Call Graph Profile

File
called/total parents
index *tine gelf descendents called+szelf nane index
called/total children
0,00 0,13 1/1 +——start [2] j
[11 100,10 0,00 0,13 1 Lmain [11
0,00 0,09 1/1 frog2_f1 [4]1
0,00 0,03 1/1 Ltoad3_f1 [7]
0,00 0,01 1/1 Ltoadl_f1 [12]1
<zpontaneous>
[21 1000 0,00 0,13 +—=start [2]
0,00 0,13 1/1 +nain [1]
0,00 0,00 1/1 .exit [50]
0,00 0,00 225729655 Ltoad3i_f2 [14]1
0,00 0,00 225/29655 Ltoad3i_f3 [161
0,00 0,00 225/29655 Ltoadi_f5 [221
0,00 0,00 225/29655 .toad3_f4 [21]
0,00 0,00 225/29655 .toad3_f6 [18]1
0,00 0,00 225729655 Ltoadl_f1 [12]1
0,00 0,00 225729655 Ltoadl_f2 [13] /
| 3] =
Search Engine; {regular expressions supported)

Figure 54. The Call Graph Profile window.

Call Graph Profile window fields

The Call Graph Profile window contains the following fields:
e index

95

IBM High Performance Computing Toolkit

The index of the function in the Call Graph Profile. Each function in the Call
Graph Profile has an associated index number which serves as the function's
identifier. The same index also appears with each function box label in the
function call tree, aswell as other Xprof reports.

%time
The percentage of the program's total CPU usage that was consumed by this
function and its descendants.

self
The number of seconds this function spends within itself.

descendants
The number of seconds spent in the descendants of this function, on behalf of this
function.

called/total, called+self, called/total
The heading of this column refers to the different kinds of calls that take place
within your program. The valuesin thisfield correspond to the functionslisted in
the name, index, parents, children field to its right. Depending on whether the
function is a parent, a child, or the function of interest (the function with the index
listed in the index field of this row), this value might represent the number of
times that:

e aparent caled the function of interest

e thefunction of interest called itself, recursively

e thefunction of interest called a child

In the following figure, sub2 isthe function of interest, sub1 and main are its
parents, and printf and sub1 are its children.

called/total parents
called+zelf Name index
called/total children
1 .=ubl <cycle 1> [5]
1/2 main [3]
2 =ub2 <{eycle 1> [2]
4/11 printf [72]
1 .=ubl <cycle 1> [5]

Figure 55. The called/total, call/self, called/total field of the Call Graph Profile window.

called/total
For a parent function, the number of calls made to the function of interest, as well
asthe total number of callsit madeto all functions.

called+self

96

IBM High Performance Computing Toolkit

The number of times the function of interest called itself, recursively.

name, index, parents, children

The layout of the heading of this column indicates the information that is
provided. To the left is the name of the function, and to itsright is the function's
index number. Appearing above the function are its parents, and below are its
children.

parents
name index
children

.subl <cycle 1> [5]
.main [3]

.sub2 <cycle 1> [2]
grintf [72]
.subl <cycle 1> [5]

Figure 56. The name/index/parents/children field of the Call Graph Profile window.

name

The name of the function, with an indication of its membership in acycle, if any.
The function of interest appears to the left, while its parent and child functions are
indented above and below it.

index

The index of the function in the Call Graph Profile. This number corresponds to
the index that appears in the index column of the Call Graph Profile and the on
the function box labelsin the function call tree.

parents
The parents of the function. A parent is any function that directly calls the
function in which you are interested.

If any portion of your application was not compiled with the -pg flag, Xprof
cannot identify the parents for the functions within those portions. As aresult,
these parents will be listed as spontaneous in the Call Graph Profile report.

children
The children of the function. A child is any function that is directly called by the
function in which you are interested.

Understanding the Function Index Report

The Function Index menu option lets you view alist of the function namesincluded in
the function call tree. When you select this option, the Function Index window appears
and displays the function names in alphabetical order. To the left of each function name

97

IBM High Performance Computing Toolkit

isitsindex, enclosed in brackets ([]). The index is the function'sidentifier, which is
assigned by Xprof. Anindex also appears on the label of each corresponding function
box in the function call tree, as well as on other reports.

Unless you specified the -z flag, the Function Index report does not include functions that
have no CPU usage and no call counts.

Like the Flat Profile menu option, the Function Index menu option includes a Code
Display menu, so you can view source code or disassembler code. See Looking at Y our
Code for more information.

The Function Index report looks similar to the following:

File Code Display Utility

L-|

[10]1 .frog2_fd [10]
[111 .froge2_f5 [111
[8]1 .frog2_f6 [B]
[27]1 .furite [27]
[28]1 .furite_5_d [28]
[29] .furite_unlocked [29]
[51]1 ,ioctl [511
[521 ,isatty [521
[24]1 .loginner2 [24]
[1]1 .main [11]
[30]1 ,menchr [30]
[34] .mf2x2 [34]
[53] .moncontrol [531]
[54] .monitor [5d4]
[38]1 .myecvt [381
[39]1 ,.nl_langinfo [391
[40]1 .nsleep L[40]
[3]1 .povw [3]
[55]1 ,pre_ioctl [551]
[35]1 ,printf [35]1
[41]1 .splay [411]

Search Engine; {regular expressions supported}

Figure 57. The Function Index window.

Understanding the Function Call Summary Report

The Function Call Summary menu option lets you display all the functionsin your
application that call other functions. They appear as caller-callee pairs (call arcs, in the
function call tree), and are sorted by the number of calls in descending order. When you
select this option, the Function Call Summary window appears.

The Function Call Summary report looks similar to the following:

98

IBM High Performance Computing Toolkit

File Utility
¥total calls function
15.83% 9885 calls fron .pow [3] to .loginner2 [24] |AA
15.83% 9885 calls fron .pow [3]1 to .edpinner2 [23]
15,.82% 9884 calls fron ,expinner2 [23]1 to ,_Errno [251
7,493 4680 calls fron ,toad3_f1 [7] to .pow [3]
B, 00 3750 calls fron .frog2_fl [4] to .pow [3]
B, 00 3750 calls fron .frog2_f2 [5] to .pow [3]
B, 00 3750 calls fron ,frog2_f6 [B] to ,pow [31]
B, 003 3750 calls fron .frog2_fd4 [10] to .pow [31]
B, 00 3750 calls fron .frog2_f5 [11]1 to .pow [3]
B, 00 3750 calls fron .frog2_f3 [6] to .pow [31]
q,80% 3000 calls fron ,conpute [9] to .conpute2 [26]
0,36% 226 calls fron ,toadl_f6 [17]1 to ,.pow [3]
0,362 226 calls fron .toadl_f1 [12]1 to .pow [3]
0,362 225 calls fron .toadl_f2 [13]1 to .pow [3]
0,36% 225 calls fron ,toad3_f2 [14]1 to ,pow [3]
0,36% 226 calls fron ,toad3_f3 [16]1 to ,pow [3]
0,362 226 calls fron .toadl_f5 [20] to .pow [3]
0,362 225 calls fron .toadl_f4 [19] to .pow L[3]
0,36% 225 calls fron ,toad3_f4 [21]1 to ,pow [3]
0,36% 226 calls fron ,toad3_f6 [18]1 to ,pow [3]
0,362 22h calls fron .toadl_f3 [15]1 to .pow L[3] d
Search Engine:; {regular expressions supported}

Figure 58. The Function Call Summary window.

Function Call Summary window fields

The Function Call Summary window contains the following fields:
o Optotal
The percentage of the total number of calls generated by this caller-callee pair

e cals
The number of calls attributed to this caller-callee pair

e function
The name of the caller function and callee function

Understanding the Library Statistics Report

The Library Statistics menu option lets you display the CPU time consumed and call
counts of each library within your application. When you select this option, the Library
Statistics window appears.

The Library Statistics report looks similar to the following:

99

IBM High Performance Computing Toolkit

24 Library Statistics

File
total Htotal total Xtotal (calls ¥calls Xcalls load
seconds tine calls calls out of into within unit
0,13 100,00 52447 83.97 15.84 0,00 83.97 frog |
0,00 0,00 10015 16,03 0,00 15,84 0,19 /lib/profiled/libc,a ; shr.o
000 000 HA — 000 — — Jfusr/lib/libcrypt.a : shr.o

Search Engine; {regular expressions supported)

Figure 59. The Library Statistics window.

Library Statistics window fields
The Library Statistics window contains the following fields:

total seconds
Thetotal CPU usage of the library, in seconds

%total time
The percentage of the total CPU usage that was consumed by this library

total calls
The total number of calls that this library generated

%total calls
The percentage of the total callsthat thislibrary generated

%calls out of

The percentage of the total number of calls made from this library to other
libraries

%callsinto

The percentage of the total number of calls made from other librariesin to this
library

100

IBM High Performance Computing Toolkit

e %callswithin
The percentage of the total number of calls made between the functions within
thislibrary

e load unit
Thelibrary's full path name

Saving Reportsto a File

Xprof lets you save any of the reports you generate with the Report menu to afile. You
can do this using the File and Report menus of the Xprof GUI.

Saving a single report

To save asingle report, go to the Report menu on the Xprof main window and select the
report you want to save. Each report window includes a File menu. Select the File menu
and then the Save As option to save the report. A Save dialog window appears, which is
named according to the report from which you selected the Save As option. For example,
if you chose Save As from the Flat Profile window, the save window is named Save Flat
Profile Dialog.

Saving the Call Graph Profile, Function Index, and Flat Profile reports to a file

Y ou can save the Call Graph Profile, Function Index, and Flat Profile reportsto asingle
file through the File menu of the Xprof main window. The information you generate here
isidentical to the output of the gprof command. From the File menu, select the Save As
option. The Save Profile Reports Dialog window appears.

To save the reports, do the following:

1. Specify thefilein to which the profiled data should be placed. Y ou can specify
either an existing file or anew one. To specify an existing file, use the scroll bars
of the Directories and Files selection boxes to locate the file. To make locating
your files easier, you can also use the Filter button (see Filtering what Y ou See
for more information). To specify anew file, type its name in the Selection field.

2. Click OK. A file that contains the profiled data appears in the directory you
specified, under the name you gave it.

Note: After you select the Save As option from the File menu and the Save Profile
Reports window opens, you must either complete the save operation or cancel it before
you can select any other option from the menus of its parent window. For example, if you
select the Save As option from the Flat Profile report window and the Save Flat Profile
window appears, you cannot use any other option of the Flat Profile report window.

The File Selection field of the Save File Dialog windows follows Motif standards.

Saving summarized data from multiple profile data files

101

IBM High Performance Computing Toolkit

If you are profiling a parallel program, you can specify more than one profile data
(gmon.out) file when you start Xprof. The Save gmon.sum As option of the File menu
lets you save a summary of the datain each of thesefilesto asinglefile.

The Xprof Save gmon.sum As option produces the same result as the Xprof -s
command and the gprof -s command. If you run Xprof later, you can use the file you
create here as input with the -s flag. In thisway, you can accumulate summary data over
several runs of your application.

To create asummary file, do the following:

1. Select the File menu, and then the Save gmon.sum As option. The Save
gmon.sum Dialog window appears.

2. Specify thefilein to which the summarized, profiled data should be placed. By
default, Xprof puts the datain to afile called gmon.sum. To specify anew file,
type its name in the Selection field. To specify an existing file, use the scroll bars
of the Directories and Files selection boxesto locate the file you want. To make
locating your files easier, you can aso use the Filter button (see Filtering what
Y ou See for information).

3. Click OK. A file that contains the summary data appears in the directory you
specified, under the name you specified.

Saving a configuration file

The Save Configuration menu option lets you save the names of the functions that are
displayed currently to afile. Later, in the same Xprof session or in adifferent session,
you can read this configuration file in using the Load Configuration menu option. For
more information, see Loading a configuration file.

To save a configuration file, do the following:

1. Select the File menu, and then the Save Configuration option. The Save
Configuration File dialog window opens with the program.cfg file as the default
value in the Selection field, where program is the name of the input a.out file.

Y ou can use the default file name, enter afile namein the Selection field, or
select afile from thefilelist.

2. Specify afile namein the Selection field and click OK. A configuration fileis
created that contains the name of the program and the names of the functions that
are displayed currently.

3. Specify an existing file name in the Selection field and click OK. An Overwrite
File Dialog window appears so that you can check the file before overwriting it.

102

IBM High Performance Computing Toolkit

If you selected the Forces File Overwriting option in the Runtime Options Dialog
window, the Overwrite File Dialog window does not open and the specified fileis
overwritten without warning.

Loading a configuration file

The Load Configuration menu option lets you read in a configuration file that you saved.
See Saving a configuration file for more information. The Load Configuration menu
option automatically reconstructs the function call tree according to the function names
recorded in the configuration file.

To load a configuration file, do the following:

1. Select the File menu, and then the Load Configuration option. The Load
Configuration File Dialog window opens. If configuration files were loaded
previously during the current Xprof session, the name of the file that was most
recently loaded will appear in the Selection field of this dialog.

Y ou can also load the file with the -¢ flag. For more information, see Specifying
Command Line Options (from the GUI).

2. Select aconfiguration file from the dialog's Files list or specify afile name in the
Selection field and click OK. The function call tree is redrawn to show only those
function boxes for functions that are listed in the configuration file and are called
within the program that is currently represented in the display. All corresponding
call arcs are also drawn.

If the a.out name, that is, the program name in the configuration file, is different
from the a.out name in the current display, a confirmation dialog asks you
whether you still want to load the file.

3. If after loading a configuration file, you want to return the function call treeto its
previous state, select the Filter menu, and then the Undo option.

Looking at Your Code

Xprof provides several ways for you to view your code. Y ou can view the source code or
the disassembler code for your application, for each function. This also appliesto any
included function code that your application might use.

To view source or included function code, use the Source Code window. To view
disassembler code, use the Disassembler Code window. Y ou can access these windows
through the Report menu of the Xprof GUI or the Function menu of the function you
are interested in.

Viewing the Source Code

Both the Function menu and Report menu permits you to access the Source Code
window, from which you can view your code.

103

IBM High Performance Computing Toolkit

1. To accessthe Source Code window through the Function menu:

2. Click the function box you are interested in with the right mouse button. The
Function menu appears.

From the Function menu, select the Show Source Code option. The Source Code
window appears.

To access the Source Code window through the Report menu:

1. Select the Report menu, and then the Flat Profile option. The Flat Profile
window appears.

2. From the Flat Profile window, select the function you would like to view by
clicking on its entry in the window. The entry is highlighted to show that it is
selected.

3. Select the Code Display menu, and then the Show Source Code option. The
Source Code window appears, containing the source code for the function you
selected.

Using the Source Code window

The Source Code window shows you the source code file for the function you specified
from the Flat Profile window or the Function menu. The Source Code window |ooks
similar to the following:

104

IBM High Performance Computing Toolkit

2 Source Code for frog0.c

Huiiity

no, ticks
per line source code

1|

double compute{double in}
H

double =
double
double
int 1 =
int j =

N @

-

e]I
[———
P

e
LR TR

for (i=03 i< 500; i++) £
K=i+in:
1 for {j=03 j< DO0; jJesd £
y=j3
Z=HEYF
1 if {=>2000000000) f
z=z/{utyd;
¥ else £
z=conpute?{z, in};
3

Jd

Search Engine: {regular expressions supported}

‘conpute

Figure 60. The Source Code window.

The Source Code window contains information in the following fields:

line
The source code line number.

no. ticks per line

Each tick represents .01 seconds of CPU time used. The value in thisfield
represents the number of ticks used by the corresponding line of code. For
example, if the number 3 appeared in thisfield, for a source statement, this source
statement would have used .03 seconds of CPU time. The CPU usage data only
appearsin thisfield if you used the -g flag when you compiled your application.
Otherwise, thisfield is blank.

source code
The application’s source code.

The Source Code window contains the following menus:

File

The Save As option lets you save the annotated source code to afile. When you
select this option, the Save Source Code dialog window appears. For more
information about using the Save Source Code dialog window, see Saving the
Call Graph Profile, Function Index, and Flat Profile reports to afile.

To close the Source Code window, select the Close option from the File menu.

105

IBM High Performance Computing Toolkit

e Utility
This menu contains the Show Included Functions option.

For C++ users, the Show Included Functions option lets you view the source code of
included function files that are included by the application’s source code.

If a selected function does not have an included function file associated with it or does
not have the function file information available because the -g flag was not used for
compiling, the Utility menu will be unavailable. The availability of the Utility menu
indicates whether there is any included function-file information associated with the
selected function.

When you select the Show Included Functions option, the Included Functions Dialog
window appears, which lists all of the included function files. Specify afile by either
clicking on one of the entriesin the list with the left mouse button, or by typing thefile
name in the Selection field. Then click OK or Apply. After you select afile from the
Included Functions Dialog window, the Included Function File window appears,
displaying the source code for the file that you specified.

Viewing the Disassembler Code

Both the Function menu and Report menu permit you to access the Disassembler Code
window, from which you can view your code.

To access the Disassembler Code window through the Function menu, do the following:

1. Click the function you are interested in with the right mouse button. The
Function menu appears.

2. From the Function menu, select the Show Disassembler Code option. The
Disassembler Code window appears.

To access the Disassembler Code window through the Report menu, do the following:

1. Select the Report menu, and then the Flat Profile option. The Flat Profile
window appears.

2. From the Flat Profile window, select the function you want to view by clicking
on its entry in the window. The entry is highlighted to show that it is selected.

3. Select the Code Display menu, and then the Show Disassembler Code option.

The Disassembler Code window appears, and contains the disassembler code for
the function you selected.

Using the Disassembler Code window

106

IBM High Performance Computing Toolkit

The Disassembler Code window shows you only the disassembler code for the function
you specified by using the Report menu or the Function menu. The Disassembler Code
window looks similar to the following:

isassembler Code for .compute [9]

File
no. ticks

address per instr, instruction assemnbler code source code
100007CC C8210040 1fd 1,0x40{1> Z=H¥YF A
10000700 C8410048 1fd 2,0xd8(1}

10000704 FC2100B2 fn 1,1,0

10000708 D8210050 stfd 1,0x50{1}

1000070C C8210050 1fd 1,0x50(1} if {=>2000000000) f
100007E0 1 COSFO014 1fs 2,0x14(31)

100007E4 FCO11000 fempu 0,1,2

100007E8 40810020 bc 0xd,1,0:8

100007EC C8210050 1fd 1,0x50(1) z=z/{n+yl;

100007F0 C8410040 1fd 2,0xd0{1}

100007F4 CB610048 1fd Z,0xd8(1>

100007F8 FC42182A fa 2,2,3

100007FC FC211024 fd 1,1,2

10000800 08210050 stfd 1,0x50{1>

10000804 48000018 b 0x6 } else §

10000808 C8210050 1fd 1,0x50{1> z=conpute2{z, in);
1000080C C8410088 1fd 2,0x88{1}

10000810 4BFFFDE1 bl OxffFFEO

10000814 FCOOO090 far 0,0

10000818 D8210050 stfd 1,0:50{1}

1000081C 1 8061005C 1 Z,0x5c({1} for Cj=0; j< D00; j#+) § d
Search Engine; {regular expressions supported}

Figure 61. The Disassembler Code window.

The Disassembler Code window contains information in the following fields:
e address
The address of each instruction in the function you selected (from either the Flat
Profile window, the Function Index window or the function call tree).

e no. ticks per instr.
Each tick represents .01 seconds of CPU time used. Thevaluein thisfield
represents the number of ticks used by the corresponding instruction. For instance,
if the number 3 appeared in thisfield, thisinstruction would have used .03
seconds of CPU time.

e instruction
The hexadecimal representation of the execution instruction.

e assembler code
The execution instruction's corresponding assembler code.

e source code

107

IBM High Performance Computing Toolkit

Thelinein your application's source code that corresponds to the execution
instruction and assembler code. In order for information to appear in thisfield,
you must have compiled your application with the -g flag.

The Search Engine field at the bottom of the Disassembler Code window |ets you search
for a specific string in your disassembler code.

The Disassembler Code window contains one menu:
e File
Select Save Asto save the annotated disassembler code to afile. When you select
this option, the Save Disassembler Code dialog appears. For information on using
the Save Disassembler Code dialog, see Saving the Call Graph Profile, Function
Index, and Flat Profile reports to afile.

To close the Disassembler Code window, select File and then Close.

Saving Screen Images of Profiled Data
The File menu of the Xprof GUI includes an option called Screen Dump that |ets you

capture an image of the Xprof main window. This option is useful if you want to save a
copy of the graphical display to refer to later. Y ou can either save theimage as afilein
PostScript® format, or send it directly to a printer.
To capture awindow image, do the following:

1. Select File and then Screen Dump. The Screen Dump menu opens.

2. From the Screen Dump menu, select Set Options. The Screen Dump Options
Dialog window appears.

108

IBM High Performance Computing Toolkit

2% Screen Du... E@@

Output To:

“ File + Printer
Postscript Output:
“ GreyShades - Color
Hunber Of Grey Shades:
w2 4 M6

Delay Before Grab:

1
N1
o | Enable Landscape
ol | Annotate Output

Default File Hane:

IFrungpruf_screenDunp.ps.0

Print Connand:

ot B ga -u -Pps

1] 4 | Eancell

Figure 62. The Screen Dump Options Dialog window.

3. Make the appropriate selections in the fields of the Screen Dump Options Dialog
window, asfollows:

Output To:
This option lets you specify whether you want to save the captured image as a
PostScript file or send it directly to a printer.

If you would like to save the image to afile, select the File button. Thisfile,
by default, is named Xprof _screenDump.ps.0, and is displayed in the Default
File Name field of this dialog window. When you select the File button, the
text in the Print Command field greys out.

To send the image directly to a printer, select the Printer button. Theimage is
sent to the printer you specify in the Print Command field of thisdialog
window. When you specify the Printer option, afile of the image is not saved.
Also, selecting this option causes the text in the Default File Name field is
made unavailable.

109

IBM High Performance Computing Toolkit

PostScript Outpuit:
This option lets you specify whether you want to capture the image in shades
of grey or in color.

If you want to capture the image in shades of grey, select the GreyShades
button. Y ou must also select the number of shades you want the image to
include with the Number of Grey Shades option, as discussed below.

If you want to capture the image in color, select the Color button.

Number of Grey Shades

This option lets you specify the number of grey shades that the captured
image will include. Select either the 2, 4, or 16 buttons, depending on the
number of shades you want to use. Typically, the more shades you use, the
longer it will take to print the image.

Delay Before Grab

This option lets you specify how much of adelay will occur between
activating the capturing mechanism and when the image is actually captured.
By default, the delay is set to one second, but you might need time to arrange
the window the way you want it. Setting the delay to alonger interval gives
you some extratime to do this. Y ou set the delay with the dider bar of this
field. The number above the slider indicates the time interval in seconds. Y ou
can set the delay to a maximum of thirty seconds.

Enable Landscape (button)

This option lets you specify that you want the output to be in landscape format
(the default is portrait). To select landscape format, select the Enable
Landscape button.

Annotate Output (button)

This option lets you specify that you would like information about how the
file was created to be included in the PostScript image file. By default, this
information is not included. To include thisinformation, select the Annotate
Output button.

Default File Name (field)

If you chose to put your output in afile, thisfield lets you specify thefile
name. The default file name is Xprof.screenDump.ps.0. If you want to
changeto a different file name, type it over the one that appearsin thisfield.

If you specify the output file name with an integer suffix (that is, the file name
ends with xxx.nn, where nn is a nonnegative integer), the suffix automatically
increases by one every time a new output file is written in the same Xprof
session.

110

IBM High Performance Computing Toolkit

e Print Command (field)
If you chose to send the captured image directly to a printer, thisfield lets you
specify the print command. The default print command is qprt -B ga -c -Pps.
If you want to use a different command, type the new command over the one
that appearsin thisfield.

4. Click OK. The Screen Dump Options Dialog window closes.

After you have set your screen dump options, you need to select the window, or portion
of awindow, you want to capture. From the Screen Dump menu, select the Select Target
Window option. A cursor that looks like a person's hand appears after the number of
seconds you specified. To cancel the capture, click the right mouse button. The hand-
shaped cursor will revert to normal and the operation will be terminated.

To capture the entire Xprof window, place the cursor in the window and then click the
left mouse button.

To capture a portion of the Xprof window, do the following:
1. Placethe cursor in the upper left corner of the area you want to capture.

2. Press and hold the middle mouse button and drag the cursor diagonally downward,
until the area you want to capture is within the rubberband box.

3. Release the middle mouse button to set the location of the rubberband box.
4. Pressthe left mouse button to capture the image.

If you chose to save the image as afile, thefileis stored in the directory that you
specified. If you chose to print the image, the image is sent to the printer you specified.

Customizing Xprof Resources

Y ou can customize certain features of an X-Window. For example, you can customize its
colors, fonts, and orientation. This section lists each of the resource variables you can set
for Xprof.

Y ou can customize resources by assigning a value to a resource name in a standard
XWindows format. Several resource files are searched according to the following
XWindows convention:

/usr/1ib/lX11/ $LANG app- def aul t s/ Xprofiler
fusr/lib/X11/ app-defaul ts/ Xprofiler
$XAPPLRESDI R/ Xpr ofi | er

$HOVE/ . Xdef aul ts

111

IBM High Performance Computing Toolkit

Optionsin the .Xdefaults file take precedence over entriesin the preceding files. This
permits you to have certain specifications apply to all usersin the app-defaults file, as
well as user-specific preferences set for each user in their SHOME/. X defaults file.

Y ou customize aresource by setting a value to aresource variable associated with that
feature. Y ou store these resource settings in afile called .Xdefaults in your home
directory. You can create this file on a server, and so customize aresource for al users.
Individual users might also want to customize resources. The resource settings are
essentially your personal preferences for how the XWindows should |ook.

For example, consider the following resource variables for a hypothetical XWindows
tool:

TOOL* Mai nW ndow. f or egr ound:
TOOL* Mai nW ndow. backgr ound:

In this example, suppose the resource variable TOOL* MainWindow.foreground controls
the color of text on the tool's main window. The resource variable
TOOL*MainWindow.background controls the background color of this same window. If
you wanted the tool's main window to have red lettering on a white background, you
would insert these linesin to the . Xdefaults file:

TOOL* Mai nW ndow. f or egr ound: red
TOOL* Mai nW ndow. backgr ound: white

Setting Xprof Resource Variables

Y ou can use the following resource variables to control the appearance and behavior of
Xprof. The values listed in this section are the defaults; you can change these values to
suit your preferences.

Controlling Fonts

To specify the font for the labels that appear with function boxes, call arcs, and cluster
boxes:

Use this resource variable: Specify this default, or a value of your
choice
*narc*font fixed

To specify the font used in textual reports:

Use thisresource variable: Specify this default, or a value of your
choice
Xprofiler*fontList rom10

Controlling the Appearance of the Xprof Main Window
To specify the size of the main window:

112

IBM High Performance Computing Toolkit

Use this resource variable:

Specify this default, or avalue of your
choice

Xprofiler* mainW.height

700

Xprofiler* mainW.width

900

To specify the foreground and background colors of the main window:

Use thisresource variable;

Specify this default, or a value of your
choice

Xprofiler*foreground

black

Xprofiler* background

light grey

To specify the number of function boxes that are displayed when you first open the

Xprof main window:

Use thisresource variable;

Specify this default, or a value of your
choice

Xprofiler* Initial DisplayGraph

5000

Y ou can use the -disp_max flag to override this value.

To specify the colors of the function boxes and call arcs of the function call tree:

Use thisresource variable;

Specify this default, or a value of your
choice

Xprofiler* defaultNodeCol or

forest green

Xprofiler* defaultArcColor

royal blue

To specify the color in which a specified function box or call arc is highlighted:

Use this resource variable:

Specify this default, or avalue of your
choice

Xprofiler* HighlightNode

red

Xprofiler* HighlightArc

red

To specify the color in which de-emphasized function boxes appear:

Use thisresource variable;

Specify this default, or a value of your
choice

Xprofiler* SuppressNode

grey

Function boxes are de-emphasized with the -e, -E, -f, and -F flags.

Controlling Variables Related to the File Menu
To specify the size of the Load Files Dialog window, use the following:

Use this resource variable:

Specify this default, or a value of your
choice

Xprofiler*|oadFile.height

785

Xprofiler*loadFile.width

725

The Load Files Dialog window is called by the Load Files option of the File menu.

113

IBM High Performance Computing Toolkit

To specify whether a confirmation dialog box should appear whenever afile will be
overwritten:

Use thisresource variable: Specify this default, or a value of your
choice
Xprofiler* OverwriteOK False

The value True would be equivaent to selecting the Set Options option from the File
menu, and then selecting the Forced File Overwriting option from the Runtime Options
Dialog window.

To specify the alternative search paths for locating source or library files:

Use this resource variable: Specify this default, or a value of your
choice
Xprofiler*fileSearchPath . (refersto the current working directory)

The value you specify for the search path is equivalent to the search path you would
designate from the Alt File Search Path Dialog window. To get to this window, choose
the Set File Search Paths option from the File menu.

To specify the file search sequence (whether the default or alternative path is searched
first):

Use thisresource variable: Specify this default, or a value of your
choice
Xprofiler*fileSearchDefault True

The value True is equivalent to selecting the Set File Search Paths from the File menu,
and then the Check default path(s) first option from the Alt File Search Path Dialog
window.

Controlling variables related to the Screen Dump option
To specify whether a screen dump will be sent to a printer or placed in afile:

Use this resource variable: Specify this default, or a value of your
choice
Xprofiler* PrintToFile True

The value True is equivalent to selecting the File button in the Output To field of the
Screen Dump Options Dialog window. Y ou access the Screen Dump Options Dialog
window by selecting Screen Dump and then Set Option from the File menu.

To specify whether the PostScript screen dump will created in color or in shades of grey:

Use this resource variable: Specify this default, or a value of your
choice
Xprofiler* ColorPscript False

The value False is equivalent to selecting the GreyShades button in the PostScript
Output area of the Screen Dump Options Dialog window. Y ou access the Screen Dump
Options Dialog window by selecting Screen Dump and then Set Option from the File
menul.

To specify the number of grey shades that the PostScript screen dump will include (if you
selected GreyShades in the PostScript Output area):

114

IBM High Performance Computing Toolkit

Use this resource variable:

Specify this default, or avalue of your
choice

Xprofiler* GreyShades

16

The value 16 is equivalent to selecting the 16 button in the Number of Grey Shades

field of the Screen Dump Options Dialog window. Y ou access the Screen Dump Options

Diaog window by selecting Screen Dump and then Set Option from the File menu.

To specify the number of seconds that Xprof waits before capturing a screen image:

Use thisresource variable;

Specify this default, or a value of your
choice

Xprofiler* GrabDelay

1

The value 1 isthe default for the Delay Before Grab option of the Screen Dump Options

Dialog window, but you can specify alonger interval by entering avalue here. You

access the Screen Dump Options Dialog window by selecting Screen Dump and then Set

Option from the File menu.

To set the maximum number of seconds that can be specified with the slider of the Delay

Before Grab option:

Use thisresource variable;

Specify this default, or a value of your
choice

Xprofiler* grabDel ay Scal e.maximum

30

The value 30 is the maximum for the Delay Before Grab option of the Screen Dump
Options Dialog window. This means that users cannot set the slider scale to avalue
greater than 30. Y ou access the Screen Dump Options Dialog window by selecting
Screen Dump and then Set Option from the File menu.

To specify whether the screen dump is created in landscape or portrait format:

Use thisresource variable;

Specify this default, or a value of your
choice

Xprofiler* Landscape

False

The value True is the default for the Enable Landscape option of the Screen Dump
Options Dialog window. Y ou access the Screen Dump Options Dialog window by
selecting Screen Dump and then Set Option from the File menu.

To specify whether you would like information about how the image was created to be

added to the PostScript screen dump:

Use this resource variable:

Specify this default, or avalue of your
choice

Xprofiler* Annotate

False

The value False is the default for the Annotate Output option of the Screen Dump
Options Dialog window. Y ou access the Screen Dump Options Dialog window by
selecting Screen Dump and then Set Option from the File menu.

To specify the directory that will store the screen dump file (if you selected File in the

Output To field):

| Use this resource variable:

| Specify this default, or avalue of your

115

IBM High Performance Computing Toolkit

choice

Xprofiler* PrintFileName /tmp/Xprof screenDump.ps.0

The value you specify is equivalent to the file name you would designate in the File
Name field of the Screen Dump Dialog window. Y ou access the Screen Dump Options
Dialog window by selecting Screen Dump and then Set Option from the File menu.

To specify the printer destination of the screen dump (if you selected Printer in the
Output To field):

Use this resource variable: Specify this default, or a value of your
choice
Xprofiler* PrintCommand qprt -B ga -c -Pps

Controlling Variables Related to the View Menu
To specify the size of the Overview window:

Use this resource variable: Specify this default, or a value of your
choice

Xprofiler* overviewMain.height 300

Xprofiler* overviewMain.width 300

To specify the color of the highlight area of the Overview window:

Use this resource variable: Specify this default, or avalue of
your choice

Xprofiler* overviewGraph* defaultHighlightColor | sky blue

To specify whether the function call tree is updated as the highlight areais moved
(immediate) or only when it is stopped and the mouse button released (delayed):

Use this resource variable: Specify this default, or avalue of your
choice
Xprofiler* Tracklmmed True

The value True is equivalent to selecting the Immediate Update option from the Utility
menu of the Overview window. Y ou access the Overview window by selecting the
Overview option from the View menu.

To specify whether the function boxes in the function call tree appear in two-dimensional
or three-dimensional format:

Use this resource variable: Specify this default, or a value of your
choice
Xprofiler* Shape2D True

The value True is equivalent to selecting the 2-D Image option from the View menu.

To specify whether the function call tree appears in top-to-bottom or left-to-right format:

Use thisresource variable: Specify this default, or a value of your
choice
Xprofiler* LayoutTopDown True

116

IBM High Performance Computing Toolkit

The value True is equivalent to selecting the Layout: Top and Bottom option from the
View menu.

Controlling Variables Related to the Filter Menu

To specify whether the function boxes of the function call tree are clustered or
unclustered when the Xprof main window isfirst opened:

Use this resource variable: Specify this default, or a value of your
choice
Xprofiler* ClusterNode True

The value True is equivalent to selecting the Cluster Functions by Library option from
the Filter menu.

To specify whether the call arcs of the function call tree are collapsed or expanded when
the Xprof main window isfirst opened:

Use thisresource variable: Specify this default, or a value of your
choice
Xprofiler* ClusterArc True

The value True is equivaent to selecting the Collapse Library Arcs option from the
Filter menu.

Hardware Performance Counter Tools

The IBM HPC Toolkit provides acommand line tool called hpecount, and alibrary
called libhpc, which access hardware performance counters to help you analyze your
application’s performance. Y ou can use the hpccount command to report hardware
performance counter measurements for your entire application. Y ou can obtain
measurements from a single hardware counter group. On AlX systems, you can multiplex
multiple groups of hardware counters so that you can get an estimate of hardware
performance counter events for multiple groupsin asingle run of your application. The
hpccount command also can report derived metrics, which are additional measurements
computed from hardware performance counter measurements to help you better
understand your application’s performance.

Y ou can use the hpestat command to obtain overall system statistics for hardware
performance counters or for system resource usage. The hpestat command requires root
access in order to obtain system-wide statistics.

Y ou can use the libhpc library to make more precise measurements of hardware
performance counter events by placing callsto regions of code in your application that
are of interest. The libhpc library provides the same features as the hpecount command.
In addition, thislibrary supports the use of plugins to aggregate or reduce hardware
performance counter measurements made in multiple tasks of an MPI application.

Y ou must ensure that several environment variables required by the IBM HPC Toolkit

are properly set before you use the hardware performance counter tools. In order to set
these environment variables, you should run the setup scripts that are located in the top

117

IBM High Performance Computing Toolkit

level directory of your IBM HPC Toolkit installation. On AlX systems, these setup
scripts are located in the /usr/lpp/ppe.hpct directory. On Linux, these setup scripts are
located in the /opt/ibmhpc/ppe.hpcet directory. If you are using sh, bash, ksh, or smilar
shell command, invoke the env_sh script as. env_sh. If you are using csh, invoke the
env_csh script assource env_csh.

Using the hpccount Command

Hpccount is essentially used the same way as the time command; in the simplest
invocation, the user types hpccount <program>. If you are using the hpecount command
to measure the performance of a parallel program, you should invoke hpccount as poe
hpccount <program>. If you invoke hpccount as hpccount poe <program>, you will
measure the performance of the poe command, and not the performance of your
application.

As aresult, hpecount appends various performance information at the end of the screen
(in other words, stdout) output. In particular it prints resource utilization statistics,
hardware performance counter information and derived hardware metrics.

The resource usage statistics are directly taken from acall to getrusage(). For more
information on the resource utilization statistics, refer to the getrusage man pages. In
particular, the Linux man page for getrusage() states that not all fields are meaningful
under Linux. The corresponding lines in hpccount output have the value n/a.

If you specify the —1 option, the hpccount command displays alist of the hardware
performance counter groups that are available on the processor from which you invoked
the hpccount command. If you specify the —c option, the hpccount command displays a
list of the hardware counters that are available on the processor on which you run the
hpccount command and the hardware performance counter events that can be counted in
that counter.

If you specify the —g option, you can specify the hardware performance counter group
from which you want to count events from. If you do not specify the —g option, the
hpccount command uses a default hardware counter group as described in the flags
section of the hpecount command man page. On Al X, if you specify a comma-separated
list of hardware performance counter groups, hpccount multiplexes the use of the
specified hardware performance counter groups in your application process. See the
Hardware Counter Multiplexing section for more information.

If you are running a parallel application, you should use the —u option so that the output
files generated by hpccount for each application task are assigned unique file names.

Y ou can obtain derived metrics for your application by using the —x option. Derived
metrics are additional performance metrics computed from the hardware performance
counter measurements you collected. See the Derived Metrics section for more
information.

118

IBM High Performance Computing Toolkit

If you plan to view the data obtained by running the hpccount command in peekperf,
you should make sure that the HPM_VIZ_OUTPUT environment variableis set to yes.

Using the hpcstat Command

The hpestat is a ssmple system-wide monitor that is based on hardware performance
counters. For most of the functionality of hpcstat, root privileges are required. The usage
isvery similar to that of the vmstat command. Y ou can invoke hpcstat as follows.

hpcstat

If you specify the —1 option, the hpestat command displays alist of the hardware
performance counter groups that are available on the processor on which you invoked the
command. If you specify the —c option, the hpestat command will display alist of the
hardware counters that are available on the processor on which you run the command and
the hardware performance counter events that can be counted in that counter.

If you specify the —g option, you can specify the hardware performance counter group
from which you want to count events. If you do not specify the —g option, the hpcstat
command will use adefault hardware counter group as described in the flags section of
the hpccount command man page. On AlX, if you specify a comma-separated list of
hardware performance counter groups, hpestat multiplexes the use of the specified
hardware performance counter groups in your application process. See the Hardware
Counter Multiplexing section for more information.

The output of the hpestat command is written to stdout and consists of resource
utilization statistics, hardware performance counter information and derived hardware
metrics.

The resource usage statistics are directly taken from acall to getrusage(). For more
information on the resource utilization statistics, refer to the getrusage man pages. In
particular, on Linux the man page for getrusage() states that not all fields are meaningful
under Linux. The corresponding lines in hpcstat output have the value n/a.

Using the libhpc Library

The hpccount command provides hardware performance counter information and
derived hardware metrics for the whole program. If thisinformation is required for only
part of the program, instrumentation with the libhpe library isrequired. Thislibrary
provides a programming interface to start and stop performance counting for an
application program.

Thelibhpe library API includes the following function calls:

e hpmlnit () for initiaizing the instrumentation library.

119

IBM High Performance Computing Toolkit

e hpmTerminate () for generating the reports and visualization data files and
shutting down the libhpe environment.

e hpmStart () for identifying the start of a section of code in which hardware
performance counter events will be counted.

e hpmStop () for identifying the end of the instrumented section.

Thelibhpc library provides variants of the hpmStart () and hpmStop () function calls,
which you can use in threaded code, and where you need to explicitly identify
parent/child relationships between nested instrumentation regions. libhpc implements
both C and Fortran versions of each function call.

The hpmStart() and hpmStop() function calls, or their variants, must be executed in
pairs, where for each hpmStart() function call, a corresponding hpmStop() function call
must be executed for every time hpmStart() is executed.

The part of the application program between the start and stop of performance counting is
called an instrumentation section. Y ou assign a unique integer number as the section
identifier. Y ou specify this section identifier in the call to the hpmStart() function. A
simple case of an instrumented program section might look similar to the following:

hpmnit(0, “my progrant);

hpnStart(1, “outer call”);

do_work();

hpnStart(2, “conputing nmeaning of life”);
do_nore_work();

hpnStop(2);

hpnstop(1);

hpmlrer m nate(taskID);

Callsto hpmlInit() and hpmTerminate() embrace the instrumented part. Every
instrumentation section starts with hpmsStart() and ends with hpmStop(). The section
identifier isthefirst parameter to the latter two functions. As shown in the example,
libhpc supports multiple instrumentation sections and overlapping instrumentation
sections. Each instrumented section can also be called multiple times. When
hpmTerminate() is encountered, the counted values are collected and printed or written
to visualization data files.

The example program above provides an example of two properly nested instrumentation
sections. For section 1 we can consider the exclusive time and exclusive counter values.
By that we mean the difference of the values for section 1 and section 2. The original
values for section 1 would be called inclusive for matter of distinction. The terms
inclusive and inclusive for the embracing instrumentation section are chosen to indicate
whether counter values and times for the contained sections are included or excluded. For
more details see the Inclusive and Exclusive Event Counts section.

120

IBM High Performance Computing Toolkit

Any C source file containing calls to any function contained in the libhpc library should
include the libhpc.h header. Fortran source files containing callsto functionsin the
libhpe library should include the f_hpc.h header. Or, if the Fortran sourcefileis
compiled using the —qintsize=8 compiler option, it should include the f_hpc_i8.h header
file. All of these header files are located in the $(IHPCT_BASE)/include directory.

Fortran source files that include either the f_hpc.h or f hpe_i8.h header file should also
be processed by the C pre-processor before compilation, for instance by specifying the —
qsuffix=cpp=f compiler option.

Y ou must link your application with the libhpe library, using the —lhpc linker option.

Y ou must also link your application with the libm library, using the —Im linker option.
On AIX systems, you must also link with the PMAPI library, using the —-lpmapi linker
option. On Linux systems, you must also link with the perfctr library using the linker
option —Iperfetr. When using the libhpc library, compile and link your application as a
threaded program (for instance, using the xle_r or xIf r commands), or link with the
pthreads library using the -Ipthreads linker option. When linking libhpc with your
application, you must specify the correct library, using either the —
LS(IHPCT_BASE)/lib or —-L$(IHPCT_BASE)/lib64 linker option.

Like the hpecount command, you can obtain hardware performance counter
measurements using multiple hardware performance groups as described in the Hardware
Counter Multiplexing section. Y ou can use derived metrics as described in the Derived
Metrics section. If you are instrumenting an MPI program, you can use plugins to
aggregate performance data from multiple tasks or to filter that data. See the
Considerations for MPI Programs section for more detail about these plugins.

Note that libhpe collects information and performs summarization during runtime. Thus,
there could be a considerable overhead if instrumentation sections are inserted inside
inner loops. Thelibhpe library uses the same set of hardware performance counter
groups used by hpccount.

If an error occursinternally in libhpe, the program is not automatically terminated.
Instead, the libhpc library sets an error indicator and lets the user handle the error. For
details see the hpm_error_count man page.

Understanding Hardware Counter Multiplexing

The idea behind multiplexing isto run several hardware counter groups concurrently.
Thisis accomplished by running the first group for a short time interval, then switching
to the next group for the next short time interval. Thisis repeated in around robin fashion
for the groups until the event counting is eventually stopped.

121

IBM High Performance Computing Toolkit

HPM (Hardware Performance Monitoring) supports multiplexing only on AIX. The
hardware counter groups are specified as a comma separated list. If you are using the
hpccount or hpestat commands, then you can specify the multiplexed hardware
performance counter groups one of two ways, for instance

hpmcount -g 1,2 <program>

OR

export HPM_EVENT _SET='1,2’
hpmcount <program>

If you are running an application program that has been compiled and linked with libhpc,
specify the multiplexed hardware counter groups by setting the HPM_EVENT SET
environment variable similar before running your application. For example:

export HPM_EVENT_SET="1,2’
On Linux, thisleads to the following error message.
HPM ERROR - Multiplexing not supported: too many groups or events specified:

Multiplexing means that none of the specified groups has been run on the whole code,
and it is unknown what fraction of the code was measured with which group. It is
assumed that the workload is sufficiently uniform that the measured event counts can be
(more or less) safely calibrated asif the groups have been run separately on the whole
code.

The default time interval for measuring one group on the application is 100 milliseconds.
If the total execution time is shorter than thistime interval, only the first group in the list
ismeasured. All other counter values from the other hardware counter groups are O in this
case. This might result in NaNQ values for some derived metrics (see Derived Metrics),

if the formulafor computing the derived metric requires division by the counter which
has a zero value.

The duration of thistime interval can be controlled by setting the following environment
variable.

export HPM_SLICE_DURATION=<integer valuein ms>

Thisvaueis passed directly to AIX (more precisely bos.pmapi component of AlX). AlX
requires the value to be between 10 milliseconds and 30 seconds.

The data for each group is printed in a separate section, with separate timing information,
and is written separately to the visualization data files used as input to peekperf.

For MPI applications, the form of the output depends on the chosen aggregation plug-in
as described in the section Considerations for MPI Programs. Without specifying an

122

IBM High Performance Computing Toolkit

aggregator plug-in (in other words, with the default plug-in), the data for each hardware
performance counter group is printed in a separate section with separate timing
information for each hardware performance counter group. To combine the datafrom the
specified groupsin to one big group with more counters, use the local merge aggregator
plug-in (loc_merge.so), which is described in the section Plug-ins Shipped with the
Tookit.

Understanding Derived Metrics

What are Derived Metrics

Some of the hardware counter events are difficult to interpret. Sometimes a combination
of events provides better information. Such a recombination of basic eventswill be called
aderived metric. HPM also provides alist of derived metrics, which are defined in
section Derived Metrics Description below.

Since each derived metric has its own set of ingredients, not all derived metrics are
printed for each group. HPM automatically finds those derived metrics that are
computable and prints them. As a convenience to the user, the option -x will print the
value of the derived metric and its definition. If the HPM_PRINT_FORMULA
environment variable is set to yes, derived metric formulas are also printed.

Understanding MFlop Issues

The two most popular derived metrics are the MFlop/s rate and the percentage of peak
performance. The default group is chosen to make those two derived metrics available
without explicitly specifying the -g option.

For IBM POWERS5™ servers, there is no group that supports enough countersto
compute a MFlop/srate. Asaresult, an “ Algebraic MFop/srate” wasinvented to bridge
this gap. This derived metric counts floating point additions, subtractions and
multiplictaions (including floating point multiply and add instructions), but misses
divides and square roots. If the latter two only occur in negligible numbers (whichis
desirable for an HPC code anyway), the Algebraic MFlop/s rate coincides with the usual
definition of MFlop/s. Again, different counter groups can be used to check this
hypothesis. Group 137 (which exploits the Algebraic MFlop/srate) is the chosen default
group for POWERS.

For PowerPC® 970, POWER4™ and POWERS, the derived metric percent of peak
performance is based on user time rather than wall clock time, as the result stays correct
if multithreaded (e.g. OpenMP) applications are run. For POWERS, thisis based on
“Algebraic MFlop/s’. This has not been tested on AlX 5.3, particularly when
Simultaneous Multithreading (SMT) is active.

On POWER4, PowerPC 970 and POWER6™, weighted MF op/s are available. These are
like ordinary MFlop/s, except that divisions enter the evaluation with aweight different
from the other floating point operations. The weight factor is provided by the user
through the environment variable HPM_DIV_WEIGHT. If set to 1, the weighted

123

IBM High Performance Computing Toolkit

MPFl op/s coincide with the ordinary MFlop/s. HPM_DIV_WEIGHT can take any positive
integer number.

If this environment variable is not set, no weighted M Fl op/s metrics are computed.

Understanding Inheritance

On both, AIX and Linux, the counter virtualization and the group (in other words, set of
events) that is actually monitored is inherited from the process by any of its children.
Children in this context mean threads or processes spawned by the parent process. Al X
and Linux, however differ in the ability of the parent process to access the counter values
of its children.

e OnAIX, al counter values of a process group can be collected.

e On Linux, counter values are only available to the parent if the child has exited.

The hpccount utility makes use of thisinheritance. If hpccount is called for a program,
the returned counter values are the sum of the counter values of the program and all of
the threads and processes spawned by it at the time the values are collected. For Linux,
this has to be restricted to the sum of counter values of all children that have finished at
the time the values are collected. Even the latter is enough to catch the values of all
threads of an OpenMP program.

Assume you are using a small program, named taskset, to bind threads to CPUs. When
hpccount isinvoked to run taskset as follows

hpccount taskset -g <num> <program_name>

hpccount would first enable hardware event counting for the application taskset. This
command then spawns the program<program name>, which inherits al hardware counter
settings. At the end hpecount would print counter values (and derived metrics) based on
the sum of events for taskset and the called program. Since taskset is avery small
application, the hpccount results would mostly represent the performance of the program
<program name>, which is what the user intended.

Understanding Inclusive and Exclusive Event Counts

For an example of an application fragment, where the term exclusive values applies, see
the Using the libhpe Library section above. That application fragment provides an
example of two properly nested instrumentation sections. For section 1, exclusive time
and exclusive counter values are the difference between the values for section 1 and
section 2, or excluding the counts of events within the scope of section 2. The original
values for section 1 would be called inclusive values since those values al so include the
count of events that occurred within the scope of section 2. The termsinclusive and
exclusive for the enclosing instrumentation section are chosen to indicate whether
counter values and times for the contained sections are included or excluded.

The extra computation of exclusive values generates overhead that is not always wanted.
Therefore, the computation of exclusive valuesis only carried out if the environment

124

IBM High Performance Computing Toolkit

variable HPM_EXCLUSIVE_VALUES s set toyes or if the
HPM_ONLY_EXCLUSIVE parameter is used as described in the Parent-Child
Relationships section. The exact definition of exclusive is based on parent-child
relationships among the instrumented sections. Roughly spoken, the exclusive value for
the parent is derived from the inclusive value of the parent reduced by the inclusive value
of all children.

Understanding Parent-Child Relationships

The IBM HPC Toolkit provides an automatic search for parents, which is supposed to
closely mimic the behavior for strictly nested instrumented regions. For strictly nested
instrumented sections, the call to hpmStart() or hpmTstart() for the parent must occur
prior to the corresponding call for the child. In a multithreaded environment, however,
this causes problems if the children are executed on different threads. In akind of race
condition, a child might mistake its brother for its father. This generates flawed parent
child relationships, which change with every execution of the program. To avoid the race
condition safely, the search for a parent region isrestricted to calls from the same thread
only, because only these exhibit a race condition free call history. The parent region
found in this history isthe last call of the same kind (in other words, both were started
with hpmStart() or both were started with hpmTstart() or their corresponding Fortran
equivalents) that has not posted a matching hpmStop() or hpmTstop() meanwhile. If no
parent is found that matches these rules, the child is declared an orphan. Therefore,
automatic parent child relations are never established across different threads.

There might be situations in which the automatic parent child relations prove
unsatisfactory. To help this matter, calls are provided in the HPM API to enable you to
establish the relations of your choice. These functions are hpmStartx() and
hpmTstartx() and their Fortran equivalents. The first two parameters of this function are
the ID of the instrumented section and the ID of the parent instrumented section.

The user has the following choices for the parent ID.

e HPM AUTO_PARENT: Thistriggers the automatic search and is equivalent to
the hpmStart() and hpmTstart() functions

e HPM_ONLY_EXCLUSIVE: Thisisessentially the same as
HPM_AUTO_PARENT, but sets the exclusive flag to true on thisinstance only.
The environment variable HPM_EXCLUSIVE_VALUES setsthisflag globally
for al instrumented sections.

e HPM_NO_PARENT: This suppresses any parent child relations.
e Aninteger: Thismust be the ID of an instrumented section with the following

restrictions:
e |t hasto active when this call to hpmStartx() or hpmTstartx() is made.

125

IBM High Performance Computing Toolkit

e |t hasto be of the same kind (in other words, both were started with
hpmStart() or both were started with hpmTstart() or their corresponding
Fortran equivalences)

Handling of Overlap Issues

Asyou can establish ailmost arbitrary parent child relationships, the definition of the
explicit duration or explicit counter valuesis not obvious.

Each instrumented section can be represented by the corresponding subset of the time
line of application execution. Actually this subset is afinite union of intervals with the
left or lower boundaries marked by callsto hpmStart[x]/hpmTstart[x]() and the right or
upper boundaries marked by calls to hpmStop()/hpmTstop(). The duration isthe
accumulated length of this union of intervals. The counter values are the number of those
events that occur within this subset of time.

The exclusive times and values are the times and values when no child has a concurrent
instrumented section. Hence, the main step in defining the meaning of exclusive valuesis
defining the subset of the time line with which they are associated. Thisis donein several

steps:

e Represent the parent and every child by the corresponding subset of the time line
(henceforth called the parent set and the child sets).

e Takethe union of the child sets.

e Reduce the parent set by the portion that is overlapping with this union.

o Takethe difference of the parent set with the union of the child sets, using set
theoretic terms.

The exclusive duration is the accumul ated length of the resulting union of intervals. The
exclusive counter values are the number of those events that occur within this subset of
time.

Understanding Measurement Overhead

Instrumentation overhead is caught by calls to the wall clock timer at entry and exit of
callsto hpmStart[x](), hpmStop(), hpmTstart[x](), hpmTstop(). The accumulated
instrumentation overhead for each instrumented section is printed in the ASCII output
(*.hpm) file.

Based on the magnitude of the overhead, you can decide what to do with this information.

e |f the overhead is several orders of magnitude smaller than the total duration of
the instrumented section, you can safely ignore the overhead timing.

e |f the overhead is the same order of magnitude as the total duration of the
instrumented section, the results might be inaccurate since the instrumentation
overhead isalarge part of the collected event counts.

e |f the overhead iswithin 20% of the measured wall clock time, awarning is
printed to the ASCII output file.

126

IBM High Performance Computing Toolkit

To make the use of libhpc thread safe, mutexes are set around each call to hpmStart[x](),
hpmStop(), hpmTstart[x](), hpmTstop(), which adds to the measurement overhead. If
your application is running on one thread only, the setting of the mutexes can be
suppressed by setting the environment variable HPM_USE PTHREAD MUTEX to no.
Results are unpredictable if your program is using multiple threads and you set this
environment variable.

Handling Multithreaded Program Instrumentation Issues

When placing instrumentation inside of parallel regions, one should use different ID
numbers for each thread, as shown in the following Fortran example:

I $OVP PARALLEL

I $OVP&PRI VATE (i nstl D)

instl D = 30+onp_get _thread_nuni)

call f_hpnmtstart(instlD, "conmputing neaning of life")
' $OW DO

do ...
do_wor k()
end do

call f_hpnmtstop(instiD)
' $OVP END PARALLEL

If two threads are using the same ID numbers when calling hpmTstart() or hpmTstop(),
libhpc exits with the following error message:

libhpc ERROR - Instance ID on wrong thread

If you place instrumentation callsin parallel loops or parallel regions, use the
hpmTstart() and hpmTstop() function cals. If you use hpmStart() and hpmStop()
function calls, libhpe attempts to count hardware performance counter events on all
threads in the application (AIX only). Since application threads are not necessarily all
executing the same code, the event counts obtained by calls to hpmStart() and
hpmStop() might not be accurate.

Considerations for MPI Programs

General Considerations

Thelibhpc library isinherently sequential, looking only at the hardware performance
counters of asingle process (and its children, as explained in the Inheritance section).
When the application is started, each MPI task is doing its own hardware performance
counting and these instances are completely ignorant of each other, unless additional
action is taken as described in the following subsections. Consequently, each instanceis
writing its own output. If the environment variable HPM_OUTPUT _NAME is used,
each instance is using the same file name, which resultsin writing in to the samefile, if a

127

IBM High Performance Computing Toolkit

parallel file system is used. This can be prevented by making the file names unique
through the HPM_UNIQUE_FILE_NAME environment variable. However, it might be
an unwanted side effect to produce one output file for each MPI task.

For this reason, the environment variable HPM_AGGREGATE triggers some
aggregation before (possibly) restricting the output to a subset of MPI tasks. The
environment variable HPM_AGGREGATE takes a value, which is the name of a plug-
in that defines the aggregation strategy. Each plug-in is a shared object file containing
two functions called distributor and aggregator.

Understanding Distributor Functions

The motivating example for the distributor function is allowing a different hardware
counter group on each MPI task. Therefore, the distributor is a subroutine that determines
the MPI task id (or MPI rank within MPI_COMM_WORLD) from the MPI
environment for the current process, and sets or resets environment variables depending
on thisinformation. The environment variable can be any environment variable, not just
the HPM_EVENT_SET environment variable, which specifies the hardware
performance counter group.

The distributor function is called before any environment variable is evaluated by HPM.
The settings of the environment variables done in the distributor take precedence over
global environment variable settings.

The aggregator must adapt to the HPM group settings done by the distributor. Thisiswhy
distributors and aggregators always come in pairs. Each plug-in contains a distributor and

aggregator pair.

Understanding Aggregator Functions

The motivating example is the aggregation of the hardware performance counter data
across MPI tasks. In the simplest case this could be an average of the corresponding
values. Hence thisfunction is called

e after the hardware performance counter data has been gathered,
e before the derived metrics are computed.
e before these data are printed.

In general view, the aggregator takes the raw results and rearranges them for output.

Also, depending on the MPI task rank the aggregator sets (or does not set) aflag to mark
the current MPI task for HPM printing.

Plug-ins Shipped with the Tool Kit

The following plug-ins are shipped with the IBM HPC Toolkit. They can be found in
$S(IHPCT_ BASE)/lib for 32-hit applications or S(IHPCT_ BASE)/lib64 for 64-bit
applications.

128

IBM High Performance Computing Toolkit

e mirror.so isthe plug-in that is called when no plug-in is requested. The
aggregator mirrors the raw hardware performance counter data in a one-to-one
fashion to the output function. It also flags each MPI task as a printing task. The
corresponding distributor is an empty function. This plug-in does not use MPI and
also worksin anon-MPI context.

e loc_merge.so does alocal merge on each MPI task separately. It isidentical to the
mirror.so plug-in except for those MPI tasks that change the hardware
performance counter groups in the course of the measurement (e.g. by
multiplexing). The different counter data, which are collected for only part of the
measuring interval, are proportionally extended to the whole interval and joined in
to one big group that is used for derived metrics computation. This way, more
derived metrics can be determined at the risk of computing invalid metrics. The
user isresponsible for using this plug-in only when it makes sense to use it. It a'so
flags each MPI task as a printing task. The corresponding distributor is an empty
function. This plug-in does not use MPI and also worksin a-MPI context.

e single.so works the same as the mirror.so plug-in, but only on MPI task 0. The
output on all other tasksis discarded. This plug-in uses MPI functions and cannot
be used in a sequential context.

e average.so isaplug-in for taking averages across MPI tasks. The distributor reads
the environment variable HPM_EVENT _SET (which should be acomma
separated list of hardware performance counter group numbers) and distributes
these group numbers in around robin fashion to the MPI tasks in the application.
The aggregator function creates an MPlI communicator of all tasks with equal
hardware performance counter group specifications. The communicator groups
might be different from the original round robin distribution. This could happen
if the counting group has been changed on some of the MPI tasks after the first
setting by the distributor function. Next, the aggregator computes the average for
each hardware performance counter event across the subgroups formed by this
communicator. Finaly, it flags the MPI rank O in each group as a printing host.
This plug-in uses MPI functions and cannot be used in a sequential context.

Why User defined Plug-ins are Useful

This set of plug-insis a starter kit and many more plug-ins might be desirable. Rather
than taking the average of hardware performance counters across a set of MPI tasks, you
could compute minimum or maximum values. Y ou could also create akind of ahistory
merge.so by blending in results from previous measurements. Y ou can write your own
plug-ins using the interface described in the next section.

The source code for the supplied plug-insis provided for you to use as examplesin
developing your own plug-ins. The source files and makefiles for the plug-ins are located
in the $IHPCT_BA SE/examples/plugins directory.

Understanding the Distributor and Aggregator Interfaces

Each distributor and aggregator is a function returning an integer which equal to zero on
success and not equal to zero on error. In most cases the errors occur when calling a
system call like malloc(), which setsthe errno variable. If the distributor or aggregator

129

IBM High Performance Computing Toolkit

returns the value of errno as the return code, the calling HPM tool can use the errno to
display a meaningful error message. If returning errno is not viable, the function should
return a negative value.

The function prototypes are defined in the following file.
S(IHPCT_BASE)/include/hpm_agg.h

Thisisavery short file with the following contents.

#i ncl ude "hpm data. h"

int distributor(void);

int aggregator(int num.in, hpmevent_vector in,
int *numout, hpmevent vector *out,
int *is_print_task);

The distributor function has no parameters and is only required to set or reset
environment variables (using setenv()) if necessary for correct operation of the
aggregator function.

The aggregator function takes the current hardware performance counter values on each
task as an input vector in and returns the aggregated values on the output vector out on
selected or all MPI tasks. The aggregator is responsible for alocating the memory needed
to hold the output vector out. The definition of the data types used for in and out are
provided in the header file SMIHPCT_BASE)/include/hpm_data.h

Finally the aggregator function must set (or reset) the flag, is_print_task to mark the
current MPI task for HPM printing.

The hpm_event_vector in isavector or list of num_in entries of type hpm_data_item.
This datatype is a struct containing members that describe the definition and the results
of asingle hardware performance counting task.

/* NAVE | NDEX */
#define HPM_NTI M 8
#define HPM TI ME_WALLCLOCK 0
#define HPM TI ME_CYCLE 1
#defi ne HPM_TI ME_USER 2
#defi ne HPM_TI ME_SYSTEM 3
#defi ne HPM_TI ME_START 4
#defi ne HPM Tl ME_STOP 5
#defi ne HPM TI ME_OVERHEAD 6
#define HPM. TIME_INIT 7
t ypedef struct {

i nt num dat a;

hpm event _info *dat a;

doubl e ti mes[HPM_NTI M ;

int is_nplex_cont;

int is_rusage;

130

IBM High Performance Computing Toolkit

int nmpi _task_ id;
int instr_id;
i nt count;
int is_exclusive;
int xm _element _id;
char *descri ption;
char *xnl descr;
} hpmdata_ item
t ypedef hpm data_item *hpm event _vector;

e Thefirst element of the in vector contains the data from acall to getrusage().
This vector element is the only element with its structure member is_rusage set to
true to distinguish it from ordinary hardware performance counter data

e The count of events from an individual hardware performance counter group on
one MPI task is contained in asingle element of type hpm_data item.

e |If multiplexing is used, the results span several consecutive elements, each
dedicated to one hardware performance counter group that takes part in the
multiplex setting. On all but the first element, the member is_mplex_cont is set to
true to indicate that these elements are continuations of the first element
belonging to the same multiplex setup.

e |f hardware performance counter groups are changed during the measurement, the
results for different groups are recorded in different vector elements, but the
is_mplex_cont flag is not set. Thisway results obtained using multiplexing can
be distinguished from results obtained by an ordinary hardware performance
counter group change.

e |f severa instrumented sections are used, each instrumented code section uses
separate elements of type hpm_data_item to record the results. Each of these
elements will have the member instr_id set to the value of the first argument of
hpmStart() and the logical member is_exclusive set to true or false depending
on whether the element hold inclusive or exclusive counter results as described in
the section Inclusive and Exclusive Event Counts. Then al these different
elements are concatenated in to a single vector.

The output vector is of the same format. Each vector element is used in the derived
metrics computation separately (unlessis rusage is equal to true). Then all vector
elements and the corresponding derived metrics are printed in the order given by the
vector out. The output of each vector element is preceded by the string pointed to by
structure member description (which might include line feeds, as appropriate). The XML
output will be labeled with the text pointed to by xml_descr. Thisway the input vector in
is providing a complete picture of what has been measured on each MPI task. The output
vector out is alowing complete control on what is printed on which MPI task in what
order.

Getting the plug-ins to work

The sample plug-ins are compiled with the Makefile
S(IHPCT_BASE)/examples/plugins/Makefile using the command

131

IBM High Performance Computing Toolkit

make ARCH=<arch>.

The include files for the supported architectures (arch) are located in the subdirectory
make. Note the following considerations when implementing your own plug-in.

The Makefile distinguishes sequentia (specified in PLUGIN_SRC) and parallel
plug-ins (specified in PLUGIN_PAR_SRC). The latter are compiled and linked
with the MPI wrapper script for the compiler and linker. Unlike a static library,
generation of a shared object requires linking, not just compilation.

There are some restrictions to be observed when writing plug- in code.

The MPI standard document disallows calling MPI_Init() twicein the same
process.

The distributor function is called by hpmlnit(). If the distributor function
contains MPI calls, the user’s application is required to call MPI Init() prior to
calling hpmlInit(). To avoid this restriction, the distributor function must not
call any MPI function. The MPI task 1D should be extracted by inspecting
environment variables, specifically the MP_CHILD environment variable,
that have been set by the MPI software stack.

The aggregator function, however, usually cannot avoid calling MPI functions.
Before calling MPI_Init(), it has to check whether the instrumented
application has already done so, for example, by calling the MPI _Initialized()
function. If the instrumented application is an MPI application, the aggregator
function cannot be called after MPI_Finalize(). The aggregator function is
called by hpmTerminate(). Hence hpmTerminate() has to be called
between the calls to MPI Init() and MPI Finalize().

libhpe uses acall to dlopen() to access the plug-in and makes use of its functions.

Specifying Latency Estimates

In addition, users can provide estimations of memory, cache, and TLB miss latencies for
the computation of derived metrics, with the following environment variables. Note that
not all flagsarevalid in all systems.

HPM_MEM_LATENCY latency for amemory load.

HPM_L3 LATENCY latency for an L3 load within an MCM.

HPM_L35 LATENCY latency for an L3 load outside of the MCM.

HPM_L2 LATENCY latency for an L2 load from the processor.

HPM_L25 LATENCY latency for an L2 load from the same MCM.
HPM_L275 LATENCY latency for an L2 load from another MCM.
HPM_TLB_LATENCY latency for aTLB miss.

Using the MPI Profiling Library

The MPI profiling library, libmpitrace, isalibrary that you can link with your MPI
application to profile the MPI function callsin your application, or to create a trace of
those MPI calls. When you link your application with this library, the library intercepts
the MPI callsin your application, using the Profiled MPI (PMPI) interface defined by the
MPI standard, and obtains the profiling and trace information it needs. Thislibrary also

132

IBM High Performance Computing Toolkit

provides a set of functions that you can use to control how profiling and trace datais
collected, as well as functions that you can use to customize the trace data.

Although the libmpitrace library can be used in athreaded application, it does not
correctly record MPI trace eventsin an application in which MPI function calls are made
on multiple threads. Y ou should use libmpitrace only in single threaded applications or
applicationsin which MPI function calls are made only on a single thread.

Y ou must ensure that several environment variables required by the IBM HPC Toolkit
are properly set before you use the MPI profiling library. In order to set these
environment variables, run the setup scripts that are located in the top level directory of
your IBM HPC Toolkit installation. On AlX systems, these setup scripts are located in
the /usr/Ipp/ppe.hpct directory. On Linux, these setup scripts are located in the
/opt/ibmhpc/ppe.hpct directory. If you are using sh, bash, ksh, or similar shell
command, invoke the env_sh script as. env_sh. If you are using csh, invoke the env_csh
script as source env_csh.

When you compile your application, you must use the —g compiler flag so that the library
can obtain the information it needs to map performance information back to application
source code. Y ou might want to consider compiling your application at lower
optimization levels since compiler optimizations might affect the accuracy of mapping
MPI function calls back to source code and the accuracy of the function call stack for an
MPI function call.

Any C source file containing calls to functionsin the libmpitrace library should include
the mpt.h header file, which islocated in the S(IHPCT_BASE)/include directory. All
applications must link the libmpitrace library with the application using the -lmpitrace
linker flag. The libmpitrace library islocated in S(IHPCT_BASE)/lib for 32-bit
applications and in S(IHPCT_BASE)/lib64 for 64-bit applications.

After you link your application with the libmpitrace library, you can run your
application just as you normally would.

By default, the libmpitrace library generates three sets of output filesin the current
working directory. Thefirst set isnamed mpi_profile.task_rank where task_rank isthe
MPI task rank of the task that generated the file. The second set of output filesis named
mpi_profile_task_rank.viz which contain the visualization data that can be viewed
using peekperf. The third output is afile named single trace which isatracefile
containing trace data that can be viewed using peekperf.

Controlling Profiling and Tracing

Controlling Traced Tasks

The libmpitrace library stores MPI trace events in memory for performance reasons. By
default, the number of MPI trace events that are recorded is 30,000 events. Additional
MPI trace events beyond this number are discarded. Y ou can override this default by

133

IBM High Performance Computing Toolkit

setting the MAX_TRACE_EVENTS environment variable to the maximum number of
MPI trace events to be recorded. Increasing this value means that additional memory will
be used to store MPI trace events and that additional memory usage might affect your
application program.

By default, for scalability, profiling datafiles and MPI function call events are generated
for a maximum of four tasks in the application:

o taskO

e The task with the minimum MPI communication time

e Thetask with the maximum MPI communication time

e Thetask with the median MPI communication time.

If task O isthe task with minimum, maximum, or median MPlI communication time, at
most, output files will be generated for only three tasks. If you want output to be
generated for al MPI tasks, set the OUTPUT _ALL_RANKS environment variable to
yes before running the application.

By default, the libmpitrace library traces MPI tasks O through 255 (or lessif the
application has fewer than 256 MPI tasks). If you need to see MPI traces from all tasks,
you must set the TRACE_ALL_TASKS environment to yes before running the
application. If you have an application with more than 256 MPI tasks, but you do not
want to see traces from all MPI tasks, you can set the MAX TRACE_RANK to the MPI
task index of the highest numbered MPI task that you want traced.

By default, when libmpitrace obtains the calling address for each MPI function that is
traced, it gets the address of the MPI function’simmediate caler. If MPI functions are
called from within another library, or deeply layered within your application, you might
want libmpitrace to obtain the MPI function caller’ s address from one or more layers
higher in the function call stack. Y ou can specify how many levelsto walk back in the
function call stack by setting the TRACEBACK_ LEVEL environment level to the
number of levels to walk, where O means to obtain the address where the MPI function
was actually called.

Additional Trace Controls

Y ou can obtain additional control over MPI trace generation by using function callsin the
libmpitrace library. Y ou can trace selected sections of your application by bracketing
areas of interest with callsto the MT _trace_start() and MT _trace_stop() functions. In
order to use these functions, you must set the TRACE_ALL_EVENTS environment
variable to no before running your application. When you start your application, tracing
isinitially suspended. When your application invokesthe MT _trace_start() function,
MPI trace event collection isresumed in the task where MT _trace_start() was called.
Tracing continues until the MT _stop_trace() function is called. At that time, MPI trace
event collection is suspended in the task that called MT _trace_stop(). Tracing can be
resumed again by a subsequent call to the MT _trace_start() function.

134

IBM High Performance Computing Toolkit

The MT _trace_start() and MT_trace_stop() functions can be called from C
applications. Fortran applications can call the mt_trace_start() and mt_trace_stop()
functions.

Y ou can control which MPI function calls are traced by implementing your own version
of the MT _trace_event() function. The C function prototype for thisfunctionis

int MT _trace_event(int id);

whereid is an enumeration identifying the specific MPI function that is being executed.
Y ou should include the mpi_trace ids.h header, located in the $(IHPCT_BASE)/include
directory, when you implement this function.

Y our implementation of MT _trace_event() must return 1 if the MPI trace event should
be recorded, and must return 0 if the MPI trace event should not be recorded.

Y ou can control which MPI tasks should have MPI trace events recorded by
implementing your own version of the MT _output_trace() function. The C function
prototype for thisfunction is

int MT output_trace(int task);

where task isthe MPI task ID of the task calling this function. Y our implementation of
this function must return 1 if the M Pl trace event is to be recorded and return 0 if the MPI
trace event is not to be recorded.

Customizing MPI Profiling Data

Y ou can create customized MPI profiling data by implementing your own version of the
MT _output_text() function. The C function prototype for thisfunction is

int MT output_text(void);

Thisfunction is called for each MPI task when that task calls Finalize(). If you
implement your own version of the MT _output_text() function, you are responsible for
generating all profiling data, in whatever format you require. Y ou might use any of the
functions described in the MPI Profiling Utility Functions section, in your
implementation of the MT _output_text() function.

Y our implementation of this function should return 1 if it successfully completes and
return -1 if an error occurs in processing.

Understanding MPI Profiling Utility Functions

The libmpitrace library provides a set of functions that you can use to obtain information
about the execution of your application. Y ou can use these functions when implementing
your own versions of MT _trace event(), MT output_trace(), MT_output_text(), or
anywhere else, including your own application code where they are useful.

135

IBM High Performance Computing Toolkit

There are several functions you can use to obtain information about types of MPI
functions called in your application as described in the following table.
Function Purpose

MT_get_mpi_counts Determine
how many
timesan
MPI
function
iscalled.

MT_get_mpi_bytes Determine
total
number of
bytes
transferre
d by all
calstoa
specific
MPI
function.

MT_get_mpi_time Determine
cumulativ
etime
spent in
al callsto
aspecific
MPI
function

MT_get_mpi_name Obtain the
name of
an MPI
function
given the
internal
ID used
by the
IBM HPC
Toolkit to
reference
thisMPI
function

MT_get_time Determine
the
elapsed

136

IBM High Performance Computing Toolkit

MT_get_elapsed time

MT_get_tracebufferinfo

MT_get_calleraddress

MT _get_callerinfo

time since
MPI_Init(
) was
called

Determine
the
elapsed
time
between
calsto
MPI_Init
and
MPI_Fina
lize

Determine
the size
and
current
usage of
the
internal
MPI trace
buffer
used by
the IBM
HPC
Toolkit

Determine
the
address of
the caller
of a
currently
active

MPI
function

Determine
sourcefile
and line
number
informati
on for an
MPI
function
call, using

137

IBM High Performance Computing Toolkit

the
address
obtained
by calling
MT get ¢
aleraddre
ss

MT_get_environment Obtain
informati
on about
the MPI
execution
environm
ent

MT_get_allresults Obtain
statistical
informati
on about a
specific
MPI
function
call

All of these functions are documented in the MPI Profiling section.
Using the I/O Profiling Library

Preparing Your Application

The IBM HPC Toolkit provides alibrary that you can use to profile 1/O callsin your
application.

Y ou must ensure that several environment variables required by the IBM HPC Toolkit
are properly set before you use the I/O profiling library. In order to set these environment
variables, run the setup scripts that are located in the top level directory of your
installation. On AlIX systems, these setup scripts are located in the /usr/Ipp/ppe.hpct
directory. On Linux, these setup scripts are located in the /opt/ibmhpc/ppe.hpct directory.
If you are using sh, bash, ksh, or similar shell command, you should invoke the env_sh
script as. env_sh. If you are using csh, you should invoke the env_csh script as source
env_csh.

In order to profile your application, you must link your application with the libhpctkio
library using the -LSIHPCT_BASE/lib and —lhpctkio linker options for 32-bit
applications or using the -L$STHPCT_BASE/lib64 and —lhpctkio linker options for 64-
bit applications.

138

IBM High Performance Computing Toolkit

You must also set the TKIO_ALTLIB environment variable to the pathname of an
interface module used by the I/O profiling library before you invoke your application. For
32-bit applications, the TKIO_ALTLIB environment variable should be set to

SIHPCT _BASE/lib/get_hpcmio_ptrs.so. For 64-bit applications, the TKIO_ALTLIB
environment variable should be set to SIHPCT_BASE/lib64/get_hpcmio_ptrs.so.
Optionally, the I/O profiling library can print messages when the interface module is
loaded, and it can abort your application if the interface module cannot be loaded.

In order for the I/O profiling library to display a message when the interface moduleis
loaded, you must append /print to the setting of the TKIO_ALTLIB environment
variable. In order for the 10 profiling library to abort your application if the interface
module cannot be loaded, you must append /abort to the setting of the TKIO_ALTLIB
environment variable. Y ou might specify one, both, or none of these options.

Note that there are no spaces between the interface library pathname and the options. For
instance, to load the interface library for a 32-hit application, display a message when the
interface library isloaded, and abort the application if the interface library cannot be
loaded, you would issue the following command:

export TKIO_ALTLIB="SIHPCT_BASE/lib/get hpcmio_ptrs.so/print/abort”

Setting I/O Profiling Environment Variables

There are three environment variables that the 1/O profiling library uses to determine the
filesfor which I/O profiling isto be performed and the data that will be obtained by
profiling. These environment variables should be set, as needed, before you run your
application.

The first environment variable is MIO_FILES, which specifies one or more sets of file
name and the profiling library options to be applied to that file, where the file name might
be a pattern or an actual path name.

The second environment variableis MIO_DEFAULTS, which specifies the 1/0 profiling
optionsto be applied to any file whose file name does not match any of the file name
patterns specified in the MIO_FILES environment variable. If MIO_DEFAULTS s not
set, no default actions are performed.

The third environment variableisMIO_STATS, which specifies where the output from
the I/O profiling datawill be written. If MIO_STATS s set to stdout or stderr, the data
iswritten to the corresponding file descriptor. If MIO_STATS s set to afile name, the
datais written to the file name. If the first character of the file name is a+ character, the
datais appended to the specified file. If the first character of the file nameis not +, any
existing file with that name is overwritten. If this environment variable is not set, datais
written to afile named MIO_STATS in the application’s current directory.

Thefile namethat is specified in the MIO_FILES variable setting might be asimplefile

name specification, which is used as-is, or it might contain wildcard characters, where the
allowed wildcard characters are:

139

IBM High Performance Computing Toolkit

e A singleasterisk (*), which matches zero or more characters of afile name.
e A question mark (?), which matches a single character in afile name.
e Two asterisks (**), which match al remaining characters of afile name.

The 1/0 profiling library contains a set of modules that can be used to profile your
application and to tune I/O performance. Each module is associated with a set of options.
Options for amodule are specified in alist, and are delimited by / characters. If an option
requires a string argument, that argument should be enclosed in curly braces ({}), if the
argument string contains a/ character.

Multiple modules can be specified in the settings for both MIO_DEFAULTS and
MIO_FILES. For MIO_FILES, module specifications are delimited by commas (,). For
MIO_DEFAULTS, module specifications are delimited by pipe (|) characters.

Multiple file names and file name patterns can be associated with a set of module
specificationsin the MIO_FILES environment variable. Individual file names and file
name patterns are delimited by colon (:) characters. Module specifications associated
with a set of file names and file name patterns follow the set of file names and file name
patterns, and are enclosed in square brackets ([]).

As an example of the MIO_DEFAULTS environment variable setting, assume that the
default options for any file that does not match the file names or patterns specified in the
MIO_FILES environment variable are that the trace module is to be used with the stats
and mbytes options and that the pf module is also to be used with the stats and mbytes
options. The setting of the MIO_DEFAULTS environment variable would be

export MIO_DEFAULTS="trace/stats=mio.stats/mbytes,pf/stats=mio.stats/mbytes”

As an example of the MIO_FILES environment variable setting, assume that file
/tmp/testdata will use the trace module with the events setting and that any files
matching the patterns *.txt or *.dat will use the trace module with the stats option and
the pf module with the stats and mbytes options. The setting of MIO_FILES
environment variable would be:
export MIO_FILES="/tmp/testdata [trace/events={/tmp/events}] \

*.txt : *.dat [trace/stats={/tmp/stats}|pf/stats={/tmp/stats}/mbytes]”

Specifying I/O Profiling Library Module Options

The following modules are available in the I/O profiling library

mio The interface to
the user program

pf A data prefetching
module

trace A statistics
gathering module

recov Analyzesfailed
|/O accesses and

140

IBM High Performance Computing Toolkit

retries in case of
failure

The mio module has the following options

mode=

Override thefile
access modein
the open system
cal.

nomode

Do not override
the file access
mode.

direct

Set the
O_DIRECT bit
in the open
system call.

nodirect

Clear the
O_DIRECT hit
in the open
system call.

The default option for the mio module is nomode.

The pf module has the following options

norel
ease

Do not free the global cache
pages when the global cache
file usage count goes to zero.

The release and norelease
options control what happens to
aglobal cache when thefile
usage count goes to zero. The
default behavior isto close and
release the global cache. If a
global cacheis opened and
closed multiple times, there
could be memory fragmentation
issues at some point. Using the
norel ease option keeps the
global cache opened and
available, even if the file usage
count goes to zero.

relea

Free the global cache pages
when the global cachefile
usage count goes to zero.

141

IBM High Performance Computing Toolkit

priva Use aprivate cache. Only the

te file that opens the cache might
useit.

glob Use global cache, where the

a= number of global cachesis
specified as a value between 0
and 255. The defaultis 1, which
means that one global cacheis
used.

asyn Use asynchronous calls to the

chro child module.

nous

sync Use synchronous callsto the

hron child module.

ous

noas Aliasfor synchronous

ynch

rono

us

direc Usedirect /0.

t

nodi Do not use direct 1/0.

rect

byte Stats output is reported in units

S of bytes.

kbyt Statsis reported in output in

es units of kbytes.

mbyt Statsis reported in output in

es units of mbytes.

gbyt Statsis reported in output in

es units of gbytes.

tbyte Statsis reported in output in

S units of tbytes.

cach Thetotal size of the cache (in

e Siz bytes), between the values of 0

e= and 1GB, with adefault value
of 64 K

page The size of each cache page (in
bytes), between the value of

_size

4096 bytesand 1GB, witha

142

IBM High Performance Computing Toolkit

default value of 4096.

prefe The number of pagesto

tch= prefetch, between 1 and 100,
with adefault of 1.

strid Stride factor, in pages, between

e= 1 and 1G pages, with a default
valueof 1.

stats Output prefetch usage statistics

= to the specified file. If thefile
nameis specified as mioout, or
no file name is specified, the
statistics file nameis
determined by the setting of the
MIO_STATS environment
variable.

nost Do not output prefetch usage

ats statistics.

inter Output intermediate prefetch
usage statistics on kill -USR1.

noint Do not output intermediate

er prefetch usage statistics.

retai Retain file data after close for

n subsequent reopen.

noret Do not retain file data after

an close for subsequent reopen.

listio Use listio mechanism.

nolis Do not use listio mechanism.

tio

tag= String to prefix stats flow

nota Do not use prefix stats flow.

g

The default options for the pf module are:
/nodirect/stats=mioout/bytes/cache_size=64k/page_size=4k/
prefetch=1/asynchronous/global/rel ease/stride=1/nolistio/notag

The trace module has the following options

stats= Output trace
statistics to the
specified file
name. If the

143

IBM High Performance Computing Toolkit

filenameis
specified as
mioout, Or no
filenameis
specified, the
statisticsfile
nameis
determined by
the setting of
the
MIO_STATS
environment
variable.

nostats

Do not output
statistics on
close.

events=

Generate a
binary events
file. The
default file
nameif this
optionis
specified is
trace.events.

noevents

Do not
generate a
binary events
file.

bytes

Output
statisticsin
units of bytes.

kbytes

Output
statisticsin
units of
kilobytes.

mbytes

Output
statisticsin
units of
megabytes.

gbytes

Output
statisticsin
units of
gigabytes.

144

IBM High Performance Computing Toolkit

tbytes

Output
statisticsin
units of
terabytes.

inter

Output
intermediate
trace usage
statistics on kill
—-USR1.

nointer

Do not output
intermediate
statistics.

xml

Generate
statisticsfilein
aformat that
can be viewed
using
peekperf.

The default options for the trace module are:

/stats=mi oout/noevents/nointer/bytes

The recov module has the following options

fullwrite

All writes are
expected to be
full writes. If
thereisawrite
faillure dueto
insufficient
space, the recov
module retries
the write.

partialwrite

All writes are not
expected to be
full writes. If
thereisawrite
failure dueto
insufficient
space, there will
be no retry.

stats=

Output recov
module statistics
to the specified
file name. If the

145

IBM High Performance Computing Toolkit

file nameis
specified as
mioout, Or no
filenameis
specified, the
statisticsfile
nameis
determined by
the setting of the
MIO_STATS
environment
variable.

nostats Do not output
recov statistics
onfileclose.

command= The system
command to be
issued on awrite
error.

open_command= The system
command to be
issued on open
error resulting
froma
connection that
was refused.

retry= Number of times
to retry, between
0 and 100, witha
default of 1.

The default options for the recov module are:
partialwrite/retry=1

Running Your Application

The /O profiling options of most interest when using the IBM HPC Toolkit are the stats
option, which specifies the name of the statistics file that contains data about the I/0
performance of your application, and the events option which specifies the name of a
trace file containing data that can be viewed within peekperf.

After you have compiled and linked your application as described in Preparing Y our
Application and set the MIO_FILES, MIO_DEFAULTS, and MIO_STATS environment
variables, as needed, then you can run your application.

146

IBM High Performance Computing Toolkit

After you run your application, you can view trace files generated by the 1/O profiling
library using peekperf.

147

IBM High Performance Computing Toolkit

Instrumenting Your Application Using hpctinst

In addition to modifying your application source code to contain calls to instrumentation
functions, you can use the hpctInst utility to instrument your application without
modifying your application source code. The hpctInst utility creates a new copy of your
application’ s executable containing the instrumentation that you specified using
command line options to the hpctlnst utility. Y ou can instrument your application with
hpctlInst to obtain performance measurements for hardware performance counters, MPI
profiling, OpenMP profiling and 1/0 profiling.

Y ou must ensure that several environment variables required by the IBM HPC Toolkit
are properly set before you invoke hpctlnst. To set these environment variables, run the
setup scripts that are located in the top level directory of your installation. On Al X
systems, these setup scripts are located in the /usr/Ipp/ppe.hpct directory. On Linux, these
setup scripts are located in the /opt/ibmhpc/ppe.hpct directory. If you are using sh, bash,
ksh, or similar shell command, invoke the env_sh script as. env_sh. If you are using csh,
invoke the env_csh script as source env_csh.

If you are going to instrument your application using hpctInst, you must compile the
application using the —g compiler option so that hpctInst can find the line number and
symbol table information it needs to instrument the application. When you link your
application, you should not link it with any libraries from the IBM HPC Toolkit. If you
have a 64-bit Linux application, you must link your application using the
—emit-stub-syms linker option.

After you have instrumented your application, you should set any environment variables
that are required by the instrumentation you requested. All of the environment variables
described in the sections for hardware performance counters, MPI profiling and 1/0
profiling can be used, as needed, when running an application instrumented with
hpctInst. The exception is OpenMP profiling, in which the environment variables are
used only to control the insertion of instrumentation when the hpctlnst utility is run, and
must be set before hpetInst is run. The OpenM P-specific environment variables are
therefore only described in the command reference page for the hpetInst command.

Note that if you instrument small, frequently called functions, the instrumentation
overhead might be significant, and the accuracy of performance measurements might be
affected by this overhead.

Instrumenting Your Application for Hardware Performance Counters

Y ou can instrument your application to obtain hardware performance counter information
in the following ways:

e You caninstrument the entry and exit points of every function in your application

by using the —.dhpm option. When you do this, you obtain performance data that
includes hardware performance counter totals for each function in your

148

IBM High Performance Computing Toolkit

application. You can use this data to identify functions that require tuning for
improved performance.

Y ou can instrument your application to obtain hardware performance counter
performance data at specific locations (function call sites) in your application,
where afunction is called, using the—dhpm_func_call option. If you use this
option, you will obtain hardware performance counter information for the
function called at the specified location. Y ou can use this information to help you
identify how a function called from multiple locations in your application
performs from each individual location from which it is called.

Y ou specify the set of function call sitesin the file specified as a parameter to the
—dhpm_func_call option. You can specify locations to be instrumented such that
only function calls from specific functions are instrumented, or only function calls
within a specified region of source code. The following example shows afile that
specifiesthat callsto function sum from function compute and calls to function
distribute_data from source file main.c between lines 100 and 200 are
instrumented.

sum conput e
distribute data nain.c 100 200

Y ou can instrument selected regions of your source code by using the —
dhpm_region option and specifying afile that contains alist of one or more
regions of code to be instrumented. Regions of code might overlap. If regions of
code overlap, then the considerations described in Handling of Overlap Issues
apply. The following example shows afile that specifies that regions of code
between lines 1 and 100 of main.c and lines 100 to 300 of report.c areto be
instrumented.

main.c 1 100
report.c 100 300

Instrumenting Your Application for MPI Profiling
Y ou can instrument your application for MPI profiling in the following ways:

Y ou can instrument the entire application so that all MPI callsin the application
are traced by using the —dmpi option.

Y ou can instrument your application so that only specific MPI functions called
from specific functions in your application are instrumented by using the —
dmpi_func_call option. Y ou specify the set of MPI function call sitesin thefile
specified as a parameter to the —dmpi_func_call option. Y ou can specify
locations to be instrumented such that MPI function calls only from a specific
function in your application are instrumented or only MPI function calls within a
specified region of source code are instrumented. The following example shows a

149

IBM High Performance Computing Toolkit

file that specifiesthat calls to the MPI_Send() function from function compute
and callsto MPI_Recv() from source file main.c between lines 100 and 200 are
instrumented.

MPI _Send conpute
MPI _Recv main.c 100 200

Y ou can instrument selected regions of your source code in which all MPI
function calls within that region are instrumented by using the —dmpi_region
option and specifying afile that contains alist of one or more regions of code to
be instrumented. The following example shows afile that specifies that regions of
code between lines 1 and 100 of main.c and lines 100-300 of report.c are to be
instrumented.

main.c 1 100
report.c 100 300

Instrumenting Your Application for OpenMP Profiling
Y ou can instrument your application for OpenMP profiling in the following ways:

Instrument all parallel loops and parallel regionsin your application by using the
—dpomp option.

Instrument all parallel regions in your application by using the -dpomp_parallel
option.

Instrument all parallel loops in your application by using the -dpomp_loop option.
Instrument all user-written functions in your application by using the —
dpomp_user option, or a selected subset of user-written functions by using the —
dpomp_userfunc option. If you use the —.dpomp_userfunc option, you specify
the set of user-written functions to be instrumented in afile, whichisasimple list
of the functions to be instrumented, with one function name per linein that file.

If you want to instrument only selected parallel 1oops or paralel regionsin your
application, use peekperf. The peekperf GUI alows you to select specific OpenMP
constructs to instrument.

Instrumenting Your Application for 1/O Profiling

Y ou can instrument your entire application for 1/0 profiling by using the —.dmio option.
Y ou select the specific files that will have performance data obtained for them by setting
I/O profiling environment variables as specified in the 1/O Profiling Environment
Variables section.

If you want to instrument only specific 1/0 function callsin your application, use
peekperf to instrument your application.

150

IBM High Performance Computing Toolkit

Commands and API Reference

Hardware Performance Monitoring

hpccount

Report summary hardware performance counter and resource usage statistics for an
application.

Synopsis
hpccount [-0 <name>] [-u] [-N] [-X] [-g <group[,group]>] [-a <plug-in>] <program>
hpccount [-h] [-1] [-C]

Flags
-C Lists the available counters and the hardware counter events that
can be counted by each counter.
-0 A single value that specifies the hardware counter group to be

<group[,group]> used, or acomma-delimited list of hardware counter groups to be
multiplexed (A1X only). If thisflag or the HPM_EVENT_SET
environment variable is not set, a processor specific default group
isused, asfollows:

PowerPC 970 23
POWER4 60
POWER5 137
POWERS+™ 145
POWERG 127
-h Displays a usage message.
-l Lists the available hardware counter groups and the hardware
counter events that are counted by each group.
-n Suppresses hpecount output to stdout.
-0 <name> Writes output to file <name>

e Thefile <name> can be specified using option —o or using
the environment variable HPM_OUTPUT_NAME. The
option takes precedence if there are conflicting
specifications.

e The name <name> is expanded in to different file names:

e <name>.hpm isthefile name for ASCII output, whichisa
one-to-one copy of the screen output.

e <name>.viz isthe file name for the XML output.

e Which of these output files are generated is governed by
additional environment variables. If none of those are set,
only the ASCII stdout is generated. If at least oneis set,
the following rules apply.

e HPM_ASC OUTPUT, if set to yes, triggers the ASCII
output

151

Description

IBM High Performance Computing Toolkit

e HPM_VIZ OUTPUT, if set to yes, triggers the XML
output.

Unless the —a option is chosen, there is one output for each MPI
task. To avoid directing all output to the samefile, the user is
advised to have a different name for each MPI task by using the
-u flag below or by directing the file to a nonshared file system
Specifies that unique file names will be used for generated ASCI|
and XML output files according to the following rules:
e A string _<hostname> <process id> <date> <time>is
inserted before the last period (.) in the file name.
e If hostnameisafully qualified name, the short form of the
hostname is used in substituting <hostname>.
e |f theapplicationisan MPI program, the library attempts
to use the MPI task number in place of <process_id>.
e Thedateis substituted using dd.mm.yyyy format.
e Thetimeis substituted as hh.mm.ss using 24-hour time.
Displays formulas for derived metrics as part of the command
outpuit.

The hpccount command provides comprehensive reports of events that are critical to
performance on IBM systems. HPM is able to gather the usual timing information, as
well as critical hardware performance metrics, such as the number of misseson all
cache levels, the number of floating point instructions executed, and the number of
instruction loads that cause TLB misses. These reports help the algorithm designer or
programmer identify and eliminate performance bottlenecks.

The hpccount command invokes the target program and counts hardware
performance counter events generated by the target program. The hpccount
command reports this information after the target program compl etes.

Environment Variables

Event Selection Environment Variables
HPM_EVENT_SET A single value that specifies the hardware counter

group to be used, or acomma-delimited list of
hardware counter groups to be multiplexed (A1X
only). If the—g flag is not used and
HPM_EVENT_SET is not set, a processor-specific
default group is used, asfollows:

PowerPC 970 23
POWER4 60
POWERS 137
POWERS+ 145

152

IBM High Performance Computing Toolkit

POWERG 127
HPM_SLICE DURATION Specifiestheinterval, in milliseconds, to be used when
hardware counter groups are multiplexed. You can
specify avalue between 10 milliseconds and 30
seconds. The default is 100 milliseconds. This
environment variable is supported for AIX only.

Output Control Environment Variables

HPM_ASC_OUTPUT

HPM_OUTPUT_NAME

HPM_PRINT_FORMULA

HPM_STDOUT

HPM_UNIQUE_FILE_NAME

HPM_VIZ_OUTPUT

Set to yes to generate an ASCII output file with the
name <programName>.hpm. If neither
HPM_ASC OUTPUT or HPM_VIZ OUTPUT are
set, both an ASCII output file and an XML output
file are generated. If HPM_ASC_OUTPUT and
HPM_VIZ_OUTPUT are set to no, no output is
generated.

Specifies the <name> portion of the output files
<name>.hpm and <name>.viz.

Set to yes to print the definitions of the derived
metrics. Set to no to suppress this output. The
default is no.

Set to yes to write ASCII output to stdout. If
HPM_STDOUT is set to no, no output is written to
stdout. The default is yes.

Set to yes in order to generate unique file names for
generated ASCII and XML output files. Set to no
to generate the file name exactly as specified by
HPM_OUTPUT_NAME. If
HPM_UNIQUE_FILE_NAME is set to yes, the
following rules apply:

e A string
<hostname><process _id> <date> <time
> isinserted before the last period (.) in the
file name.

e If hostnameisafully qualified name, the
short form of the hostnameisused in
substituting <hostname>.

e |f the applicationisan MPI program, the
library attempts to use the MPI task number
in place of <process id>.

e Thedateis substituted using dd.mm.yyyy
format. The time is substituted as hh.mm.ss
using 24-hour time.

Set to yes to generate an XML output file with the
name <programName>.xml.

153

IBM High Performance Computing Toolkit

Latency Environment Variables

HPM_L2 LATENCY
HPM_L25 LATENCY

HPM_L275 LATENCY
HPM_L3 LATENCY
HPM_L35 LATENCY
HPM_MEM_LATENCY

HPM_TLB_LATENCY

User-specified estimate of latency for an L2 cache load.
User-specified estimate of latency for an L2 cache load
from the same MCM.

User-specified estimate of latency for an L2 cache load
from adifferent MCM.

User-specified estimate of latency for an L3 cache load
withinan MCM.

User-specified estimate of latency for an L3 cache load
outsidethe MCM.

User-specified estimate of latency for aload from
memory.

User-specified estimate of latency for aTLB miss.

Miscellaneous Environment Variables

HPM_DIV_WEIGHT User-specified weighting factor, greater than 1, for
computing weighted flops on a POWER4 system.

IHPCT_BASE Path name of the directory in which IBM HPC Toolkit is
installed (/usr/lpp/ppe.hpct for AlX, /opt/ibmhpc/ppe.hpct
for Linux).

Files

<name>.hpm The ASCII output from the hpccount invocation. Thisis acopy of
the report displayed at the completion of hpccount execution.

<name>.viz An XML output file containing hardware performance counter data
from hpccount execution. Thisfile can be viewed using peekperf.

Examples

To list available counter groups for your processor:

hpccount -l

To report summary hardware counter statistics for an application:
hpccount —o stats —g 25 testprog

To report summary hardware counter statistics for an MPI program:
poe hpccount —o stats —g 25 —u testprog

154

IBM High Performance Computing Toolkit

hpcstat

Report a system-wide summary of hardware performance counter statistics and

resource usage.

Synopsis

hpcstat [-0 <name> [-n] [-X] [-K] [-u] [-] <time>] [-U <time>] [-C <count>]
[-g <group[,<group>]>]

hpestat [-h] [-]] [-c]

Flags
-C

-C <count>

-9
<group[,<group>]>

-h
-I<time>
-k

-|

-n
-0 <name>

Lists the available counters and the hardware counter events
that can be counted by each counter.

Specifies the number of times hpcstat reports statistics. The
defaultis1.

A single value that specifies the hardware counter group to be
used. If thisflag or the HPM_EVENT_SET environment
variable is not set, a processor specific default group is used,
asfollows:

PowerPC 970 23

POWER4 60

POWER5 137

POWERS+ 145

POWERG6 127
Displays a usage message.
Specifies the interval, in seconds, for reporting statistics.
Specifiesthat only kernel side events are to be counted.
Lists the available hardware counter groups and the hardware
counter events that are counted by each group.
Suppresses hpestat output to stdout.
Writes output to file <name>

e Thefile <name> can be specified using option —o or
using the environment variable
HPM_OUTPUT_NAME. The option takes
precedence if there are conflicting specifications.

e The name <name> is expanded in to different file
names:

e <pame>.hpm isthe file name for ASCII output which
IS aone-to-one copy of the screen output.

e <pame>.viz isthe file name for the XML output.

e Which of these output files are generated is governed
by additional environment variables. If none of those
are set, only the ASCII stdout is generated. If at least
oneis set, the following rules apply.

e HPM_ASC OUTPUT, if set to yes, triggers the

155

IBM High Performance Computing Toolkit

ASCII output.
e HPM_VIZ OUTPUT, if setto yes, triggers the XML
output.
-u Specifies that only user side events are to be counted.
-U<time> Specifies the interval, in microseconds, for reporting
statistics.
-X Displays formulas for derived metrics as part of the command
output.

Description

The hpcstat tool lists avariety of performance information to stdout or to afile. In
particular, it prints resource utilization statistics, hardware performance counter
information and derived hardware metrics. If the —C flag and either the - or —U
flags are used, hpcstat reports hardware performance counter statistics and resource
utilization on a periodic basis, smilar to the vmstat command.

The resource usage statistics are directly taken from acall to getrusage(). For more
information on the resource utilization statistics, please refer to the getrusage man

pages.

The hpcestat command requires the user to have root privileges. This command is an
AlX-only command.

Environment Variables

Event Selection Environment Variables

HPM_EVENT_SET A single value that specifies the hardware counter group to be
used
If the —g flag is not specified and HPM_EVENT_SET is not
set, a processor specific default group is used, as follows:

PowerPC 970 23
POWER4 60
POWERS 137
POWERS+ 145
POWERG 127

Output Control Environment Variables

HPM_ASC _OUTPUT Set to yes to generate an ASCII output file with the
name <programName>.hpm. If neither
HPM_ASC OUTPUT or HPM_VIZ _OUTPUT are
set, both an ASCII output file and an XML output
file are generated. If both HPM_ASC OUTPUT
and HPM_VIZ OUTPUT are set to no, then no
output is generated.

156

IBM High Performance Computing Toolkit

HPM_OUTPUT_NAME Specifies the <name> portion of the output files
<name>.hpm and <name>.viz.

HPM_PRINT_FORMULA Set to yes to print the definitions of the derived
metrics. Set to no to suppress this output. The
default isno.

HPM_STDOUT Set to yes to write ASCII output to stdout. If
HPM_STDOUT is set to no, no output is written to
stdout. The default isyes.

HPM_VIZ_OUTPUT Set to yes to generate an XML output file with the
name <programName>.viz.

HPM_UNIQUE_FILE_NAME The output file name can be made unique by
setting the environment variable
HPM_UNIQUE_FILE_NAME=yes. Thistriggers
the following changes.

e A string
<hostname><process id>_<date>_<time
> isinserted before the last period (.) in the
file name.

e |f the host name contains period (.) ("long
form"), only the portion preceding the first
period (.) istaken. In case a batch queuing
system is used, the host name is taken from
the execution host, not the submitting host.

The date is given as dd.mm.yyyy. Thetimeisgiven
by hh.mm.ss in 24-hour format using the local time
zone.

Latency Environment Variables

HPM L2 LATENCY User-specified estimate of latency for an L2 cache load.

HPM_L25 LATENCY User-specified estimate of latency for an L2 cache load
from the same MCM.

HPM_L275 LATENCY User-specified estimate of latency for an L2 cache load
from adifferent MCM.

HPM_L3 LATENCY User-specified estimate of latency for an L3 cache load
within an MCM.

HPM_L35 LATENCY User-specified estimate of latency for an L3 cache load
outside the MCM.

HPM_MEM_LATENCY User-specified estimate of latency for aload from
memory.

HPM_TLB _LATENCY User-specified estimate of latency for aTLB miss.

Miscellaneous Environment Variables

HPM_DIV_WEIGHT User-specified weighting factor, greater than 1, for
computing weighted flops on a POWER4 system.
IHPCT_BASE Path name of the directory in which IBM HPC Toolkit is

157

IBM High Performance Computing Toolkit

installed (/usr/lpp/ppe.hpct for AlX, /opt/ibmhpc/ppe.hpct
for Linux).

Files

<name>.hpm The ASCII output from the hpestat invocation. Thisis acopy of the
report displayed at the completion of hpestat execution.

<name>.viz An XML output file containing hardware performance counter data
from hpcstat execution. This file can be viewed using peekperf.

Examples

To list hardware performance counter groups available on your processor:
hpcstat -

To report user level hardware performance counter statistics for the system every 30
seconds for five minutes:
hpcstat —u —C 10 -I 30 —g 25

158

IBM High Performance Computing Toolkit

hpm_error_count, f_error_count

Purpose
Provide away to verify that acall to alibhpe function was successful.

Library
-lhpc

-lpmapi (AlX)
-lperfctr (Linux)

C Synopsis
#include <libhpc.h>

Fortran Synopsis

#include <f_hpc.h>
#include <f_hpc_i8.n>
logical function f_error_count()

Note: Usef hpc.h for programs compiled without —qintsize=8 and use f_hpc_i8.h
for programs compiled with —qintsize=8.

Note: Fortran programs which include either of these headers need to be
preprocessed by the C preprocessor. This might require the use of the -qsuffix option,
for instance, -qsuffix=cpp=f.

Parameters
None

Description

hpm_error_count isan external variable that HPM library functions set if an error
occurs during acall to that function. f_error_count() isthe equivalent Fortran
function that returns alogical value indicating that an error occurred during an HPM
library call.

If an HPM library call is successful, hpm_error_count is set to zero and
f error_count() returns .false. If an HPM library call fails, hpm_error_count is set
to anon zero value and f_error_count() returns .true.

The hpm_error_count variable or f_error_count() function should be used at any
point where you need to determine if an HPM library function call failed.

Environment Variables
None

159

IBM High Performance Computing Toolkit

Examples

#i ncl ude <li bhpc. h>
#1 ncl ude <stdi o. h>
#1 ncl ude <stdlib. h>
int main(int argc, char *argv[])
{
hpm nit (0, “HPMlest”);
if (hpmerror_count) {
printf(“hpmnit error\n”);
exit(1l);
}

hpmlrer m nat e() ;
if (hpmerror_count) {
printf(“hpmlerm nate error\n”);
exit(1l);
}
}

program hpnt est

#i nclude “f_hpc. h”

call f_hpmnit(0, ‘HPMIest’)

if (f_hpmerror() .eqv. .true.) then
print *, ‘f_hpmnit error’
stop 1

end if

éall f _hpnterm nate()
if (f_hpmerror() .eqv. .true.) then
print *, ‘f_hpnterm nate error’

stop 1
end if
end

160

IBM High Performance Computing Toolkit

hpminit, f_hpminit

Purpose
Initialize the hardware performance counter (HPM) runtime environment.

Library
-lhpc

-lpmapi (AlX)
-lperfctr (Linux)

C Synopsis
#include <libhpc.h>
void hpminit(int my_ID, const char * progName)

Fortran Synopsis
#include <f_hpc.h>
#include <f_hpc_i8.n>
subroutine f_hpminit(integer my_ID, character progName(*))

Note: Usef hpec.h for programs compiled without —qintsize=8 and use f_hpc_i8.h
for programs compiled with —qintsize=8.

Note: Fortran programs that include either of these headers need to be preprocessed
by the C preprocessor. This might require the use of the -qsuffix option. For instance,
-qsuffix=cpp=f.

Parameters

my_ID Unused. Should be set to zero.

progName Specifies the name of the program. If the HPM_OUTPUT_NAME
environment variable is not set, this parameter is used as the name of the
visualization files.

Description

This function initializes the runtime environment for obtaining hardware
performance counter statistics. It optionally names the output files containing these
statistics. It must be the first HPM function call executed in the application.

Environment Variables

Event Selection Environment Variables

HPM_EVENT_SET A single value that specifies the hardware counter
group to be used, or acomma-delimited list of
hardware counter groups to be multiplexed (AlIX
only). If HPM_EVENT_SET isnot set, a

161

IBM High Performance Computing Toolkit

processor-specific default group is used, as
follows:

PowerPC 970 23
POWER4 60
POWERS 137
POWERS+ 145
POWER®G 127

HPM_EXCLUSIVE_VALUES Settoyes if exclusive counter valuesin nested

HPM_SLICE_DURATION

counter regions are to be computed.

Specifiesthe interval, in milliseconds, to be used
when hardware counter groups are multiplexed.

Y ou can specify avalue between 10 milliseconds
and 30 seconds. The default is 100 milliseconds.
This environment variable is supported for AIX
only.

Output Control Environment Variables

HPM_ASC_OUTPUT

HPM_OUTPUT_NAME

HPM_PRINT_FORMULA

HPM_STDOUT

HPM_UNIQUE FILE_NAME

Set to yes to generate an ASCII output file with the
name <programName>.hpm. If neither
HPM_ASC_OUTPUT or HPM_VIZ_OUTPUT are
set, both an ASCII output file and an XML output
file are generated. If both HPM_ASC _OUTPUT
and HPM_VIZ_OUTPUT are set to no, no output
is generated.
Specifies the <name> portion of the output files
<name>.hpm and <name>.viz. If this environment
variableis not set, <name> is set to the value of the
progName parameter.
Set to yes to print the definitions of the derived
metrics. Set to no to suppress this output. The
default isno.
Set to yes to write ASCII output to stdout. If
HPM_STDOUT is set to no, no output is written to
stdout. The default is yes.
Set to yes in order to generate unique file names for
generated ASCII and XML output files. Set to no
to generate the file name exactly as specified by
HPM_OUTPUT_NAME. If
HPM_UNIQUE_FILE_NAME is set to yes, the
following rules apply:
e A string

<hostname><process _id>_<date>_<time

> isinserted before the last period (.) in the

file name.

e |f hostnameisafully-qualified name, the

162

IBM High Performance Computing Toolkit

short form of the hostname isused in
substituting <hostname>.

e |f the applicationisan MPI program, the
library attempts to use the MPI task number
in place of <process id>

e Thedateis substituted using dd.mm.yyyy
format. The timeis substituted as hh.mm.ss
using 24-hour time.

HPM_VIZ_OUTPUT Set to yes to generate an XML output file with the
name <programName>.viz, where
<programName> is specified by the
HPM_OUTPUT_NAME environment variable, or
if that is not set, then as specified by the second
parameter to the hpmStart() call.

Latency Environment Variables

HPM_L2 LATENCY User-specified estimate of latency for an L2 cache load.

HPM_L25 LATENCY User-specified estimate of latency for an L2 cache load
from the same MCM.

HPM_L275 LATENCY User-specified estimate of latency for an L2 cache load
from adifferent MCM.

HPM_L3 LATENCY User-specified estimate of latency for an L3 cache load

within an MCM.

HPM_L35 LATENCY User-specified estimate of latency for an L3 cache load
outside the MCM.

HPM_MEM_LATENCY User-specified estimate of latency for aload from
memory.

HPM_TLB_LATENCY User-specified estimate of latency for aTLB miss.

Plug-in Specific Environment Variables

HPM_EVENT _DISTR Specifiesacomma-delimited list of hardware counter
group numbers that are counted by MPI tasks. These group
numbers are distributed round-robin to individual MPI
tasks, where each task counts only events for the hardware
counter group assigned to that task.

This environment variable is recognized only when the
average.so aggregation plug-in is selected.

HPM_PRINT_TASK Specifiesthe MPI task that hasits results displayed. The
default task number is zero.

This environment variable is recognized only when the
single.so aggregation plug-in is selected.

Miscellaneous Environment Variables

HPM_AGGREGATE Specifies the name of a plug-in that defines the HPM data
aggregation strategy. If the plug-in name containsa/, the

163

IBM High Performance Computing Toolkit

HPM_DIV_WEIGHT

HPM_NUM_INST_PTS

IHPCT _BASE

Examples
#i ncl ude <li bhpc. h>

int main(int argc,

{

}

name is treated as an absolute or relative path name. If the
name does not contain a/, the plug-in is loaded following
the rules for the dlopen() function call.

The plug-in is a shared object file that implements the
distributor() and aggregator() functions. See the user
documentation for details.

User-specified weighting factor, greater than 1, for
computing weighted flops on a POWER4 system.

Sets the maximum number of instrumented sections. The
default maximum is 1000.

Path name of the directory in which IBM HPC Toolkit is
installed (/usr/lIpp/ppe.hpct for AlX, /opt/ibmhpc/ppe.hpct
for Linux).

char *argv[])

hpm nit (0, “HPMIest”);

hmeer m nate();

progr am hpnt est

#i ncl ude “f_hpc. h”

cal |

f_hpmnit(O,

‘ HPMTest)

éal | f_hpnterm nate()

end

164

IBM High Performance Computing Toolkit

hpmStart, f_hpmstart

Purpose

Identifies the starting point for aregion of code in which hardware performance
counter events are to be counted.

Library
-lhpc

-lpmapi (AlX)
-lperfctr (Linux)

C Synopsis
#include <libhpc.h>
void hpmStart(int inst_ID, const char *label);

Fortran Synopsis
#include <f_hpc.h>
#include <f_hpc_i8.n>
subroutine f_hpmstart(integer inst_ID, character label(*))

Note: Usef hpc.h for programs compiled without —qintsize=8 and use f_hpc_i8.h
for programs compiled with —qintsize=8.

Note: Fortran programs that include either of these headers need to be preprocessed
by the C preprocessor. This might require the use of the -qsuffix option. For instance,
-qsuffix=cpp=f.

Parameters

inst_ 1D Specifies a unique value identifying the instrumented code region. The
value must be less than the value specified by the
HPM_NUM _INST_PTS environment variable which has a default
value of 1000.

progName Specifies the name associated with the instrumented code region. This
name is used to identify the code region in the generated performance
data.

Description

The hpmStart() function identifies the start of aregion of code in which hardware
performance counter events are to be counted. The end of the region isidentified by
acall to hpmStop() using the same inst_ID.

The hpmStart() function assigns an identifier and a name to that region. When this

function is executed, it records the starting value for the hardware performance
counters that are being used. When the corresponding hpmStop() function cal is

165

IBM High Performance Computing Toolkit

executed, the hardware performance counters are read again and the difference
between the current values and the starting values is accumulated.

Regions of code bounded by hpmStart() and hpmStop() calls can be nested. When
regions are nested, hpmStart() and hpmStop() properly accumulate hardware
events so they can be properly accounted for with both inclusive and exclusive

reporting.

If hpmStart() and hpmStop() functions are called in a threaded application, the
count of hardware performance counter eventsis for the entire process rather than for
the specific thread on which the calls are made. If you need accurate counts for each
thread, use hpmTstart() and hpmTstop().

Environment Variables
See hpmlInit().

Examples

#i ncl ude <l i bhpc. h>
int main(int argc, char *argv[])

L
int i;
float x;
x = 10.0;
hpm nit (0, “HPMlest”);
hpnStart (1, “Region 1");
for (i = 0; i < 100000; i++) {
x = x [1.001;
}
hpntt op(1) ;
hpmrer m nat e() ;
}

program hpmnt est
#i ncl ude “f_hpc. h”

i nteger i

real *4 x

call f_hpmnit(0, ‘HPMIest’)

x = 10.0;

call f_hpmstart(1l, ‘Region 1)
do 10 i = 1, 100000

x =x [/ 1.001
10 continue
call f_hpnstop(1)
call f_hpnterm nate()
end

166

IBM High Performance Computing Toolkit

hpmStartx, f_hpmstartx

Purpose

Identifies the starting point for aregion of code in which hardware performance
counter events are to be counted, specifying explicit inheritance relationships for
nested instrumentation regions.

Library
-lhpc

-lpmapi (AlX)
-lperfctr (Linux)

C Synopsis
#include <libhpc.h>
void hpmStartx(int inst_ID, int parent_ID, const char *label);

Fortran Synopsis
#include <f_hpc.h>
#include <f_hpc_i8.n>
subroutine f_hpmitstart(integer inst_ID, integer parent_ID, character label(*))

Note: Usef hpec.h for programs compiled without —qintsize=8 and use f_hpc_i8.h
for programs compiled with —qintsize=8.

Note: Fortran programs that include either of these headers need to be preprocessed
by the C preprocessor. This might require the use of the -qsuffix option. For instance,
-qsuffix=cpp=f.

Parameters

inst_ 1D Specifies a unique value identifying the instrumented code region. The
value must be less than the value specified by the
HPM_NUM _INST_PTS environment variable, which has a default
value of 1000.
parent_ID Specifies the inheritance relationship for nested hpmStart() cals. This
parameter must have one of the following values:
e HPM_AUTO PARENT
e HPM_ONLY_EXCLUSIVE
e HPM_NO PARENT
e Theinst_ID of an active hpmStart() or hpmStartx() call
progName Specifies the name associated with the instrumented code region. This
name is used to identify the code region in the generated performance
data.

167

IBM High Performance Computing Toolkit

Description

The hpmStartx() function identifies the start of aregion of code in which hardware
performance counter events are to be counted, and explicitly specifies the parent
relationship for an encompassing region instrumented by hpmStart() or
hpmStartx(). The end of the regionisidentified by a call to hpmStop() using the
same inst_ID.

The hpmStartx() function assigns an identifier and a name to that region. When this
function is executed, it records the starting value for the hardware performance
counters that are being used. When the corresponding hpmStop() function cal is
executed, the hardware performance counters are read again and the difference
between the current values and the starting values is accumul ated.

Regions of code bounded by hpmStartx() and hpmStop() calls can be nested. When
regions are nested, hpmStartx() and hpmStop() properly accumulate hardware
events so they can be properly accounted for with both inclusive and exclusive
reporting. For reporting of exclusive event counts, the proper parent relationship
must be determined. If regions are perfectly nested, such as a set of nested loops,
hpmStart() is sufficient for determining parent relationships. In more complicated
nesting cases, hpmStartx() should be used to properly specify those relationships.

Parent relationships are specified by the parent ID parameter which must have one
of the following values:

e HPM_AUTO_PARENT: Automatically determine the parent for this
hpmStartx() call. Thisis done by searching for the immediately preceding
hpmStart() or hpmStartx() call executed on the current thread in which there
has not been a corresponding call made to hpmStop().

e HPM_ONLY_EXCLUSIVE: This operatesin the same way asif
HPM_AUTO_PARENT was specified, and also acts as if the
HPM_EXCLUSIVE_VALUES environment variable was set for this call to
hpmStartx() only. If the HPM_EXCLUSIVE_VALUES environment
variable was previously set, this parameter value is equivalent to specifying
HPM_AUTO_PARENT.

e HPM_NO_PARENT: Specifiesthat this hpmStartx() call has no parent.

e inst_ID: for aprevious hpmStart() or hpmStartx() call that is currently
active, meaning the corresponding call to hpmStop() has not been made for
this instance of execution.

If hpmStartx() and hpmStop() functions are called in a threaded application, the
count of hardware performance counter eventsisfor the entire process rather than for
the specific thread on which the calls were made. If you need accurate counts for
each thread, use hpmTstartx() and hpmTstop().

Environment Variables
See hpmlInit()

168

IBM High Performance Computing Toolkit

Examples

#i ncl ude <li bhpc. h>
int main(int argc, char *argv|[])

t
int i;
int j;
float x;
x = 10.0;
hpm nit (0, “HPMIest”);
hpnst art x(1, HPM NO PARENT, “Region 1");
for (i = 0; i < 100000; i++) {
hpnStartx(2, 1, “Region 2");
for (j = 0; j < 100000; j++) {
x = x / 1.001;
}
hpnst op(2) ;
Xx = x [/ 1.001;
}
hpnst op(1) ;
hpmlrer m nat e() ;
}

program hpnt est
#i ncl ude “f_hpc. h”
i nteger i
real *4 x
call f_hpmnit(0, ‘HPMIest’)
x = 10.0;
call f_hpmstartx(1, HPM NO PARENT, ‘Region 1’)
do 10 i =1, 100000
x = x [/ 1.001
10 conti nue
call f_hpnstop(1)
call f_hpnterm nate()
end

169

IBM High Performance Computing Toolkit

hpmStop, f_hpmstop

Purpose

|dentifies the end point of aregion of code starting with acall to hpmStart() or
hpmStartx(), in which hardware performance counter events are to be counted. Also
accumul ates hardware performance counter events for that region.

Library
-lhpc

-lpmapi (AlX)
-lperfctr (Linux)

C Synopsis
#include <libhpc.h>
void hpmStop(int inst_ID);

Fortran Synopsis
#include <f_hpc.h>
#include <f_hpc_i8.n>
subroutine f_hpmstop(integer inst_ID)

Note: Usef hpec.h for programs compiled without —qintsize=8 and use f_hpc_i8.h
for programs compiled with —qintsize=8.

Note: Fortran programs that include either of these headers need to be preprocessed

by the C preprocessor. This might require the use of the -qsuffix option. For instance,
-qsuffix=cpp=f.

Parameters

inst_ID Specifies aunique value identifying the instrumented code region. This
value must match the inst_ID specified in the corresponding hpmStart()
or hpmStartx() function call.

Description

The hpmStop() function identifies the end of aregion of code in which hardware
performance counter events are to be monitored. The start of the region isidentified
by acall to the hpmStart() or hpmStartx() function using the sameinst_ID. That
function must be called for a specific inst_ID before the corresponding call to the
hpmStop() function.

Environment Variables
None

Examples
#i ncl ude <l i bhpc. h>

170

IBM High Performance Computing Toolkit

int main(int argc, char *argv[])

t
int i;
float x;
x = 10.0;
hpm nit (0, “HPMlest”);
hpnStart (1, “Region 17);
for (i = 0; i < 100000; i++) {

x = x [/ 1.001;

}
hpntt op(1) ;
hpmrer m nat e() ;

}

program hpmnt est
#i nclude “f_hpc. h”

i nteger i

real *4 x

call f_hpmnit(0, ‘HPMlest’)

x = 10.0;

call f_hpmstart(1l, ‘Region 1)
do 10 i = 1, 100000

x = x [/ 1.001
10 continue
call f_hpnstop(1)
call f_hpnterm nate()
end

171

IBM High Performance Computing Toolkit

hpmTerminate, f_hpmterminate

Purpose

Generate hardware performance counter (HPM) statistics files and shut down the
HPM environment.

Library
-lhpc

-lpmapi (AlX)
-lperfctr (Linux)

C Synopsis
#include <libhpc.h>
void hpmTerminate()

Fortran Synopsis
#include <f_hpc.h>
#include <f_hpc_i8.n>
subroutine f_hpmterminate()

Note: Usef hpc.h for programs compiled without —qintsize=8 and use f_hpc_i8.h
for programs compiled with —qintsize=8.

Note: Fortran programs that include either of these headers might need to be
preprocessed by the C preprocessor. This might require the use of the -qsuffix option.
For instance, -qsuffix=cpp=f.

Parameters
None

Description

This function generates output files containing any hardware performance counter
statistics obtained during the program’ s execution and shuts down the HPM runtime
environment. This function must be called before the application exitsin order to
generate statistics. It must be the last HPM function called during program execution.

If the HPM_AGGREGATE environment variable is set, and the instrumented
application is an MPI application, hpmTerminate() should be called before
MPI_Finalize() is called, because the plug-in specified by the HPM_AGGREGATE
environment variable might call MPI functions as part of itsinternal processing.

Environment Variables
See hpmlInit()

172

IBM High Performance Computing Toolkit

Examples
#i ncl ude <li bhpc. h>
int main(int argc, char *argv|[])

{
hpm nit (0, “HPMIest”);

hpnﬂerninate();

}

pr ogram hpnt est
#i ncl ude “f_hpc. h”
call f_hpmnit(0, ‘HPMlest’)

éall f _hpnterm nate()
end

173

IBM High Performance Computing Toolkit

hpmTstart, f_hpmtstart

Purpose

Identifies the starting point for aregion of code in which hardware performance
counter events are to be counted on a per-thread basis.

Library
-lhpc

-lpmapi (AlX)
-lperfctr (Linux)

C Synopsis
#include <libhpc.h>
void hpmTstart(int inst_ID, const char *1abel);

Fortran Synopsis
#include <f_hpc.h>
#include <f_hpc_i8.n>
subroutine f_hpmtstart(integer inst_ID, character |abel (*))

Note: Usef hpc.h for programs compiled without —qintsize=8 and use f_hpc_i8.h
for programs compiled with —qintsize=8.

Note: Fortran programs which include either of these headers need to be
preprocessed by the C preprocessor. This might require the use of the -qsuffix option,
for instance, -qsuffix=cpp=f.

Parameters

inst_ 1D Specifies a unique value identifying the instrumented code region. The
value must be less than the value specified by the
HPM_NUM _INST_PTS environment variable, which has a default
value of 1000.

progName Specifies the name associated with the instrumented code region. This
name is used to identify the code region in the generated performance
data.

Description

The hpmTstart() function identifies the start of aregion of code in which hardware
performance counter events are to be counted. The end of the region isidentified by
acall to hpmTstop() using the same inst_ID.

The hpmTstart() function assigns an identifier and a name to that region. When this

function is executed, it records the starting value for the hardware performance
counters that are being used. When the corresponding hpmTstop() function call is

174

IBM High Performance Computing Toolkit

executed, the hardware performance counters are read again and the difference
between the current values and the starting values is accumulated.

Regions of code bounded by hpmTstart() and hpmTstop() calls can be nested.
When regions are nested, hpmTstart() and hpmTstop() properly accumulate
hardware events so they can be properly accounted for with both inclusive and
exclusive reporting.

The only difference between the hpmStart() and hpmTstart() functionsisthat a
call to hpmStart() results in reading the hardware performance counters for the
entire process while a call to hpmTstart() resultsin reading the hardware
performance counters only for the thread from which the call to hpmTstart() was
made.

Environment Variables
See hpmlInit().

Examples
#i ncl ude <li bhpc. h>
voi d thread_func();
int main(int argc, char *argv[])

{
hpm nit (0, “HPMIest”);
thread func(); /* assume this function runs on
mul tiple threads */
hpmTer mi nat e() ;
}
void thread_func()
L
int i;
float x;
x = 10.0;
hpnrstart (1, “Region 1");
for (i = 0; i < 100000; i++) {
x = x [1.001;
}
hpmrst op(1);
}

program hpnt est

#i ncl ude “f_hpc. h”

real *4 x

call f_hpmnit(0, ‘HPMlest’)

X = thread _func() ! Assunme thread func runs on
I multiple threads

call f_hpnterm nate()

end

175

10

IBM High Performance Computing Toolkit

real *4 function thread _func()
#i ncl ude “f_hpc. h”
real *4 x
i nteger i
x = 10.0;
call f_hpmstart(l, ‘Region 1)
do 10 i =1, 100000
x = x [/ 1.001
conti nue
call f_hpntstop(1)
thread func = x
return
end

176

IBM High Performance Computing Toolkit

hpmTstartx, f_hpmtstartx

Purpose

Identifies the starting point for aregion of code in which hardware performance
counter events are to be counted on a per-thread basis, specifying explicit inheritance
relationships for nested instrumentation regions.

Library
-lhpc

-lpmapi (AlX)
-lperfctr (Linux)

C Synopsis
#include <libhpc.h>
void hpmTstartx(int inst_ID, int parent_ID, const char *label);

Fortran Synopsis
#include <f_hpc.h>
#include <f_hpc_i8.n>
subroutine f_hpmitstartx(integer inst_ID, integer parent_ID, character |abel(*))

Note: Usef hpec.h for programs compiled without —qintsize=8 and use f_hpc_i8.h
for programs compiled with —qintsize=8.

Note: Fortran programs that include either of these headers need to be preprocessed
by the C preprocessor. This might require the use of the -qsuffix option. For instance,
-qsuffix=cpp=f.

Parameters

inst_ 1D Specifies a unique value identifying the instrumented code region. The
value must be less than the value specified by the
HPM_NUM _INST_PTS environment variable, which has a default
value of 1000.
parent_ID Specifies the inheritance relationship for nested hpmStart() cals. This
parameter must have one of the following values:
e HPM_AUTO PARENT
e HPM_ONLY_EXCLUSIVE
e HPM_NO PARENT
e Theinst_ID of an active hpmTstart() or hpmTstartx() call.
progName Specifies the name associated with the instrumented code region. This
name is used to identify the code region in the generated performance
data.

177

IBM High Performance Computing Toolkit

Description

The hpmTstartx() function identifies the start of aregion of code in which hardware
performance counter events are to be counted, on a per-thread basis, and explicitly
specifies the parent relationship for an encompassing region instrumented by
hpmTstart() or hpmTstartx(). The end of theregion isidentified by acall to
hpmTstop() using the same inst_ID.

The hpmTstartx() function assigns an identifier and a name to that region. When
this function is executed, it records the starting value for the hardware performance
counters that are being used. When the corresponding hpmTstop() function call is
executed, the hardware performance counters are read again and the difference
between the current values and the starting values is accumul ated.

Regions of code bounded by hpmTstartx() and hpmTstop() calls can be nested.
When regions are nested, hpmTstartx() and hpmTstop() properly accumulate
hardware events so they can be properly accounted for with both inclusive and
exclusive reporting. For reporting of exclusive event counts, the proper parent
relationship must be determined. If regions are perfectly nested, such as a set of
nested loops, hpmTstart() is sufficient for determining parent relationships. In more
complicated nesting cases, hpmTstartx() should be used to properly specify those
relationships.

Parent relationships are specified by the parent_ID parameter which must have one
of the following values:

e HPM_AUTO_PARENT: Automatically determine the parent for this
hpmTstartx() call. Thisis done by searching for the immediately preceding
hpmTstart() or hpmTstartx() call executed on the current thread in which
there has not been a corresponding call made to hpmStop().

e HPM_ONLY_EXCLUSIVE: Thisoperatesin the same way as if
HPM_AUTO_PARENT was specified, and also acts as if the
HPM_EXCLUSIVE_VALUES environment variable was set for this call to
hpmTstartx() only. If the HPM_EXCLUSIVE_VALUES environment
variable was previously set, this parameter value is equivalent to specifying
HPM_AUTO_PARENT.

e HPM_NO_PARENT: Specifiesthat this hpmTstartx() call has no parent.

e inst_ID for aprevious hpmTstart() or hpmTstartx() call that is currently
active, meaning the corresponding call to hpmTstop() has not been made for
this instance of execution.

Environment Variables
See hpmlInit()

Example

#i ncl ude <l i bhpc. h>
void thread func();
int main(int argc, char *argv[])

178

IBM High Performance Computing Toolkit

{
hpm nit (0, “HPMIest”);
thread func(); /* assume this function runs on
mul tiple threads */
hpmlrer m nat e() ;
}
voi d thread_func()
L
int i;
int j;
float x;
x = 10.0;
hpmrstartx(1, HPM NO PARENT, “Region 1");
for (i = 0; i < 100000; i++) {
hpnmrstartx(2, 1, “Region 2");
for (j = 0; j < 100000; j++) {
x = x [1.001;
}
hpnmrlst op(2) ;
x = x [1.001;
}
hpmrst op(1);
}

program hpnt est

#i ncl ude “f_hpc. h”

real *4 x

call f_hpmnit(0, ‘HPMIest’)

X = thread _func() ! Assunme thread func runs on
I multiple threads

call f_hpnterm nate()

end

real *4 function thread func()
#i ncl ude “f_hpc. h”

real *4 x
i nteger i
i nt eger |
x = 10.0;
call f_hpmstartx(1l, HPM NO PARENT, ‘Region 1')
do 10 i =1, 100000

call f_hpmstartx(2, 1, ‘Region 2')
do 20 j =1, 100000
x = x [/ 1.001
20 continue
call f_hpntstop(2)
x = x [/ 1.001

179

IBM High Performance Computing Toolkit

10 continue
call f_hpntstop(1l)
thread_func = x
return
end

180

IBM High Performance Computing Toolkit

hpmTstop, f_hpmtstop

Purpose

|dentifies the end point of aregion of code starting with acall to hpmTstart() or
hpmTstartx() in which hardware performance counter events are to be counted.
Also accumulates hardware performance counter events for that region.

Library
-lhpc

-lpmapi (AlX)
-lperfctr (Linux)

C Synopsis
#include <libhpc.h>
void hpmTstop(int inst_ID);

Fortran Synopsis
#include <f_hpc.h>
#include <f_hpc_i8.n>
subroutine f_hpmtstop(integer inst_ID)

Note: Usef hpec.h for programs compiled without —qintsize=8 and use f_hpc_i8.h
for programs compiled with —qintsize=8.

Note: Fortran programs that include either of these headers need to be preprocessed
by the C preprocessor. This might require the use of the -qsuffix option. For instance,
-qsuffix=cpp=f.

Parameters

inst_ID Specifies aunique value identifying the instrumented code region. This
value must match the inst_ID specified in the corresponding hpmTstart()
or hpmTstartx() function call.

Description

The hpmTstop() function identifies the end of aregion of code in which hardware
performance counter events are to be monitored. The start of the region isidentified
by acall to an hpmTstart() or hpmTstartx() function using the sameinst_ID. The
hpmTstart() or hpmTstartx() function must be called for a specific inst_ID before
the corresponding call to the hpmStop() function.

Environment Variables
None

Examples
#i ncl ude <l i bhpc. h>

181

IBM High Performance Computing Toolkit

int main(int argc, char *argv[])

t
int i;
float x;
x = 10.0;
hpm nit (0, “HPMlest”);
hpnmrstart (1, “Region 1");
for (i = 0; i < 100000; i++) {

x = x [/ 1.001;

}
hpmrst op(1);
hpmrer m nat e() ;

}

program hpmnt est
#i nclude “f_hpc. h”

i nteger i

real *4 x

call f_hpmnit(0, ‘HPMlest’)

x = 10.0;

call f_hpmstart(l, ‘Region 1)
do 10 i = 1, 100000

x = x [/ 1.001
10 continue
call f_hpntstop(1)
call f_hpnterm nate()
end

182

IBM High Performance Computing Toolkit

MPI Profiling
MT _get_allresults

Purpose
Obtain statistical results from performance datafor an MPI function.

Library
-Impitrace

C Synopsis
#include <mpt.h>
#include <mpi_trace ids.h>
int MT_get_alresults(int data_type, int mpi_id, struct MT_summarystruct * data);

Parameters

data type Specifiesthe type of datato be returned in the data parameter.

mpi_id An enumeration specifying the MPI function for which data is obtained.

data A structure, alocated by the user, containing the statistical data returned
by calling this function.

Description

This function computes statistical data from performance data accumulated for an
MPI function type or for al MPI functions in an application.

The data_type parameter specifies the statistical measurement that is returned by a
call to thisfunction as follows:

COUNTS The number of times the specified MPI function was
caled.
BYTES The total number of bytes of datatransferred in callsto

the specified MPI function.
COMMUNICATIONTIME Thetota time spent in all callsto the specified MPI

function.

STACK The maximum stack address for any call to the
specified MPI function.

HEAP The maximum heap address for any call to the
specified MPI function.

ELAPSEDTIME Either the elapsed time between callsto MPI_Init()

and MPI_Finalize(), or, if that valueis zero, the
elapsed time since MPI_Init() was called.

The mpi_id parameter specifies the MPI function for which statistics are to be

computed. It must be either an enumeration from the table shown in the
MT trace_event() function man page, also found in

183

IBM High Performance Computing Toolkit

$IHPCT_BASE/include/mpi_trace ids.h header, or ALLMPI_ID to compute
statistics for all MPI functions profiled by the MPI trace library in the application.

If the mpi_ID parameter is specified as ALLMPI_ID, meaningful results are
returned only when the data_type parameter is specified asBYTES or
COMMUNICATIONTIME. In al other cases, the returned data is zero.

Thisfunction fillsin the MT_summarystruct structure allocated by the user, in which
the following fields are relevant:

int min_rank The MPI task rank of the task corresponding to the
valuein the min_result field.

int max_rank The MPI task rank of the task corresponding to the
value in the max_result field.

int med_rank The MPI task rank of the task corresponding to the
value in the med_result field.

void *min_result The minimum value from al tasks for the
measurement specified by the data _type parameter.

void *max_result The maximum value from all tasks for the
measurement specified by the data type parameter.

void *med_result The median value from all tasks for the measurement
specified by the data _type parameter.

void *avg_result The average value from all tasks for the measurement
specified by the data _type parameter.

void *sum_result The sum of the measurements from all tasks for the
measurement specified by the data type parameter.

void *all_result An array of measurements for all tasks, in MPI task

rank order, for the measurement specified by the
data_type parameter.

void *sorted _all_result An array of measurements for all tasks, sorted in data
value order, for the measurement specified by the
data_type parameter.

int *sorted rank An array of MPI task ranks corresponding to the data
valuesin the sorted_all_result array.

The datatype of the min_result, max_result, med result, avg_result and sum_result
fields depends on the value specified for the data_type parameter as follows:

COUNTS long long
BYTES double
COMMUNICATIONTIME double
STACK double
HEAP double
ELASPSEDTIME double

Y ou must cast the above fields to the appropriate data type in your code.

184

IBM High Performance Computing Toolkit

The all_result and sorted_all result arrays are arrays of the same data type as the
individual fields described above. Y ou are responsible for freeing these arrays after
they are no longer needed.

This function can be useful when you implement your own version of
MT _output_text().

Returns
Thisfunction returns 1 for successful completion. It returns -1 if an error occurs.

Environment Variables

IHPCT_BASE Path name of the directory in which IBM HPC Toolkit isinstalled
(/usr/ipp/ppe.hpct for AlX, /opt/ibmhpc/ppe.hpct for Linux).

Examples
#i ncl ude <npi . h>
#i ncl ude <npi _trace_ids. h>
#i ncl ude <stdio. h>
int MI_out put _text()
{
struct MI_summarystruct stats;
MI_get _allresul ts(BYTES, SEND I D, &stats);
printf(“Mnimmbytes sent (%1.6f) by task %\ n”,
(double) stats.mn_result, stats.m n_rank);
printf(*“Mximmbytes sent (%1.6f) by task %\ n”,
(doubl e) stats.max_result, stats.nmax_rank);
return O,

185

IBM High Performance Computing Toolkit

MT_get_calleraddress

Purpose
Obtain the address of the caller of an M Pl function.

Library
-Impitrace

C Synopsis
void *MT_get_calleraddress(int level);

Parameters

level Specifies the number of levelsto walk up the call stack to get the caler’s
address.

Description

This function can be used within your implementation of MT _trace_event() to
obtain the address of the caller of an MPI function. If thisfunctionis caled inside
your implementation of MT _trace_event() and the level parameter is specified as
zero, it obtains the address where the MPI function was called. If the level parameter
is specified as 1, this function returns the address where the function that called the
current MPI function was called.

Returns
This function returns the caller’ s address as determined by the level parameter.

Environment Variables
None

Examples

#i ncl ude <npt. h>
int MI_trace_event(int id)

{
unsi gned | ong cal |l er _addr;
call er _addr = MI_getcal |l eraddress(0);
return 1;

}

186

IBM High Performance Computing Toolkit

MT _get_callerinfo

Purpose
Obtain source code information about the caller of an MPI function.

Library
-Impitrace

C Synopsis
#include <mpt.h>
int MT_get_calerinfo(unsigned long addr, struct MT_callerstruct src_info);

Parameters

addr Specifies the address for which source code information is to be obtained.
src_info Contains the source code information returned by this function for the
specified caller address.

Description

This function can be used to obtain the source code information, including the file
name and line number corresponding to the address specified by the addr parameter.

Thisfunction fillsin the MT_callerstruct structure passed to it with the following

information:

char *filepath The path name of the directory containing the sourcefile.

char *filename Thefile name of the sourcefile.

char *funcname The name of the function containing the caller address.

int lineno The source line number corresponding to the address passed in
the addr parameter.

In order for this function to work correctly, the application should be compiled and
linked with the —g compiler option so that the required file name and line number
information is contained in the executable.

Returns

This function returns zero if the source file information was obtained. It returns -1 if
the source file information could not be obtai ned.

Environment Variables
None

Examples

#i ncl ude <npt. h>
#i ncl ude <stdio. h>
int MI_trace_event(int id)

{

187

IBM High Performance Computing Toolkit

struct MI_callerstruct src_info;

i nt status;

unsi gned | ong cal | er _addr;

cal |l er _addr = MI_getcal |l eraddress(0);

status = MI_getcallerinfo(caller_addr, &src_info);

if (status == 0) {

printf(“% was called from%/%(%) |ine %\n”,

MI_get _npi _nanme(id), src_info.filepath,
src_info.filenanme, src_info.funcnane,
src_info.lineno);

return 1;

188

IBM High Performance Computing Toolkit

MT _get_elapsed _time

Purpose

Get the elapsed time in seconds between acall to MPI_Init() and acall to
MPI_Finalize().

Library
-Impitrace

C Synopsis
#include <mpt.h>
double MT_get_elapsed_time();

Parameters
None

Description

This function returns the elapsed time, in seconds, between a call to MPI_Init() and
acall to MPI_Finalize().

This function can be useful when you implement your own version of
MT _output_text().

Returns

This function returns the time, in seconds, between acall to MPI_Init() and acall to
MPI_Finalize().

Environment Variables
None

Examples
#i ncl ude <stdio. h>
#i ncl ude <npt. h>
int MI_out put _text()

{
printf(“Time between MPI Init and MPI _Finalize
is %1. 6f seconds\n”,
MI_get el apsed_tinme());
return O;

189

IBM High Performance Computing Toolkit

MT _get_environment

Purpose
Returns information about the runtime environment for the application.

Library
-Impitrace

C Synopsis
#include <mpt.h>
void MT_get_environment(struct MT_envstruct *env);

Parameters

env A pointer to astructure, allocated by the user, which contains information
about the application runtime environment.

Description
Thisfunction is used to obtain information about the application runtime

environment by filling in the MT_envstruct structure allocated by the user. The
following fieldsin the MT_envstruct structure are relevant:

int mpirank The MPI task rank for this task in the application.

int ntasks Number of tasksin the MPI application

int nmpi Maximum index allowed for mpi_id when calling
MT _get mpi_counts(), MT_get_mpi_bytes(),
MT _get mpi_time().

This function can be useful when you implement your own version of
MT _output_text().

Environment Variables
None

Examples
#incl ude <npt. h>
#i ncl ude <stdio. h>
int MI_out put _text()

{
MI_envstruct env;
MI_get _envi ronmnent (&env) ;
printf(“MPl task rank is %\n”, env.npirank);
return O,
}

190

IBM High Performance Computing Toolkit

MT _get_mpi_bytes

Purpose
Obtain the accumulated number of bytes transferred by a specific MPI function.

Library
-Impitrace

C Synopsis
#include <mpt.h>
#include <mpi_trace ids.h>
double MT_get_mpi_bytes(int mpi_ID);

Parameters
mpi_ID An enumeration identifying the MPI function.

Description

The MT _get_mpi_bytes() function returns the accumul ated number of bytes
transferred by thistask for all MPI function calls corresponding to the enumeration
specified asmpi_ID. The mpi_ID parameter might be any of the values as specified
in the table in the description of the MT _trace_event() function, or as specified in
the SIHPCT_BASE/include/mpi_trace ids.h header. However, meaningful results
are returned only for MPI functions that either send or receive data.

This function can be useful when you implement your own version of
MT _output_text().

Returns

This function returns the accumulated number of bytes transferred by this task for the
MPI function specified by the mpi_ID parameter.

Environment Variables

IHPCT_BASE Path name of the directory in which IBM HPC Toolkit isinstalled
(/usr/ipp/ppe.hpct for AlX, /opt/ibmhpc/ppe.hpct for Linux).

Examples
#i ncl ude <stdio. h>
#i ncl ude <npt. h>
#i ncl ude <npi _trace_ids. h>
int MI_out put _text()

{
printf(“Total bytes sent using MPI _Send: % 11.6
byt es\ n”,
MI_get _npi _bytes(SEND I D)) ;
return O;

191

IBM High Performance Computing Toolkit

192

IBM High Performance Computing Toolkit

MT _get_mpi_counts

Purpose
Obtain the number of times the specified MPI function was called.

Library
-Impitrace

C Synopsis
#include <mpt.h>
#include <mpi_trace ids.h>
long long MT_get_mpi_counts(int mpi_ID);

Parameters
mpi_ID An enumeration identifying the MPI function.

Description
The MT_get_mpi_counts() function returns the number of times the specified MPI
function was called in this task. The mpi_ID parameter might be any of the values as
specified in the table in the description of the MT _trace_event() function, or as
specified in the $IHPCT_BASE/include/mpi_trace ids.h header.

This function can be useful when you implement your own version of
MT _output_text().

Returns

This function returns the number of times the MPI function, specified by the mpi_ID
parameter, was called in this task.

Environment Variables

IHPCT_BASE Path name of the directory in which IBM HPC Toolkit isinstalled
(/usr/ipp/ppe.hpct for AlX, /opt/ibmhpc/ppe.hpct for Linux).

Examples

#i ncl ude <stdio. h>

#i ncl ude <npt. h>

#i ncl ude <npi _trace_ids. h>

int MI_out put _text()

{
printf(“MPl _Send called %1d tines\n”,

MI_get _npi _counts(SEND_ID));

return O,

193

IBM High Performance Computing Toolkit

MT_get_mpi_name

Purpose
Return the name of the specified MPI function.

Library
-Impitrace

C Synopsis
#include <mpt.h>
#include <mpi_trace ids.h>
char *MT_get_mpi_name(int mpi_ID);

Parameters
mpi_ID An enumeration identifying the MPI function.

Description

The MT _get mpi_name() function returns the name of the specified MPI function.
The mpi_ID parameter might be any of the values as specified in the table in the
description of the MT _trace_event() function, or as specified in the
SIHPCT_BASE/include/mpi_trace ids.h header.

This function can be useful when you implement your own version of
MT _output_text().

Returns

This function returns the name of the MPI function specified by the mpi_ID
parameter.

Environment Variables

IHPCT_BASE Path name of the directory in which IBM HPC Toolkit isinstalled
(/usr/ipp/ppe.hpct for AlX, /opt/ibmhpc/ppe.hpct for Linux).

Examples

#i ncl ude <stdio. h>

#i ncl ude <npt. h>

#i ncl ude <npi _trace_ids. h>
int MI_out put _text()

{
printf(“% called %1d tinmes\n”,
MI_get _npi _nane(SEND_I D),
MI_get _npi _counts(SEND ID));
return O;
}

194

IBM High Performance Computing Toolkit

MT _get_mpi_time

Purpose
Obtain the elapsed time, in seconds, spent in the specified MPI function.

Library
-Impitrace

C Synopsis
#include <mpt.h>
#include <mpi_trace ids.h>
double MT_get_mpi_time(int mpi_ID);

Parameters
mpi_ID An enumeration identifying the MPI function.

Description

The MT _get_mpi_time() function returns the elapsed time spent in the specified
MPI function in thistask. The mpi_ID parameter might be any of the values as
specified in the table in the description of the MT _trace_event() function, or as
specified in the $IHPCT_BASE/include/mpi_trace ids.h header.

This function can be useful when you implement your own version of
MT _output_text().

Returns

This function returns the elapsed time spent, in seconds, in this task in the MPI
function specified by the mpi_ID parameter.

Environment Variables

IHPCT_BASE Path name of the directory in which IBM HPC Toolkit isinstalled
(/usr/ipp/ppe.hpct for AlX, /opt/ibmhpc/ppe.hpct for Linux).

Examples

#i ncl ude <stdio. h>

#i ncl ude <npt. h>

#i ncl ude <npi _trace_ids. h>
int MI_out put _text()

{
printf(“MPl _Send spent % 11.6 seconds el apsed
time\n”,
MI_get _npi _tinme(SEND_ID));
return O;
}

195

IBM High Performance Computing Toolkit

MT_get_time

Purpose
Get the elapsed time, in seconds, since MPI_Init() was called.

Library
-Impitrace

C Synopsis
#include <mpt.h>
double MT_get_time();

Parameters
None

Description
This function returns the time, in seconds, since MPI_Init() was called.

This function can be useful when you implement your own version of
MT _output_text().

Returns
This function returns the time, in seconds, since MPI_Init() was called.

Environment Variables
None

Examples
#i ncl ude <stdio. h>
#i ncl ude <npt. h>
int MI_out put _text()
{
printf(“MPl _Init was called % 11.6 seconds ago.\n”,
MI_get _tinme());
return O,

196

IBM High Performance Computing Toolkit

MT _get_tracebufferinfo

Purpose
Obtains information about MPI trace buffer usage by the MPI trace library.

Library
-Impitrace

C Synopsis
#include <mpt.h>
int MT_get_tracebufferinfo(struct MT _tracebufferstruct *info);

Parameters

info A pointer to an MT_tracebufferstruct structure allocated by the user, and
which contains the returned results from this function.

Description

This function obtains information about the internal MPI trace buffer used by the

MPI trace library. This function fillsinan MT_tracebufferstruct allocated by the user,
where the following fields in this structure are relevant.

int number_events Number of MPI trace events currently recorded in this buffer.
doubletotal_buffer MPI trace buffer size, in megabytes.

double used _buffer Amount of trace buffer used, in megabytes.

double free_buffer Remaining free space in buffer, in megabytes.

Returns

This function returns 0 on successful completion and returns a nonzero value on
failure.

Environment Variables
None

Examples
#i ncl ude <npt. h>
#i ncl ude <stdio. h>
int MI_out put _text()

{
Ml _tracebufferstruct info;
MI_get _tracebufferinfo(& nfo);
printf(“% MPlI events were recorded\n”,
i nfo. nunber _events);
printf(“%1. 6fMB of %1. 6f MB trace buffer used\n”,
i nfo.used _buffer, info.total buffer);
return O,
}

197

IBM High Performance Computing Toolkit

MT_output_text

Purpose

Generates the performance statistics for your application when your application calls
MPI_Finalize().

Library
-Impitrace

C Synopsis
#include <mpt.h>
int MT_output_text();

Parameters
None

Description

This function generates performance statistics for your application. The MPI trace
library calls this function when MPI_Finalize() is called in your application. Y ou
can override the default behavior of this function, generating a summary of MPI
performance statistics, by implementing your own version of MT_output_text() and
linking it with your application.

Returns
This function returns -1 if an error occurs. Otherwise this function returns 1.

Environment Variables
None

Examples

#i ncl ude <npt. h>
#i ncl ude <nmpi _trace_ids. h>
#i ncl ude <stdio. h>
int MI_output_text()
{
struct MI_sunmmarystruct send_i nfo;
struct MI_sunmmarystruct recv_info;
MI_get _al |l resul t s(ELAPSEDTI ME, SEND | D, &send_i nfo);
MI_get _al |l resul t s(ELAPSEDTI ME, RECV_I D, &recv_info);
printf(“MPl_Send task with mn. elapsed tinme: %\n”,
send_i nfo. m n_rank);
printf(“MPl_Send task with nax. elapsed tine: %\ n”,
send_i nf o. max_r ank) ;
printf(“MPI _Recv task with min. elapsed tine: %l\n”,
recv_info. mn_rank);

198

IBM High Performance Computing Toolkit

printf(“MPI _Recv task with nax. elapsed tine: %l\n”,
recv_i nfo. max_rank);
return O,

199

IBM High Performance Computing Toolkit

MT_output_trace

Purpose
This function controls whether an MPI tracefileis created for a specific task.

Library
-Impitrace

C Synopsis
#include <mpt.h>
int MT_output_trace(int rank);

Parameters
rank The MPI task rank of thistask.

Description

This function controls whether an MPI trace fileis generated for a specific MPI task.
Y ou can override the default MPI trace library behavior of generating atrace file for
all tasks by implementing your own version of this function and linking it with your

application. The MPI trace library calls your implementation of this function as part

of its processing when your application calls MPI_Finalize().

Returns

Thisfunction returns 0 if an MPI tracefileis not to be generated for the MPI task
from which this function is called. This function returns 1 if an MPI tracefileisto be
generated for the MPI task from which thisfunction is called.

Environment Variables
None

Examples

#i ncl ude <npt. h>
int MI_output_trace(int rank)

{
/* Cenerate trace files for even rank tasks only */
if ((rank %2) == 0) {
return 1;
}
el se {
return O,
}
}

200

IBM High Performance Computing Toolkit

MT trace_event

Purpose
Control whether an MPI trace event is generated for a specific MPI function call.

Library
-Impitrace

C Synopsis
#include <mpt.h>
#include <mpi_trace ids.h>
int MT_trace_event(int mpi_ID)

Parameters
mpi_ID An enumeration identifying the MPI function that is about to be traced.

Description
The MT _trace_event() function controls whether the MPI trace library should
generate atrace event for an MPI function call. The default behavior of the MPI
trace library isto generate trace events for all MPI function calls defined in the
mpi_trace ids.h header. Y ou override the default MPI trace library behavior by
implementing your own version of this function and linking it with your application.
The MPI trace library calls your implementation of this function each time the MPI
trace library is about to generate atrace event. Y ou can control collection of MPI
trace events for any function with an identifier in the following list.

COMM_SIZE_ID COMM_RANK_ID SEND_ID

SSEND_ID RSEND _ID BSEND_ID

ISEND_ID ISSEND_ID IRSEND_ID
IBSEND_ID SEND_INIT_ID SSEND_INIT_ID
RSEND_INIT_ID BSEND_INIT_ID RECV_INIT_ID
RECV_ID IRECV_ID SENDRECV_ID
SENDRECV_REPLACE ID BUFFER ATTACH_ID BUFFER ATTACH_ID
PROBE_ID IPROBE_ID TEST ID
TESTANY_ID TESTALL_ID TESTSOME_ID
WAIT_ID WAITANY _ID WAITALL_ID
WAITSOME_ID START_ID STARTALL_ID
BCAST ID BARRIER 1D GATHER_ID
GATHERV_ID SCATTER_ID SCATTERV_ID
SCAN_ID ALLGATHER ID ALLGATHERV_ID
REDUCE_ID ALLREDUCE_ID REDUCE_SCATTER_ID
ALLTOALL_ID ALLTOALLV_ID

201

IBM High Performance Computing Toolkit

Returns

1 if atrace event should be generated for the MPI function call, 0 if no trace event
should be generated.

Environment Variables
See MT _trace start

Examples
#i ncl ude <npt. h>
#i ncl ude <npi _trace_ids. h>
int MI_trace_event(int id)

{
/* Trace only MPI _Send and MPI _Recv calls */
if ((id==RECV_ID) || (id == SEND_ID)) {
return 1;
}
el se {
return O,
}
}

202

IBM High Performance Computing Toolkit

MT trace_start, mt_trace_start

Purpose
Start or resume collection of trace eventsfor all MPI calls.

Library
-Impitrace

C Synopsis
#include <mpt.h>
void MT _trace start()

Fortran Synopsis
subroutine mt_trace_start()

Parameters
None

Description

MT _trace_start() is used to start collection of MPI trace events or to resume
collection of MPI trace events, if collection of these events has been suspended by a
call to MT _trace_stop(). The environment variable TRACE_ALL_EVENTS must
be set to no for MT _trace_start() to have any effect.

Environment Variables

IHPCT_BASE Path name of the directory in which IBM HPC Toolkit is
installed (/usr/lpp/ppe.hpct for AlX,
/opt/ibmhpc/ppe.hpct for Linux).

MAX_TRACE_EVENTS Specifies the maximum number of trace events that can
be collected per task. The default is30000.

MAX_TRACE _RANK Specifies the MPI task rank of the highest rank process
that has MPI trace events collected. The default is256.

OUTPUT_ALL_RANKS Set to yes to generate trace filesfor al MPI tasks. The
default is to generate trace files only for task 0 and the
tasks that have the minimum, maximum and median
total MPI communication time. If task 0 is the task with
minimum, maximum, or median communication time,
only three trace files are generated by default.

TRACE_ALL_EVENTS Settoyes to generate atrace containing trace events for
al MPI calls after MPI_Init(). If this environment
variableis set to no, collection of MPI trace eventsis
controlled by MT _trace_start() and MT_trace_stop().
The default isyes.

TRACE_ALL_TASKS Set to yes to generate MPI trace filesfor all MPI tasksin
the application. The default is no, which resultsin

203

IBM High Performance Computing Toolkit

generating trace files only for MPI tasks 0 through 255.
TRACEBACK_LEVEL Specifiesthe number of levelsto walk back in the
function call stack when recording the address of an MPI
call. This can be used to record profiling information for
the caller of an MPI function rather than the MPI
function itself, which might be useful if the MPI
functions are contained in alibrary. The default is 0.

Examples

#i ncl ude <npt. h>
#i ncl ude <npi . h>
int main(int argc, char *argv[])
{
MPI I nit(&argc, &argv);
MI_trace_start();
/* MPlI comruni cation region of interest */
Ml _trace_stop();
/* MPlI comruni cation region of no interest */
MPI _Finalize();
}

program main

i nclude ‘npif.h

call nmpi_init()

call nt_trace_start()

I MPI comuni cation region of interest
call nt_trace_stop()

I MPI communi cation region of no interest
call npi_finalize()

end

204

IBM High Performance Computing Toolkit

MT trace_stop, mt_trace_stop

Purpose
Suspend collection of trace eventsfor al MPI calls.

Library
-Impitrace

C Synopsis
#include <mpt.h>
void MT _trace stop()

Fortran Synopsis
subroutine mt_trace _stop()

Parameters
None

Description

MT _trace_stop() is used to suspend collection of MPI trace. The environment
variable TRACE_ALL_EVENTS must be set to no for MT _trace_stop() to have
any effect. MT _trace_start() might be called after acall to MT _trace_stop() to
resume collection of MPI trace events.

Environment Variables
See MT trace start()

Examples

#i ncl ude <npt. h>
#i ncl ude <npi . h>
int main(int argc, char *argv[])
{
MPI _Init(&argc, &argv);
MI _trace_start();
/* MPlI comruni cation region of interest */
MI _trace_stop();
/* MPlI comruni cation region of no interest */
MPI _Finalize();
}

program mai n

i nclude ‘npif.h

call npi_init()

call nt_trace_start()

I MPI communi cation region of interest

205

IBM High Performance Computing Toolkit

call nt_trace_stop()

I MPI comuni cation region of no interest
call npi_finalize()

end

206

IBM High Performance Computing Toolkit

Application Instrumentation

hpctinst
Instrument applications in order to obtain performance data.

Synopsis

hpctinst [-dhpm] [-dhpm_func_call <file name>] [-dhpm_region <file name>]
[-dmpi] [-dmpi_func_call <file name>] [-dmpi_region <file name>]
[-dmio] [-dpomp_parallel { none | EnterExit | BeginEnd }]
[-dpomp_loop { none | EnterExit | Chunks}]
[-dpomp_user { none | BeginEnd}] [-dpomp_userfunc <file name>|
[-dlink <args>] <binary>

hpctinst [-h | --help]

Flags
-dhpm Instrument all function entry and exit points with
HPM instrumentation.
-dhpm_func_call <filename> Instrument function call sites with HPM
instrumentation, as specified by the contents of

<filename>.

-dhpm_region <file name> Instrument regions of code with HPM
instrumentation, as specified by the contents of
<filename>.

-dlink <args> Specify additional librariesto link with the

application, for AIX only. If your application uses
shared libraries other than libpmapi, libpthreads or
libxlsmp, you must specify those additional shared
libraries using this option.

-dmpi Instrument all MPI callsin the application with MPI
profiling instrumentation.

-dmpi_func_call <filename> Instrument MPI callsin functions at locations in the
application, as specified by <filename>.

-dmpi_region <file name> Instrument MPI callsin regions of codein the
application, as specified by <filename>.

-dmio Instrument all 1/0 callsin the application for 1/0
profiling.

-dpomp Instrument all OpenMP parallel loop and parallel
region constructs in the application for OpenMP
profiling.

-dpomp_loop Instrument parallel loops for OpenMP profiling.

{none | EnterExit | Chunks}
-dpomp_parallel Instrument parallel regions for OpenMP profiling.
{none | EnterExit |
BeginEnd}
-dpomp_user Instrument user functions for OpenMP profiling.

207

IBM High Performance Computing Toolkit

{none | BeginEnd}
-dpomp_userfunc <file name> Instrument the user functions specified in
<filename> for OpenMP profiling.
-h, --help Display an hpctInst usage message.

Description
The hpctInst command is used to rewrite an application with instrumentation as
specified by command line flags and environment variables. The instrumented binary
iswritten to afile called <binary>.inst in the current working directory. After an
instrumented application has been created, set the appropriate environment variables
for the instrumentation you have requested, then run the application.

If you invoke hpctInst with the —.dhpm_func_call or the —dmpi_func_call flag, the
format of each line in the file specified by <filename> is one of:

called_func [inst_function]
called_func [file_ name [start _line [end line]]]

where:

e called_func isthe name of the function being called. For the -
dmpi_func_call option, called_func isthe name of an MPI function.

e inst_function isthe name of the only function in which callsto called_func
are instrumented.

e file_name isthe name of the only sourcefile in which callsto called_func are
instrumented.

e start_line isthefirst line number in file name in which callsto called_func
are instrumented.

e end line isthe ending line number in file name in which callsto called func
are instrumented.

If file_name is specified, and both start_line and end_line are omitted, al callsto
called_func in file_name are instrumented. The same called_func might be
specified in one or more linesin thisfile.

If you invoke hpctInst with the —.dhpm_region or —.dmpi_region flags, the format
of the each linein the file specified by <file_name> is:

file name start_line end_line

where:
e file_ name isthe name of the sourcefile.
e start_line isthe starting line number in file_name that will be instrumented.
e end_line isthe ending line number in file_name that will be instrumented.

The meanings of the OpenMP instrumentation flags, -dpomp_*, are:
none No datais collected for this construct

208

IBM High Performance Computing Toolkit

EnterExit Datais collected for parallel region entry and exit and for loop entry and
exit.

BeginEnd Datais collected at begin and end of a parallel region. EnterExit datais
also collected.

Chunks Dataiscollected for each parallel execution of the region or loop

If your application does not reside in aglobal filesystem, copy the instrumented
binary to al nodes on which it will run. If you instrument an application for HPM,
hpctInst creates afile named .psigma.hpmhandle in the same directory asthe
instrumented binary. If you instrument an application for OpenMP profiling,
hpctlnst creates afile named .psigma.dpomphandle in the same directory as the
instrumented binary. Y ou must ensure these files are accessible in the current
working directory on all nodes on which the instrumented application will execute.

The application being instrumented must be compiled and linked with the —g option.
If you have a 64-bit Linux application, it must also be linked with the
—emit-stub-syms option.

Environment Variables

IHPCT_BASE Path name of the directory in which IBM HPC Toolkit is
installed (/usr/lpp/ppe.hpct for AlX, /opt/ibmhpc/ppe.hpct
for Linux).

LD _LIBRARY_PATH Must be set to $IHPCT_BASE/lib when instrumenting 32-
bit applications on Linux. Must be set to
$IHPCT_BASE/Iib64 when instrumenting 64-bit
applications on Linux.

POMP_LOOP Specifies the level of OpenMP profiling instrumentation
for OpenMP parallel regions. Values can be none,
EnterExit, or Chunks. The —-dpomp_loop flag overrides
this environment variable.

POMP_PARALLEL Specifies the level of OpenMP profiling instrumentation
for OpenMP parallel regions. Values can be none,
EnterExit, or BeginEnd. The —dpomp_parallel flag
overrides this environment variable.

POMP_USER Specifies the level of OpenMP profiling for user functions.
Values might be none or EnterExit. The —dpomp_user
flag overrides this environment variable.

Examples

To instrument all MPI callsin an application:
hpctl nst —dnpi testprog

To instrument call sites for function testfunc from file main.c lines 1 through 100

with HPM instrumentation:
hpctl nst —dhpm func_call inst_spec testprog

where the inst_spec file contains the single line

209

IBM High Performance Computing Toolkit

testfunc main.c 1 100

To instrument all parallel loops and parallel regionsin an OpenM P application with
EnterExit instrumentation:
hpct I nst —dponp_| oop —dponp_paral | el testprog

210

IBM High Performance Computing Toolkit

Performance Data Visualization

dataview
View atrace file generated by the IBM HPC Toolkit Modular I/0 (MI0O) tool.

Synopsis
dataview [<event_trace> [<event_trace> ...]]
dataview [-h | --help]

Flags
-h, --help Display a dataview usage message.

Description

The dataview GUI can be used to view atrace file generated by the IBM HPC
Toolkit I/0 Profiling tool. The trace is displayed in agraph format, where in the
initial display, the x axis represents elapsed time and the y axis represents file
position. Y ou can zoom in and out of this graph display and display /O transfer rates
for selected areas of the graph. Y ou can also display the MIO trace in tabular format
and use the tabular view to customize the M10O graph to show additional data.

When you start dataview, you can specify an M10O trace file to be viewed, or you
can invoke dataview without specifying an MI10O trace file to open. If you do not
specify an MI1O tracefile, you can do so by selecting the Read Event option from
the File menu in the initial dataview window.

When dataview starts, and an M10O trace fileis|loaded, dataview displays a window
containing atree view showing the instrumented 1/0 calls in the application that
generated the trace file. Y ou can select one or more of the I/O calls from thistree. If
dataview was invoked from within peekperf, by selecting View Tracer from the
Data Visualization Window pop-up menu that appears when right-clicking in that
window, then when you select an 1/O function call from the tree view, peekperf
positions the source view window to show the /O call that you selected.

After you select 1/0 calls, and you select New Plot at the top of the tree view, the
graph isdisplayed. Y ou can zoom in and out of the graph using the Zoom In and
Zoom Out buttons at the top of the graph window. Y ou can save the graph as ajpg
file by clicking the Save button, and print the graph by clicking the Print button.

Y ou can also zoom in the graph by left-clicking and dragging a rectangle around the
area of the graph into which you want to zoom in to.

Y ou can show the slope (data transfer rate) for file 1/0 by right-clicking over a part
of the plot and dragging to draw aline over the plot. The slope of that lineis
displayed, along with starting and ending coordinates, in the status area at the bottom
of the graph. If you trace over a part of the plot while right-clicking, the slope is the
datarate in bytes per second for the traced fragment of the graph.

211

IBM High Performance Computing Toolkit

Y ou can display the trace in tabular format by selecting one or more I/O calls from
the tree view then clicking Edit Table in the File menu in the tree view. A table
opens for each 1/O call, showing the data for each time that 1/0 call was executed.
Y ou can select a column to sort the table by clicking over a column heading. If you
right-click over a column, a pop-up menu appears in which you can hide displayed
columns, show hidden columns, or save thetable to afilein CSV (spreadsheet)
format.

Y ou can customize an M10O graph by making selections from the widgets at the top
of the data view table. These selections take effect the next time you click Plot in a
graph window or select New Plot from the tree window. There are four widgets that
you can use to customize the graph.

Thefirst isthe color icon. If you select thisicon, a color selector dialog appears, in
which you can select the color of the displayed data.

The second widget selects the metric used for the y axis of the graph. Y ou can select
file position activity, data delivery rate, or rate vs. position. If you select file position
activity, datais displayed in the graph as individual data points. If you select data
delivery rate or rate vs. position, datais displayed in the graph as numerical values at
the locations at which points would be plotted.

The third widget specifies how many pixels are used to draw each data point.

The fourth widget specifies the metric whose numerical valueisto be displayed at
each point in the graph.

Environment Variables

IHPCT_BASE Path name of the directory in which IBM HPC Toolkit isinstalled
(/usr/lpp/ppe.hpct for AlX, /opt/ibmhpc/ppe.hpct for Linux).

Examples

212

IBM High Performance Computing Toolkit

peekperf

Provide a GUI interface to instrument an application and to view application
performance data.

Synopsis
peekperf [-num max_src_files] [<binary>] [[<vizfile>] ...]
peekperf [-h | --help]

Flags
-num Specifies the maximum number of source files that can be opened
without being prompted to select a set of files. The default limit is15
files.

-h, --help Display a usage message for peekperf.

Description

The peekperf GUI isthe control center of the HPC Toolkit. It allows you to control
the instrumentation, execute the application, and visualize and analyze the collected
performance data within the same user interface. The peekperf GUI can display the
datain the visualization (*.viz) files from the various instrumentation libraries. If
more than one visualization file is specified, peekperf combines the data from them
for display. Peekperf also provides filtering and sorting capabilities to help you
analyze the data.

Peekperf supports gathering the following types of performance data:
e Hardware performance counters and resource utilization (HPM)
e MPI profiling and trace (MPI)
e OpenMP profiling (OpenMP)
e 1/O profiling (MIO)

If you specify the application to be instrumented, using the <binary> parameter,
peekperf parses the specified application executable to identify possible
instrumentation points. If you do not specify the application executable on the
command line, you can specify the application executable once peekperf has started
by selecting the Open Binary selection from the File menu.

If you specify the visualization file(s) on the command line, peekperf attemptsto
load the visualization files asit starts up. Y ou can aso load visualization files by
selecting the Open Performance Data selection from the File menu.

The peekperf GUI has three main windows, the data collection window, the data
visualization window, and the source code window.

The data collection window opens when you open an executable, either by

specifying it on the command line, or by selecting Open Binary from the File menu.
The data collection window shows you separate tabs for each type of instrumentation

213

IBM High Performance Computing Toolkit

data you can collect. Each tab shows awindow containing a representation of the
application structure and the locations within the application that you can instrument
for each type of data. Y ou can expand or collapse nodesin this tree, as needed, and
select or deselect the desired instrumentation points. If you right-click on anode, a
pop-up menu appears in which you can select additional options, including options
specific to the type of instrumentation.

The data visualization window shows a summary of the instrumentation data files
that have been loaded. Instrumentation data files (visualization files) can be opened
by specifying them on the peekperf command line, by selecting Open Performance
Data from the File menu, or they will open automatically after an instrumented
application completes. Y ou can expand or collapse the tree to view data. Y ou can
sort data by clicking on a column heading. Y ou can view additional detail in a
metrics browser for aleaf node row in the tree by right-clicking over the leaf node
row. If you right-click anywhere in the window other than over aleaf node row, a
pop-up menu appears where you can apply filtersto eliminate uninteresting rows
from the view or to open atable or trace viewer appropriate to the type of
visualization data.

The source code window appears when an executable is loaded or by clicking the
Open Sources option in the File menu. The source code window shows a tabbed
display of individual source filesin the application. Asyou select instrumentation
points in the data collection window, or select rows in the data visualization window,
the corresponding lines of code is highlighted in the source code window. Y ou can
select regions of code to be instrumented by the HPM tool by clicking and dragging
over the region of interest, then right-clicking and selecting Add to HPM from the
pop-up menu.

It is necessary to compile the application with the —g options in order to map the
performance data back to source code. This allows you to more easily find
bottlenecks and points for optimizations.

Environment Variables

IHPCT_BASE Path name of the directory in which IBM HPC Toolkit isinstalled
(/usr/lpp/ppe.hpct for AlX, /opt/ibmhpc/ppe.hpct for Linux).

Examples

To invoke peekperf without |loading any performance data or parsing an application
executable:
peekperf

To invoke peekperf, specifying an application executable to be parsed for
instrumentation:
peekperf myapp

To invoke peekperf to view performance data:

214

IBM High Performance Computing Toolkit

peekperf myapp.viz

215

IBM High Performance Computing Toolkit

peekview

Display an MPI trace file generated by an application that is instrumented by the
IBM HPC Toolkit to obtain MPI profiling data.

Synopsis

peekview [[-b | -bright] | [-d | --dark]] <tracefile> [<tracefile>] ...

Flags

-b, --bright ~ Display the MPI trace with a bright background.

-d, --dark Display the MPI trace with adark background. Thisisthe default
display option

-h, --help Display a peekview usage message

Description

The peekview GUI displays one or more MPI trace files generated using the MPI
profiling tool in the IBM HPC Toolkit. Traces are displayed in atimeline format
with the x axis representing elapsed time and the y axis representing MPI task index.
Each unique MPI function is displayed in adifferent color so individual MPI
function calls can be easily identified.

The peekview GUI displays a second window, the identifier window, which you can
use to enable or disable the display of MPI events by MPI function type, so only the
desired MPI function types are visible.

Y ou can scroll through the trace display by using the scrollbars on the trace window.
Y ou can also zoom in and out of the trace by using the zoom icons at the top of the
trace window, or by clicking and dragging a rubber band box around a region of
interest in the trace window.

If you left-click over atrace event, some information about that event is displayed in
the status area at the bottom of the trace window. If you right-click over atrace event,
a pop-up message with additional information about that event appears.

If peekview isinvoked from within peekperf, by selecting the View Tracer option
from the Data Visualization Window pop-up menu that appears when right-clicking
in that window, then when you left-click on atrace event in the trace window,
peekperf scrolls its source code window to display the line of source code
corresponding to the MPI function call.

By default, peekview displays the trace using a dark background (the —d option). If
the—b option is specified, each MPI event is drawn with a black rectangle around it,
making it easier to see short duration MPI events. However, if there are many events
in the MPI trace display, the —b option could result in a distorted view of the MPI
trace.

216

IBM High Performance Computing Toolkit

Environment Variables

IHPCT_BASE Path name of the directory in which IBM HPC Toolkit isinstalled
(/usr/lpp/ppe.hpct for AlX, /opt/ibmhpc/ppe.hpct for Linux).

Examples

Display an MPI trace with a dark background:
peekview —d single trace

217

Xprof

IBM High Performance Computing Toolkit

Xprof isa GUI-based performance profiling tool that displays the application as a
function tree based on the runtime call structure and profiling statistics.

Synopsis

Xprof [program] [-b][-s][-z] [-a<path>] [-c <file>] [-L <pathname>]
[[-e<function>]...] [[-E <function>]...] [[-f <function>]...]
[[-Ffunction]...] [-disp_max number_of_functions] [[gmon.out]...]

Xprof -h | -help
Flags
-a To specify an alternate search path or paths for library files and source

code files. If more than one path is specified, the paths must be
embraced by acomma (,) and each path should be separated by either a
colon (:) or a space.

Suppresses the printing of the field descriptions for the Flat Profile, Call
Graph Profile, and Function Index reports when they are written to afile
with the Save As option of the File menu.

Loads a configuration file that contains information to be used to
determine which functions will be displayed when Xprof is brought up.
Sets the number of function boxes that Xprof initially displaysin the
function call tree. The value supplied with this flag can be any integer
between 0 and 5,000. Xprof displays the function boxes for the most
processor-intensive functions through the number you specify.
De-emphasi zes the general appearance of the function box or boxes for
the specified functions in the function call tree, and limits the number of
entries for these functionsin the Call Graph Profile report. This also
applies to the specified function's descendants, as long as they have not
been called by nonspecified functions. In the function call tree, the
function boxes for the specified functions appear grayed out. Its size and
the content of the label remain the same. This also applies to descendant
functions, as long as they have not been called by nonspecified
functions. In the Call Graph Profile report, an entry for the specified
function only appears whereit is achild of another function, or asa
parent of afunction that also has at |east one nonspecified function as its
parent. The information for this entry remains unchanged. Entries for
descendants of the specified function do not appear unless they have
been called by at least one nonspecified function in the program.

Changes the general appearance and label information of the function
box or boxes for the specified functions in the function call tree. Also
limits the number of entries for these functionsin the Call Graph Profile
report, and changes the processor data associated with them. These
results also apply to the specified function's descendants, as long as they

218

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.cmds/doc/aixcmds6/xprofiler.htm#xprofiler_flags_b
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.cmds/doc/aixcmds6/xprofiler.htm#xprofiler_flags_s
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.cmds/doc/aixcmds6/xprofiler.htm#xprofiler_flags_z
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.cmds/doc/aixcmds6/xprofiler.htm#xprofiler_flags_a
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.cmds/doc/aixcmds6/xprofiler.htm#xprofiler_flags_c
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.cmds/doc/aixcmds6/xprofiler.htm#xprofiler_flags_bigl
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.cmds/doc/aixcmds6/xprofiler.htm#xprofiler_flags_e
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.cmds/doc/aixcmds6/xprofiler.htm#xprofiler_flags_bige
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.cmds/doc/aixcmds6/xprofiler.htm#xprofiler_flags_f
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.cmds/doc/aixcmds6/xprofiler.htm#xprofiler_flags_bigf
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.cmds/doc/aixcmds6/xprofiler.htm#xprofiler_flags_disp_max
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.cmds/doc/aixcmds6/xprofiler.htm#xprofiler_flags_gmon.out
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.cmds/doc/aixcmds6/xprofiler.htm#xprofiler_flags_h
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.cmds/doc/aixcmds6/xprofiler.htm#xprofiler_flags_h

IBM High Performance Computing Toolkit

have not been called by nonspecified functions in the program. In the
function call tree, the function box for the specified function appears
grayed out, and its size and shape also changes so that it appears as a
square of the smallest allowable size. In addition, the processor time
shown in the function box label appears as 0 (zero). The same appliesto
function boxes for descendant functions, as long as they have not been
called by nonspecified functions. This option aso causes the processor
time spent by the specified function to be deducted from the left side
processor total in the label of the function box for each of the specified
function's ancestors. In the Call Graph Profile report, an entry for the
specified function only appears where it is a child of another function, or
as aparent of afunction that also has at least one nonspecified function
asits parent. When thisisthe case, the time in the self and descendants
columns for this entry is set to 0 (zero). In addition, the amount of time
that was in the descendant’ s column for the specified function is
subtracted from the time listed under the descendant’ s column for the
profiled function. As aresult, be aware that the value listed in the % time
column for most profiled functions in this report will change.
De-emphasi zes the general appearance of all function boxes in the
function call tree, except for that of the specified function(s) and its
descendant(s). In addition, the number of entriesin the Call Graph
Profile report for the nonspecified functions and nondescendant
functionsis limited. The -f flag overrides the -e flag. In the function call
tree, al function boxes except for that of the specified function(s) and it
descendant(s) appear grayed out. The size of these boxes and the content
of their labels remain the same. For the specified function(s), and its
descendants, the appearance of the function boxes and labels remain the
same. In the Call Graph Profile report, an entry for a nonspecified or
nondescendant function only appears where it is a parent or child of a
specified function or one of its descendants. All information for this
entry remains the same.

Writes the Xprof usage message to STDERR and then exits.

Uses an alternate path name for locating shared libraries. If you plan to
specify multiple paths, use the Set File Search Paths option of the File
menu on the Xprof GUI.

If multiple gmon.out files are specified when Xprof is started, produces
the gmon.sum profile datafile. The gmon.sum file represents the sum
of the profileinformation in all the specified profile files. Note that if
you specify asingle gmon.out file, the gmon.sum file contains the same
data as the gmon.out file.

Includes functions that have both zero processor usage and no call
countsin the Flat Profile, Call Graph Profile, and Function Index reports.
A function does not have acall count if the file that containsits
definition was not compiled with the -pg option, which is common with
system library files.

219

IBM High Performance Computing Toolkit

Description

The Xprof command is used to analyze the performance of both serial and parallel
applications at the function, source line, and machine code levels. Xprof uses data
collected after running a program that is compiled and linked with the -pg option. It
presents a graphical representation of the application functions in addition to
providing textual datain several report windows. These presentation formats are
intended to allow easy identification of the functions that are most processor-
intensive.

Functions are represented by solid green boxes or nodes in the function call tree. The
size and shape of each function node indicates its CPU utilization. The height of each
node represents the amount of CPU time it spent on executing itself. The width of
each node represents the amount of CPU time it spent executing itself, plusits
descendant functions. More detail such as source code mapping or statistical data can
be displayed by selecting an individual function.

The calls made between each of the functionsin the function call tree are represented
by blue arrows extending between their corresponding function boxes. These lines
are called call arcs. Selecting an arc shows the number of calls, the callee and the
caller.

The call graph can befiltered in avariety of waysincluding by CPU time, call counts
and function name. It can also be pruned or expanded based on library, ancestor and
descendant relationship.

Limitations

If you compile your application on one processor, and anayze it on another, you
must first make sure that both processors have similar library configurations, at |east
for the system libraries used by the application.

Because Xprof collects data by sampling, functions that run for a short amount of
time might not show any CPU use.

On AlX systems, Xprof supports only the old format (prior to 5.3) gmon.out file;
but it is easy to have the application program generate these. Refer to the GPROF
environment variable below for details.

Environment Variables

GPROF Set options for generating the gmon.out file. To have an effect, this
environment variable must be set before running the user
application.

GPROF=profile:<profile-type>,

scal e: <scaling-factor>,file:<filetype>,
filenane:<file nane>

220

IBM High Performance Computing Toolkit

<profile-type> describes the type of profiling that needsto be
performed. This can be either process or thread. Type process
indicates that profiling granularity is at process level, thread
indicates that profiling granularity is at thread level.

<scaling-factor> describes how much memory need to be allocated
for the Call Graph Profile. By default, the scaling factor is 2 for
process level profiling and 8 for thread level profiling. A scaling
factor of 2 indicates that a memory of 1/2 of the processssizeis
allocated for every process or thread. A scaling factor of 8 indicates
that a memory of 1/8th of the processs sizeis allocated for every
process or thread. This memory is the buffer area used to store the
call graph information.

<file-type> describes the type of gmon.out file required A value of
multi indicates that one gmon.out file per processisrequired. A
value of multithread indicates that one gmon.out file per thread is
required. If an application is profiled with -pg option, and it does a
fork, specifying multi generates one gmon.out file for the parent
process and another for the child process. The naming convention
for the generated gmon.out files are asfollows:

e For multi file-type: <prefix>-processname-pid.out

e For multithread file-type:

<prefix>-processname-pid-Pthread<threadid>.out

[
<filename> describes the prefix that needs to be used for the
generated gmon.out files. By default the prefix is gmon.

IHPCT_BASE Path name of the directory in which IBM HPC Toolkit isinstalled
(/usr/ipp/ppe.hpct for AlX, /opt/ibmhpc/ppe.hpct for Linux).

Examples

To use Xprof, you must first compile your program (for example, foo.c) with -pg:
xlc -pg -o foo foo.c

When the program foo is executed a gmon.out file will be generated. To invoke
Xprof, enter:
Xprof foo gnon. out

To use Xprof on your MPI program, you must first compile your program (for
example, foo.c) with —pg. Note that to be able to map the functions displayed in the
call graph by Xprof back to the source code, your program must also be compiled
with —g.

npcc -g -pg -o foo foo.c

221

IBM High Performance Computing Toolkit

When the MPI program foo is executed, by default, one gmon.out.<taskid> fileis

generated for each task involved in the parallel execution. To invoke Xprof, enter:
Xprof foo gnon. out.*

When invoking Xprof with multiple gmon.out files, they can be displayed as a
summary or average of their performance statistics.

222

IBM High Performance Computing Toolkit

Appendices

Derived Metrics Description

The derived metrics implemented by hpccount, hpcestat and libhpce are described as
follows

Utilization rate
100.0 * user_time/ wall_clock_time

Total FP load and store operations
fp_tot Is=(PM_LSU_LDF+ PM_FPU_STF) * 0.000001

MIPS
PM_INST_CMPL * 0.000001 / wall_clock_time

Instructions per cycle
(double)PM_INST_CMPL /PM_CYC

Instructions per run cycle
(double)PM_INST_CMPL / PM_RUN_CYC

Instructions per load/store
(double)PM_INST_CMPL/(PM_LD REF L1+ PM_ST REF L1)

Percent of Instructions dispatched that completed
100.0* PM_INST_CMPL / PM_INST _DISP

Fixed point operations per cycle
(double)PM_FXU_FIN/PM_CYC

Fixed point operations per load/stores
(double)PM_INST_CMPL/(PM_LD_REF L1+ PM_ST REF L1)

Branches mispredicted percentage
100.0* (PM_BR_MPRED_CR +PM_BR MPRED TA)/PM_BR_ISSUED

Number of |oads per load miss
(double)PM LD REF L1/PM_LD MISS L1

Number of stores per store miss
(double)PM_ST REF L1/PM_ST MISS L1

Number of load/stores per L1 miss

((double)PM_LD_REF L1 + (double)PM_ST_REF L1)
/ ((double)PM_ST _MISS L1 + (double)PM LD MISS L1)

223

IBM High Performance Computing Toolkit

L1 cache hit rate
100.0 * (1.0 - ((double)PM_LD_REF L1 + (double)PM_ST REF L1)
/ ((double)PM_ST _MISS L1 + (double)PM_LD MISS L1))

Number of loads per TLB miss
(double)PM_LD REF L1/PM_DTLB_MISS

Number of loads/stores per TLB miss

((double)PM_LD_REF L1 + (double)PM_ST REF L1)/PM_DTLB_MISS

Total Loads from L2
tot_ld_L2 = sum((double)PM_DATA_FROM_L2*) /(1024 * 1024)

L2 load traffic
L1 cache line size* tot Id L2

L2 load bandwidth per processor
L1 cache line size* tot_Id_L2/wall_clock_time

Estimated latency from loads from L2
(HPM_L2 LATENCY*(double)PM_DATA FROM L2
+HPM_L25 LATENCY*(double)sum(PM_DATA_FROM_L25*)
+HPM_L275 LATENCY*(double)lsum(PM_DATA_FROM _L275%)) *
cycle time

Percent of loads from L2 per cycle
100.0* tot_Id L2/PM_CYC

Total Loadsfrom local L2
tot Id | L2 = (double)PM_DATA FROM L2/ (1024 * 1024)

Local L2 load traffic
L1 cache line size* tot_Id | L2

Local L2 load bandwidth per processor
L1 cache line size* tot_Id | L2/wall clock time

Estimated latency from loads from local L2
HPM_L2 LATENCY * (double)PM_DATA_FROM L2 * cycle time

Percent of loads from local L2 per cycle
100.0 * (double)PM_DATA_FROM_L2/PM_CYC

Total Loads from L3
tot_ld_L3 = sum((double)PM_DATA_FROM L 3*)/ (1024*1024)

224

IBM High Performance Computing Toolkit

L3 load traffic
L2 cache line size* tot_Id_L3

L 3 load bandwidth per processor
L2 cache line size* tot Id L2/ wall _clock time

Estimated latency from loads from L3
(HPM_L3 LATENCY*(double)PM_DATA_FROM_L3
+ HPM_L35 LATENCY*(double)PM_DATA_FROM_L35) * cycle time

Percent of loads from L3 per cycle
100.0 * (double)sum(PM_DATA_FROM L3*)/PM_CYC

Total Loadsfrom local L3
tot Id | L3 =(double)PM_DATA FROM L3/ (1024 * 1024)

Local L3 load traffic
L2 cache line size* tot_Id | L3

Local L3 load bandwidth per processor
L2 cache line size* tot Id | L3/wall clock time

Estimated latency from loads from local L3
HPM_L3 LATENCY * (double)PM_DATA_FROM_L3* cycle time

Percent of loads from local L3 per cycle
100.0 * (double)PM_DATA_FROM L3/PM_CYC

Total Loads from memory
tot_|d_mem = (double)PM_DATA_FROM_MEM / (1024 * 1024)

Memory load traffic
L3 cache line size* tot_Id_mem

Memory load bandwidth per processor
L3 cache line size* tot_Id_mem/wall_clock time

Estimated |atency from loads from memory
HPM_MEM_LATENCY * (double)PM_DATA_FROM_MEM * cycle time

Percent of loads from memory per cycle
100.0 * (double)PM_DATA_FROM_MEM / PM_CYC

Total Loads from loca memory
tot_ld_Imem = (double)PM_DATA_FROM_LMEM / (1024 * 1024)

225

IBM High Performance Computing Toolkit

Loca memory load traffic
L3 cache line_size* tot_Id_Imem

Loca memory load bandwidth per processor
L3 cache line size* tot_Id Imem/wall _clock time

Estimated |atency from loads from local memory
HPM_MEM_LATENCY * (double)PM_DATA_FROM_LMEM * cycle time

Percent of loads from local memory per cycle
100.0 (double)PM_DATA_FROM_LMEM /PM_CYC

Percent of TLB misses per cycle
100.0 * (double)PM_DTLB_MISS/PM_CYC

Percent of TLB misses per run cycle
100.0 * (double)PM_DTLB_MISS/PM_RUN_CYC

Estimated latency from TLB misses
HPM_TLB_LATENCY * (double)PM_DTLB_MISS* cycle time

HW floating point instructions (flips)
(flips = (double) PM_FPU_FIN) * 0.000001
- Or -
(flips = (double)(PM_FPUO_FIN + PM_FPU1 FIN)) * 0.000001

HW floating point instructions per cycle
flips/ PM_CYC

HW floating point instructions per run cycle
flips/ PM_RUN_CYC

HW floating point instr. rate (HW flips/ WCT)
flips* 0.000001 / wall_clock_time

HW floating point instructions / user time
flips* 0.000001 / user_time

Total floating point operations
(flops = (double)(PM_FPUO_FIN + PM_FPU1 FIN
+PM_FPU_FMA - PM_FPU_STF)) * 0.000001

Flop rate (flops/ WCT)
flops* 0.000001 / wall_clock _time

226

IBM High Performance Computing Toolkit

Flops/ user time
flops* 0.000001 / user_time

Algebraic floating point operations
(aflops = (double)(PM_FPU_1FLOP+2* PM_FPU_FMA)) * 0.000001

Algebraic flop rate (flops/ WCT)
aflops* 0.000001 / wall_clock_time

Algebraic flops/ user time
aflops* 0.000001 / user_time

Weighted Floating Point operations
(wflops = flops+ (HPM_DIV_WEIGHT-1) * PM_FPU_FDIV) * 0.000001

Weighted flop rate (flops/ WCT)
wflops* 0.000001 / wall_clock _time

Weighted flops/ user time
wflops* 0.000001 / user_time

FMA percentage
100.0* 2*PM_FPU_FMA / flops (on POWER4)
100.0* 2*PM_FPU_FMA / aflops (on POWERYS)
100.0* 2*PM_FPU_FMA / flops (on POWERG)

Computation intensity
flops/ fp_tot_Is

Percent of peak performance
100.0 * flops* cycle time/ (4*user_time) (on POWER4)
100.0 * aflops* cycle_time/ (4*user_time) (on POWERS5)
100.0 * flops* cycle time/ (4*user_time) (on POWERG)

227

IBM High Performance Computing Toolkit

Notices
This information was developed for products and services offered in the U.SA.

IBM may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program, or
service is not intended to state or imply that only that IBM product, program, or service
may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it isthe user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described
in this document. The furnishing of this document does not grant you any license to these
patents. Y ou can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.SA.

For license inquiries regarding double-byte character set (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country
where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "ASIS' WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to you.

Thisinformation could include technical inaccuracies or typographical errors. Changes
are periodically made to the information herein; these changes will be incorporated in
new editions of the publication. IBM may make improvements and/or changesin the
product(s) and/or the program(s) described in this publication at any time without notice.

228

IBM High Performance Computing Toolkit

Any referencesin thisinformation to non-IBM Web sites are provided for convenience
only and do not in any manner serve as an endorsement of those Web sites. The materials
at those Web sites are not part of the materials for this IBM product and use of those
Web sitesis at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

For AIX:

IBM Corporation

Department LRAS, Building 003
11400 Burnet Road

Austin, Texas 78758-3498

USA

For Linux:

IBM Corporation

Department LJEB/P905

2455 South Road
Poughkeepsie, NY 12601-5400
U.SA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of afee.

The licensed program described in this document and all licensed material available for it
are provided by IBM under terms of the IBM Customer Agreement, IBM International
Program License Agreement or any

equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment.
Therefore, the results obtained in other operating environments may vary significantly.
Some measurements may have been made on devel opment-level systems and thereisno
guarantee that these measurements will be the same on generally available systems.
Furthermore, some measurement may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the
applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those

products, their published announcements or other publicly available sources. IBM has not
tested those products and cannot confirm the accuracy of performance, compatibility or

229

IBM High Performance Computing Toolkit

any other claims related to non-1BM products. Questions on the capabilities of non-1IBM
products should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any
similarity to the names and addresses used by an actual business enterpriseis entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. Y ou may copy,
modify, and distribute these sample programsin any form without payment to IBM, for
the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested
under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,
or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must include
acopyright notice as follows:

(C) (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. (C) Copyright IBM Corp. _enter the year or years . All rights reserved.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries, or
both. If these and other IBM trademarked terms are marked on their first occurrencein
this information with a trademark symbol ((R) or (TM)), these symbolsindicate U.S.
registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other
countries. A current list of IBM trademarks is available on the Web at " Copyright and
trademark information™ at www.ibm.com/legal/copytrade.shtml.

Linux is atrademark of Linus Torvaldsin the United States, other countries, or both.

PostScript is either aregistered trademark or trademark of Adobe Systems Incorporated
in the United States, and/or other countries.

230

http://www.ibm.com/legal/copytrade.shtml

IBM High Performance Computing Toolkit

Windows is atrademark of Microsoft Corporation in the United States, other countries,
or both.

Other company, product, and service names may be trademarks or service marks of
others.

NOTICES AND INFORMATION

IBM Pardlel Environment for AlX, V5.1
IBM Parallel Environment for Linux, V5.1

The IBM license agreement and any applicable information on the web
download page for IBM products refers Y ou to thisfile for details
concerning notices applicable to code included in the products listed
above or otherwise identified as Excluded Componentsin the License
Information document for the above-listed products ("the Program™).

Notwithstanding the terms and conditions of any other agreement Y ou may
have with IBM or any of itsrelated or affiliated entities (collectively
"IBM"), the third party software code identified below are "Excluded
Components" and are subject to the terms and conditions of the License
Information document accompanying the Program and not the license terms
that may be contained in the notices below. The notices are provided for
informational purposes.

Please note: This Notices file may identify information or Excluded
Components listed in the agreements for the Program that are not used
by, or that were not shipped with, the Program as Y ou installed it.

IMPORTANT: IBM does not represent or warrant that the information in this
NOTICESfileis accurate. Third party websites are independent of IBM and
IBM does not represent or warrant that the information on any third party
web site referenced in thisNOTICES file is accurate. IBM disclaims any

and all liability for errors and omissions or for any damages accruing

from the use of this NOTICES file or its contents, including without
limitation URLs or references to any third party websites.

The following are Excluded Components:
FreeType 2.3.4

libpng 1.2.16

Zlib1.2.3

IBM Parallel Environment V5

zlib1.2.3

231

IBM High Performance Computing Toolkit

[* zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.3, July 18th, 2005

Copyright (C) 1995-2005 Jean-loup Gailly and Mark Adler

This software is provided 'as-is, without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in aproduct, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly jloup@gzip.org
Mark Adler madler@alumni.caltech.edu

*/

kkhkhkkkhkhkkkhhhkkhhhkhhhkhhhkhhhkhkhhkhkhhkhkhhkhkhhkhkhhkhkhhkhkhhkhkhhhkhhhkhhhkhdhhkhdhhkhdhhkkhdhkkhd,kxk,x*%x

libpng 1.2.16

This copy of the libpng notices is provided for your convenience. In case of
any discrepancy between this copy and the noticesin the file png.h that is
included in the libpng distribution, the latter shall prevail.

COPYRIGHT NOTICE, DISCLAIMER, and LICENSE:

If you modify libpng you may insert additional notices immediately following
this sentence.

libpng versions 1.2.6, August 15, 2004, through 1.2.29, May 8, 2008, are

Copyright (c) 2004, 2006-2008 Glenn Randers-Pehrson, and are

distributed according to the same disclaimer and license as libpng-1.2.5

with the following individual added to the list of Contributing Authors
Cosmin Truta

libpng versions 1.0.7, July 1, 2000, through 1.2.5 - October 3, 2002, are
Copyright (c) 2000-2002 Glenn Randers-Pehrson, and are

232

IBM High Performance Computing Toolkit

distributed according to the same disclaimer and license as libpng-1.0.6
with the following individuals added to the list of Contributing Authors

Simon-Pierre Cadieux
Eric S. Raymond
GillesVollant

and with the following additions to the disclaimer:

Thereis no warranty against interference with your enjoyment of the
library or against infringement. Thereis no warranty that our

efforts or the library will fulfill any of your particular purposes

or needs. Thislibrary isprovided with all faults, and the entire

risk of satisfactory quality, performance, accuracy, and effort iswith
the user.

libpng versions 0.97, January 1998, through 1.0.6, March 20, 2000, are

Copyright (c) 1998, 1999 Glenn Randers-Pehrson, and are

distributed according to the same disclaimer and license as libpng-0.96,

with the following individuals added to the list of Contributing Authors:

Tom Lane
Glenn Randers-Pehrson
Willem van Schaik

libpng versions 0.89, June 1996, through 0.96, May 1997, are
Copyright (c) 1996, 1997 Andreas Dilger

Distributed according to the same disclaimer and license as libpng-0.88,
with the following individuals added to the list of Contributing Authors:

John Bowler
Kevin Bracey
Sam Bushell
Magnus Holmgren
Greg Rodlofs
Tom Tanner

libpng versions 0.5, May 1995, through 0.88, January 1996, are
Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.

For the purposes of this copyright and license, " Contributing Authors'
is defined as the following set of individuals:

Andreas Dilger
Dave Martindale
Guy Eric Schalnat

233

IBM High Performance Computing Toolkit

Paul Schmidt
Tim Wegner

The PNG Reference Library issupplied "AS1S". The Contributing Authors
and Group 42, Inc. disclaim al warranties, expressed or implied,

including, without limitation, the warranties of merchantability and of
fitness for any purpose. The Contributing Authors and Group 42, Inc.
assume no liability for direct, indirect, incidental, special, exemplary,

or consequential damages, which may result from the use of the PNG
Reference Library, even if advised of the possibility of such damage.

Permission is hereby granted to use, copy, modify, and distribute this
source code, or portions hereof, for any purpose, without fee, subject
to the following restrictions:

1. The origin of this source code must not be misrepresented.

2. Altered versions must be plainly marked as such and must not
be misrepresented as being the original source.

3. This Copyright notice may not be removed or altered from any
source or altered source distribution.

The Contributing Authors and Group 42, Inc. specifically permit, without
fee, and encourage the use of this source code as a component to
supporting the PNG file format in commercial products. If you usethis
source code in a product, acknowledgment is not required but would be
appreciated.

A "png_get_copyright" function is available, for convenient use in "about"
boxes and the like:

printf("%s",png_get_copyright(NULL));

Also, the PNG logo (in PNG format, of course) is supplied in the
files"pngbar.png" and "pngbar.jpg (88x31) and "pngnow.png" (98x31).

Libpng is OSI Certified Open Source Software. OSI Certified Open Sourceisa
certification mark of the Open Source Initiative.

Glenn Randers-Pehrson
glennrp at users.sourceforge.net
May 8, 2008

R R R R b e b R b e e R b R e R R kb e R R b o R R R R Rk e

234

IBM High Performance Computing Toolkit

FreeType2.3.4

The FreeType Project LICENSE

2006-Jan-27

Copyright 1996-2002, 2006 by
David Turner, Robert Wilhelm, and Werner Lemberg

I ntroduction

The FreeType Project isdistributed in several archive packages;
some of them may contain, in addition to the FreeType font engine,
varioustoolsand contributions which rely on, or relateto, the
FreeType Project.

This license applies to al filesfound insuch packages, and
which do not fall under their own explicit license. Thelicense
affects thus the FreeType font engine, the test programs,
documentation and makefiles, at the very least.

This license was inspired by the BSD, Artistic, and 1JG
(Independent JPEG Group) licenses, which al encourage inclusion
and useof free softwarein commercial and freeware products
alike. Asaconsequence, its main points are that:

o0 We don't promise that this software works. However, we will be
interested in any kind of bug reports. ("asis distribution)

0 You can use this software for whatever you want, in parts or
full form, without having to pay us. (‘royalty-free' usage)

0 You may not pretend that you wrote this software. If you use
it, or only partsof it, inaprogram, you must acknowledge
somewhere in your documentation that you have used the
FreeType code. (‘credits)

We specifically permit and encourage the inclusion of this
software, with or without modifications, in commercial products.
We disclam all warranties covering The FreeType Project and
assume no liability related to The FreeType Project.

235

IBM High Performance Computing Toolkit

Finally, many people asked us for a preferred form for a
credit/disclaimer to use in compliance with thislicense. We thus
encourage you to use the following text:

Portions of this software are copyright (c) <year> The FreeType
Project (www.freetype.org). All rights reserved.

Please replace <year> with the value from the FreeType version you
actually use.

Lega Terms

0. Definitions

Throughout thislicense, the terms “package’, "FreeType Project,
and "FreeType archive refer to the set of files originally
distributed by the authors (David Turner, Robert Wilhelm, and
Werner Lemberg) asthe "FreeType Project’, be they named as alpha,
beta or final release.

“You' refersto thelicensee, or person using the project, where
‘using' is a generic term including compiling the project's source
code as well aslinking it to forma “program’ or “executable'.
This programis referredto as "aprogram using the FreeType
engine'.

This license applies to al filesdistributed in the original
FreeType Project, including al source code, binaries and
documentation, unless otherwise stated in the file in its
original, unmodified form as distributed in the original archive.
If you are unsure whether or not aparticular fileis covered by
this license, you must contact us to verify this.

The FreeType Project is copyright (C) 1996-2000 by David Turner,

Robert Wilhelm, and Werner Lemberg. All rights reserved except as

specified below.

1. No Warranty

236

IBM High Performance Computing Toolkit

THE FREETY PE PROJECT ISPROVIDED "ASIS WITHOUT WARRANTY OF
ANY

KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR

PURPOSE. IN NO EVENT WILL ANY OF THE AUTHORS OR COPYRIGHT
HOLDERS

BELIABLE FOR ANY DAMAGES CAUSED BY THEUSE OR THE INABILITY
TO

USE, OF THE FREETY PE PROJECT.

2. Redistribution

This license grants a worldwide, royalty-free, perpetual and
irrevocableright and license to use, execute, perform, compile,
display, copy, create derivative works of, distribute and
sublicense the FreeType Project (in both source and object code
forms) and derivative works thereof for any purpose; and to
authorize others to exercise someor al of the rights granted
herein, subject to the following conditions:

o Redistribution of source code must retain this licensefile
(FTL.TXT") unaltered; any additions, deletions or changes to
the original files must be clearly indicated in accompanying
documentation. The copyright notices of the unaltered,
original filesmust be preservedin all copiesof source
files.

o Redistribution in binary form must provide a disclaimer that
states that the software isbased in part of the work of the
FreeType Team, in the distribution documentation. We also
encourage you to put an URL to the FreeType web page in your
documentation, though thisisn't mandatory.

These conditions apply to any software derived from or based on
the FreeType Project, not just the unmodified files. If you use

our work, you must acknowledge us. However, no fee need be paid
to us.

3. Advertising

Neither the FreeType authorsand contributors nor you shall use
the name of the other for commercial, advertising, or promotional
purposes without specific prior written permission.

237

IBM High Performance Computing Toolkit

We suggest, but do not require, that you use one or more of the
following phrasesto refer to this software in your documentation
or advertising materials. "FreeType Project’, "FreeType Engin€,
“FreeTypelibrary', or "FreeType Distribution'.

As you have not signed thislicense, you are not required to
accept it. However, as the FreeType Project is copyrighted
material, only thislicense, or another one contracted with the
authors, grantsyou theright to use, distribute, and modify it.
Therefore, by using, distributing, or modifying the FreeType
Project, you indicate that you understand and accept all the terms
of thislicense.

4. Contacts

There are two mailing lists related to FreeType:
o freetype@nongnu.org
Discusses genera use and applications of FreeType, aswell as
future and wanted additions to the library and distribution.
If you arelooking for support, startin thislist if you
haven't found anything to help you in the documentation.
o freetype-devel @nongnu.org

Discusses bugs, aswell asengineinternals, design issues,
specific licenses, porting, etc.

Our home page can be found at

http://www.freetype.org

---end of FTL.TXT ---

238

	 Introduction
	 Installing the IBM High Performance Computing Toolkit
	Installing the IBM HPC Toolkit on AIX Systems
	AIX Installation using installp
	AIX Installation using SMIT

	Installing the IBM HPC Toolkit on Linux Systems
	Enabling Hardware Performance Counter Support

	 Using the IBM High Performance Computing Toolkit
	Overview of the IBM High Performance Computing Toolkit
	Using the Peekperf GUI
	Preparing Your Application
	Loading an application
	Instrumenting the Application
	Running the Application
	Viewing Performance Data
	Viewing MPI Traces
	Viewing I/O Profiling Data
	Compiling, Editing and Running Programs Using Peekperf
	Miscellaneous Peekperf Features

	Using Hardware Performance Counters in Peekperf
	Preparing Your Application
	Instrumenting Your Application
	Running Your Program
	Viewing Hardware Performance Counter Data

	Using MPI Profiling in Peekperf
	Preparing Your Application
	Instrumenting Your Application
	Running Your Application
	Viewing MPI Profiling Data

	Using OpenMP Profiling in Peekperf
	Preparing Your Application
	Instrumenting Your Application
	Running Your Application
	Viewing OpenMP Profiling Performance Data

	Using I/O Profiling in Peekperf
	Preparing Your Application
	Instrumenting Your Application
	Running Your Application
	Viewing I/O Profiling Data

	XWindows Performance Profiler (Xprof)
	Before You Begin
	About Xprof
	Requirements and Limitations

	Comparing Xprof and the gprof Command
	Compiling Applications to be Profiled

	Starting the Xprof GUI
	Specifying Xprof Command-line Flags
	Loading Files from the Xprof GUI
	Specifying the Binary Executable File
	Specifying Profile Data Files
	Specifying Command Line Options (from the GUI)
	Setting the File Search Sequence
	Setting Default Paths
	Setting Alternative Paths
	Changing the Search Sequence

	Understanding the Xprof Display
	The Xprof Main Window
	Xprof’s Main Menus
	The File menu
	The View menu
	The Filter menu
	The Report menu
	The Utility menu

	Xprof’s Hidden Menus
	The Function menu
	The Arc menu
	The Cluster Node menu

	The Display Status Field
	How Functions are Represented
	How Calls Between Functions are Depicted
	How Library Clusters are Represented

	Controlling how the Display is Updated
	Other Viewing Options
	Controlling the Graphic Style of the Function Call Tree
	Controlling the Orientation of the Function Call Tree
	Controlling the Representation of the Function Call Tree
	Filtering what You See
	Restoring the Status of the Function Call Tree
	Displaying the Entire Function Call Tree
	Excluding and including specific objects
	Filtering Shared Library Functions
	Filtering by Function Characteristics
	Including and excluding parent and child functions

	Clustering Libraries
	Clustering Functions
	Unclustering Functions
	Locating Specific Objects in the Function Call Tree
	Locating and Displaying Parent Functions
	Locating and Displaying Child Functions
	Locating and Displaying Ancestor Functions
	Locating and Displaying Descendant Functions
	Locating and Displaying Functions on a Cycle
	Obtaining Performance Data for Your Application
	Obtaining Basic Data
	Understanding Basic Function Data
	Understanding Basic Call Data
	Basic Cluster Data
	Understanding Information Boxes
	Using the Function Menu Statistics Report Option
	Function Name
	Summary Data
	Statistics Data

	Getting Detailed Data from Reports
	Understanding the Flat Profile Report
	Flat Profile window fields

	Understanding the Call Graph Profile Report
	Call Graph Profile window fields

	Understanding the Function Index Report
	Understanding the Function Call Summary Report
	Function Call Summary window fields

	Understanding the Library Statistics Report
	Library Statistics window fields

	Saving Reports to a File
	Saving a single report
	Saving the Call Graph Profile, Function Index, and Flat Profile reports to a file
	Saving summarized data from multiple profile data files
	Saving a configuration file
	Loading a configuration file

	Looking at Your Code
	Viewing the Source Code
	Using the Source Code window

	Viewing the Disassembler Code
	Using the Disassembler Code window

	Saving Screen Images of Profiled Data

	Customizing Xprof Resources
	Setting Xprof Resource Variables
	Controlling Fonts
	Controlling the Appearance of the Xprof Main Window
	Controlling Variables Related to the File Menu
	Controlling variables related to the Screen Dump option
	Controlling Variables Related to the View Menu
	Controlling Variables Related to the Filter Menu

	Hardware Performance Counter Tools
	Using the hpccount Command
	Using the hpcstat Command
	Using the libhpc Library
	Understanding Hardware Counter Multiplexing
	Understanding Derived Metrics
	What are Derived Metrics
	Understanding MFlop Issues

	Understanding Inheritance
	Understanding Inclusive and Exclusive Event Counts
	Understanding Parent-Child Relationships
	Handling of Overlap Issues

	Understanding Measurement Overhead
	Handling Multithreaded Program Instrumentation Issues
	Considerations for MPI Programs
	General Considerations
	Understanding Distributor Functions
	Understanding Aggregator Functions
	Plug-ins Shipped with the Tool Kit
	Why User defined Plug-ins are Useful
	Understanding the Distributor and Aggregator Interfaces
	Getting the plug-ins to work

	Specifying Latency Estimates

	Using the MPI Profiling Library
	Controlling Profiling and Tracing
	Controlling Traced Tasks
	Additional Trace Controls

	Customizing MPI Profiling Data
	Understanding MPI Profiling Utility Functions

	Using the I/O Profiling Library
	Preparing Your Application
	Setting I/O Profiling Environment Variables
	Specifying I/O Profiling Library Module Options
	Running Your Application

	 Instrumenting Your Application Using hpctInst
	Instrumenting Your Application for Hardware Performance Counters
	Instrumenting Your Application for MPI Profiling
	Instrumenting Your Application for OpenMP Profiling
	Instrumenting Your Application for I/O Profiling

	 Commands and API Reference
	Hardware Performance Monitoring
	hpccount
	Synopsis
	Flags
	Description
	Environment Variables
	Event Selection Environment Variables
	Output Control Environment Variables
	Latency Environment Variables
	Miscellaneous Environment Variables

	Files
	Examples

	 hpcstat
	Synopsis
	Flags
	Description
	Environment Variables
	Event Selection Environment Variables
	Output Control Environment Variables
	Latency Environment Variables
	Miscellaneous Environment Variables

	Files
	Examples

	 hpm_error_count, f_error_count
	Purpose
	Library
	C Synopsis
	Fortran Synopsis
	Parameters
	Description
	Environment Variables
	Examples

	 hpmInit, f_hpminit
	Purpose
	Library
	C Synopsis
	Fortran Synopsis
	Parameters
	Description
	Environment Variables
	Event Selection Environment Variables
	Output Control Environment Variables
	Latency Environment Variables
	Plug-in Specific Environment Variables
	Miscellaneous Environment Variables

	Examples

	 hpmStart, f_hpmstart
	Purpose
	Library
	C Synopsis
	Fortran Synopsis
	Parameters
	Description
	Environment Variables
	Examples

	 hpmStartx, f_hpmstartx
	Purpose
	Library
	C Synopsis
	Fortran Synopsis
	Parameters
	Description
	Environment Variables
	Examples

	 hpmStop, f_hpmstop
	Purpose
	Library
	C Synopsis
	Fortran Synopsis
	Parameters
	Description
	Environment Variables
	Examples

	 hpmTerminate, f_hpmterminate
	Purpose
	Library
	C Synopsis
	Fortran Synopsis
	Parameters
	Description
	Environment Variables
	Examples

	 hpmTstart, f_hpmtstart
	Purpose
	Library
	C Synopsis
	Fortran Synopsis
	Parameters
	Description
	Environment Variables
	Examples

	 hpmTstartx, f_hpmtstartx
	Purpose
	Library
	C Synopsis
	Fortran Synopsis
	Parameters
	Description
	Environment Variables
	Example

	 hpmTstop, f_hpmtstop
	Purpose
	Library
	C Synopsis
	Fortran Synopsis
	Parameters
	Description
	Environment Variables
	Examples

	 MPI Profiling
	MT_get_allresults
	Purpose
	Library
	C Synopsis
	Parameters
	Description
	Returns
	Environment Variables
	Examples

	
	MT_get_calleraddress
	Purpose
	Library
	C Synopsis
	Parameters
	Description
	Returns
	Environment Variables
	Examples

	 MT_get_callerinfo
	Purpose
	Library
	C Synopsis
	Parameters
	Description
	Returns
	Environment Variables
	Examples

	 MT_get_elapsed_time
	Purpose
	Library
	C Synopsis
	Parameters
	Description
	Returns
	Environment Variables
	Examples

	 MT_get_environment
	Purpose
	Library
	C Synopsis
	Parameters
	Description
	Environment Variables
	Examples

	 MT_get_mpi_bytes
	Purpose
	Library
	C Synopsis
	Parameters
	Description
	Returns
	Environment Variables
	Examples

	 MT_get_mpi_counts
	Purpose
	Library
	C Synopsis
	Parameters
	Description
	Returns
	Environment Variables
	Examples

	 MT_get_mpi_name
	Purpose
	Library
	C Synopsis
	Parameters
	Description
	Returns
	Environment Variables
	Examples

	 MT_get_mpi_time
	Purpose
	Library
	C Synopsis
	Parameters
	Description
	Returns
	Environment Variables
	Examples

	 MT_get_time
	Purpose
	Library
	C Synopsis
	Parameters
	Description
	Returns
	Environment Variables
	Examples

	 MT_get_tracebufferinfo
	Purpose
	Library
	C Synopsis
	Parameters
	Description
	Returns
	Environment Variables
	Examples

	 MT_output_text
	Purpose
	Library
	C Synopsis
	Parameters
	Description
	Returns
	Environment Variables
	Examples

	 MT_output_trace
	Purpose
	Library
	C Synopsis
	Parameters
	Description
	Returns
	Environment Variables
	Examples

	 MT_trace_event
	Purpose
	Library
	C Synopsis
	Parameters
	Description
	Returns
	Environment Variables
	Examples

	 MT_trace_start, mt_trace_start
	Purpose
	Library
	C Synopsis
	Fortran Synopsis
	Parameters
	Description
	Environment Variables
	Examples

	 MT_trace_stop, mt_trace_stop
	Purpose
	Library
	C Synopsis
	Fortran Synopsis
	Parameters
	Description
	Environment Variables
	Examples

	 Application Instrumentation
	hpctInst
	Synopsis
	Flags
	Description
	Environment Variables
	Examples

	 Performance Data Visualization
	dataview
	Synopsis
	Flags
	Description
	Environment Variables
	Examples

	 peekperf
	Synopsis
	Flags
	Description
	Environment Variables
	Examples

	 peekview
	Synopsis
	Flags
	Description
	Environment Variables
	Examples

	 Xprof
	Synopsis
	Flags
	Description
	Environment Variables
	Examples

	 Appendices
	Derived Metrics Description

	 Notices
	NOTICES AND INFORMATION

