
Vertica® Analytic Database 4.1, Revision 1

Programmer's Guide
Copyright© 2006-2011 Vertica Systems, Inc.

Date of Publication: January 7, 2011

CONFIDENTIAL

-ii-

Contents

Technical Support 1

About the Documentation 2

Where to Find the Vertica Documentation ... 2
Reading the Online Documentation .. 2
Printing Full Books ... 4
Suggested Reading Paths .. 4
Where to Find Additional Information ... 6
Typographical Conventions .. 7

Preface 9

Installing the Vertica Client Drivers 10

Driver Prerequisites .. 11
Supported Third-party Software .. 11
ODBC Prerequisites .. 12
ADO.NET Prerequisites .. 14
Python Prerequisites .. 15
Perl Prerequisites ... 15

Client Driver Install Procedures .. 16
Installing AIX, Linux, and Solaris Driver Managers ... 16
Installing the Client RPM on Red Hat 5 64-bit, and SUSE 64-bit ... 17
Installing ODBC on AIX, Linux, and Solaris .. 18
Installing JDBC Driver on Linux and Solaris .. 19
Installing ODBC, JDBC, and ADO.NET Drivers on Windows .. 20
Modifying the CLASSPATH .. 24

Using ODBC 26

ODBC Architecture .. 26
Creating an ODBC Data Source Name (DSN) ... 27

Creating an ODBC DSN for Linux and Solaris Clients .. 27
Creating an ODBC DSN for Windows Clients.. 29
DSN Parameters .. 39

Vertica-specific ODBC Header File ... 44
Supported ODBC Functions ... 46
Unsupported ODBC Functions and Parameters .. 48
Setting the Locale for ODBC Sessions ... 49
Loading Data Through ODBC .. 50

Using a Single Row Insert ... 51
Using Batch Inserts .. 51
Using the COPY Statement ... 62
Using the LCOPY Statement ... 62
Loading Data Into the WOS/ROS ... 63

-iii-

 Contents

Working with ODBC Transactions ... 63
Working With Large Result Sets .. 64
Temporary Tables and AUTOCOMMIT .. 65
Examples .. 65

Using Vertica-Specific Parameters With INSERT .. 65

Using JDBC 67

Creating and Configuring a Connection ... 67
Connection Properties.. 69
Setting and Getting Connection Property Values .. 72
Setting the Locale for JDBC Sessions ... 74
Changing the Transaction Isolation Level ... 74
Creating a Pooling Datasource .. 76

JDBC Data Types ... 77
Executing Queries Through JDBC ... 80
Loading Data Through JDBC ... 81

Using a Single Row Insert ... 81
Batch Inserts Using JDBC Prepared Statements ... 82
Bulk Loading Using the COPY Statement .. 96
Copying Streams ... 97

Handling Large Result Sets .. 102
Command Reference for Handling Large Result Sets ... 103
Large Result Sets Example .. 104
Temp Files Created During Processing ... 105

Re-executing Failed Statements .. 105
Temporary Tables and AUTOCOMMIT .. 106
JDBC Examples .. 106

Executing Queries ... 106
Tracking Load Status ... 107
Sample JDBC Application ... 108

Using ADO.NET 110

Creating an ADO.NET DSN Entry (optional) .. 110
Setting the Locale for ADO.NET Sessions ... 111
Creating and Closing Database Connections .. 111

Connecting to the Database ... 111
Connection String Keywords ... 112
Setting the Transaction Isolation Level ... 113
Using SSL: Installing Certificates on Windows .. 115
Closing a Database Connection ... 115

Querying the Database Programmatically .. 115
Reading Data ... 115
Inserting Data .. 116
Loading Data ... 117
Performing a Bulk Copy .. 118

-iv-

Programmer's Guide

Working with Transactions ... 119
Handling Parameters ... 120
Data Types .. 122
Using the Vertica Data Adapter .. 123
Vertica Extensions for .NET ... 124

AutoCommit Functionality .. 124
IDataReader Implementations ... 124

Using Python 126

Python Unicode Support for Wide Characters .. 127
Configuring the ODBC Run-time Environment on Linux .. 128
Querying the Database Using Python ... 128

Using Perl 131

Perl Unicode Support .. 132
Querying the Database Using Perl .. 132

Using vsql 135

Connecting From the Administration Tools ... 136
Connecting from the Command Line.. 137

Command Line Options... 137
Connecting From a Non-Cluster Host ... 142

Meta-Commands ... 143
! [COMMAND] ... 143
? ... 143
a ... 145
b ... 145
c (or \connect) [dbname [username]] ... 145
C [STRING] .. 145
cd [DIR] ... 145
The \d [PATTERN] meta-commands .. 145
e \edit [FILE] ... 152
echo [STRING] ... 153
f [string] ... 153
g ... 153
H .. 153
h \help [command] ... 153
i FILE .. 154
l .. 154
locale ... 154
o ... 155
p ... 155
password [USER] .. 155
pset NAME [VALUE] ... 156
q ... 157
qecho [STRING] ... 157
r .. 157
s [FILE] ... 158
set [NAME [VALUE [...]]].. 158

-v-

 Contents

t .. 158
T [STRING]... 158
timing... 159
unset [NAME] ... 159
w [FILE] .. 159
x ... 159
z ... 159

Variables ... 159
AUTOCOMMIT .. 160
DBNAME .. 161
ECHO .. 161
ECHO_HIDDEN ... 161
ENCODING .. 162
HISTCONTROL ... 162
HISTSIZE .. 162
HOST... 162
IGNOREEOF .. 162
ON_ERROR_STOP .. 162
PORT ... 162
PROMPT1 PROMPT2 PROMPT3 ... 162
QUIET ... 163
SINGLELINE .. 163
SINGLESTEP.. 163
USER ... 163
VERBOSITY ... 163
VSQL_HOME ... 163

Prompting ... 164
Command Line Editing ... 165
Environment ... 166
Locales .. 166
Files .. 167
Exporting Data Using vsql .. 167
Copying Data Using vsql .. 169
Notes for Windows Users ... 170
Output Formatting Examples .. 170

Writing Queries 172

Historical (Snapshot) Queries ... 172
Temporary Tables ... 173
SQL Queries ... 173
Subqueries... 176

Single-row Subqueries ... 177
Multiple-row Subqueries ... 177
Multicolumn Subqueries .. 178
Noncorrelated and Correlated Subqueries ... 179
Flattening FROM Clause Subqueries and Views .. 181
DELETE Statement Subqueries .. 182
UPDATE Statement Subqueries .. 184
Subquery Expressions.. 187
Subquery Notes and Restrictions ... 192

-vi-

Programmer's Guide

Joins .. 194
The ANSI Join Syntax ... 194
Join Conditions vs. Filter Conditions .. 195
Inner Joins ... 195
Outer Joins ... 200
Range Joins .. 202
Pre-join Projections and Join Predicates .. 204
Join Notes and Restrictions ... 205

Using SQL Analytics 207

The Window OVER() Clause ... 208
Named Windows ... 209
Window Partitioning.. 210
Window Ordering .. 211
Window Framing ... 212

Event-based Windows .. 220
Sessionization with Event-based Windows .. 225

Using Time Series Analytics 228

Gap Filling and Interpolation (GFI) .. 229
Constant Interpolation ... 229
The TIMESERIES Clause and Aggregates ... 231
Linear Interpolation ... 232
GFI Examples .. 233

When Time Series Data Contains Nulls ... 238

Optimizing Query Performance 241

Sort Optimizations .. 242
GROUP BY Pipelined or Hash.. 243
Null Placement .. 245

Top-K Optimizations .. 247
Joins Optimizations... 249

Merge Joins for Insert-Select Queries ... 250
Using Identically Segmented Projections .. 252

Optimizing Query Speed with Predicates ... 254
Constant Propagation and IN-list Constant Folding ... 254
Optimizing Deletes and Updates .. 254

Performance Considerations for Deletes and Updates ... 255
Optimizing Deletes and Updates for Performance .. 255

Using External Procedures 259

Implementing External Procedures ... 260
Requirements for External Procedures .. 261
Installing External Procedure Executable Files ... 262
Creating External Procedures .. 263

-vii-

 Contents

Executing External Procedures ... 264
Dropping External Procedures .. 265

Using SQL Macros 266

Creating SQL Macros ... 266
Altering and Dropping SQL Macros ... 267
Managing Access to SQL Macros .. 268
Viewing Information About SQL Macros .. 269
Migrating Built-in Functions .. 270

Collecting Statistics 273

Statistics Used by the Query Optimizer .. 273
Statistics Collection Guidelines .. 273
How Statistics are Computed .. 274
Best Practices for Statistics Collection ... 274
Importing and Exporting Statistics ... 276
Removing Statistics .. 276
Troubleshooting Issues Using Statistics ... 276

Using Informatica PowerCenter 277

Installing the Vertica Plug-in for PowerCenter ... 277
Registering the Plug-in's Metadata .. 278
Preparing the PowerCenter Client ... 280
Copying the Plug-in Library on the Server .. 282

-viii-

Programmer's Guide

Using the Vertica Plug-in for PowerCenter .. 282
Setting PowerCenter's Buffer Size .. 287

Appendix: Error Codes 290

Error Codes ... 291
Class 01 Error Code Examples ... 304
Class 08 Error Code Examples ... 304
Class 0A Error Code Examples .. 305
Class 0L Error Code Examples ... 307
Class 22 Error Code Examples ... 307
Class 26 Error Code Examples ... 309
Class 28 Error Code Examples ... 309
Class 42 Error Code Examples ... 310
Class 53 Error Code Examples ... 315
Class 54 Error Code Examples ... 316
Class 55 Error Code Examples ... 316
Class 57 Error Code Examples ... 317
Class 58 Error Code Examples ... 317
Class V Error Code Examples .. 318

Index 321

Copyright Notice 327

-1-

Technical Support

To submit problem reports, questions, comments, and suggestions, use the Technical Support
page on the Vertica Systems, Inc., Web site.

Note: You must be a registered user in order to access the support page.

1 Go to http://www.vertica.com/support (http://www.vertica.com/support).

2 Click My Support.

You can also email verticahelp@vertica.com.

Before you report a problem, run the Diagnostics Utility described in the Troubleshooting Guide

and attach the resulting .zip file to your ticket.

http://www.vertica.com/support
http://www.vertica.com/support
mailto:verticahelp@vertica.com

-2-

About the Documentation

This section describes how to access and print Vertica documentation. It also includes suggested
reading paths (page 4).

Where to Find the Vertica Documentation
You can read or download the Vertica documentation for the current release of Vertica® Analytic
Database from the Product Documentation Page
http://www.vertica.com/v-zone/product_documentation. You must be a registered user to
access this page.

The documentation is available as a compressed tarball (.tar) or a zip archive (.zip) file. When

you extract the file on the database server system or locally on the client, contents are placed in a

/vertica41_doc/ directory.

Note: The documentation on the Vertica Systems, Inc., Web site is updated each time a new
release is issued. If you are using an older version of the software, refer to the documentation
on your database server or client systems.

See Installing Vertica Documentation in the Installation Guide.

Reading the Online Documentation

Reading the HTML documentation files

The Vertica documentation files are provided in HTML browser format for platform independence.
The HTML files require only a browser that displays frames properly with JavaScript enabled. The
HTML files do not require a Web (HTTP) server.

The Vertica documentation is supported on the following browsers:

 Mozilla FireFox

 Internet Explorer

 Apple Safari

 Opera

 Google Chrome (server-side installations only)

The instructions that follow assume you have installed the documentation on a client or server
machine.

Mozilla Firefox

1 Open a browser window.

2 Choose one of the following methods to access the documentation:

 Select File > Open File, navigate to ..\HTML-WEBHELP\index.htm, and click Open.

 OR drag and drop index.htm into a browser window.

http://www.vertica.com/v-zone/product_documentation

-3-

 About the Documentation

 OR press CTRL+O, navigate to index.htm, and click Open.

Internet Explorer

Use one of the following methods:

1 Open a browser window.

2 Choose one of the following methods to access the documentation:

 Select File > Open > Browse, navigate to ..\HTML-WEBHELP\index.htm, click Open,

and click OK.

 OR drag and drop index.htm into the browser window.

 OR press CTRL+O, Browse to the file, click Open, and click OK.

Note: If a message warns you that Internet Explorer has restricted the web page from running
scripts or ActiveX controls, right-click anywhere within the message and select Allow Blocked
Content.

Apple Safari

1 Open a browser window.

2 Choose one of the following methods to access the documentation:

 Select File > Open File, navigate to ..\HTML-WEBHELP\index.htm, and click Open.

 OR drag and drop index.htm into the browser window.

 OR press CTRL+O, navigate to index.htm, and click Open.

Opera

1 Open a browser window.

2 Position your cursor in the title bar and right click > Customize > Appearance, click the
Toolbar tab and select Main Bar.

3 Choose one of the following methods to access the documentation:

 Open a browser window and click Open, navigate to ..\HTML-WEBHELP\index.htm,

and click Open.

 OR drag and drop index.htm into the browser window.

 OR press CTRL+O, navigate to index.htm, and click Open.

Google Chrome

Google does not support access to client-side installations of the documentation. You'll have to
point to the documentation installed on a server system.

1 Open a browser window.

2 Choose one of the following methods to access the documentation:

In the address bar, type the location of the index.htm file on the server. For example:
file://<servername>//vertica41_doc//HTML/Master/index.htm

 OR drag and drop index.htm into the browser window.

 OR press CTRL+O, navigate to index.htm, and click Open.

-4-

Programmer's Guide

Notes

The .tar or .zip file you download contains a complete documentation set.

The documentation page of the Downloads Web site
http://www.vertica.com/v-zone/download_vertica is updated as new versions of Vertica are
released. When the version you download is no longer the most recent release, refer only to the
documentation included in your RPM.

The Vertica documentation contains links to Web sites of other companies or organizations that
Vertica does not own or control. If you find broken links, please let us know.

Report any script, image rendering, or text formatting problems to Technical Support (on page
1).

Printing Full Books
Vertica also publishes books as Adobe Acrobat™ PDF. The books are designed to be printed on
standard 8½ x 11 paper using full duplex (two-sided) printing.

Note: Vertica manuals are topic driven and not meant to be read in a linear fashion. Therefore,
the PDFs do not resemble the format of typical books. Each topic starts a new page, so some of
the pages are very short, and there are blank pages between each topic.

Open and print the PDF documents using Acrobat Acrobat Reader. You can download the latest
version of the free Reader from the Adobe Web site
(http://www.adobe.com/products/acrobat/readstep2.html).

The following list provides links to the PDFs.

 Release Notes

 Concepts Guide

 Installation Guide

 Getting Started Guide

 Administrator's Guide

 Programmer's Guide

 SQL Reference Manual

 Troubleshooting Guide

Suggested Reading Paths
This section provides a suggested reading path for various users. Vertica recommends that you
read the manuals listed under All Users first.

All Users

 Release Notes — Release-specific information, including new features and behavior changes
to the product and documentation

 Concepts Guide — Basic concepts critical to understanding Vertica

http://www.vertica.com/v-zone/download_vertica
http://www.adobe.com/products/acrobat/readstep2.html

-5-

 About the Documentation

 Getting Started Guide — A tutorial that takes you through the process of configuring a Vertica
database and running example queries

 Troubleshooting Guide — General troubleshooting information

System Administrators

 Installation Guide — Platform configuration and software installation

 Release Notes — Release-specific information, including new features and behavior changes
to the product and documentation

Database Administrators

 Installation Guide — Platform configuration and software installation

 Administrator's Guide — Database configuration, loading, security, and maintenance

Application Developers

 Programmer's Guide — Connecting to a database, queries, transactions, and so on

 SQL Reference Manual — SQL and Vertica-specific language information

-6-

Where to Find Additional Information
Visit the Vertica Systems, Inc. Web site (http://www.vertica.com) to keep up to date with:

 Downloads

 Frequently Asked Questions (FAQs)

 Discussion forums

 News, tips, and techniques

 Training

http://www.vertica.com/

-7-

 7

Typographical Conventions
The following are the typographical and syntax conventions used in the Vertica documentation.

Typographical Convention Description

Bold Indicates areas of emphasis, such as a special menu command.

Button Indicates the word is a button on the window or screen.

Code SQL and program code displays in a monospaced (fixed-width) font.

Database objects Names of database objects, such as tables, are shown in san-serif
type.

Emphasis Indicates emphasis and the titles of other documents or system files.

monospace Indicates literal interactive or programmatic input/output.

monospace italics Indicates user-supplied information in interactive or programmatic
input/output.

UPPERCASE Indicates the name of a SQL command or keyword. SQL keywords

are case insensitive; SELECT is the same as Select, which is the

same as select.

User input Text entered by the user is shown in bold san serif type.

 indicates the Return/Enter key; implicit on all user input that includes
text

Right-angle bracket > Indicates a flow of events, usually from a drop-down menu.

Click Indicates that the reader clicks options, such as menu command
buttons, radio buttons, and mouse selections; for example, "Click OK
to proceed."

Press Indicates that the reader perform some action on the keyboard; for
example, "Press Enter."

Syntax Convention Description

Text without brackets/braces Indicates content you type as shown.

< Text inside angle brackets > Placeholder for which you must supply a value. The variable is usually
shown in italics. See Placeholders below.

[Text inside brackets] Indicates optional items; for example, CREATE TABLE
[schema_name.]table_name

The brackets indicate that the schema_name is optional. Do not type
the square brackets.

{ Text inside braces } Indicates a set of options from which you choose one; for example:

QUOTES { ON | OFF } indicates that exactly one of ON or OFF must

-8-

Programmer's Guide

be provided.You do not type the braces: QUOTES ON

Backslash \ Continuation character used to indicate text that is too long to fit on a
single line.

Ellipses ... Indicate a repetition of the previous parameter. For example,

option[,...] means that you can enter multiple,

comma-separated options.

Note: Showing an ellipses in code examples might also mean that
part of the text has been omitted for readability, such as in multi-row
result sets.

 Indentation Is an attempt to maximize readability; SQL is a free-form language.

Placeholders Items that must be replaced with appropriate identifiers or
expressions are shown in italics.

Vertical bar | Is a separator for mutually exclusive items. For example: [ASC |
DESC]

Choose one or neither. You do not type the square brackets.

-9-

Preface

This book describes how to connect to a Vertica database and run SQL statements.

Audience

This book is intended for anyone who retrieves information from a Vertica database. It assumes
that you are familiar with the basic concepts and terminology of the SQL language and relational
database management systems.

As a Vertica SQL programmer, most of your tasks are similar to those required by other relational
database management systems.

Prerequisites

This document assumes that you have installed and configured Vertica as described in the
Installation Guide.

Writing Queries

Vertica is designed to run queries that are suitable for a star schema or snowflake schema. You
might need to modify existing normalized schema queries to run them against a Vertica database.

For information about the SQL language, see the SQL Reference Manual.

-10-

Installing the Vertica Client Drivers

Before you can access your Vertica database from a client, you need to install client drivers.
These drivers create and maintain connections to the database and provide APIs that your
applications use to access your data. These drivers support connections using JDBC, ODBC, and
ADO.NET (page 110).

In addition to the client drivers, there are language-specific interfaces for Perl and Python. See
Using Perl (page 131) and Using Python (page 126) for details.

Client Driver Standards

The client drivers support the following standards:

 ODBC (page 26) drivers conform to ODBC 3.5.1 specifications.

 JDBC (page 67) drivers conform to JDK 5 specifications.

 ADO.NET (page 110) drivers conform to .NET framework 3.0 specifications.

About Client Drivers

Vertica supplies drivers for Windows, Linux, and Solaris clients. There are several different driver
packages available from the Vertica download page
http://www.vertica.com/v-zone/download_vertica, each supporting a different operating
system and system architecture:

 Complete client bundle for Windows 32-bit containing an InstallShield Wizard that installs the
ODBC, JDBC, and ADO.NET drivers, plus a Visual Studio 2008 plug-in

Note: The Visual Studio plug-in requires that the Visual Studio SDK be installed on the system.
The plug-in is available at the Microsoft Download Center
http://www.microsoft.com/downloads/details.aspx?FamilyID=30402623-93ca-479a-867
c-04dc45164f5b&displaylang=en.

 Complete client bundle for Windows 64-bit systems containing an InstallShield Wizard that
installs the ODBC, JDBC, and ADO.NET drivers.

 Complete client bundle for Red Hat Enterprise Linux 32-bit and 64-bit that contains the ODBC
and JDBC drivers as well as the vsql executable.

 Complete client bundle for SUSE Enterprise Linux 32-bit and 64-bit that contains the ODBC
and JDBC drivers as well as the vsql executable.

 Individual packages for Linux 32-bit and 64-bit ODBC drivers.

 Individual packages for Solaris x86 and SPARC ODBC drivers.

 Individual packages for AIX 5.3 ODBC 32-bit and 64-bit drivers.

 A cross-platform .jar file containing the JDBC driver.

http://www.vertica.com/v-zone/download_vertica
http://www.microsoft.com/downloads/details.aspx?FamilyID=30402623-93ca-479a-867c-04dc45164f5b&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=30402623-93ca-479a-867c-04dc45164f5b&displaylang=en

-11-

 Installing the Vertica Client Drivers

Note: The ODBC and JDBC client drivers are installed by the server .rpm files. If you have

installed Vertica® Analytic Database on your Linux system for development or testing
purposes, you do not need to download and install the client drivers on it—you just need to
configure the drivers. To use ODBC, you need to create a DSN (see Creating an ODBC DSN
for Linux and Solaris Clients (page 27)). To use JDBC, you need to add the JDBC client
driver to the Java CLASSPATH (see Modifying the CLASSPATH (page 24)).

Vertica drivers use a naming convention that reflects the version of the Vertica release. This is
because the client driver version must match the version of the server on which the database runs.
For example, all Vertica client drivers 3.0 require Vertica® Analytic Database server version 3.0 or
later. If you are using a version of Vertica earlier than 4.1, you should download and install the
drivers for your version of Vertica® Analytic Database. There is a link for earlier server and driver
versions on the Vertica download page http://www.vertica.com/v-zone/download_vertica.

Note: Installing new drivers does not alter existing DSN settings.

The remainder of this section explain the requirements for the Vertica client drivers, and the
procedure for downloading, installing, and configuring them.

Driver Prerequisites
It is important that you read this section before you install a driver on the client machine.

Supported Third-party Software

The following table lists commonly-used Vertica-supported third-party software and the driver
managers they use. For a full list of supported third-party software, refer to the Third Party Tools
http://www.vertica.com/v-zone/downloads/client-tools/third-party-tools tab on the Vertica
Web site download http://myvertica.vertica.com/v-zone/download_vertica page.

3rd-party Tool Platform Driver Manager 32 bit 64 bit

MicroStrategy Linux Red Hat Enterprise 4 DataDirect Connect® Yes No

 Linux Red Hat Enterprise 5 DataDirect Connect® Yes No

 Linux SUSE Enterprise 10 DataDirect Connect® Yes No

 Sparc Solaris 10 DataDirect Connect® Yes No

 Windows Microsoft ODBC
MDAC

Yes No

Informatica 8.6.1 Linux Red Hat Enterprise 4 DataDirect Connect® Yes No

 Linux Red Hat Enterprise 5 DataDirect Connect® Yes No

 Linux SUSE Enterprise 10 DataDirect Connect® Yes No

 Sparc Solaris 10 DataDirect Connect® Yes Yes

Informatica 9.0.1 Linux Red Hat Enterprise 4 DataDirect Connect® Yes No

 Linux Red Hat Enterprise 5 DataDirect Connect® Yes No

 Linux SUSE Enterprise 10 DataDirect Connect® Yes No

http://www.vertica.com/v-zone/download_vertica
http://www.vertica.com/v-zone/downloads/client-tools/third-party-tools
http://myvertica.vertica.com/v-zone/download_vertica

-12-

Programmer's Guide

 Sparc Solaris 10 DataDirect Connect® No Yes

Cognos Linux Red Hat Enterprise 4 unixODBC Yes No

 Linux Red Hat Enterprise 5 unixODBC Yes No

 Linux SUSE Enterprise 10 unixODBC Yes No

 Sparc Solaris 10 iODBC Yes No

 Windows Microsoft ODBC
MDAC

Yes No

Note: In addition to using Informatica with the ODBC driver, you can also use the Vertica
Plug-in for PowerCenter to use Vertica as a target for Informatica PowerCenter. See Using
Informatica PowerCenter (page 277) for details.

See Also

The Vertica Web site download http://myvertica.vertica.com/v-zone/download_vertica page
for supported third-party tools.

The Cognos Web site http://www.cognos.com/ for more specific requirements about supported
client interfaces and platforms.

ODBC Prerequisites

The Vertica driver for ODBC requires the software and hardware components listed in this section.

Operating System

The Vertica ODBC driver requires one of the following operating systems:

 AIX 5.3 (32-bit or 64-bit)

 Linux Red Hat Enterprise 4 (32 or 64 bit)

 Linux Red Hat Enterprise 5 (32 or 64 bit)

 Linux SUSE Enterprise 10 (32 or 64 bit)

 SPARC Solaris 10 (32 bit or 64 bit)

 Windows XP Professional

 Windows 2003 Server Standard Edition (32 or 64 bit)

 Windows 2003 Server Enterprise Edition (32 or 64 bit)

 Windows 2008 Server Standard Edition (32 or 64 bit)

 Windows 2008 Server Enterprise Edition (32 or 64 bit)

See also Supported Platforms.

http://myvertica.vertica.com/v-zone/download_vertica
http://www.cognos.com/

-13-

 Installing the Vertica Client Drivers

ODBC Driver Manager

The Vertica ODBC driver requires one of the driver managers in the following table. The driver
only works when used with a driver manager—you cannot directly link your application to the
Vertica ODBC driver. On Windows, the driver manager is part of the MDAC component. For
ODBC Driver Managers for AIX, Linux, or Solaris, see Installing AIX, Linux, and Solaris Driver
Managers (page 16).

Platform Driver Manager 32 bit 64 bit

AIX unixODBC 2.2.12 Yes Yes

Linux

unixODBC 2.2.11 or
2.2.12

Yes Yes

unixODBC 2.2.14 Yes Yes (see note)

iODBC 3.52.6 Yes Yes

DataDirect Connect® 5.3 Yes No

DataDirect Connect® 6.0 Yes No

SPARC Solaris 10

unixODBC 2.2.12 Yes No

iODBC 3.52.6 Yes No

DataDirect Connect® 5.3 Yes Yes

DataDirect Connect® 6.0 Yes Yes

x86 Solaris 10

unixODBC 2.2.12 Yes No

iODBC 3.52.6 Yes No

DataDirect Connect® 5.3 Yes No

DataDirect Connect® 6.0 Yes No

Windows XP Microsoft ODBC MDAC
2.8

Yes Yes

Windows 2003 Server Standard
Edition

Microsoft ODBC MDAC
2.8

Yes Yes

Windows 2003 Server Enterprise
Edition

Microsoft ODBC MDAC
2.8

Yes Yes

Windows 2008 Server Standard
Edition

Microsoft ODBC MDAC
2.8

Yes Yes

Windows 2008 Server Enterprise
Edition

Microsoft ODBC MDAC
2.8

Yes Yes

Note: unixODBC 2.2.14 and above are only supported if they are compiled with

BUILD_LEGACY_64_BIT_MODE enabled, to ensure sizeof(SQLLEN) is 4 bytes rather than 8

bytes. See Installing Linux and Solaris Driver Managers (page 16) for details.

-14-

Programmer's Guide

DataDirect is certified only with specific tools that ship with the Data Direct driver manager. Vertica
does not ship the Data Direct Driver manager.

See Also

Client Driver Install Procedures (page 16)

Using ODBC (page 26)

Creating an ODBC Data Source Name (DSN) (page 27)

ADO.NET Prerequisites

The Vertica driver for ADO.Net requires the following software and hardware components:

Operating System

The Vertica ADO.NET driver requires one of the following operating systems:

 Windows XP Professional

 Windows 2003 Server Standard Edition (32 or 64 bit)

 Windows 2003 Server Enterprise Edition (32 or 64 bit)

 Windows 2008 Server Standard Edition (32 or 64 bit)

 Windows 2008 Server Enterprise Edition (32 or 64 bit)

Visual Studio SDK (32-bit installs only)

The Visual Studio plug-in is automatically installed with the client driver. If you intend to use it,
install the Visual Studio SDK prior to installing the client driver. The plug-in is available at the
Microsoft Download Center
http://www.microsoft.com/downloads/details.aspx?FamilyID=30402623-93ca-479a-867c-04
dc45164f5b&displaylang=en.

Memory

Vertica suggests a minimum of 512MB of RAM. If you intend to use the buffered data reader
(page 124), you might require additional RAM.

Disk Space

If you intend to use the buffered data reader, be sure the system has enough disk space to support
large streaming result sets. The space required for a streaming result set is temporary and is
immediately released when the application that is using the result set is closed.

.NET Framework

The Vertica ADO.NET driver integrates with any of the following versions of .NET Framework:

 Microsoft .NET Framework 3.0 SP1 (minimum)

 Microsoft .NET Framework 3.5

 Microsoft .NET Framework 3.5 SP1

http://www.microsoft.com/downloads/details.aspx?FamilyID=30402623-93ca-479a-867c-04dc45164f5b&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=30402623-93ca-479a-867c-04dc45164f5b&displaylang=en

-15-

 Installing the Vertica Client Drivers

Note: The Vertica ADO.NET driver does not support later APIs provided with Microsoft .NET
Framework 3.5 and 3.5 (SP1). For example, it does not support ADO.NET synchronization or
paging.

See Also

Client Driver Install Procedures (page 16)

Using ADO.NET (page 110)

Python Prerequisites

Python is a free, agile, object-oriented, cross-platform programming language designed to
emphasize rapid development and code readability.

Vertica supports the following Python versions:

 2.4.6

 2.5.4

 2.6.2

Note: Vertica does not support Python version 3.x.

Python Driver

Vertica requires the pyodbc driver module version 2.1.6.

Supported Operating Systems

The Vertica ODBC driver requires one of the operating systems listed in ODBC Prerequisites
(page 12).

ODBC Driver Manager

 On Linux — unixODBC or iODBC

 On Windows — Microsoft ODBC MDAC

See ODBC Prerequisites (page 12) for currently supported versions.

For usage and examples, see Using Python (page 126).

Perl Prerequisites

Perl is a free, stable, open source, cross-platform programming language licensed under its
Artistic License, or the GNU General Public License (GPL).

Vertica supports the following Perl versions:

 5.8

 5.10

Perl Drivers

The following Perl driver modules are required:

-16-

Programmer's Guide

 The DBI driver module, version 1.609

 The DBD::ODBC driver module, version 1.22

Supported Operating Systems

The Vertica ODBC driver requires one of the operating systems listed in ODBC Prerequisites
(page 12).

ODBC Driver Manager

 On Linux — unixODBC or iODBC

 On Windows — Microsoft ODBC MDAC

See ODBC Prerequisites (page 12) for currently supported versions.

For usage and examples, see Using Perl (page 131).

Client Driver Install Procedures
How you install client drivers depends on the client's operating system:

 For Linux clients, you must first install a Linux driver manager (page 16). After you have
installed the driver manager, there are two different ways to install the client drivers:

 On Red Hat Enterprise Linux 5, 64-bit and SUSE Linux Enterprise Server 10/11 64-bit, you
can use the Vertica client RPM package to install the ODBC and JDBC drivers as well as
the vsql client.

 On other Linux platforms, you download the proper ODBC and JDBC drivers and install
them individually.

Note: The ODBC and JDBC client drivers are installed by the server .rpm files. If you have

installed Vertica® Analytic Database on your Linux system for development or testing
purposes, you do not need to download and install the client drivers on it—you just need to
configure the drivers. To use ODBC, you need to create a DSN (see Creating an ODBC DSN
for Linux and Solaris Clients (page 27)). To use JDBC, you need to add the JDBC client
driver to the Java CLASSPATH (see Modifying the CLASSPATH (page 24)).

 On Solaris clients, you download and install the ODBC and JDBC drivers individually.

 On AIX clients, you download and install the ODBC and JDBC drivers individually.

 On Windows clients, you download an installer that contains the ODBC, ADO.NET, and JDBC
drivers. There are separate installers for 32-bit and 64-bit clients.

The remainder of this section describes how to install client drivers on different operating systems.

Installing AIX, Linux, and Solaris Driver Managers

UnixODBC

Versions 2.2.11 and 2.2.12 of the UnixODBC driver managers are supported by Vertica in their
default configurations. These versions are pre-installed on many Linux and Solaris installations. If
they are not already installed, see if binary packages are available through your platform's
package management system. Consult your platform's documentation for details on locating and
installing packages.

-17-

 Installing the Vertica Client Drivers

For 64-bit Linux installations, Vertica requires that the UnixODBC driver version 2.2.14 be

compiled using the BUILD_LEGACY_64_BIT_MODE option, which sets SQLLEN to 4 bytes,

instead of the default 8 bytes. To be compatible with Vertica, you will need to recompile the
UnixODBC 2.2.14 driver manager by following these steps:

1 If a binary UnixODBC 2.2.14 package is installed on your system, uninstall it using your
distribution's package manager.

2 Download the UnixODBC 2.2.14 source from the the following link:

http://sourceforge.net/projects/unixodbc/files/unixODBC/2.2.14/unixODBC-2.2.14.tar.gz/down
load
http://sourceforge.net/projects/unixodbc/files/unixODBC/2.2.14/unixODBC-2.2.14.tar.gz
/download

(Alternately, you can see if your platform offers a source package for UnixODBC 2.2.14.)

3 As the root user, build UnixODBC-2.2.14 with -DBUILD_LEGACY_64_BIT_MODE and install
it:

$ tar -xvzf unixODBC-2.2.14.tar.gz

$ cd unixODBC-2.2.14

$ export CPPFLAGS="-DBUILD_LEGACY_64_BIT_MODE -DSIZEOF_LONG_INT=8"

$./configure --enable-gui=no --enable-drivers=no

$ make

$ make install

Note: Compiling packages requires your platform to have compilers and development libraries
installed. See your Linux or Solaris documentation for details.

iODBC

Download a package for iODBC 3.52.6 suitable to your platform from the iODBC.org
http://www.iodbc.org/dataspace/iodbc/wiki/iODBC/ Web site.

Installing the Client RPM on Red Hat 5 64-bit, and SUSE 64-bit

For Red Hat Enterprise Linux 5, 64-bit and SUSE Linux Enterprise Server 10/11 64-bit , you can
download and install a client RPM package that installs both the ODBC and JDBC driver and the
vsql client. There is one RPM for Red Hat (which also works on CentOS 5 64-bit) and another for
SUSE.

To install the RPM package:

1 Open a browser and log in to the Vertica download Web site
http://www.vertica.com/v-zone/download_vertica.

2 Scroll to the Drivers for Vertica® Analytic Database 4.1 section.

3 Locate the heading for the client RPM package, and click Download next to the entry for your
client's version of Linux.

4 Read the Agreement License and click I Agree.

5 When the download window loads, click Save File.

6 If you did not directly download to the client system, transfer the downloaded RPM file to it.

7 Log in to the client system as root.

8 Install the RPM package you downloaded:

http://sourceforge.net/projects/unixodbc/files/unixODBC/2.2.14/unixODBC-2.2.14.tar.gz/download
http://sourceforge.net/projects/unixodbc/files/unixODBC/2.2.14/unixODBC-2.2.14.tar.gz/download
http://sourceforge.net/projects/unixodbc/files/unixODBC/2.2.14/unixODBC-2.2.14.tar.gz/download
http://sourceforge.net/projects/unixodbc/files/unixODBC/2.2.14/unixODBC-2.2.14.tar.gz/download
http://www.iodbc.org/dataspace/iodbc/wiki/iODBC/
http://www.vertica.com/v-zone/download_vertica

-18-

Programmer's Guide

rpm -Uvh vertica-client-4.1.x86 64.platform.rpm

Once you have installed the client package, you need to create an ODBC DSN (page 27) to use
ODBC, and change the Java CLASSPATH (page 24) before you can use JDBC. You may also
want to add the vsql client to your PATH environment variable so that you do not need to enter the

full path to run it. You add it to your path by adding the following to your .profile file:

export PATH=$PATH:/opt/vertica/bin

Installing ODBC on AIX, Linux, and Solaris

Read Driver Prerequisites (page 11) before you proceed.

Note: The ODBC and JDBC client drivers are installed by the server .rpm files. If you have

installed Vertica® Analytic Database on your Linux system for development or testing
purposes, you do not need to download and install the client drivers on it—you just need to
configure the drivers. To use ODBC, you need to create a DSN (see Creating an ODBC DSN
for Linux and Solaris Clients (page 27)). To use JDBC, you need to add the JDBC client
driver to the Java CLASSPATH (see Modifying the CLASSPATH (page 24)).

A new ODBC driver requires a new Data Source Name. You can decide when to use the new
driver, by creating a new DSN, or by eliminating the old driver and creating a new one that uses
the old name. See Creating an ODBC Data Source Name (DSN) (page 27) for details.

The download file for AIX, Linux, and Solaris operating systems includes the driver manager.

The list of downloads on the Vertica download website for Linux and Solaris clients are broken
down by driver manager. Within each driver manager section are links for each Linux and Solaris
architecture (for example, 64-bit Linux). The downloaded file is named based on its operating
system, driver manager, and architecture (for example,

vertica_4.1.xx_unixodbc_x86_64_linux.tar.gz)

Installation Procedure

1 Open a browser and log in to the Vertica download Web site
http://www.vertica.com/v-zone/download_vertica.

2 Scroll to the Drivers for Vertica® Analytic Database 4.1 section.

3 Within the heading for your driver manager (for example, For unixODBC Driver Manager on
Linux and Solaris), click the link for your operating system and architecture. For example,
ODBC Driver, 64-bit Linux.

4 Read the Agreement License and click I Agree.

5 When the download window loads, click Save File.

6 If you did not directly download to the client system, transfer the downloaded file to it.

7 Log in to the client system as root.

8 If the directory /opt/vertica/ does not exist, create it:

mkdir -p /opt/vertica/

9 Copy the downloaded file to the /opt/vertica/ directory. For example:

cp vertica_4.1.xx_unixodbc_x86_64_linux.tar.gz

10 Change to the /opt/vertica/ directory:

http://www.vertica.com/v-zone/download_vertica

-19-

 Installing the Vertica Client Drivers

cd /opt/vertica/

11 Uncompress the file you downloaded. For example:

$ tar vzxf vertica_4.1.xx_unixodbc_x86_64_linux.tar.gz

Two folders will be created: one for the include file, and one for the library file. The path of the

library file depends on the processor architecture: lib for 32-bit libraries, and lib64 for 64-bit

libraries. So, a 64-bit library client download would create the directories:

 /opt/vertica/include, which contains the header file

 /opt/vertica/lib64, which contains the library file

Pointing to the ODBC Driver Configuration File

In a bash shell, where you will be running your application, type the following command (assuming

/etc/odbc.ini is the location of your odbc.ini file):

$ export ODBCINI=/etc/odbc.ini

The following is a sample odbc.ini file. See also Creating an ODBC DSN for Linux and

Solaris Clients (page 27).

[VerticaDSN]

Description = VerticaDSN ODBC driver

Driver = /opt/vertica/lib64/libverticaodbc_unixodbc.so

Database = vmartdb

Servername = host01

UserName = dbadmin

Password =

Port = 5433

[ODBC]

Installing JDBC Driver on Linux and Solaris

Note: The ODBC and JDBC client drivers are installed by the server .rpm files. If you have

installed Vertica® Analytic Database on your Linux system for development or testing
purposes, you do not need to download and install the client drivers on it—you just need to
configure the drivers. To use ODBC, you need to create a DSN (see Creating an ODBC DSN
for Linux and Solaris Clients (page 27)). To use JDBC, you need to add the JDBC client
driver to the Java CLASSPATH (see Modifying the CLASSPATH (page 24)).

The JDBC driver is available for download from
http://myvertica.vertica.com/v-zone/download_vertica

http://myvertica.vertica.com/v-zone/download_vertica. There is a single .jar file that works

on all platforms and architectures. To download and install the file:

1 Log into the Vertica Systems, Inc. Web site's download page:
http://myvertica.vertica.com/v-zone/download_vertica
http://myvertica.vertica.com/v-zone/download_vertica.

2 Under the Drivers for Vertica® Analytic Database 4.1 section, locate the JDBC driver,
32/64 bit (all platforms) entry and click Download.

3 Click I Agree to agree to the license agreement.

http://myvertica.vertica.com/v-zone/download_vertica
http://myvertica.vertica.com/v-zone/download_vertica
http://myvertica.vertica.com/v-zone/download_vertica
http://myvertica.vertica.com/v-zone/download_vertica

-20-

Programmer's Guide

4 When prompted by your browser, save the vertica_4.1.xx_jdk_5.jar file to a location

on your computer.

5 You need to copy the .jar file you downloaded file to a directory in your Java CLASSPATH

http://en.wikipedia.org/wiki/Classpath_%28Java%29 on every client system with which you
want to access Vertica. You can either:

 Copy the .jar file to its own directory (such as /opt/vertica/java/lib) and then add

that directory to your CLASSPATH (recommended). See Modifying the CLASSPATH
(page 24) for details.

 Copy the .jar file to directory that is already in your CLASSPATH (for example, a

directory where you have placed other .jar files on which your application depends).

Note: In the directory where you copied the .jar file, you should create a symbolic link named

vertica_jdk_5.jar to the .jar file. You can reference this symbolic link anywhere you

need to use the name of the JDBC library without having to worry any future upgrade
invalidating the file name. This symbolic link is automatically created on server installs. On
clients, you need to create and manually maintain this symbolic link yourself if you installed the
driver manually. The client RPM for Red Hat and SUSE (page 17) create this link when they
install the JDBC library.

Installing ODBC, JDBC, and ADO.NET Drivers on Windows

This section contains procedures for both 32- and 64-bit Windows operating systems.

IMPORTANT

When enabled, virus scanners and the User Account Control (UAC) can
interfere with the installation of Vertica's client drivers. If you have an issue
installing the Vertica driver package, follow these steps:

1 Temporarily disable any virus scanner installed on your system. See
your virus scanner's documentation for details.

2 Temporarily disable the UAC
http://windows.microsoft.com/en-US/windows-vista/Turn-User-A
ccount-Control-on-or-off.

3 Download the Vertica Windows driver package for your platform and
install it, following the instructions in this section.

4 Re-enable the UAC and virus scanner.

There are two Windows driver packages on the Vertica web site: one for 32-bit clients and another
for 64-bit. They are clearly labeled, making it easy for you to select the correct one for your
platform.

The Vertica InstallShield Wizard installs the following drivers:

 On Windows 32-bit systems: ODBC, JDBC, and ADO.NET drivers, plus a Visual Studio 2008
plug-in.

http://en.wikipedia.org/wiki/Classpath_%28Java%29
http://windows.microsoft.com/en-US/windows-vista/Turn-User-Account-Control-on-or-off
http://windows.microsoft.com/en-US/windows-vista/Turn-User-Account-Control-on-or-off

-21-

 Installing the Vertica Client Drivers

Note: The Visual Studio plug-in requires that the Visual Studio SDK be installed on the system.
The plug-in is available at the Microsoft Download Center
http://www.microsoft.com/downloads/details.aspx?FamilyID=30402623-93ca-479a-867
c-04dc45164f5b&displaylang=en

 On Windows 64-bit systems: ODBC, JDBC, and ADO.NET drivers.

Note: Use the same InstallShield Wizard to repair, modify, and remove installed drivers on
Windows clients. Note that the uninstall option works only for Vertica drivers 2.5 and later that
were installed with the InstallShield application. If you want to remove a Vertica driver that was
installed before 2.5, use the Add/Remove Programs in the Windows Control Panel.

Installing Drivers on 32-bit Windows

The following procedure installs ODBC, JDBC, and ADO.NET drivers and the Visual Studio 2008
plug-in to the 32-bit client.

Note: The Visual Studio plug-in requires that the Visual Studio SDK be installed on the system.
The plug-in is available at the Microsoft Download Center
http://www.microsoft.com/downloads/details.aspx?FamilyID=30402623-93ca-479a-867c
-04dc45164f5b&displaylang=en.

Read Driver Prerequisites (page 11) before you proceed.

Installation Procedure

1 Temporarily disable any virus scanner or User Account Control (UAC) on the client, either of
which can interfere with the installation of the Vertica driver.

2 Open a browser and log in to the Vertica download Web site
http://www.vertica.com/v-zone/download_vertica.

3 Scroll to the portion of the page labeled Drivers for Vertica® Analytic Database 4.1.

4 Under the Windows section, click Download next to the entry for the 32-bit client drivers
bundle.

5 Read the Agreement License and click I Agree.

6 When the download window opens, click Save File, and the driver is saved to the default
download location on the client machine.

7 Double-click the saved download and click Next after the InstallShield Wizard launches.

8 Click Next to begin the installation.

9 Read the license agreement (optionally clicking Print to print a copy of the agreement), select
I accept the terms of the license agreement, and click Next.

10 Select Complete or Custom and click Next.

 Complete — Installs ODBC, JDBC, and ADO.NET drivers and the Visual Studio 2008

plug-in to C:\Program Files\Vertica Systems\Vertica Client Drivers 4.1.

 Custom — Lets you choose drivers and the plug-in. You can also specify a different
installation path from the default.

11 Click Install and the Wizard copies the Vertica drivers to the client machine.

http://www.microsoft.com/downloads/details.aspx?FamilyID=30402623-93ca-479a-867c-04dc45164f5b&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=30402623-93ca-479a-867c-04dc45164f5b&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=30402623-93ca-479a-867c-04dc45164f5b&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=30402623-93ca-479a-867c-04dc45164f5b&displaylang=en
http://www.vertica.com/v-zone/download_vertica

-22-

Programmer's Guide

Once the installation is complete, you are given the opportunity to view the Readme document
and visit www.vertica.com. If you want to read the file now, click View the Readme document.

Alternatively, you can read ODBC, JDBC, and ADO.NET documentation at C:\Program

Files\Vertica Systems\Vertica Client Drivers 4.1.

12 Click Finish to exit the installation wizard.

13 Re-enable virus scanner or UAC that you disabled earlier.

Post Installation

Do one of the following:

 If you use ODBC, create a new Data Source Name (page 27) (DSN) to use the new driver.

 If you use JDBC, modify the CLASSPATH (page 24) to use the new driver.

 There are no post-installation requirements for ADO-NET users.

ADO.NET (page 110) users can run the nvsql command to connect to a database, which is similar
to vsql, but with less functionality.

1 Open a command prompt

2 Change directories to the bin folder

cd C:\Program Files\Vertica Systems\Vertica Client Drivers 4.1\bin

3 Specify a host, port, database, and user:

nvsql 10.10.10.10:5433 DATABASENAME username

4 Run a simple query:

nvsql> SELECT NOW();

http://www.vertica.com/

-23-

 23

Installing Drivers on 64-bit Windows

The following procedure installs ODBC, JDBC, and ADO.NET drivers to the 64-bit client.

Read Driver Prerequisites (page 11) before you proceed.

Installation Procedure

1 Log in to Windows client as Administrator.

2 Temporarily disable any virus scanner or User Account Control (UAC), either of which can
interfere with installing the Vertica drivers.

3 Open a browser and log in to the Vertica download Web site
http://www.vertica.com/v-zone/download_vertica.

4 Scroll to the Drivers for Vertica® Analytic Database 4.1 portion of the page.

5 Under Windows, click the Download button next to the 64-bit client drivers entry.

6 Read the Agreement License and click I Agree.

7 When the download window appears, click Save File to save the driver package to a location
on the client system.

8 Double-click the downloaded install package to start the install process.

9 Read the license agreement (and optionally click Print to print a copy), then click Yes to accept
the agreement.

10 Click Next to begin the installation.

11 Change the user name if you wish, and type your company's name in the Company Name
box.

12 Select whether you want the installation to be available to all users or just your account, then
click Next.

13 Select the type of setup and click Next.

 Typical—Installs ODBC, JDBC, and ADO.NET drivers to C:\Program Files\Vertica

Systems\Vertica Client Drivers 4.1.

 Compact—Installs the minimum required options: ODBC, JDBC, and ADO.NET.

 Custom — Lets you specify a destination folder.

14 Click Next again to begin the installation.

15 Click Finish to exit the installation wizard.

16 Re-enable any virus scanner and UAC you disabled earlier.

Post Installation

You must perform an additional step for some of the client drivers before you use them:

 For ODBC, create a new Data Source Name (page 27) (DSN).

 For JDBC, modify the CLASSPATH (page 24).

 For ADO.NET, there isn't a post-install step.

http://www.vertica.com/v-zone/download_vertica

-24-

Programmer's Guide

Modifying the CLASSPATH

The CLASSPATH environment variable contains the list of directories where the Java runtime
looks for library class files. In order for your Java client code to access Vertica, you need to add the

directory where the Vertica JDBC .jar file is located.

Note: You should use the symbolic link that points to the JDBC library .jar file, rather than the

.jar file itself in your CLASSPATH. Using the symbolic link ensures that any updates to the

JDBC library .jar file (which will use a different filename) will not invalidate your CLASSPATH

setting, since the symbolic link's filename will remain the same. You just need to update the

symbolic link to point at the new .jar file.

Linux/UNIX

If you are using the Bash shell, use the export command to define the CLASSPATH variable:

export CLASSPATH=/opt/vertica/java/lib/vertica_4.1_jdk_5.jar

Caution: If environment variable CLASSPATH is already defined, use the following command
to prevent it from being overwritten:

export CLASSPATH=$CLASSPATH:/opt/vertica/java/lib/vertica_4.1_jdk_5.jar

If you are using a shell other than Bash, consult its documentation to learn how to set environment
variables.

You will need to either set the CLASSPATH environment variable for every login session, or place

the command to set the variable into one of your startup scripts (such as .profile).

Windows

Provide the class paths to the .jar, .zip or .class files.

C:> SET CLASSPATH=classpath1;classpath2...

For example:

C:> SET CLASSPATH=C:\java\MyClasses\vertica_4.1.xx_jdk_5.jar

As with the Linux/UNIX settings, this setting only lasts for the current session. To set the
CLASSPATH permanently, you can set an environment variable:

1 On the Windows Control Panel, click System.

2 Click Advanced or Advanced Systems Settings.

3 Click Environment Variables.

4 Under User variables, click New.

5 In the Variable name box, type CLASSPATH.

6 In the Variable value box, type the path to the Vertica JDBC .jar file on your system (for

example, C:\Program Files\Vertica Systems\Vertica Client Drivers

4.1\lib\vertica_4.1.xx_jdk5.jar)

-25-

 Installing the Vertica Client Drivers

Specifying the Library Directory in the Java Command

There is an alternative way to tell the Java runtime where to find the Vertica JDBC driver other
than changing the CLASSPATH environment variable: explicitly add the directory containing the

.jar file to the java command line using either the -cp or -classpath argument. For example,

on Linux you could start your client application using:

java -classpath /opt/vertica/java/lib/vertica_4.1_jdk_5.jar myapplication.class

Your Java IDE may also let you add directories to your CLASSPATH, or let you import the Vertica
JDBC driver into your project. See you IDE's documentation for details.

-26-

Using ODBC

Vertica provides the ODBC driver so applications can connect to the Vertica database. This
Unicode 3.51 driver allows all string input and output to be presented in Unicode. This means that
SQL queries can be run in Unicode and data can be returned from Vertica in Unicode.

This section details the process for configuring the Vertica ODBC driver. It also demonstrates
options for using the ODBC driver to connect to Vertica programmatically and assumes you have
already installed the ODBC driver. If you have not, see:

 Installing Client Drivers on AIX, Linux, and Solaris (page 18)

 Installing Client Drivers on Windows (page 20)

Note: If using DataDirect® driver manager, you should always use the
SQL_DRIVER_NOPROMPT option when connecting to Vertica, as Vertica's ODBC driver on
UNIX platforms doesn't contain a UI with which it can prompt you for a password.

ODBC Architecture
 The ODBC architecture has four components:

 Client Application

Is an application, which is written in C, that interacts with a database by opening a data source
through a DSN reference, sending requests to the data source, and processing these results.
Requests are made in the form of calls to ODBC functions, which submit these requests as
SQL statements.

 Driver Manager

Is a library that acts as an intermediary between a client application and one or more drivers. It
is responsible for:

 Resolving the Data Source Name (DSN) provided by the client application.

 Loading the driver required to access the specific database defined within the DSN.

 Processing ODBC function calls from the client or passing them to the driver.

 Performing function call sequence checks.

 Tracing each application call and its results.

 Unloading drivers when they are no longer needed.

See ODBC Prerequisites (page 12) for a list of driver managers that can be used with Vertica.

 Driver

Is as a shared object (under Linux or UNIX) or a DLL (under Widows) that provides access to a
specific database, for example Vertica. It translates incoming and outgoing information as
follows: ODBC requests are translated into the format expected by the database, and
database-specific results are translated back into ODBC for the client application.

 Database

The database processes requests initiated at the client application and returns results.

-27-

 Using ODBC

Creating an ODBC Data Source Name (DSN)
A Data Source Name (DSN) is the logical name that is used by Open Database Connectivity
(ODBC) to refer to the drive and other information that is required to access data from a data
source. Once you have installed the ODBC driver, you need to configure and test a DSN. The
method you use depends upon the type of client operating system you're using:

 Creating an ODBC DSN for Linux and Solaris Clients (page 27)

 Creating an ODBC DSN for Windows Clients (page 29)

Creating an ODBC DSN for Linux and Solaris Clients

Creating a DSN for a Linux or Solaris client machine entails configuring the following files and then
testing the configuration:

 /etc/odbc.ini

 /etc/odbcinst.ini

Configuring the odbc.ini file:

On Linux and Solaris, ODBC data sources reside in a file named odbc.ini.

1 Using the text editor of your choice, open odbc.ini.

2 Create an ODBC Data Sources section and enter the VerticaDSN parameter.

This parameter establishes the name by which the new data source is referred. There is no
special significance to the default name. For example:

[ODBC Data Sources]

VerticaDSN = "vmartdb"

3 Create a VerticaDSN section in which to establish the parameters for the DSN. The example
below this list creates the following parameters:

 Description – Additional information about the data source.

 Driver – The location and designation of the Vertica ODBC driver. For future compatibility,

you should use the name of the symbolic link in the library directory (/opt/vertica/lib

on 32-bit clients, and /opt/vertica/lib64 on 64-bit clients), rather than the library file.

For example, the symbolic link for the 64-bit ODBC driver library using the unixODBC driver
manager is:

/opt/vertica/lib64/libverticaodbc_unixodbc.so

The symbolic link always points to the most up-to-date version of the Vertica client ODBC
library. Using the link ensures that you do not need to update all of your DSNs when you
update your client drivers.

 Database – The name of the database running on the server. This example uses vmartdb
for the vmartdb.

 ServerName — The name of the server where Vertica is installed. Use localhost if Vertica
is installed on the same machine.

-28-

Programmer's Guide

 UserName – Either the database superuser (same name as database administrator
account) or a user that the superuser has created and granted privileges. This example
uses the user name dbadmin.

 Password – The password for the specified user name. This example leaves the password
field blank.

 Port – The port number on which Vertica listens for ODBC connections. For example,
5433.

 ConnSettings – Can contain SQL commands separated by a semicolon. These
commands can be run immediately after connecting to the server.

 SSLKeyFile – The file path and name of the client's private key. This file can reside
anywhere on the system.

 SSLCertFile – The file path and name of the client's public certificate. This file can reside
anywhere on the system.

 Locale – The default locale used for the session. By default, the locale for the database is
en_US@collation=binary (English as in the United States of America). Specify the locale
as an ICU Locale. See the ICU User Guide (http://userguide.icu-project.org/locale) for a
complete list of parameters that can be used to specify a locale.

For example:

[VerticaDSN]

Description = VerticaDSN ODBC driver

Driver = /opt/vertica/lib64/libverticaodbc_iodbc.so

Database = vmartdb

Servername = host01

UserName = dbadmin

Password =

Port = 5433

ConnSettings =

SSLKeyFile = /home/dbadmin/client.key

SSLCertFile = /home/dbadmin/client.crt

Locale = en_GB

See DSN parameters (page 39) for a complete list of parameters including Vertica-specific ones.

Configuring the odbcinst.ini File

Create a VerticaDSN section and enter the following parameters:

 Description — Additional information about the data source.

 Driver — The location and designation of the Vertica ODBC driver. For example:
/opt/vertica/lib64/libverticaodbc_unixodbc.so

For example:

[VerticaDSN]

Description = VMart example database

Driver = /opt/vertica/lib/libverticaodbc_unixodbc.so

http://userguide.icu-project.org/locale

-29-

 Using ODBC

If you are using the unixODBC driver manager, you should also add an ODBC section to override
its standard threading settings. By default, unixODBC will serialize all SQL calls through ODBC,
which prevents multiple parallel loads. To change this default behavior, add the following to your

odbcinst.ini file:

[ODBC]

Threading = 1

Testing the Configuration

unixODBC comes with a variety of tools that allow you to test the connection. These instructions
describe how to use the command line tool isql. The isql tool allows you to connect to the DSN to
send commands and receive results.

To use isql to test the DSN connection:

1 Run the following command:

$ isql –v VerticaDSN

SQL>

A connection message and a SQL prompt display. If does not, you could have a configuration
problem or you could be using the wrong user name or password.

2 Try a simple SQL statement. For example:

SQL> SELECT [columname] FROM [tablename];

The isql tool returns the results of your SQL statement.

Creating an ODBC DSN for Windows Clients

Creating a DSN for Microsoft Windows clients consists of:

 Setting up a DSN (page 29)

 Testing the DSN using Excel 2003 (page 33) or Excel 2007 (page 36)

 Creating User and System DSN Entries (page 38)

Setting Up a DSN

A Data Source Name (DSN) is the logical name that is used by Open Database Connectivity
(ODBC) to refer to the drive and other information that is required to access data. The name is
used by Internet Information Services (IIS) for a connection to an ODBC data source.

This section describes how to use the Vertica ODBC Driver to set up an ODBC DSN. This topic
assumes that the driver is already installed, as described in Installing ODBC, JDBC, and
ADO.NET on Windows (page 20).

To set up a DSN:

1 From the Windows Control Panel, open the ODBC Administrator.

Note: The method you use depends on the version of Windows you are using. Differences
between Windows versions and Start Menu customizations could require a different action to
open the ODBC Administrator

 Start > Control Panel > Data Sources (ODBC).

-30-

Programmer's Guide

 Start > Control Panel > Administrative Tools > Data Sources (ODBC).

2 In the ODBC Data Source Administrator, click the System DSN tab.

This allows all users on the system to use this DSN. If you click the User DSN, only the user
creating the DSN Entry can access it.

3 Click Add to create a system-wide data source name for the Vertica driver.

4 Scroll through the list of drivers in the Create a New Data Source dialog to locate the Vertica
driver. Select the driver, and then click Finish.

-31-

 Using ODBC

5 Enter your data source information in the Vertica ODBC Driver Setup dialog.

The following list describes all the fields in the Vertica ODBC Driver Setup dialog:

 Data Source — The name by which the new data source appears in menus. There is no
special significance to the default name.

 Description — Additional information about the data source. In this example, the
description is "VMart schema database."

 Server — The hostname or IP address of any active node within a Vertica database.

-32-

Programmer's Guide

 Port — The port number on which Vertica listens for ODBC connections. For example,
5433.

 Database — The name of the database running on the server. This example uses vmartdb
for the Vmart schema.

 User Name — Either the database superuser (same name as database administrator
account) or a user that the superuser has created and granted privileges. This example
uses the user name dbadmin.

 Password — The password for the specified user name. This example leaves the
password field blank.

 Read Only — Prevents users of this data source from writing to the database. The default
is unselected.

 MyLog — Logs only debug messages, which is useful for debugging problems with the
ODBC driver. The default is unselected.

 CommLog — Logs all communications between the application and the server, which is
useful for application debugging. The default is unselected.

 READ COMMITTED — (Default) Allows concurrent transactions and prevents dirty reads
by reading data from the last epoch and committing changes to the current epoch.

 SERIALIZABLE — Is the most strict level of SQL transaction isolation. Although this
isolation level permits transactions to run concurrently, it creates the effect that
transactions are running in serial order. It acquires locks for both read and write operations,
which ensures that successive SELECT commands within a single transaction always
produce the same results. SERIALIZABLE isolation always uses the current epoch.

 Locale — The default locale used for the session. By default, the locale for the database is
en_US@collation=binary (English as in the United States of America). Specify the locale
as an ICU Locale. See the ICU User Guide (http://userguide.icu-project.org/locale) for a
complete list of parameters that can be used to specify a locale.

http://userguide.icu-project.org/locale

-33-

 Using ODBC

6 Optionally click Test Connection and then click Save.

7 Click OK to close the ODBC Data Source Administrator.

8 Verify (page 33) that applications can use the DSN to connect to an ODBC data source.

Testing a DSN Using Excel 2003

This section uses Microsoft Excel 2003 to verify that an application can connect to an ODBC data
source. You can accomplish the same thing with any ODBC application.

1 Open Excel.

-34-

Programmer's Guide

2 From the menu, select Data > Import External Data > New Database Query.

If Microsoft Query is not installed, Excel offers to install it for you.

3 Select the data source name (Stock_Schema in this example), make sure the "Use the Query
Wizard" check box is deselected and click OK.

4 In the Add Tables dialog, click Close.

-35-

 Using ODBC

5 Click the SQL button.

6 Enter any simple query to test. This example uses the following query:

SELECT DISTINCT calendar_year FROM date_dimension;

7 Click OK.

8 If you see the caution, "SQL Query can't be represented graphically. Continue anyway?" click
OK.

The data values 2000, 2001, 2002, 2003, 2004 indicate that you successfully connected to and
ran a query through ODBC.

9 Click File > Return Data to Microsoft Office Excel.

-36-

Programmer's Guide

10 In the Import Data dialog, click OK.

The data is now available for use in an Excel worksheet.

Testing a DSN Using Excel 2007

This section uses Microsoft Excel 2007 to verify that an application can connect to an ODBC data
source. You can accomplish the same thing with any ODBC application.

1 Open Excel.

2 From the menu, select Data > Get External Data > From Other Sources > From Microsoft
Query.

3 Select VMart_Schema*, make sure the "Use the Query Wizard" check box is deselected and
click OK.

-37-

 Using ODBC

4 When the Add Tables window loads, click Close.

5 The Microsoft Query window opens; click the SQL button.

6 In the SQL window write any simple query to test your connection. This example uses the
following query:

SELECT DISTINCT calendar_year FROM date_dimension;

7 If you see the caution, "SQL Query can't be represented graphically. Continue anyway?" click
OK.

The data values 2003, 2004, 2005, 2006, 2007 indicate that you successfully connected to and
ran a query through ODBC.

8 Click File > Return Data to Microsoft Office Excel.

-38-

Programmer's Guide

9 In the Import Data dialog, click OK.

The data is now available for use in an Excel worksheet.

Creating User and System DSN Entries

Once you have created and tested a DSN, you need to create user and system DSN entries in the
Windows registry. The DSN parameters (page 39) you set to create these entries are identical,
but the paths differ depending on:

 The type of entry (user or system) you want to create.

 Whether the system is a 32 or 64-bit system.

 Whether the driver installed on a 64-bit system is actually a 32 bit driver.

User DSN Paths

 32 bit - HKEY_CURRENT_USER\Software\ODBC\ODBC.INI\<DSN name>

 64 bit - HKEY_CURRENT_USER\Software\ODBC\ODBC.INI\<DSN name>

 32 bit driver on 64 bit system -
HKEY_CURRENT_USER\SOFTWARE\WOW6432Node\ODBC\ODBC.INI\<DSN name>

System DSN Paths

 32 bit - HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI\<DSN name>

 64 bit - HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI\<DSN name>

 32 bit driver on 64 bit system -
HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\ODBC\ODBC.INI\<DSN name>

-39-

 Using ODBC

DSN Parameters

The parameters in the following tables are common for all user and system DSN entries. The
examples provided are for Windows clients.

To edit DSN parameters:

 UNIX and Linux users can edit the odbc.ini file. (See Creating an ODBC DSN for Linux and
Solaris Clients (page 27).) The location of this file is specific to the driver manager.

 Windows users can edit the DSN parameters directly by opening the DSN entry in the
Windows registry (for example, at
HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI\vmartdb). However, the
Vertica-preferred method is to follow the steps in Creating an ODBC DSN for Windows
Clients (page 29).

 Parameters can be set while making the connection using SQLDriverConnect().

sqlRet = SQLDriverConnect(sql_hDBC, 0,

(SQLCHAR*)"DSN=VerticaSQL;BinaryDataTransfer=1",

SQL_NTS, szDNS, 1024,&nSize, SQL_DRIVER_NOPROMPT);

Note: In the connection string ';' is a reserved symbol. If you need to set multiple parameters as part
of ConnSettings parameter use '%3B' in place of ';'. Also use '+' instead of spaces.

For Example:

sqlRet = SQLDriverConnect(sql_hDBC, 0,

(SQLCHAR*)"DSN=VerticaSQL;BinaryDataTransfer=1;ConnSettings=

set+search_path+to+a,b,c%3 Bset+locale=ch;SSLMode=prefer", SQL_NTS,

szDNS, 1024,&nSize, SQL_DRIVER_NOPROMPT);

 Parameters can also be set and retrieved after the connection has been made using
SQLConnect(). Parameters can be set and retrieved using
SQLSetConnectAttr(),SQLSetStmtAttr(), SQLGetConnectAttr() and SQLGetStmtAttr() API
calls.

For details of the list of Vertica specific parameters see Vertica-specific ODBC Header File
(page 44).

General Parameters

Parameters Description Example Standard/Vertica

Driver The file path and name of the
driver used.

C:\Program

Files\Vertica

Systems\Vertica Client

Drivers 4.0\lib\

vertica_4.0_odbc_3.5.d

ll

Standard

ReadOnly If set to 1, DSN is read only 1 Vertica

-40-

Programmer's Guide

Description An optional description for the
DSN entry.

Insert an empty string to leave
the description empty.

"" Standard

Database The name of the database
running on the server.

vmartdb Standard

Servername The hostname or IP address of
any active node within a Vertica
database; for example, host01.

10.10.21.250 Standard

Port The port number on which
Vertica listens for ODBC
connections.

5433 Standard

Username Either the database superuser
(same name as the database
administrator account) or a user
that the superuser has created
and granted privileges.

dbadmin Standard

Password The password for the specified
user name. You may insert an
empty string to leave this
parameter blank.

"" Standard

Internationalization

Parameters Description Example Standard/Vertica

Locale The default locale used for the
session. By default, the locale for
the database is
en_US@collation=binary
(English as in the United States
of America). Specify the locale as
an ICU Locale. See the ICU User
Guide
(http://userguide.icu-project.org/l
ocale) for a complete list of
parameters that can be used to
specify a locale.

Locale = en_GB; Vertica

ColumnsAsChar By default, when driver is in
Unicode mode, character
column type is reported as
WCHAR. If ColumnsAsChar is
set to 1 then driver in unicode
mode will return CHAR type for
character columns.

ColumnsAsChar=1 Vertica

WideCharSizeIn Size of the input wide characters
specific to platform and

WideCharSizeIn=4 Vertica

http://userguide.icu-project.org/locale
http://userguide.icu-project.org/locale

-41-

 Using ODBC

programming environment.

WideCharSizeOut Size of the output wide
characters specific to platform
and programming environment.

WideCharSizeOut=4 Vertica

Utilities

Parameters Description Example Standard/Vertica

ConnSettings This value contains SQL
commands to be run immediately
after connecting to the server.

Note: In the connection string ';' is

a reserved symbol. If you need to
set multiple parameters as part of
ConnSettings parameter use
'%3B' in place of ';'. Also use '+' for
spaces.

SET SEARCH_PATH =

schema1, schema2,

public;

Vertica

TxnReadCommitted If set to 1, transaction isolation
mode is READ COMMITTED,
otherwise SERIALIZABLE.

1 Vertica

SessionLabel Allows to uniquely identify a client
session on the server.

 Vertica

Security

Parameters Description Example Standard/Vertica

SSLMode The connection setting used for
SSL:

 always — Requires the
server to use SSL. If the
server cannot provide an
encrypted channel, the
connection fails.

 prefer (default) — Prefers
the server to use SSL. If
the server does not offer an
encrypted channel, the
client requests one. Note
that the first connection
attempt to the database
tries to use SSL. If that
fails, a second connection
is attempted over a clear
channel.

prefer Vertica

-42-

Programmer's Guide

 allow — Makes a
connection to the server
whether the server uses
SSL or not. Note that the
first connection attempt to
the database is attempted
over a clear channel. If that
fails, a second connection
is attempted over SSL.

 disable — Never connects
to the server using SSL.
This setting is typically
used for troubleshooting.

For more information about using
SSL, see Implementing SSL.

SSLKeyFile The file path and name of the
client's private key. This file can
reside anywhere on the system.

SSLKeyFile =

C:\Program

Files\Vertica

Systems\home\

dbadmin\client.key

Vertica

SSLCertFile The file path and name of the
client's public certificate. This file
can reside anywhere on the
system.

SSLCertFile =

C:\Program

Files\Vertica

Systems\home\

dbadmin\client.crt

Vertica

Load

Parameters Description Example Standard/Vertica

BatchInsertEnforceLen
gth

Enforces rejection of strings longer
than the column width. If set to 1
then the string is rejected, when set
to 0 the string is truncated. Default
is false (value of 0)

0 Vertica

DirectBatchInsert Determines whether a batch is
inserted directly into the ROS (1) or
WOS/ROS (0). By default batches
are inserted using AUTO mode.

0 Vertica

Note: In Vertica 4.1, the batch-related parameters Use35CopyFormat, BatchAutoComplete,
BatchInsertManaged, and ReportParamSuccess have been deprecated. These settings are no
longer needed for Vertica 4.1's new batch load behavior (see Using Batch Inserts (page 51)
for details). Setting any of these parameters has no effect. In addition, the
Use35CopyParameters parameter has also been deprecated. In addition, the AbortOnError
parameter is obsolete, since the Vertica ODBC client driver has better error reporting ability.
This parameter still works, but you should avoid using it.

-43-

 Using ODBC

Performance/Query

Parameters Description Example Standard/Vertica

LRSPath Specifies the location of the temporary
file on the client system that is used to
store large result sets.

Windows Default: %TEMP%

Linux Default: /tmp

/tmp Vertica

LRSStreaming If set to 1 (the default), the ODBC
driver pauses the query execution
when the memory cache on the client
is full and resumes execution of the
query after the memory cache rows
are retrieved by the ODBC application
using SQLFetch. If the value is false
(0), the driver dumps large result sets
to the temporary file specified by
SQL_ATT_VERTICA_LRS_STREAMI
NG. By default, this parameter is set to
1.

1 Vertica

BinaryDataTransfer If set to 1, the driver requests binary
data transfer from the server.

The following data types can benefit
from binary data transfer:

 All date/time types (DATE,
TIME, TIMESTAMP)

 NUMERIC

 BIGINT with large values
(>99999999)

0 Vertica

MaxMemoryCache Size of memory buffer for the large
result sets in streaming mode.

67108864 Vertica

Third-Party Integration

Parameters Description Example Standard/Vertica

BoolsAsChar If set to 1, the driver reports Boolean
type as SQLCHAR, otherwise as
SQLBIT.

0 Vertica

SuppressWarnings If set to 1, the driver converts
SQL_SUCCESS_WITH_INFO to
SQL_SUCCESS. If set to 0, warnings
are not suppressed.

0 Vertica

-44-

Programmer's Guide

Troubleshooting

Parameters Description Example Standard/Vertica

Debug If set to 1, the driver debug information
is saved in the C:/mylog_NNN.log (on
Windows) or /tmp/mylog_NNN.log (on
Linux and Solaris), where NNN is the
application process ID.

0 Vertica

Trace If this flag is 1, tracing is turned on for
the driver manager. If the value is 0,
tracing is turned off. See also TraceFile
and TraceDll.

0 Standard

TraceFile If tracing is turned on, specify the full
path of the file to which ODBC calls are
written.

/home/my_dir/odbctrace.

out
Standard

TraceDll If tracing is turned on, specify the name
of the trace DLL that performs the
tracing.

/usr/local/lib/odbctrac

.so
Standard

Vertica-specific ODBC Header File
The Vertica ODBC header file, verticaodbc.h contains the following:

#define SQL_ATTR_VERTICA_LRSPATH 12000

#define SQL_ATTR_VERTICA_MAX_MEM_CACHE 12001

#define SQL_ATTR_VERTICA_LRS_STREAMING 12002

#define SQL_ATTR_VERTICA_SUPPRESS_WARNINGS 12003

#define SQL_ATTR_VERTICA_DIRECT_BATCH_INSERT 12004

#define SQL_ATTR_VERTICA_BATCH_AUTO_COMPLETE 12008

#define SQL_ATTR_VERTICA_BATCH_INSERT_NULL 12009

#define SQL_ATTR_VERTICA_BATCH_INSERT_RECORD_TERMINATOR 12010

#define SQL_ATTR_VERTICA_LOCALE 12011

The following table describes these parameters.

Parameter Description Associated Function

SQL_ATTR_VERTICA_ABORT

_ON_ERROR

Instructs Vertica to abort on error
(1) or not (0). By default Vertica
does not abort when it
encounters an error.

SQLSetConnectAttr()

SQLSetStmtAttr()

SQLGetConnectAttr()

SQLGetStmtAttr()

SQL_ATTR_VERTICA_BATCH

_INSERT_NULL

Sets the batch null value
indicator. By default, Vertica uses
'null'. If you have this string in
your data, change the null value
indicator. See the NULL

SQLSetConnectAttr()

SQLGetConnectAttr()

-45-

 Using ODBC

parameter in the COPY
statement for more information
about choosing a null indicator.

SQL_ATTR_VERTICA_BATCH

_INSERT_RECORD_TERMINATOR

Sets the batch insert record
terminator. By default, Vertica
uses "a\v\b". In the unlikely case
you have this string in your data,
change the record terminator.
See the RECORD
TERMINATOR parameter for the
COPY statement for more
information about choosing a
record terminator.

SQLSetConnectAttr()

SQLGetConnectAttr()

SQL_ATTR_VERTICA_DIRECT

_BATCH_INSERT

Determines whether a batch is
inserted directly into the ROS (1)
or using AUTO mode (0). By
default batches are inserted into
the ROS.

SQLSetConnectAttr()

SQLSetStmtAttr()

SQLGetConnectAttr()

SQLGetStmtAttr()

SQL_ATTR_VERTICA_LRS

_PATH

Specifies the location of the flat
file on the client system that is
used to store large result sets.

Windows Default: %TEMP%

Linux Default: /tmp

SQLSetConnectAttr()

SQLGetConnectAttr()

SQL_ATTR_VERTICA_LRS

_STREAMING

Determines whether the driver
uses a temporary file to keep the
large result set, or use streaming
mode to fetch the large result set
from the database server. If the
value is true (1), the ODBC driver
pauses the query execution when
the memory cache on the client is
full and resumes execution of the
query after the memory cache
rows are retrieved by the ODBC
application using SQLFetch. If
the value is false (0), the driver
dumps large result sets to the flat
file specified by
SQL_ATT_VERTICA_LRS_STR
EAMING. By default, this
parameter is set to 1.

SQLSetConnectAttr()

SQLSetStmtAttr()

SQLGetConnectAttr()

SQLGetStmtAttr()

SQL_ATTR_VERTICA_MAX

_MEM_CACHE

Sets the size of the buffer in
theVertica driver that is used to
temporarily store result sets. By
default the size is 67108864
(64MB).

Tip: To decrease the time it takes
the client application to receive
the result sets, you could reduce
the value of the cache to as little

SQLSetConnectAttr()

SQLSetStmtAttr()

SQLGetConnectAttr()

SQLGetStmtAttr()

-46-

Programmer's Guide

as 256K.

SQL_ATTR_VERTICA

_SUPPRESS_WARNINGS

Determines whether warnings
are suppressed (1) or not (0) for
SQLExecDirect(),
SQLExecDirectW(), and
SQLExecute() and if
SQL_SUCCESS_WITH_INFO is
replaced with SQL_SUCCESS.
Warnings are not suppressed by
default.

SQLSetConnectAttr()

SQLSetStmtAttr()

SQLGetConnectAttr()

SQLGetStmtAttr()

SQL_ATTR_VERTICA_LOCALE Changes the locale from
en_US@collation=binary to the
ICU locale specified.

SQLSetConnectAttr()

SQLGetConnectAttr()

Note: The parameters SQL_ATTR_VERTICA_BATCH_AUTO_COMPLETE,
SQL_ATTR_VERTICA_NUM_ACCEPTED_ROWS, and
SQL_ATTR_VERTICA_NUM_REJECTED_ROWS available in versions of Vertica before 4.1
have been deprecated.

Supported ODBC Functions
The ODBC driver for Vertica supports the following ODBC functions for Microsoft ODBC 3.5. Any
deviations from the standard are noted.

Use Function Support

Connecting to a data
source

SQLAllocHandle Standard

SQLConnect Standard

SQLDriverConnect This function differs from the standard in the following
ways:

 The connection string may contain any
Vertica-specific parameters specified in the INI
file.

 When the client application uses
SQLDriverConnect, the connection string must
supply all the required information for making the
connection. For example, the driver only
supports displaying a dialog for users to enter
missing values under MS Windows. If you are
using Linux or UNIX, you must specify all
required values through the connection string.

SQLBrowseConnect Standard

Obtaining information
about a driver and data
source

SQLGetInfo Standard

SQLGetFunctions Standard

SQLGetTypeInfo Standard

-47-

 Using ODBC

Setting and retrieving
driver attributes

SQLSetConnectAttr This is a standard call, but the driver provides its own
attributes.

SQLGetConnectAttr This is a standard call, but the driver provides its own
attributes.

SQLSetEnvAttr Standard

SQLGetEnvAttr Standard

SQLSetStmtAttr This is a standard call, but the driver provides its own
attributes.

SQLGetStmtAttr This is a standard call, but the driver provides its own
attributes.

Setting and retrieving
descriptor fields

SQLGetDescField Standard

SQLGetDescRec Standard

SQLSetDescField Standard

SQLSetDescRec Standard

Preparing SQL requests

SQLPrepare For batch inserts, the driver converts the prepare
statement from INSERT to COPY. For example, the
following would be converted:

INSERT INTO <table> [<columns_list>]

 VALUES (?, ?, ?...);

Note that not every INSERT can be converted to COPY.
If the list of values contains either of the following, it
cannot be converted:

 a literal; For example: ('a' , ?)

 a function; For example: (current_time() , ?)

SQLBindParameter Standard

SQLParamOptions Standard

Submitting requests

SQLExecute Standard

SQLExecDirect Standard

SQLNativeSql Standard

SQLDescribeParam This function is supported, but there could be cases in
which the parameter type returns VARCHAR(64000).

SQLNumParams Standard

SQLParamData Standard

SQLPutData Standard

Retrieving results and
information about
results

SQLRowCount Standard

Note: In version 3.5, when the BatchAutoComplete
parameter was not set, this function always returned
zero. In version 4.0, or in earlier versions when
BatchAutoComplete was set, this function returned the

-48-

Programmer's Guide

number of rows inserted by the last insert or batch. From
version 4.1, this function acts according to the ODBC
specifications, returning the number of rows affected by
the last SQLExecute.

SQLNumResultsCols Standard

SQLDescribeCol Standard

SQLColAttribute Standard

SQLBindCol Standard

SQLFetch Standard

SQLFetchScroll Standard

SQLGetData Standard

SQLSetPos Standard

SQLMoreResults Vertica does not support the multi-statement batch
(MSB) feature. Calls to this function will always return
SQL_NO_DATA. See Unsupported ODBC Functions
and Parameters (page 48) for details.

SQLGetDiagField Standard

SQLGetDiagRec Standard

Obtaining information
about the data source's
system tables (catalog
functions)

SQLColumns Standard

SQForeignKeys Standard

SQLPrimaryKeys Standard

SQLSpecialColumns Standard

SQLTables Standard

Terminating a
statement

SQLFreeStmt Standard

SQLCloseCursor Standard

SQLCancel Standard

SQLEndTran Standard

Terminating a
connection

SQLDisconnect Standard

SQLFreeHandle Standard

Note: Vertica supports one cursor per connection. Attempting to use more than one cursor per
connection will result in an error. For example, you will receive an error if you execute a
statement while another statement has a result set open.

Unsupported ODBC Functions and Parameters
The ODBC driver for Vertica does not support the following ODBC functions.

-49-

 Using ODBC

Use Function

Obtaining information about a
driver and data source

SQLDataSources

SQLDrivers

SQLSetCursorName

SQLSetScrollOptions

Preparing SQL requests SQLGetCursorName

SQLBulkOperations

Obtaining information about the
data source's system tables
(catalog functions)

SQLColumnPrivileges

SQLProcedureColumns

SQLProcedures

SQLStatistics

SQLTablePrivileges

Terminating a statement SQLCancelHandle
Function

Cursors Per Connection

Vertica supports one cursor per connection. Attempting to use more than one cursor per
connection will result in an error. For example, you will receive an error if you execute a statement
while another statement has a result set open.

Multi-Statement Batches

Vertica does not support the ODBC multi-statement batch (MSB) feature. While you can submit a
batch that contains multiple statements, you only receive the result of the last statement executed.
The SQLMoreResults function always returns SQL_NO_DATA.

Unsupported Parameters

The SQL_ATTR_MAX_LENGTH parameter is not supported by the Vertica ODBC client driver.
You can assign a value to this parameter without causing an error, however it has no effect.

Setting the Locale for ODBC Sessions
Vertica provides three ways to set the locale for an ODBC session:

 Specify the locale at connection through the odbc.ini file. See:

 Creating an ODBC DSN for Linux and Solaris Clients (page 27)

 Creating an ODBC DSN for Windows Clients (page 29)

 DSN Parameters (page 39)

 Use the SQLSetConnectAttr() method with the SQL_ATTR_VERTICA_LOCALE constant

and specify the ICU string as the attribute value. See:

 Vertica-Specific ODBC Header File (page 44)

-50-

Programmer's Guide

 DSN Parameters (page 39)

For example:

SQLSetConnectAttr(dbc, SQL_ATTR_VERTICA_LOCALE,

(SQLPOINTER)strLocale, SQL_NTS);

 Use Locale in the connection string in SQLDriverConnect() function.

For example:

SQLDriverConnect(conn, NULL, (SQLCHAR*)"DSN=Vertica;Locale=en_GB",

SQL_NTS, szConnOut, sizeof(szConnOut), &iAvailable,

SQL_DRIVER_NOPROMPT)

Notes

 ODBC applications can be in either ANSI or Unicode mode:

 If Unicode, the encoding used by ODBC is UCS-2.

 If ANSI, the data must be in single-byte ASCII, which is compatible with UTF-8 on the
database server.

The ODBC driver converts UCS-2 to UTF-8 when passing to the Vertica server and converts
data sent by the Vertica server from UTF-8 to UCS-2.

 If the end-user application is not already in UCS-2, the application is responsible for converting
the input data to UCS-2, or unexpected results could occur. For example:

 On non-UCS-2 data passed to ODBC APIs, when it is interpreted as UCS-2, it could result
in an invalid UCS-2 symbol being passed to the APIs, resulting in errors.

 Or the symbol provided in the alternate encoding could be a valid UCS-2 symbol; in this
case, incorrect data is inserted into the database.

ODBC applications should set the correct server session locale using SQLSetConnectAttr

(if different from database-wide setting) in order to set the proper collation and string functions
behavior on server.

Loading Data Through ODBC
The following methods enable you to load data from a client application to Vertica through ODBC.

 Single row insert (page 51)

 Batch insert (page 51)

 COPY statement (page 62)

 LCOPY statement (page 62)

Additionally, you can:

 Load data into the WOS/ROS (page 63)

 Load batches in parallel (page 61)

Vertica provides two formats to load data using ODBC:

 Text format with delimiters (default LCOPY command)

 Native binary format or native varchar format when required (default for batch inserts in Vertica
4.0)

-51-

 Using ODBC

Note: Batch inserts will automatically use either the NATIVE BINARY or NATIVE VARCHAR
formats. NATIVE BINARY is used if the application data types match the actual table data types
exactly (including maximum lengths of CHAR/VARCHAR and precision/scale of numeric data
types), which provides best possible load performance. If there is any data type mismatch,
NATIVE VARCHAR is used. NATIVE varchar format uses a similar file format to native binary,
but all fields are represented as strings in CHAR or VARCHAR. Conversion to the actual table
data type is done on the database server; thus, NATIVE VARCHAR does not provide the same
efficiency as NATIVE BINARY. However, NATIVE VARCHAR provides the convenience of not
having to use delimiters or escape special characters, such as quotes, which can make working
with client applications easier.

Using a Single Row Insert

The easiest way to load data into Vertica is to run an INSERT SQL statement. However this
method is limited to inserting a single row of data.

ret = SQLExecDirect (hstmt, (SQLTCHAR*)"INSERT into Customers values (1,'abcda','efgh','1')",

SQL_NTS);

Using Batch Inserts

Batch load insert is a method for bulk loading data into Vertica by loading one or more consecutive
batches. Like a typical batch load, it uses parameterized statements that work with bound
variables. The data to be loaded is stored in an array and bound to the parameter.

In Vertica Version 4.1, all sequential batch loads are handled behind the scenes by a single COPY
statement. Ending the batch insert transaction, closing the cursor, or executing a non-INSERT
statement ends the COPY statement. Using a single COPY statement for multiple batches makes
batch loading more efficient by reducing the overhead of inserting individual batches. It also allows
the COPY statement to combine individual batches into larger and more efficient ROS containers.

Even though a single COPY command handles multiple batches within a transaction, you can still
find which (if any) rows were rejected due to invalid row formats or data type issues after each
batch is loaded. When you are within a transaction, getting a report of accepted or rejected rows
(for example, by using the SQLRowCount function) will return the results from the last batch. After
the transaction is committed, getting these parameters returns the results for the entire
transaction.

Note: While you can find rejected rows during the batch load transaction, other types of errors
(such as running out of disk space or a node shutdown that makes the database unsafe) are
only reported when the COPY statement ends.

Since the batches share a COPY statement, errors in a batch can cause earlier batches in the
same transaction to be rolled back. For example, these rollbacks can occur if you enable the
abortOnError connection property, which would cause the entire COPY statement to be rolled
back.

Batch Insert Steps

The steps your application needs to take in order to perform an ODBC Batch Insert are:

-52-

Programmer's Guide

1 Connect to the database.

2 Disable autocommit for the connection. Leaving autocommit enabled means that each batch
starts a new transaction which will result in more ROS containers being created and a much
higher overhead for Vertica.

3 Create a prepared statement that inserts the data you want to load.

4 Bind the parameters of the prepared statement to arrays that will contain the data you want to
load.

5 Populate the arrays with the data for your batches.

6 Execute the prepared statement.

7 Optionally, check the results of the batch load to find rejected rows.

8 Repeat the previous three steps until all of the data you want to load is loaded.

9 Commit the transaction.

10 Optionally, check the results of the entire batch transaction.

The following example code demonstrates a simplified version of the above steps.

//Header files:

#include <sql.h>

#include <sqltypes.h>

#include <sqlext.h>

#include <cstdio>

#include <cstdlib>

#include <iostream>

#include <cassert>

#include <cstring>

// The following include file will depend on your

// platform and where you installed Vertica.

#include "/opt/vertica/include/verticaodbc.h"

#include "utils.h"

// Helper function that prints SQL error messages

static void PrintError(SQLSMALLINT siType, SQLHANDLE shHandle)

{

 SQLINTEGER siError;

 SQLSMALLINT siAvail;

 SQLCHAR szError[1024], szState[256];

 SQLGetDiagRec(siType, shHandle, 1, szState, &siError,

 szError, sizeof(szError), &siAvail);

 printf("ERROR: %s\n", szError);

}

int main(int argc, char* argv[])

{

 // Get the environment

 SQLHENV hdlEnv;

 SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &hdlEnv);

 SQLSetEnvAttr(hdlEnv,SQL_ATTR_ODBC_VERSION,

-53-

 Using ODBC

 (void*)SQL_OV_ODBC3, 0); // or SQL_OV_ODBC30

 // Set up a connection to the database

 SQLHDBC hdlDbc;

 SQLAllocHandle(SQL_HANDLE_DBC, hdlEnv, &hdlDbc);

 std::cout << "Connect to DB" << std::endl;

 SQLRETURN rc;

 // Hard-coded database connection settings. Real applications

 // shouldn't do this!

 const char *dsnName = "ExampleDB";

 const char *userID = "ExampleUser";

 const char *passwd = "password123";

 rc = SQLConnect(hdlDbc, (SQLCHAR*)dsnName,SQL_NTS,

 (SQLCHAR*)userID, SQL_NTS, (SQLCHAR*)passwd, SQL_NTS);

 // If connection did not succeed, exit. if(rc != SQL_SUCCESS) return 1;

 // Turn off autocommit, so multiple batches can be loaded in a

 // transaction.

 std::cout << "Disable Autocommit." << std::endl;

 rc = SQLSetConnectOption(hdlDbc, SQL_AUTOCOMMIT, SQL_AUTOCOMMIT_OFF);

 if(rc != SQL_SUCCESS) printf("Failed to disable autocommit!\n");

 // Set up a statement handle

 SQLHSTMT hdlStmt;

 SQLAllocHandle(SQL_HANDLE_STMT, hdlDbc, &hdlStmt);

 // Create a table into which we can store data

 std::cout << "Create table." << std::endl;

 rc = SQLExecDirect(hdlStmt, (SQLCHAR*)"CREATE TABLE customers "

 "(CustID int, CustName varchar(100), Phone_Number char(15));",

 SQL_NTS);

 if(rc != SQL_SUCCESS)

 PrintError(SQL_HANDLE_STMT, hdlStmt);

 // Create the prepared statement. This will insert data into the

 // table we created above.

 rc = SQLPrepare (hdlStmt, (SQLTCHAR*)"INSERT INTO customers (CustID, "

 "CustName, Phone_Number) VALUES(?,?,?)", SQL_NTS) ;

 if(rc != SQL_SUCCESS)

 PrintError(SQL_HANDLE_STMT, hdlStmt);

 // This is the data to be inserted into the database.

 char custNames[][50] = { "Allen, Anna", "Brown, Bill", "Chu, Cindy",

 "Dodd, Don" };

 SQLINTEGER custIDs[] = { 100, 101, 102, 103};

 char phoneNums[][15] = {"1-617-555-1234", "1-781-555-1212",

 "1-508-555-4321", "1-617-555-4444"};

 // Bind the data arrays to the parameters in the prepared SQL

 // statement

 SQLBindParameter(hdlStmt, 1, SQL_PARAM_INPUT, SQL_C_LONG, SQL_INTEGER,

 0, 0, (SQLPOINTER)custIDs, sizeof(*custIDs) , NULL);

 SQLBindParameter(hdlStmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_VARCHAR,

 50, 0, (SQLPOINTER)custNames, sizeof(custNames[0]), NULL);

 SQLBindParameter(hdlStmt, 3, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,

 15, 0, (SQLPOINTER)phoneNums, sizeof(phoneNums[0]), NULL);

-54-

Programmer's Guide

 // Tell the ODBC driver how many rows we have in the

 // array.

 SQLSetStmtAttr(hdlStmt, SQL_ATTR_PARAMSET_SIZE, (SQLPOINTER)4, 0);

 // Variables to hold the number of accepted and rejected rows.

 SQLINTEGER acc_rows = 0;

 // Add multiple batches to the database. This just adds the same

 // batch of data over and over again for simplicity's sake.

 for (int batchLoop=1; batchLoop<=4; batchLoop++) {

 // Execute the prepared statement, loading all of the data

 // in the arrays.

 printf("Batch #%d: ", batchLoop);

 rc = SQLExecute(hdlStmt);

 if(rc != SQL_SUCCESS)

 PrintError(SQL_HANDLE_STMT, hdlStmt);

 // Print the accepted rows from the last batch.

 SQLRowCount(hdlStmt, &acc_rows);

 printf("Rows affected: %d\n", (int)acc_rows);

 }

 // Done with batches, commit the transaction

 std::cout << "Commit Transaction" << std::endl;

 rc = SQLEndTran(SQL_HANDLE_DBC, hdlDbc, SQL_COMMIT);

 if(rc != SQL_SUCCESS)

 printf("Failed to commit transaction.\n");

 // Get the accepted rows from the transaction.

 SQLRowCount(hdlStmt, &acc_rows);

 printf("Transaction affected %d rows.\n", (int)acc_rows);

 // Get rid of the table

 rc = SQLExecDirect(hdlStmt, (SQLCHAR*)"DROP TABLE customers;",

 SQL_NTS);

 if(rc != SQL_SUCCESS)

 printf("Failed to drop table.\n");

 // Clean up

 std::cout << "Free handles." << std::endl;

 SQLFreeHandle(SQL_HANDLE_STMT, hdlStmt);

 SQLFreeHandle(SQL_HANDLE_DBC, hdlDbc);

 SQLFreeHandle(SQL_HANDLE_ENV, hdlEnv);

 return 0;

}

The result of running the above code is shown below.

Connect to DB

Disable Autocommit.

Create table & projection.

Batch #1: Rows affected: 4

Batch #2: Rows affected: 4

Batch #3: Rows affected: 4

Batch #4: Rows affected: 4

Commit Transaction

Transaction affected 16 rows.

Free handles.

-55-

 Using ODBC

Using Batch Insert With Version 4.0 Drivers

Vertica Version 4.1 has changed the way batch inserts are handled using ODBC by combining all
batches loaded in a transaction into a single COPY statement. This results in a faster and more
efficient data load process.

The new batch insert behavior has deprecated some ODBC parameters that were available in
Vertica Version 4.0. If your batch load process relies on these older parameters, you can retain the
old ODBC batch behavior by using the 4.0 ODBC drivers with the Vertica 4.1 server.

For details on using the Vertica Version 4.0 ODBC driver, see the Vertica® Analytic Database
Version 4.0 documentation.

Note: Future versions of Vertica may not work with the 4.0 ODBC drivers. You should update
your client applications to take advantage of the new batch loading behavior to avoid future
incompatibility problems.

Using Prepared Statements

Vertica supports using server-side prepared statements with both ODBC and JDBC. Prepared
statements enable you to write a statement once, and then run it many times with different
parameters. This is accomplished by passing placeholders instead of parameters to the server
and binding user input to the parameter.

Placeholders are represented by question marks (?) as in the following example query:

SELECT * FROM public.inventory_fact WHERE product_key = ?

Server-side prepared statements are useful for:

 Optimizing queries.

The query only needs to be parsed the first time it is passed to the server.

 Preventing SQL injection attacks.

A SQL injection attack occurs when user input is either incorrectly filtered for string literal
escape characters embedded in SQL statements or user input is not strongly typed and
thereby unexpectedly run.

 Binding direct variables to return columns.

By pointing to data structures, the code doesn't have to perform extra transformations.

This section:

 Describes how to create and execute prepared statements (page 55)

 Provides a command reference for prepared statements (page 56)

Creating and Executing Prepared Statements

To prepare and execute statements:

1 Call SQLPrepare (page 56) to prepare the statement.

2 (Optional) Bind each parameter to a program variable by using SQLBindParameter (page
56). Configure any data-at-execution parameters.

3 For each execution of a prepared statement:

-56-

Programmer's Guide

 If the statement has parameter markers, put the data values into the bound parameter
buffer.

 Call SQLExecute (page 57) to execute the prepared statement.

If data-at-execution input parameters are used, SQLExecute returns SQL_NEED_DATA. Send
the data in chunks by using SQLParamData and SQLPutData.

Command Reference for Prepared Statements

This section describes the ODBC APIs for using prepared statements. You can use prepared
statements to supply data to a query at execution time.

SQLPrepare

When you call SQLPrepare() with a string containing a SQL statement, the driver sends the string
to the server and stores the statement identifier for later execution. The string is stored on the
server and is not sent again when the prepared statement is run more than once.

Syntax

SQLRETURN SQLPrepare (

 SQLHSTMT StatementHandle,

 SQLCHAR *StatementText,

 SQLINTEGER TextLength

);

Parameters

StatementHandle [Input] Statement handle

StatementText [Input] SQL text string

TextLength [Input] Length of *StatementText in characters

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or
SQL_INVALID_HANDLE

SQLBindParameter

When you call SQLBindParameter(),the driver binds the statement parameters but does not
communicate with the server.

Syntax

SQLRETURN SQLBindParameter (

 SQLHSTMT StatementHandle,

 SQLUSMALLINT ParameterNumber,

 SQLSMALLINT InputOutputType,

 SQLSMALLINT ValueType,

 SQLSMALLINT ParameterType,

 SQLULEN ColumnSize,

 SQLSMALLINT DecimalDigits,

 SQLPOINTER ParameterValuePtr,

 SQLINTEGER BufferLength,

-57-

 Using ODBC

 SQLLEN *StrLen_or_IndPtr

);

Parameters

StatementHandle [Input] Statement handle

ParameterNumber [Input] Parameter number, ordered sequentially in increasing parameter
order, starting at 1

InputOutputType [Input] The type of the parameter

ValueType [Input] The C data type of the parameter

ParameterType [Input] The SQL data type of the parameter

ColumnSize [Input] The size of the column or expression of the corresponding
parameter marker

DecimalDigits [Input] The decimal digits of the column or expression of the corresponding
parameter marker

ParameterValuePtr [Deferred Input] A pointer to a buffer for the parameter's data

BufferLength [Input/Output] Length of the ParameterValuePtr buffer in bytes

StrLen_or_IndPtr [Deferred Input] A pointer to a buffer for the parameter's length

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE

SQLExecute

When you call SQLExecute, the driver sends the statement identifier and parameter values to the
server and returns the result set or an error. The driver also returns semantic and syntactic errors
at this point.

Syntax

SQLRETURN SQLExecute (SQLHSTMT StatementHandle);

Parameters

StatementHandle [Input] Statement handle

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA,
SQL_STILL_EXECUTING, SQL_ERROR, SQL_NO_DATA, or SQL_INVALID_HANDLE

-58-

Programmer's Guide

Notes

This executes a prepared statement, using the current values of the parameter marker variables if
any parameter markers exist in the statement.

SQLParamData

SQLParamData is used together with SQLPutData to supply parameter data at statement
execution time.

Syntax

SQLRETURN SQLParamData (

 SQLHSTMT StatementHandle,

 SQLPOINTER *ValuePtrPtr

);

Parameters

StatementHandle [Input] Statement handle

ValuePtrPtr [Output] Pointer to a buffer in which to return the address of the
ParameterValuePtr buffer specified in SQLBindParameter (for parameter
data) or the address of the TargetValuePtr buffer specified in SQLBindCol
(for column data), as contained in the SQL_DESC_DATA_PTR descriptor
record field

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA, SQL_NO_DATA,
SQL_STILL_EXECUTING, SQL_ERROR, or SQL_INVALID_HANDLE

SQLPutData

SQLPutData allows an application to send data for a parameter or column to the driver at
statement execution time. This function can be used to send character or binary data values in
parts to a column with a character, binary, or data source–specific data type (for example,
parameters of the SQL_LONGVARBINARY or SQL_LONGVARCHAR types).

Syntax

SQLRETURN SQLPutData (

 SQLHSTMT StatementHandle,

 SQLPOINTER DataPtr,

 SQLLEN StrLen_or_Ind

);

Parameters

StatementHandle [Input] Statement handle

DataPtr [Input] Pointer to a buffer containing the actual data for the parameter or
column. The data must be in the C data type specified in the ValueType
argument of SQLBindParameter (for parameter data) or the TargetType
argument of SQLBindCol (for column data)

-59-

 Using ODBC

StrLen_or_Ind [Input] Length of *DataPtr. Specifies the amount of data sent in a call to
SQLPutData. The amount of data can vary with each call for a given
parameter or column

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or
SQL_INVALID_HANDLE

Tracking Load Status on the Server with ODBC

The client can track load status on the server for the last completed database load within the
current session by:

 Identifying the number of rows that were accepted or rejected (page 59)

 Identifying which rows were accepted or rejected (page 59)

Both methods are useful for determining the status of a load in cases in which data is loaded
regardless of any load errors encountered. However, identifying the number of accepted or
rejected rows has virtually no performance impact on the server while identifying the status of all
the rows in the load slightly affects performance. This occurs because the server sends the row
number for each rejected row to the client which, in turn, receives this data. Additionally, the data
must be loaded into an array that is supplied by the application.

Note: Data regarding loads does not persist and is dropped when a new load is initiated.

Identifying the Number of Accepted Rows (ODBC)

Vertica tracks the number of rows that were accepted during loading, which you can retrieve using
the SQLRowCount function. If you are loading data in batches, you can get the total number of
rows loaded into the database at two points in the load process:

 After each batch is inserted, you can get the number of accepted rows for the batch.

 After a transaction containing multiple batch loads is complete, you can get the total number of
accepted rows for all of the batches in the transaction.

If you are loading a batch with auto-complete (BatchAutoComplete) enabled (the default), you can
only retrieve the accepted row counts for that batch, since the transaction used to load the batch is
automatically committed after the load is finished. In order to get the total for several batches, you
need to disable auto-complete, then load the batches, and finally commit the transaction that was
started by the first batch load either explicitly using SQLEndTran, by executing SQLCloseCursor,
or by executing any statement other than an INSERT statement.

See Tracking Load Status for Batch Inserts and Updates for detailed examples.

Identifying Accepted and Rejected Rows (ODBC)

You can track the status of each row being loaded in a batch by binding an array to a statement
using the SQL_ATTR_PARAMS_PROCESSED_PTR statement attribute. When a row status is
sent from the server to the client, the driver loads the status of each row in the database load into
the array that you supplied.

The following example creates a pointer to an array, loads the array with the row number and
status for each row in the load, and then prints the results to stdout.

-60-

Programmer's Guide

retcode = SQLSetStmtAttr(hStmt, SQL_ATTR_PARAMSET_SIZE, (SQLPOINTER)lRows, 0);

 retcode = SQLSetStmtAttr(hStmt, SQL_ATTR_PARAM_STATUS_PTR, rowStatus, 0);

 retcode = SQLSetStmtAttr(hStmt, SQL_ATTR_PARAMS_PROCESSED_PTR,

&ulRowsProcessed, 0);

 for (int i = 1; i <= lCols; i ++)

 {

 retcode = SQLBindParameter(hStmt, i, SQL_PARAM_INPUT, SQL_C_SLONG,

SQL_INTEGER, 0, 0, pplBuffer[i - 1], 0, NULL);

 }

 retcode = SQLExecDirect(hStmt, (SQLCHAR*)szInsert, (SQLINTEGER)strlen(

szInsert));

 SQLCloseCursor(hStmt);

 if (ulRowsProcessed != lRows)

 {

 printf("Rows Processed: %d\nShould have been %d\n", ulRowsProcessed,

lRows);

 }

 printf("Parameter Set Status\n");

 printf("------------- -------------\n");

 for (unsigned int i = 0; i < ulRowsProcessed; i++) {

 switch (rowStatus[i]) {

 case SQL_PARAM_SUCCESS:

 printf("%13d Success\n", i);

 break;

 case SQL_PARAM_ERROR:

 printf("%13d Error\n", i);

 break;

 }

 }

See Tracking Load Status for Batch Inserts and Updates for detailed examples.

Error Handling During Batch Loads

When loading individual batches, you can find information on how many rows were accepted and
what rows were rejected (see Tracking Load Status on the Server (page 93) for details). Other
errors, such as disk space errors, do not occur while inserting individual batches. This behavior is
caused by having a single COPY statement perform the loading of multiple consecutive batches.
Using the single COPY statement makes the batch load process perform much faster. It is only
when the COPY statement closes that the batched data is committed and Vertica reports other
types of errors.

Therefore, your bulk loading application should be prepared to check for errors when the COPY
statement closes. You can trigger the COPY statement to close by ending the batch load
transaction, by closing the cursor using SQLCloseCursor(), or by setting the database
connection's AutoCommit property to true before inserting the last batch in the load.

-61-

 Using ODBC

Note: The COPY statement also closes if you execute any non-insert statement. However
having to deal with errors from the COPY statement in what might be an otherwise-unrelated
query is not intuitive, and can lead to confusion and a harder to maintain application. You
should explicitly end the COPY statement at the end of your batch load and handle any errors
at that time.

Loading Batches in Parallel

To load batches in parallel, you need to establish a thread for each parallel batch you want to load.
Then for each thread, set the batch size, prepare the insert, and execute the batch insert. The
following code samples illustrate this.

#define THREAD_COUNT 10

#define ROWS_PER_THREAD 100000

#define BATCH_SIZE 10000

void *BatchInsert(void *arg){

 SQLRETURN rc = SQL_SUCCESS;

 int i, j;

 SQLINTEGER *intValArray = NULL;

 SQLINTEGER lRows=BATCH_SIZE;

 // connect to db, allocate statement, set auto-commit off – skipped

 intValArray = (SQLINTEGER*) malloc(sizeof(*intValArray) * BATCH_SIZE);

 rc = SQLSetStmtAttr(hStmt, SQL_ATTR_PARAMSET_SIZE, (SQLPOINTER)lRows, 0);

// prepare insert

 rc = SQLPrepare (hStmt, (SQLTCHAR*)"insert into mt_test values(?)", SQL_NTS)

;

 rc = SQLBindParameter(hStmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG, SQL_INTEGER, 0,

0, (SQLPOINTER)intValArray, sizeof(*intValArray), NULL);

 for (i = 0; i < ROWS_PER_THREAD; i) {

 for (j = 0; j < BATCH_SIZE; j++) {

 intValArray[j] = (SQLINTEGER) ++i;

 }

 rc = SQLExecute(hStmt);

 }

 rc = SQLEndTran (SQL_HANDLE_DBC, hdbc, SQL_COMMIT);

}

int runMT(int argc, char **argv) {

 pthread_t t[THREAD_COUNT];

 void *trc;

 for (int i=0;i<THREAD_COUNT;++i){

 pthread_create(&t[i], NULL, BatchInsert, argv[0]);

 }

 for (int i=0;i<THREAD_COUNT;++i){

 pthread_join(t[i], &trc);

 }

 free(trc);

 return 0;

}

-62-

Programmer's Guide

Using the COPY Statement

The COPY statement is useful for bulk loading cleansed data from a file on the database server
into Vertica. The advantage of this method is that it is the most efficient way to load data into
Vertica because the file resides on the database server. In some cases, however, the user may
not have access to the database server. In these cases, the user can use LCOPY.

If you intend to use COPY to load data, determine the approximate size of the load. For large
loads, load the data into the ROS. For small loads, load it directly into the WOS.

See the COPY statement for more information about its syntax and use.

The following example loads data into the WOS (Write Optimized Store)/ROS (Read Optimized
Store.

ret = SQLExecDirect (hstmt, (SQLTCHAR*)"COPY \"public\".\"test\"(c1,c2)FROM 'data.csv' NULL 'null'

DELIMITER \", SQL_NTS);

The following example loads data into the ROS (Read Optimized Store.

ret = SQLExecDirect (hstmt, (SQLTCHAR*)"COPY \"public\".\"test\"(c1,c2)FROM 'data.csv' NULL 'null'

DELIMITER \",\" DIRECT", SQL_NTS);

Using the LCOPY Statement

The LCOPY statement is useful for bulk loading cleansed data from a file on the client machine
into Vertica. The advantage of this method is that it does not require the user to have access to the
server. However, LCOPY is proprietary to Vertica and can only be used with custom client
applications through ODBC. It does not support any other methods of database connectivity, and
Traditional ETL tools must be modified to invoke it.

If you intend to use LCOPY to load data, determine the approximate size of the load. For large
loads, load the data into the ROS. For small loads, load it into the WOS/ROS.

See the LCOPY statement for more information about its syntax and use.

The following example loads data into the WOS (Write Optimized Store)/ROS (Read Optimized
Store)

ret = SQLExecDirect (hstmt, (SQLTCHAR*)"LCOPY \"public\".\"test\"(c1,c2) FROM 'data.csv' NULL 'null'

DELIMITER \", SQL_NTS);

The following example loads data into the ROS (Read Optimized Store.

ret = SQLExecDirect (hstmt, (SQLTCHAR*)"LCOPY \"public\".\"test\"(c1,c2) FROM 'data.csv' NULL 'null'

DELIMITER \",\" DIRECT", SQL_NTS);

Using LCOPY with Named Pipes

To use a named pipe, the producer creates the named pipe and sends data through it to the
consumer which, in turn, reads the data. In this case, the consumer uses LCOPY to load the data
it retrieves from the pipe into the database. The following example shows how the producer and
consumer implement LCOPY with a named pipe.

Producer:

mkfifo /tmp/pipe_sample

-63-

 Using ODBC

echo "test_data_line2|test_data_line2" > /tmp/pipe_sample

Consumer:

CREATE TABLE test_named_pipes(

 c1 VARCHAR

);

SELECT IMPLEMENT_TEMP_DESIGN('test_named_pipes');

LCOPY test_named_pipes FROM '/tmp/pipe_sample' DELIMITER '|' DIRECT;

Note: If the producer does not send data through the pipe, the connection remains open and
Vertica waits for data. This causes LCOPY to hang.

Loading Data Into the WOS/ROS

If you intend to use COPY or LCOPY to load small loads, load it into the WOS and automatically
switch to ROS when the WOS is full. By loading small loads into the WOS, you avoid creating too
many ROS containers. Using the COPY Statement (page 62) and Using the LCOPY Statement
(page 62) illustrate how to do this.

Working with ODBC Transactions
Whether auto-commit is turned on or off determines how you execute and commit statements.

Single Statements

If auto-commit is on, the transaction is implicitly committed after a single transaction is executed.
You cannot roll back a SQL statement executed in auto-commit mode.

The following example illustrates auto-commit:

ret = SQLExecDirect (hstmt, (SQLTCHAR*)sqlStatement.c_str(),

 sqlStatement.length()) ;

If auto-commit is off, you need to manually commit the transaction after executing a statement.
The following example illustrates this:

rc = SQLSetConnectOption(hdbc, SQL_AUTOCOMMIT, SQL_AUTOCOMMIT_OFF);

 ret = SQLExecDirect (hstmt, (SQLTCHAR*)sqlStatement.c_str(),

 sqlStatement.length()) ;

 ret = SQLEndTran (SQL_HANDLE_DBC, hdbc, SQL_COMMIT);

Multiple Statements

To establish a transaction that contains two or more statements, you must turn auto-commit off,
execute the statements, and then commit the transaction. The following example illustrates this:

rc = SQLSetConnectOption(hdbc, SQL_AUTOCOMMIT, SQL_AUTOCOMMIT_OFF);

 ret = SQLExecDirect (hstmt, (SQLTCHAR*)sqlStatement1.c_str(),

 sqlStatement1.length()) ;

 ret = SQLExecDirect (hstmt, (SQLTCHAR*)sqlStatement2.c_str(),

 sqlStatement2.length()) ;

 ret = SQLEndTran (SQL_HANDLE_DBC, hdbc, SQL_COMMIT);

-64-

Programmer's Guide

Working With Large Result Sets
The following attributes support large result sets, as defined in the file verticaodbc.h.

1 The connection attribute ATTR_VERTICA_LRSPATH specifies the client-side location in
which the ODBC driver keeps temporary files for large result sets. (The name of these
temporary files is vtlrs*.) For example:

CHAR * lrspath="/my_disk/tmp";

ret = SQLSetConnectAttr(conn.dbc, SQL_ATTR_VERTICA_LRSPATH,

 (PTR)lrspath, strlen(lrspath));

Linux/Solaris default values:

 If the environment variable TMPDIR exists and contains the name of an appropriate
directory, that variable is used.

 Otherwise, if the dir argument is non-NULL and appropriate, it is used.

 Otherwise, "/tmp" is used.

Windows default values:

 If the TMP environment variable is defined and set to a valid directory name, that name is
used.

 Otherwise, the dir parameter is used as the path.

 If the dir parameter is NULL or set to the name of a directory that does not exist, the current
working directory is used.

2 The statement attribute SQL_ATTR_VERTICA_MAX_MEM_CACHE defines the maximum
memory for the client storage of a large result set. If the result set size exceeds this value, the
ODBC driver uses a temporary file to keep the large result set or uses streaming mode for
fetching data from the database server. For example:

SQLUINTEGER mem_cache_size=256*1024*1024; // 256 MB

SQLSetStmtAttr(hstmt, SQL_ATTR_VERTICA_MAX_MEM_CACHE,

(PTR)mem_cache_size, 0);

The default value is 64MB.

3 The statement attribute SQL_ATTR_VERTICA_LRS_STREAMING specifies that the ODBC
driver uses a temporary file to keep the large result set, or use streaming mode to fetch the
large result set from the database server. If the value is TRUE, the ODBC driver pauses the
query execution when the memory cache on the client is full and resumes execution of the
query after the memory cache rows are retrieved by the ODBC application using SQLFetch.
For example:

SQLUINTEGER lrs_streaming=1;

SQLSetStmtAttr(hstmt, SQL_ATTR_VERTICA_LRS_STREAMING,

(PTR)lrs_streaming, 0);

If set to FALSE, all rows are fetched from the server and saved in a temporary file. Default
value is TRUE.

Note: When SQL_ATTR_VERTICA_LRS_STREAMING is set to TRUE, only one cursor can
be open for fetch at a time using the same connection handle.

-65-

 Using ODBC

Temporary Tables and AUTOCOMMIT
When working with temporary tables through ODBC, you must disable AUTOCOMMIT if the
temporary table is set to ON COMMIT DELETE ROWS. Otherwise, you will see unexpected
behavior, such as rows that should have been deleted on commit remaining in the table.

Examples
This section contains examples of ODBC concepts that are specific to Vertica.

 Using Vertica-Specific Parameters With INSERT (page 65)

 Tracking Load Status for Batch Inserts and Updates

 Using BATCH_AUTO_COMPLETE

Using Vertica-Specific Parameters With INSERT

This section illustrates the defaults for the following parameters (page 44) and then shows how to
modify them programmatically as part of the INSERT statement:

 SQL_ATTR_VERTICA_DIRECT_BATCH_INSERT

 SQL_ATTR_VERTICA_BATCH_INSERT_RECORD_TERMINATOR

 SQL_ATTR_VERTICA_BATCH_INSERT_NULL

Default Parameters

This batch insert illustrates how the Vertica driver manager converts these default parameters into
a COPY statement.

Defaults:

rc = SQLSetStmtAttr(hstmt, SQL_ATTR_VERTICA_DIRECT_BATCH_INSERT, (void *)1, 0);

rc = SQLSetStmtAttr(hstmt, SQL_ATTR_VERTICA_ABORT_ON_ERROR, (void *)0, 0);

rc = SQLSetConnectAttr(test.conn.dbc,

SQL_ATTR_VERTICA_BATCH_INSERT_RECORD_TERMINATOR, (void *)"\a\v\b", 3);

rc = SQLSetConnectAttr(test.conn.dbc, SQL_ATTR_VERTICA_BATCH_INSERT_NULL, (void

*)"null", 4);

Converts to:

COPY "myDimensionTable" FROM STDIN DELIMITER '|' NULL 'null' RECORD TERMINATOR

'\a\v\b' DIRECT

SQL_ATTR_VERTICA_DIRECT_BATCH_INSERT

This example illustrates how to turn off Direct Batch Insert so that a batch is inserted into the WOS
instead of the ROS.

rc = SQLSetStmtAttr(hstmt, SQL_ATTR_VERTICA_DIRECT_BATCH_INSERT, 0, 0);

Converts to:

COPY "myDimensionTable" FROM STDIN DELIMITER '|' NULL 'null' RECORD TERMINATOR

'^G^K^H'

-66-

Programmer's Guide

SQL_ATTR_VERTICA_BATCH_INSERT_RECORD_TERMINATOR

This example illustrates how to change the record terminator for the batch insert.

rc = SQLSetConnectAttr(test.conn.dbc,

SQL_ATTR_VERTICA_BATCH_INSERT_RECORD_TERMINATOR, (void *)"END", 3);

Converts to:

COPY "myDimensionTable" FROM STDIN DELIMITER '|' NULL 'null' RECORD TERMINATOR

'END' ABORT ON ERROR

SQL_ATTR_VERTICA_BATCH_INSERT_NULL

This example illustrates how to change the null value indicator for the batch insert.

rc = SQLSetConnectAttr(test.conn.dbc, SQL_ATTR_VERTICA_BATCH_INSERT_NULL, (void

*)"-0-", 3);

Converts to:

COPY "myDimensionTable" FROM STDIN DELIMITER '|' NULL '-0-' RECORD TERMINATOR

'END' ABORT ON ERROR

-67-

Using JDBC

The Vertica JDBC driver provides you with a standard JDBC API. If you have accessed other
databases using JDBC, you should find accessing Vertica familiar. This section explains how to
use the JDBC to connect your Java application to Vertica.

You must first install the JDBC client driver on all client systems that will be accessing the Vertica
database. For installation instructions, see Installing the Vertica Client Drivers (page 10).

For more information about JDBC:

 JDBC Driver JavaDoc (../../JDBC/index.html) (Vertica extensions)

 An Introduction to JDBC, Part 1
(http://www.onjava.com/pub/a/onjava/excerpt/javaentnut_2/index1.html)

Creating and Configuring a Connection
Before your Java application can interact with Vertica, it must create a connection. Connecting to
Vertica via JDBC is similar to connecting to most other databases.

Importing SQL Packages and Loading the Driver

Before creating a connection, you must import the Java SQL packages. The easiest way to do this
to import the entire package using a wildcard:

import java.sql.*;

You may also want to import the Properties class. You can use an instance of this class to pass

connection properties when instantiating a connection, rather than encoding everything within the
connection string:

import java.util.Properties;

Finally, you'll need to load the Vertica JDBC driver using the Class.forName() method:

try {

 Class.forName("com.vertica.Driver");

} catch (ClassNotFoundException e) {

 // Could not find the driver class. Likely an issue

 // with finding the .jar file.

 System.err.println("Could not find the JDBC driver class.");

 e.printStackTrace();

 return; // Bail out. We cannot do anything further.

}

Opening the Connection

With SQL packages imported and the driver loaded, you are ready to create your connection by

calling the DriverManager.getConnection() method. You supply this method with at least

the following information:

 The name of a host in the database cluster

 The port number for the database

file:///C:\Program%20Files\Author-it%205\Publishing\JDBC\index.html
http://www.onjava.com/pub/a/onjava/excerpt/javaentnut_2/index1.html

-68-

Programmer's Guide

 The name of the database

 The username of a user who has access to the database

 The password of the user

The first three parameters are always supplied as part of the connection string (a URL that tells the
JDBC driver where to find the database). The format of the connection string is:

"jdbc:vertica://VerticaHost:portNumber/databaseName"

The first portion of the connection string selects the specific JDBC driver to use, followed by the
location of the database.

The last two parameters, username and password, can be given to the JDBC in one of three ways:

 as part of the connection string. The parameters are encoded similarly to URL parameters:

"jdbc:vertica://VerticaHost:portNumber/databaseName?user=username&pa

ssword=password"

 passed as separate parameters to DriverManager.getConnection():

Connection conn = DriverManager.getConnection(

 "jdbc:vertica://VerticaHost:portNumber/databaseName",

 "username", "password");

 passed in a Properties object:

Properties myProp = new Properties();

myProp.put("user", "username");

myProp.put("password", "password");

Connection conn = DriverManager.getConnection(

 "jdbc:vertica://VerticaHost:portNumber/databaseName", myProp);

You usually want to use the Properties object, since it makes it easier to pass additional

connection properties to the getConnection() method. See Connection Properties (page 69)

and Setting and Getting Connection Property Values (page 72) for more information about the
additional connection properties.

The getConnection() throws a SQLException if there is any problem establishing a

connection to the database, so you will want to enclose it within a try-catch block, as shown in the
following complete example of establishing a connection:

import java.sql.*;

import java.util.Properties;

public class ConnectionExample {

 public static void main(String[] args) {

 // Load JDBC driver

 try {

 Class.forName("com.vertica.Driver");

 } catch (ClassNotFoundException e) {

 // Could not find the driver class. Likely an issue

 // with finding the .jar file.

 System.err.println("Could not find the JDBC driver class.");

 e.printStackTrace();

 return; // Bail out. We cannot do anything further.

 }

-69-

 Using JDBC

 // Create property object to hold username & password

 Properties myProp = new Properties();

 myProp.put("user", "ExampleUser");

 myProp.put("password", "password123");

 Connection conn;

 try {

 conn = DriverManager.getConnection(

 "jdbc:vertica://VerticaHost:5433/ExampleDB", myProp);

 } catch (SQLException e) {

 // Could not connect to database.

 System.err.println("Could not connect to database.");

 e.printStackTrace();

 return;

 }

 // Connection is established, do something with it here or

 // return it to a calling method

 }

}

Note: When you disconnect a user session, any transactions in progress are automatically
rolled back.

Connection Properties

Most of the Connection object's parameters can be set either by specifying them in the

connection string or Properties object passed to the DriverManager.getConnection()

method, or by using setter and getter methods on the Connection object (or PGConnection for

Vertica-specific methods). The following tables list the properties you can set in the connection

string or Properties object you use to create the connection. When these properties also have

setters and getters, they are listed as well.

General Parameters

Property Description Default Value

BinaryDataTransfer Determines whether binary data is transferred using
binary transfer protocol. Enabling this option can improve
transfer speed for binary data types such as floats and
timestamps.

false

defaultAutoCommit Controls whether the connection automatically commits
transactions. Set this parameter to false to prevent the
connection from automatically committing its transactions
(this is what you want to do when performing batch
loading).

 Setter: Connection.setAutoCommit()

 Getter: Connection.getAutoCommit()

true

KeepAlive Controls whether the connection uses keepalive packets
to ensure the connection to verify connectivity during idle
periods. This option sets the underlying network socket's
SO_KEEPALIVE property.

false

-70-

Programmer's Guide

Label Sets the client label for the connection. none

Locale The default locale used for the session. Specify the locale
as an ICU Locale. See the ICU User Guide
(http://userguide.icu-project.org/locale) for a complete list
of properties that can be used to specify a locale.

 Setter: PGConnection.setLocale()

 Getter: PGConnection.getLocale()

en_US@collati
on=binary
(English as in
the United
States of
America)

loginTimeout The number of seconds Vertica waits for a connection to
be established to the database before throwing a

PSQLException. When set to 0 (the default) the

timeout for the connection attempt will be the default TCP
timeout.

0

password The password to use to log into the database. none

prepareThreshold The number of times a prepared statement must be
executed before the driver switches to using server-side
prepared statements.

 Setter: setPrepareThreshold()

 Getter: getPrepareThreshold()

5

ssl When set to true, uses SSL to encrypt the connection to
the server. Vertica needs to be configured to handle
SSL connections before you can establish an
SSL-encrypted connection to it. See Implementing SSL
in the Administrator's Guide.

false

user The database username to use to connection to the
database.

none

Load Properties

Property Description Default
Value

batchInsertEnforceLen
gth

Enforces rejection of strings longer than the column width. When
set to false, strings that are too long are truncated to the
maximum length allowed in the column. When set to true, rows
containing strings too long for their columns are rejected.

 Setter:
PGConnection.setBatchInsertEnforceLength

()

 Getter:
PGConnection.getBatchInsertEnforceLength

()

false

binaryBatchInsert When set to true, the JDBC driver sends non-string data to the
server as binary, rather than string.

 Setter:
PGConnection.setBinaryBatchInsert()

false

http://userguide.icu-project.org/locale

-71-

 Using JDBC

 Getter:
PGConnection.getBinaryBatchInsert()

directBatchInsert Determines whether a batch is inserted directly into the ROS
(true) or using AUTO mode (false).

 Setter:
PGConnection.setBinaryBatchInsert()

 Getter:
PGConnection.getBinaryBatchInsert()

false

Note: The properties use35CopyParameters, use35CopyFormat, and managedBatchInsert
available in versions of Vertica earlier than version 4.1 have been deprecated. Setting them
has no effect. The abortBatchInsertOnError parameter still works, but is obsolete.

Version 3.5 Data Format Properties

Property Description Default
Value

batchInsertRecordTermin
ator

Sets the record terminator string that marks the end of a row of
data.

 Setter:
PGConnection.setBatchInsertRecordTerminator

()

 Getter:
PGConnection.getBatchInsertRecordTerminator

()

\b\t\f

Large Result Set Properties

Property Description Default Value

maxLRSMemory Sets the size of the buffer in the Vertica driver that is used to
temporarily store result sets.

Tip: To decrease the time it takes the client application to receive

the result sets, you could reduce the value of the cache to as little
as 256K.

 Setter: PGConnection.setMaxLRSMemory()

 Getter: PGConnection.getMaxLRSMemory()

67108864
(64MB)

streamingLRS Determines whether the JDBC driver uses a temporary file to
keep the large result set, or use streaming mode to fetch the large
result set from the database server. If the value is true (the
default), the JDBC driver pauses the query execution when the
memory cache on the client is full and resumes execution of the
query after the memory cache rows are retrieved by the JDBC
application. If the value is false, all the data is fetched from the
server in one large chunk and is cached on the client side.

 Setter: PGConnection.setStreamingLRS()

true

-72-

Programmer's Guide

 Getter: PGConnection.getStreamingLRS()

Additional Properties

The properties listed below can only be set using getters and setters—they cannot be set in the

connection string or in the Properties object used to create the connection.

Property Description Default Value

Transaction Isolation Sets the isolation of the transactions that use the
connection. See Changing the Transaction Isolation
Level (page 74) for details.

 Setter:
Connection.setTransactionIsolation

()

 Getter:
Connection.getTransactionIsolation

()

TRANSACTION_READ_CO
MMITTED (2)

Read Only Sets the connection to be read-only. Any queries that
attempt to update the database will fail with a

PSQLException.

 Setter: Connection.setReadOnly()

 Getter: Connection.isReadOnly()

false

For information about manipulating these attributes, see Setting and Getting Connection
Property Values (page 72).

Setting and Getting Connection Property Values

You can set most connection properties when you instantiate the Connection object. After you

create the the Connection object, you can use getters and setters to access many of the
connection properties.

Setting Properties when Connecting

There are two ways you can set connection properties when creating a connection to Vertica:

 In the connection string, using the same URL parameter format that you can use to set the
username and password. The following example sets the ssl connection parameter to true:

"jdbc:vertica://server:port/db?user=username&password=password&ssl=t

rue"

 In a Properties object that you pass to the getConnection() call. You will need to import

the java.util.Properties class in order to instantiate a Properties object. Then you

use the put() method to add the property name and value to the object:

Properties myProp = new Properties();

myProp.put("user", "ExampleUser");

myProp.put("password", "password123");

myProp.put("loginTimeout", "35");

-73-

 Using JDBC

myProp.put("binaryBatchInsert", "true");

Connection conn;

try {

 conn = DriverManager.getConnection(

 "jdbc:vertica://VerticaHost:5433/ExampleDB", myProp);

} catch (SQLException e) {

 e.printStackTrace();

}

Note: The data type of all of the values you set in the Properties object are strings, even if the
property value is integer or Boolean.

Getting and Setting Properties after Connecting

Most properties have setters and getters on the Connection object that let you get and change

the current value of the property after establishing the connection to Vertica. Some setters and

getters are defined by the PGConnection interface, so you need to cast the Connection object

to this interface to access them. You need to either use the full qualified name of the interface

(com.vertica.PGConnection) or import it in order to cast to this interface. The following

example demonstrates getting and setting the value of several properties.

import java.sql.*;

import java.util.Properties;

import com.vertica.PGConnection;

public class SetConnectionProperties {

 public static void main(String[] args) {

 try {

 Class.forName("com.vertica.Driver");

 } catch (ClassNotFoundException e) {

 System.err.println("Could not find the JDBC driver class.");

 e.printStackTrace();

 return;

 }

 Properties myProp = new Properties();

 myProp.put("user", "ExampleUser");

 myProp.put("password", "password123");

 // Make batch inserts enforce string lengths rather than

 // truncate.

 myProp.put("batchInsertEnforceLength", "true");

 Connection conn;

 try {

 conn = DriverManager.getConnection(

 "jdbc:vertica://VerticaHost:5433/ExampleDB", myProp);

 // get the state of the auto commit parameter

 System.out.println("Autocommit state: " + conn.getAutoCommit());

 // Change the auto commit state to false

 conn.setAutoCommit(false);

 // Check the state again

 System.out.println("Autocommit state: " + conn.getAutoCommit());

 // Get the batch insert enforce length setting.

 // Need to cast to PGConnection

 System.out.println("BatchInsertEnforceLength state: " +

 ((PGConnection) conn).getBatchInsertEnforceLength());

-74-

Programmer's Guide

 conn.close();

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

}

When run, the example prints the following on the standard output:

Autocommit state: true

Autocommit state: false

BatchInsertEnforceLength state: true

Setting the Locale for JDBC Sessions

You set the locale for a session by using the Locale connection property while opening the
connection (see Creating and Configuring a Connection (page 67)), or by calling the

setLocale setter on the Connection object (see Setting and Getting Connection Property

Values (page 72)). For example:

((com.vertica.PGConnection)conn).setLocale(ICU_locale_identifier);

You can get the locale by calling getLocale() on the Connection object, which returns the

ICU locale identifier as a string:

((com.vertica.PGConnection)conn).getLocale();

Notes:

 JDBC applications use a UTF-16 character set encoding and are responsible for converting
any non-UTF-16 encoded data to UTF-16. The same cautions as for ODBC apply if this
encoding is violated.

 The JDBC driver converts UTF-16 data to UTF-8 when passing to the Vertica server and
converts data sent by Vertica server from UTF-8 to UTF-16 .

 JDBC applications should set the correct server session locale by executing the SET LOCALE

TO command in order to get expected collation and string functions behavior on the server.

See the SET command in the SQL Reference Manual.

Changing the Transaction Isolation Level

Changing the transaction isolation level lets you choose how transactions prevent interference
from other transactions. In Vertica version 4.0 and onward, the default transaction isolation level is

READ_COMMITTED, which means any changes made by a transaction cannot be read by any

other transaction until after they are committed. This prevents a transaction from reading data
inserted by another transaction that is later rolled back. Transactions can only read committed
data.

Vertica also supports the SERIALIZABLE transaction isolation level. This level locks tables to

prevent queries from having the results of their WHERE clauses changed by other transactions.

Locking tables can have a performance impact, since only one transaction is able to access the
table at a time.

-75-

 Using JDBC

A transaction retains its isolation level until it completes, even if the session's transaction isolation
level has changed mid-transaction. Vertica internal processes (such as the Tuple Mover and

Refresh operations) and DDL operations are run at SERIALIZABLE isolation to ensure

consistency.

The transaction isolation level connection property can be changed after the connection has been

established using the Connection object's setter (setTransactionIsolation()) and getter

(getTransactionIsolation()). The value for transaction isolation property is an integer. The

Connection class defines constants to help you set the value in a more intuitive manner:

Constant Value

Connection.TRANSACTION_READ_COMMITTED 2

Connection.TRANSACTION_SERIALIZABLE 8

Note: The Connection class also defines several other transaction isolation constants

(READ_UNCOMMITTED and REPEATABLE_READ). Since Vertica does not support these

isolation levels, they are converted to READ_COMMITTED and SERIALIZABLE, respectively.

The following example demonstrates setting the transaction isolation level to SERIALIZABLE.

import java.sql.*;

import java.util.Properties;

public class SetTransactionIsolation {

 public static void main(String[] args) {

 try {

 Class.forName("com.vertica.Driver");

 } catch (ClassNotFoundException e) {

 System.err.println("Could not find the JDBC driver class.");

 e.printStackTrace();

 return;

 }

 Properties myProp = new Properties();

 myProp.put("user", "ExampleUser");

 myProp.put("password", "password123");

 Connection conn;

 try {

 conn = DriverManager.getConnection(

 "jdbc:vertica://VerticaHost:5433/ExampleDB", myProp);

 // Get default transaction isolation

 System.out.println("Transaction Isolation Level: " +

 conn.getTransactionIsolation());

 // Set transaction isolation to SERIALIZABLE

conn.setTransactionIsolation(Connection.TRANSACTION_SERIALIZABLE);

 // Get the transaction isolation again

 System.out.println("Transaction Isolation Level: " +

 conn.getTransactionIsolation());

 conn.close();

 } catch (SQLException e) {

 e.printStackTrace();

-76-

Programmer's Guide

 }

 }

}

Running the example results in the following being printed out to the console:

Transaction Isolation Level: 2

Transaction Isolation Level: 8

Creating a Pooling Datasource

A pooling datasource uses pool of connections in order to reduce the overhead of network
connections between the client and server. Opening a new connection for each request is more
costly to both the server and the client than keeping a small pool of connections open constantly,
ready to be used by new requests. When a request comes in, one of the pre-existing connections
in the pool is assigned to it. Only if there are no free connections in the pool is a new connection
created. Once the request is complete, the connection returns to the pool and waits to service
another request.

If you are using a J2EE-based application server in conjunction with Vertica, it should already
have a built-in data pooling feature. All that is required is that the application server work with the

ConnectionPoolDataSource interface implemented by Vertica, which is defined by the JDBC

3.0 standard. An application server's pooling feature is usually well-tuned for the works loads that
the server is designed to handle. See your application server's documentation for details on how to
work with pooled connections. Normally, using pooled connections should be transparent in your
code—you will just open connections and the application server will worry about the details of
pooling them.

If you are not using an application server, or your application server does not offer connection
pooling that is compatible with Vertica, you can use JDBC's basic support for connection pools

through the PoolingDataSource class. You use an instance of this class to create your

connections to Vertica. As you close connections, they are returned to the pool maintained by the
JDBC driver, so that they can be reused by later connection requests.

The following example demonstrates how you can create a pooled connection to a Vertica
database using JDBC.

import java.sql.*;

import com.vertica.ds.common.BaseDataSource;

import com.vertica.jdbc2.optional.PoolingDataSource;

public class PoolingDSExample {

 public static void main(String[] args) {

 // Create a pooling data source via JDBC

 BaseDataSource pds;

 pds = new PoolingDataSource();

 pds.setServerName("VerticaHost");

 pds.setPortNumber(5433);

 pds.setDatabaseName("ExampleDB");

 pds.setUser("ExampleUser");

 pds.setPassword("password123");

 String firstConnName; // Save the name of the connection until later

 // Create and initial connection, have it add a table

-77-

 Using JDBC

 // to the DB we can query later.

 try {

 Connection conn1=pds.getConnection();

 firstConnName=conn1.toString(); // Save the name of the connection

 System.out.println("First connection name: " + firstConnName);

 Statement stmt = conn1.createStatement();

 // Perform some work, to show this is a real connection.

 stmt.executeUpdate("CREATE TABLE pdstest (c1 INTEGER, c2 VARCHAR(20))

 ");

 stmt.executeUpdate("CREATE PROJECTION pdstest_p (c1, c2) " +

 "AS SELECT c1, c2 FROM pdstest");

 stmt.executeUpdate("INSERT INTO pdstest VALUES (1, 'Test Row 1')");

 stmt.close();

 conn1.close(); // The connection is closed, and is returned to

 // the pool

 } catch (SQLException e) {

 e.printStackTrace();

 return;

 }

 // Create another connection and check to see if its name

 // matches the previously used connection.

 try {

 Connection conn2 = pds.getConnection();

 System.out.println("Second connection name: " + conn2.toString());

 System.out.println("Are the connections the same?: "

 + firstConnName.equalsIgnoreCase(conn2.toString()));

 // If the connections are pooled, the new connection should have

 // reused the old connection. The connection object names should

 // be the same.

 // Drop the previously created table Statement stmt2 =

conn2.createStatement(); stmt2.execute("DROP TABLE pdstest CASCADE");

conn2.close();

 } catch (SQLException e) {

 e.printStackTrace();

 }

 return;

 }

}

This example prints the following to the standard output when run:

First connection name: Pooled connection wrapping physical connection

com.vertica.jdbc3g.Jdbc3gConnection@2c091cee

Second connection name: Pooled connection wrapping physical connection

com.vertica.jdbc3g.Jdbc3gConnection@2c091cee

Are the connections the same?: true

JDBC Data Types
Vertica server supports data type aliases for integer, float and numeric types. However, it
processes and reports them as its basic types (INT8, FLOAT8, and NUMERIC), as follows:

mailto:com.vertica.jdbc3g.Jdbc3gConnection@2c091cee
mailto:com.vertica.jdbc3g.Jdbc3gConnection@2c091cee

-78-

Programmer's Guide

Vertica Server Types and
Aliases

Vertica JDBC Type

INTEGER

INT

INT8

BIGINT

SMALLINT

TINYINT

Int8

DOUBLE PRECISION

FLOAT5

FLOAT8

REAL

Float8

DECIMAL

NUMERIC

NUMBER

MONEY

Numeric

If a client application retrieves the values into smaller data types, Vertica JDBC driver does not
check for overflows The following code example illustrates this.

Statement statement = conn.createStatement();

try {

 statement.executeUpdate("drop table test_all_types cascade");

} catch (Exception e) {

}

statement.executeUpdate("create table test_all_types (" +

 "c0 integer, " +

 "c1 bigint, " +

 "c2 smallint, " +

 "c3 tinyint, " +

 "c4 decimal, " +

 "c5 numeric, " +

 "c6 number, " +

 "c7 money, " +

 "c8 double precision, " +

 "c9 float, " +

 "c10 real" +

 ")");

statement.executeUpdate("create projection test_all_types_p (c0,c1,c2,c3,c4,c5,c6,c7,c8,c9,c10) " +

 "as select * from test_all_types");

statement.executeUpdate("insert into test_all_types values(111111111111, 222222222222, 3333, 444, "

+

 "55555555555.5555, 66666.66, 65656565.65, 77777777.77, " +

 "88888888888888888.88, 999999.9, 10101010.10101010101010" +

 ")");

ResultSet rs=statement.executeQuery("select * from test_all_types");

ResultSetMetaData md = rs.getMetaData();

while (rs.next()){

 resultStream.println("INTEGER\tgetColumnType()\t"+md.getColumnType(1));

 resultStream.println("INTEGER\tgetColumnTypeName()\t"+md.getColumnTypeName(1));

 resultStream.println("INTEGER\tgetLong()\t"+rs.getLong(1));

 resultStream.println("INTEGER\tgetInt()\t"+rs.getInt(1));

 resultStream.println("INTEGER\tgetShort()\t"+rs.getShort(1));

-79-

 Using JDBC

 resultStream.println("INTEGER\tgetByte()\t"+rs.getByte(1));

 resultStream.println("TINYINT\tgetColumnType()\t"+md.getColumnType(4));

resultStream.println("TINYINT\tgetColumnTypeName()\t"+md.getColumnTypeName(4));

resultStream.println("TINYINT\tgetLong()\t"+rs.getLong(4));

resultStream.println("TINYINT\tgetInt()\t"+rs.getInt(4));

resultStream.println("TINYINT\tgetShort()\t"+rs.getShort(4));

resultStream.println("TINYINT\tgetByte()\t"+rs.getByte(4));

 resultStream.println("DECIMAL\tgetColumnType()\t"+md.getColumnType(5));

resultStream.println("DECIMAL\tgetColumnTypeName()\t"+md.getColumnTypeName(5));

resultStream.println("DECIMAL\tgetLong()\t"+rs.getLong(5));

resultStream.println("DECIMAL\tgetBigDecimal()\t"+rs.getBigDecimal(5));

resultStream.println("DECIMAL\tgetDouble()\t"+rs.getDouble(5));

 resultStream.println("MONEY\tgetColumnType()\t"+md.getColumnType(8));

resultStream.println("MONEY\tgetColumnTypeName()\t"+md.getColumnTypeName(8));

resultStream.println("MONEY\tgetLong()\t"+rs.getLong(8));

resultStream.println("MONEY\tgetBigDecimal()\t"+rs.getBigDecimal(8));

resultStream.println("MONEY\tgetDouble()\t"+rs.getDouble(8));

 resultStream.println("DOUBLE PRECISION\tgetColumnType()\t"+md.getColumnType(9));

 resultStream.println("DOUBLE

PRECISION\tgetColumnTypeName()\t"+md.getColumnTypeName(9));

 resultStream.println("DOUBLE PRECISION\tgetLong()\t"+rs.getLong(9));

 resultStream.println("DOUBLE PRECISION\tgetBigDecimal()\t"+rs.getBigDecimal(9));

 resultStream.println("DOUBLE PRECISION\tgetDouble()\t"+rs.getDouble(9));

 resultStream.println("DOUBLE PRECISION\tgetFloat()\t"+rs.getFloat(9));

 resultStream.println("REAL\tgetColumnType()\t"+md.getColumnType(11));

resultStream.println("REAL\tgetColumnTypeName()\t"+md.getColumnTypeName(11));

resultStream.println("REAL\tgetLong()\t"+rs.getLong(11));

resultStream.println("REAL\tgetBigDecimal()\t"+rs.getBigDecimal(11));

resultStream.println("REAL\tgetDouble()\t"+rs.getDouble(11));

resultStream.println("REAL\tgetFloat()\t"+rs.getFloat(11));

}

rs.close();

statement.executeUpdate("drop table test_all_types cascade");

statement.close();

Output:

INTEGER getColumnType() -5

INTEGER getColumnTypeName() int8

INTEGER getLong() 111111111111

INTEGER getInt() -558038585

INTEGER getShort() 455

INTEGER getByte() -57

TINYINT getColumnType() -5

TINYINT getColumnTypeName() int8

TINYINT getLong() 444

TINYINT getInt() 444

TINYINT getShort() 444

TINYINT getByte() -68

DECIMAL getColumnType() 2

DECIMAL getColumnTypeName() numeric

DECIMAL getLong() 55555555555

DECIMAL getBigDecimal() 55555555555.555500000000000

DECIMAL getDouble() 5.55555555555555E10

MONEY getColumnType() 2

MONEY getColumnTypeName() numeric

MONEY getLong() 77777777

MONEY getBigDecimal() 77777777.7700

MONEY getDouble() 7.777777777E7

DOUBLE PRECISION getColumnType() 8

-80-

Programmer's Guide

DOUBLE PRECISION getColumnTypeName() float8

DOUBLE PRECISION getLong() 88888888888888900

DOUBLE PRECISION getBigDecimal() 8.88888888888889E+16

DOUBLE PRECISION getDouble() 8.8888888888888896E16

DOUBLE PRECISION getFloat() 8.8888892E16

REAL getColumnType() 8

REAL getColumnTypeName() float8

REAL getLong() 10101010

REAL getBigDecimal() 10101010.1010101

REAL getDouble() 1.01010101010101E7

REAL getFloat() 1.010101E7

Executing Queries Through JDBC
To run a query through JDBC:

1 Connect with the Vertica database. See Creating and Configuring a Connection (page 67).

2 Run the query.

The method you use depends on the type of query you want to run:

Executing DDL (Data Definition Language) Queries

To run DDL queries, such as CREATE TABLE and COPY, use the execute method of the

Statement class. You get an instance of this class by calling the createStatement method of

your connection object.

The following example creates an instance of the Statement class and uses it to execute a
CREATE TABLE and a COPY query:

Statement stmt = conn.createStatement();

stmt.execute("CREATE TABLE address_book (Last_Name char(50) default ''," +

 "First_Name char(50),Email char(50),Phone_Number char(50))");

stmt.execute("COPY address_book FROM 'address.dat' DELIMITER ',' NULL 'null'");

Executing Queries that Return Result Sets

Use the Statement class's executeQuery method to execute queries that return a result set of

records, such as SELECT. To get the results from the result set, use methods such as getInt,

getString, and getDouble depending upon the data types of the results to be returned.

ResultSet rs = null;

rs = stmt.executeQuery("SELECT First_Name, Last_Name FROM address_book");

int x = 1;

while(rs.next()){

 System.out.println(x + ". " + rs.getString(1).trim() + " "

 + rs.getString(2).trim());

 x++;

}

Executing DML (Data Manipulation Language) Queries Using executeUpdate

Use the executeUpdate method for DML SQL queries such as INSERT, UPDATE and DELETE

that do not return a result set of records.

-81-

 Using JDBC

stmt.executeUpdate("INSERT INTO address_book " +

 "VALUES ('Ben-Shachar', 'Tamar', 'tamarrow@example.com'," +

 "'555-380-6466')");

stmt.executeUpdate("INSERT INTO address_book (First_Name, Email) " +

 "VALUES ('Pete','pete@example.com')");

Note: The Vertica JDBC driver does not support multiple SQL statements in the SQL string you

pass to the execute, executeUpdate, or executeQuery methods. Attempting to include

multiple statements in the SQL string results in an exception.

Loading Data Through JDBC
There are three methods you can use to load data via the JDBC interface:

 Executing a SQL INSERT statement to insert a single row directly.

 Batch loading data using a prepared statement.

 Bulk loading data from files or streams using COPY.

A primary concern when loading data into Vertica is the data's destination: the Write Optimized
Store (WOS) or the Read Optimized Store (ROS). By default, most methods of loading data into
Vertica will insert data into the WOS until it fills up, then additional data is inserted directly into
ROS containers. This is the best strategy to follow when frequently loading small amounts of data
(often referred to as trickle loading). When performing less frequent large data loads (any loads
over roughly 100MB of data at once, such as initially loading the database or loading a day's or
week's worth of transactions), you want to change this behavior to directly insert data into the
ROS.

The following sections explain in detail how you load data using JDBC.

Using a Single Row Insert

The simplest way to insert data into a table is to use the SQL INSERT statement. You can use this

statement by instantiating a member of the Statement class, and use its executeUpdate()

method to run your SQL statement.

The following code fragment demonstrates how you would create a Statement object and use it

to insert data into a table named address_book:

Statement stmt = conn.createStatement();

stmt.executeUpdate("INSERT INTO address_book " +

 "VALUES ('Smith', 'John', 'jsmith@example.com', " +

 "'555-123-4567')");

There are several drawbacks to this method: you need convert your data to string, and you need to
escape your data for special characters. A better way to insert data is to use prepared statements.
See Batch Inserts Using JDBC Prepared Statements (page 82).

Note: The Vertica JDBC driver does not support multiple SQL statements in the SQL string you

pass to the execute, executeUpdate, or executeQuery methods. Attempting to include

multiple statements in the SQL string results in an exception.

-82-

Programmer's Guide

Batch Inserts Using JDBC Prepared Statements

You can load batches of data into Vertica using prepared INSERT statements—server-side
statements that you set up once, and then call repeatedly. You instantiate a member of the

PreparedStatement class with a SQL statement that contain question mark placeholders for

data. For example:

PreparedStatement pstmt = conn.prepareStatement(

 "INSERT INTO customers(last, first, id) VALUES(?,?,?)");

You then set the parameters using data-type-specific methods on the PreparedStatement

object, such as setString() and setInt() (see Command Reference for Prepared

Statements in JDBC (page 84) for a list of these methods). Once your parameters are set, call

the addbatch() method to add the row to the batch. When you have a complete batch of data

ready, call the executeBatch() method to execute the insert statements.

Behind the scenes, the batch insert is converted into a COPY statement. When the
defaultAutoCommit connection parameter is disabled, Vertica uses the same COPY command to
load batches until either the transaction is committed, the cursor is closed, or a non-insert
statement is executed. If you are loading multiple batches, you should disable the
defaultAutoCommit property of the database to make the load more efficient.

The following example demonstrates using a prepared statement to batch insert data.

import java.sql.*;

import java.util.Properties;

public class BatchInsertExample {

 public static void main(String[] args) {

 try {

 Class.forName("com.vertica.Driver");

 } catch (ClassNotFoundException e) {

 System.err.println("Could not find the JDBC driver class.");

 e.printStackTrace();

 return;

 }

 Properties myProp = new Properties();

 myProp.put("user", "ExampleUser");

 myProp.put("password", "password123");

 Connection conn;

 try {

 conn = DriverManager.getConnection(

 "jdbc:vertica://VerticaHost:5433/ExampleDB", myProp);

 // establish connection and make a table for the data.

 Statement stmt = conn.createStatement();

 stmt.execute("CREATE TABLE customers (CustID int, Last_Name" +

 " char(50), First_Name char(50),Email char(50), " +

 "Phone_Number char(12))");

 // Some dummy data to insert.

 String[] firstNames = new String[] {"Anna","Bill","Cindy","Don",

 "Eric"};

 String[] lastNames = new String[] {"Allen","Brown","Chu","Dodd",

 "Estavez"};

-83-

 Using JDBC

 String[] emails = new String[] {"aang@example.com",

"b.brown@example.com","cindy@example.com","d.d@example.com",

 "e.estavez@example.com"};

 String[] phoneNumbers = new String[] {"123-456-789","555-444-3333",

 "555-867-5309","555-555-1212",

 "781-555-0000"};

 // Create the prepared statement

 PreparedStatement pstmt = conn.prepareStatement(

 "INSERT INTO customers (CustID, Last_Name, First_Name, Email, "

+

 "Phone_Number) VALUES(?,?,?,?,?)");

 // Add rows to a batch in a loop. Each iteration adds a

 // new row.

 for (int i=0; i < firstNames.length; i++) {

 // Add each parameter to the row.

 pstmt.setInt(1,i+1);

 pstmt.setString(2, lastNames[i]);

 pstmt.setString(3, firstNames[i]);

 pstmt.setString(4, emails[i]);

 pstmt.setString(5, phoneNumbers[i]);

 // Add row to the batch.

 pstmt.addBatch();

 }

 // Batch is ready, execute it to insert the data

 pstmt.executeBatch();

 // Print the resulting table.

 ResultSet rs = null;

 rs = stmt.executeQuery("SELECT CustID, First_Name, " +

 "Last_Name FROM customers");

 while(rs.next()){

 System.out.println(rs.getInt(1) + " - " + rs.getString(2).trim()

 + " " + rs.getString(3).trim());

 }

 // Cleanup

 stmt.execute("DROP TABLE customers CASCADE");

 conn.close();

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

}

The result of running the example code is:

1 - Anna Allen

2 - Bill Brown

3 - Cindy Chu

4 - Don Dodd

5 - Eric Estavez

mailto:aang@example.com
mailto:b.brown@example.com
mailto:cindy@example.com
mailto:d.d@example.com
mailto:e.estavez@example.com

-84-

Programmer's Guide

Command Reference for Prepared Statements in JDBC

This section describes the JDBC API for using prepared statements. You can use prepared
statements to supply data to a query at execution time.

Commands

 addBatch (page 84)

 execute (page 85)

 executeBatch (page 85)

 executeQuery (page 86)

 executeUpdate (page 86)

 PreparedStatement (page 87)

 setBoolean (page 87)

 setDate (page 87)

 setDouble (page 88)

 setFloat (page 88)

 setInt (page 89)

 setLong (page 89)

 setNull (page 89)

 setString (page 90)

 setTime (page 90)

 setTimeStamp (page 91)

 Statement (page 91)

addBatch

Adds the given SQL command to the current list of commands for this Statement object.

Syntax

public void addBatch (String sql) throws SQLException

Parameters

SQL Typically this is a static SQL INSERT or UPDATE statement.

Note

You can call the method executeBatch to execute the commands in this list as a batch.

Throws

 SQLException if a database access error occurs or the driver does not support batch updates.

-85-

 Using JDBC

 If an addBatch has been issued against one statement, you will get an error if you try to
prepare and addBatch for a second statement without executing the first one.

execute

Executes the given SQL statement.

Syntax

boolean execute() throws SQLException

Notes

Some prepared statements return multiple results; the execute method handles these complex
statements as well as the simpler form of statements handled by the methods executeQuery and
executeUpdate.

Returns

The execute method returns a boolean to indicate the form of the first result, as follows:

 True if the first result is a ResultSet object

 False if the first result is an update count or there is no result

To retrieve the result, call either the method getResultSet or getUpdateCount. To move to any
subsequent results, call getMoreResults.

Throws

SQLException if a database access error occurs or an argument is supplied to this method

executeBatch

Submits a batch of commands to the database for execution and, if all commands execute
successfully, returns an array of update counts.

Syntax

public int[] executeBatch() throws SQLException

Note

The int elements of the array that is returned are ordered to correspond to the commands in the
batch, which are ordered according to the order in which they were added to the batch. The
elements in the array returned by the method executeBatch are one of the following:

 A number greater than or equal to zero

This indicates that the command was processed successfully and provides the number of rows
in the database that were affected by the command's execution

 A value of SUCCESS_NO_INFO

This indicates that the command was processed successfully, but that the number of rows
affected is unknown.

-86-

Programmer's Guide

Returns

An array of update counts that contains one element for each command in the batch. The
elements of the array are ordered in the same order in which commands were added to the batch.

Throws

 SQLException if a database access error occurs or the driver does not support batch updates.

 BatchUpdateException (a subclass of SQLException) if one of the commands sent to the
database fails to execute properly or attempts to return a result set.

executeQuery

Executes the given SQL statement, which returns a single ResultSet object.

Syntax

public ResultSet executeQuery (String sql) throws SQLException

Parameters

SQL The SQL statement that is sent to the database, typically a static SQL
SELECT statement.

sqlType The SQL type code defined in java.sql.Types.

Returns

 A ResultSet object that contains the data produced by the given query; never null.

 Any semantic or syntactic errors

Throws

SQLException if a database access error occurs or the given SQL statement produces anything
other than a single ResultSet object

executeUpdate

Executes the given SQL statement.

Syntax

public int executeUpdate (String sql) throws SQLException

Parameters

SQL A SQL INSERT, UPDATE or DELETE statement or a SQL statement that
returns nothing

Note

The statement can be an INSERT, UPDATE, or DELETE statement; it can even be a SQL
statement that returns nothing, such as a SQL DDL statement.

-87-

 Using JDBC

Returns

 One of the following:

 The row count for INSERT, UPDATE or DELETE statements

 A 0 for SQL statements that return nothing

 Any semantic or syntactic errors

Throws

SQLException if a database access error occurs or the given SQL statement produces a
ResultSet object

PreparedStatement

The object of PreparedStatement interface represents a pre-compiled SQL statement. A SQL
statement is pre-compiled and stored on the server in a PreparedStatement object. This object
can then be used to repeatedly execute the statement in an efficient manner.

Note: The setXXX methods for setting IN parameter values must specify types that are
compatible with the defined SQL type of the input parameter. For instance, if the IN parameter
has SQL type Integer, then the method setInt should be used.

public interface PreparedStatement

extends Statement

setBoolean

Sets the designated parameter to a Java boolean value. The driver converts this to a SQL BIT
value when it sends it to the database.

Syntax

public void setBoolean (int parameterIndex, boolean x) throws SQLException

Parameters

parameterIndex The first parameter is 1, the second is 2, and so on.

x The parameter value

Note

The driver binds the statement parameter, but does not communicate with the server.

Throws

SQLException if a database access error occurs

setDate

Sets the designated parameter to a value. The driver converts this to a SQL DATE value when it
sends it to the database.

-88-

Programmer's Guide

Syntax

public void setDate (int parameterIndex, Date x) throws SQLException

Parameters

parameterIndex The first parameter is 1, the second is 2, and so on.

x The parameter value

Note

The driver binds the statement parameter, but does not communicate with the server.

Throws

SQLException if a database access error occurs

setDouble

Sets the designated parameter to a Java double value. The driver converts this to a SQL DOUBLE
value when it sends it to the database.

Syntax

public void setDouble (int parameterIndex, double x) throws SQLException

Parameters

parameterIndex The first parameter is 1, the second is 2, and so on.

x The parameter value

Note

The driver binds the statement parameter, but does not communicate with the server.

Throws

SQLException if a database access error occurs

setFloat

Sets the designated parameter to a Java float value. The driver converts this to a SQL INTEGER
value when it sends it to the database.

Syntax

public final void setFloat (int n, float x) throws SQLException

Parameters

n An int that indicates the parameter number

x The float value

-89-

 Using JDBC

Note

The driver binds the statement parameter, but does not communicate with the server.

Throws

SQLException if a database access error occurs

setInt

Sets the designated parameter to a Java int value. The driver converts this to a SQL INTEGER
value when it sends it to the database.

Syntax

public void setInt (int parameterIndex, int x) throws SQLException

Parameters

parameterIndex The first parameter is 1, the second is 2, and so on.

x The parameter value

Note

The driver binds the statement parameter, but does not communicate with the server.

Throws

SQLException if a database access error occurs

setLong

Sets the designated parameter to a Java long value. The driver converts this to a SQL BIGINT
value when it sends it to the database.

Syntax

public void setLong (int parameterIndex, long x) throws SQLException

Parameters

parameterIndex The first parameter is 1, the second is 2, and so on.

x The parameter value

Note

The driver binds the statement parameter, but does not communicate with the server.

Throws

SQLException if a database access error occurs

setNull

Sets the designated parameter to SQL NULL.

-90-

Programmer's Guide

Syntax

public void setNull (int parameterIndex, int sqlType) throws SQLException

Parameters

parameterIndex The first parameter is 1, the second is 2, and so on.

sqlType The SQL type code defined in java.sql.Types.

Note

The driver binds the statement parameter, but does not communicate with the server.

Throws

SQLException if a database access error occurs

setString

Sets the designated parameter to a Java String value. The driver converts this to a SQL
VARCHAR or LONGVARCHAR value (depending on the argument's size relative to the driver's
limits on VARCHAR values) when it sends it to the database.

Syntax

public void setString (int parameterIndex, String x) throws SQLException

Parameters

parameterIndex The first parameter is 1, the second is 2, and so on.

x The parameter value

Note

The driver binds the statement parameter, but does not communicate with the server.

Throws

SQLException if a database access error occurs

setTime

Sets the designated parameter to a java.sql.Time value. The driver converts this to a SQL TIME
value when it sends it to the database.

Syntax

public void setTime (int parameterIndex, Time x) throws SQLException

Parameters

parameterIndex The first parameter is 1, the second is 2...

x The parameter value

-91-

 Using JDBC

Note

The driver binds the statement parameter, but does not communicate with the server.

Throws

SQLException if a database access error occurs

setTimestamp

Sets the designated parameter to a java.sql.Timestamp value. The driver converts this to a SQL
TIMESTAMP value when it sends it to the database.

Syntax

public void setTimestamp (int parameterIndex, Timestamp x) throws SQLException

Parameters

parameterIndex The first parameter is 1, the second is 2, and so on.

x The parameter value

Note

The driver binds the statement parameter, but does not communicate with the server.

Throws

SQLException if a database access error occurs

Statement

The object of Statement interface is used for executing a static SQL statement and returning the
results it produces. By default, only one ResultSet object per Statement object can be open at the
same time. Therefore, if the reading of one ResultSet object is interleaved with the reading of
another, each must have been generated by different Statement objects. All execution methods in
the Statement interface implicitly close a statement‘s current ResultSet object if an open one
exists.

public interface Statement

Directly Loading Batches into ROS

When loading large batches of data (more than 100MB or so), you should load the data directly
into ROS containers. Inserting directly into ROS is more efficient for large loads than AUTO mode,
since it avoids overflowing the WOS and spilling the remainder of the batch to ROS. The Tuple
Mover has to perform a moveout on the data in the WOS, while subsequent data is directly written
into ROS containers.

To directly load batches into ROS, set the directBatchInsert connection property to true. See
Setting and Getting Connection Property Values (page 72) for an explanation of how to set
connection properties. When this property is set to true, all batch inserts bypass the WOS and
load directly into a ROS container.

-92-

Programmer's Guide

If all of batches being inserted using a connection should be inserted into the ROS, you want to set

directBatchInsert to true in the Properties object you use to create the connection:

Properties myProp = new Properties();

myProp.put("user", "ExampleUser");

myProp.put("password", "password123");

// Enable directBatchInsert for this connection

myProp.put("directBatchInsert", "true");

Connection conn;

try {

 conn = DriverManager.getConnection(

 "jdbc:vertica://VerticaHost:5433/ExampleDB", myProp);

If you will be using the connection for inserting both large and small batches or you do not know
the size batches you will be inserting when you create the connection object, you can set the
directBatchInsert property after the connection has been established using the

PGConnection.setDirectBatchInsert method:

((PGConnection)conn).setDirectBatchInsert(true);

Error Handling During Batch Loads

When loading individual batches, you can find information on how many rows were accepted and
what rows were rejected (see Tracking Load Status on the Server with JDBC (page 93) for
details). Other errors, such as disk space errors, do not occur while inserting individual batches.
This behavior is caused by having a single COPY statement perform the loading of multiple
consecutive batches. Using the single COPY statement makes the batch load process perform
much faster. It is only when the COPY statement closes that the batched data is committed and
Vertica reports other types of errors.

Therefore, your bulk loading application should be prepared to check for errors when the COPY
statement closes. You can trigger the COPY statement to close by ending the batch load
transaction, by closing the statement using close(), or by setting the database connection's
AutoCommit property to true before inserting the last batch in the load.

Note: The COPY statement also closes if you execute any non-insert statement. You should
avoid ending the COPY statement in this manner because any errors from the COPY statement
appear the response for the non-insert statement. This can lead to confusion and a harder to
maintain application. You should explicitly end the COPY statement at the end of your batch
load and handle any errors at that time.

Using Delimiters and Record Terminators for Batch Insert

Delimiters

By default, JDBC uses the delimiter '|' for JDBC batch insert. The driver escapes '|' and '\' in the
data, so your application should not escape them.

Record Terminators

Vertica uses '\b\t\f' as the default record terminator. Your application may try to escape this
sequence, or you can set another string as record terminator.

To set the batch insert record terminator string for the:

-93-

 Using JDBC

 Connection, use:

((PGConnection)dbConn).setBatchInsertRecordTerminator("record_termin

ator");

 Statement, use:

((PGStatement)pstmt).setBatchInsertRecordTerminator("record_terminat

or");

Where record_terminator represents your specific record terminator.

Tracking Load Status on the Server

The client can track load status on the server for the last completed database load within the
current session by:

 Identifying the number of rows that were accepted or rejected (page 93).

 Identifying which rows were accepted or rejected (page 96).

Both methods are useful for determining the status of a load in cases in which data is loaded
regardless of any load errors encountered. However, identifying the number of accepted or
rejected rows has virtually no performance impact on the server while identifying the status of all
the rows in the load slightly affects performance. This occurs because the server sends the row
number for each rejected row to the client which, in turn, receives this data. Additionally, the data
must be loaded into an array that is supplied by the driver.

Note: Data regarding loads does not persist, and is dropped when a new load is initiated.

Identifying the Number of Accepted and Rejected Rows

In any data load task, one of the basic pieces of information you need is how many rows were
successfully loaded into the database and how many were rejected. The standard way of
determining how many rows were loaded and rejected is to call the Statement class's

getUpdateCount() method. This method returns the number of rows that the last executed

statement affected which, in the case of an insert insert command, is the number of rows that were
inserted.

To find the number of rejected rows, subtract the number of rows that were actually loaded from
the number of rows that you attempted to load.

The following example shows how to use getUpdateCount() to find the number of rows loaded

and rejected by a batch load. In order to trigger a row to be rejected, the example code sets the
batchInsertEnforceLength connection parameter to true. Setting this parameter to true forces the
last row in the batch to be rejected since its phone number value is too wide to be stored in the
database column.

import java.sql.*;

import java.util.Properties;

import com.vertica.PGConnection;

public class BatchInsertExamplegetUpdateCount {

 public static void main(String[] args) {

 try {

 Class.forName("com.vertica.Driver");

 } catch (ClassNotFoundException e) {

 System.err.println("Could not find the JDBC driver class.");

-94-

Programmer's Guide

 e.printStackTrace();

 return;

 }

 Properties myProp = new Properties();

 myProp.put("user", "ExampleUser");

 myProp.put("password", "password123");

 Connection conn;

 try {

 conn = DriverManager.getConnection(

 "jdbc:vertica://VerticaHost:5433/ExampleDB", myProp);

 // establish connection and make a table for the data.

 Statement stmt = conn.createStatement();

 stmt.execute("CREATE TABLE customers (CustID int, Last_Name" +

 " char(50), First_Name char(50),Email char(50), " +

 "Phone_Number char(12))");

 // Turn on enforce length. This rejects rows that have a value // too

wide to fit into a column, rather than truncate it.

((PGConnection)conn).setBatchInsertEnforceLength(true);

 // Some dummy data to insert. The final row won't insert because //

the phone number is too long for the phone column, and // batchInsertEnforceLength

is true.

 String[] firstNames = new String[] {"Anna","Bill","Cindy","Don",

 "Eric"};

 String[] lastNames = new String[] {"Allen","Brown","Chu","Dodd",

 "Estavez"};

 String[] emails = new String[] {"aang@example.com",

"b.brown@example.com","cindy@example.com","d.d@example.com",

 "e.estavez@example.com"};

 String[] phoneNumbers = new String[] {"123-456-789","555-444-3333",

 "555-867-5309","555-555-1212",

 "23123123123123123123123123343"};

 // Create the prepared statement

 PreparedStatement pstmt = conn.prepareStatement(

 "INSERT INTO customers (CustID, Last_Name, First_Name, Email, "

+

 "Phone_Number) VALUES(?,?,?,?,?)");

 // Add rows to a batch in a loop. Each iteration adds a // new row.

int numRowsToLoad = firstNames.length;

 for (int i=0; i < numRowsToLoad; i++) {

 // Add each parameter to the row.

 pstmt.setInt(1,i+1);

 pstmt.setString(2, lastNames[i]);

 pstmt.setString(3, firstNames[i]);

 pstmt.setString(4, emails[i]);

 pstmt.setString(5, phoneNumbers[i]);

 // Add row to the batch.

 pstmt.addBatch();

 }

 // Batch is ready, execute it to insert the data

 pstmt.executeBatch();

mailto:aang@example.com
mailto:b.brown@example.com
mailto:cindy@example.com
mailto:d.d@example.com
mailto:e.estavez@example.com

-95-

 Using JDBC

 // Get the number of rows that were affected by the last // command

(which will be the number of rows inserted in this case) int rowCount =

pstmt.getUpdateCount();

 System.out.println("Number of accepted rows = " +

 rowCount);

 // Number of rejected rows = row we tried to load - rows loaded

 System.out.println("Number of rejected rows = " +

 (numRowsToLoad - rowCount));

 // Print the resulting table.

 ResultSet rs = null;

 rs = stmt.executeQuery("SELECT CustID, First_Name, " +

 "Last_Name FROM customers");

 while(rs.next()){

 System.out.println(rs.getInt(1) + " - " + rs.getString(2).trim()

 + " " + rs.getString(3).trim());

 }

 // Cleanup

 stmt.execute("DROP TABLE customers CASCADE");

 conn.close();

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

}

The output from running the previous example is:

Number of accepted rows = 4

Number of rejected rows = 1

1 - Anna Allen

2 - Bill Brown

3 - Cindy Chu

4 - Don Dodd

Handling Large Numbers of Accepted and Rejected Rows

Since Vertica loads can contain billions of rows (which is enough to overflow a standard int),

PreparedStatement has a set of methods that return the count of accepted and rejected rows

as long integers:

 PreparedStatement.getLongNumAcceptedRows() returns a long containing the

number of rows that Vertica successfully loaded.

 PreparedStatement.getLongNumRejectedRows() returns a long containing the

number of rows that Vertica rejected.

When loading batches, the values returned by these methods depend on when in the load process
you call them. Immediately after loading a batch, whether or not defaultAutoCommit is enabled,
these methods always report the number of accepted and rejected rows from the latest batch. If
you are loading multiple batches with defaultAutoCommit disabled, after the transaction is
committed (either explicitly or through closing the cursor or executing a non-insert statement)
these methods return the total count of accepted and rejected rows for the entire transaction.

-96-

Programmer's Guide

Note: If the statement or copy fails or is canceled after adding a stream of data

(addStreamToCopyIn()), the results of the methods listed above are not guaranteed. Use

these methods only after a successful copy statement.

See the Tracking Load Status (page 107) example.

Identifying Accepted and Rejected Rows (JDBC)

When row status is sent from the server to the client, the status of each row in the load must be
loaded into an array that is supplied by the driver. The following example uses a prepared
statement that creates an array and runs a batch method to load the array with the row number
and integer 1 (accepted) or -3 (rejected) for each row in the load.

ps1 = dbConn.prepareStatement("INSERT INTO test_batch_table(a) VALUES (?)");

for (int i = 1; i <= 10; ++i) {

 ps1.setLong(1, i);

 ps1.addBatch();

}

 int[] counts=ps1.executeBatch();

 int irows;

 for(irows=0;irows<counts.length;++irows)

 resultStream.println("Row "+irows+": status "+counts[irows]);

See the Tracking Load Status (page 107) example.

Bulk Loading Using the COPY Statement

The easiest way to load large amounts of data into Vertica at once (bulk loading) is to use the
COPY statement. This statement loads data from a file stored on the host (or a data stream) into a
table in the database. COPY has many parameters you can set to specify the format of the data in
the file, how the data is to be transformed as it is loaded, how to handle errors, and how the data
should be loaded. See the COPY documentation for details.

One parameter that is particularly important is the DIRECT option, which tells COPY to load the
data directly into ROS rather than going through the WOS. You should use this option when you
are loading large files (over 100MB) into the database. Without this option, your load would fill the
WOS and overflow into ROS, requiring the Tuple Mover to perform a Moveout on the data in the
WOS. It is more efficient to directly load into ROS and avoid forcing a moveout.

Only the database superuser can use the COPY statement to copy a file, so you will need to log in
using database administrator's account. If you want to have a non-superuser user bulk load data,
you can use COPY to load from a stream rather than a file (see Copying Streams (page 97)). You
can also perform a standard batch insert using a prepared statement (page 82), which uses the
COPY statement in the background to load the data.

The following example demonstrates using the COPY statement through the JDBC to load a file

name customers.txt into a new database table. This file must be stored on the database host

to which your application connects (in this example, a host named VerticaHost). Since the

customers.txt file used in the example is very large, this example uses the DIRECT option to

bypass the WOS and load directly into ROS.

import java.sql.*;

import java.util.Properties;

-97-

 Using JDBC

public class CopyExample {

 public static void main(String[] args) {

 try {

 Class.forName("com.vertica.Driver");

 } catch (ClassNotFoundException e) {

 System.err.println("Could not find the JDBC driver class.");

 e.printStackTrace();

 return;

 }

 Properties myProp = new Properties();

 myProp.put("user", "dbadmin"); // Must be superuser

 myProp.put("password", "password123");

 Connection conn;

 try {

 conn = DriverManager.getConnection(

 "jdbc:vertica://VerticaHost:5433/ExampleDB", myProp);

 Statement stmt = conn.createStatement();

 // Create a table and a projection for the table.

 stmt.execute("CREATE TABLE customers (Last_Name char(50) " +

 "default '', First_Name char(50),Email char(50), " +

 "Phone_Number char(50))");

 stmt.execute("CREATE PROJECTION customers_p (Last_Name, " +

 "First_Name, Email, Phone_Number) AS SELECT Last_Name, " +

 "First_Name, Email, Phone_Number FROM customers");

 // Use the COPY command to load data. Load directly into ROS, since

 // this load could be over 100MB. Data file is on the node

 // to which we've connected (VerticaHost).

 stmt.execute("COPY customers FROM '/data/customers.txt' " +

 "DELIMITER '|' DIRECT");

 // Get the number of rows in customers now

 ResultSet rs = stmt.executeQuery("SELECT COUNT(*) FROM customers");

 while (rs.next()){

 System.out.println("Number of rows in customers = "

 + rs.getInt(1));

 }

 // Get rid of the table

 stmt.execute("DROP TABLE customers CASCADE");

 } catch(Exception e) {

 System.out.print("Loading error: ");

 System.out.println(e.toString());

 }

 }

}

The example prints the following out to the system console when run (assuming that the

customers.txt file contained two million valid rows):

Number of rows in customers = 2000000

Copying Streams

Vertica supports copying individual streams (page 98) or multiple streams (page 99) into the
database.

-98-

Programmer's Guide

Copying Individual Streams

To copy an individual stream into the database, use the executeCopyIn method.

executeCopyIn

Executes a COPY TO query.

Syntax

boolean executeCopyIn (java.lang.String sql,

 java.io.InputStream inStream)

 throws java.sql.SQLException

Parameters

sql A string that represents the COPY TO query to execute

inStream The input stream that contains the data

Notes

 Use the FROM STDIN clause in the COPY command

 Cast statement to PGStatement

Returns

False.

Throws

java.sql.SQLException if a query execution fails.

Example

import java.io.*;

import java.sql.*;

import java.util.Properties;

import com.vertica.PGStatement;

public class CopyStreamExample {

 public static void main(String[] args) {

 try {

 Class.forName("com.vertica.Driver");

 } catch (ClassNotFoundException e) {

 System.err.println("Could not find the JDBC driver class.");

 e.printStackTrace();

 return;

 }

 // Path to the | delimited data file.

 String inputFileName = "C:\\data\\customers.tbl";

 Properties myProp = new Properties();

 myProp.put("user", "ExampleUser");

 myProp.put("password", "password123");

 Connection conn;

-99-

 Using JDBC

 try {

 conn = DriverManager.getConnection(

 "jdbc:vertica://VerticaHost:5433/ExampleDB", myProp);

 Statement stmt = conn.createStatement();

 // Create a table and a projection for the table.

 stmt.execute("CREATE TABLE customers (Last_Name char(50) " +

 "default '', First_Name char(50),Email char(50), " +

 "Phone_Number char(50))");

 stmt.execute("CREATE PROJECTION customers_p (Last_Name, " +

 "First_Name, Email, Phone_Number) AS SELECT Last_Name, " +

 "First_Name, Email, Phone_Number FROM customers");

 // Prepare the input file stream

 File inputFile = new File(inputFileName);

 FileInputStream inputStream = new FileInputStream(inputFile);

 // Prepare the query to insert from a stream. Unlike copying from

 // a file on the host, you do not need superuser privileges to

 // copy a stream. All your user account needs in INSERT privileges.

 String copyQuery = "COPY customers FROM STDIN " +

 "DELIMITER '|' NULL '\\\\n' DIRECT;";

 // Execute the CopyIn.

 ((com.vertica.PGStatement)stmt).executeCopyIn(copyQuery ,

 inputStream);

 System.out.println("Number of accepted rows = " +

 ((PGStatement)stmt).getNumAcceptedRows());

 System.out.println("Number of rejected rows = " +

 ((PGStatement)stmt).getNumRejectedRows());

 // Get rid of the table stmt.execute("DROP TABLE customers CASCADE");

 } catch(Exception e) {

 System.out.print("Loading error: ");

 System.out.println(e.toString());

 }

 }

}

The result of running the example is shown below (assuming that customers.tbl has 10,000 rows):

Number of accepted rows = 10000

Number of rejected rows = 0

Copying Multiple Streams

Vertica supports pushing more than one buffer into a single COPY DIRECT by attaching multiple
streams one after the other without closing the statement. This is useful for loading several files on
a client side into one storage container.

This section:

 Provides the API (page 100) for copying multiple streams

 Provides an example (page 101) that demonstrates how to copy multiple streams into a
Vertica database.

-100-

Programmer's Guide

Command Reference for Multiple Streams

This section describes the JDBC API for copying multiple streams.

Commands

 startCopyIn (page 100)

 addStreamToCopyIn (page 100)

 finishCopyIn (page 100)

startCopyIn

Starts Multiple Streams Copy.

Syntax

void startCopyIn (String sql , InputStream inputStream) throws SQLException

Parameters

sql A string that represents the copy statement

inputStream The input stream that contains the data

Throws

SQLException if a SQL exception occurs.

Notes

Start streaming before using the addStreamToCopyIn() and finishCopyIn() methods.

addSreamToCopyIn

Adds a new stream of data to the copy statement.

Syntax

void addStreamToCopyIn(InputStream inputStream) throws SQLException

Parameters

inputStream The input stream that contains the data

Throws

SQLException if a SQL exception occurs.

Notes

Call this method after streaming has been started using the startCopyIn() method.

finishCopyIn

Finishes the streaming.

-101-

 Using JDBC

Syntax

void finishCopyIn() throws SQLException

Throws

SQLException if a SQL exception occurs.

Notes

Call this method after all the streams have been added or before streaming is started the next
time.

Copy Multiple Streams Example

This example loads multiple streams of data into the Vertica database. In this example,

Date_Dimension.tbl is a file from which data is to be copied, and the FileInputStream

object (fis) is created by reading this file.

The startCopyIn() method call starts streaming. After starting the streaming,

addStreamToCopyIn is called 5 times to add new streams (in this case, just new

FileInputStream instances which contain the same input file). After adding five streams,

streaming is finished with finishCopyIn(). The number of rows inserted into the database is

then printed to the system console. This should be five times the number of rows in the input file
(assuming that none of the rows were rejected).

import java.io.*;

import java.sql.*;

import java.util.Properties;

import com.vertica.PGStatement;

public class CopyMultipleStreamsExample {

 public static void main(String[] args) {

 try {

 Class.forName("com.vertica.Driver");

 } catch (ClassNotFoundException e) {

 System.err.println("Could not find the JDBC driver class.");

 e.printStackTrace();

 return;

 }

 // Path to the | delimited data file.

 String inputFileName = "C:\\data\\customers.tbl";

 Properties myProp = new Properties();

 myProp.put("user", "ExampleUser");

 myProp.put("password", "password123");

 Connection conn;

 try {

 conn = DriverManager.getConnection(

 "jdbc:vertica://VerticaHost:5433/ExampleDB", myProp);

 Statement stmt = conn.createStatement();

 // Create a table and a projection for the table.

 stmt.execute("CREATE TABLE customers (Last_Name char(50) " +

 "default '', First_Name char(50),Email char(50), " +

 "Phone_Number char(50))");

-102-

Programmer's Guide

 stmt.execute("CREATE PROJECTION customers_p (Last_Name, " +

 "First_Name, Email, Phone_Number) AS SELECT Last_Name, " +

 "First_Name, Email, Phone_Number FROM customers");

 // Prepare the input file stream

 File inputFile = new File(inputFileName);

 FileInputStream inputStream = new FileInputStream(inputFile);

 // Prepare the query to insert from a stream. Unlike copying from

 // a file on the host, you do not need superuser priviledges to

 // copy a stream. All your user account needs in INSERT privilidges.

 String copyQuery = "COPY customers FROM STDIN " +

 "DELIMITER '|' NULL '\\\\n' DIRECT;";

 // Start the CopyIn process.

 ((com.vertica.PGStatement)stmt).startCopyIn(copyQuery ,

inputStream);

 // Loop 5 times, just adding a new copy of the filestream to

 // the Copyin stream. In your application, you would add

 // different stream sources to the CopyIn.

 for (int x=1; x<5; x++) {

 inputStream = new FileInputStream(inputFile);

((com.vertica.PGStatement)stmt).addStreamToCopyIn(inputStream);

 }

 // Complete the CopyIn process

 ((com.vertica.PGStatement)stmt).finishCopyIn();

 System.out.println("Number of accepted rows = " +

 ((PGStatement)stmt).getNumAcceptedRows());

 System.out.println("Number of rejected rows = " +

 ((PGStatement)stmt).getNumRejectedRows());

 // Get rid of the table stmt.execute("DROP TABLE customers CASCADE");

 } catch(Exception e) {

 System.out.print("Loading error: ");

 System.out.println(e.toString());

 }

 }

}

The result of running the above code (assuming that customers.tbl has 10,000 rows) appears

below:

Number of accepted rows = 50000

Number of rejected rows = 0

Handling Large Result Sets
Large result sets can be fetched either in streaming mode or non-streaming mode. In streaming
mode, the data is retrieved in small chunks. The JDBC driver pauses the query execution when
the memory cache on the client is full and resumes execution of the query after the memory cache
rows are retrieved by the JDBC application.

-103-

 Using JDBC

In non-streaming mode, all the data is fetched from the server in one large chunk and is cached on
the client side in the default temporary directory specified by the system property java.io.tmpdir.
On UNIX systems, the default location is /tmp or /var/tmp; on Microsoft Windows systems, the
default location is typically C:\WINDOWS\TEMP.

By default, large results sets are fetched in streaming mode. To change the mode used for large
result sets, modify the streamingLRS connection attribute. If you are using non-streaming mode
and you want to change the default buffer size of 67108864 (64MB), use the maxLRSMemory
connection attribute. See Connection Properties (page 69) and Setting and Getting
Connection Property Values (page 72).

Note: If large result sets are configured to be fetched in streaming mode and a query is
currently running, wait for it to complete before issuing another query. Otherwise, Vertica will
throw an error indicating that it is not possible to execute a query while retrieving a large result
set. To avoid this issue, use non-streaming mode.

This section:

 Provides the API (page 103) for handling large result sets.

 Provides an example (page 104) that illustrates how to use the JDBC API for handling large
result sets in Vertica.

 Describes the automatic creation of temp files (page 105) during processing.

Command Reference for Handling Large Result Sets

This section describes the JDBC API for handling large result sets.

Commands

 setStreamingLRS (page 103)

 getStreamingLRS (page 104)

 setMaxLRSMemory (page 104)

 getMaxLRSMemory (page 104)

setStreamingLRS

Sets the Streaming Mode to true or false. Enabling the Streaming mode causes data to be
retrieved in small chunks that the client application can consume. When the client application
needs more data, it is fetched from the server.

By default, streaming mode is enabled. If this mode is disabled, all the data is fetched from the
server in one chunk and cached on the client side.

Syntax

public void setStreamingLRS(boolean streaming)

Parameters

boolean
Where true enables streaming mode (the default) and false disables
it.

-104-

Programmer's Guide

Notes

If large result sets are configured to be fetched in streaming mode and a query is currently running,
wait for it to complete before issuing another query. Otherwise, Vertica returns an error indicating
that it is not possible to run a query while retrieving a large result set. To avoid this, use
non-streaming mode.

getStreamingLRS

Retrieves the status of streaming mode: true or false.

Syntax

public Boolean getStreamingLRS()

Returns

Returns the status of streaming mode: true (on) or false (off).

setMaxLRSMemory

Sets the maximum memory size that can be used to store the result set fetched from the database.
If result set is greater than the maximum size, it is either stored in a temp file on disk (streaming
mode off) or fetched from the server in small chunks (streaming mode on).

Syntax

public void setMaxLRSMemory(int bytesmemory)

Parameters

bytesmemory
The maximum memory size which can be allocated for Large Result
Set. Provide the parameter value in bytes.

getMaxLRSMemory

Retrieves the maximum memory size allocated for the large result set.

Syntax

public int getMaxLRSMemory()

Returns

Returns the maximum memory size that is set for the large result set. The result is returned in
bytes.

Large Result Sets Example
public void largeSetExample(Connection conn) throws SQLException{

 String sql = "copy lrs from'lrs.dat' delimiter '|' null '\\n' DIRECT";

 Statement stmt = conn.createStatement();

 stmt.execute(sql);

 Statement stmt1 = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

-105-

 Using JDBC

 ResultSet.CONCUR_UPDATABLE);

 // Disables streaming mode.

 ((com.vertica.PGConnection)conn).setStreamingLRS(false);

 // Returns and prints the status of streaming mode.

 Boolean b1 = ((com.vertica.PGConnection)conn).getStreamingLRS();

 System.out.println("Streaming output :" + b1);

 // Sets the maximum size, in bytes, that can be used to

 // store the result set to 1024*1024*200.

 ((com.vertica.PGConnection)conn).setMaxLRSMemory(1024*1024*200);

 // Returns and prints the maximum size, in bytes, that can be

 // used to store the result set.

 int mem1 = ((com.vertica.PGConnection)conn).getMaxLRSMemory();

 System.out.println("Max LRS Memory :" + mem1);

 String sql1 = "select * from lrs limit 1000000";

 stmt1.executeQuery(sql1);

}

Temp Files Created During Processing

The JDBC driver creates vtRS*.dmp files in the /tmp directory on the client machine when large
result sets are processed, and they are removed when the application using the JDBC driver exits.
If the JDBC driver is used by an application that doesn't exit, like Tomcat, these files are left in
/tmp, at which point they can accumulate and consume disk space. To relocate them, pass an
alternative value to the jvm for the java.io.tmpdir property:

-Djava.io.tmpdir=/some/other/directory

Re-executing Failed Statements
In mission-critical systems, failed statements are typically executed again.

To re-execute a statement that has failed:

1 Catch the exception.

2 Print the error message for the exception (optional).

3 Establish a new connection.

4 Re-execute the statement.

The following example illustrates how to re-execute a query:

try{

 rs = stmt.executeQuery("SELECT COUNT(*) FROM pdstest");

 }catch(Exception e){

 resultStream.println(e.getMessage());

 resultStream.println("conn3 caught exception, reconnecting");

 conn=pds.getConnection();

 stmt = conn.createStatement();

 rs = stmt.executeQuery("SELECT COUNT(*) FROM pdstest");

 }

-106-

Programmer's Guide

Temporary Tables and AUTOCOMMIT
When working with temporary tables through JDBC, you must disable AUTOCOMMIT if the
temporary table is set to ON COMMIT DELETE ROWS. Otherwise, you will see unexpected
behavior, such as rows that should have been deleted on commit remaining in the table.

JDBC Examples
This section contains examples of using JDBC with Vertica.

 Executing Queries (page 106)

 Tracking Load Status (page 107)

 Sample JDBC Application (page 108)

Executing Queries

The following sample code demonstrates how to:

 Connect to a Vertica Database using the JDBC driver

 Execute various DDL queries (for example, creating a table and projection)

 Execute various DML queries (for example, Select and Delete)

import java.sql.*;

import java.util.Properties;

public class ExecutingQueriesExample {

 public static void main(String[] args) {

 try {

 Class.forName("com.vertica.Driver");

 } catch (ClassNotFoundException e) {

 // Could not find the driver class. Likely an issue

 // with finding the .jar file.

 System.err.println("Could not find the JDBC driver class.");

 e.printStackTrace();

 return; // Bail out. We cannot do anything further.

 }

 Properties myProp = new Properties();

 myProp.put("user", "release");

 myProp.put("password", "password123");

 Connection conn;

 try {

 conn = DriverManager.getConnection(

 "jdbc:vertica://VerticaHost:5433/ExampleDB", myProp);

 // Create a statement object for the connection.

 Statement stmt = conn.createStatement();

 // Drop any existing table

 try {

 stmt.execute("DROP TABLE address_book");

 } catch (Exception e) {} // Ignore any table not found error.

-107-

 Using JDBC

 /*

 * Use execute for DDL (Data Definition Language) queries such as

 * Create and Copy. Can also be used for DML queries, in which case,

 * may want to check to see if a ResultSet was created. Returns true

 * if the first result is a ResultSet. Use getResultSet() to

 * retrieve the result set if it exists.

 */

 stmt.execute("CREATE TABLE address_book (Last_Name char(50) " +

 "default '', First_Name char(50),Email char(50), " +

 "Phone_Number char(50))");

 /*

 * Use executeUpdate for DML(Data Manipulation Language) queries

 * which do not return a result set, such as INSERT, UPDATE, and

 * DELETE Can also be used for DDL queries Returns an int, the row

 * count after INSERT, UPDATE or DELETE or 0 if its a DDL query

 */

 stmt.executeUpdate("INSERT INTO address_book "

 + "VALUES ('Allen', 'Alice', 'tamarrow@example.com',"

 + " '555-380-6466')");

 stmt.executeUpdate("INSERT INTO address_book (First_Name, Email) "

 + "VALUES ('Bob','bob@example.com')");

 /*

 * Use executeQuery for DML queries which return result sets such as

 * SELECT. This example lists all of the data inserted earlier.

 */

 ResultSet rs = null;

 rs = stmt.executeQuery("SELECT First_Name, " +

 "Last_Name FROM address_book");

 int x = 1;

 while (rs.next()) {

 System.out.println(x + ". " + rs.getString(1).trim() + " "

 + rs.getString(2).trim());

 x++;

 }

 // Remove the table

 stmt.execute("DROP TABLE address_book");

 } catch (SQLException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

}

Tracking Load Status

This example illustrates how to do the following for both batch inserts and batch updates:

 Identify accepted and rejected rows

 Determine the number of accepted and rejected rows

For an overview, see Tracking Load Status on the Server (page 93).

-108-

Programmer's Guide

Note: If Vertica encounters an error during a batch insert, all the statements except for the error
statement are run. If it encounters an error during a batch update, only the statements before
the error statement are run.

// prepare statement

String sql = "insert into test_batch values(?,?)";

PreparedStatement pstmt = dbConn.prepareStatement(sql);

Int[] counts;

try {

 // add batch

 pstmt.setString(1, "1");

 pstmt.setInt(2, 1);

 pstmt.addBatch();

 // add another batch

 pstmt.setString(1, "3");

 pstmt.setInt(2, 2);

 pstmt.addBatch();

 // execute batch

 counts = pstmt.executeBatch();

 // print per-row status

 for (int i = 0; i < counts.length; ++i)

 resultStream.println("Row " + (i + 1) + ": status "

 + counts[i]);

 // print numbers of accepted and rejected rows

 resultStream.println("Accepted rows: "

 + ((PGStatement) pstmt).getNumAcceptedRows());

 resultStream.println("Rejected rows: "

 + ((PGStatement) pstmt).getNumRejectedRows());

 pstmt.close();

} catch (SQLException e) {

 while (e != null) {

 System.out.println(e.getMessage());

 e = e.getNextException();

 }

 pstmt.close();

Sample JDBC Application

This sample application assumes that it is running on the same machine as the Vertica instance

and that your username is devel.

import java.sql.*;

// Create a table, create a projection, insert a row, // query the table, and drop

the table (including the projection)

class jdbc_test

{

 // Static SQL statements

 static String create_table =

 "CREATE TABLE VTEST (COLUMN_1 CHAR(50));";

 static String create_projection =

 "CREATE PROJECTION VTEST_PROJ (COLUMN_1) AS SELECT COLUMN_1 FROM VTEST;";

 static String insert_row =

 "INSERT INTO VTEST VALUES ('Testing vertica');";

 static String select_row =

-109-

 Using JDBC

 "SELECT * FROM VTEST;";

 static String drop_table =

 "DROP TABLE VTEST CASCADE;";

 public static void main(String args[]) throws Exception

 {

 //try to load the class

 Class.forName("com.vertica.Driver");

 //get a connection to the database

 Connection db = DriverManager.getConnection

 ("jdbc:vertica://VerticaHost:5433/testdb", "devel", "");

 //create a statement object

 Statement st = db.createStatement();

 //execute SQL statements

 st.executeUpdate(create_table);

 st.executeUpdate(create_projection);

 st.executeUpdate(insert_row);

 // print out the result set

 ResultSet rs = st.executeQuery(select_row);

 while(rs.next())

 {

 System.out.println(rs.getObject(1));

 }

 //clean up

 st.executeUpdate(drop_table);

 rs.close();

 st.close();

 db.close();

 }

}

-110-

Using ADO.NET

The Vertica driver for ADO.NET allows applications written in C# or other .NET languages to read
data from, update, and load data into Vertica databases. It provides a data adapter that facilitates
reading data from a database into a data set, and then writing changed data from the data set back
to the database. It also provides a data reader (VerticaDataReader (page 124)) for reading data
and autocommit (page 124) functionality for committing transactions automatically.

For more information about ADO.NET, see:

 Overview of ADO.NET (http://msdn.microsoft.com/en-us/library/h43ks021(vs.85).aspx)

 .NET Framework Developer's Guide

Creating an ADO.NET DSN Entry (optional)
If you want to connect to Vertica through a Data Source Name (DSN), you need to add an entry to

the machine configuration file (machine.config).

To add an entry to machine.config:

1 Back up the file before you modify it. machine.config is a .NET Framework core file, so it is

imperative that you have a functional copy.

The default location for machine.config varies depending upon whether it is 32 or 64 bits:

 32 bit —
C:\Windows\Microsoft.NET\Framework\v2.0.50727\CONFIG\machine.confi

g

 64 bit —

C:\Windows\Microsoft.NET\Framework64\v2.0.50727\CONFIG\machine.con

fig

2 Open machine.config in a text or XML editor.

3 Locate the section called <connectionStrings>.

4 Use the following format to add an entry for Vertica in this section:

<add name="DSNEntryName"

connectionString="DATABASE=NameOfDatabase;SERVER=ServerAddress;POR

T=PortNumber;USER=UserName"

providerName="vertica">

</add>

Where:

 name is a unique name to specify the entry. Use alphanumeric characters.

 connection string is the connection string to the Vertica database. See Connecting to the
Database (page 111).

 providerName is always "vertica".

For example:

http://msdn.microsoft.com/en-us/library/h43ks021(vs.85).aspx

-111-

 Using ADO.NET

<add name="VerticaSql"

connectionString="DATABASE=ADOREGRESS01;SERVER=10.10.21.245;PORT=5

433;USER=dba"

providerName="vertica">

</add>

Setting the Locale for ADO.NET Sessions
 ADO.NET applications use a UTF-16 character set encoding and are responsible for

converting any non-UTF-16 encoded data to UTF-16. The same cautions as for ODBC apply if
this encoding is violated.

 The ADO.NET driver converts UTF-16 data to UTF-8 when passing to the Vertica server and
converts data sent by Vertica server from UTF-8 to UTF-16

 ADO.NET applications should set the correct server session locale by executing the SET

LOCALE TO command in order to get expected collation and string functions behavior on the

server.

 If there is no default session locale at the database level, ADO.NET applications need to set

the correct server session locale by executing the SET LOCALE TO command in order to get

expected collation and string functions behavior on the server. See the SET command in the
SQL Reference Manual

Creating and Closing Database Connections
This section describes:

 How to use a connection string to connect to the database (page 111)

 Connection string keywords (page 112)

 How to close a database connection (page 111)

Connecting to the Database

To connect to the database:

1 Create a connection using a connection string. See Connection String Keywords (page 112)
for a list of available keywords.

For example:

String connectString =

"DATABASE=vmartdb;SERVER=cluster_host;PORT=5433";

If you are using a DSN, specify the name of the entry you added to Machine.config. (See
Creating an ADO.NET DSN Entry (optional) (page 110).)

String connectString = "DSN=DSNEntryName";

2 Build a Vertica connection object that specifies the connection string you created in step 1.

C# Example:

VerticaConnection _conn = new VerticaConnection(connectString)

3 Open the connection.

-112-

Programmer's Guide

C# Example:

_conn.Open();

At this point, you can pass the connection to a command object and use the connection to read
data from, update, or load data into the database.

See Also

Using SSL: Installing certificates on Windows (page 115)

Connection String Keywords

Connection string keywords control the behavior of a connection.

Keyword Description Default Value

Host/Server Address or name of the server to connect to. string.Empty

Port Port where Vertica is running. 5433

Database Name of the Vertica database to connect to. string.Empty

UserName Name of the user or client connecting to the database. string.Empty

Password Password of the user or client connecting to the database. string.Empty

SSL Specifies whether to use Secure Socket Layer (true) or not
(false). See Implementing Security.

false

Timeout Specifies the number of seconds to wait for a connection. 15

Pooling Specifies whether to use connection pooling (true) or not
(false).

Connection pooling is useful for server applications
because it allows the server to reuse connections. This
saves resources and enhances the performance of
executing commands on the database. It also reduces the
amount of time a user must wait to establish a connection
to the database.

true

MinPoolSize Minimum number of connections allowed in the
connection pool. Only has an effect if Pooling is set to true.

1

MaxPoolSize Maximum number of connections allowed in the
connection pool. Only has an effect if Pooling is set to true.

20

CommandTimeout The wait time, in seconds, before terminating the attempt
to execute a command and generating an error.

20

PreloadReader Specifies whether to use deprecated cached row reader
(true) or not (false). Vertica Systems, Inc. recommends
that you do not use the cached row reader.

false

RowBufferSize Size in MB for the in-memory buffer for the
BufferedDataReader (page 124).

100

CacheDirectory Directory where BufferedDataReader (page 124) puts
temporary files. If no directory is set, Vertica defaults to the

string.Empty

-113-

 Using ADO.NET

Windows temp directory. user temp

IsolationLevel Sets the transaction isolation level for Vertica. See
Transactions for a description of the different transaction
levels. This value is either Serializable, ReadCommitted,
or Unspecified. See Setting the Transaction Isolation
Level (page 113) for an example of setting the isolation
level using this keyword.

Note: By default, this value is set to

IsolationLevel.Unspecified, which means the connection
uses the server's default transaction isolation level.
Vertica's default isolation level is
IsolationLevel.ReadCommitted.

IsolationLevel.Unspecifi
ed

DSN Reads a named connection string from machine.config.
See Creating an ADO.NET DSN Entry (optional) (page
110).

string.Empty

Setting the Transaction Isolation Level

You can set the transaction isolation level on a per-connection and per-transaction basis. See
Transaction for an overview of the transaction isolation levels supported in Vertica. To set the
default transaction isolation level for a connection, use the IsolationLevel keyword in the
connection string (see Connection String Keywords (page 112) for details). To set the isolation
level for an individual transaction, pass the isolation level to the

VerticaConnection.BeginTransaction() method call to start the transaction.

The following example demonstrates:

 getting the connection's transaction isolation level.

 setting the connection's isolation level using the connection string.

 setting the transaction isolation level for a new transaction.

using System;

using System.Data;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using vertica;

using verticaTypes;

namespace IsolationLevelExample

{

 class Program

 {

 static void Main(string[] args)

 {

 // Create a connection with the default level

 string connectionString = "DATABASE=ExampleDB;SERVER=VerticaHost;"

 + "PORT=5433;USER=ExampleUser;PASSWORD=password123";

-114-

Programmer's Guide

 VerticaConnection conn = new VerticaConnection(connectionString);

 try

 {

 conn.Open();

 // Print current isolation level. Should be "Unspecified" which

means

 // use Vertica's default (ReadCommitted).

 Console.WriteLine("Connection isolation Level: " +

 conn.IsolationLevel.ToString());

 // Close the connection to finish

 conn.Close();

 }

 catch (Exception e)

 {

 Console.WriteLine(e.ToString());

 }

 // Create another connection, setting the isolation level in the

connection

 // string to Serializable.

 string connectionString2 = connectionString

 + ";IsolationLevel=Serializable";

 VerticaConnection conn2 = new VerticaConnection(connectionString2);

 try

 {

 conn2.Open();

 // Print current isolation level. Should be Serializable.

 Console.WriteLine("Connection #2 Isolation Level: "

 + conn2.IsolationLevel.ToString());

 // Create a transaction with a different isolation level

 VerticaTransaction trans = conn2.BeginTransaction(

 IsolationLevel.ReadCommitted);

 // Print the transaction's isolation level

 Console.WriteLine("Transaction isolation level: "

 + trans.IsolationLevel.ToString()); trans.Rollback();

 // Close the connection to finish

 conn2.Close();

 }

 catch (Exception e)

 {

 Console.WriteLine(e.ToString());

 }

 }

 }

}

When run, the example code prints the following to the system console:

Authenticate: System.IO.BufferedStream

Connection isolation Level: Unspecified

Authenticate: System.IO.BufferedStream

Connection #2 Isolation Level: Serializable

-115-

 Using ADO.NET

Transaction isolation level: ReadCommitted

Using SSL: Installing Certificates on Windows

The Vertica ADO.NET driver uses the default Windows key store when looking for its certificates.
This is the same key store that Internet Explorer uses, for example.

To import the server and client certificates into the Windows key store:

1 Double-click the certificate.

2 Let Windows determine the key type, and click Install.

Since it is necessary to establish a chain of trust, you might need to import the public certificate for
your CA (especially if it is a self-signed certificate):

1 Double-click the certificate.

2 Select Place all certificates in the following store.

3 Click Browse, select Trusted Root Certification Authorities and click Next.

4 Click Install.

Closing a Database Connection

When you're finished with the database, close the connection. Failure to close the connection can
deteriorate the performance and scalability of your application. It can also prevent other clients
from obtaining locks.

 _conn.Close();

Querying the Database Programmatically
This section describes how to create queries to do the following programmatically:

 Read data from the database (page 115)

 Insert data into the database (page 116)

 Load data into the database (page 117)

 Perform a bulk copy into the database (page 118)

Reading Data

To read data:

1 Create a connection to the database (page 111).

2 Create a command object using the connection.

VerticaCommand command = _conn.CreateCommand();

3 Create a query.

command.CommandText =

 "SELECT fat_content " +

 "FROM (SELECT DISTINCT fat_content " +

-116-

Programmer's Guide

 " FROM product_dimension " +

 " WHERE department_description " +

 " IN ('Dairy') " +

 " ORDER BY fat_content) AS food " +

 "LIMIT 5;";

command.Connection = _conn;

4 Execute the reader to return the results from the query. The following command calls the
ExecuteReader method of the VerticaCommand object to obtain the VerticaDataReader
object.

The following examples call the ForwardOnlyDataReader, which is the default
implementations:

VerticaDataReader dr = command.ExecuteReader(CommandBehavior.Default);

VerticaDataReader dr = command.ExecuteReader();

VerticaDataReader dr =

command.ExecuteReader(CommandBehavior.Default,false);

The following example specifies the BufferedDataReader:

VerticaDataReader dr =

command.ExecuteReader(CommandBehavior.Default,true);

The following example will not work because the behavior parameter is not present:

VerticaDataReader dr = command.ExecuteReader(,true);

5 Read the data. The data reader returns results in a sequential stream. Therefore, you must
read data from tables row-by-row. The following example uses a while loop to accomplish this:

 Console.WriteLine(" fat content");

 Console.WriteLine(" -----------");

 int rows = 0;

 while (dr.Read())

 {

 Int64 content = dr.GetValue(0);

 Console.WriteLine(" " + content);

 ++rows;

 }

 Console.WriteLine(" (" + rows + " rows)");

6 When you're finished, close the data reader to free up resources.

dr.Close();

Inserting Data

To insert data:

1 Create a connection to the database (page 111).

2 Create a command object using the connection.

VerticaCommand command = _conn.CreateCommand();

3 Insert data.

The following is an example of a simple insert. Note that is does not contain a COMMIT
statement because ADO.NET provider operates in autocommit mode (page 124) by default.

command.CommandText =

-117-

 Using ADO.NET

 "INSERT into tabled(field_float8) values (7.4)";

 Int32 rowsAdded = command.ExecuteNonQuery();

The following is an example of a simple insert using a parameter.

command.CommandText =

 "INSERT into tabled(field_float8) values (:a)";

 command.Parameters.Add(new VerticaParameter(":a",

verticaDbType.Double));

 command.Parameters[0].Value = 7.4D;

 Int32 rowsAdded = command.ExecuteNonQuery();

Loading Data

Loading Data Stored on a Node

To load data that is stored on a database node, you will just use a VerticaCommand object to
create a COPY command:

1 Create a connection to the database (page 111) via the node on which the data file is stored.

2 Create a command object using the connection.

VerticaCommand command = _conn.CreateCommand();

3 Copy data.

The following is an example of using the COPY command to load data. Note that is does not
contain a COMMIT statement because ADO.NET provider operates in autocommit mode by
default.

command.CommandText =

 "COPY public.product_dimension FROM

'/dbadmin/proj/sql/product_data'";

 Int32 rowsAdded = command.ExecuteNonQuery();

Streaming from the Client via VerticaCopyIn

The VerticaCopyIn class lets you stream data from the client to the database. The syntax for
instantiating a VerticaCopyIn object is:

new VerticaCopyIn(queryCommand, connection [, fromStream])

The following table explains the parameters in the above command.

Parameter

queryCommand either a VerticaCommand object or a string containing the COPY
command to be issued on the database to load the data.

connection a VerticaConnection object that is connected to the database into which
you want to load the data.

fromStream an optional Stream interface object that will supply the data to be loaded
into the database.

-118-

Programmer's Guide

Once instantiated, you call the VerticaCopyIn object's Start() method to start streaming data. If

you supplied the object with a stream using the fromStream parameter, all of the data in the

stream will be sent to the database automatically. Otherwise, after calling Start(), you can write

data to the VerticaCopyIn object's CopyStream property, which is a VerticaCopyInStream.

Once your data has been streamed to the database, call the End() method to successfully end

the bulk load. If you want to abandon the bulk load rather than committing it (for example, you

encounter an error while you are writing data via the CopyStream property), you can call the

Cancel() method instead of End().

The following example show how to create a procedure that will load data from a file into a
database. While it demonstrates using a FileStream object, remember that you can use any class
that implements the Stream interface to feed data to VerticaCopyIn.

public void BulkLoad(string connectString, string fileName,

 string tableName, string rejectPath,

 char recDelimiter)

 {

 FileStream fs = new FileStream(fileName, FileMode.Open);

 StringBuilder loadsql = new StringBuilder();

 // You may want to add RECORD

 // TERMINATOR as a parameter to this function.

 // It should probably be a string, since you

 // can have a multi-character record terminator, as in

 // a file created on Windows, e.g. new lines

 // are \r\n instead of Unix's \n

 loadsql.Append("COPY " + tableName + " FROM STDIN DIRECT DELIMITER '"

 + recDelimiter + "' REJECTED DATA '" + rejectPath + "'

RECORD TERMINATOR '\r\n';");

 VerticaConnection conn = new VerticaConnection(connectString);

 conn.Open();

 VerticaCommand vc = conn.CreateCommand();

 vc.CommandText = loadsql.ToString();

 vc.CommandType = CommandType.Text;

 VerticaCopyIn v = new VerticaCopyIn(vc, conn, fs);

 v.Start();

 v.End();

 }

Performing a Bulk Copy

This example performs a bulk copy from a Vertica database to a SQL Server database.

// connection string for local SQL Server database

string connectionString = "Server=(local);Database=vertdb;User ID=dbo;

Integrated Security=True;";

// Get data from the source table as a VerticaDataReader.

VerticaCommand commandSourceData = new VerticaCommand(

 "SELECT product_key, product_version, product_description, sku_number

 FROM product_dimension where product_key < 1000", _conn);

// use a buffered data reader

VerticaDataReader reader =

-119-

 Using ADO.NET

 commandSourceData.ExecuteReader(CommandBehavior.Default, true);

// Open the destination connection.

using (SqlConnection destinationConnection =

new SqlConnection(connectionString))

{

 destinationConnection.Open();

 // Set up the bulk copy object.

 // Note that the column positions in the source

 // data reader match the column positions in

 // the destination table so there is no need to

 // map columns.

 using (SqlBulkCopy bulkCopy =

 new SqlBulkCopy(destinationConnection))

 {

 bulkCopy.DestinationTableName = "products";

 try

 {

 // Write from the source to the destination.

 bulkCopy.WriteToServer(reader);

 }

 catch (Exception ex)

 {

 Console.WriteLine("Bulkcopy exception: " + ex.Message);

 }

 }

 // Close the Vertica DataReader.

 reader.Close();

Working with Transactions
When you connect to a database using the Vertica ADO.NET Driver, the connection is initially in
auto-commit mode. To collect multiple statements into a single transaction, execute the
beginTransaction function for the connection. The following code uses an explicit transaction to
insert one row each to a dimension table and fact table of the VMart schema.

1 Create a connection to the database (page 111).

2 Create a command object using the connection.

VerticaCommand command = _conn.CreateCommand();

3 Start an explicit transaction, and associate the command with it.

VerticaTransaction txn = _conn.BeginTransaction();

command.Connection = _conn;

command.Transaction = txn;

4 Execute the individual SQL statements to add rows.

command.CommandText =

 "insert into product_dimension values(...)";

command.ExecuteNonQuery();

command.CommandText =

 "insert into store_orders_fact values(...)";

5 Commit the transaction.

txn.Commit();

-120-

Programmer's Guide

Handling Parameters
VerticaParameters are an extension of the System.Data.DbParameter base class in ADO.NET
and are used to set parameters in commands sent to the server. Use Parameters in all queries
(SELECT/INSERT/UPDATE/DELETE) for which the values in the WHERE clause are not static;
that is for all queries that have a known set of columns, but whose filter criteria is set dynamically
by an application or end user. Using parameters in this way greatly decreases the chances of a
SQL injection issues that can occur when simply creating a sql query from a number of variables.

For example, the following typical query uses the string AZ as a filter.

SELECT customer_name, customer_address, customer_city, customer_state

FROM customer_dimension WHERE customer_state = 'AZ';

Instead, the query should be written to use placeholders. In the following example, the string AZ is
replaced by the parameter placeholder :P1.

SELECT customer_name, customer_address, customer_city, customer_state

FROM customer_dimension WHERE customer_state = :P1;

To create a parameter placeholder, place either the colon (:) or commercial at (@) character in
front of the parameter name in the actual query string. Do not insert any spaces between the
placeholder indicator (: or @) and the placeholder.

Note: If you omit the placeholder indicator (: or @), the server will return an error indicating that
<parameter-name> is not a valid column.

For example, the ADO.net code for the prior example would be written as:

VerticaCommand c = new VerticaCommand(“SELECT customer_name, customer_address,

customer_city, customer_state

FROM customer_dimension WHERE customer_state = :P1”, _conn);

VerticaParameter p = new VerticaParameter(“P1”, DbType.Varchar);

 p.Value = 'AZ';

Parameters require that a valid DbType, VerticaDbType, or System type be assigned to the
parameter. See SQL Data Types for a mapping of System, Vertica, and DbTypes.

The following example illustrates how to use an insert command with parameters for values.

using System;

using System.Data;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using vertica;

namespace HandlingParameterExample

{

 class Program

 {

 static void Main(string[] args)

 {

 string connectionString = "DATABASE=ExampleDB;SERVER=VerticaHost;"

 + "PORT=5433;USER=ExampleUser;PASSWORD=password123";

-121-

 Using ADO.NET

 VerticaConnection conn = new VerticaConnection(connectionString);

 try

 {

 conn.Open();

 VerticaTransaction trans = conn.BeginTransaction();

 VerticaCommand command = new VerticaCommand(

 "INSERT INTO customers values (:id, :name, :address)", conn);

 // Add objects to parameter collection for the parameters in the

 // command

 command.Parameters.Add(new VerticaParameter("id",

DbType.Int32));

 command.Parameters.Add(new VerticaParameter("name",

DbType.String));

 command.Parameters.Add(new VerticaParameter("address",

DbType.String));

 // Set the direction of the parameters (input or output)

command.Parameters["id"].Direction = ParameterDirection.Input;

 command.Parameters["name"].Direction =

ParameterDirection.Input;

 command.Parameters["address"].Direction =

ParameterDirection.Input;

 // Bind some values to the parameters

 command.Parameters["id"].Value = 1;

 command.Parameters["name"].Value = "Allen, Alice";

 command.Parameters["address"].Value = "10 Main St.";

 // Execute the command to insert bound values

command.ExecuteNonQuery();

 // Bind more values to the parameters

 command.Parameters["id"].Value = 2;

 command.Parameters["name"].Value = "Billings, Bob";

 command.Parameters["address"].Value = "1817 Monroe St.";

 command.ExecuteNonQuery();

 // Commit the transaction to store data trans.Commit();

 // Close the connection to finish

 conn.Close();

 }

 catch (Exception e)

 {

 Console.WriteLine(e.ToString());

 }

 }

 }

}

Note: To see an example of this insert that uses literals instead of parameterized values, see
AutoCommit Functionality (page 124).

-122-

Programmer's Guide

Data Types

.NET Data Type ADO.NET Database Type Vertica Data Type API Get Method

Boolean Boolean Boolean GetBoolean()

Byte[] Binary Binary

VarBinary

GetValue()

Comment: There are no specific get methods for this type. Use GetValue() and cast to a Byte[].

Byte[] Byte Binary

VarBinary

GetValue()

Comment: There are no specific get methods for this type. Use GetValue() and cast to a Byte[].

Datetime DateTime Timestamp GetDateTime()

DateTime Date Date GetDate()

DateTime Time Time GetTime()

DateTimeOffset DateTimeOffset TimestampTZ

TimeTZ

GetValue()

Comment: There are no specific get methods for this type. Use GetValue() and cast to a DateTimeOffset.

Decimal Decimal Numeric GetDecimal()

Double Double Double GetDouble()

Guid Guid Not Supported GetGuid()

Int64 Int64 Integer GetInt16()

GetInt32()

GetInt64()

Object Object N/A GetValue()

Comment: Any value can be returned as an object type.

String AnsiString Varchar GetString()

String AnsiStringFixedLength Char GetString()

String String Varchar GetString()

String StringFixedLengt Char GetString()

TimeSpan Object Interval GetInterval()

-123-

 Using ADO.NET

Using the Vertica Data Adapter
The Vertica data adapter enables a client to exchange data between a data set and a Vertica
database. Specifically it can read data from a database into a data set, and then writing changed
data from the data set back to the database.

The following example shows how to use a data adapter to read from and insert into a dimension
table of the VMart schema.

1 Create a connection to the database (page 111).

2 Create a data adapter object using the connection and a select statement that retrieves all the
table's contents.

VerticaDataAdapter da = new VerticaDataAdapter("select * from

product_dimension where product_key < 10", _conn);

3 Set up the insert command for the data adapter, and bind variables for some of the columns.

da.InsertCommand = new VerticaCommand("insert into product_dimension

values(:key, :version, :desc)", _conn);

da.InsertCommand.Parameters.Add(new VerticaParameter("key",

DbType.Int32));

da.InsertCommand.Parameters.Add(new VerticaParameter("version",

DbType.Int32));

da.InsertCommand.Parameters.Add(new VerticaParameter("desc",

DbType.String));

da.InsertCommand.Parameters[0].SourceColumn = "product_key";

da.InsertCommand.Parameters[1].SourceColumn = "product_version";

da.InsertCommand.Parameters[2].SourceColumn =

"product_description";

da.TableMappings.Add("product_key", "product_key");

da.TableMappings.Add("product_version", "product_version");

da.TableMappings.Add("product_description",

"product_description");

4 Create and fill a Data set for this dimension table, and get the resulting DataTable.

Data set ds = new Data set();

da.Fill(ds,0,0,"product_dimension");

DataTable dt = ds.Tables[0];

5 Bind parameters and add two rows to the table.

DataRow dr = dt.NewRow();

dr["product_key"] = 838929;

dr["product_version"] = 5;

dr["product_description"] = "New item 5";

dt.Rows.Add(dr);

dr = dt.NewRow();

dr["product_key"] = 838929;

dr["product_version"] = 6;

dr["product_description"] = "New item 6";

-124-

Programmer's Guide

dt.Rows.Add(dr);

6 Extract the changes for the added rows. The program could print these.

 Data set ds2 = ds.GetChanges();

7 Send the modifications to the server.

Int updateCount = da.Update(ds2, "product_dimension");

8 Merge the changes into the original Data set, and mark it up to date.

 ds.Merge(ds2);

 ds.AcceptChanges();

Vertica Extensions for .NET
The Vertica ADO.NET driver provides the following extensions to .NET:

 AutoCommit Functionality (page 124)

 IDataReader Implementations (page 124)

AutoCommit Functionality

By default, the ADO.NET provider operates in autocommit mode. This means that that the commit
is executed before any other steps are taken. To disable autocommit for a transaction, use the
System.Data.ITransaction object.

The following example shows how to use a transaction to override autocommit.

VerticaTransaction txn = _conn.BeginTransaction();

VerticaCommand command = new VerticaCommand("insert into product_dimension

values(838929, 5, 'New item 5')", _conn);

// execute the insert

command.ExecuteNonQuery();

command.CommandText = "insert into product_dimension values(838929, 6, 'New item

6')";

// execute the second insert

command.ExecuteNonQuery();

// roll back both inserts

txn.Rollback();

IDataReader Implementations

VerticaDataReader is the Vertica implementation of IDataReader, and it provides the lowest
common denominator of IDataReader functionality. VerticaDataReader provides two
implementations: ForwardOnlyDataReader and BufferedDataReader.

ForwardOnlyDataReader

This implementation reads data as it becomes available from the socket in a forward-only,
sequential manner. When waiting for data, ForwardOnlyDataReader waits in blocking mode. This
means that if the client is not using the entire data set, it must either Close() the data reader or
Cancel() the command object that created it before continuing.

-125-

 Using ADO.NET

The advantage of this implementation is that it is a highly-efficient means of traversing through the
data set. The disadvantage is that it locks up the database for the duration of the read. This means
that long-running queries can cause resource constraints.

BufferedDataReader

This VerticaDataReader implementation uses a ring-buffer and threading model to keep a large
data set in memory. It also allows the buffer to spill to disk if the in-memory portion becomes full.
This implementation is useful for moving large volumes of data quickly off the server where it can
be run through analytic applications. Use the following keywords in the connection string to modify
how the BufferedDataReader behaves:

 Keyword Description Default Value

RowBufferSize Size in MB for the in-memory buffer for the
BufferedDataReader.

100

CacheDirectory Directory where BufferedDataReader puts temporary files.
If no directory is set, Vertica defaults to the Windows temp
directory.

string.Empty

user temp

-126-

Using Python

Vertica provides an ODBC driver so applications can connect to the Vertica database.

In order to use Python with Vertica, you must install the pyodbc module and a Vertica ODBC driver
on the machine where Python is installed. See Python Prerequisites (page 15).

Python on Linux

Most Linux distributions come with Python preinstalled. If you want a more recent version, you can
download and build it from the source code, though sometimes RPMs are also available. See the
the Python Web site http://www.python.org/download/ and click an individual release for
details. See also Python documentation http://www.python.org/doc/.

To determine the Python version on your Linux operating systems, type the following at a
command prompt:

python -V

The system returns the version; for example:

Python 2.5.2

Python on Windows

Python is not required to run natively on Windows operating systems, so it is not preinstalled. The
ActiveState Web site distributes a free Windows installer for Python called ActivePython
http://www.activestate.com/activepython/.

If you need installation instructions for Windows, see Using Python on Windows
http://docs.python.org/using/windows.html at python.org. Python on Windows
http://diveintopython.org/installing_python/windows.html at diveintopython.org provides
installation instructions for both the ActivePython and python.org packages.

The Python Driver Module (pyodbc)

Note: The native python driver is not supported.

Before you can connect to Vertica using Python, you need the pyodbc module, which
communicates with iODBC/unixODBC driver on UNIX operating systems and the ODBC Driver
Manager for Windows operating systems.

http://www.python.org/download/
http://www.python.org/doc/
http://www.activestate.com/activepython/
http://docs.python.org/using/windows.html
http://diveintopython.org/installing_python/windows.html

-127-

 Using Python

The pyodbc module is an open source , MIT-licensed Python module that implements the Python
Database API Specification v2.0, allowing you to use ODBC to connect to almost any database
from Windows, Linux, Mac OS/X, and other operating systems.

Vertica supports pyodbc version 2.1.6, which requires Python 2.4 or greater, up to 2.6. Vertica
does not support Python version 3.x. See Python Prerequisites (page 15) for additional details.

Download the source distribution from the pyodbc Web site
http://code.google.com/p/pyodbc/, unpack it and build it. See the pyodbc wiki
http://code.google.com/p/pyodbc/w/list for instructions.

Note: Links to external Web sites could change between Vertica releases.

External Resources

Python Database API Specification v2.0 http://www.python.org/dev/peps/pep-0249/

Python documentation http://www.python.org/doc/

Python Unicode Support for Wide Characters
The unixODBC and iODBC driver managers differ in how they support wide characters. The

SQLWCHAR data type is defined as wchar_t type on Windows (typedef wchar_t

SQLWCHAR;). On Windows, wchar_t is 16 bits wide, and on Linux, wchar_t is 32 bits wide. The

unixODBC driver follows the Windows ODBC API precisely and defines SQLWCHAR as 2-byte
characters. However, the iODBC driver defines SQLWCHAR as wchar_t, which expects and
returns 4-byte characters.

If an application does not follow the rules set by the driver manager, it can result in incorrect sizing
for the SQLWCHAR data type. To handle different sizes of SQLWCHAR using unixODBC or

iODBC, Vertica provides two ODBC configuration parameters: WideCharSizeIn and

WideCharSizeOut.

If your system uses UCS-2:

 WideCharSizeIn = 2

WideCharSizeOut = 4 If your system uses using UCS-4:

 WideCharSizeIn = 4

 WideCharSizeOut = 4

To change the Vertica ODBC configuration parameter, specify the setting in the odbc.ini file or at a
connection string.

The following code fragment illustrates a connection string that connects to the database and
specifies the type of unicode to use; for example, if UCS is less than 4, set WideCharSizeIn to 2. If
the system uses UCS-4, set WideCharSizeIn to 4:

if sys.maxunicode<65536:

 WideCharSizeIn="WideCharSizeIn=2"

else:

 WideCharSizeIn="WideCharSizeIn=4"

 connection_string = "DSN="+args[0]+";WideCharSizeOut=4;"+WideCharSizeIn

http://code.google.com/p/pyodbc/
http://code.google.com/p/pyodbc/w/list
http://www.python.org/dev/peps/pep-0249/
http://www.python.org/doc/

-128-

Programmer's Guide

 cnxn = pyodbc.connect(unicode(connection_string.encode('utf-8'),'utf-8'),

ansi=(not options.unicode), unicode_results=(options.unicode))

Configuring the ODBC Run-time Environment on Linux
To configure the ODBC run-time environment on Linux:

1 Create the odbc.ini file if it does not already exist.

2 Add the ODBC driver directory to the LD_LIBRARY_PATH system environment variable:

export LD_LIBRARY_PATH=/path-to-vertica-odbc-driver:$LD_LIBRARY_PATH

IMPORTANT! If you skip Step 2, the ODBC manager cannot find the driver in order to load it.

These steps are relevant only for unixODBC and iODBC. See their respective documentation for

details on odbc.ini.

See Also

unixODBC Web site http://www.unixodbc.org/

iODBC Web site http://www.iodbc.org/dataspace/iodbc/wiki/iODBC/

Querying the Database Using Python
The example session below uses pyodbc with the Vertica ODBC driver to connect Python to the
Vertica database.

iODBC Users:

SQLFetchScroll and SQLFetch functions cannot be mixed together
in iODBC code.

When using pyodbc with the iODBC driver manager, skip cannot
be used with the fetchall, fetchone, and fetchmany functions.

1 Open a database connection, create a table called TEST, and create temporary projections:

cnxn = pyodbc.connect(connection_string, ansi=True) cursor =

cnxn.cursor() # create table cursor.execute("CREATE TABLE TEST("

 "C_ID INT,"

 "C_FP FLOAT,"

 "C_VARCHAR VARCHAR(100),"

 "C_DATE DATE, C_TIME TIME,"

 "C_TS TIMESTAMP,"

 "C_BOOL BOOL)")

cursor.execute("SELECT IMPLEMENT_TEMP_DESIGN('TEST')")

2 Insert records into table TEST:

cursor.execute("INSERT into test

values(1,1.1,'abcdefg1234567890','1901-01-01','23:12:34','1901-01-01

09:00:09','t')")

http://www.unixodbc.org/
http://www.iodbc.org/dataspace/iodbc/wiki/iODBC/

-129-

 Using Python

3 Insert records using bind values:

values =

(2,2.28,'abcdefg1234567890','1901-01-01','23:12:34','1901-01-01

09:00:09','t')

cursor.execute("INSERT into test values(?,?,?,?,?,?,?)",

 values[0], values[1], values[2], values[3], values[4],

values[5], values[6])

4 Create a load file called load.dat:

load_file = open('/tmp/load.dat', 'w')

load_file.write('3,3.34,abcdefg1234567890,1901-01-01,23:12:34,1901-0

1-01

09:00:09,t')

load_file.close()

5 Insert records using the LCOPY command (bulk insert from file):

cursor.execute("LCOPY TEST FROM '/tmp/load.dat' DELIMITER ',' ")

6 Select data from the TEST table:

cursor.execute("SELECT * FROM TEST")

rows = cursor.fetchall()

for row in rows:

 print row

The following is the example output:

(1L, 1.1000000000000001, 'abcdefg1234567890', datetime.date(1901, 1,

1), datetime.time(23, 12, 34), datetime.datetime(1901, 1, 1, 9, 0, 9),

'1') (2L, 2.2799999999999998, 'abcdefg1234567890',

datetime.date(1901, 1, 1), datetime.time(23, 12, 34),

datetime.datetime(1901, 1, 1, 9, 0, 9), '1') (3L, 3.3399999999999999,

'abcdefg1234567890', datetime.date(1901, 1, 1), datetime.time(23,

12, 34), datetime.datetime(1901, 1, 1, 9, 0, 9), '1')

7 Drop the TEST table and its associated projections and close the database connection:

cursor.execute("DROP TABLE TEST CASCADE")

cursor.close()

cnxn.close()

Notes

SQLPrimaryKeys returns the table name in the primary (pk_name) column for unnamed primary

constraints. For example:

 Unnamed primary key:

CREATE TABLE schema.test(c INT PRIMARY KEY);

SQLPrimaryKeys

"TABLE_CAT", "TABLE_SCHEM", "TABLE_NAME", "COLUMN_NAME", "KEY_SEQ",

"PK_NAME" <Null>, "SCHEMA", "TEST", "C", 1, "TEST"

 Named primary key:

CREATE TABLE schema.test(c INT CONSTRAINT pk_1 PRIMARY KEY);

SQLPrimaryKeys

-130-

Programmer's Guide

"TABLE_CAT", "TABLE_SCHEM", "TABLE_NAME", "COLUMN_NAME", "KEY_SEQ",

"PK_NAME" <Null>, "SCHEMA", "TEST", "C", 1, "PK_1"

Vertica recommends that you name your constraints.

See Also

Loading Data Through ODBC (page 50)

-131-

Using Perl

Vertica provides an ODBC driver so applications can connect to the Vertica database.

In order to use Perl with Vertica, you must install the Perl driver modules (DBI and DBD::ODBC)
and a Vertica ODBC driver on the machine where Perl is installed. See Perl Prerequisites (page
15).

Perl on Linux

Most Linux distributions come with Perl preinstalled. If you want a more recent version, you can
download and build it from the source code, though sometimes RPMs are also available. See the
the Perl Web site http://www.perl.org/get.html for downloads. See also Perl documentation
http://www.perl.org/docs.html.

To determine the Perl version on your Linux operating systems, type the following at a command
prompt:

perl -v

The system returns the version; for example:

This is perl, v5.10.0 built for x86_64-linux-thread-multi

Perl on Windows

Although Perl is typically used on UNIX operating systems, it runs on Windows, as well. Perl is not
preinstalled on Windows operating systems. ActiveState distributes a free Windows installer for
Perl called ActivePerl http://www.activestate.com/activeperl/. Download the installer and
follow the steps in the Install Wizard.

A Perl tutorial http://perl.about.com/od/gettingstartedwithperl/ss/installperlwin_2.htm on
the About.com Web site walks you through using the ActivePerl install package.

The Perl Driver Modules (DBI and DBD::ODBC)

Note: The native perl driver is not supported.

Before you can connect to Vertica using Perl, you need the Perl driver modules. These modules
communicate with iODBC/unixODBC driver on UNIX operating systems or the ODBC Driver
Manager for Windows operating systems.

DBI (Database Interface) is the standard database interface module for Perl and requires a DBD::*
driver module as a translator to talk to the database. Both modules are required to run Perl.

http://www.perl.org/get.html
http://www.perl.org/docs.html
http://www.activestate.com/activeperl/
http://perl.about.com/od/gettingstartedwithperl/ss/installperlwin_2.htm

-132-

Programmer's Guide

Vertica supports the following Perl modules:

 DBI version 1.609 (DBI-1.609.tar.gz)

 DBD ODBC version 1.22 (DBD-ODBC-1.22.tar.gz)

Download Perl drivers from the CPAN modules downloads
http://www.cpan.org/modules/by-category/07_Database_Interfaces/DBD/ site, unpack, and
build them. See their accompanying readme files for instructions.

Note: Though we do our best to keep up with changes, links to external Web sites could
change between Vertica releases.

Perl Unicode Support
Perl does not implement the Unicode standard or all of the accompanying technical reports;
however, Perl supports many Unicode features. If you want to understand how Perl implements
Unicode support, see the Perl Unicode tutorial, perlunitut
http://perldoc.perl.org/perlunitut.html.

Note: DBD::ODBC does not compile with iODBC in Unicode mode, so if you use iODBC, your
system uses ANSI. If you want to use Unicode, you must use unixODBC.

Querying the Database Using Perl
The example session below uses DBI with the Vertica ODBC driver to connect Perl to the Vertica
database.

1 Call Perl and instruct the program to warn on uninitialized variables, restrict unsafe constructs,
and to use the DBI and Data::Dumper modules:

#!/bin/perl -w

use strict;

use DBI;

use Data::Dumper;

2 Open a database connection:

my $db = DBI->connect("dbi:ODBC:VerticaSQL",undef, undef, {AutoCommit

=> 1, });

3 Create a table called TEST and create temporary projections:

$db->do("CREATE TABLE TEST(\

 C_ID INT, \

 C_FP FLOAT,\

 C_VARCHAR VARCHAR(100),\

 C_DATE DATE, C_TIME TIME,\

 C_TS TIMESTAMP,\

 C_BOOL BOOL)");

$db->do("SELECT IMPLEMENT_TEMP_DESIGN('TEST')");

4 Insert records into TEST:

$db->do("INSERT into test

values(1,1.1,'abcdefg1234567890','1901-01-01','23:12:34','1901-01-01

http://www.cpan.org/modules/by-category/07_Database_Interfaces/DBD/
http://perldoc.perl.org/perlunitut.html

-133-

 Using Perl

09:00:09','t')");

5 Insert records using bind values:

my @values =

(2,2.28,'abcdefg1234567890','1901-01-01','23:12:34','1901-01-01

09:00:09','t');

my $sth = $db->prepare_cached("INSERT into test

values(?,?,?,?,?,?,?)"); $sth->execute(@values);

6 Create a load file called load.dat:

open(FH, ">", '/tmp/load.dat');

print FH '3,3.34,abcdefg1234567890,1901-01-01,23:12:34,1901-01-01

09:00:09,t';

close(FH);

7 Insert records using bind LCOPY command (bulk insert from file):

$db->do("LCOPY TEST FROM '/tmp/load.dat' DELIMITER ',' ");

8 Select data from table TEST:

$sth = $db->prepare_cached("SELECT * FROM TEST"); my $res =

$sth->execute();

print Dumper($sth->fetchall_arrayref());

The following is the example output:

$VAR1 = [

 [

 '1',

 '1.1',

 'abcdefg1234567890',

 '1901-01-01',

 '23:12:34',

 '1901-01-01 09:00:09',

 '1'

],

 [

 '2',

 '2.28',

 'abcdefg1234567890',

 '1901-01-01',

 '23:12:34',

 '1901-01-01 09:00:09',

 '1'

],

 [

 '3',

 '3.34',

 'abcdefg1234567890',

 '1901-01-01',

 '23:12:34',

 '1901-01-01 09:00:09',

 '1'

]

-134-

Programmer's Guide

];

9 Drop the TEST table and its associated projections, and close the database connection:

$db->do("DROP TABLE TEST CASCADE");

$sth->finish;

$db->disconnect;

See Also

Loading Data Through ODBC (page 50)

-135-

Using vsql

vsql is a character-based, interactive, front-end utility that lets you type SQL statements and see
the results. It also provides a number of meta-commands and various shell-like features that
facilitate writing scripts and automating a variety of tasks.

You can connect to vsql from the:

 Administration Tools (page 136)

 Linux command line (page 137)

General Notes

 SQL statements can be spread over several lines for clarity.

 vsql can handles input and output in UTF-8 encoding. Note that the terminal emulator running
vsql must be set up to display the UTF-8 characters correctly. Follow the documentation of
your terminal emulator. The following example shows the settings in PuTTy from the Change
Settings > Window > Translation option:

See also Best Practices for Working with Locales.

 Cancel SQL statements by typing Ctrl+C.

 Traverse command history by typing Ctrl+R.

 When you disconnect a user session, any transactions in progress are automatically rolled
back.

 To view wide result sets, use the Linux less utility to truncate long lines.

1. Before connecting to the database, specify that you want to use less for query output:

$ export PAGER=less

2. Connect to the database.

-136-

Programmer's Guide

3. Query a wide table:

=> select * from wide_table;

4. At the less prompt, type:

-S

 If a shell running vsql fails (crashes or freezes), the vsql processes continue to run even if you
stop the database. In that case, log in as root on the machine on which the shell was running
and manually kill the vsql process. For example:

ps -ef | grep vertica

fred 2401 1 0 06:02 pts/1 00:00:00 /opt/vertica/bin/vsql -p

5433 -h test01_site01 quick_start_single

kill -9 2401

Connecting From the Administration Tools
You can use the Administration Tools to connect to a database using vsql on any node in the
cluster.

1 Log in as any user that does not have root privileges. (Vertica does not allow users with root
privileges to connect to a database for security reasons).

2 Run the Administration Tools.

/opt/vertica/bin/admintools

3 On the Main Menu, select Connect to Database.

4 Supply the database password if asked:

Password:

5 The Administration Tools connect to the database and transfer control to vsql.

Welcome to the vsql, Vertica_Database v4.1.x interactive terminal.

Type: \h for help with SQL commands

 \? for help with vsql commands

 \g or terminate with semicolon to execute query

 \q to quit

vmartdb=>

Note: See Meta-Commands (page 143) for the various commands you can run while
connected to the database through the Administration Tools.

-137-

 Using vsql

Connecting from the Command Line
You can use vsql from the command line to connect to a database from any Linux machine,

including those not part of the cluster. Copy /opt/vertica/bin/vsql to your machine.

Syntax

/opt/vertica/bin/vsql [option...] [dbname [username]]

Parameters

option One or more of the vsql command line options (on page
137)

dbname The name of the target database

username The name of the user to connect as

Notes

 If the database is password protected, you must specify the -w (see "w password" on page

141) or --password command line option.

 The default dbname and username is your Linux user name.

 If the connection cannot be made for any reason (for example, insufficient privileges, server is
not running on the targeted host, etc.), vsql returns an error and terminates.

 vsql returns the following informational messages:

 0 to the shell if it finished normally

 1 if a fatal error of its own (out of memory, file not found) occurs

 2 if the connection to the server went bad and the session was not interactive

 3 if an error occurred in a script and the variable ON_ERROR_STOP was set

 Unrecognized words in the command line might be interpreted as database or user names.

Example

The following example redirects vsql output and error messages into an output file called
retail_queries.out and captures any error messages:

$ vsql --echo-all < retail_queries.sql > retail_queries.out 2>&1

Command Line Options

This section contains the command-line options.

? --help

-? --help displays help about vsql command line arguments and exits.

-138-

Programmer's Guide

a --echo-all

-a --echo-all prints all input lines to standard output as they are read. This is more useful for

script processing than interactive mode. It is equivalent to setting the variable ECHO (page 161) to

all.

A --no-align

-A --no-align switches to unaligned output mode. (The default output mode is aligned.)

c command --command command

-c command --command command runs one command and exits. This is useful in shell scripts.

The command must be either a command string that is completely parsable by the server (it
contains no vsql specific features), or a single meta-command. In other words, you cannot mix
SQL and vsql meta-commands. To achieve that, you can pipe the string into vsql like this:

echo "\\timing\\\\select * from t" | ../Linux64/bin/vsql

Timing is on.

 i | c | v

---+---+---

(0 rows)

Note: If you use double quotes with echo, you must double the backslashes.

d dbname --dbname dbname

-d dbname --dbname dbname specifies the name of the database to connect to. This is

equivalent to specifying dbname as the first non-option argument on the command line.

e --echo-queries

-e --echo-queries copies all SQL commands sent to the server to standard output as well.

This is equivalent to setting the variable ECHO (page 161) to queries.

E

-E displays queries generated by internal commands.

f filename --file filename

-f filename --file filename uses the file filename as the source of commands instead of

reading commands interactively. After the file is processed, vsql terminates. This is in many ways

equivalent to the internal command \i (see "i FILE" on page 154).

If filename is - (hyphen), the standard input is read.

file:\\timing\select%20*%20from%20t

-139-

 Using vsql

Using this option is subtly different from writing vsql < filename. In general, both do what you

expect, but using -f enables some nice features such as error messages with line numbers.

There is also a slight chance that using this option reduces the start-up overhead. On the other
hand, the variant using the shell's input redirection is (in theory) guaranteed to yield exactly the
same output that you would have gotten had you entered everything by hand.

Using f filename to Read Data Piped into vsql

To read data piped into vsql from a data file:

1 Create the following:

 A named pipe.

For example, to create a named pipe called pipe1:

mkfifo pipe1

 A data file. The data file in this example is called data_file.

 The command file that selects the table into which you want to copy data, copies the data
from the pipe file (pipe1), and removes the pipe file. The command file in this example is
called command_line.

2 From the command line, run a command that pipes the data file (data_file) into the appropriate
table through vsql. The following example pipes the data file into public.shipping_dimension in
the VMart database.

cat data_file > pipe1 | vsql -f 'command_line'

Example data_file:

110|EXPRESS|SEA|FEDEX

111|EXPRESS|HAND CARRY|MSC

112|OVERNIGHT|COURIER|USPS

Example command_line file:

SELECT * FROM public.shipping_dimension;

\set dir `pwd`/

\set file '''':dir'pipe1'''

COPY public.shipping_dimension FROM :file delimiter '|';

SELECT * FROM public.shipping_dimension;

--Remove the pipe1

\! rm pipe1

F separator --field-separator separator

-F separator --field-separator separator specifies the field separator for unaligned

output (default: "|") (-P fieldsep=). (See -A --no-align (page 138).) This is equivalent to \pset

(page 156) fieldsep or \f (see "f [string]" on page 153).

h hostname --host hostname

-h hostname --host hostname specifies the host name of the machine on which the server

is running.

-140-

Programmer's Guide

Notes:

 If you are using client authentication with a connection method of either "gss" or" "krb5"
(Kerberos), you are required to specify -h hostname.

 If you are using client authentication with a "local" connection type specified, avoid using -h

hostname if you want to match the client authentication entry.

H --html

-H --html turns on HTML tabular output. This is equivalent to \pset (page 156) format

html or the \H (see "H" on page 153) command.

l --list

-l --list returns all available databases, then exits. Other non-connection options are ignored.

This command is similar to the internal command \list.

n

-n disables command line editing.

o filename --output filename

-o filename --output filename writes all query output into file filename. This is equivalent

to the command \o (page 155).

p port --port port

-p port --port port specifies the TCP port or the local socket file extension on which the

server is listening for connections. Defaults to port 5433.

P assignment --pset assignment

-P assignment --pset assignment lets you specify printing options in the style of \pset

(page 156) on the command line. Note that you have to separate name and value with an equal

sign instead of a space. Thus to set the output format to LaTeX, you could write -P

format=latex.

q --quiet

-q --quiet specifies that vsql do its work quietly. By default, it prints welcome messages and

various informational output. If this option is used, none of this appears. This is useful with the -c

(page 138) option. Within vsql you can also set the QUIET (page 163) variable to achieve the

same effect.

R separator --record-separator separator

-R separator --record-separator separator uses separator as the record separator.

This is equivalent to the \pset (page 156) recordsep command.

-141-

 Using vsql

s --single-step

-s --single-step runs in single-step mode for debugging scripts. Forces vsql to prompt before

each statement is sent to the database and allows you to cancel execution.

S --single-line

-S --single-line runs in single-line mode where a newline terminates a SQL command, like

the semicolon does.

Note: This mode is provided for those who insist on it, but you are not necessarily encouraged
to use it, particularly if you mix SQL and meta-commands on a line. The order of execution
might not always be clear to the inexperienced user.

t --tuples-only

-t --tuples-only disables printing of column names, result row count footers, and so on. This

is equivalent to the \t (see "t" on page 158) command.

T table_options --table-attr table_options

-T table_options --table-attr table_options allows you to specify options to be

placed within the HTML table tag. See \pset (page 156) for details.

U username --username username

-U username --username username connects to the database as the user username

instead of the default.

v assignment --set assignment --variable assignment

-v assignment --set assignment --variable assignment performs a variable

assignment, like the \set (see "set [NAME [VALUE [...]]]" on page 158) internal

command.

Note: You must separate name and value, if any, by an equal sign on the command line.

To unset a variable, omit the equal sign. To set a variable without a value, use the equal sign but
omit the value. These assignments are done during a very early stage of start-up, so variables
reserved for internal purposes can get overwritten later.

V --version

-V --version prints the vsql version and exits.

w password

-w password specifies the password for a database user.

Note: Using this command line option displays the database password in plain text on the
screen. Use it with care, particularly if you are connecting as the database administrator.

-142-

Programmer's Guide

W --password

-W --password forces vsql to prompt for a password before connecting to a database.

The password is not displayed on the screen. This option remains set for the entire session, even

if you change the database connection with the meta-command \connect (see "c (or

\connect) [dbname [username]]" on page 145).

x --expanded

-x --expanded enables extended table formatting mode. This is equivalent to the command \ x

(see "x" on page 159).

X, --no-vsqlrc

-X, --no-vsqlrc prevents the start-up file from being read (the system-wide vsqlrc file or the

user's ~/.vsqlrc file).

Connecting From a Non-Cluster Host

You can use the Vertica vsql executable image on a non-cluster Linux host to connect to a Vertica
database.

 On Red Hat 5.0 64-bit and SUSE 10/11 64-bit, you can install the client driver RPM, which
includes the vsql executable. See Installing the Client RPM on Red Hat 5 64-bit, and SUSE
64-bit (page 17) for details.

 If the non-cluster host is running the same version of Linux as the cluster, copy the image file to
the remote system. For example:

$ scp host01:/opt/vertica/bin/vsql .

$./vsql

 If the non-cluster host is running a different version of Linux than your cluster hosts, and that
operating system is not Red Hat version 5 64-bit or SUSE 10/11 64-bit, you must install the
Vertica server RPM in order to get vsql. Download the appropriate rpm package from the
Vertica Download Website http://www.vertica.com/v-zone/download_vertica then log into
the non-cluster host as root and install the rpm package using the command:

rpm -Uvh filename

In the above command, filename is package you downloaded. Note that you do not have to run

the install_Vertica script on the non-cluster host in order to use vsql.

Notes

 Use the same command line options (on page 137) that you would on a cluster host.

 You cannot run vsql on a Cygwin bash shell (Windows). Use ssh to connect to a cluster host,
then run vsql.

http://www.vertica.com/v-zone/download_vertica

-143-

 Using vsql

Meta-Commands
Anything you enter in vsql that begins with an unquoted backslash is a vsql meta-command that is
processed by vsql itself. These commands help make vsql more useful for administration or
scripting. Meta-commands are more commonly called slash or backslash commands.

The format of a vsql command is the backslash, followed immediately by a command verb, then
any arguments. The arguments are separated from the command verb and each other by any
number of whitespace characters.

To include whitespace into an argument you can quote it with a single quote. To include a single
quote into such an argument, precede it by a backslash. Anything contained in single quotes is

furthermore subject to C-like substitutions for \n (new line), \t (tab), \digits, \0digits, and

\0xdigits (the character with the given decimal, octal, or hexadecimal code).

If an unquoted argument begins with a colon (:), it is taken as a vsql variable and the value of the

variable is used as the argument instead.

Arguments that are enclosed in backquotes (`) are taken as a command line that is passed to the

shell. The output of the command (with any trailing newline removed) is taken as the argument
value. The above escape sequences also apply in backquotes.

Some commands take a SQL identifier (such as a table name) as argument. These arguments

follow the syntax rules of SQL: Unquoted letters are forced to lowercase, while double quotes (")

protect letters from case conversion and allow incorporation of whitespace into the identifier.
Within double quotes, paired double quotes reduce to a single double quote in the resulting name.

For example, FOO"BAR"BAZ is interpreted as fooBARbaz, and "A weird"" name" becomes A

weird" name.

Parsing for arguments stops when another unquoted backslash occurs. This is taken as the

beginning of a new meta-command. The special sequence \\ (two backslashes) marks the end of

arguments and continues parsing SQL commands, if any. That way SQL and vsql commands can
be freely mixed on a line. But in any case, the arguments of a meta-command cannot continue
beyond the end of the line.

! [COMMAND]

\! [COMMAND] executes a command in a Linux shell (passing arguments as entered) or starts

an interactive shell.

?

\? displays help information about the meta-commands.

=> \?

General

-144-

Programmer's Guide

 \c[onnect] [DBNAME|- [USER]]

 connect to new database (currently "vmartdb")

 \cd [DIR] change the current working directory

 \q quit vsql

 \set [NAME [VALUE]]

 set internal variable, or list all if no parameters

 \timing toggle timing of commands (currently off)

 \unset NAME unset (delete) internal variable

 \! [COMMAND] execute command in shell or start interactive shell

 \password [USER]

 change user's password

Query Buffer

 \e [FILE] edit the query buffer (or file) with external editor

 \g send query buffer to server

 \g FILE send query buffer to server and results to file

 \g | COMMAND send query buffer to server and pipe results to command

 \p show the contents of the query buffer

 \r reset (clear) the query buffer

 \s [FILE] display history or save it to file

 \w FILE write query buffer to file

Input/Output

 \echo [STRING] write string to standard output

 \i FILE execute commands from file

 \o FILE send all query results to file

 \o | COMMAND pipe all query results to command

 \o close query-results file or pipe

 \qecho [STRING]

 write string to query output stream (see \o)

Informational

 \d [PATTERN] describe tables (list tables if no argument is supplied)

 \df [PATTERN] list functions

 \dj [PATTERN] list projections

 \dn [PATTERN] list schemas

 \dp [PATTERN] list table access privileges

 \ds [PATTERN] list sequences

 \dS [PATTERN] list system tables

 \dt [PATTERN] list tables

 \dtv [PATTERN] list tables and views

 \dT [PATTERN] list data types

 \du [PATTERN] list users

 \dv [PATTERN] list views

 \l list all databases

 \z [PATTERN] list table access privileges (same as \dp)

Formatting

 \a toggle between unaligned and aligned output mode

 \b toggle beep on command completion

 \C [STRING] set table title, or unset if none

 \f [STRING] show or set field separator for unaligned query output

 \H toggle HTML output mode (currently off)

 \pset NAME [VALUE]

 set table output option

 (NAME := {format|border|expanded|fieldsep|footer|null|

-145-

 Using vsql

 recordsep|tuples_only|title|tableattr|pager})

 \t show only rows (currently off)

 \T [STRING] set HTML <table> tag attributes, or unset if none

 \x toggle expanded output (currently off)

a

\a toggles output format alignment. This command is kept for backwards compatibility. See \pset

(page 156) for a more general solution.

\a is similar to the command line option -A --no-align (page 138), which only disables

alignment.

b

\b toggles beep on command completion.

c (or \connect) [dbname [username]]

\c (or \connect) [dbname [username]] establishes a connection to a new database

and/or under a user name. The previous connection is closed. If dbname is - the current database
name is assumed.

If username is omitted the current user name is assumed.

As a special rule, \connect without any arguments connects to the default database as the

default user (as you would have gotten by starting vsql without any arguments).

If the connection attempt fails (wrong user name, access denied, etc.), the previous connection is
kept if and only if vsql is in interactive mode. When executing a non-interactive script, processing
immediately stops with an error. This distinction that avoids typos and a prevent scripts from
accidentally acting on the wrong database.

C [STRING]

\C [STRING] sets the title of any tables being printed as the result of a query or unsets any such

title. This command is equivalent to \pset (page 156) title title. (The name of this command

derives from "caption", as it was previously only used to set the caption in an HTML table.)

cd [DIR]

\cd [DIR] changes the current working directory to directory. Without argument, changes to

the current user's home directory.

To print your current working directory, use \! (see "! [COMMAND]" on page 143)pwd. For
example:

=> \!pwd

/home/dbadmin

The \d [PATTERN] meta-commands

This section describes the various \d meta-commands

-146-

Programmer's Guide

All \d meta-commands take an optional pattern (asterisk [*] or question mark [?]) and return

only the records that match that pattern.

The ? argument is useful if you can't remember if a table name uses an underscore or a dash:

=> \dn v?internal

 List of schemas

 Name | Owner

------------+---------

 v_internal | dbadmin

(1 row)

The output from the \d metacommands places double quotes around non-alphanumeric table

names and table names that are keywords, such as in the following example.

=> CREATE TABLE my_keywords.precision(x numeric (4,2));

CREATE TABLE

=> \d

 List of tables

 Schema | Name | Kind | Owner

--------------+-----------------------+-------+---------

 my_keywords | "precision" | table | dbadmin

Double quotes are optional when you use a \d command with pattern matching.

d [PATTERN]

The \d [PATTERN] meta-command lists all tables in the database and returns their schema,

table name, kind (e.g., table), and owner. For example, the following is the result of \d in the vmart

schema.

vmartdb=> \d

 List of tables

 Schema | Name | Kind | Owner

--------------+-----------------------+-------+---------

 online_sales | call_center_dimension | table | dbadmin

 online_sales | online_page_dimension | table | dbadmin

 online_sales | online_sales_fact | table | dbadmin

 public | customer_dimension | table | dbadmin

 public | date_dimension | table | dbadmin

 public | employee_dimension | table | dbadmin

 public | inventory_fact | table | dbadmin

 public | product_dimension | table | dbadmin

 public | promotion_dimension | table | dbadmin

 public | shipping_dimension | table | dbadmin

 public | vendor_dimension | table | dbadmin

 public | warehouse_dimension | table | dbadmin

 store | store_dimension | table | dbadmin

 store | store_orders_fact | table | dbadmin

 store | store_sales_fact | table | dbadmin

(15 rows)

-147-

 Using vsql

If you provide the table name as an argument, the result shows the schema name, table name,
column name, column data type, data type size, default value, whether it is Nullable or has a NOT
NULL constraint, and whether there is a primary key or foreign key constraint.

vmartdb=> \d inventory_fact
 List of Fields by Tables

 Schema | Table | Column | Type | Size | Default | Not Null | Primary Key |

Foreign Key

--------+----------------+-----------------+------+------+---------+----------+-------------+----

 public | inventory_fact | date_key | int | 8 | | t | f |

public.date_dimension(date_key)

 public | inventory_fact | product_key | int | 8 | | t | f |

public.product_dimension(product_key)

 public | inventory_fact | product_version | int | 8 | | t | f |

public.product_dimension(product_version)

 public | inventory_fact | warehouse_key | int | 8 | | t | f |

public.warehouse_dimension(warehouse_key)

 public | inventory_fact | qty_in_stock | int | 8 | | f | f |

(5 rows)

You can also use the question mark [?] argument to replace a single character. For example, the

? argument replaces the last character in the SubQ1 and SubQ2 tables, so the command returns

information about both:

=> \d SubQ?
 List of Fields by Tables

 Schema | Table | Column | Type | Size | Default | Not Null | Primary Key | Foreign Key

--------+-------+--------+------+------+---------+----------+-------------+-------------

 public | SubQ1 | a | int | 8 | | f | f |

 public | SubQ1 | b | int | 8 | | f | f |

 public | SubQ1 | c | int | 8 | | f | f |

 public | SubQ2 | x | int | 8 | | f | f |

 public | SubQ2 | y | int | 8 | | f | f |

 public | SubQ2 | z | int | 8 | | f | f |

(6 rows)

d \d <table> \df \dj \dn \dp \ds \dS \dt \dT \dtv \du \dv

The \df [PATTERN] meta-command returns all function names, the function return data type,

and the function argument data type. Also returns the procedure names and arguments for all
procedures that are available to the user.

vmartdb=> \df

 List of functions

 procedure_name | procedure_return_type | procedure_argument_types

-----------------+-----------------------+---------------------------

 abs | Float | Float

 abs | Integer | Integer

 abs | Interval | Interval

 abs | Interval | Interval

 abs | Numeric | Numeric

 acos | Float | Float

 add_location | Varchar | Varchar

 add_location | Varchar | Varchar, Varchar, Varchar

...

 width_bucket | Integer | Float, Float, Float, Integer

 width_bucket | Integer | Interval, Interval, Interval, Integer

-148-

Programmer's Guide

 width_bucket | Integer | Interval, Interval, Interval, Integer

 width_bucket | Integer | Timestamp, Timestamp, Timestamp,

Integer

...

The following example uses the wildcard character to search for all functions that begin with as:

vmartdb=> \df as*

 List of functions

 procedure_name | procedure_return_type | procedure_argument_types

----------------+-----------------------+--------------------------

 ascii | Integer | Varchar

 asin | Float | Float

(2 rows)

dj [PATTERN]

The \dj [PATTERN] meta-command returns all projections showing the schema, projection

name, owner, and node:

vmartdb=> \dj

 List of projections

 Schema | Name | Owner | Node

--------------+--------------------------------+---------+--------------------

 public | product_dimension_node0001 | dbadmin | v_wmartdb_node0001

 public | product_dimension_node0002 | dbadmin | v_wmartdb_node0002

 public | product_dimension_node0003 | dbadmin | v_wmartdb_node0003

 online_sales | call_center_dimension_node0001 | dbadmin | v_wmartdb_node0001

 online_sales | call_center_dimension_node0002 | dbadmin | v_wmartdb_node0002

 online_sales | call_center_dimension_node0003 | dbadmin | v_wmartdb_node0003

...

If you supply a projection name as an argument, the system returns fewer records:

vmartdb=> \dj call_center_dimension_n*

 List of projections

 Schema | Name | Owner | Node

--------------+--------------------------------+---------+--------------------

 online_sales | call_center_dimension_node0001 | dbadmin | v_wmartdb_node0001

 online_sales | call_center_dimension_node0002 | dbadmin | v_wmartdb_node0002

 online_sales | call_center_dimension_node0003 | dbadmin | v_wmartdb_node0003

(3 rows)

dn [PATTERN]

The \dn [PATTERN] meta-command returns the schema names and schema owner.

vmartdb=> \dn

 List of schemas

 Name | Owner

--------------+---------

 v_internal | dbadmin

 v_catalog | dbadmin

 v_monitor | dbadmin

 public | dbadmin

 store | dbadmin

 online_sales | dbadmin

-149-

 Using vsql

(6 rows)

The following command returns all schemas that begin with the letter v:

=> \dn v*

 List of schemas

 Name | Owner

------------+---------

 v_internal | dbadmin

 v_catalog | dbadmin

 v_monitor | dbadmin

(3 rows)

dp [PATTERN]

The \dp [PATTERN] meta-command returns the grantee, grantor, privileges, schema, and

name for all table access privileges in each schema:

vmartdb=> \dp

 Access privileges for database "vmartdb"

 Grantee | Grantor | Privileges | Schema | Name

---------+---------+------------+--------+------------

 | dbadmin | USAGE | | public

 | dbadmin | USAGE | | v_internal

 | dbadmin | USAGE | | v_catalog

 | dbadmin | USAGE | | v_monitor

(4 rows)

Note: \dp is the same as \z (see "z" on page 159).

ds [PATTERN]

The \ds [PATTERN]meta-command (lowercase s) returns a list of sequences and their

parameters.

The following series of commands creates a sequence called my_seq and uses the vsql command
to display its parameters:

=> CREATE SEQUENCE my_seq MAXVALUE 5000 START 150;

CREATE SEQUENCE

=> \ds

 List of Sequences

 Schema | Sequence | CurrentValue | IncrementBy | Minimum | Maximum | AllowCycle

--------+----------+--------------+-------------+---------+---------+---------

 public | my_seq | 149 | 1 | 1 | 5000 | f

(1 row)

Note: You can return additional information about sequences by issuing SELECT * FROM

V_CATALOG_SEQUENCES, as described in the SQL Reference Manual.

dS [PATTERN]

The \dS [PATTERN] meta-command (uppercase S) returns all system table (monitoring API)

names. You can get identical results issuing SELECT * FROM system_tables;

-150-

Programmer's Guide

vmartdb=> \dS

 List of tables

 Schema | Name | Kind | Description

-----------+--------------------+--------+------------------------------------

 v_catalog | columns | system | Table column information

 v_catalog | dual | system | Oracle(TM) compatibility DUAL table

 v_catalog | foreign_keys | system | Foreign key information

 v_catalog | grants | system | Grant information

 v_catalog | passwords | system | User password history and password reuse

policy

 v_catalog | primary_keys | system | Primary key information

 v_catalog | profile_parameters | system | Profile Parameters information

 v_catalog | profiles | system | Profile information

 v_catalog | projection_columns | system | Projection columns information

 v_catalog | projections | system | Projection information

...

 v_monitor | host_resources | system | Per host profiling information

 v_monitor | load_streams | system | Load metrics for each load stream on

each node

 v_monitor | locks | system | Lock grants and requests for all nodes

 v_monitor | node_resources | system | Per node profiling information

...

dt [PATTERN]

The \dt [PATTERN] meta-command (lowercase t) is identical to \d and returns all tables in the

database—unless a table name is specified—in which case the command lists only the schema,
name, kind and owner for the specified table (or tables if wildcards used).

vmartdb=> \dt inventory_fact

 List of tables

 Schema | Name | Kind | Owner

--------+----------------+-------+---------

 public | inventory_fact | table | dbadmin

(1 row)

The following command returns all table names that begin with "st":

vmartdb=> \dt st*

 List of tables

 Schema | Name | Kind | Owner

--------+-------------------+-------+---------

 store | store_dimension | table | dbadmin

 store | store_orders_fact | table | dbadmin

 store | store_sales_fact | table | dbadmin

(3 rows)

dT [PATTERN]

The \dT [PATTERN] meta-command (uppercase T) lists all supported data types.

vmartdb=> \dT

List of data types

-151-

 Using vsql

 type_name

 Binary

 Boolean

 Char

 Date

 Float

 Integer

 Interval

 Numeric

 Time

 TimeTz

 Timestamp

 TimestampTz

 Varbinary

 Varchar

(14 rows)

dtv [PATTERN]

The \dtv [PATTERN] meta-command lists all tables and views, returning the schema, table or

view name, kind (table of view), and owner.

vmartdb=> \dtv

 List of tables

 Schema | Name | Kind | Owner

--------------+-----------------------+-------+---------

 online_sales | call_center_dimension | table | release

 online_sales | online_page_dimension | table | release

 online_sales | online_sales_fact | table | release

 public | customer_dimension | table | release

 public | date_dimension | table | release

 public | employee_dimension | table | release

 public | inventory_fact | table | release

 public | my_seqview | view | release

 public | product_dimension | table | release

 public | promotion_dimension | table | release

 public | shipping_dimension | table | release

 public | vendor_dimension | table | release

 public | warehouse_dimension | table | release

 store | store_dimension | table | release

 store | store_orders_fact | table | release

 store | store_sales_fact | table | release

(16 rows)

du [PATTERN]

The \du [PATTERN] meta-command returns all database users and attributes, such as if user

is a superuser.

vmartdb=> \du

 List of users

 User name | Is Superuser

-152-

Programmer's Guide

-----------+--------------

 dbadmin | t

(1 row)

dv [PATTERN]

The \dv [PATTERN] meta-command returns the schema name, view name, and view owner.

The following example defines a view using the SEQUENCES system table:

vmartdb=> CREATE VIEW my_seqview AS (SELECT * FROM sequences);

CREATE VIEW

vmartdb=> \dv

 List of views

 Schema | Name | Owner

--------+------------+---------

 public | my_seqview | dbadmin

(1 row)

If a view name is provided as an argument, the result shows the schema, view name, and the
following for all columns within the view's result set: schema name, view name, column name,
column data type, and data type size.

vmartdb=> \dv my_seqview

 List of View Fields

 Schema | View | Column | Type | Size

--------+------------+---------------------+--------------+------

 public | my_seqview | sequence_schema | varchar(128) | 128

 public | my_seqview | sequence_name | varchar(128) | 128

 public | my_seqview | owner_name | varchar(128) | 128

 public | my_seqview | identity_table_name | varchar(128) | 128

 public | my_seqview | session_cache_count | int | 8

 public | my_seqview | allow_cycle | boolean | 1

 public | my_seqview | output_ordered | boolean | 1

 public | my_seqview | increment_by | int | 8

 public | my_seqview | minimum | int | 8

 public | my_seqview | maximum | int | 8

 public | my_seqview | current_value | int | 8

 public | my_seqview | sequence_schema_id | int | 8

 public | my_seqview | sequence_id | int | 8

 public | my_seqview | owner_id | int | 8

 public | my_seqview | identity_table_id | int | 8

(15 rows)

e \edit [FILE]

\e \edit [FILE] edits the query buffer (or specified file) with an external editor. When the

editor exits, its content is copied back to the query buffer. If no argument is given, the current query
buffer is copied to a temporary file which is then edited in the same fashion.

-153-

 Using vsql

The new query buffer is then re-parsed according to the normal rules of vsql, where the whole
buffer up to the first semicolon is treated as a single line. (Thus you cannot make scripts this way.

Use \i (see "i FILE" on page 154) for that.) If there is no semicolon, vsql waits for one to be

entered (it does not execute the query buffer).

Tip: vsql searches the environment variables VSQL_EDITOR, EDITOR, and VISUAL (in that
order) for an editor to use. If all of them are unset, vi is used on Linux systems, notepad.exe on
Windows systems.

echo [STRING]

\echo [STRING] writes the string to standard output

Tip: If you use the \o (page 155) command to redirect your query output you might want to use
\qecho (page 157) instead of this command.

f [string]

\f [string] sets the field separator for unaligned query output. The default is the vertical bar

(|). See also \pset (page 156) for a generic way of setting output options.

g

The \g meta-command sends the query in the input buffer (see \p (see "p" on page 155)) to the

server. With no arguments, it displays the results in the standard way.

\g FILE sends the query input buffer to the server, and writes the results to FILE.

\g | COMMAND sends the query buffer to the server, and pipes the results to a shell COMMAND.

See Also

\o meta-command (see "o" on page 155)

H

\H toggles HTML query output format. This command is for compatibility and convenience, but

see \pset (page 156) about setting other output options.

h \help [command]

\h \help [command] gives syntax help on the specified SQL command. If command is not

specified, vsql lists all the commands for which syntax help is available. If command is an asterisk

(*), syntax help on all SQL commands is shown.

Note: To simplify typing, commands that consists of several words do not have to be quoted.
For example:
\help alter table.

-154-

Programmer's Guide

i FILE

\i filename command reads input from the file filename and executes it as though it had been

typed on the keyboard.

Note: To see the lines on the screen as they are read, set the variable ECHO (page 161) to all.

l

\l provides a list of databases and their owners.

vmartdb=> \l

 List of databases

 name | user_name

---------+-----------

 vmartdb | dbadmin

(1 row)

locale

The vsql \locale command displays the current locale setting or lets you set a new locale for the

session.

This command does not alter the default locale for all database sessions. To change the default

for all sessions, set the DefaultSessionLocale configuration parameter.

Viewing the Current Locale Setting

To view the current locale setting, use the vsql command \locale, as follows:

vmartdb=> \locale

en_US@collation=binary

Overriding the Default Local for a Session

To override the default local for a specific session, use the vsql command \locale
<ICU-locale-identifier>. The session locale setting applies to any subsequent commands issued in
the session.

For example:

\locale en_GB

INFO: Locale: 'en_GB'

INFO: English (United Kingdom)

INFO: Short form: 'LEN'

You can also use the short form of an ICU locale identifier:

\locale LEN

INFO: Locale: 'en'

INFO: English

INFO: Short form: 'LEN'

-155-

 Using vsql

Notes

The server locale settings impact only the collation behavior for server-side query processing. The
client application is responsible for ensuring that the correct locale is set in order to display the
characters correctly. Below are the best practices recommended by Vertica to ensure predictable
results:

 The locale setting in the terminal emulator for vsql (POSIX) should be set to be equivalent to
session locale setting on server side (ICU) so data is collated correctly on the server and
displayed correctly on the client.

 The vsql locale should be set using the POSIX LANG environment variable in terminal
emulator. Refer to the documentation of your terminal emulator for how to set locale.

 Server session locale should be set using the set as described in Specify the Default Locale for
the Database.

 Note that all input data for vsql should be in UTF-8 and all output data is encoded in UTF-8

 Non UTF-8 encodings and associated locale values are not supported.

o

The \o meta-command is used to control where vsql directs its query output. The output can be

written to a file, piped to a shell command, or sent to the standard output.

\o FILE sends all subsequent query output to FILE.

\o | COMMAND pipes all subsequent query output to a shell COMMAND.

\o with no argument closes any open file or pipe, and switches back to normal query result output.

Notes

 Query results includes all tables, command responses, and notices obtained from the
database server.

 To intersperse text output with query results, use \qecho (page 157).

See Also

\g meta-command (page 153)

p

\p prints the current query buffer to the standard output. For example:

=> \p

CREATE VIEW my_seqview AS (SELECT * FROM sequences);

password [USER]

\password starts the password change process. Users can only change their own passwords.

They are prompted for their old password, their new password, and then their new password again
to confirm.

-156-

Programmer's Guide

The superuser can change the password of another user by supplying the username. The
superuser is not prompted for the old password, either when changing his or her own password, or
when changing another user's password.

Note: If you want to cancel the password change process, press ENTER until you return the to
vsql prompt.

pset NAME [VALUE]

\pset NAME [VALUE] sets options affecting the output of query result tables. NAME describes

which option to set, as illustrated in the following table. The parameters of VALUE depend
thereon.

It is an error to call \pset without arguments

Adjustable printing options are:

format Sets the output format to one of unaligned, aligned, html, or latex.

Unique abbreviations are allowed. (That would mean one letter is enough.)

"Unaligned" writes all columns of a row on a line, separated by the currently
active field separator. This is intended to create output that might be
intended to be read in by other programs (tab- separated,
comma-separated). "Aligned" mode is the standard, human-readable,
nicely formatted text output that is default. The "HTML" and "LaTeX" modes
put out tables that are intended to be included in documents using the
respective mark-up language. They are not complete documents! (This
might not be so dramatic in HTML, but in LaTeX you must have a complete
document wrapper.)

border The second argument must be a number. In general, the higher the number
the more borders and lines the tables have, but this depends on the
particular format. In HTML mode, this translates directly into the

border=... attribute, in the others only values 0 (no border), 1 (internal

dividing lines), and 2 (table frame) make sense.

expanded Toggles between regular and expanded format. When expanded format is
enabled, all output has two columns with the column name on the left and
the data on the right. This mode is useful if the data wouldn't fit on the
screen in the normal "horizontal" mode.

Expanded mode is supported by all four output formats.

\x is the same as \pset expanded.

fieldsep Specifies the field separator to be used in unaligned output mode. That way
one can create, for example, tab- or comma-separated output, which other

programs might prefer. To set a tab as field separator, type \pset

fieldsep '\t'. The default field separator is '|' (a vertical bar).

footer Toggles the display of the default footer (x rows).

null The second argument is a string that is printed whenever a column is null.
The default is not to print anything, which can easily be mistaken for, say, an

empty string. Thus, one might choose to write \pset null '(null)'.

recordsep Specifies the record (line) separator to use in unaligned output mode. The

-157-

 Using vsql

default is a newline character.

tuples_only (or t) Toggles between tuples only and full display. Full display might show extra
information such as column headers, titles, and various footers. In tuples
only mode, only actual table data is shown.

title [text] Sets the table title for any subsequently printed tables. This can be used to
give your output descriptive tags. If no argument is given, the title is unset.

tableattr (or T)

[text]
Allows you to specify any attributes to be placed inside the HTML table

tag. This could for example be cellpadding or bgcolor. Note that you

probably don't want to specify border here, as that is already taken care of

by \pset border.

pager Controls use of a pager for query and vsql help output. If the environment

variable PAGER is set, the output is piped to the specified program.

Otherwise a platform-dependent default (such as more) is used.

When the pager is off, the pager is not used. When the pager is on, the
pager is used only when appropriate; that is, the output is to a terminal and
does not fit on the screen. (vsql does not do a perfect job of estimating when

to use the pager.) \pset pager turns the pager on and off. Pager can also

be set to always, which causes the pager to be always used.

See illustrations on how these different formats look in the Examples (page 170) section.

Tip: There are various shortcut commands for \pset. See \a (see "a" on page 145), \C (see "C [
STRING]" on page 145), \H (see "H" on page 153), \t (see "t" on page 158), \T (see "T [
STRING]" on page 158), and \ x (see "x" on page 159).

q

\q quits the vsql program.

qecho [STRING]

\qecho [STRING] is identical to \echo (see "echo [STRING]" on page 153) except that

the output is written to the query output stream, as set by \o (see "o" on page 155).

r

\r resets (clears) the query buffer.

For example, run the \p (see "p" on page 155) meta-command to see what is in the query buffer:

=> \p

CREATE VIEW my_seqview AS (SELECT * FROM sequences);

Now reset the query buffer:

=> \r

Query buffer reset (cleared).

-158-

Programmer's Guide

If you reissue the command to see what's in the query buffer, you can see it is now empty:

=> \p

Query buffer is empty.

s [FILE]

\s [FILE] prints or saves the command line history to filename. If a filename is not specified,

\s writes the history to the standard output. This option is only available if vsql is configured to use
the GNU Readline library.

set [NAME [VALUE [...]]]

\set [name [value [...]]] sets the internal variable name to value or, if more than

one value is given, to the concatenation of all of values. If no second argument is given, the
variable is set with no value.

It no argument is provided, \set lists all internal variables; for example:

vmartdb=> \set

VERSION = 'Vertica Analytic Database v4.1.6-0'

AUTOCOMMIT = 'off'

VERBOSITY = 'default'

PROMPT1 = '%/%R%# '

PROMPT2 = '%/%R%# '

PROMPT3 = '>> '

ROWS_AT_A_TIME = '1000'

DBNAME = 'vmartdb'

USER = 'dbadmin'

PORT = '5433'

LOCALE = 'en_US@collation=binary'

HISTSIZE = '500'

Notes

 Valid variable names are case sensitive and can contain characters, digits, and underscores.
vsql treats several variables as special, which are described in Variables (page 159).

 The \set parameter ROWS_AT_A_TIME defaults to 1000. It retrieves results as blocks of rows

of that size. The column formatting for the first block is used for all blocks, so in later blocks
some entries could overflow. See \timing (page 159) for examples.

 To unset a variable, use the \unset (page 159) command.

t

\t toggles the display of output column name headings and row count footer. This command is

equivalent to \pset (page 156) tuples_only and is provided for convenience.

T [STRING]

\T [STRING] specifies attributes to be placed within the table tag in HTML tabular output

mode. This command is equivalent to \pset (page 156) tableattr table_options.

-159-

 Using vsql

timing

\timing toggles toggles the timing of commands (currently off). The meta-command displays

how long each SQL statement takes, in milliseconds, and reports both the time required to fetch
the first block of rows from the server and the total until the last block is formatted.

Example

=> \o /dev/null

=> SELECT * FROM fact LIMIT 100000;

Time: First fetch (1000 rows): 22.054 ms. All rows formatted: 235.056 ms

Note that the database retrieved the first 1000 rows in 22 ms and completed retrieving and
formatting all rows in 235 ms.

=> \unset ROWS_AT_A_TIME

=> select * from fact limit 100000;

Time: First fetch (100000 rows): 220.286 ms. All rows formatted: 231.778 ms

In this case, the database retrieved all 100000 rows in 220 ms and spent 11 ms formatting them.

Note: Use \unset (page 159) with the ROWS_AT_A_TIME (page 158) parameter to get results

comparable to Vertica 2.5.

See Also

\set (page 158)

unset [NAME]

\unset [NAME] unsets (deletes) the internal variable name that was set using the \set (page

158) meta-command.

w [FILE]

\w [FILE] outputs the current query buffer to the file filename.

x

\x toggles extended table formatting mode. Is equivalent to \pset (page 156) expanded.

Note: There is no space between the backslash and the x.

z

\z lists table access privileges (grantee, grantor, privilege, and name) for all table access

privileges in each schema. Is the same as \dp (see "dp [PATTERN]" on page 149)

Variables
vsql provides variable substitution features similar to common Linux command shells. Variables
are simply name/value pairs, where the value can be any string of any length. To set variables,

use the vsql meta-command \set (see "set [NAME [VALUE [...]]]" on page 158):

-160-

Programmer's Guide

testdb=> \set fact dim

sets the variable fact to the value dim. To retrieve the content of the variable, precede the name

with a colon and use it as the argument of any slash command:

testdb=> \echo :fact
dim

Note: The arguments of \set are subject to the same substitution rules as with other
commands. For example, \set dim :fact is a valid way to copy a variable.

If you call \set without a second argument, the variable is set, with an empty string as value. To

unset (or delete) a variable, use the command \unset (see "unset [NAME]" on page 159).

vsql's internal variable names can consist of letters, numbers, and underscores in any order and
any number. Some of these variables are treated specially by vsql. They indicate certain option
settings that can be changed at run time by altering the value of the variable or represent some
state of the application. Although you can use these variables for any other purpose, this is not
recommended. By convention, all specially treated variables consist of all upper-case letters (and
possibly numbers and underscores). To ensure maximum compatibility in the future, avoid using
such variable names for your own purposes.

SQL Interpolation

An additional useful feature of vsql variables is that you can substitute ("interpolate") them into

regular SQL statements. The syntax for this is again to prepend the variable name with a colon (:).

testdb=> \set fact 'my_table'
testdb=> SELECT * FROM :fact;

would then query the table my_table. The value of the variable is copied literally, so it can even

contain unbalanced quotes or backslash commands. Make sure that it makes sense where you
put it. Variable interpolation is not performed into quoted SQL entities.

AUTOCOMMIT

When AUTOCOMMIT is set 'on', each SQL command is automatically committed upon successful
completion; for example:

\set (see "set [NAME [VALUE [...]]]" on page 158) AUTOCOMMIT on

To postpone COMMIT in this mode, set the value as off.

\set AUTOCOMMIT off

If AUTOCOMMIT is empty or defined as off, SQL commands are not committed unless you
explicitly issue COMMIT.

Notes

 AUTOCOMMIT is off by default.

 AUTOCOMMIT must be in uppercase, but the values, on or off, are case insensitive.

 In autocommit-off mode, you must explicitly abandon any failed transaction by entering
ABORT or ROLLBACK.

 If you exit the session without committing, your work is rolled back.

 Validation on vsql variables is done when they are run, not when they are set.

-161-

 Using vsql

 The COPY statement, by default, commits on completion, so it does not matter which
AUTOCOMMIT mode you use, unless you issue COPY NO COMMIT.

 To tell if AUTOCOMMIT is on or off, issue the set command:

$ \set

...

AUTOCOMMIT = 'off'

...

 AUTOCOMMIT is off if a SELECT * FROM LOCKS shows locks from the statement you just ran.

$ \set AUTOCOMMIT off

$ \set

...

AUTOCOMMIT = 'off'

...

SELECT COUNT(*) FROM customer_dimension;

 count

 50000

(1 row)

SELECT node_names, object_name, lock_mode, lock_scope

FROM LOCKS;

 node_names | object_name | lock_mode | lock_scope

------------+--------------------------+-----------+-------------

 site01 | Table:customer_dimension | S | TRANSACTION

(1 row)

DBNAME

The name of the database to which you are currently connected. DBNAME is set every time you
connect to a database (including program startup), but it can be unset.

ECHO

If set to all, all lines entered from the keyboard or from a script are written to the standard output

before they are parsed or run.

To select this behavior on program start-up, use the switch -a (see "a --echo-all" on page

138). If set to queries, vsql merely prints all queries as they are sent to the server. The switch for

this is -e (see "e --echo-queries" on page 138).

ECHO_HIDDEN

When this variable is set and a backslash command queries the database, the query is first
shown. This way you can study the Vertica internals and provide similar functionality in your own

programs. (To select this behavior on program start-up, use the switch -E (see "E" on page 138).)

If you set the variable to the value noexec, the queries are just shown but are not actually sent to

the server and run.

-162-

Programmer's Guide

ENCODING

The current client character set encoding.

HISTCONTROL

If this variable is set to ignorespace, lines that begin with a space are not entered into the history

list. If set to a value of ignoredups, lines matching the previous history line are not entered. A

value of ignoreboth combines the two options. If unset, or if set to any other value than those

previously mentioned, all lines read in interactive mode are saved on the history list.

Source: Bash.

HISTSIZE

The number of commands to store in the command history. The default value is 500.

Source: Bash.

HOST

The database server host you are currently connected to. This is set every time you connect to a
database (including program startup), but can be unset.

IGNOREEOF

If unset, sending an EOF character (usually Control+D) to an interactive session of vsql terminates
the application. If set to a numeric value, that many EOF characters are ignored before the
application terminates. If the variable is set but has no numeric value, the default is 10.

Source: Bash.

ON_ERROR_STOP

By default, if non-interactive scripts encounter an error, such as a malformed SQL command or
internal meta-command, processing continues. This has been the traditional behavior of vsql but it
is sometimes not desirable. If this variable is set, script processing immediately terminates. If the
script was called from another script it terminates in the same manner. If the outermost script was

not called from an interactive vsql session but rather using the -f (see "f filename --file

filename" on page 138) option, vsql returns error code 3, to distinguish this case from fatal error

conditions (error code 1).

PORT

The database server port to which you are currently connected. This is set every time you connect
to a database (including program start-up), but can be unset.

PROMPT1 PROMPT2 PROMPT3

These specify what the prompts vsql issues look like. See Prompting (page 164) below.

-163-

 Using vsql

QUIET

This variable is equivalent to the command line option -q (see "q" on page 157). It is probably not

too useful in interactive mode.

SINGLELINE

This variable is equivalent to the command line option -S (see "S --single-line" on page

141).

SINGLESTEP

This variable is equivalent to the command line option -s (page 141).

USER

The database user you are currently connected as. This is set every time you connect to a
database (including program startup), but can be unset.

VERBOSITY

This variable can be set to the values default, verbose, or terse to control the verbosity of

error reports.

VSQL_HOME

By default, the vsql program reads configuration files from the user's home directory. In cases
where this is not desirable, the configuration file location can be overridden by setting the
VSQL_HOME environment variable in a way that does not require modifying a shared resource.

In the following example, vsql reads configuration information out of /tmp/jsmith rather than out of
~.

Make an alternate configuration file in /tmp/jsmith

mkdir -p /tmp/jsmith

echo "\\echo Using VSQLRC in tmp/jsmith" > /tmp/jsmith/.vsqlrc

Note that nothing is echoed when invoked normally

vsql

Note that the .vsqlrc is read and the following is

displayed before the vsql prompt

Using VSQLRC in tmp/jsmith

VSQL_HOME=/tmp/jsmith vsql

-164-

Programmer's Guide

Prompting
The prompts vsql issues can be customized to your preference. The three variables PROMPT1,

PROMPT2, and PROMPT3 contain strings and special escape sequences that describe the

appearance of the prompt. Prompt 1 is the normal prompt that is issued when vsql requests a new
command. Prompt 2 is issued when more input is expected during command input because the
command was not terminated with a semicolon or a quote was not closed. Prompt 3 is issued

when you run a SQL COPY command and you are expected to type in the row values on the

terminal.

The value of the selected prompt variable is printed literally, except where a percent sign (%) is
encountered. Depending on the next character, certain other text is substituted instead. Defined
substitutions are:

%M The full host name (with domain name) of the database server, or [local] if the
connection is over a socket, or [local:/dir/name], if the socket is not at the compiled in
default location.

%m The host name of the database server, truncated at the first dot, or [local].

%> The port number at which the database server is listening.

%n The database session user name.

%/ The name of the current database.

%~ Like %/, but the output is ~ (tilde) if the database is your default database.

%# If the session user is a database superuser, then a #, otherwise a >. (The expansion
of this value might change during a database session as the result of the command
SET SESSION AUTHORIZATION.)

%R In prompt 1 normally =, but ̂ if in single-line mode, and ! if the session is disconnected
from the database (which can happen if \connect fails). In prompt 2 the sequence is
replaced by -, *, a single quote, a double quote, or a dollar sign, depending on
whether vsql expects more input because the command wasn't terminated yet,
because you are inside a /* ... */ comment, or because you are inside a quoted or
dollar-escaped string. In prompt 3 the sequence doesn't produce anything.

%x Transaction status: an empty string when not in a transaction block, or * when in a
transaction block, or ! when in a failed transaction block, or ? when the transaction
state is indeterminate (for example, because there is no connection).

%digits The character with the indicated numeric code is substituted. If digits starts with 0x
the rest of the characters are interpreted as hexadecimal; otherwise if the first digit is
0 the digits are interpreted as octal; otherwise the digits are read as a decimal
number.

%:name: The value of the vsql variable name. See the section Variables for details.

%`command` The output of command, similar to ordinary "back- tick" substitution.

%[... %] Prompts may contain terminal control characters which, for example, change the
color, background, or style of the prompt text, or change the title of the terminal
window. In order for the line editing features of Readline to work properly, these
non-printing control characters must be designated as invisible by surrounding them

-165-

 Using vsql

with %[and %]. Multiple pairs of these may occur within the prompt. The following
example results in a boldfaced (1;) yellow-on-black (33;40) prompt on
VT100-compatible, color-capable terminals:

testdb=> \set PROMPT1 '%[%033[1;33;40m%]%n@%/%R%[%033[0m%#%] '

To insert a percent sign into your prompt, write %%. The default prompts are
'%/%R%# ' for prompts 1 and 2, and '>> ' for prompt 3.

Note: This feature was adapted from tcsh.

Command Line Editing
vsql supports the tecla library for convenient line editing and retrieval.

The command history is automatically saved when vsql exits and is reloaded when vsql starts up.
Tab-completion is also supported, although the completion logic makes no claim to be a SQL
parser. If for some reason you do not like the tab completion, you can turn it off by putting this in a

file named .teclarc in your home directory:

bind ^I

Read the tecla documentation for further details.

Notes

The vsql implementation of the tecla library deviates from the tecla documentation as follows:

 Recalling Previously Typed Lines

Under pure tecla, all new lines are appended to a list of historical input lines maintained within
the GetLine resource object. In vsql, only different, non-empty lines are appended to the list of
historical input lines.

 History Files

tecla has no standard name for the history file. In vsql, the file name is called ~/.vsql_hist.

 International Character Sets (Meta keys and locales)

In vsql, 8-bit meta characters are no longer supported. Make sure that meta characters send
an escape by setting their EightBitInput X resource to False. You can do this in one of the
following ways:

 Edit the ~/.Xdefaults file by adding the following line:

XTerm*EightBitInput: False

 Start an xterm with an -xrm '*EightBitInput: False' command-line argument.

 Key Bindings:

 The following key bindings are specific to vsql:

 Insert switches between insert mode (the default) and overwrite mode.

 Delete deletes the character to the right of the cursor.

 Home moves the cursor to the front of the line.

 End moves the cursor to the end of the line.

 ^R Performs a history backwards search.

-166-

Programmer's Guide

Environment
PAGER

If the query results do not fit on the screen, they are piped through this command. Typical values

are more or less. The default is platform-dependent. The use of the pager can be disabled by

using the \pset (see "pset NAME [VALUE]" on page 156) command.

PGDATABASE

Default connection database

PGHOST
PGPORT
PGUSER

Default connection parameters

VSQL_EDITOR
EDITOR
VISUAL

Editor used by the \e command. The variables are examined in the order listed; the first that is set
is used.

SHELL

Command run by the \! (see "! [COMMAND]" on page 143) command.

TMPDIR

Directory for storing temporary files. The default is /tmp.

Locales
The default terminal emulator under Linux is gnome-terminal, although xterm can also be used.

Vertica recommends that you use gnome-terminal with vsql in UTF-8 mode, which is its default.

To change settings on Linux

1 From the tabs at the top of the vsql screen, select Terminal.

2 Click Set Character Encoding.

3 Select Unicode (UTF-8).

Note: This works well for standard keyboards. xterm has a similar UTF-8 option.

To change settings on Windows using PuTTy

1 Right click the vsql screen title bar and select Change Settings.

2 Click Window and click Translation.

3 Select UTF-8 in the drop-down menu on the right.

-167-

 Using vsql

Notes

 vsql has no way of knowing how you have set your terminal emulator options.

 The tecla library is prepared to do POSIX-type translations from a local encoding to UTF-8 on
interactive input, using the POSIX LANG, etc., environment variables. This could be useful to
international users who have a non-UTF-8 keyboard. See the tecla documentation for
details.

Vertica recommends the following (or whatever other .UTF-8 locale setting you find
appropriate):

export LANG=en_US.UTF-8

 The vsql \locale (see "locale" on page 154) command invokes and tracks the server SET
LOCALE TO command, described in the SQL Reference Manual. vsql itself currently does
nothing with this locale setting, but rather treats its input (from files or from tecla), all its output,
and all its interactions with the server as UTF-8. vsql ignores the POSIX locale variables,

except for any "automatic" uses in printf, and so on.

Files
Before starting up, vsql attempts to read and execute commands from the system-wide vsqlrc

file and the user's ~/.vsqlrc file. The command-line history is stored in the file
~/.vsql_history.

Tip: If you want to save your old history file, open another terminal window and save a copy to
a different file name.

Exporting Data Using vsql
You can use vsql for simple data exports tasks by changing its output format options so the output
is suitable for importing into other systems (tab delimited or comma-separated files, for example).
These options can be set either from within an interactive vsql session, or through command-line
arguments to the vsql command (making the export process suitable for automation through
scripting). After you have set vsql's options so it outputs the data in a format your target system
can read, you run a query and capture the result in a text file.

The following table lists the meta-commands and command-line options that are useful for
changing the format of vsql's output.

Description Meta-command Command-line Option

Disable padding used to align output. \a (page 145) -A (page 138) or
--no-align

Show only tuples, disabling column headings
and row counts.

\t (page 158) -t (page 141) or
--tuples-only

Set the field separator character. \pset (page 156) -F (page 139) or

-168-

Programmer's Guide

fieldsep --field-separator

Send output to a file. \o (page 155) -o (page 140) or
--output

Specify a SQL statement to execute. N/A -c (page 138) or
--command

The following example demonstrates disabling padding and column headers in the output, and
setting a field separator to dump a table to a tab-separated text file within an interactive session.

=> SELECT * FROM my_table;

 a | b | c

---+-------+---

 a | one | 1

 b | two | 2

 c | three | 3

 d | four | 4

 e | five | 5

(5 rows)

=> \a

Output format is unaligned.

=> \t

Showing only tuples.

=> \pset fieldsep '\t'

Field separator is " ".

=> \o dumpfile.txt

=> select * from my_table;

=> \o

=> \! cat dumpfile.txt

a one 1

b two 2

c three 3

d four 4

e five 5

Note: You could encounter issues with empty strings being converted to NULLs or the reverse
using this technique. You can prevent any confusion by explicitely setting null values to output

a unique string such as NULLNULLNULL (for example, \pset null 'NULLNULLNULL').

Then, on the import end, convert the unique string back to a null value. For example, if you are

copying the file back into a Vertica database, you would give the argument NULL

'NULLNULLNULL' to the COPY statement.

When logged into one of the database nodes, you can create the same output file directly from the
command line by passing the right parameters to vsql:

> vsql -U username -F $'\t' -At -o dumpfile.txt -c "SELECT * FROM my_table;"

Password:

> cat dumpfile.txt

a one 1

b two 2

c three 3

d four 4

e five 5

-169-

 Using vsql

Note: $'...' is a BASH-specific string format that interprets backslash escapes, so it will

pass a literal tab character to the vsql command as the argument for the -F parameter. Shells
other than BASH may have other string literal syntax.

If you want to convert null values to a unique string as mentioned earlier, you can add the

argument -P null='NULLNULLNULL' (or whatever unique string you choose).

By adding the -w vsql command-line option to the example command line, you could use the

command within a batch script to automate the data export. However, the script would contain the
database password as plain text. If you take this approach, you should prevent unauthorized
access to the batch script, and also have the script use a database user account that has limited
access.

Copying Data Using vsql
You can use vsql to copy data between two Vertica databases. This technique is similar to the
technique explained in Exporting Data via vsql (page 167), except instead of having vsql save
data to a file for export, you pipe one vsql's output to the input of another vsql command that runs
a COPY statement from STDIN. This technique can also work for other databases or applications
that accept data from an input stream.

The easiest way to copy using vsql is to log into a node of the target database, then issue a vsql
command that connects to the source Vertica database to dump the data you want. For example,
the following command copies the store.store_sales_fact table from the vmart database on node
testdb01 to the vmart database on the node you are logged into:

vsql -U username -w passwd -h testdb01 -d vmart -At -c "SELECT * from store.store_sales_fact" \

| vsql -U username -w passwd -d vmart -c "COPY store.store_sales_fact FROM STDIN DELIMITER '|';"

Note: The above example copies the data only, not the table design. The target table for the
data copy must already exist in the target database. You can export the design of the table
using EXPORT_OBJECTS or EXPORT_CATALOG.

Monitoring Progress (optional)

You may want some way of monitoring progress when copying large amounts of data between
Vertica databases. One way of monitoring the progress of the copy operation is to use a utility
such as Pipe Viewer (http://www.ivarch.com/programs/pv.shtml) that pipes its input directly to
its output while displaying the amount and speed of data it passes along. Pipe Viewer can even
display a progress bar if you give it the total number of bytes or lines you expect to be processed.
You can get the number of lines to be processed by running a separate vsql command that
executes a SELECT COUNT query.

Note: Pipe Viewer isn't a standard Linux or Solaris command, so you will need download and
install it yourself. See the Pipe Viewer (http://www.ivarch.com/programs/pv.shtml) page for
download packages and instructions. Vertica Systems, Inc. does not support Pipe Viewer.
Install and use it at your own risk.

http://www.ivarch.com/programs/pv.shtml
http://www.ivarch.com/programs/pv.shtml

-170-

Programmer's Guide

The following command demonstrates how you can use Pipe Viewer to monitor the progress of
the copy shown in the prior example. The command is complicated by the need to get the number
of rows that will be copied, which is done using a separate vsql command within a BASH
backquote string, which executes the strings contents and inserts the output of the command into
the command line. This vsql command just counts the number of rows in the
store.store_sales_fact table.

vsql -U username -w passwd -h testdb01 -d vmart -At -c "SELECT * from store.store_sales_fact" \

| pv -lpetr -s `vsql -U username -w passwd -h testdb01 -d vmart -At -c "SELECT COUNT (*) FROM

store.store_sales_fact;"` \

| vsql -U username -w passwd -d vmart -c "COPY store.store_sales_fact FROM STDIN DELIMITER '|';"

While running, the above command displays a progress bar that looks like this:

0:00:39 [12.6M/s] [=============================>] 50% ETA 00:00:40

Notes for Windows Users
vsql is built as a "console application." The Windows console windows use a different encoding
than the rest of the system, so take care when you use 8-bit characters within vsql. If vsql detects
a problematic console code page, it warns you at startup. To change the console code page, two
things are necessary:

 Set the code page by entering cmd.exe /c chcp 1252.

1252 is a code page that is appropriate for German; replace it with your value.

Note: If you use Cygwin, you can put this command in /etc/profile.

 Set the console font to "Lucida Console", because the raster font does not work with the ANSI
code page.

Output Formatting Examples
The first example shows how to spread a command over several lines of input. Notice the
changing prompt:

testdb=> CREATE TABLE my_table (

testdb(> first integer not null default 0,

testdb(> second text) testdb-> ;

CREATE TABLE

Assume you have filled the table with data and want to take a look at it:

testdb=> SELECT * FROM my_table;

 first | second

-------+--------

 1 | one

 2 | two

 3 | three

 4 | four

(4 rows)

You can display tables in different ways by using the \pset command:

testdb=> \pset border 2

Border style is 2.

-171-

 Using vsql

testdb=> SELECT * FROM my_table;

+-------+--------+

| first | second |

+-------+--------+

| 1 | one |

| 2 | two |

| 3 | three |

| 4 | four |

+-------+--------+

(4 rows)

testdb=> \pset border 0

Border style is 0.

testdb=> SELECT * FROM my_table;

first second

----- ------

 1 one

 2 two

 3 three

 4 four

(4 rows)

testdb=>

\pset border 1

Border style is 1.

testdb=> \pset format unaligned

Output format is unaligned.

testdb=> \pset fieldsep ","

Field separator is ",".

testdb=> \pset tuples_only

Showing only tuples.

testdb=> SELECT second, first FROM my_table; one,1

two,2

three,3

four,4

Alternatively, use the short commands:

testdb=> \a \t \ x

Output format is aligned.

Tuples only is off.

Expanded display is on.

testdb=> SELECT * FROM my_table;

-[RECORD 1]-

first | 1

second | one

-[RECORD 2]-

first | 2

second | two

-[RECORD 3]-

first | 3

second | three

-[RECORD 4]-

first | 4

second | four

-172-

Writing Queries

Queries are database operations that retrieve data from one or more tables or views. In Vertica,

the top-level SELECT statement is the query, and a query nested within another SQL statement is

called a subquery.

Vertica is designed to run the same SQL standard queries that run on other databases. However,
there are some differences between Vertica queries and queries used in other relational database
management systems.

The Vertica transaction model is different from the SQL standard in a way that has a profound
effect on query performance. You can:

 Run a query on a static snapshot of the database from any specific date and time. Doing so
avoids holding locks or blocking other database operations.

 Use a subset of the standard SQL isolation levels and access modes (read/write or read-only)
for a user session.

In Vertica, the primary structure of a SQL query is its statement. Each statement ends with a
semicolon, and you can write multiple queries separated by semicolons; for example:

=> CREATE TABLE t1(..., date_col date NOT NULL, ...);

=> CREATE TABLE t2(..., state VARCHAR NOT NULL, ...);

Multiple Instances of Dimension Tables in the FROM Clause

The same dimension table can appear multiple times in a query's FROM clause, using different

aliases. For example:

SELECT *

FROM fact, dimension d1, dimension d2

WHERE fact.fk = d1.pk

 AND

 fact.name = d2.name;

Historical (Snapshot) Queries
Vertica supports querying historical data for individual SELECT statements.

Syntax

[AT EPOCH LATEST] | [AT TIME 'timestamp'] SELECT ...

Parameters

AT EPOCH LATEST Queries all committed data in the database up to, but not
including, the current epoch.

AT TIME 'timestamp' Queries all committed data in the database up to the time stamp

specified. AT TIME 'timestamp' queries are resolved to the

next epoch boundary before being evaluated.

-173-

 Writing Queries

Historical queries, also known as snapshot queries, are useful because they access data in past
epochs only. Historical queries do not need to hold table locks or block write operations because
they do not return the absolute latest data.

Historical queries behave in the same manner regardless of transaction isolation level. Historical
queries observe only committed data, even excluding updates made by the current transaction,
unless those updates are to a temporary table.

Note: You do not need to use historical queries for temporary tables because temp tables do
not require locks. Their content is private to the transaction and valid only for the length of the
transaction.

Be aware that there is only one snapshot of the logical schema. This means that any changes you
make to the schema are reflected across all epochs. If, for example, you add a new column to a
table and you specify a default value for the column, all historical epochs display the new column
and its default value.

See Also

Transactions in the Concepts Guide

Temporary Tables
You can use the CREATE TEMPORARY TABLE statement to implement certain queries using

multiple steps:

1 Create one or more temporary tables.

2 Execute queries and store the result sets in the temporary tables.

3 Execute the main query using the temporary tables as if they were a normal part of the logical
schema.

See CREATE TEMPORARY TABLE in the SQL Reference Manual for details.

SQL Queries
All DML (Data Manipulation Language) statements can contain queries. This section introduces
some of the query types in Vertica, with additional details in later sections.

Note: Many of the examples in this chapter use the VMart schema. For information about other
Vertica-supplied queries, see the Getting Started Guide.

Simple Queries

Simple queries contain a query against one table. Minimal effort is required to process the
following query, which looks for product keys and SKU numbers in the product table:

=> SELECT product_key, sku_number FROM public.product_dimension;

product_key | sku_number

-------------+-----------

43 | SKU-#129

87 | SKU-#250

-174-

Programmer's Guide

42 | SKU-#125

49 | SKU-#154

37 | SKU-#107

36 | SKU-#106

86 | SKU-#248

41 | SKU-#121

88 | SKU-#257

40 | SKU-#120

(10 rows)

Joins

Joins use a relational operator that combines information from two or more tables. The query's ON

clause specifies how tables are combined, such as by matching foreign keys to primary keys. In
the following example, the query requests the names of stores with transactions greater than 70
by joining the store key ID from the store schema's sales fact and sales tables:

=> SELECT store_name, COUNT(*) FROM store.store_sales_fact

 JOIN store.store_dimension ON store.store_sales_fact.store_key = store.store_dimension.store_key

 GROUP BY store_name HAVING COUNT(*) > 70 ORDER BY store_name;

 store_name | count

------------+-------

 Store49 | 72

 Store83 | 78

(2 rows)

For more detailed information, see Joins (page 194). See also Multicolumn Subqueries (page
178).

Cross Joins

Also known as the Cartesian product, a cross join is the result of joining every record in one table
with every record in another table. A cross join occurs when there is no join key between tables to
restrict records. The following query, for example, returns all instances of vendor and store names
in the vendor and store tables:

=> SELECT vendor_name, store_name FROM public.vendor_dimension

 CROSS JOIN store.store_dimension;

vendor_name | store_name

--------------------+------------

Deal Warehouse | Store41

Deal Warehouse | Store12

Deal Warehouse | Store46

Deal Warehouse | Store50

Deal Warehouse | Store15

Deal Warehouse | Store48

Deal Warehouse | Store39

Sundry Wholesale | Store41

Sundry Wholesale | Store12

Sundry Wholesale | Store46

Sundry Wholesale | Store50

Sundry Wholesale | Store15

Sundry Wholesale | Store48

Sundry Wholesale | Store39

Market Discounters | Store41

Market Discounters | Store12

-175-

 Writing Queries

Market Discounters | Store46

Market Discounters | Store50

Market Discounters | Store15

Market Discounters | Store48

Market Discounters | Store39

Market Suppliers | Store41

Market Suppliers | Store12

Market Suppliers | Store46

Market Suppliers | Store50

Market Suppliers | Store15

Market Suppliers | Store48

Market Suppliers | Store39

... | ...

(4000 rows)

This example's output is truncated because this particular cross join returned several thousand
rows. See also Cross Joins (page 199).

Subqueries

A subquery is a query nested within another query. In the following example, we want a list of all
products containing the highest fat content. The inner query (subquery) returns the product
containing the highest fat content among all food products to the outer query block (containing
query). The outer query then uses that information to return the names of the products containing
the highest fat content.

=> SELECT product_description, fat_content FROM public.product_dimension

 WHERE fat_content IN

 (SELECT MAX(fat_content) FROM public.product_dimension

 WHERE category_description = 'Food' AND department_description = 'Bakery')

 LIMIT 10;

 product_description | fat_content

-------------------------------------+-------------

 Brand #59110 hotdog buns | 90

 Brand #58107 english muffins | 90

 Brand #57135 english muffins | 90

 Brand #54870 cinnamon buns | 90

 Brand #53690 english muffins | 90

 Brand #53096 bagels | 90

 Brand #50678 chocolate chip cookies | 90

 Brand #49269 wheat bread | 90

 Brand #47156 coffee cake | 90

 Brand #43844 corn muffins | 90

(10 rows)

For more information, see Subqueries (page 176).

Sorting Queries

Use the ORDER BY clause to order the rows that a query returns.

Special Note About Query Results

You could get different results running certain queries on one machine or another for the following
reasons:

-176-

Programmer's Guide

 Partitioning on a FLOAT type could return nondeterministic results because of the precision,

especially when the numbers are close to one another, such as results from the RADIANS()

function, which has a very small range of output.

To get deterministic results, use NUMERIC if you must partition by data that is not an INTEGER

type.

 Most analytics (with analytic aggregations, such as MIN()/MAX()/SUM()/COUNT()/AVG()

as exceptions) rely on a unique order of input data to get deterministic result. If the analytic
window-order (page 211) clause cannot resolve ties in the data, results could be different
each time you run the query.

For example, in the following query, the analytic ORDER BY does not include the first column in

the query, promotion_key. So for a tie of AVG(RADIANS(cost_dollar_amount)),

product_version, the same promotion_key could have different positions within the

analytic partition, resulting in a different NTILE() number. Thus, DISTINCT could also have a

different result:

=> SELECT COUNT(*) FROM

 (SELECT DISTINCT

SIN(FLOOR(MAX(store.store_sales_fact.promotion_key))),

 NTILE(79) OVER(PARTITION BY AVG (RADIANS

 (store.store_sales_fact.cost_dollar_amount))

 ORDER BY store.store_sales_fact.product_version)

 FROM store.store_sales_fact

 GROUP BY store.store_sales_fact.product_version,

 store.store_sales_fact.sales_dollar_amount) AS store;

 count

 1425

(1 row)

If you add MAX(promotion_key) to analytic ORDER BY, the results are the same on any

machine:

=> SELECT COUNT(*) FROM (SELECT DISTINCT

MAX(store.store_sales_fact.promotion_key),

 NTILE(79) OVER(PARTITION BY

MAX(store.store_sales_fact.cost_dollar_amount)

 ORDER BY store.store_sales_fact.product_version,

 MAX(store.store_sales_fact.promotion_key))

 FROM store.store_sales_fact

 GROUP BY store.store_sales_fact.product_version,

 store.store_sales_fact.sales_dollar_amount) AS store;

Subqueries
When the result set from one query supplies another query‘s conditions, you are using a subquery.

Subqueries are SELECT statements inside another SELECT statement. The inner statement is the

subquery, and the outer statement is the containing statement (sometimes referred to in Vertica as
the outer query block).

-177-

 Writing Queries

Subqueries answer multiple-part questions and provide a great deal of flexibility to SQL
statements by letting you perform in one step what, otherwise, would require multiple steps.

Vertica supports any number of subqueries in FROM, WHERE, and HAVING clauses. For example:

=> SELECT column1, column2, ...

 FROM table AS alias,

 (SELECT * FROM table) AS alias,

 (SELECT * FROM table) AS alias

 WHERE alias.column [NOT] IN (SELECT column FROM table)

 AND alias.column [NOT] IN (SELECT column FROM table)

 GROUP BY column1, column2, ...

 HAVING expression IN (SELECT column1, ... FROM table HAVING expression);

A subquery is always enclosed within parentheses. Like any query, a subquery returns records
from a table that could consist of a single column and record, a single column with multiple
records, or multiple columns and records. Some subqueries are noncorrelated, while others are
correlated. If you want to update or delete records in a table based on values that are stored in

other database tables, you can also nest a subquery within an UPDATE or DELETE statement.

Notes

 Most of the examples the follow use the VMart example database. See the Getting Started
Guide for details.

 See Subquery Notes and Restrictions (page 192) in this guide

Single-row Subqueries

Single-row subqueries are used with single-row comparison operators (=, >=, <=, <>, and <=>)
and return exactly one row.

For example, the following query retrieves the name and hire date of the oldest employee:

=> SELECT employee_key, employee_first_name, employee_last_name, hire_date

 FROM employee_dimension

 WHERE hire_date = (SELECT MIN(hire_date) FROM employee_dimension);

 employee_key | employee_first_name | employee_last_name | hire_date

--------------+---------------------+--------------------+------------

 2292 | Mary | Bauer | 1996-01-11

(1 row)

Multiple-row Subqueries

Multiple-row subqueries return multiple records.

For example, the following IN clause subquery returns the names of the employees making the

highest salary in each of the six regions:

=> SELECT employee_first_name, employee_last_name, annual_salary,

employee_region

 FROM employee_dimension WHERE annual_salary IN

 (SELECT MAX(annual_salary) FROM employee_dimension GROUP BY employee_region)

 ORDER BY annual_salary DESC;

-178-

Programmer's Guide

 employee_first_name | employee_last_name | annual_salary | employee_region

---------------------+--------------------+---------------+-------------------

 Alexandra | Sanchez | 992363 | West

 Mark | Vogel | 983634 | South

 Tiffany | Vu | 977716 | SouthWest

 Barbara | Lewis | 957949 | MidWest

 Sally | Gauthier | 927335 | East

 Wendy | Nielson | 777037 | NorthWest

(6 rows)

Multicolumn Subqueries

Multicolumn subqueries return one or more columns. Sometimes a subquery's result set is
evaluated in the containing query in column-to-column and row-to-row comparisons.

Note: Multicolumn subqueries can use the <>, !=, and = operators but not the <, >, <=, >=
operators. See Subquery Expressions (page 187).

You can substitute some multicolumn subqueries with a join (page 194), with the reverse being
true as well. For example, the following two queries ask for the sales transactions of all products
sold online to customers located in Massachusetts and return the same result set. The only
difference is the first query is written as a join and the second is written as a subquery.

Join query: Subquery:

=> SELECT *

 FROM online_sales.online_sales_fact

 INNER JOIN public.customer_dimension

 USING (customer_key)

 WHERE customer_state = 'MA';

=> SELECT *

 FROM online_sales.online_sales_fact

 WHERE customer_key IN

 (SELECT customer_key

 FROM public.customer_dimension

 WHERE customer_state = 'MA');

This example uses the Vmart example database to return all of the employees in each region
whose salary is above the average:

=> SELECT e.employee_first_name, e.employee_last_name, e.annual_salary,

e.employee_region, s.average

 FROM employee_dimension e,

 (SELECT employee_region, AVG(annual_salary) AS average

 FROM employee_dimension GROUP BY employee_region) AS s

 WHERE e.employee_region = s.employee_region AND e.annual_salary > s.average

 ORDER BY annual_salary DESC;
 employee_first_name | employee_last_name | annual_salary | employee_region | average

---------------------+--------------------+---------------+-----------------+------------------

 Doug | Overstreet | 995533 | East | 61192.786013986

 Matt | Gauthier | 988807 | South | 57337.8638902996

 Lauren | Nguyen | 968625 | West | 56848.4274914089

 Jack | Campbell | 963914 | West | 56848.4274914089

 William | Martin | 943477 | NorthWest | 58928.2276119403

 Luigi | Campbell | 939255 | MidWest | 59614.9170454545

 Sarah | Brown | 901619 | South | 57337.8638902996

 Craig | Goldberg | 895836 | East | 61192.786013986

 Sam | Vu | 889841 | MidWest | 59614.9170454545

 Luigi | Sanchez | 885078 | MidWest | 59614.9170454545

 Michael | Weaver | 882685 | South | 57337.8638902996

 Doug | Pavlov | 881443 | SouthWest | 57187.2510548523

 Ruth | McNulty | 874897 | East | 61192.786013986

 Luigi | Dobisz | 868213 | West | 56848.4274914089

 Laura | Lang | 865829 | East | 61192.786013986

(15 rows)

-179-

 Writing Queries

You can also use the UNION [ALL] keyword in FROM, WHERE, and HAVING clauses. For example,

the following subquery returns information about all Connecticut-based customers who bought
items through either stores or online sales channel and whose purchases amounted to more than
500 dollars:

=> SELECT DISTINCT customer_key, customer_name FROM public.customer_dimension

 WHERE customer_key IN (SELECT customer_key FROM store.store_sales_fact

 WHERE sales_dollar_amount > 500

 UNION ALL

 SELECT customer_key FROM online_sales.online_sales_fact

 WHERE sales_dollar_amount > 500)

 AND customer_state = 'CT';

 customer_key | customer_name

--------------+------------------

 200 | Carla Y. Kramer

 733 | Mary Z. Vogel

 931 | Lauren X. Roy

 1533 | James C. Vu

 2948 | Infocare

 4909 | Matt Z. Winkler

 5311 | John Z. Goldberg

 5520 | Laura M. Martin

 5623 | Daniel R. Kramer

 6759 | Daniel Q. Nguyen

(10 rows)

As always, you can use UNION [ALL] to join queries that contain subqueries:

SELECT <column, ...> FROM <table> UNION SELECT <column, ...> FROM <table>

 (SELECT <column, ...> FROM <table>);

Noncorrelated and Correlated Subqueries

A class of queries is evaluated by running the subquery once and then substituting the resulting

value or values into the WHERE clause of the outer query. These self-contained queries are called

noncorrelated subqueries; you can run them by themselves and inspect the results independent
of their containing statements.

The following subquery requests female and male customers with the maximum annual income

from customers; it uses the GROUP BY clause to return the results by gender. The subquery is

independent of the containing statement, making it noncorrelated:

=> SELECT customer_name FROM customer_dimension

 WHERE (customer_gender, annual_income) IN

 (SELECT customer_gender, MAX(annual_income)

 FROM customer_dimension

 GROUP BY customer_gender);

 customer_name

 Emily G. Vogel

 James M. McNulty

(2 rows)

-180-

Programmer's Guide

A correlated subquery is dependent on its containing statement, from which it references one or
more columns. In Vertica, multiple correlations are allowed only for subqueries that are joined with

an equality predicate (<, >, <=, >=, =, <>, <=>) but not IN/NOT IN, EXISTS/NOT EXISTS, and so

on. Correlated subqueries can contain Boolean logic and aggregates with no GROUP BY clause.

In the following example, the t2 column at the end of the subquery is what makes it correlated;

values for t2.z must be supplied by the subquery's containing statement for the subquery to run.

The subquery is evaluated for every record of the outer block because the column is being used in
the subquery. Internally, such subqueries are treated like joins.

=> SELECT * FROM t1, t2 WHERE t1.x = t2.x AND t1.y =

 (SELECT MAX(c2) FROM t3 WHERE t3.c4 = t2.z);

Notes

 Aggregates and GROUP BY clauses are allowed in subqueries, as long as those subqueries are

not correlated.

 Arbitrary uncorrelated queries are permitted in the WHERE clause as single-row expressions;

for example:

=> SELECT COUNT(*) FROM SubQ1 WHERE SubQ1.a = (SELECT y from SubQ2);

 Uncorrelated queries in the HAVING clause as single-row expressions are permitted; for

example:

=> SELECT COUNT(*) FROM SubQ1 GROUP BY SubQ1.a HAVING SubQ1.a = (SubQ1.a

& (SELECT y from SubQ2));

 Vertica does not support NOT IN predicates within correlated subqueries:

=> SELECT t2.x, t2.y, t2.z

 FROM t2 WHERE t2.z NOT IN

 (SELECT t1.z FROM t1 WHERE t1.x = t2.x);

 ERROR: Correlated subquery with NOT IN is not supported

 Up to one level of correlated subqueries is allowed in the WHERE clause if the subquery

references columns in the immediate outer query block. For example, the following query is

not supported because the t2.x = t3.x subquery can only refer to table t1 in the outer query,

making it a correlated expression because t3.x is two levels out:

=> SELECT t3.x, t3.y, t3.z FROM t3 WHERE t3.z IN (
 SELECT t1.z FROM t1 WHERE EXISTS (

 SELECT 'x' FROM t2 WHERE t2.x = t3.x) AND t1.x = t3.x);

ERROR: More than one level correlated subqueries are not supported

The query is supported if it is rewritten as follows:

=> SELECT t3.x, t3.y, t3.z FROM t3 WHERE t3.z IN

 (SELECT t1.z FROM t1 WHERE EXISTS

 (SELECT 'x' FROM t2 WHERE t2.x = t1.x)

 AND t1.x = t3.x);

-181-

 Writing Queries

Flattening FROM Clause Subqueries and Views

A subquery in the FROM clause must be evaluated before the containing query can be evaluated;

therefore, the optimizer might not always choose the best query plan. In the following query, for

example, all the records in table fact must be evaluated before records in table T, potentially

affecting query performance:

=> SELECT * FROM (SELECT a, MAX(a) AS max FROM (SELECT * FROM fact) AS T GROUP BY

a);

If such queries could be internally rewritten so its subqueries were combined with outer query
block, queries would often run more quickly. This internal optimization is called subquery

flattening, where Vertica flattens some FROM clause subqueries into the containing query, offering

significant performance improvements. For example, the previous query is flattened as follows:

=> SELECT * FROM (SELECT a, MAX(a) FROM fact GROUP BY a) AS T;

Both queries return the same results, but the flattened query could return results more quickly.

Note: When views are mentioned in the FROM clause of a SQL query, Vertica first replaces the

view names with the view definition queries, creating further opportunities for subquery
flattening. This process is called view flattening, and the process described for subquery
flattening also applies to view flattening. See Implementing Views in the Administrator's Guide
for additional details about views.

FROM clause subqueries within a WHERE clause IN subquery are flattened, as are FROM clause

subqueries within a HAVING clause subquery. More generally, subquery flattening is recursive.

Vertica flattens subqueries or views into the containing query, as long as the subquery or view
does not contain:

 Aggregates

 Analytics

 An outer join

 A GROUP BY, ORDER BY, or HAVING clause

 DISTINCT keyword

 A LIMIT or OFFSET clause

 A UNION

 An EXISTS subquery

TIP: To see if a FROM clause subquery has been flattened, inspect the query plan. Typically,

the number of value expression nodes (ValExpNode) decreases after flattening. See

EXPLAIN in the SQL Reference Manual.

-182-

Programmer's Guide

Examples

If you have a predicate that applies to a view or subquery, flattening allows optimizations by
evaluating the predicates before the flattening takes place. In this example, without flattening,

Vertica must first evaluate the subquery, and only then can the predicate WHERE x > 10 be

applied. In the flattened subquery, Vertica applies the predicate before evaluating the subquery,

thus reducing the amount of work for the optimizer because it returns only the records WHERE x >

10 to the containing query.

Assume that view v1 is defined as follows:

=> CREATE VIEW v1 AS SELECT * FROM A;

You enter the following query:

=> SELECT * FROM v1 JOIN B ON x=y WHERE x > 10;

Vertica internally transforms this query as follows:

=> SELECT * FROM (SELECT * FROM A) AS fact JOIN B ON x=y WHERE x > 10;

And the flattening mechanism gives you the following:

=> SELECT * FROM A JOIN B ON x=y WHERE x > 10;

Vertica transforms FROM clause subqueries within a WHERE clause IN subquery as shown below:

Original query: SELECT * FROM a WHERE b IN (SELECT b FROM (SELECT * FROM dim)
AS D WHERE x=1;

Flattened query: SELECT * FROM a WHERE b IN (SELECT b FROM dim) AS D WHERE x=1;

See Also

Subquery Notes and Restrictions (page 192)

DELETE Statement Subqueries

If you want to delete records in a table based on values that are stored in other database tables,

you can nest a subquery within a DELETE statement.

Syntax

DELETE FROM [schema_name.]table

WHERE clause

Semantics The DELETE operation deletes rows that satisfy the WHERE clause from the

specified table. If the WHERE clause is absent, all table rows are deleted. The

result is a valid, even though the statement leaves an empty table.

Outputs On successful completion, a DELETE operation returns a count, which

represents the number of rows deleted. A count of 0 is not an error; it means that
no rows matched the condition.

-183-

 Writing Queries

Examples

The following series of commands illustrate the use of subqueries in DELETE statements; they all

use the following simple schema:

=> CREATE TABLE t (a INTEGER);

=> CREATE TABLE t2 (a INTEGER);

=> INSERT INTO t VALUES (1);

=> INSERT INTO t VALUES (2);

=> INSERT INTO t2 VALUES (1);

=> COMMIT;

The following command deletes the expected row from table t:

=> DELETE FROM t WHERE t.a IN (SELECT t2.a FROM t2);

 OUTPUT

 1

(1 row)

Notice that table t now has only one row,instead of two:

=> SELECT * FROM t;

 a

 2

(1 row)

To preserve the data for this example, issue the rollback command:

=> ROLLBACK;

The following command deletes the expected two rows:

=> DELETE FROM t WHERE EXISTS (SELECT * FROM t2);

 OUTPUT

 2

(1 row)

Now table t contains no rows:

=> SELECT * FROM t;

 a

(0 rows)

Roll back to the previous state and verify that you still have two rows:

=> ROLLBACK;

SELECT * FROM t;

 a

 1

 2

(2 rows)

The following command uses a correlated subquery to delete all rows in table t where t.a

matches a value of t2.a.

=> DELETE FROM t WHERE EXISTS (SELECT * FROM t2 WHERE t.a = t2.a);

 OUTPUT

-184-

Programmer's Guide

 1

(1 row)

Query the table to verify the row was deleted:

=> SELECT * FROM t;

 a

 2

(1 row)

Roll back to the previous state and query the table again:

=> ROLLBACK;

=> SELECT * FROM t;

 a

 1

 2

(2 rows)

See Also

DELETE in the SQL Reference Manual

UPDATE Statement Subqueries

If you want to update records in a table based on values that are stored in other database tables,

you can nest a subquery within an UPDATE statement.

Syntax

UPDATE [schema-name.]table

SET column = { expression | DEFAULT } [, ...]

[FROM from-list]

[WHERE clause]

Semantics UPDATE changes the values of the specified columns in all rows that satisfy the

condition. Only the columns to be modified need to be specified in the SET

clause. Columns that are not explicitly modified retain their previous values.

Outputs On successful completion, an update operation returns a count, which
represents the number of rows updated. A count of 0 is not an error; it means
that no rows matched the condition.

Notes and Restrictions

 You cannot use SET column = {expression} to specify a subquery.

 The table specified in the UPDATE list cannot also appear in the from-list (no self joins); for

example:

BEGIN;

UPDATE result_table

SET address='new' || r2.address

FROM result_table r2

-185-

 Writing Queries

WHERE r2.cust_id = result_table.cust_id + 10;

ERROR: Self joins in UPDATE statements are not allowed

DETAIL: Target relation result_table also appears in the FROM list

 If more than one row in a table to be updated matches the WHERE predicate, Vertica returns an

error specifying which row had more than one match.

Examples

The following series of commands illustrate the use of subqueries in UPDATE statements; they all

use the following simple schema:

=> CREATE TABLE result_table(

 cust_id INTEGER,

 address VARCHAR(2000)

);

Enter some customer data:

=> COPY result_table FROM stdin delimiter ',' DIRECT;

 20, Lincoln Street

 30, Booth Hill Road

 30, Beach Avenue

 40, Mt. Vernon Street

 50, Hillside Avenue

 \.

Query the table you just created:

=> SELECT * FROM result_table;

 cust_id | address

---------+--------------------

 20 | Lincoln Street

 30 | Beach Avenue

 30 | Booth Hill Road

 40 | Mt. Vernon Street

 50 | Hillside Avenue

(5 rows)

Create a second table called new_addresses:

=> CREATE TABLE new_addresses(

 new_cust_id integer,

 new_address VARCHAR(200)

);

Enter some customer data.

Note: The following COPY statement creates an entry for a customer ID with a value of 60,

which does not have a matching value in the result_table table:

=> COPY new_addresses FROM stdin delimiter ',' DIRECT;

 20, Infinite Loop

 30, Loop Infinite

 60, New Addresses

 \.

Query the new_addresses table:

-186-

Programmer's Guide

=> SELECT * FROM new_addresses;

 new_cust_id | new_address

-------------+----------------

 20 | Infinite Loop

 30 | Loop Infinite

 60 | New Addresses

(3 rows)

Commit the changes:

=> COMMIT;

In the following example, a noncorrelated subquery (page 179) is used to change the address

record in results_table to 'New Address' when the query finds a customer ID match in both

tables:

=> UPDATE result_table

 SET address='New Address'

 WHERE cust_id IN (SELECT new_cust_id FROM new_addresses);

The output returns the expected count indicating that three rows were updated:

 OUTPUT

 3

(1 row)

Now query the result_table table to see the changes for matching customer ID 20 and 30.

Addresses for customer ID 40 and 50 are not updated:

=> SELECT * FROM result_table;

 cust_id | address

---------+------------------

 20 | New Address

 30 | New Address

 30 | New Address

 40 | Mt. Vernon Street

 50 | Hillside Avenue

(5 rows)

To preserve your original data, issue the ROLLBACK command:

=> ROLLBACK;

In the following example, a correlated subquery is used to replace all address records in the

results_table with the new_address record from the new_addresses table when the query

finds match on the customer ID in both tables:

=> UPDATE result_table

 SET address=new_addresses.new_address

 FROM new_addresses

 WHERE cust_id = new_addresses.new_cust_id;

Again, the output returns the expected count indicating that three rows were updated:

 OUTPUT

 3

(1 row)

-187-

 Writing Queries

Now query the result_table table to see the changes for customer ID 20 and 30. Addresses

for customer ID 40 and 50 are not updated, and customer ID 60 is omitted because there is no
match:

=> SELECT * FROM result_table;

 cust_id | address

---------+------------------

 20 | Infinite Loop

 30 | Loop Infinite

 30 | Loop Infinite

 40 | Mt. Vernon Street

 50 | Hillside Avenue

(5 rows)

See Also

UPDATE in the SQL Reference Manual

Subquery Expressions

Vertica supports Boolean subquery expressions in the WHERE clause with any of the following

operators: >, <, >=, <=, =, <>, <=>. WHERE clause subqueries filter results and take the following

form:

SELECT <column, ...>

FROM <table>

WHERE <condition> (SELECT <column, ...> FROM <table> WHERE <condition>);

These conditions are available for all data types where comparison makes sense. All comparison
operators are binary operators that return values of True, False, or NULL.

Expressions that correlate to just one outer table in the outer query block are supported, and these
correlated expressions can be comparison operators.

The following subquery scenarios are supported:

SELECT * FROM T1 WHERE T1.x = (SELECT MAX(c1) FROM T2);

SELECT * FROM T1 WHERE T1.x >= (SELECT MAX(c1) FROM T2 WHERE T1.y = T2.c2);

SELECT * FROM T1 WHERE T1.x >= (SELECT MIN(c1) FROM T2 WHERE T1.y < T2.c2);

SELECT * FROM T1 WHERE T1.x <= (SELECT MAX(c1) FROM T2 WHERE T1.y = T2.c2);

Subquery expressions can use the AND operator but not the OR, ANY, ALL, or BETWEEN operators.

See Also

Subquery Notes and Restrictions (page 192)

Comparison Operators in the SQL Reference Manual

EXISTS Conditions

The EXISTS predicate is one of the most common predicates used to build conditions that use

correlated and noncorrelated subqueries. Use EXISTS to identify the existence of a relationship

without regard for the quantity.

-188-

Programmer's Guide

Syntax

expression [NOT] EXISTS (subquery)

The EXISTS condition is considered to be met if the subquery returns at least one row. Since the

result depends only on whether any records are returned, and not on the contents of those
records, the output list of the subquery is normally uninteresting. A common coding convention is

to write all EXISTS tests in the following form:

EXISTS (SELECT 1 WHERE ...)

SELECT 1 returns the value 1 for every record in the query. If the query returns, for example, five

records, it returns 5 ones. The system doesn't care about the real values in those records; it just
wants to know if a row is returned.

A subquery‘s select list that uses EXISTS might consist of the asterisk (*). You do not need to

specify column names, because the query tests for the existence or nonexistence of records that
meet the conditions specified in the subquery.

The following example behaves like an inner join on col2, but it produces, at most, one output

record for each table1 record, even if there are multiple matching table2 records:

=> SELECT col1 FROM table1 WHERE EXISTS (SELECT 1 FROM tab2 WHERE col2 = tab1.col2);

Subqueries could be useful in cases where you might have trouble constructing a join, such as for

queries that use the EXISTS predicate. For example, the following query retrieves the list of all the

customers who purchased anything from any of the stores amounting to more than 550 dollars:

=> SELECT customer_key, customer_name, customer_state

 FROM public.customer_dimension WHERE EXISTS

 (SELECT 1 FROM store.store_sales_fact

 WHERE customer_key = public.customer_dimension.customer_key

 AND sales_dollar_amount > 550)

 AND customer_state = 'MA' ORDER BY customer_key;

 customer_key | customer_name | customer_state

--------------+--------------------+----------------

 14818 | William X. Nielson | MA

 18705 | James J. Goldberg | MA

 30231 | Sarah N. McCabe | MA

 48353 | Mark L. Brown | MA

(4 rows)

Examples

Whether you use EXISTS or IN subqueries depends on which predicates you select in outer and

inner query blocks. For example, to get a list of all the orders placed by all stores on January 2,
2003 for vendors with records in the vendor table:

=> SELECT store_key, order_number, date_ordered

 FROM store.store_orders_fact WHERE EXISTS

 (SELECT 1 FROM public.vendor_dimension

 WHERE public.vendor_dimension.vendor_key =

store.store_orders_fact.vendor_key)

 AND date_ordered = '2003-01-02';

 store_key | order_number | date_ordered

-----------+--------------+--------------

-189-

 Writing Queries

 37 | 2559 | 2003-01-02

 16 | 552 | 2003-01-02

 35 | 1156 | 2003-01-02

 13 | 3885 | 2003-01-02

 25 | 554 | 2003-01-02

 21 | 2687 | 2003-01-02

 49 | 3251 | 2003-01-02

 19 | 2922 | 2003-01-02

 26 | 1329 | 2003-01-02

 40 | 1183 | 2003-01-02

(10 rows)

The above query looks for existence of the vendor and date ordered. To return a particular value,
rather than simple existence, the query looks for orders placed by the vendor who got the best
deal on January 4, 2004:

=> SELECT store_key, order_number, date_ordered

 FROM store.store_orders_fact ord, public.vendor_dimension vd

 WHERE ord.vendor_key = vd.vendor_key AND vd.deal_size IN

 (SELECT MAX(deal_size) FROM public.vendor_dimension)

 AND date_ordered = '2004-01-04';

 store_key | order_number | date_ordered

-----------+--------------+--------------

 166 | 36008 | 2004-01-04

 113 | 66017 | 2004-01-04

 198 | 75716 | 2004-01-04

 27 | 150241 | 2004-01-04

 148 | 182207 | 2004-01-04

 9 | 188567 | 2004-01-04

 45 | 202416 | 2004-01-04

 24 | 250295 | 2004-01-04

 121 | 251417 | 2004-01-04

(9 rows)

See Also

Subquery Notes and Restrictions (page 192)

IN Conditions

While you cannot equate a single value to a set of values, you can check to see if a single value is

found within that set of values. Use the IN clause for multiple-record, single-column subqueries.

Syntax

{ expression [NOT] IN (subquery)

| expression [NOT] IN (expression) }

There is no limit to the number of parameters passed to the IN clause of the SELECT statement;

for example:

=> SELECT * FROM tablename WHERE column IN (a, b, c, d, e, ...);

Vertica also supports queries where two or more outer expressions refer to different inner
expressions:

=> SELECT * FROM A WHERE (A.x,A.x) IN (SELECT B.x, B.y FROM B);

-190-

Programmer's Guide

Examples

The following query uses the Vmart schema to illustrate the use of outer expressions referring to
different inner expressions:

=> SELECT product_description, product_price FROM product_dimension

 WHERE (product_dimension.product_key, product_dimension.product_key) IN

 (SELECT store.store_orders_fact.order_number,

 store.store_orders_fact.quantity_ordered

 FROM store.store_orders_fact);

 product_description | product_price

-----------------------------+---------------

 Brand #72 box of candy | 326

 Brand #71 vanilla ice cream | 270

(2 rows)

To find all products supplied by stores in MA, first create the inner query and run it to ensure that it
works as desired. The following query returns all stores located in MA:

SELECT store_key

FROM store.store_dimension

WHERE store_state = „MA‟;

 store_key

 13

 31

(2 rows)

Then create the outer or main query that specifies all distinct products that were sold in stores
located in MA. This statement combines the inner and outer queries using the IN predicate:

SELECT DISTINCT s.product_key, p.product_description

FROM store.store_sales_fact s, public.product_dimension p

WHERE s.product_key = p.product_key

 AND s.product_version = p.product_version

 AND s.store_key IN

 (SELECT store_key

 FROM store.store_dimension

 WHERE store_state = 'MA')

ORDER BY s.product_key;

 product_key | product_description

-------------+---------------------------------------

 1 | Brand #1 white bread

 1 | Brand #4 vegetable soup

 3 | Brand #9 wheelchair

 5 | Brand #15 cheddar cheese

 5 | Brand #19 bleach

 7 | Brand #22 canned green beans

 7 | Brand #23 canned tomatoes

 8 | Brand #24 champagne

 8 | Brand #25 chicken nuggets

 11 | Brand #32 sausage

(281 rows)

-191-

 Writing Queries

When using NOT IN, the subquery returns a list of zero or more values in the outer query where

the comparison column does not match any of the values returned from the subquery. Using the

previous example, NOT IN returns all the products that are not supplied from MA.

Vertica supports multicolumn NOT IN expressions only if all expressions on the left side of the
WHERE clause are defined as NOT NULL and are from the same base table or subquery. The
following query is supported because product_key and product_version are from the same table.
Also, online_sales_fact.product_key and online_sales_fact.product_version have been defined as
not NULL:

=> SELECT sale_date_key, product_key, sales_quantity

 FROM online_sales.online_sales_fact f

 WHERE (f.product_key, f.product_version) NOT IN

 (SELECT product_key, product_version FROM public.product_dimension);

The following query, however, is not supported because the lefthand expressions could be null:

=> SELECT * FROM

 (SELECT store_number, store_name

 FROM store.store_dimension

 WHERE store_state = 'MA') str

 WHERE (store_number, store_name) NOT IN

 (SELECT store_number, store_name

 FROM store.store_dimension

 WHERE number_of_employees < 40);

See Also

Equijoins and Non-Equijoins (page 196)

Subquery Notes and Restrictions (page 192)

LIKE Conditions

Vertica supports LIKE conditions in subqueries:

=> SELECT COUNT(*) FROM customer_dimension WHERE customer_name LIKE

 (SELECT 'E%' FROM customer_dimension LIMIT 1);

 count

 964

(1 row)

See Also

Subquery Notes and Restrictions (page 192)

HAVING Conditions

A HAVING clause is used in conjunction with the GROUP BY clause to filter the select-list records

that a GROUP BY returns. HAVING clause subqueries must use Boolean comparison operators: =,

>, <, <>, <=, >=, and those subqueries can be noncorrelated (page 179).

-192-

Programmer's Guide

SELECT <column, ...>

FROM <table>

GROUP BY <expression>

HAVING <expression>

 (SELECT <column, ...>

 FROM <table>

 HAVING <expression>);

Example

The following query returns the number of customers who purchased lowfat products. Note that
the GROUP BY clause is required because the query uses an aggregate (COUNT).

=> SELECT s.product_key, COUNT(s.customer_key) FROM store.store_sales_fact s

 GROUP BY s.product_key HAVING s.product_key IN

 (SELECT product_key FROM product_dimension WHERE diet_type = 'Low Fat');

The subquery first returns the product keys for all lowfat products, and the outer query then counts
the total number of customers who purchased those products.

 product_key | count

-------------+-------

 15 | 2

 41 | 1

 66 | 1

 106 | 1

 118 | 1

 169 | 1

 181 | 2

 184 | 2

 186 | 2

 211 | 1

 229 | 1

 267 | 1

 289 | 1

 334 | 2

 336 | 1

(15 rows)

Subquery Notes and Restrictions

This topic summarizes subquery notes and restrictions in Vertica:

 Vertica supports any number of subqueries in FROM, WHERE, and HAVING clauses.

 FROM clause subqueries require an alias but tables do not. If the table has no alias, the query

must refer to columns inside it as <table>.<column>; however, if the column names are

uniquely identified among all tables used by the query, then preceding the column with a table
name is not enforced.

 A subquery that uses a comparison operator can return only one row.

 Subqueries that return one column and any number of rows can be used in IN conditions and

in EXISTS conditions.

 Multicolumn subqueries can use the <>, !=, and = operators but not the <, >, <=, >= operators.

-193-

 Writing Queries

 Subquery expressions can use the AND operator but not the OR, ANY, ALL, or BETWEEN

operators.

 Subqueries can use LIKE pattern-matching conditions.

 A column can be compared to a subquery in a comparison condition (for example, >,<, or <>)
as long as the subquery returns no more than one row, uses only one aggregate, and contains

no GROUP BY clause. If the subquery (which must have one column) returns one row, the value

of that row is compared to the expression. If a subquery returns no rows, its value is NULL.

 Queries can return unexpected sort results if the ORDER BY clause is inside a FROM clause

subquery, rather than in the outer query block. The reason for this is because Vertica data

comes from multiple nodes, so sort order cannot be guaranteed unless an ORDER BY clause is

specified in the containing query. This behavior is compliant with the SQL standard but might
be different from other databases.

 Subqueries are supported within UPDATE statements with the following exceptions:

 You cannot use SET column = {expression} to specify a subquery.

 The table specified in the UPDATE list cannot also appear in the from-list (no self joins).

 Subqueries are supported within DELETE statements.

 HAVING clause subqueries must use Boolean comparison operators: =, >, <, <>, <=, >=, and

those subqueries can be noncorrelated.

 Vertica can use pre-join projections to answer subqueries.

 There is no limit to the number of parameters passed to the IN condition of the WHERE clause.

 IN clause subqueries allow constants in the lefthand argument.

 Expressions on the lefthand side of the IN predicate must come from the same table as the

reference table in a subquery.

 Vertica supports multicolumn NOT IN expressions only if all expressions on the left side of the

WHERE clause are defined as NOT NULL and are from the same base table or subquery.

 Two or more outer expressions refer to different inner expressions.

 Subqueries can refer to multiple outer tables, as well as to non-preserved (inner) tables in
outer joins.

 Vertica also supports joins where the outer (preserved) table or subquery is replicated on more
than one node and the inner (non-preserved) table or subquery is segmented across more
than one node.

 Aggregates and GROUP BY clauses are allowed in subqueries, as long as those subqueries are

noncorrelated (page 179).

 Vertica returns an error message during subquery run time on scalar subqueries that return
more than one row.

 Subqueries are not allowed in the defining query of a CREATE PROJECTION statement.

 Correlated subqueries can contain Boolean logic and aggregates with no GROUP BY clause.

 Arbitrary uncorrelated queries are permitted in the WHERE clause as single-row expressions.

 Uncorrelated queries in the HAVING clause as single-row expressions are permitted.

 Vertica does not support NOT IN predicates within correlated subqueries.

-194-

Programmer's Guide

 Up to one level of correlated subqueries is allowed in the WHERE clause if the subquery

references columns in the immediate outer query block.

Joins
Queries can combine records from multiple tables, or multiple instances of the same table. A
query that combines records from one or more tables is called a join.

Joins are allowed in a SELECT statement, as well as inside a subquery (page 176).

Vertica supports the following join types:

 Inner (page 195) (including natural (page 198), cross (page 199)) joins

 Left, right, and full outer (page 200) joins

 Optimizations for equality and range (page 202) joins predicates

 Hash, merge and sort-merge join algorithms.

There are three basic algorithms that perform a join operation: nested loops, merge joins, and
hash joins. This chapter does not describe how join algorithms work outside mentioning them in
the following list:

 If both inputs are pre-sorted, merge joins do not have to do any pre-processing. Vertica uses
the term sort-merge join to refer to the case when one of the inputs must be sorted prior to the
merge join. Vertica sorts the inner input side but only if the outer input side is already sorted on
the join keys.

 Hash joins are used only for equi-joins where hashed values are compared for equality, not for
other relationships.

 Vertica does not support nested loops joins

The ANSI Join Syntax

Before the ANSI SQL-92 standard introduced the new join syntax, relations (tables, views, etc)

were named in the FROM clause, separated by commas. Join conditions were specified in the

WHERE clause:

=> SELECT * FROM T1, T2 WHERE T1.id = T2.id;

The ANSI SQL-92 standard provided more specific join syntax, with join conditions named in the
ON clause:

=> SELECT * FROM T1

 [INNER | LEFT OUTER | RIGHT OUTER | FULL OUTER | NATURAL | CROSS] JOIN T2

 ON T1.id = T2.id

See SQL-99 ANSI syntax at BNF Grammar for SQL-99
(http://savage.net.au/SQL/sql-99.bnf.html) for additional details.

Although some users continue to use the older join syntax, Vertica encourages you to use the
SQL-92 join syntax whenever possible because of its many advantages:

http://savage.net.au/SQL/sql-99.bnf.html

-195-

 Writing Queries

 SQL-92 outer join syntax is portable across databases; the older syntax was not consistent
between databases. (Vertica does not support proprietary outer join syntax such as '+' that
can be used in some databases.)

 SQL-92 syntax provides greater control over whether predicates are to be evaluated during or
after outer joins. This was also not consistent between databases when using the older
syntax. See "Join Conditions vs. Filter Conditions" below.

 SQL-92 syntax eliminates ambiguity in the order of evaluating the joins, in cases where more
than two tables are joined with outer joins.

 Union joins can be expressed using the SQL-92 syntax, but not in the older syntax.

Note: Vertica does not currently support union joins.

Join Conditions vs. Filter Conditions

If you do not use the SQL-92 syntax, join conditions (predicates that are evaluated during the join)
are difficult to distinguish from filter conditions (predicates that are evaluated after the join), and in
some cases cannot be expressed at all. With SQL-92, join conditions and filter conditions are

separated into two different clauses, the ON clause and the WHERE clause, respectively, making

queries easier to understand.

 The ON clause contains relational operators (for example, <, <=, >, >=, <>, =, <=>) or other
predicates that specify which records from the left and right input relations to combine, such as

by matching foreign keys to primary keys. ON can be used with inner, left outer, right outer, and

full outer joins. Cross joins and union joins do not use an ON clause.

Inner joins return all pairings of rows from the left and right relations for which the ON clause

evaluates to TRUE. In a left join, all rows from the left relation in the join are present in the
result; any row of the left relation that does not match any rows in the right relation is still
present in the result but with nulls in any columns taken from the right relation. Similarly, a right
join preserves all rows from the right relation, and a full join retains all rows from both relations.

 The WHERE clause is evaluated after the join is performed. It filters records returned by the

FROM clause, eliminating any records that do not satisfy the WHERE clause condition.

Vertica automatically converts outer joins to inner joins in cases where it is correct to do so,
allowing the optimizer to choose among a wider set of query plans and leading to better
performance.

Inner Joins

An inner join combines records from two tables based on a join predicate and requires that each
record in the first table has a matching record in the second table. Inner joins, thus, return only
those records from both joined tables that satisfy the join condition. Records that contain no
matches are not preserved.

Inner joins take the following form:

SELECT <column list>

FROM <left joined table>

[INNER] JOIN <right joined table>

ON <join condition>

-196-

Programmer's Guide

Notes

 Inner joins are are commutative and associative, which means you can specify the tables in
any order you want, and the results do not change.

 If you omit the INNER keyword, the join is still an inner join, the most commonly used type of

join.

 Join conditions that follow the ON keyword generally can contain many predicates connected

with Boolean AND, OR, or NOT predicates.

 You can also use inner join syntax to specify joins for pre-join projections. See Pre-join
Projections and Join Predicates (page 204).Some SQL-related books and online tutorials
refer to a left-joined table as the outer table and a right-joined table as the inner table. The
Vertica documentation often uses the left/right table concept.

Example

In the following example, an inner join produces only the set of records that matches in both T1
and T2 when T1 and T2 have the same data type; all other data is excluded.

=> SELECT * FROM T1 INNER JOIN T2 ON (T1.id = T2.id);

If a company, for example, wants to know the dates vendors in Utah sold inventory:

=> SELECT v.vendor_name, d.date FROM vendor_dimension v

 INNER JOIN date_dimension d ON v.vendor_key = d.date_key

 WHERE vendor_state = 'UT';

 vendor_name | date

------------------+------------

 Frozen Warehouse | 2003-01-07

 Delicious Farm | 2003-01-26

(2 rows)

To clarify, if the vendor dimension table contained a third row that has no corresponding date
when a vendor sold inventory, then that row would not be included in the result set. Similarly, if on
some date there was no inventory sold by any vendor, those rows would be left out of the result
set. If you want to include all rows from one table or the other regardless of whether a match
exists, you can specify an outer join (page 200).

See Also

Joins Notes and Restrictions (page 205)

Equi-joins and Non Equi-Joins

Vertica supports any arbitrary join expression with both matching and non-matching column
values; for example:

SELECT * FROM fact JOIN dim ON fact.x = dim.x;

SELECT * FROM fact JOIN dim ON fact.x > dim.y;

SELECT * FROM fact JOIN dim ON fact.x <= dim.y;

SELECT * FROM fact JOIN dim ON fact.x <> dim.y;

SELECT * FROM fact JOIN dim ON fact.x <=> dim.y;

Note: The = and <=> operators generally run the fastest.

-197-

 Writing Queries

Equi-joins are based on equality (matching column values). This equality is indicated with an equal

sign (=), which functions as the comparison operator in the ON clause using SQL-92 syntax or the

WHERE clause using older join syntax.

The first example below uses SQL-92 syntax and the ON clause to join the online sales table with

the call center table using the call center key; the query then returns the sale date key that equals
the value 156:

=> SELECT sale_date_key, cc_open_date FROM online_sales.online_sales_fact

 INNER JOIN online_sales.call_center_dimension

 ON (online_sales.online_sales_fact.call_center_key =

 online_sales.call_center_dimension.call_center_key

 AND sale_date_key = 156);

 sale_date_key | cc_open_date

---------------+--------------

 156 | 2005-08-12

(1 row)

The second example uses older join syntax and the WHERE clause to join the same tables to get

the same results:

=> SELECT sale_date_key, cc_open_date

 FROM online_sales.online_sales_fact, online_sales.call_center_dimension

 WHERE online_sales.online_sales_fact.call_center_key =

 online_sales.call_center_dimension.call_center_key

 AND sale_date_key = 156;

 sale_date_key | cc_open_date

---------------+--------------

 156 | 2005-08-12

(1 row)

Vertica also permits tables with compound (multiple-column) primary and foreign keys. For
example, to create a pair of tables with multi-column keys:

=> CREATE TABLE dimension(pk1 INTEGER NOT NULL, pk2 INTEGER NOT NULL);

=> ALTER TABLE dimension ADD PRIMARY KEY (pk1, pk2);

=> CREATE TABLE fact (fk1 INTEGER NOT NULL, fk2 INTEGER NOT NULL);

=> ALTER TABLE fact ADD FOREIGN KEY (fk1, fk2) REFERENCES dimension (pk1, pk2);

To join tables using compound keys, you must connect two join predicates with a Boolean AND

operator. For example:

=> SELECT * FROM fact f JOIN dimension d ON f.fk1 = d.pk1 AND f.fk2 = d.pk2;

You can write queries with expressions that contain the <=> operator for NULL=NULL joins.

=> SELECT * FROM fact JOIN dim ON fact.x <=> dim.y;

The <=> operator performs an equality comparison like the = operator, but it returns true, instead
of NULL, if both operands are NULL, and false, instead of NULL, if one operand is NULL.

=> SELECT 1 <=> 1, NULL <=> NULL, 1 <=> NULL;

 ?column? | ?column? | ?column?

----------+----------+----------

 t | t | f

(1 row)

Compare the <=> operator to the = operator:

-198-

Programmer's Guide

=> SELECT 1 = 1, NULL = NULL, 1 = NULL;

 ?column? | ?column? | ?column?

----------+----------+----------

 t | |

(1 row)

Note: Writing NULL=NULL joins on primary key/foreign key combinations is not an optimal
choice because PK/FK columns are usually defined as NOT NULL.

When composing joins, it helps to know in advance which columns contain null values. An
employee's hire date, for example, would not be a good choice because it is unlikely hire date
would be omitted. An hourly rate column, however, might work if some employees are paid hourly
and some are salaried. If you are unsure about the value of columns in a given table and want to
check, type the command:

=> SELECT COUNT(*) FROM tablename WHERE columnname IS NULL;

Natural Joins

A natural join is just a join with an implicit join predicate, Natural joins can be inner, left outer, right
outer, or full outer joins and take the following form:

SELECT <column list> FROM <left-joined table>

NATURAL [INNER | LEFT OUTER | RIGHT OUTER | FULL OUTER] JOIN <right-joined table>

Natural joins are, by default, natural inner joins; however, there can also be natural (left/right) outer
joins. The primary difference between an inner and natural join is that inner joins have an explicit
join condition, whereas the natural join‘s conditions are formed by matching all pairs of columns in
the tables that have the same name and compatible data types, making natural joins equi-joins
(page 196) because join condition are equal between common columns. (If the data types are
incompatible, Vertica returns an error.)

=> SELECT * FROM T1 NATURAL JOIN T2 WHERE T2.val > 5;

The following example shows a natural join between the store_sales_fact table and the

product_dimension table with columns of the same name, product_key and

product_version:

=> SELECT product_description, store.store_sales_fact.*

 FROM store.store_sales_fact, public.product_dimension

 WHERE store.store_sales_fact.product_key =

public.product_dimension.product_key

 AND store.store_sales_fact.product_version =

public.product_dimension.product_version;

In another illustration, the following three queries return the same result expressed as a basic
query, an inner join, and a natural join. Note that the table expressions are equivalent only if the

common attribute in Table 1 (store_sales_fact) and Table 2 (store_dimension) is

store_key. If both tables have a column named store_key, then the natural join would also

have a store_sales_fact.store_key = store_dimension.store_key join condition.

Since the results are the same in all three instances, they are shown in the first (basic) query only:

=> SELECT store_name FROM store.store_sales_fact, store.store_dimension

 WHERE store.store_sales_fact.store_key = store.store_dimension.store_key

 AND store.store_dimension.store_state = 'MA' ORDER BY store_name;

 store_name

-199-

 Writing Queries

 Store11

 Store128

 Store178

 Store66

 Store8

 Store90

(6 rows)

The query written as an inner join:

=> SELECT store_name FROM store.store_sales_fact

 INNER JOIN store.store_dimension

 ON (store.store_sales_fact.store_key = store.store_dimension.store_key)

 WHERE store.store_dimension.store_state = 'MA' ORDER BY store_name;

In the case of the natural join, the join predicate appears implicitly by comparing all of the columns
in both tables that are joined by the same column name. The result set contains only one column
representing the pair of equally-named columns.

=> SELECT store_name FROM store.store_sales_fact

 NATURAL JOIN store.store_dimension

 WHERE store.store_dimension.store_state = 'MA' ORDER BY store_name;

Cross Joins

Cross joins are the simplest joins to write, but they are not usually the fastest to run because they
consist of all possible combinations of two tables‘ records. Cross joins contain no join condition
and return what is known as a Cartesian product, where the number of rows in the result set is
equal to the number of rows in the first table multiplied by the number of rows in the second table.

The following query returns all possible combinations from the the promotion table and the store
sales table:

=> SELECT * FROM promotion_dimension CROSS JOIN store.store_sales_fact;

Since this example returns over 600 million records, it is easy to imagine how cross join results
can be extremely large and difficult to manage. Cross joins can be useful, however, such as when
returning a single-row result set.

Tip: Filter out unwanted records in a cross with WHERE clause join predicates:

=> SELECT * FROM promotion_dimension p

 CROSS JOIN store.store_sales_fact f

 WHERE p.promotion_key LIKE f.promotion_key;

For details on what qualifies as a join predicate, see Pre-join Projections and
Join Predicates (page 204).

Vertica recommends that you do not write implicit cross joins (such as tables named in the FROM

clause separated by commas). Such queries could imply accidental omission of a join predicate. If

your intent is to run a cross join, write explicit CROSS JOIN syntax.:

=> SELECT * FROM promotion_dimension CROSS JOIN store.store_sales_fact;

-200-

Programmer's Guide

Examples

The following example creates two small tables and their superprojections and then runs a cross
join on the tables:

=> CREATE TABLE employee(employee_id INT, employee_fname VARCHAR(50));

=> CREATE TABLE department(dept_id INT, dept_name VARCHAR(50));

=> INSERT INTO employee VALUES (1, 'Andrew');

=> INSERT INTO employee VALUES (2, 'Priya');

=> INSERT INTO employee VALUES (3, 'Michelle');

=> INSERT INTO department VALUES (1, 'Engineering');

=> INSERT INTO department VALUES (2, 'QA');

=> SELECT * FROM employee CROSS JOIN department;

In the result set, the cross join retrieves records from the first table and then creates a new row for
every row in the 2nd table. It then does the same for the next record in the first table, and so on.

 employee_id | employee_name | dept_id | dept_name

-------------+---------------+---------+-----------

 1 | Andrew | 1 | Engineering

 2 | Priya | 1 | Engineering

 3 | Michelle | 1 | Engineering

 1 | Andrew | 2 | QA

 2 | Priya | 2 | QA

 3 | Michelle | 2 | QA

(6 rows)

Outer Joins

Outer joins extend the functionality of inner joins by letting you preserve rows of one or both tables
that do not have matching rows in the other. Outer joins take the following form:

SELECT <column list>

FROM <left-joined table>

[LEFT | RIGHT | FULL] OUTER JOIN <right-joined table>

ON <join condition>

Note: Omitting the keyword OUTER from your statements does not affect results. LEFT OUTER

JOIN and LEFT JOIN perform the same operation and return the same results.

Left Outer Joins

A left outer join returns a complete set of records from the left-joined (preserved) table T1, with

matched records, where available, in the right-joined (non-preserved) table T2. Where Vertica

finds no match, it extends the right side column (T2) with null values.

=> SELECT * FROM T1 LEFT OUTER JOIN T2 ON T1.x = T2.x;

To exclude the non-matched values from T2, write the same left outer join, but filter out the records

you don't want from the right side by using a WHERE clause:

=> SELECT * FROM T1 LEFT OUTER JOIN T2

 ON T1.x = T2.x WHERE T2.x IS NOT NULL;

-201-

 Writing Queries

The following example uses a left outer join to enrich telephone call detail records with an
incomplete numbers dimension. It then filters out results that are known not to be from
Massachusetts:

SELECT COUNT(*) FROM calls LEFT OUTER JOIN numbers

ON calls.to_phone = numbers.phone WHERE NVL(numbers.state, '') <> 'MA';

Right Outer Joins

A right outer join returns a complete set of records from the right-joined (preserved) table, as well
as matched values from the left-joined (non-preserved) table. If Vertica finds no matching

records from the left-joined table (T1), NULL values appears in the T1 column for any records with

no matching values in T1. A right join is, therefore, similar to a left join, except that the treatment of

the tables is reversed.

=> SELECT * FROM T1 RIGHT OUTER JOIN T2 ON T1.x = T2.x;

The above query is equivalent to the following query, where T1 RIGHT OUTER JOIN T2 = T2

LEFT OUTER JOIN T1.

=> SELECT * FROM T2 LEFT OUTER JOIN T1 ON T2.x = T1.x;

The following example identifies customers who have not placed an order:

=> SELECT customers.customer_id FROM orders RIGHT OUTER JOIN customers

 ON orders.customer_id = customers.customer_id

 GROUP BY customers.customer_id HAVING COUNT(orders.customer_id) = 0;

Full Outer Joins

A full outer join returns results for both left and right outer joins. The joined table contains all
records from both tables, including nulls (missing matches) from either side of the join. This is
useful if you want to see, for example, each employee who is assigned to a particular department
and each department that has an employee, but you also want to see all the employees who are
not assigned to a particular department, as well as any department that has no employees:

=> SELECT employee_last_name, hire_date FROM employee_dimension emp

 FULL OUTER JOIN department dept ON emp.employee_key = dept.department_key;

Notes

Vertica also supports joins where the outer (preserved) table or subquery is replicated on more
than one node and the inner (non-preserved) table or subquery is segmented across more than
one node. For example, in the following query, the fact table, which is almost always segmented,
appears on the non-preserved side of the join, and it is allowed:

=> SELECT sales_dollar_amount, transaction_type, customer_name

 FROM store.store_sales_fact f RIGHT JOIN customer_dimension d

 ON f.customer_key = d.customer_key;

 sales_dollar_amount | transaction_type | customer_name

---------------------+------------------+---------------

 252 | purchase | Inistar

 363 | purchase | Inistar

 510 | purchase | Inistar

 -276 | return | Foodcorp

 252 | purchase | Foodcorp

-202-

Programmer's Guide

 195 | purchase | Foodcorp

 290 | purchase | Foodcorp

 222 | purchase | Foodcorp

 | | Foodgen

 | | Goldcare

(10 rows

Range Joins

Vertica provides performance optimizations for <, <=, >, >=, and BETWEEN predicates in join ON

clauses. These optimizations are particularly useful when a column from one table is restricted to
be in a range specified by two columns of another table.

Key Ranges

Multiple, consecutive key values can map to the same dimension values. Consider, for example, a
table of IPv4 addresses and their owners. Because large subnets (ranges) of IP addresses could
belong to the same owner, this dimension can be represented as:

=> CREATE TABLE ip_owners(

 ip_start INTEGER,

 ip_end INTEGER,

 owner_id INTEGER);

=> CREATE TABLE clicks(

 ip_owners INTEGER,

 dest_ip INTEGER);

A query that associates a click stream with its destination can use a join similar to the following,
which takes advantage of the range optimization:

=> SELECT owner_id, COUNT(*) FROM clicks JOIN ip_owners

 ON clicks.dest_ip BETWEEN ip_start AND ip_end

 GROUP BY owner_id;

Slowly-changing Dimensions

Sometimes there are multiple dimension ranges, each relevant over a different time period. For
example, stocks might undergo splits (and reverse splits), and the price or volume of two trades
might not be directly comparable without taking this into account. A ―split factor‖ can be defined,
which accounts for these events through time:

=> CREATE TABLE splits(

 symbol VARCHAR(10),

 start DATE,

 "end" DATE,

 split_factor FLOAT);

A join with an optimized range predicate can then be used to match each trade with the effective
split factor:

=> SELECT trades.symbol, SUM(trades.volume * splits.split_factor)

 FROM trades JOIN splits

 ON trades.symbol = splits.symbol AND trades.tdate between splits.start AND

splits.end

 GROUP BY trades.symbol;

-203-

 Writing Queries

Notes

 Operators <, <=, >, >=, or BETWEEN must appear as top-level conjunctive predicates for range

join optimization to be effective, as shown in the following examples:

The following example query is optimized because BETWEEN is the only predicate:

=> SELECT COUNT(*) FROM fact JOIN dim

 ON fact.point BETWEEN dim.start AND dim.end;

This next example uses comparison operators as top-level predicates (within AND):

=> SELECT COUNT(*) FROM fact JOIN dim

 ON fact.point > dim.start AND fact.point < dim.end;

The following is optimized because BETWEEN is a top-level predicate (within AND):

=> SELECT COUNT(*) FROM fact JOIN dim

 ON (fact.point BETWEEN dim.start AND dim.end) AND fact.c <> dim.c;

The following query is not optimized because OR is the top-level predicate (disjunctive):

=> SELECT COUNT(*) FROM fact JOIN dim

 ON (fact.point BETWEEN dim.start AND dim.end) OR dim.end IS NULL;

 Expressions are optimized in range join queries in many cases.

 If range columns can have NULL values indicating that they are open-ended, it is possible to

use range join optimizations by replacing nulls with very large or very small values:

=> SELECT COUNT(*) FROM fact JOIN dim

 ON fact.point BETWEEN NVL(dim.start, -1) AND NVL(dim.end,

1000000000000);

 If there is more than one set of ranging predicates in the same ON clause, the order in which

the predicates are specified might impact the effectiveness of the optimization:

=> SELECT COUNT(*) FROM fact JOIN dim

 ON fact.point1 BETWEEN dim.start1 AND dim.end1

 AND fact.point2 BETWEEN dim.start2 AND dim.end2;

The optimizer chooses the first range to optimize, so write your queries so that the range you
most want optimized appears first in the statement.

 The use of the range join optimization is not directly affected by any characteristics of the
physical schema; no schema tuning is required to benefit from the optimization.

 The range join optimization can be applied to joins without any other predicates, and to HASH

or MERGE joins.

 To determine if an optimization is in use, search for RANGE in the EXPLAIN plan. For example:

-204-

Programmer's Guide

 => EXPLAIN SELECT owner_id, COUNT(*) FROM clicks JOIN ip_owners ON

clicks.dest_ip BETWEEN ip_start AND ip_end GROUP BY owner_id;

Pre-join Projections and Join Predicates

Vertica can use pre-join projections when queries contain equi-joins (page 196) between tables
that contain all foreign key-primary key (FK-PK) columns in the equality predicates.

If you use pre-join projections in queries, the join in the input query becomes an inner join due to

FK-PK constraints, so the second predicate in the example that follows (AND f.id2 = d.id2) is

just extra. Vertica runs queries using pre-join projections only if the query contains a superset of
the join predicates in the pre-join projection. In the following example, as long as the pre-join

projection contains f.id = d.id, the pre-join can be used, even with the presence of f.id2 =

d.id2.

=> SELECT * FROM fact f JOIN dim d ON f.id = d.id AND f.id2 = d.id2;

Note: Vertica uses a maximum of one pre-join projection per query. More than one pre-join
projection might appear in a query plan, but at most, one will have been used to replace the join
that would be computed with the precomputed pre-join. Any other pre-join projections are used
as regular projections to supply records from a particular table.

Examples

The following is an example of a pre-join projection schema with a single-column constraint called

customer_key. The first sequence of statements creates a customer table in the public

schema and a store_sales table in the store schema. The dimension table has one primary

key, and the fact table has a foreign key that references the dimension table's primary key.

=> CREATE TABLE public.customer_dimension (

 customer_key integer,

 annual_income integer,

 largest_bill_amount integer);

=> CREATE TABLE store.store_sales_fact (

 customer_key integer,

 sales_quantity integer,

 sales_dollar_amount integer);

=> ALTER TABLE public.customer_dimension

 ADD CONSTRAINT pk_customer_dimension PRIMARY KEY (customer_key);

=> ALTER TABLE store.store_sales_fact

 ADD CONSTRAINT fk_store_sales_fact FOREIGN KEY (customer_key)

 REFERENCES public.customer_dimension (customer_key);

=> CREATE PROJECTION p1 (

 customer_key,

-205-

 Writing Queries

 annual_income,

 largest_bill_amount)

 AS SELECT * FROM public.customer_dimension UNSEGMENTED ALL NODES;

=> CREATE PROJECTION p2 (

 customer_key,

 sales_quantity,

 sales_dollar_amount)

 AS SELECT * FROM store.store_sales_fact UNSEGMENTED ALL NODES;

The following command creates the pre-join projection:

=> CREATE PROJECTION pp (

 cust_customer_key,

 cust_annual_income,

 cust_largest_bill_amount,

 fact_customer_key,

 fact_sales_quantity,

 fact_sales_dollar_amount)

 AS SELECT * FROM public.customer_dimension cust, store.store_sales_fact fact

 WHERE cust.customer_key = fact.customer_key ORDER BY cust.customer_key;

The pre-join projection contains columns from both tables and has a join predicate between

customer_dimension and store_sales_fact along the FK-PK (primary key-foreign key)

constraints defined on the tables.

The following query uses a pre-join projection because the join predicates match the pre-join
projection's predicates exactly:

=> SELECT COUNT(*) FROM public.customer_dimension INNER JOIN

store.store_sales_fact

 ON public.customer_dimension.customer_key =

store.store_sales_fact.customer_key;

 count

 10000

(1 row)

Join Notes and Restrictions

The following list summarizes the notes and restrictions for joins in Vertica:

 Inner joins are are commutative and associative, which means you can specify the tables in
any order you want, and the results do not change.

 If you omit the INNER keyword, the join is still an inner join, the most commonly used type of

join.

 Join conditions that follow the ON keyword generally can contain many predicates connected

with Boolean AND, OR, or NOT predicates.

 You can also use inner join syntax to specify joins for pre-join projections. See Pre-join
Projections and Join Predicates (page 204).

 Vertica supports any arbitrary join expression with both matching and non-matching column
values; for example:

=> SELECT * FROM fact JOIN dim ON fact.x = dim.x;

=> SELECT * FROM fact JOIN dim ON fact.x > dim.y;

-206-

Programmer's Guide

=> SELECT * FROM fact JOIN dim ON fact.x <= dim.y;

=> SELECT * FROM fact JOIN dim ON fact.x <> dim.y;

=> SELECT * FROM fact JOIN dim ON fact.x <=> dim.y;

 Vertica permits joins between tables with compound (multiple-column) primary and foreign
keys, as long as you connect the two join predicates with a Boolean AND operator.

 You can write queries with expressions that contain the <=> operator for NULL=NULL joins.

=> SELECT * FROM fact JOIN dim ON fact.x <=> dim.y;

The <=> operator performs an equality comparison like the = operator, but it returns true,
instead of NULL, if both operands are NULL, and false, instead of NULL, if one operand is
NULL.

 Vertica recommends that you do not write implicit cross joins (such as tables named in the

FROM clause separated by commas). Such queries could imply accidental omission of a join

predicate. If your intent is to run a cross join, write explicit CROSS JOIN syntax.

 Vertica supports joins where the outer (preserved) table or subquery is replicated on more
than one node and the inner (non-preserved) table or subquery is segmented across more
than one node.

 Vertica uses a maximum of one pre-join projection per query. More than one pre-join
projection might appear in a query plan, but at most, one will have been used to replace the
join that would be computed with the precomputed pre-join. Any other pre-join projections are
used as regular projections to supply records from a particular table.



-207-

Using SQL Analytics

The ANSI SQL 99 standard introduced a set of functionality, called SQL analytic functions, that
handle complex analysis and reporting, for example, a moving average of retail volume over a
specified time frame or a running total.

Analytic aggregate functions differ from standard aggregate functions in that, rather than return a
single summary value, they return the same number of rows as the input. Moreover, unlike
standard aggregate functions, the groups of rows on which the analytic aggregate function
operates are not defined by a GROUP BY clause, but by window partitioning and frame clauses.

You can sort these partitions using a window ORDER BY clause, but the order affects only the

function result set, not the entire query result set. This ordering concept is described more fully
later.

The windowing components (partitioning, ordering, and framing) are specified in the analytic

OVER() clause. For example, window framing defines the unique construct of a moving window,

whose size is based on either logical intervals (such as time) or on a physical number of rows. For
each row, a window is computed in relation to the current row. As the current row advances, the
window moves along with it.

Analytic functions take the following form:

analytic_function (arguments) OVER(analytic_clause)

Analytic functions conform to the following phases of execution:

1 Take the input rows after WHERE, GROUP BY, HAVING clause operations and joins are

performed.

2 Group the rows according to the PARTITION BY clause.

Note: The analytic PARTITION BY clause (called the window_partition_clause (page

210)) is different from table partition expressions. See Table Partitioning in the

Administrator's Guide for details.

Unlike normal GROUP BY aggregation, analytic functions output the same number of rows as

the input.

3 Order the rows within partitions according to analytic ORDER BY clause.

Note: The analytic ORDER BY clause (called the window_order_clause (page 211)) is

different from the SQL ORDER BY clause. If the query has a final ORDER BY clause (outside the

OVER() clause), the final results are ordered according by the SQL ORDER BY clause, not the

window_order_clause. See Null Placement (page 245) for additional information about

sort computation.

4 Compute some analytic function for each row.

Notes

Analytic functions:

 Require the OVER() clause. However, depending on the analytic function, the

window_frame_clause and window_order_clause might not apply.

-208-

Programmer's Guide

Note: When used with analytic aggregate functions, OVER() may be used without supplying

any of the windowing clauses; in this case, the aggregate returns the same aggregated value
for each row of the result set.

 Are allowed only in the SELECT and ORDER BY clauses.

 Can be used in a subquery or in the parent query.

 Cannot be nested; for example, the following is not allowed:

=> SELECT MEDIAN(RANK() OVER(ORDER BY sal) OVER().

Tip:

Remember that analytic functions are evaluated after all other clauses except the query's final

ORDER BY clause. So if you were to write a query like the following, which gets all rows with sales

larger than the median, the system would return an error:

=> SELECT name, sales, MEDIAN(sales) OVER () AS m from allsales WHERE sales < m;

ERROR: column "m" does not exist

Rewrite the query to use a subquery and mirror the analytic evaluation order:

=> SELECT * FROM (SELECT name, sales, MEDIAN(sales)

 OVER() AS m FROM allstates) sq WHERE sales < m;

 name | sales | m

------+------------

 G | 10 | 20

 C | 15 | 20

(2 rows)

See Also

Analytic Functions in the SQL Reference Manual

Using Time Series Analytics (page 228)

The Window OVER() Clause
A window specifies partitioning, ordering, and framing for an analytic function—important
elements that determine what data the analytic function takes as input with respect to the current

row. The window OVER() clause specifies that the analytic function operates on a query result set

(the rows that are returned after the FROM, WHERE, GROUP BY, and HAVING clauses have been

evaluated). You use then use the OVER() clause to define a moving window of data for every row

in a partition with certain analytic functions.

The OVER() clause must follow the analytic function, as in the following syntax:

ANALYTIC_FUNCTION (arguments)

 OVER(window_partition_clause

-209-

 Using SQL Analytics

 window_order_clause

 window_frame_clause)

For details, see:

 Window Partitioning (page 210)

 Window Ordering (page 211)

 Window Framing (page 212)

Named Windows

You can avoid typing long OVER() clause syntax by naming a window using the WINDOW clause,

which takes the following form:

WINDOW window_name AS (window_definition_clause);

In the following example, RANK() and DENSE_RANK() use the partitioning and ordering

specifications in the window definition for w:

=> SELECT RANK() OVER w , DENSE_RANK() OVER w

 FROM employee_dimension

 WINDOW w AS (PARTITION BY employee_region ORDER by annual_salary);

Though analytic functions can reference a named window to inherit the

window_partition_clause, you can define your own window_order_clause; for example:

=> SELECT RANK() OVER(w ORDER BY annual_salary ASC) ,

 DENSE_RANK() OVER(w ORDER BY annual_salary DESC)

 FROM employee_dimension

 WINDOW w AS (PARTITION BY employee_region);

Notes:

 The window_partition_clause is defined in the named window specification, not in the

OVER() clause.

 The OVER() clause can specify its own window_order_clause only if the

window_definition_clause did not already define it. For example, if the second example

above is rewritten as follows, the system returns an error:

=> SELECT RANK() OVER(w ORDER BY annual_salary ASC) , DENSE_RANK() OVER(w

ORDER BY annual_salary DESC)

 FROM employee_dimension

 WINDOW w AS (PARTITION BY employee_region ORDER BY annual_salary);

 ERROR: cannot override ORDER BY clause of window "w"

 A window definition cannot contain a window_frame_clause.

 Each window defined in the window_definition_clause must have a unique name.

You can reference window names within their scope only. For example, because named

window w1 below is defined before w2, w2 is within the scope of w1:

=> SELECT RANK() OVER(w1 ORDER BY sal DESC)

 RANK() OVER w2

 FROM EMP AS

 WINDOW w1 AS (PARTITION BY deptno), w2 AS (w1 ORDER BY sal);

-210-

Programmer's Guide

Window Partitioning

Window partitioning divides the rows in the input by a given list of columns or expressions. If the

optional window_partition_clause is omitted, all input rows are treated as a single partition.

Window partitioning is similar to GROUP BY, except the function returns one result row per input

row.

The analytic function is computed per partition and starts over again (resets) at the beginning of
each subsequent partition.

Syntax

OVER(window_partition_clause

 window_order_clause

 window_frame_clause)

The examples in this topic use the following schema:

CREATE TABLE allsales(state VARCHAR(20), name VARCHAR(20), sales INT);

INSERT INTO allsales VALUES('MA', 'A', 60);

INSERT INTO allsales VALUES('NY', 'B', 20);

INSERT INTO allsales VALUES('NY', 'C', 15);

INSERT INTO allsales VALUES('MA', 'D', 20);

INSERT INTO allsales VALUES('MA', 'E', 50);

INSERT INTO allsales VALUES('NY', 'F', 40);

INSERT INTO allsales VALUES('MA', 'G', 10);

COMMIT;

=> SELECT * FROM allsales;

 state | name | sales

-------+------+-------

 MA | A | 60

 NY | B | 20

 NY | C | 15

 MA | D | 20

 MA | E | 50

 NY | F | 40

 MA | G | 10

(7 rows)

Examples

The first example uses the analytic function MEDIAN() to partition the results by state and then

calculate the median of sales:

=> SELECT state, name, sales, MEDIAN(sales)

 OVER (PARTITION BY state) AS MEDIAN from allsales;

 state | name | sales | MEDIAN

-------+------+-------+--------

 NY | C | 15 | 20

 NY | B | 20 | 20

 NY | F | 40 | 20

 MA | G | 10 | 35

 MA | D | 20 | 35

-211-

 Using SQL Analytics

 MA | E | 50 | 35

 MA | A | 60 | 35

(7 rows)

In the above results, notice the two partitions for MA and NY under the MEDIAN column.

The next example calculates the median of total sales among states. Note that when you use
OVER() with no parameters, there is one partition, the entire input:

SELECT state, SUM(sales), MEDIAN(SUM(sales))

 OVER () AS MEDIAN FROM allsales GROUP BY state;

 state | SUM | MEDIAN

-------+-----+--------

 NY | 75 | 107.5

 MA | 140 | 107.5

(2 rows)

Window Ordering

Window ordering sorts the rows specified by the OVER() clause and supplies the ordered set of

rows to the window_frame_clause (if present), to the analytic function, or to both.

Syntax

OVER (window_partition_clause window_order_clause window_frame_clause)

The window_order_clause specifies whether data is sorted in ascending or descending order

and specifies where null values appear in the sorted result as either first or last; for example:

ORDER BY expr_list [ASC | DESC]

 [NULLS { FIRST | LAST | AUTO]

The following list shows the default ordering, with bold clauses to indicate what is implicit:

 ORDER BY column1 = ORDER BY a ASC NULLS LAST

 ORDER BY column1 ASC = ORDER BY a ASC NULLS LAST

 ORDER BY column1 DESC = ORDER BY a DESC NULLS FIRST

The placement of the ORDER BY clause might not guarantee the final result order. For example,

the window_order_clause is different from the final ORDER BY in that the

window_order_clause specifies the order within each partition and affects the result of the

analytic calculation; it does not guarantee the order of the SQL result. Use the SQL ORDER BY
clause to guarantee the ordering of the final result set. See also Null Placement (page 245).

Example 1 Example 2

In this example, the query orders the sales inside
each sales partition:

In this example, the final ORDER BY clause
sorts the results by name:

SELECT state, sales, name, RANK()

OVER (PARTITION BY state

 ORDER BY sales) AS RANK

FROM allsales;

 state | sales | name | RANK

SELECT state, sales, name, RANK()

OVER (PARTITION by state

 ORDER BY sales) AS RANK

FROM allsales ORDER BY name;

 state | sales | name | RANK

-212-

Programmer's Guide

-------+-------+------+----------

 MA | 10 | G | 1

 MA | 20 | D | 2

 MA | 50 | E | 3

 MA | 60 | A | 4

 NY | 15 | C | 1

 NY | 20 | B | 2

 NY | 40 | F | 3

(7 rows)

-------+-------+------+----------

 MA | 60 | A | 4

 NY | 20 | B | 2

 NY | 15 | C | 1

 MA | 20 | D | 2

 MA | 50 | E | 3

 NY | 40 | F | 3

 MA | 10 | G | 1

(7 rows)

Window Framing

Window framing (the window_frame_clause) represents a unique construct called a moving

window, which is defined in the analytic OVER() clause. The window frame clause defines a
window relative to the current row, in terms of either logical intervals (such as time) or on a
physical number of records before and/or after the (current) row. Logical windows are expressed
using the RANGE keyword and physical windows using the ROWS keyword. As the current row
advances, the window boundaries are recomputed along with it, to determine what rows fall into
the current window. An analytic function with a window frame specification is computed for each
row based on the rows that fall into the window relative to that row.

Syntax

OVER (window_partition_clause window_order_clause window_frame_clause)

Each analytic function is computed based on data within the window frame boundaries. The
window size is based on either logical intervals (such as time) or on a physical number of records.
For each row, Vertica computes a window based on the current row. As the current row advances,
the window recomputes along with it, and rows are excluded or included based on the position
(ROWS) or value (RANGE) relative to the current row.

Window Aggregates

Analytic functions that take the window_frame_clause are called window aggregates, and they

return information such as moving averages and cumulative results. To use the following functions
as window (analytic) aggregates, instead of basic aggregates, specify both an ORDER BY clause

(window_order_clause) and a moving window (window_frame_clause) in the OVER()

clause. If you omit the window_frame_clause but you specify the window_order_clause,

the system provides the default window of RANGE BETWEEN UNBOUNDED PRECEDING AND
CURRENT ROW.

 AVG

 COUNT

 MAX and MIN

 SUM

 STDDEV, STDDEV_POP, and STDDEV_SAMP

-213-

 Using SQL Analytics

 VARIANCE, VAR_POP, and VAR_SAMP

If you use a window aggregate with an empty OVER() clause, there is no moving window, and the
function is used as a reporting function, where the entire input is treated as one partition.

Note: The value returned by an analytic function with a logical offset is always deterministic.
However, the value returned by an analytic function with a physical offset could produce
nondeterministic results unless the ordering expression results in a unique ordering. You might

have to specify multiple columns in the window_order_clause to achieve this unique

ordering.

Framing Windows with ROWS

ROWS specifies the window as a physical offset.

Legend

In the examples on this page:

 The blue line represents the partition

 The blue box represents the current row

 The green box represents the analytic window relative to the current row.

The following example uses the ROWS-based window for the COUNT analytic function to return
the department number, salary, and employee number with a count. The

window_frame_clause specifies the rows between the current row and two preceding.

Using ROWS in the window_frame_clause specifies the window as a physical offset and

defines the start- and end-point of a window by the number of rows before and after the current
row.

SELECT deptno, sal, empno, COUNT(*)

OVER (PARTITION BY deptno ORDER BY sal

 ROWS BETWEEN 2 PRECEDING AND CURRENT ROW)

AS COUNT FROM emp;

-214-

Programmer's Guide

Notice that the partition includes department 20, and the current row and window are the same
because there are no rows that precede the current row within that partition, even though the
query specifies 2 preceding:

As the current row moves, the window spans from 1 preceding to the current row, which is as far

as it can go within the constraints of the window_frame_clause. COUNT returns the number of

rows in the window.

The current row moves again, and the window now spans 2 preceding and current row:

-215-

 Using SQL Analytics

When the current row moves, the window slides to maintain 2 preceding and current row. The
count of 3 is repeated because it represents the number of rows in the window:

Here, the current row advances yet again, and the window spans from 2 rows preceding to the
current row:

-216-

Programmer's Guide

In this example, the current row advances again and the window span is defined by the window

frame once again. Notice the current row has reached the end of the deptno partition.

Framing Windows with RANGE

During the analytical computation, rows are excluded or included based on the logical offset, or
value (RANGE). relative to the current row, which is always the reference point.

The ORDER BY column (window_order_clause) is the column whose value is used to

compute the window span.

Only one window_order_clause column is allowed, and the data type must be NUMERIC,

DATE/TIME, FLOAT or INTEGER, unless it is one of following:

 RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

 RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING

 RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

Legend

In the examples on this page:

 The blue line represents the partition

 The blue box represents the current row

 The green box represents the analytic window relative to the current row.

The following example uses the RANGE-based window for the COUNT() analytic function to
return the department number, salary, and employee number with a count. The

window_frame_clause specifies the range between the current row and two preceding.

-217-

 Using SQL Analytics

SELECT deptno, sal, empno, COUNT(*)

OVER (PARTITION BY deptno order by sal

 RANGE BETWEEN 2 PRECEDING AND CURRENT ROW)

AS COUNT FROM emp;

Notice that the partition includes department 20, and the current row and window are the same
because there are no rows that precede the current row within that partition, even though the
query specifies 2 preceding:

In the next example, the ORDER BY column value is 109, so 109 - 2 = 107. The window would
include all rows whose ORDER BY column values are between 107 and 109 inclusively.

-218-

Programmer's Guide

Here, the current row advances, and 107-109 are still inclusive.

Though the current row advances again, the window is the same.

In the next example, the current row advances so that the ORDER BY column value becomes 110
(before it was 109). Now the window would include all rows whose ORDER BY column values
were between 108 and 110, inclusive, because 110 - 2 = 108.

-219-

 Using SQL Analytics

In this example, the window still includes rows for 108-110, inclusive.

Notes

INTERVAL Year to Month can be used in an analytic RANGE window when the ORDER BY
column type is TIMESTAMP/TIMESTAMP WITH TIMEZONE, or DATE; TIME/TIME WITH
TIMEZONE are not supported.

INTERVAL Day to Second can be used when the ORDER BY column type is
TIMESTAMP/TIMESTAMP WITH TIMEZONE, DATE, and TIME/TIME WITH TIMEZONE.

Reporting Aggregates

Reporting aggregate functions let you compare a partition's aggregate values with detail rows,
taking the place of correlated subqueries or joins. In this context, these functions do not have a

window_order_clause or a window_frame_clause; otherwise they would be treated as

window aggregates.

 AVG

 COUNT

 MAX and MIN

 SUM

 STDDEV, STDDEV_POP, and STDDEV_SAMP

 VARIANCE, VAR_POP, and VAR_SAMP

Examples

Think of the window for reporting aggregates as a window defined as UNBOUNDED PRECEDING

and UNBOUNDED FOLLOWING. The omission of a window_order_clause makes all rows in

the partition also the window (reporting aggregates).

SELECT deptno, sal, empno, COUNT(sal)

 OVER (PARTITION BY deptno) AS COUNT FROM emp;

 deptno | sal | empno | count

--------+-----+-------+-------

 10 | 101 | 1 | 2

 10 | 104 | 4 | 2

-220-

Programmer's Guide

 20 | 110 | 10 | 6

 20 | 110 | 9 | 6

 20 | 109 | 7 | 6

 20 | 109 | 6 | 6

 20 | 109 | 8 | 6

 20 | 100 | 11 | 6

 30 | 105 | 5 | 3

 30 | 103 | 3 | 3

 30 | 102 | 2 | 3

(11 rows)

If the OVER() clause in the above query contained a window_order_clause, it would become a

moving window (window aggregate) query with a default window of RANGE BETWEEN
UNBOUNDED PRECEDING AND CURRENT ROW:

SELECT deptno, sal, empno, COUNT(sal)

 OVER (PARTITION BY deptno ORDER BY sal) AS COUNT FROM emp;

 deptno | sal | empno | count

--------+-----+-------+-------

 10 | 101 | 1 | 1

 10 | 104 | 4 | 2

 20 | 100 | 11 | 1

 20 | 109 | 7 | 4

 20 | 109 | 6 | 4

 20 | 109 | 8 | 4

 20 | 110 | 10 | 6

 20 | 110 | 9 | 6

 30 | 102 | 2 | 1

 30 | 103 | 3 | 2

 30 | 105 | 5 | 3

(11 rows)

Event-based Windows
Event-based windows let you break time series data into windows that border on significant events
within the data. This is especially relevant in financial data where analysis can focus on specific
events as triggers to other activity.

There are two event-based window functions in Vertica. These functions are a Vertica extension
(not part of the SQL-99 standard):

 CONDITIONAL_CHANGE_EVENT assigns an event window number to each row starting
from 0 and increments by 1 when the result of evaluating the argument expression on the
current row differs from that on the previous row. This function is similar to the analytic function
ROW_NUMBER, which assigns a unique number, sequentially, starting from 1, to each row
within a partition..

 CONDITIONAL_TRUE_EVENT assigns an event window number to each row, starting from 0,
and increments the number by 1 when the result of the boolean argument expression
evaluates true.

These functions are described in greater detail below.

Note: The CONDITIONAL_CHANGE_EVENT_EVENT and CONDITIONAL_TRUE_EVENT
functions do not allow window framing (page 212).

-221-

 Using SQL Analytics

Example Schema

The examples in this topic use the following schema:

CREATE TABLE TickStore3 (

 ts TIMESTAMP,

 symbol VARCHAR(8),

 bid FLOAT

);

CREATE PROJECTION TickStore3_p (ts, symbol, bid) AS

SELECT * FROM TickStore3

ORDER BY ts, symbol, bid UNSEGMENTED ALL NODES;

INSERT INTO TickStore3 VALUES ('2009-01-01 03:00:00', 'XYZ', 10.0);

INSERT INTO TickStore3 VALUES ('2009-01-01 03:00:03', 'XYZ', 11.0);

INSERT INTO TickStore3 VALUES ('2009-01-01 03:00:06', 'XYZ', 10.5);

INSERT INTO TickStore3 VALUES ('2009-01-01 03:00:09', 'XYZ', 11.0);

COMMIT;

CONDITIONAL_CHANGE_EVENT

The analytical function CONDITIONAL_CHANGE_EVENT returns a sequence of integers
indicating window numbers, starting from 0. The window number is incremented, when the result
of evaluating expression on the current row differs from that on the previous one.

In the following example, the first query returns all records from the TickStore3 table. The second
query uses the CONDITIONAL_CHANGE_EVENT function on the bid column, and because each
row is different from the previous row, the function increments the window ID from 0 to 3:

SELECT ts, symbol, bid

FROM Tickstore3

ORDER BY ts;

 SELECT CONDITIONAL_CHANGE_EVENT(bid)

 OVER(ORDER BY ts)

FROM Tickstore3;

 ts | symbol | bid

---------------------+--------+------

 2009-01-01 03:00:00 | XYZ | 10

 2009-01-01 03:00:03 | XYZ | 11

 2009-01-01 03:00:06 | XYZ | 10.5

 2009-01-01 03:00:09 | XYZ | 11

(4 rows)

==>

 ts | symbol | bid | cce
---------------------+--------+------+-----

 2009-01-01 03:00:00 | XYZ | 10 | 0

 2009-01-01 03:00:03 | XYZ | 11 | 1

 2009-01-01 03:00:06 | XYZ | 10.5 | 2

 2009-01-01 03:00:09 | XYZ | 11 | 3

(4 rows)

-222-

Programmer's Guide

 The following figure is a graphical illustration of the change in the bid price. Each value is different
from its previous one, so the window ID increments by 1 each for each time slice:

So the window ID starts at 0 and increments by 1 at every change in value.

In this example, the bid price changes from $10 to $11 in the second row. So the
CONDITIONAL_CHANGE_EVENT function returns the same window ID for the other rows, which
also returned a bid value of $11.:

SELECT ts, symbol, bid

FROM Tickstore3

ORDER BY ts;

 SELECT CONDITIONAL_CHANGE_EVENT(bid)

 OVER(ORDER BY ts)

FROM Tickstore3;

 ts | symbol | bid

---------------------+--------+------

 2009-01-01 03:00:00 | XYZ | 10

 2009-01-01 03:00:03 | XYZ | 11

 2009-01-01 03:00:06 | XYZ | 11

 2009-01-01 03:00:09 | XYZ | 11

==>

 ts | symbol | bid | cce
---------------------+--------+------+-----

 2009-01-01 03:00:00 | XYZ | 10 | 0

 2009-01-01 03:00:03 | XYZ | 11 | 1

 2009-01-01 03:00:06 | XYZ | 11 | 1

 2009-01-01 03:00:09 | XYZ | 11 | 1

The following figure is a graphical illustration of the change in the bid price at 3:00:03 only. The
price stays the same at 3:00:06 and 3:00:09, so the window ID remains at 1 for each time slice
after the change:

-223-

 Using SQL Analytics

CONDITIONAL_TRUE_EVENT

Like CONDITIONAL_CHANGE_EVENT, the analytic function CONDITIONAL_TRUE_EVENT
returns a sequence of integers indicating window numbers, starting from 0. The difference
between the two functions is that CONDITIONAL_TRUE_EVENT increments the window ID every
time the expression evaluates to true, so even if the value remains the same, such as in the
previous example ($11.0), the window ID increments by 1 for each value where the expression is
true.

In the following example, the first query returns all records from the TickStore3 table. The second
query uses the CONDITIONAL_TRUE_EVENT function to increment the window ID each time the
bid value is greater than $10.6. The first window ID to be returned is on row 2, where the value is
$11. The window ID stays the same for the next row (because the value is not greater than $10.6),
and increments by 1 for the final row:

SELECT ts, symbol, bid

FROM Tickstore3

ORDER BY ts;

 SELECT CONDITIONAL_TRUE_EVENT(bid > 10.6)

 OVER(ORDER BY ts)

FROM Tickstore3;

 ts | symbol | bid

---------------------+--------+------

 2009-01-01 03:00:00 | XYZ | 10

 2009-01-01 03:00:03 | XYZ | 11

 2009-01-01 03:00:06 | XYZ | 10.5

 2009-01-01 03:00:09 | XYZ | 11

==>

 ts | symbol | bid | cte
---------------------+--------+------+-----

 2009-01-01 03:00:00 | XYZ | 10 | 0

 2009-01-01 03:00:03 | XYZ | 11 | 1

 2009-01-01 03:00:06 | XYZ | 10.5 | 1

 2009-01-01 03:00:09 | XYZ | 11 | 2

The following figure is a graphical illustration that shows the bid values and window ID changes.
Because the bid value is greater than $10.6 on only the second and fourth time slices (3:00:03 and
3:00:09), the window ID returns <0,1,1,2>:

In the following example, the first query returns all records from the TickStore3 table. The second
query uses the CONDITIONAL_TRUE_EVENT function to increment the window ID each time the
bid value is greater than $10.6. The first window ID to be returned is on row 2, where the value is
$11. The window ID then increments each time after that. Even though the value stays the same
($11), it is greater than $10.6 for each time slice:

SELECT ts, symbol, bid

FROM Tickstore3

ORDER BY ts;

 SELECT CONDITION_TRUE_EVENT(bid > 10.6)

 OVER(ORDER BY ts)

FROM Tickstore3;

-224-

Programmer's Guide

 ts | symbol | bid

---------------------+--------+------

 2009-01-01 03:00:00 | XYZ | 10

 2009-01-01 03:00:03 | XYZ | 11

 2009-01-01 03:00:06 | XYZ | 11

 2009-01-01 03:00:09 | XYZ | 11

==>

 ts | symbol | bid | cte
---------------------+--------+------+-----

 2009-01-01 03:00:00 | XYZ | 10 | 0

 2009-01-01 03:00:03 | XYZ | 11 | 1

 2009-01-01 03:00:06 | XYZ | 11 | 2

 2009-01-01 03:00:09 | XYZ | 11 | 3

The following figure is a graphical illustration that shows the bid values and window ID changes.
The bid value is greater than $10.6 on the second time slices (3:00:03) and remains there for the
remaining two time slices; however, the window ID increments each time because each value is
greater than $10.6:

Advanced use of event-based windows

In event-based window functions, the condition expression accesses values from the current row
only, but if you want to look at a previous value, you can use a more powerful event-based window
that allows the window event condition to include previous data points. For example, LAG(x, n)
retrieves the value of column X in the nth to last input record. The semantics in this case are the
same as the analytic function LAG, and the OVER() clause can be used.

In the following example, the first query returns all records from the TickStore3 table. The second
query uses the CONDITIONAL_TRUE_EVENT function with LAG() to increment the window ID
each time the bid value is less than the previous value. The first window ID starts on the third time
slice because $10.5 is less than $11, and it remains at 1 because the final value is greater than in
the previous row:

Anything with the LAG expression shares the OVER clause specifications

SELECT ts, symbol, bid

FROM Tickstore3

ORDER BY ts;

SELECT CONDITION_TRUE_EVENT(bid <

 LAG(bid)) OVER(ORDER BY ts)

FROM Tickstore;

 ts | symbol | bid

---------------------+--------+------

 2009-01-01 03:00:00 | XYZ | 10

 2009-01-01 03:00:03 | XYZ | 11

 2009-01-01 03:00:06 | XYZ | 10.5

 2009-01-01 03:00:09 | XYZ | 11

 ts | symbol | bid | cte
---------------------+--------+------+-----

 2009-01-01 03:00:00 | XYZ | 10 | 0

 2009-01-01 03:00:03 | XYZ | 11 | 0

 2009-01-01 03:00:06 | XYZ | 10.5 | 1

 2009-01-01 03:00:09 | XYZ | 11 | 1

-225-

 Using SQL Analytics

The following figure illustrates the second query above. When the bid price is less than the
previous value, the window ID gets incremented, which occurs only in the third time slice
(3:00:06):

See Also

Sessionization with Event-based Windows (page 225)

Using Time Series Analytics (page 228)

CONDITIONAL_CHANGE_EVENT(), CONDITIONAL_TRUE_EVENT() and LAG() in the SQL
Reference Manual

Sessionization with Event-based Windows
Sessionization, a special case of event-based windows, is a feature often used to analyze click
streams, such as identifying web browsing sessions from recorded web clicks.

In Vertica, given an input clickstream table, where each row records a Web page click made by a
particular user (or IP address), the sessionization computation attempts to identify Web browsing
sessions from the recorded clicks by grouping the clicks from each user based on the
time-intervals between the clicks. If two clicks from the same user are made too far apart in time,
as defined by a time-out threshold, the clicks are are treated as though they are from two different
browsing sessions.

Example Schema

The examples in this topic use the following schema to represent a simple
clickstream table:

CREATE TABLE WebClicks(userId INT, timestamp TIMESTAMP);

INSERT INTO WebClicks VALUES (1, '2009-12-08 3:00:00 pm');

INSERT INTO WebClicks VALUES (1, '2009-12-08 3:00:25 pm');

-226-

Programmer's Guide

INSERT INTO WebClicks VALUES (1, '2009-12-08 3:00:45 pm');

INSERT INTO WebClicks VALUES (1, '2009-12-08 3:01:45 pm');

INSERT INTO WebClicks VALUES (2, '2009-12-08 3:02:45 pm');

INSERT INTO WebClicks VALUES (2, '2009-12-08 3:02:55 pm');

INSERT INTO WebClicks VALUES (2, '2009-12-08 3:03:55 pm');

COMMIT;

The following example illustrates the standard semantics of sessionization. The input table

WebClicks contains the following rows:

=> SELECT * FROM WebClicks;

 userId | timestamp

--------+---------------------

 1 | 2009-12-08 15:00:00

 1 | 2009-12-08 15:00:25

 1 | 2009-12-08 15:00:45

 1 | 2009-12-08 15:01:45

 2 | 2009-12-08 15:02:45

 2 | 2009-12-08 15:02:55

 2 | 2009-12-08 15:03:55

(7 rows)

In the following query, sessionization performs computation on the SELECT list columns, showing

the difference between the current and previous timestamp value using LAG(). It evaluates to true

and increments the window ID when the difference is greater than 30 seconds.

=> SELECT userId, timestamp,

 CONDITIONAL_TRUE_EVENT(timestamp - LAG(timestamp) > '30 seconds')

 OVER(PARTITION BY userId ORDER BY timestamp) AS session FROM WebClicks;

 userId | timestamp | session

--------+---------------------+---------

 1 | 2009-12-08 15:00:00 | 0

 1 | 2009-12-08 15:00:25 | 0

 1 | 2009-12-08 15:00:45 | 0

 1 | 2009-12-08 15:01:45 | 1

 2 | 2009-12-08 15:02:45 | 0

 2 | 2009-12-08 15:02:55 | 0

 2 | 2009-12-08 15:03:55 | 1

(7 rows)

In the output, the session column contains the window ID from the
CONDITIONAL_TRUE_EVENT function. The window ID evaluates to true on row 4 (timestamp
15:01:45), and the ID that follows row 4 is zero because it is the start of a new partition (for user ID
2), and that row does not evaluate to true until the last line in the output.

You might want to give users different time-out thresholds. For example, one user might have a
slower network connection or be multi-tasking, while another user might have a faster connection
and be focused on a single Web site, doing a single task.

To compute an adaptive time-out threshold based on the last 2 clicks, use
CONDITIONAL_TRUE_EVENT with LAG to return the average time between the last 2 clicks with
a grace period of 3 seconds:

SELECT userId, timestamp,

CONDITIONAL_TRUE_EVENT(timestamp - LAG(timestamp) >

-227-

 Using SQL Analytics

(LAG(timestamp, 1) - LAG(timestamp, 3)) / 2 + '3 seconds')

OVER(PARTITION BY userId ORDER BY timestamp) AS session

FROM WebClicks;

 userId | timestamp | session

--------+---------------------+---------

 2 | 2009-12-08 15:02:45 | 0

 2 | 2009-12-08 15:02:55 | 0

 2 | 2009-12-08 15:03:55 | 0

 1 | 2009-12-08 15:00:00 | 0

 1 | 2009-12-08 15:00:25 | 0

 1 | 2009-12-08 15:00:45 | 0

 1 | 2009-12-08 15:01:45 | 1

(7 rows)

Note: You cannot define a moving window in time series data. For example, if the query is
evaluating the first row and there‘s no data, it will be the current row. If you have a lag of 2, no
results are returned until the third row.

See Also

Event-based Windows (page 220)

-228-

Using Time Series Analytics

Time series analytics evaluate the values of a given set of variables over time and group those
values into a window (based on a time interval) for analysis and aggregation.

Common scenarios are changes over time, such as stock market trades and performance, as well
as charting trend lines over data.

Because both time and the state of data within a time series are continuous, it can be challenging
to evaluate SQL queries over time. Input records usually occur at non-uniform intervals, which
means they might have gaps. Vertica provides gap-filling functionality, which fills in missing data
points. Further, Vertica provides an interpolation scheme, which is a method of constructing new
data points within the range of a discrete set of known data points. Vertica interpolates the
non-time-series columns in the data (such as analytic function results computed over time slices)
and adds the missing data points to the output. Gap filling and interpolation are described in detail
in this section.

You can also use event-based windows (page 220) to break time series data into windows that
border on significant events within the data. This is especially relevant in financial data where
analysis might focus on specific events as triggers to other activity. Sessionization (page 225), a
special case of event-based windows, is a feature often used to analyze click streams, such as
identifying web browsing sessions from recorded web clicks.

Vertica provides additional support for time series analytics with the following SQL extensions.
You can find information about these extensions in the SQL Reference Manual.

 The SELECT..TIMESERIES clause supports gap-filling and interpolation (GFI) computation.

 TS_FIRST_VALUE and TS_LAST_VALUE are time series aggregate functions that return the
value at the start or end of a time slice, respectively, which is determined by the interpolation
scheme.

 TIME_SLICE is a (SQL extension) date/time function that aggregates data by different
fixed-time intervals and returns a rounded-up input TIMESTAMP value to a value that
corresponds with the start or end of the time slice interval.

See Also

Using SQL Analytics (page 207), particularly Event-based Windows (page 220) and
Sessionization (page 225)

-229-

 229

Gap Filling and Interpolation (GFI)

Example Schema

The examples and graphics that explain the concepts in this topic use the following
simple schema:

CREATE TABLE TickStore (ts TIMESTAMP, symbol VARCHAR(8), bid FLOAT);

INSERT INTO TickStore VALUES ('2009-01-01 03:00:00', 'XYZ', 10.0);

INSERT INTO TickStore VALUES ('2009-01-01 03:00:05', 'XYZ', 10.5);

COMMIT;

In Vertica, time series data is represented by a sequence of rows that conforms to a particular
table schema, where one of the columns stores the time information.

Both time and the state of data within a time series are continuous. This means that evaluating
SQL queries over time can be challenging, as input records usually occur at non-uniform intervals
and could contain gaps. Consider, for example, the following table, which contains two input rows
at 3:00:00 and 3:00:05.

SELECT * FROM TickStore;

 ts | symbol | bid

---------------------+--------+------

 2009-01-01 03:00:00 | XYZ | 10

 2009-01-01 03:00:05 | XYZ | 10.5

(2 rows)

Given the above inputs, how would you determine the bid price at 3:00:03 PM?

The TIME_SLICE function, which normalizes timestamps into corresponding time slices, might
seem like a logical candidate; however, TIME_SLICE does not solve the problem of missing inputs
(time slices) in the data.

Vertica provides gap-filling functionality, which fills in missing data points. Vertica then provides an
interpolation scheme, which is a method of constructing new data points within the range of a
discrete set of known data points. Vertica interpolates the non-time-series columns in the data
(such as analytic function results computed over time slices) and adds the missing data points to
the output. This is accomplished with time series aggregate functions and a the SQL
TIMESERIES clause, which are discussed later in this topic. See the SQL Reference Manual for
details.

But first, we'll illustrate the components that make up gap filling and interpolation in Vertica.

Constant Interpolation

Returning to the problem query, here again is the table output:

SELECT * FROM TickStore;

 ts | symbol | bid

---------------------+--------+------

 2009-01-01 03:00:00 | XYZ | 10

-230-

Programmer's Guide

 2009-01-01 03:00:05 | XYZ | 10.5

(2 rows)

Vertica uses an interpolation scheme to compute a value for bid at 3:00:03 based on the other
input records. One common interpolation scheme used on financial data is to set the bid price to
the last seen value so far. This scheme is referred to as constant (CONST) interpolation and is
illustrated in Figure 1, which shows the interpolated value at 3:00:03, using using a 3-second time
slice.

Note: All images in this topic use the following legend:

 The x-axis represents the ts (timestamp) column, and the y-axis represents the bid column.

 The vertical blue lines delimit the time slices.

 The red dots represent the input records in the table, $10.0 and $10.5.

 The blue stars represent the output values, including interpolated values.

Figure 1: TickStore table with 3-second time slices

As you can see, the interpolated bid price of XYZ remains at $10.0 at 3:00:03, which falls between

the two known data inputs at 3:00:00 PM and 3:00:05 PM. Then, at 3:00:05, the value changes to
$10.5, represented by a red dot.

In order to formulate a query that performs gap filling and interpolation, you need time series
aggregate functions (e.g., TS_FIRST_VALUE/TS_LAST_VALUE) and a the SQL TIMESERIES
clause. The TIMESERIES clause applies to the timestamp column/expression in the data,
whereas the timeseries aggregate functions apply to the non-time column whose values must be
output via aggregation and possibly derived via interpolation. The following query, for example,

processes the data that belongs to each 3-second time slice and returns the values of the bid

column, as determined by the specified CONST interpolation scheme:

SELECT slice_time, TS_FIRST_VALUE(bid, 'const') bid

FROM TickStore

TIMESERIES slice_time AS '3 seconds' OVER(PARTITION by symbol ORDER BY ts);

The original query (on the left) now looks like the query on the right, with an interpolated value of
$10 at 3:00:03:

 slice_time | bid

---------------------+-----

 2009-01-01 03:00:00 | 10

 2009-01-01 03:00:03 |10.5

(2 rows)

 ==>

 slice_time | bid

---------------------+-----

 2009-01-01 03:00:00 | 10

 2009-01-01 03:00:03 | 10

(2 rows)

-231-

 Using Time Series Analytics

The TIMESERIES Clause and Aggregates

TIMESERIES Clause

The TIMESERIES clause, which applies to timestamp columns/expressions in the data, is needed
for gap-filling and interpolation (GFI) computation.

The syntax is:

TIMESERIES slice_time AS 'length_and_time_unit_expr'

OVER ([PARTITION BY E1, ..., Em] ORDER BY time_expr)

 time_expr is the TIMESTAMP column used to compute the time slices.

 length_and_time_unit is the length of time unit of time slice computation; for example, 3
seconds.

 E1, ..., Em are expressions on which to partition the data. Each partition is sorted by
time_expr, and gap filling and interpolation is performed on each partition separately.

If the window_partition_clause is not specified in the TIMESERIES clause, for each

defined time slice, each Fi produces exactly one output record; otherwise, one output record is
produced per partition per time slice. Interpolation is computed there.

 slice_time is the time slice start values and is an alias that can be any name a conventional
alias takes.

Note: See TIMESERIES clause in the SQL Reference Manual for additional details.

Timeseries Aggregate (TSA) Functions

A Timeseries Aggregate (TSA) function processes the data that belongs to each time slice. One
output row is produced per time slice—or per partition per time slice—if partition expressions are
present.

The following table, for example, shows 3-second time slices. The first two rows fall within the time
slice [3:00:00, 3:00:03), and they are the input rows for the TSA function's output for time slice
3:00:00. The same applies to the second two rows.

The TSA functions are TS_FIRST_VALUE and TS_LAST_VALUE and their syntax is as follows:

TS_FIRST_VALUE/TS_LAST_VALUE(expr [IGNORE NULLS] [, interpolation_scheme])

 expr is the expression to aggregate and interpolate.

 IGNORE NULLS is the keyword to specify how nulls value in expr should be handled. For
details, see When Time Series Data Contains Nulls (page 238).

-232-

Programmer's Guide

 interpolation_scheme is the interpolation scheme to use. So far the discussion has been about
last value seen, which is called CONST interpolation. If no interpolation scheme is specified,
CONST is assumed.

The original problem in this topic was to normalize the data into 3-second time slices and
interpolate the bid price when necessary. TIMESERIES and the time series aggregates help solve
the problem:

SELECT slice_time, TS_FIRST_VALUE(bid, 'const') bid

FROM TickStore

TIMESERIES slice_time AS '3 seconds' OVER(PARTITION by symbol ORDER BY ts);

The original data inputs (on the left) now looks like the query output on the right, where Vertica
interpolated the last known value and filled in the gap by returning value $10 at 3:00:03:

 slice_time | bid

---------------------+-----

 2009-01-01 03:00:00 | 10

 2009-01-01 03:00:03 |10.5

(2 rows)

 ==>

 slice_time | bid

---------------------+-----

 2009-01-01 03:00:00 | 10

 2009-01-01 03:00:03 | 10

(2 rows)

Linear Interpolation

So far, this section has shown an interpolation policy where the value is set to the last seen value,
also called CONST (constant) interpolation. The second interpolation policy provided is LINEAR
interpolation, where Vertica interpolates values in a linear slope based on the specified time slice.

The query that follows uses linear interpolation to place the input records in 2-second time slices
and return the first bid value for each symbol/time slice combination (the value at the start of the
time slice):

SELECT slice_time, TS_FIRST_VALUE(bid, 'linear') bid

FROM Tickstore

TIMESERIES slice_time AS '2 seconds' OVER(PARTITION BY symbol ORDER BY ts);

 slice_time | bid

---------------------+------

 2009-01-01 03:00:00 | 10

 2009-01-01 03:00:02 | 10.2

 2009-01-01 03:00:04 | 10.4

(3 rows)

The following figure illustrates the previous query results, showing the 2-second time gaps
(3:00:02 and 3:00:04) in which no input record occurs:

-233-

 Using Time Series Analytics

Figure 3: Linear interpolation with TS_FIRST_VALUE

The following is a side-by-side comparison of the two interpolation schemes.

CONST interpolation LINEAR interpolation

GFI Examples

The query that follows uses the time series aggregate function, TS_FIRST_VALUE, with the
TIMESERIES clause to place the input records in 3-second time slices and return the first bid
value for each symbol/time slice combination (the value at the start of the time slice):

Note: The TIMESERIES clause requires an ORDER BY operation on the TIMESTAMP
column.

SELECT slice_time, symbol, TS_FIRST_VALUE(bid) AS first_bid

FROM TickStore

TIMESERIES slice_time AS '3 seconds' OVER (PARTITION BY symbol ORDER BY ts);

The following is the output:

 slice_time | symbol | first_bid

---------------------+--------+-----------

 2009-01-01 03:00:00 | XYZ | 10

 2009-01-01 03:00:03 | XYZ | 10

(2 rows)

-234-

Programmer's Guide

Because the bid price of stock XYZ is $10.0 at 3:00:03, the first_bid value of the second time

slice above, which starts at 3:00:03, is 10.0, instead of 10.5. That's because the input value of
$10.5 does not occur until 3:00:05. In this case, the interpolated value is inferred from the most

recent bid value ($10.0) seen on stock XYZ for time 3:00:03.

Now run a query that places the input records in 2-second time slices to return the first bid value
for each symbol/time slice combination:

SELECT slice_time, symbol, TS_FIRST_VALUE(bid) AS first_bid

FROM TickStore

TIMESERIES slice_time AS '2 seconds' OVER (PARTITION BY symbol ORDER BY ts);

The result now contains three records, all of which occur between the second input row at 3:00:05:

 slice_time | symbol | first_bid

---------------------+--------+-----------

 2009-01-01 03:00:00 | XYZ | 10

 2009-01-01 03:00:02 | XYZ | 10

 2009-01-01 03:00:04 | XYZ | 10

(3 rows)

Note that the second output record above corresponds to a time slice where there is no input
record.

Using the same table schema, this next query uses the time series aggregate function,
TS_LAST_VALUE, with the TIMESERIES clause to return the last values of each time slice (that
is, the values at the end of the time slices):

SELECT slice_time, symbol, TS_LAST_VALUE(bid) AS last_bid

FROM TickStore

TIMESERIES slice_time AS '2 seconds' OVER (PARTITION BY symbol ORDER BY ts);

Note: Time series aggregate functions process the data that belongs to each time slice. One
output row is produced per time slice or per partition per time slice if a partition expression is
present.

The following is the output:

 slice_time | symbol | last_bid

---------------------+--------+----------

 2009-01-01 03:00:00 | XYZ | 10

 2009-01-01 03:00:02 | XYZ | 10

 2009-01-01 03:00:04 | XYZ | 10.5

(3 rows)

Notice that the last value output row is $10.5 because the value $10.5 at time 3:00:05 was the last
point inside the 2-second time slice that started at 3:00:04.

Remember that constant interpolation is the default, so the same results are returned if you had
written the query using the CONST parameter:

SELECT slice_time, symbol, TS_LAST_VALUE(bid, 'const') AS last_bid

FROM TickStore

TIMESERIES slice_time AS '2 seconds' OVER (PARTITION BY symbol ORDER BY ts);

Thus far, the TS_FIRST_VALUE and TS_LAST_VALUE gap-filling computation use the same
interpolation scheme, which is based on the last seen value as a constant.

-235-

 Using Time Series Analytics

The next example introduces a second interpolation scheme, LINEAR. Based on the same input
described in the previous example, which specifies 2-second time slices, the result of
TS_LAST_VALUE with linear interpolation is as follows:

SELECT slice_time, symbol, TS_LAST_VALUE(bid, 'linear') AS last_bid

FROM TickStore

TIMESERIES slice_time AS '2 seconds' OVER (PARTITION BY symbol ORDER BY ts);

 slice_time | symbol | last_bid

---------------------+--------+----------

 2009-01-01 03:00:00 | XYZ | 10.2

 2009-01-01 03:00:02 | XYZ | 10.4

 2009-01-01 03:00:04 | XYZ |

(3 rows)

In the above results, no last_bid value is returned for the last row because the query specified
TS_LAST_VALUE, and there is no data point after the 3:00:04 time slice to interpolate.

Multiple time series aggregate functions can exists in the same query. They share the same
gap-filling policy as defined in the TIMESERIES clause; however, each time series aggregate
function can specify its own interpolation policy. In the following example, there are two constant
and one linear interpolation schemes, but all three functions use a three-second time slice:

SELECT slice_time, symbol,

 TS_FIRST_VALUE(bid, 'const') fv_c,

 TS_FIRST_VALUE(bid, 'linear') fv_l,

 TS_LAST_VALUE(bid, 'const') lv_c

FROM TickStore

TIMESERIES slice_time AS '3 seconds' OVER(PARTITION BY symbol ORDER BY ts);

In the following output, the original output is compared to output returned by multiple time series
aggregate functions.

 ts | symbol | bid

----------+--------+------

 03:00:00 | XYZ | 10

 03:00:05 | XYZ | 10.5

(2 rows)

==> slice_time | symbol | fv_c | fv_l | lv_c

---------------------+--------+------+------+------

 2009-01-01 03:00:00 | XYZ | 10 | 10 | 10

 2009-01-01 03:00:03 | XYZ | 10 | 10.3 | 10.5

(2 rows)

Creating a dense time series

The examples that follow use the same schema defined in Gap Filling and Interpolation (GFI)
(page 229).

The TIMESERIES clause is also a convenient way to create a dense time series for use in an
outer join with fact data. The results represent every time point, rather than just the time points for
which there is data.

The examples that follow use the same TickStore schema from the previous examples in the Gap
Filling and Interpolation (GFI) (page 229) topic, along with the addition of a new inner table for
the purpose of creating a join:

CREATE TABLE inner_table (

 ts TIMESTAMP,

 bid FLOAT

);

CREATE PROJECTION inner_p (ts, bid) as

SELECT * FROM inner_table

-236-

Programmer's Guide

ORDER BY ts, bid UNSEGMENTED ALL NODES;

INSERT INTO inner_table VALUES ('2009-01-01 03:00:02', 1);

INSERT INTO inner_table VALUES ('2009-01-01 03:00:04', 2);

You can create a simple union between the start and end range of the timeframe of interest in
order to return every time point. This example uses a 1-second time slice:

SELECT ts FROM (

 SELECT '2009-01-01 03:00:00'::TIMESTAMP AS time

 FROM TickStore

 UNION

 SELECT '2009-01-01 03:00:05'::TIMESTAMP FROM TickStore) t

TIMESERIES ts AS '1 seconds' OVER(ORDER BY time);

 ts

 2009-01-01 03:00:00

 2009-01-01 03:00:01

 2009-01-01 03:00:02

 2009-01-01 03:00:03

 2009-01-01 03:00:04

 2009-01-01 03:00:05

(6 rows)

The next query creates a union between the start and end range of the timeframe using
500-millisecond time slices:

SELECT ts FROM (

 SELECT '2009-01-01 03:00:00'::TIMESTAMP AS time

 FROM TickStore

 UNION

 SELECT '2009-01-01 03:00:05'::TIMESTAMP FROM TickStore) t

TIMESERIES ts AS '500 milliseconds' OVER(ORDER BY time);

 ts

 2009-01-01 03:00:00

 2009-01-01 03:00:00.50

 2009-01-01 03:00:01

 2009-01-01 03:00:01.50

 2009-01-01 03:00:02

 2009-01-01 03:00:02.50

 2009-01-01 03:00:03

 2009-01-01 03:00:03.50

 2009-01-01 03:00:04

 2009-01-01 03:00:04.50

 2009-01-01 03:00:05

(11 rows)

The following query creates a union between the start- and end-range of the timeframe of interest
and, using 1-second time slices:

SELECT * FROM (

 SELECT ts FROM (

 SELECT '2009-01-01 03:00:00'::timestamp AS time FROM TickStore

 UNION

 SELECT '2009-01-01 03:00:05'::timestamp FROM TickStore) t

-237-

 Using Time Series Analytics

 TIMESERIES ts AS '1 seconds' OVER(ORDER BY time)) AS outer_table

LEFT OUTER JOIN inner_table ON outer_table.ts = inner_table.ts;

The union returns a complete set of records from the left-joined table with the matched records in
the right-joined table. Where the query found no match, it extends the right side column with null
values:

 ts | ts | bid

---------------------+---------------------+-----

 2009-01-01 03:00:00 | |

 2009-01-01 03:00:01 | |

 2009-01-01 03:00:02 | 2009-01-01 03:00:02 | 1

 2009-01-01 03:00:03 | |

 2009-01-01 03:00:04 | 2009-01-01 03:00:04 | 2

 2009-01-01 03:00:05 | |

(6 rows)

-238-

 238

When Time Series Data Contains Nulls
Although null values are not common inputs for gap-filling and interpolation (GFI) computation, if
there are null argument values to time series aggregate functions, the presence or absence of the
IGNORE NULLS keywords can affect the interpolated values.

This section describes how Vertica handles such cases:

 For an input row with a NULL value in its timestamp (ts) column, that row is ignored or treated

as though it had been filtered out just before the GFI computation occurred.

 For an input row with a NULL value in column bid that is not ts, say its ts value is t. In the

interpolated result of bid, the bid values around time t are NULL. In other words, if the value

on either side is null, the result is null.

Figure 4 illustrates the CONST (constant) interpolation result on four input rows where there is no
NULL value.

Figure 4: CONST-interpolated bid values with no nulls

The same four input rows are present in Figure 5. However, you'll notice an additional input row

with bid value of NULL and a ts value of 3:00:03. This input row is represented in the figure by

a red ring:

Figure 5: CONST-interpolated bid values with NULLS

-239-

 Using Time Series Analytics

For CONST interpolation, the bid value starting at 3:00:03 is NULL until the next non-NULL bid
value appears in time. In Figure 5, the presence of the NULL row makes the interpolated bid value

in the time interval denoted by the shaded region NULL. As a result, if TS_FIRST_VALUE(bid) is

evaluated with CONST interpolation on the time slice that begins at 3:00:02, its output is

non-NULL. However, TS_FIRST_VALUE(bid) on the next time slice produces NULL.

For LINEAR interpolation, the interpolated bid value becomes NULL in the time interval, which is
represented by the shaded region in Figure 6. This is because in the presence of an input NULL
value at 3:00:03, Vertica cannot linearly interpolate the bid value around that time point.

Note: Vertica takes the closest non null value on either side of the time slice and uses that
value. For example, if you use a linear interpolation scheme and you do not specify IGNORE
NULLS, and your data has one real value and one null, the result is null. If the value on either
side is null, the result is null.

Figure 6: LINEAR-interpolated bid values with NULLS

Therefore, to evaluate TS_FIRST_VALUE(bid) with LINEAR interpolation on the time slice that

begins at 3:00:02, its output is NULL. TS_FIRST_VALUE(bid) on the next time slice remains

NULL.

Vertica supports the IGNORE NULLS option for TS_FIRST_VALUE and TS_LAST_VALUE,
similar to their analytic function (FIRST_VALUE/LAST_VALUE) counterparts. If the timestamp
itself is null, it would be the same as if Vertica filter it out before gap filling and interpolation
occurred.

For example, TS_FIRST_VALUE(bid IGNORE NULLS) applied to the input illustrated in Figure

6 performs its computation as though it were processing the input in Figure 4. You can achieve the
same results by filtering out rows whose bid is NULL before you perform GFI computation. The
null value for the column on which a time series aggregate is applied, for example bid, is ignored
and filled per the interpolation scheme.

Notes

In a TIMESERIES query, you cannot use the column slice_time in the WHERE clause

because the WHERE clause is evaluated before the TIMESERIES clause, and the slice_time

column is not generated until the TIMESERIES clause is evaluated. For example, Vertica does not
support the following query:

SELECT pb, slice_time,

-240-

Programmer's Guide

 TS_FIRST_VALUE(a IGNORE NULLS) AS fv

FROM table1

WHERE slice_time = '2009-9-28 10:00:00'

TIMESERIES slice_time as '2 seconds' over (partition by pb order by ts);

Instead, you could write a subquery and put the predicate on slice_time in the outer query:

SELECT * FROM (

 SELECT pb, slice_time,

 TS_FIRST_VALUE(a IGNORE NULLS) AS fv

 FROM table1

 TIMESERIES slice_time AS '2 seconds'

 OVER (PARTITION BY pb ORDER BY ts)) sq

WHERE slice_time = '2009-9-28 10:00:00';

-241-

Optimizing Query Performance

By carefully writing queries, you can often help improve Vertica performance.

-242-

 242

Sort Optimizations
Vertica can avoid having to sort all of the data in a query when the underlying projection is already
sorted, as illustrated in this example.

The first statement creates a simple table with four columns:

CREATE TABLE tab (

 a INT NOT NULL,

 b INT NOT NULL,

 c INT,

 d INT

);

The next statement creates a projection and specifies ordering on columns a,b,c:

CREATE PROJECTION tab_p (

 a_proj,

 b_proj,

 c_proj,

 d_proj)

AS SELECT * FROM tab

ORDER BY a,b,c

UNSEGMENTED ALL NODES;

For queries to benefit from the underlying optimization, sort the columns in the same order as

those defined by the CREATE PROJECTION statement. For example, if the query contains an

ORDER BY a or a,b, or a,b,c clause, the query is optimized. If you include column d in the

query, Vertica cannot skip sorting all the data because column d is not in the projection sort order,
and the query loses the sort optimization.

The following example is optimized because the query sort order matches the projection sort
order:

SELECT * FROM tab

ORDER BY a,b,c;

 a | b | c | d

 13 | 37 | 84 | 87

 15 | 25 | 80 | 76

 33 | 42 | 62 | 65

 44 | 17 | 77 | 45

 88 | 27 | 37 | 39

(5 rows)

See Also

CREATE PROJECTION in the SQL Reference Manual

Physical Schema in the Concepts Guide

Creating a Physical Design and Designing for GROUP BY Queries in the Administrator's Guide

-243-

 243

GROUP BY Pipelined or Hash

The examples in this section refer to the table and projection schema introduced in Sort
Optimizations (page 242).

Vertica chooses the faster GROUP BY pipelined over GROUP BY hash, if the conditions listed in
this section are met.

Condition #1: Given a particular projection sort order, all columns in the query's GROUP BY
clause must be included in the projection's sort columns. If even one column in the GROUP BY
clause is excluded from the projection's ORDER BY clause, Vertica groups by hash instead of
pipelined, losing the performance benefits.

Given a projection sort order ORDER BY a,b,c:

GROUP BY a

GROUP BY a,b

GROUP BY b,a

GROUP BY a,b,c

GROUP BY c,a,b

The query optimizer uses the group by pipeline operator
because columns a,b,c are included in the projection sort
columns.

GROUP BY a,b,c,d The query optimizer uses hash because d is not part of the
projection sort columns.

Condition #2: If the number of columns in the query's GROUP BY clause is less than the number
of columns in the projection's ORDER BY clause, columns in the query's GROUP BY clause must
appear first in the projection's ORDER BY clause. For example, given a projection sort order

ORDER BY a,b,c and a query construct that uses GROUP BY a,c Vertica uses GROUP BY hash

because column b from the projection sort order is skipped in the GROUP BY clause.

Condition #3: If the columns in a query's GROUP BY clause do not appear first in the projection's
ORDER BY clause, then any early-appearing projection sort columns that are missing in the
query's GROUP BY clause must be present as single column constant equality predicates in the
query's WHERE clause.

Given a projection sort order ORDER BY a,b,c:

SELECT a FROM tab WHERE a = 10

GROUP BY b

Uses pipelined because all columns preceding ―b‖ in
projection sort order appear as constant equality
predicates.

SELECT a FROM tab WHERE a = 10

GROUP BY a, b

Uses pipelined even if redundant grouping column ―a‖ is
present.

SELECT a FROM tab WHERE a = 10

GROUP BY b, c

Uses pipelined because all columns preceding ―b‖ and ―c‖
in projection sort order appear as constant equality
predicates.

SELECT a FROM tab WHERE a = 10

GROUP BY c, b

Uses pipelined because all columns preceding ―b‖ and ―c‖
in projection sort order appear as constant equality
predicates.

SELECT a FROM tab WHERE a = 10

AND b = 100 GROUP BY c

Uses pipelined because all columns preceding ―b‖ and ―c‖
in projection sort order appear as constant equality

-244-

Programmer's Guide

predicates.

See Also

Designing for Group By Queries in the Administrator's Guide

-245-

 245

Null Placement

Performance Optimization for Analytic Sort Computation

Vertica stores data in projections that is sorted in a specific way. All columns are stored in ASC

(ascending) order, but the placement of nulls depends on the column's data type.

The analytic ORDER BY (window_order_clause) and the SQL ORDER BY clause also perform

slightly different sort operations:

 The analytic window_order_clause sorts data that is used by the analytic function as either

ascending (ASC) or descending (DESC) and specifies where null values appear in the sorted

result as either NULLS FIRST or NULLS LAST. The following is the default sort order:

 ASC + NULLS LAST. Null values are placed at the end of the sorted result

 DESC + NULLS FIRST. Null values are placed at the beginning of the sorted result

 The SQL ORDER BY clause specifies only ascending or descending order; however, the

following is the default for null placement in Vertica:

 NUMERIC, INTEGER, DATE, TIME, TIMESTAMP, and INTERVAL columns. NULLS

FIRST (null values are stored at the beginning of a sorted projection).

 FLOAT, STRING, and BOOLEAN columns. NULLS LAST (null values are stored at the end

of a sorted projection).

 No matter what the data type, if you specify NULLS AUTO, Vertica chooses the most

efficient placement of nulls (for example, either NULLS FIRST or NULLS LAST) based on

your query.

If you do not care about null placement in queries that involve analytics computation, or if you

know that columns contain no null values, specify NULLS AUTO, and Vertica chooses the

placement that gives the fastest performance. Otherwise you can specify NULLS FIRST or NULLS

LAST.

You can also carefully formulate queries so Vertica can avoid sorting the data and can process the
query more quickly, as illustrated by the following example.

Example

In the following example, Vertica sorts inputs from table t on column x, as specified in the

OVER(ORDER BY) clause. Then it evaluates RANK():

=> CREATE TABLE t (

 x FLOAT,

 y FLOAT);

=> CREATE PROJECTION t_p (x, y) AS SELECT * FROM t

 ORDER BY x, y UNSEGMENTED ALL NODES;

=> SELECT x, RANK() OVER (ORDER BY x) FROM t;

-246-

Programmer's Guide

In the above SELECT statement, Vertica can eliminate the ORDER BY clause and run the query

quickly because column x is a FLOAT data type; thus, the projection sort order matches the

analytic default ordering (ASC + NULLS LAST). Vertica can also avoid having to sort the data when

the underlying projection is already sorted.

Assume, however, that column x had been defined as INTEGER. Vertica cannot avoid sorting the

data because the projection sort order for INTEGER data types (ASC + NULLS FIRST) does not

match default analytic ordering (ASC + NULLS LAST). To help Vertica eliminate the sort, specify

the placement of nulls to match default ordering:

=> SELECT x, RANK() OVER (ORDER BY x NULLS FIRST) FROM t;

If column x is defined as a STRING, the following query would eliminate the sort:

=> SELECT x, RANK() OVER (ORDER BY x NULLS LAST) FROM t;

Note that omitting NULLS LAST in the above query still eliminates the sort because ASC + NULLS

LAST is the default sort specification for both the analytic ORDER BY clause and for string-related

columns in Vertica.

-247-

 247

Top-K Optimizations
Queries that use the SQL LIMIT clause with ORDER BY or the SQL-99 analytic function
ROW_NUMBER() return a specific subset of rows in the query result. This is known as Top-K
Optimization, which works on all data types. By not having to to sort the entire data set, a Top-K
operation can significantly improve performance because Vertica does much less work than when
producing the full result set.

For example, in the following typical Top-K query, Vertica extracts only the 3 smallest rows from

column x, as specified by the LIMIT clause:

=> SELECT * FROM t1 ORDER BY x LIMIT 3;

If table t1 contained millions of rows, you can imagine how time consuming it would be to sort all

the x values. Instead, Vertica, returns only the the smallest 3 values in x.

Note: Omitting the ORDER BY clause could produce nondeterministic results because the
query retrieves any number of records set by the LIMIT clause, thereby losing Top-K
performance benefits.

The following list illustrates the LIMIT clause queries that Vertica supports:

=> SELECT * FROM (SELECT * FROM t1 ORDER BY x) alias LIMIT 3;

=> SELECT * FROM (SELECT * FROM t1 ORDER BY x LIMIT 5) alias LIMIT 3;

=> SELECT * FROM (SELECT * FROM t1 ORDER BY x) alias LIMIT 4 OFFSET 3;

=> SELECT * FROM t1 UNION SELECT * FROM t2 LIMIT 3;

=> SELECT * FROM fact JOIN dim using (x) LIMIT 3;

=> SELECT * FROM t1 JOIN t2 USING (x) LIMIT 3;

GROUP BY operations are not affected by Top-K.

Sort operations that often precede an analytics computation benefit from Top-K optimization if the
query contains an OVER(ORDER BY) clause, such as in the following ROW_NUMBER() query:

=> SELECT x FROM

 (SELECT *, ROW_NUMBER() OVER (ORDER BY x) AS row

 FROM t1) t2 WHERE row <= 3;

The above query has the same behavior as the following query, which uses LIMIT:

=> SELECT ROW_NUMBER() OVER (ORDER BY x) AS RANK FROM t1 LIMIT 3;

You can also use ROW_NUMBER() with the analytic window_partition_clause, something

you cannot do if you use LIMIT:

=> SELECT x, y FROM

 (SELECT *, ROW_NUMBER() OVER (PARTITION BY x ORDER BY y)

 AS row FROM t1) t2 WHERE row <= 3;

Notes

 When the OVER() clause includes the window_partition_clause, Top-K optimization

occurs only the analytic sort node matches the projection; for example, if the projection is

sorted on x, y in table t1.

-248-

Programmer's Guide

 The configuration parameter TopKHeapMaxMem controls how much memory can be used for

TopK(Heap). If K tuples can fit into the space allocated by this parameter (default 80MB), the
optimizer uses TopK(Heap); otherwise no TopK is used (the query is sorted and loses Top-K
optimization).

Once the optimizer chooses TopK(Heap), the Resource Manager can reject the plan if the
TopK operator requires too much memory. To prevent the query from being rejected, you can

lower the parameter TopKHeapMaxMem, but be careful in changing the setting. Too low and no

TopK used (you lose the optimization); too high and the query could get rejected. In most
cases, the default setting of 80MB should work, and the the configuration parameter is
provided as a tool.

See Also

Designing for GROUP BY Queries in the Administrator's Guide

Configuration Parameters in the Administrator's Guide

-249-

 249

Joins Optimizations
Joins run faster if the columns on the left side of an equality predicate come from one table and the
columns on the right side of the equality predicate come from another; for example:

=> SELECT * FROM T JOIN X WHERE T.a + T.b = X.x1 - X.x2;

If you include columns from different tables, your query loses the performance improvements:

=> SELECT * FROM T JOIN X WHERE T.a = X.x1 + T.b

-250-

 250

Merge Joins for Insert-Select Queries

The ordering used for the select part (that also has joins) of an insert-select query is determined by
the choice of the outer (fact) projection for the select's join. This means that it is not possible for it
to use optimizations, such as merge-join, based on the order of the 'inner' projection. To facilitate a
merge-join, add an ORDER BY clause to the SELECT if the incoming data isn't already sorted
correctly for the Merge-Join. This creates a SORT operator to facilitate the merge-join.

The following example illustrates this concept by generating a hash-join instead of a merge join
for a FK-PK validation. It also illustrates how to use ORDER BY to force a merge-join.

-- Should be getting a MERGE JOIN for the FK-PK validation, but getting a HASH JOIN

--

DROP TABLE f1 CASCADE;

DROP TABLE d1 CASCADE;

DROP TABLE f1_staging CASCADE;

CREATE TABLE f1(a varchar(10), b varchar(10));

CREATE TABLE d1(a varchar(10), b varchar(10));

CREATE TABLE f1_staging(a varchar(10), b varchar(10));

ALTER TABLE d1 ADD CONSTRAINT d1_pk PRIMARY KEY (a, b);

ALTER TABLE f1 ADD CONSTRAINT f1_fk FOREIGN KEY (a, b) references d1 (a, b);

CREATE PROJECTION f1_super(a, b) AS SELECT * FROM f1 ORDER BY a, b;

CREATE PROJECTION d1_super(a, b) AS SELECT * FROM d1 ORDER BY a, b;

CREATE PROJECTION f1_staging_super(a, b) AS SELECT * FROM f1_staging ORDER BY a,

b;

CREATE PROJECTION prejoin(f1_a, f1_b, d1_a, d1_b)

AS SELECT f1.a, f1.b, d1.a, d1.b

FROM f1 join d1 on f1.a=d1.a and f1.b=d1.b

ORDER BY d1.a, d1.b;

COPY d1 FROM stdin delimiter ' ' direct;

one one

two two

\.

COPY f1 FROM stdin delimiter ' ' direct;

one one

two two

\.

INSERT /*+direct*/ INTO f1_staging values('one', 'one');

-- Getting HASH JOIN instead of MERGE JOIN

\o explain.out

explain

INSERT INTO f1

SELECT f1s.a, f1s.b

FROM f1_staging f1s join d1

on f1s.a=d1.a and f1s.b=d1.b;

\o

-251-

 Optimizing Query Performance

INSERT INTO f1

SELECT f1s.a, f1s.b

FROM f1_staging f1s join d1

on f1s.a=d1.a and f1s.b=d1.b;

-- Adding ORDER BY results in the desired MERGE JOIN

\o explain_orderby.out

explain

INSERT INTO f1

SELECT f1s.a, f1s.b

FROM f1_staging f1s join d1

on f1s.a=d1.a and f1s.b=d1.b ORDER BY f1s.a, f1s.b;

\o

INSERT INTO f1

SELECT f1s.a, f1s.b

FROM f1_staging f1s join d1

on f1s.a=d1.a and f1s.b=d1.b ORDER BY f1s.a, f1s.b;

-252-

 252

Using Identically Segmented Projections

You can help improve query performance when you join multiple tables if the system contains
projections that are identically segmented by the join keys. Identically segmenting projections
allow the joins to occur locally on each node without any data movement across the network at
query time.

The Vertica optimizer chooses a projection to supply rows for each table in a query. If two chosen
projections to be joined are segmented, the optimizer uses their segmentation expressions and
the join expressions in the query to determine if the rows are correctly placed to perform the join
without any data movement.

Note: Executing queries that join identically-segmented projections is useful with distributed
execution plans only.

Join Conditions for Identically Segmented Projections (ISP)

In particular, a projection called p is segmented on join columns if all column references in p‘s

segmentation expression are a subset of the columns in the join expression.

The following conditions must hold for two segmented projections p1 of table t1 and p2 of table

t2 to participate in a join of t1 to t2:

 The join condition must be of the following forms:

t1.j1 = t2.j1 AND t1.j2 = t2.j2 AND ... t1.jN = t2.jN

The join columns must share the same base data type; for example:

 If t1.j1 is an INTEGER, t2.j1 can be an INTEGER but cannot be a FLOAT.

 If t1.j1 is a CHAR(10) then t2.j1 can be any CHAR or VARCHAR (e.g., CHAR(10),

VARCHAR(10), VARCHAR(20)), but t2.j1 cannot be an INTEGER.

 If p1 is segmented by an expression on columns {t1.s1, t1.s2, ... t1.sN}, then each

such segmentation column t1.sX is in the join column set {t1.jX}.

 If p2 is segmented by an expression on columns {t2.s1, t2.s2, ... t2.sN}, then each

such segmentation column t2.sX is in the join column set {t2.jX}.

 The segmentation expressions of p1 and p2 must be structurally equivalent:

 Example:

 If p1 is SEGMENTED BY hash(t1.x), if p2 is SEGMENTED BY hash(t2.x), p1 and p2 are
identically segmented.

 If p1 is SEGMENTED BY hash(t1.x), if p2 is SEGMENTED BY hash(t2.x + 1) p1 and p2 are
not identically segmented.

 p1 and p2 must have the same segment count.

 The assignment of segments to nodes must match; for example, if p1 and p2 use an OFFSET

clause, their offsets must match.

 If p1 and p2 are range segmented, the ranges must be identical.

-253-

 Optimizing Query Performance

If Vertica finds projections for t1 and t2 that are not segmented identically, the data is

redistributed across the network during query run-time, as necessary.

Tip: If creating custom designs, try to use segmented projections for ISP joins whenever
possible. See "Designing Identically Segmented Projections for K-Safety" below.

The following syntax provides an example of two tables and ISP conditions:

 CREATE TABLE t1 (id INT, x1 INT, y1 INT) SEGMENTED BY HASH(id) ALL NODES;

 CREATE TABLE t2 (id INT, x2 INT, y2 INT) SEGMENTED BY HASH(id) ALL NODES;

Corresponding to the above design, the following syntax shows ISP-supported join conditions:

 SELECT * FROM t1 JOIN t2 ON t1.id = t2.id; -- ISP

 SELECT * FROM t1 JOIN t2 ON t1.id = t2.id AND t1.x1 = t2.x2; -- ISP

 SELECT * FROM t1 JOIN t2 ON t1.x1 = t2.x2; -- NOT ISP

 SELECT * FROM t1 JOIN t2 ON t1.id = t2.x2; -- NOT ISP

Designing Identically Segmented Projections for K-Safety

For K-safety, if A and B are two identically segmented projections, their buddy projections, Abuddy
and Bbuddy, should also be segmented identically to one another.

The following syntax illustrates suboptimal buddy projection design because the projections are
not identically segmented to the each other in that their OFFSETs differ:

CREATE PROJECTION t1_b1 (id, x1, y1)

AS SELECT * FROM t1

SEGMENTED BY HASH(id)

ALL NODES OFFSET 1;

CREATE PROJECTION t2_b1 (id, x2, y2)

AS SELECT * FROM t2

SEGMENTED BY HASH(id)

ALL NODES OFFSET 2;

The following syntax is another example of suboptimal buddy projection design. The projections
are not identically segmented to each other in that their segmentation expressions differ; thus, the
projections do not qualify as buddies:

CREATE PROJECTION t1_b2 (id, x1, y1)

AS SELECT * FROM t1

SEGMENTED BY HASH(id, x1)

ALL NODES OFFSET 1;

CREATE PROJECTION t2_b2 (id, x2, y2)

AS SELECT * FROM t2

SEGMENTED BY HASH(id)

ALL NODES OFFSET 2;

Buddy projections can use different sort orders. For details, see Hash Segmentation in the SQL
Reference Manual.

Examples

 Vertica recommends that you use Database Designer to create projections, which uses HASH
and ALL NODES syntax.

 Hash segmentation is the preferred method of segmentation. For detailed information about
using hash segmentation in a projection, see the CREATE PROJECTION statement in the
SQL Reference Manual.

See Also

Partitioning and Segmenting Data

CREATE PROJECTION in the the SQL Reference Manual

-254-

 254

Optimizing Query Speed with Predicates
In the following example, if the predicate column in the outer query only references the
PARTITION BY columns of the subquery, the predicate can be pushed into the subquery so that it
is evaluated before the time series or analytic computation, improving query performance.

SELECT symbol, AVG(first_bid) as avg_bid FROM

 (SELECT symbol, slice_time, TS_FIRST_VALUE(bid1) AS first_bid

 FROM Tickstore

 WHERE symbol IN ('MSFT', 'IBM')

 TIMESERIES slice_time AS 5 seconds

 OVER (PARTITION BY symbol ORDER BY ts)) AS resultOfGFI

WHERE symbol IN ('MSFT', 'IBM')

GROUP BY symbol;

In the above query, for example, the outer WHERE clause predicate is pushed into the subquery.

Note: The only predicates pushed into the subquery are predicates on PARTITION BY
columns.

This predicate optimization is also true for analytic functions, where only the set intersection of
PARTITION BY columns are pushed down. For example:

RANK() OVER(PARTITION BY a, b, c ORDER BY d)

DENSE_RANK() OVER(PARTITION BY d, b, c ORDER BY a)

In the above example, even though DENSE_RANK has column d in its partition clause and RANK

has a in its partition clause, only predicates referring to b or c can be pushed down.

More formally:

{a, b, c} ^ {d, b, c} = {b, c}

Constant Propagation and IN-list Constant Folding
At query planning time, Vertica can simplify portions of predicates that it determines cannot be
true. These optimization are typically relevant for automatically generated SQL. For example:

... WHERE id = '5' AND (month = 'jan' OR id IN (7,8))

Gets converted into:

... WHERE id = '5' AND month = 'jan'

Optimizing Deletes and Updates
Vertica is optimized for query intensive workloads, so deletes and updates might not achieve the
same level of performance as queries. Deletes and updates go to the WOS by default, but if the
data is sufficiently large and would not fit in memory, Vertica automatically switches to using the
ROS. See Using INSERT, UPDATE, and DELETE.

The topics that follow discuss best practices when using delete and update operations in Vertica.

-255-

 Optimizing Query Performance

Performance Considerations for Deletes and Updates

Query Performance after Large Deletes

A large number of (un-purged) deleted rows could negatively affect query and recovery
performance.

To eliminate the rows that have been deleted from the result, a query must do extra processing. It
has been observed if 10% or more of the total rows in a table have been deleted, the performance
of a query on the table slows down. However your experience may vary depending upon the size
of the table, the table definition, and the query. The same problem can also happen during the
recovery. To avoid this, the delete rows need to be purged in Vertica. For more information, see
Purge Procedure.

See Optimizing Deletes and Updates for Performance (page 255) for more detailed tips to help
improve delete performance.

Concurrency

Deletes and updates take exclusive locks on the table. Hence, only one delete or update
transaction on that table can be in progress at a time and only when no loads (or INSERTs) are in
progress. Deletes and updates on different tables can be run concurrently.

Pre-join Projections

Avoid pre-joining dimension tables that are frequently updated. Deletes and updates to Pre-join
projections cascade to the fact table causing a large delete or update operation.

Optimizing Deletes and Updates for Performance

The process of optimizing a design for deletes and updates is the same. Some simple steps to
optimize a projection design or a delete or update statement can increase the query performance
by tens to hundreds of times. The following section details several proposed optimizations to
significantly increase delete and update performance.

Note: For large bulk deletion, Vertica recommends using Partitioned Tables where possible
because it can provide the best delete performance and also improve query performance.

Designing Delete- or Update-Optimized Projections

When all columns required by the delete or update predicate are present in a projection, the
projection is optimized for deletes and updates. Delete and update operations on such projections
are significantly faster than on non-optimized projections. Both simple and pre-join projections can
be optimized.

Example

CREATE TABLE t (a integer, b integer, c integer);

CREATE PROJECTION p1 (a ENCODING RLE,b,c) as select * from t order by a;

CREATE PROJECTION p2 (a, c) as select a,c from t order by c, a;

In the following example, both p1 and p2 are eligible for delete and update optimization because
the a column is available:

-256-

Programmer's Guide

DELETE from t WHERE a = 1;

In the following example, only p1 is eligible for delete and update optimization because the b
column is not available in p2:

DELETE from t WHERE b = 1;

Delete and Update Considerations for Sort Order of Projections

You should design your projections so that frequently used delete or update predicate columns
appear in the SORT ORDER of all projections for large deletes and updates.

For example, suppose most of the deletes you perform on a projection look like the following
example:

DELETE from t where time_key < '1-1-2007'

To optimize the deletes, you would make ―time_key‖ appear in the ORDER BY clause of all your

projections. This schema design enables Vertica to optimize the delete operation.

Further, add additional sort columns to the sort order such that each combination of the sort key
values uniquely identifies a row or a small set of rows. See Choosing Sort-orders for Low
Cardinality Predicates. You can use the EVALUATE_DELETE_PERFORMANCE function to
analyze projections for sort order issues.

The following three examples demonstrate some common scenarios for delete optimizations.
Remember that these same optimizations work for optimizing for updates as well.

In the first scenario, the data is deleted given a time constraint, in the second scenario the data is
deleted by a single primary key and in the third scenario the original delete query contains two
primary keys.

Scenario 1: Delete by Time

This example demonstrates increasing the performance of deleting data given a date range. You
may have a query that looks like this:

delete from trades

where trade_date between '2007-11-01' and „2007-12-01‟;

To optimize this query, start by determining whether all of the projections can perform the delete in
a timely manner. Issue a SELECT COUNT(*) on each projection, given the date range and notice
the response time. For example:

SELECT COUNT(*) FROM [projection name i.e., trade_p1, trade_p2]

WHERE trade_date BETWEEN '2007-11-01' AND '2007-12-01;

If one query is slow, check the uniqueness of the trade_date column and determine if it needs

to be in the projection‘s ORDER BY clause and/or can be Run Length Encoded (RLE). RLE
replaces sequences of the same data values within a column by a single value and a count
number.

If the number of unique columns is unsorted, or the average number of repeated rows is less than

ten, trade_date is too close to being unique and cannot be RLE. If you find this to be the case,

add a new column to minimize the search scope.

-257-

 Optimizing Query Performance

In this example, add a column for trade year = 2007. However, first determine if the trade_year

returns a manageable result set. The following query returns the data grouped by trade year.

SELECT DATE_TRUNC('year', trade_date),count(*)

FROM trades

GROUP BY DATE_TRUNC('year',trade_date);

Assuming that trade_year = 2007 is near 8k (8k integer is 64k), a column for trade_year can be

added to the trades table. The final DELETE statement then becomes:

DELETE FROM trades

WHERE trade_year = 2007

AND trade_date BETWEEN '2007-11-01' AND '2007-12-01';

Vertica makes the populating of extra columns easier with the ability to define them as part of the
COPY statement.

Scenario 2: Delete by a Single Primary Key

This example demonstrates increasing the performance of deleting data given a table with a single
primary key. Suppose you have the following query:

DELETE FROM [table]

WHERE pk IN (12345, 12346, 12347,...);

You begin optimizing the query by creating a new column called „buckets‟, which is assigned

the value of one the primary key column divided by 10k; in the above example, buckets=(int)
pk/10000. This new column can then be used in the query to limit the search scope. The optimized
delete would be:

DELETE FROM [table]

WHERE bucket IN (1,...)

AND pk IN (12345, 12346, 12347,...);

Scenario 3: Delete by Multiple Primary Keys

This example demonstrates deleting data given a table with multiple primary keys. Suppose you
have the following query:

DELETE FROM [table]

WHERE (pk1, pk2) IN ((12345,5432),(12346,6432),(12347,7432), ...);

Similar to the previous example, you create a new column called „buckets‟, which is assigned

the value of one of the primary key column values divided by 10k; in the above example,
buckets=(int) pk1/10000. This new column can then be used in the query to limit the search
scope.

In addition, you can further optimize the original search by reducing the primary key IN list from

two primary key columns to one column by creating a second column. For example, you could
create a new column named ‗pk1-2‘ that contains the concatenation of the two primary key
columns. For example, pk1-2 = ‗pk1‘ || ‗-‗ || ‗pk2‘.

Your optimized delete statement would then be:

DELETE FROM [table]

WHERE bucket IN (1,. . .)

AND pk1-2 IN („12345-5432‟, „12346-6432‟, „12347-7432‟,...);

-258-

Programmer's Guide

Caution: Remember that Vertica does not remove deleted data immediately but keeps it as
history for the purposes of historical query. A large amount of history can result in slower query
performance. See Purging Deleted Data for information on how to configure the appropriate
amount of history to be retained.

-259-

Using External Procedures

An external procedure is a procedure external to Vertica that you create, maintain, and store on
the server. External procedures are simply executable files such as shell scripts, compiled code,
code interpreters, and so on.

-260-

 260

Implementing External Procedures
To implement an external procedure:

1 Create an external procedure executable file.

See Requirements for External Procedures (page 261).

2 Enable the UID attribute for the file and allow read and execute permission for the group (if the
owner is not the database administrator). For example:

chmod 4777 helloplanet.sh

3 Install the external procedure executable file (page 262).

4 Create the external procedure in Vertica (page 263).

Once a procedure is created in Vertica, you can execute (page 264) or drop (page 265) it, but you
cannot alter it.

-261-

 261

Requirements for External Procedures

External procedures have requirements regarding their attributes, where you store them, and how
you handle their output. You should also be cognizant of their resource usage.

Procedure File Attributes

A procedure file must be owned by the database administrator (OS account) or by a user in the
same group as the administrator. The procedure file owner cannot be root and must have the set
UID attribute enabled and allow read and execute permission for the group if the owner is not the
database administrator.

Note: The file should end with exit 0, and exit 0 must reside on its own line. This naming
convention instructs Vertica to return 0 when the script succeeds.

Handling Procedure Output

Vertica does not provide a facility for handling procedure output. Therefore, you must make your
own arrangements for handling procedure output, which should include writing error, logging, and
program information directly to files that you manage.

Handling Resource Usage

The Vertica resource manager is unaware of resources used by external procedures. Additionally,
Vertica is intended to be the only major process running on your system. If your external
procedure is resource intensive, it could affect the performance and stability of Vertica. Consider
the types of external procedures you create and when you run them. For example, you might run a
resource-intensive procedure during off hours.

Sample Procedure File

#!/bin/bash

echo "hello planet argument: $1" >> /tmp/myprocedure.log

exit 0

-262-

 262

Installing External Procedure Executable Files

To install an external procedure, use the Administration Tools from either the graphical user
interface or the command line.

Graphical User Interface

1 Run the Administration Tools.

$ /opt/vertica/bin/adminTools

2 On the AdminTools Main Menu, click Configuration Menu, and then click OK.

3 On the Configuration Menu, click Install External Procedure and then click OK.

4 Select the database on which you want to install the external procedure.

5 Either select the file to install or manually type the complete file path, and then click OK.

6 If you are not the superuser, you are prompted to enter your password and click OK.

The Administration Tools automatically create the

<database_catalog_path>/procedures directory on each node in the database and

installs the external procedure in these directories for you.

7 Click OK in the dialog that indicates that the installation was successful.

Command Line

If you use the command line, be sure to specify the full path to the procedure file and the password
of the Linux user who owns the procedure file;

for example:

$ admintools -t install_procedure -d vmartdb -f /scratch/helloworld.sh -p

ownerpassword

Installing external procedure...

External procedure installed

Once you have installed an external procedure, you need to make Vertica aware of it. To do so,

use the CREATE PROCEDURE statement, but review Creating External Procedures (page 263)

first.

-263-

 263

Creating External Procedures

Once you have installed an external procedure, you need to make Vertica aware of it. To do so,

use the CREATE PROCEDURE statement.

By default, only the superuser can create and execute a procedure. However, the superuser can

grant the right to execute a stored procedure to a user on the operating system. (See GRANT

(Procedure).)

Once created, a procedure is listed in the V_CATALOG.USER_PROCEDURES system table. Users

can see only those procedures that they have been granted the privilege to execute.

Example

This example creates a procedure named helloplanet for the helloplanet.sh external

procedure file. This file accepts one VARCHAR argument. The sample code is provided in

Requirements for External Procedures (page 261).

=> CREATE PROCEDURE helloplanet(arg1 VARCHAR) AS 'helloplanet.sh' LANGUAGE

'external'

 USER 'release';

This example creates a procedure named proctest for the copy_vertica_database.sh

script. This script copies a database from one cluster to another, and it is included in the server

RPM located in the /opt/vertica/scripts directory.

=> CREATE PROCEDURE proctest(shosts VARCHAR, thosts VARCHAR, dbdir VARCHAR)

 AS 'copy_vertica_database.sh' LANGUAGE 'external' USER 'release';

See Also

CREATE PROCEDURE and GRANT (Procedure) in the SQL Reference Manual

-264-

 264

Executing External Procedures
Once you define a procedure through the CREATE PROCEDURE statement, you can use it as a

meta command through a simple SELECT statement. Vertica does not support using procedures

in more complex statements or in expressions.

The following example runs a procedure named helloplanet:

=> SELECT helloplanet('earthlings');

 helloplanet

 0

(1 row)

The following example runs a procedure named proctest. This procedure references the

copy_vertica_database.sh script that copies a database from one cluster to another. It is

installed by the server RPM in the /opt/vertica/scripts directory.

=> SELECT proctest(

 '-s qa01',

 '-t rbench1',

 '-D /scratch_b/qa/PROC_TEST');

Note: External procedures have no direct access to database data. If available, use ODBC or
JDBC for this purpose.

Procedures are executed on the initiating node. Vertica runs the procedure by forking and
executing the program. Each procedure argument is passed to the executable file as a string. The
parent fork process waits until the child process ends.

To stop execution, cancel the process by sending a cancel command (for example, CTRL+C)
through the client. If the procedure program exits with an error, an error message with the exit
status is returned.

Note: By default, only the superuser can execute an external procedure. However, the
superuser can grant the right to execute an external procedure to a user on the operating
system. (See Procedure Privileges in the Administrator's Guide for details.).

See Also

CREATE PROCEDURE in the SQL Reference Manual

Procedure Privileges in the Administrator's Guide

-265-

 265

Dropping External Procedures
Only a superuser can drop an external procedure. To drop the definition for an external
procedure from Vertica, use the DROP PROCEDURE statement. Only the reference to the
procedure is removed. The external file remains in the

<database_catalog_path>/procedures directory on each node in the database.

Note: The definition Vertica uses for a procedure cannot be altered; it can only be dropped.

Example

=> DROP PROCEDURE helloplanet(arg1 varchar);

See Also

DROP PROCEDURE in the SQL Reference Manual

-266-

Using SQL Macros

SQL Macros let you define and store commonly used SQL expressions as a function and are
useful for executing complex queries and combining Vertica built-in functions. You simply call the
function name you assigned in your query.

A SQL Macro can be used anywhere in a query where an ordinary SQL expression can be used,
except in the table partition clause or the projection segmentation clause.

Note

For syntax and parameters for the commands and system table discussed
in this section, see the following topics in the SQL Reference Manual:

 CREATE FUNCTION

 ALTER FUNCTION

 DROP FUNCTION

 GRANT (Function)

 REVOKE (Function)

 V_CATALOG.USER_FUNCTIONS

Creating SQL Macros
A SQL Macro can be used anywhere in a query where an ordinary SQL expression can be used —
except in the table partition clause or the projection segmentation clause.

To create a SQL Macro, a user must have CREATE privileges on the schema, and to use a SQL
Macro the user must have USAGE privileges on the schema and EXECUTE privileges on the
defined function.

This example creates a SQL Macro called zeroifnull that accepts an INTEGER argument and

returns an INTEGER result.

=> CREATE FUNCTION zeroifnull(x INT) RETURN INT

 AS BEGIN

 RETURN (CASE WHEN (x IS NOT NULL) THEN x ELSE 0 END);

 END;

You can use the new SQL Macro (zeroifnull) any place where you can use an ordinary SQL

expression. For example, create a simple table:

=> CREATE TABLE tabwnulls(col1 INT);

=> INSERT INTO tabwnulls VALUES(1);

-267-

 Using SQL Macros

=> INSERT INTO tabwnulls VALUES(NULL);

=> INSERT INTO tabwnulls VALUES(0);

=> SELECT * FROM tabwnulls;

 a

 1

 0

(3 rows)

Use the zeroifnull function in a SELECT statement, where the function calls column a from

table tabwnulls:

=> SELECT zeroifnull(col1) FROM tabwnulls;

 zeroifnull

 1

 0

 0

(3 rows)

Use the zeroifnull function in the GROUP BY clause:

=> SELECT COUNT(*) FROM tabwnulls GROUP BY zeroifnull(col1); count

 2

 1

(2 rows)

If you want to change a SQL Macro's body, use the CREATE OR REPLACE syntax. The following

command modifies the CASE expression:

=> CREATE OR REPLACE FUNCTION zeroifnull(x INT) RETURN INT

 AS BEGIN

 RETURN (CASE WHEN (x IS NULL) THEN 0 ELSE x END);

 END;

To see how this information is stored in the Vertica catalog, see Viewing Information About SQL
Macros (page 269) in this guide.

See Also

CREATE FUNCTION and USER_FUNCTIONS in the SQL Reference Manual

Altering and Dropping SQL Macros
When you create SQL Macros, Vertica allows multiple functions to share the same name with
different argument types. Therefore, if you try to alter or drop a function without specifying the
argument data type, the system returns an error message.

Only the superuser or owner can alter or drop a SQL Macro.

Altering a SQL Macro

The ALTER FUNCTION command lets you assign a new name to a function and move it to a
different schema.

-268-

Programmer's Guide

In the previous topic, you created a SQL Macro called zeroifnull. The following command

renames the zeroifnull function to zerowhennull:

=> ALTER FUNCTION zeroifnull(x INT) RENAME TO zerowhennull;

ALTER FUNCTION

This next command moves the renamed function into a new schema called macros:

=> ALTER FUNCTION zerowhennull(x INT) SET SCHEMA macros;

ALTER FUNCTION

Dropping a SQL Macro

The DROP FUNCTION command drops a SQL Macro from the Vertica catalog.

Like with ALTER FUNCTION, you must specify the argument data type or the system returns the
following error message:

=> DROP FUNCTION zerowhennull();

ROLLBACK: Function with specified name and parameters does not exist:

zerowhennull

Specify the argument type:

=> DROP FUNCTION macros.zerowhennull(x INT);

DROP FUNCTION

Vertica does not check for dependencies, so if you drop a SQL Macro where other objects
references it (such as views or other SQL Macros), Vertica returns an error when those objects are
used and not when the function is dropped.

Tip: To view a list of all SQL Macro functions on which you have EXECUTE privileges, (which
also returns their argument types), query the V_CATALOG.USER_FUNCTIONS system table.

See Also

ALTER FUNCTION and DROP FUNCTION in the SQL Reference Manual

Managing Access to SQL Macros
Before a user can execute a SQL Macro, he or she must have USAGE privileges on the schema
and EXECUTE privileges on the defined function. Only the superuser and owner can grant/revoke
EXECUTE usage on a function.

To grant EXECUTE privileges to user Fred on the zeroifnull function:

=> GRANT EXECUTE ON FUNCTION zeroifnull (x INT) TO Fred;

To revoke EXECUTE privileges from user Fred on the zeroifnull function:

=> REVOKE EXECUTE ON FUNCTION zeroifnull (x INT) FROM Fred;

See Also

GRANT (Function) and REVOKE (Function) in the SQL Reference Manual

-269-

 Using SQL Macros

Viewing Information About SQL Macros
You can access information about any SQL Macro functions on which you have EXECUTE

privileges. This information is available in the system table V_CATALOG.USER_FUNCTIONS and

the vsql meta-command \df.

To view all of the SQL macros on which you have EXECUTE privileges, query the

V_CATALOG.USER_FUNCTIONS table:

=> SELECT * FROM USER_FUNCTIONS;

-[RECORD 1]----------+---

schema_name | public

function_name | zeroifnull

function_return_type | Integer

function_argument_type | x Integer

function_definition | RETURN CASE WHEN (x IS NOT NULL) THEN x ELSE 0 END

volatility | immutable

is_strict | f

If you want to change a SQL Macro's body, use the CREATE OR REPLACE syntax. The following

command modifies the CASE expression:

=> CREATE OR REPLACE FUNCTION zeroifnull(x INT) RETURN INT

 AS BEGIN

 RETURN (CASE WHEN (x IS NULL) THEN 0 ELSE x END);

 END;

Now when you query the USER_FUNCTIONS table, you can see the changes in the

function_definition column:

=> SELECT * FROM USER_FUNCTIONS;

-[RECORD 1]----------+---

schema_name | public

function_name | zeroifnull

function_return_type | Integer

function_argument_type | x Integer

function_definition | RETURN CASE WHEN (x IS NULL) THEN 0 ELSE x END

volatility | immutable

is_strict | f

If you use CREATE OR REPLACE syntax to change only the argument name or argument type (or

both), the system maintains both versions of the function. For example, the following command
tells the function to accept and return a numeric data type instead of an integer for the

zeroifnull function:

=> CREATE OR REPLACE FUNCTION zeroifnull(z NUMERIC) RETURN NUMERIC

 AS BEGIN

 RETURN (CASE WHEN (z IS NULL) THEN 0 ELSE z END);

 END;

Now query the USER_FUNCTIONS table, and you can see the second instance of zeroifnull

in Record 2, as well as the changes in the function_return_type,

function_argument_type, and function_definition columns.

Note: Record 1 still holds the original definition for the zeroifnull function:

-270-

Programmer's Guide

=> SELECT * FROM USER_FUNCTIONS;

-[RECORD 1

]----------+--

schema_name | public

function_name | zeroifnull

function_return_type | Integer

function_argument_type | x Integer

function_definition | RETURN CASE WHEN (x IS NULL) THEN 0 ELSE x END

volatility | immutable

is_strict | f

-[RECORD 2

]----------+--

schema_name | public

function_name | zeroifnull

function_return_type | Numeric

function_argument_type | z Numeric

function_definition | RETURN (CASE WHEN (z IS NULL) THEN (0) ELSE z

END)::numeric

volatility | immutable

is_strict | f

Because Vertica allows functions to share the same name with different argument types, you must
specify the argument type when you alter or drop a function. If you do not, the system returns an
error message:

=> DROP FUNCTION zeroifnull();

ROLLBACK: Function with specified name and parameters does not exist: zeroifnull

See Also

USER_FUNCTIONS in the SQL Reference Manual

Migrating Built-in Functions
If you have built-in functions from another RDBMS that do not map to a Vertica-supported
function, you can migrate them into your Vertica database by using a SQL Macro.

The example scripts below show how to create macros for the following DB2 built-in functions:

 DAY()

 DAYOFYEAR()

 YEAR()

 UCASE()

 LCASE()

 LOCATE()

 POSSTR()

 CONCAT()

The first script creates a macro for the DAY() function:

=> CREATE OR REPLACE FUNCTION DAY(x DATE)

-271-

 Using SQL Macros

 RETURN INT

 AS BEGIN

 RETURN EXTRACT(DAY FROM x);

 END;

=> CREATE OR REPLACE FUNCTION DAY(x TIMESTAMP)

 RETURN INT

 AS BEGIN

 RETURN EXTRACT(DAY FROM x);

 END;

=> CREATE OR REPLACE FUNCTION DAY(x INTERVAL)

 RETURN INT

 AS BEGIN

 RETURN EXTRACT(DAY FROM x);

 END;

This script creates a macro for the DAYOFYEAR() function:

=> CREATE OR REPLACE FUNCTION DAYOFYEAR(x DATE)

 RETURN INT

 AS BEGIN

 RETURN EXTRACT(DOY FROM x);

 END;

=> CREATE OR REPLACE FUNCTION DAYOFYEAR(x TIMESTAMP)

 RETURN INT

 AS BEGIN

 RETURN EXTRACT(DOY FROM x);

 END;

This script creates a macro for the YEAR() function:

=> CREATE OR REPLACE FUNCTION YEAR(x DATE)

 RETURN INT

 AS BEGIN

 RETURN EXTRACT(YEAR FROM x);

 END;

=> CREATE OR REPLACE FUNCTION YEAR(x TIMESTAMP)

 RETURN INT

 AS BEGIN

 RETURN EXTRACT(YEAR FROM x);

 END;

=> CREATE OR REPLACE FUNCTION YEAR(x INTERVAL)

 RETURN INT

 AS BEGIN

 RETURN EXTRACT(YEAR FROM x);

 END;

This script creates a macro for the UCASE() function:

=> CREATE OR REPLACE FUNCTION UCASE (x VARCHAR)

 RETURN VARCHAR

 AS BEGIN

 RETURN UPPER(x);

 END;

This script creates a macro for the LCASE() function:

=> CREATE OR REPLACE FUNCTION LCASE (x VARCHAR)

-272-

Programmer's Guide

 RETURN VARCHAR

 AS BEGIN

 RETURN LOWER(x);

 END;

This script creates a macro for the LOCATE() function:

=> CREATE OR REPLACE FUNCTION LOCATE(a VARCHAR, b VARCHAR)

 RETURN INT

 AS BEGIN

 RETURN POSITION(a IN b);

 END;

This script creates a macro for the POSSTR() function:

=> CREATE OR REPLACE FUNCTION POSSTR(a VARCHAR, b VARCHAR)

 RETURN INT

 AS BEGIN

 RETURN POSITION(b IN a);

 END;

This script creates a macro for the CONCAT() function:

=> CREATE OR REPLACE FUNCTION CONCAT(a VARCHAR, b VARCHAR)

 RETURN VARCHAR

 AS BEGIN

 RETURN a||b;

 END;

-273-

Collecting Statistics

The Vertica cost-based query optimizer relies on representative statistics on the data. These
statistics are used in the optimizer's algorithms to choose between multiple available plans in
which to execute a query. Various optimizer decisions rely on having up-to-date statistics,
including:

 Choosing between multiple eligible projections to answer the query

 Choosing the best order in which to perform joins

 Choosing between plans involving different algorithms, such as HASH JOIN versus MERGE

JOIN or HASH GROUP BY versus PIPELINED GROUP BY

 Choosing between distribution algorithms; for example, broadcast and re-segmentation

Without reasonably accurate statistics, the optimizer could choose a suboptimal projection or a
suboptimal join order for a query. See Statistics Collection Guidelines (page 273).

See Also

ANALYZE_STATISTICS, DROP_STATISTICS, EXPORT_STATISTICS, and
IMPORT_STATISTICS in the SQL Reference Manual

Statistics Used by the Query Optimizer
Vertica uses the estimated values of the following statistics in its cost model:

 Number of rows in the projection (or table)

 Number of distinct values of each column

 Minimum/maximum values of each column

 An equi-height histogram of the distribution of values each column

 Space occupied by the column on disk

Notes

 The Vertica query optimizer and the Database Designer both use the same set of statistics.

 When there are ties, the optimizer chooses the projection that was created earlier.

Statistics Collection Guidelines
Vertica provides two ways to collect statistics:

ANALYZE ROW COUNT

The ANALYZE ROW COUNT operation is automatically invoked every 60 seconds to collect a

minimal set of statistics for each projection. This lightweight operation aggregates row counts
calculated during loads. For example, to set the interval to 1 hour (3600 seconds), issue the
following command:

=> SELECT SET_CONFIG_PARAMETER('AnalyzeRowCountInterval', 3600);

-274-

Programmer's Guide

To reset the interval to the default of 1 minute (60 seconds):

=> SELECT SET_CONFIG_PARAMETER('AnalyzeRowCountInterval', 60);

See Configuration Parameters in the Administrator's Guide for additional information. This
function can be invoked manually, if needed, using the DO_TM_TASK('analyze_row_count')
function.

ANALYZE_STATISTICS

The ANALYZE_STATISTICS function computes full statistics and must be explicitly invoked by
the user. It can invoked on all objects or on a per-table or per-projection basis, although there is no
benefit to running it per projection.

Notes

 Even if ANALYZE_STATISTICS() is invoked on a projection, it calculates the statistics using

the same procedure it used for the table object, so it is more efficient to invoke

ANALYZE_STATISTICS() on the table object.

 Statistics computation is a cluster-wide operation, which accesses data using a historical
query (at epoch latest) without any locks. Once computed, statistics are stored in the catalog
and replicated on all nodes. This operation requires an exclusive lock on the catalog for a very
short duration, similar to a DDL operation.

How Statistics are Computed
Vertica does not compute statistics incrementally, nor does it update full statistics during load
operations.

For large tables exceeding 250,000 rows, histograms for minimum, maximum, and column value
distribution are calculated on a sampled subset of rows. The default maximum number of samples
for each column is approximately 2^17 (131702) samples or the number of rows that fits within
1GB of memory, whichever is smaller; for example, the number of samples used for large
VARCHAR columns could be less.

Notes

 Vertica does not provide a configuration setting to change the number of samples.

 Statistic collection functions consider data in the ROS but not in the WOS.

Best Practices for Statistics Collection
The query optimizer requires representative statistics; however, for most applications statistics do
not have to be accurate to the minute. DO_TM_TASK('analyze_row_count') collects partial
statistics automatically by default and can be sufficient for many optimizer choices. For example,
the following command analyzes the row count on the Vmart Schema database:

=> SELECT DO_TM_TASK('analyze_row_count');

 DO_TM_TASK

row count analyze for projection 'call_center_dimension_DBD_27_seg_temp_init_temp_init'

row count analyze for projection 'call_center_dimension_DBD_28_seg_temp_init_temp_init'

-275-

 Collecting Statistics

row count analyze for projection 'online_page_dimension_DBD_25_seg_temp_init_temp_init'

row count analyze for projection 'online_page_dimension_DBD_26_seg_temp_init_temp_init'

row count analyze for projection 'online_sales_fact_DBD_29_seg_temp_init_temp_init'

row count analyze for projection 'online_sales_fact_DBD_30_seg_temp_init_temp_init'

row count analyze for projection 'customer_dimension_DBD_1_seg_temp_init_temp_init'

row count analyze for projection 'customer_dimension_DBD_2_seg_temp_init_temp_init'

row count analyze for projection 'date_dimension_DBD_7_seg_temp_init_temp_init'

row count analyze for projection 'date_dimension_DBD_8_seg_temp_init_temp_init'

row count analyze for projection 'employee_dimension_DBD_11_seg_temp_init_temp_init'

row count analyze for projection 'employee_dimension_DBD_12_seg_temp_init_temp_init'

row count analyze for projection 'inventory_fact_DBD_17_seg_temp_init_temp_init'

row count analyze for projection 'inventory_fact_DBD_18_seg_temp_init_temp_init'

row count analyze for projection 'product_dimension_DBD_3_seg_temp_init_temp_init'

row count analyze for projection 'product_dimension_DBD_4_seg_temp_init_temp_init'

row count analyze for projection 'promotion_dimension_DBD_5_seg_temp_init_temp_init'

row count analyze for projection 'promotion_dimension_DBD_6_seg_temp_init_temp_init'

row count analyze for projection 'shipping_dimension_DBD_13_seg_temp_init_temp_init'

row count analyze for projection 'shipping_dimension_DBD_14_seg_temp_init_temp_init'

row count analyze for projection 'vendor_dimension_DBD_10_seg_temp_init_temp_init'

row count analyze for projection 'vendor_dimension_DBD_9_seg_temp_init_temp_init'

row count analyze for projection 'warehouse_dimension_DBD_15_seg_temp_init_temp_init'

row count analyze for projection 'warehouse_dimension_DBD_16_seg_temp_init_temp_init'

row count analyze for projection 'store_dimension_DBD_19_seg_temp_init_temp_init'

row count analyze for projection 'store_dimension_DBD_20_seg_temp_init_temp_init'

row count analyze for projection 'store_orders_fact_DBD_23_seg_temp_init_temp_init'

row count analyze for projection 'store_orders_fact_DBD_24_seg_temp_init_temp_init'

row count analyze for projection 'store_sales_fact_DBD_21_seg_temp_init_temp_init'

row count analyze for projection 'store_sales_fact_DBD_22_seg_temp_init_temp_init'

(1 row)

Running full ANALYZE_STATISTICS on a table is an efficient but potentially long-running

operation that analyzes each unique column exactly once across all projections. It can be run
concurrently with queries and loads in a production environment; however given that it takes
resources (CPU and memory) from queries and loads, Vertica recommends that you run it only
when necessary.

A good rule of thumb is to run full ANALYZE_STATISTICS on a particular table whenever:

 The table is first bulk loaded.

 A new projection using that table is created and refreshed.

 Number of rows in the table changes by 50%.

 MIN/MAX values in the tables changes by 50%.

 New primary key values are added to tables with referential integrity constraints. Both the
primary key and foreign key tables should be reanalyzed.

 Relative size of a table, compared to tables it is being joined to, has changed materially; for
example, the table is now only five times larger than the other when previously it was 50 times
larger.

 There is a significant deviation in the distribution of data, which would necessitate recalculation
of histograms. For example, there is an event that caused abnormally high levels of trading for
a particular stock. This is application specific.

 There is a down-time window when the database is not in active use.

Once your system is running well, Vertica recommends that you save exported statistics for all
tables. In the unlikely scenario that statistics changes impact optimizer plans, particularly after an
upgrade, you can always revert back to the exported statistics. See Importing and Exporting
Statistics (page 276) for details.

-276-

Programmer's Guide

Importing and Exporting Statistics
Use the EXPORT_STATISTICS() function to export statistics to a file.

The IMPORT_STATISTICS() function can be used to import saved statistics from a file into the

catalog where the saved statistics override existing statistics for all projections on the table.

The IMPORT and EXPORT functions are lightweight because they operate only on metadata.

Removing Statistics
Use the DROP_STATISTICS() function to remove statistics.

Caution: Once dropped, it can be very time consuming to regenerate statistics.

Troubleshooting Issues Using Statistics
To help expedite the resolution of your issue, include the system diagnostics, schema (or table

and projection definitions), output of the EXPLAIN plan, and the output of

EXPORT_STATISTICS().

1 Run the Diagnostics Utility using the following command.

/opt/vertica/bin/diagnostics [command ...]

2 Send the resulting .zip file from the Diagnostics Utility command to Technical Support (on

page 1).

3 Run the following two commands in vsql, which send the output files to /tmp/export.sql

and /tmp/stats.xml, respectively:

=> SELECT EXPORT_CATALOG('/tmp/export.sql', 'design');

=> SELECT EXPORT_STATISTICS('/tmp/stats.xml');

-277-

Using Informatica PowerCenter

Informatica's PowerCenter family of products let you collect, transform, and store data. They
support a wide variety of data sources including databases, message queues, and many different
file formats.

You can use Vertica with Informatica PowerCenter both as a source and as a target using an
ODBC connection, the same way you would use any other ODBC data source with PowerCenter.

Note: The default buffer size for Informatica PowerCenter is set very conservatively. These
settings can cause PowerCenter to send Vertica many small batches, rather than a few large
batches. The overhead of these many small batches can cause loading performance issues.
To resolve these performance issues, you should change PowerCenter's batch size settings,
as described in Setting PowerCenter's Buffer Size (page 287).

There is a Vertica plug-in for PowerCenter that makes using Vertica as a target for PowerCenter
that is more efficient than using ODBC. If you plan on using Vertica as a target for PowerCenter,
you should install and use this plug-in.

Note: Currently, the Vertica plug-in for PowerCenter is write-only. If you need to use Vertica as
a data source, you will need to use an ODBC connection.

The following sections explain how to use PowerCenter with Vertica.

Installing the Vertica Plug-in for PowerCenter
There is a client and a server component for the Vertica Plug-in for PowerCenter that you need to
download from http://myvertica.vertica.com/v-zone/download_vertica
http://myvertica.vertica.com/v-zone/download_vertica.

The client portion of the plug-in is contained in a file named:

vertica-informatica-plugin-client-4.1.xx.zip

The xx is the minor release number of Vertica. This package contains three files:

 vertica.xml contains the metadata definition needed by the PowerCenter repository to

allow communication between PowerCenter and Vertica.

 verticacli.dll is the Windows library for the PowerCenter client.

 vertica.reg contains the settings for the Windows registry to support the plug-in.

There are two server component packages available, one for each platform:

 For Windows servers, download vertica-informatica-plugin-server-4.1.xx.zip

 For Linux/Solaris servers, download

vertica-informatica-plugin-server-4.1.xx.tar.gz

Each of these package contain libraries used by the PowerCenter server. The Windows package
contains library files for both the 32-bit and 64-bit version of PowerCenter. The Linux/Solaris
packages contains libraries for 32-bit and 64-bit Linux and Solaris 5.10.

Installing the Vertica plug-in is a multi-step process:

http://myvertica.vertica.com/v-zone/download_vertica
http://myvertica.vertica.com/v-zone/download_vertica

-278-

Programmer's Guide

1 Register the plug-in's metadata with the PowerCenter Repository Service with which you that
you want to access Vertica.

2 Add the client plug-in's configuration information to the Window's registry of all the
PowerCenter Clients that need to access Vertica.

3 Copy the Vertica client plug-in library to the Informatica PowerCenter Client's binary folder.

4 Copy the server plug-in to the PowerCenter server binary directory.

The following sections explain these steps in greater detail.

Registering the Plug-in's Metadata

The PowerCenter repository needs information about the Vertica plug-in in order to enable clients

to use it. This information is supplied in an XML-format file named vertica.xml located in the

Windows client package (vertica-informatica-plugin-client-4.1.nn.zip).

To register the plug-in's metadata:

1 Unzip vertica-informatica-plugin-client-4.1.nn.zip to a convenient folder on

your system.

2 Open a browser and log into the PowerCenter domain's Administration Console.

3 In the Navigator, click the entry for the repository that you want to connect to Vertica.

4 In the Properties tab click Edit in the the General Properties section.

5 In the OperatingMode box, click Exclusive then click OK.

6 In the Restart Repository Service window, click Yes to confirm switching to exclusive mode.

-279-

 Using Informatica PowerCenter

7 When prompted for a disable option, select Complete and click OK. The Repository Service
may take several minutes to restart and re-enable itself. You should wait until you see the
green "The service is running" status message before continuing.

8 On the Plug-ins tab, click Register Repository Service plug-in.

9 Next to Choose a plug-in file, click Browse and select the vertica.xml in the folder where

you earlier unzipped the client plug-in .zip file.

10 Enter your repository username and password under the Repository Authentication section.

-280-

Programmer's Guide

11 Click OK to upload the metadata file. The Administration Console uploads the metadata file
and registers the plug-in data. You should see a notice indicating that the registration for the
plug-in succeeded.

12 On the Properties tab's General Properties section, click Edit.

13 In the OperatingMode box, click Normal.

14 In the Restart Repository Service window, click Yes to to confirm switching to normal mode.

15 When prompted for a disable option, select Complete and click OK. The Repository Service
may take several minutes to restart and re-enable itself.

Preparing the PowerCenter Client

Each PowerCenter client system that you want to use with Vertica needs to have a copy of the

verticacli.dll file installed in the client binary folder. This folder is named client\bin in

the PowerCenter install directory. For a typical PowerCenter install, the full path of this folder is:

 C:\Informatica\PowerCenter8.6.1\client\bin

After copying the library file to the client binary directory, you need to add a registry entry to the
Windows registry in that tells the PowerCenter Designer to load the plug-in library. The easiest

way to do this is to double click the vertica.reg file in Windows Explorer. When asked

whether you want to add the contents of the file to the registry, click Yes.

-281-

 Using Informatica PowerCenter

Note: The registry file is specific to Informatica PowerCenter version 8.6.1. The Vertica Plug-in
for PowerCenter has only been tested with this version. If you want to try to use it with another
version of PowerCenter, you will need to manually add configuration information to the
Windows registry, as explained below.

If you prefer to add the registry entry manually, follow these steps:

1 Start the registry editor by typing regedit.exe in the Windows Start menu's command run

command box.

2 Navigate to:

HKEY_LOCAL_MACHINE\SOFTWARE\Informatica\PowerMart Client

Tools\8.6.1\Plugins\Informatica

3 Right-click in the right-hand pane of the Registry Editor window, select New then select String
Value.

4 Change the name of the string value from New Value #1 to VERTICA.

5 Double-click the new VERTICA entry and enter verticacli.dll when prompted for a new

value.

6 Exit the registry editor.

-282-

Programmer's Guide

Copying the Plug-in Library on the Server

The final step in setting up the Vertica plug-in for PowerCenter is to copy the server-side library to
the proper directory on the PowerCenter server. The particular library file you need to copy
depends on the platform on which the PowerCenter server is running.

For a Windows server, unzip the vertica-informatica-plugin-server-4.0.nn.zip.

There are two library files contained within the .zip file:

 lib/verticawrt.dll is for the PowerCenter 32-bit server.

 lib64/verticawrt.dll is for the PowerCenter 64-bit server.

Copy the appropriate library file to your server's binary directory which is the \server\bin

subdirectory in the PowerCenter server install directory. The full path to this directory is usually:

C:\Informatica\PowerCenter8.6.1\server\bin

For a Linux or Solaris server, you need to untar

vertica-informatica-plugin-server-4.0.nn.tar.gz to a temporary directory on the

server:

cd /tmp

tar xzf vertica-informatica-plugin-server-4.0.nn.tar.gz

 This archive contains three library files:

 linux/lib/libverticawrt.so for PowerCenter Linux 32-bit server.

 linux/lib64/libverticawrt.so for PowerCenter Linux 64-bit server.

 SunOS510/libverticawrt.so for Solaris server.

Copy the appropriate library file to the server/bin subdirectory of the directory where

PowerCenter is installed. For a typical PowerCenter install, this path is:

/Infra/PowerCenter8.6.1/server/bin/

Using the Vertica Plug-in for PowerCenter
Once you have installed the Vertica plug-in for PowerCenter, you can use Vertica as a target in
PowerCenter Designer. There is a slight complication caused by the fact that the Vertica plug-in
for PowerCenter is read-only. This means that when you create a target definition for a Vertica
database table, PowerCenter Designer cannot read the table's definition from the database. The
best workaround is to manually define the table's columns in PowerCenter Designer. However,
this solution is impractical for anything other than the simplest table.

Instead of manually recreating the table's definition, you can create the target definition using an
ODBC connection to the database. PowerCenter Designer can import table definitions from
Vertica when using an ODBC connection. After the definitions have been imported, you change
the table's database type to VERTICA, so it will use the plug-in to connect to Vertica. To use this
technique, you first need to create a DSN for the Vertica database (page 27) even if you do not
plan on connecting to the database using ODBC in your live environment.

For example, to target a table in a Vertica database, you could follow these steps:

-283-

 Using Informatica PowerCenter

1 In PowerCenter Designer Navigator, select the folder in the repository where you want to
create your Vertica target.

2 On the Tools menu, click Target Designer.

3 On the Targets menu, click Import from Database.

4 In the ODBC data source box, click the name of the DSN you created for your Vertica
database.

5 Enter the Username, Owner name, and Password for your database, then click Connect.
PowerCenter Designer connects to your database and retrieves a list of the tables it contains.

6 In the Select tables box, click the table into which you want PowerCenter to store data and
click OK. PowerCenter Designer reads the definition of the table and displays it in the
Workspace.

-284-

Programmer's Guide

7 Right-click the table in the Workspace and click Edit.

8 In the Edit Table window's Database type box, click VERTICA, then click OK.

Using the Plug-in in a Workflow

To use the plug-in's connection to Vertica within your workflows, you need to select it from the
workflow's connection properties.

-285-

 Using Informatica PowerCenter

1 In the Workflow Manager, select the workflow that you want to target Vertica.

2 On the Connections menu, click Relational.

-286-

Programmer's Guide

3 In the Relational Connection Browser's Select Type box, click VerticaConnection.

4 In the Objects box, click the connection to the Vertica that you want to be the target of the
workflow.

5 Before starting the workflow, you should change PowerCenter's buffer size to more efficiently
load data into Vertica. See Setting PowerCenter's Buffer Size (page 287) for details.

Truncating the Target Table

You may have a workflow that should truncate its targeted table before loading data. You can
change a plug-in setting to truncate the table for you:

1 In Workflow Manager, select the workflow that should truncate its target table.

2 In the Workspace, double-click the data load task to open the Edit Tasks window.

3 In the Edit Tasks window, click the Mapping tab.

-287-

 Using Informatica PowerCenter

4 In the navigation pane, click the connection to your Vertica database under Targets.

5 In the Properties section, select the Truncate target table option.

Setting PowerCenter's Buffer Size
By default, Informatica Powercenter's buffer are set to very conservative values (12MB overall
buffer size, with the buffer block size set automatically). This can cause performance issues when
loading data into Vertica, since PowerCenter will send many small batches, rather than fewer
large batches.

To improve performance, you should adjust the batch buffer sizes for connections to Vertica:

-288-

Programmer's Guide

1 In the Workflow Manager, double-click the task that connects to Vertica.

-289-

 Using Informatica PowerCenter

2 In the Edit Tasks window's Properties tab, set the DTM buffer size to 2GB.

3 On the Config Object tab, set the Default buffer block size to 200MB.

-290-

Appendix: Error Codes

-291-

 291

Error Codes
All messages emitted by the Vertica server are assigned five-character error codes that follow the
SQL standard‘s conventions for ―SQLSTATE‖ codes. Applications that need to know which error
condition has occurred can test the error code, rather than looking at the textual error message.
The error codes are less likely to change across Vertica releases.

Note: Some of the error codes produced by Vertica are defined by the SQL standard,
According to the standard, the first two characters of an error code denote a class of errors,
while the last three characters indicate a specific condition within that class. Thus, an
application that does not recognize the specific error code can still infer what to do from the
error class.

Vertica Error Codes

Error Code Meaning Example

Class 00 ERRCODE_SUCCESSFUL_COMPLETION

00000 Successful completion

Class 01 WARNING <Class01 Error Code Examples
(page 304)>

00001 Warning

01003 ERRCODE_WARNING_NULL_VALUE_ELIMI
NATED_IN

_SET_FUNCTION

01004 ERRCODE_WARNING_STRING_DATA_RIG
HT_

TRUNCATION

01006 ERRCODE_WARNING_PRIVILEGE_NOT_R
EVOKED

01007 ERRCODE_WARNING_PRIVILEGE_NOT_G
RANTED

01008 ERRCODE_WARNING_IMPLICIT_ZERO_BIT
_PADDING

0100C ERRCODE_WARNING_DYNAMIC_RESULT_
SETS_

RETURNED

-292-

Programmer's Guide

01V01 ERRCODE_WARNING_DEPRECATED_FEA
TURE

Class 02 NO_DATA

02000 ERRCODE_NO_DATA

02001 ERRCODE_NO_ADDITIONAL_DYNAMIC_R
ESULT_

SETS_RETURNED

Class 03 SQL STATEMENT NOT YET COMPLETE

03000 ERRCODE_SQL_STATEMENT_NOT_YET_C
OMPLETE

Class 08 ERRCODE CONNECTION EXCEPTION <Class08 Error Code
Examples (page 304)>

08000 ERRCODE_CONNECTION_EXCEPTION

08001 ERRCODE_SQLCLIENT_UNABLE_TO_EST
ABLISH_

SQLCONNECTION

08003 ERRCODE_CONNECTION_DOES_NOT_EXI
ST

08004 ERRCODE_SQLSERVER_REJECTED_ESTA
BLISHMENT

_OF_SQLCONNECTION

08006 ERRCODE_CONNECTION_FAILURE

08007 ERRCODE_TRANSACTION_RESOLUTION_
UNKNOWN

08V01 0x01026200
ERRCODE_PROTOCOL_VIOLATION

Class 09 TRIGGERED ACTION EXCEPTION

09000 ERRCODE_TRIGGERED_ACTION_EXCEPTI
ON

Class 0A FEATURE NOT SUPPORTED <Class0A ErrCode Examples

-293-

 Appendix: Error Codes

(page 305)>

 0A000 ERRCODE_FEATURE_NOT_SUPPORTED

Class 0B INVALID TRANSACTION INITIATION

000B0 ERRCODE_INVALID_TRANSACTION_INITIA
TION

Class 0F LOCATOR EXCEPTION

0F000 ERRCODE_LOCATOR_EXCEPTION

0F001 ERRCODE_L_E_INVALID_SPECIFICATION

Class 0L INVALID GRANTOR <Class0L ErrCode Examples
(page 307)>

0L000 ERRCODE_INVALID_GRANTOR

0LV01 ERRCODE_INVALID_GRANT_OPERATION

Class 0P INVALID ROLE SPECIFICATION

0P000 ERRCODE_INVALID_ROLE_SPECIFICATIO
N

Class 21 CARDINALITY VIOLATION

21000 ERRCODE_CARDINALITY_VIOLATION

Class 22 DATA EXCEPTION <Class22 Error Code Examples
(page 307)>

22000 ERRCODE_DATA_EXCEPTION

22001 ERRCODE_STRING_DATA_RIGHT_TRUNC
ATION

22002 ERRCODE_NULL_VALUE_NO_INDICATOR_

PARAMETER

22003 ERRCODE_NUMERIC_VALUE_OUT_OF_RA
NGE

22004 ERRCODE_NULL_VALUE_NOT_ALLOWED

-294-

Programmer's Guide

22005 ERRCODE_ERROR_IN_ASSIGNMENT

22007 ERRCODE_INVALID_DATETIME_FORMAT

22008 ERRCODE_DATETIME_FIELD_OVERFLOW

ERRCODE_DATETIME_VALUE_OUT_OF_R
ANGE

22009 ERRCODE_INVALID_TIME_ZONE_DISPLAC
EMENT_

VALUE

2200B ERRCODE_ESCAPE_CHARACTER_CONFLI
CT

2200C ERRCODE_INVALID_USE_OF_ESCAPE_CH
ARACTER

2200D ERRCODE_INVALID_ESCAPE_OCTET

2200F ERRCODE_ZERO_LENGTH_CHARACTER_
STRING

2200G ERRCODE_MOST_SPECIFIC_TYPE_MISMA
TCH

22010 ERRCODE_INVALID_INDICATOR_PARAME
TER_VALUE

22011 ERRCODE_SUBSTRING_ERROR

22012 ERRCODE_DIVISION_BY_ZERO

22015 ERRCODE_INTERVAL_FIELD_OVERFLOW

22018 ERRCODE_INVALID_CHARACTER_VALUE_
FOR_CAST

22019 ERRCODE_INVALID_ESCAPE_CHARACTE
R

2201B ERRCODE_INVALID_REGULAR_EXPRESSION

2201E ERRCODE_INVALID_ARGUMENT_FOR_LO
G

2201F ERRCODE_INVALID_ARGUMENT_FOR_PO

-295-

 Appendix: Error Codes

WER_

FUNCTION

2201G ERRCODE_INVALID_ARGUMENT_FOR_WI
DTH_

BUCKET_FUNCTION

22020 ERRCODE_INVALID_LIMIT_VALUE

22021 ERRCODE_CHARACTER_NOT_IN_REPERT
OIRE

22022 ERRCODE_INDICATOR_OVERFLOW

22023 ERRCODE_INVALID_PARAMETER_VALUE

22024 ERRCODE_UNTERMINATED_C_STRING

22025 ERRCODE_INVALID_ESCAPE_SEQUENCE

22026 ERRCODE_STRING_DATA_LENGTH_MISM
ATCH

22027 ERRCODE_TRIM_ERROR

2202E ERRCODE_ARRAY_ELEMENT_ERROR

ERRCODE_ARRAY_SUBSCRIPT_ERROR

22906 ERRCODE_NONSTANDARD_USE_OF_ESC
APE_

CHARACTER

22V01 ERRCODE_FLOATING_POINT_EXCEPTION

22V02 ERRCODE_INVALID_TEXT_REPRESENTAT
ION

22V03 0x03026082 ERRCODE_INVALID_BINARY_

REPRESENTATION

22V04 ERRCODE_BAD_COPY_FILE_FORMAT

22V05 ERRCODE_UNTRANSLATABLE_CHARACT
ER

-296-

Programmer's Guide

22V21 ERRCODE_INVALID_EPOCH

Class 23 INTEGRITY CONSTRAINT VIOLATION

23000 ERRCODE_INTEGRITY_CONSTRAINT_VIO
LATION

23001 ERRCODE_RESTRICT_VIOLATION

23502 ERRCODE_NOT_NULL_VIOLATION ROLLBACK "column \"%s\" contains
null values"

WARNING "column \"%s\" definition
changed to NOT NULL"

23503 ERRCODE_FOREIGN_KEY_VIOLATION ROLLBACK "Nonexistent foreign key
value detected in FK-PK join %s;
value %s"

23505 ERRCODE_UNIQUE_VIOLATION ROLLBACK "Duplicate primary key
detected in FK-PK join %s, value %s"

23514 ERRCODE_CHECK_VIOLATION

Class 24 INVALID CURSOR STATE

24000 ERRCODE_INVALID_CURSOR_STATE

Class 25 INVALID TRANSACTION STATE

25000 ERRCODE_INVALID_TRANSACTION_STAT
E

25001 ERRCODE_ACTIVE_SQL_TRANSACTION

25002 ERRCODE_BRANCH_TRANSACTION_ALRE
ADY_

ACTIVE

25003 ERRCODE_INAPPROPRIATE_ACCESS_MO
DE_FOR_

BRANCH_TRANSACTION

25004 ERRCODE_INAPPROPRIATE_ISOLATION_L
EVEL_

FOR_BRANCH_TRANSACTION

25005 ERRCODE_NO_ACTIVE_SQL_TRANSACTI

-297-

 Appendix: Error Codes

ON_FOR_

BRANCH_TRANSACTION

25006 ERRCODE_READ_ONLY_SQL_TRANSACTI
ON

ERROR "Cannot issue this command
in a read-only transaction"

25007 ERRCODE_SCHEMA_AND_DATA_STATEM
ENT_MIXING

_NOT_SUPPORTED

25008 ERRCODE_HELD_CURSOR_REQUIRES_S
AME_

ISOLATION_LEVEL

25V01 ERRCODE_NO_ACTIVE_SQL_TRANSACTI
ON

ROLLBACK "cannot advance epoch
without a transaction"

25V02 ERRCODE_IN_FAILED_SQL_TRANSACTIO
N

Class 26 Invalid SQL Statement Name <Class26 Error Code Examples
(page 309)>

26000 ERRCODE_INVALID_SQL_STATEMENT_NA
ME

ERRCODE_UNDEFINED_PSTATEMENT

Class 27 TRIGGERED DATA CHANGE VIOLATION

27000 ERRCODE_TRIGGERED_DATA_CHANGE_
VIOLATION

Class 28 INVALID AUTHORIZATION SPECIFICATION <Class28 Error Code Examples
(page 309)>

28000 ERRCODE_INVALID_AUTHORIZATION_

SPECIFICATION

Class 2B Dependent Privilege Descriptors Still Exist

2B000 ERRCODE_DEPENDENT_PRIVILEGE_DES
CRIPTORS

_STILL_EXIST

2BV01 ERRCODE_DEPENDENT_OBJECTS_STILL_
EXIST

ERROR "DROP failed due to
dependencies"

-298-

Programmer's Guide

ERROR "dependent privileges exist"

Class 2D Invalid Transaction Termination

2D000 ERRCODE_INVALID_TRANSACTION_TERM
INATION

Class 2F SQL Routine Exception

2F000 ERRCODE_SQL_ROUTINE_EXCEPTION

2F002 ERRCODE_S_R_E_MODIFYING_SQL_DAT
A_NOT_

PERMITTED

2F003 ERRCODE_S_R_E_PROHIBITED_SQL_STA
TEMENT_

ATTEMPTED

2F004 ERRCODE_S_R_E_READING_SQL_DATA_
NOT_

PERMITTED

2F005 ERRCODE_S_R_E_FUNCTION_EXECUTED
NO

RETURN_STATEMENT

Class 34 Invalid Cursor Name

34000 ERRCODE_INVALID_CURSOR_NAME

ERRCODE_UNDEFINED_CURSOR

ERROR "portal \"%s\" does not exist"

Class 38 External Routine Exception

38000 ERRCODE_EXTERNAL_ROUTINE_EXCEPT
ION

38001 ERRCODE_E_R_E_CONTAINING_SQL_NO
T_

PERMITTED

38002 ERRCODE_E_R_E_MODIFYING_SQL_DAT
A_NOT_

PERMITTED

38003 ERRCODE_E_R_E_PROHIBITED_SQL_STA

-299-

 Appendix: Error Codes

TEMENT_

ATTEMPTED

38004 ERRCODE_E_R_E_READING_SQL_DATA_
NOT_

PERMITTED

Class 39 External Routine Invocation Exception

39000 ERRCODE_EXTERNAL_ROUTINE_INVOCA
TION_

EXCEPTION

39001 ERRCODE_E_R_I_E_INVALID_SQLSTATE_
RETURNED

39004 ERRCODE_E_R_I_E_NULL_VALUE_NOT_A
LLOWED

39V01 ERRCODE_E_R_I_E_TRIGGER_PROTOCO
L_

VIOLATED

39V02 ERRCODE_E_R_I_E_SRF_PROTOCOL_VIO
LATED

Class 3B Savepoint Exception

3B000 ERRCODE_SAVEPOINT_EXCEPTION

3B001 ERRCODE_S_E_INVALID_SPECIFICATION

Class 3D Invalid Catalog Name

3D000 ERRCODE_INVALID_CATALOG_NAME

ERRCODE_UNDEFINED_DATABASE

ERROR "database \"%s\" does not
exist"

FATAL "database \"%s\" does not
exist"

ROLLBACK "Unable to read catalog
file %s"

Class 3F Invalid Schema Name

3F000 ERRCODE_INVALID_SCHEMA_NAME

ERRCODE_UNDEFINED_SCHEMA

ERROR "no schema has been
selected to create in"

ERROR "schema \"%s\" does not
exist"

-300-

Programmer's Guide

Class 40 Transaction Rollback

40000 ERRCODE_TRANSACTION_ROLLBACK

40001 ERRCODE_T_R_SERIALIZATION_FAILURE

40002 ERRCODE_T_R_INTEGRITY_CONSTRAINT
_

VIOLATION

40003 ERRCODE_T_R_STATEMENT_COMPLETIO
N_

UNKNOWN

40V01 ERRCODE_T_R_DEADLOCK_DETECTED ROLLBACK "Txn %#llx: %s error %s"

Class 42 Syntax Error or Access Rule Violation <Class42 Error Code Examples
(page 310)>

42000 ERRCODE_SYNTAX_ERROR_OR_ACCESS
RULE

VIOLATION

42501 ERRCODE_INSUFFICIENT_PRIVILEGE

42601 ERRCODE_SYNTAX_ERROR

42602 ERRCODE_INVALID_NAME

42611 ERRCODE_INVALID_COLUMN_DEFINITION

42622 ERRCODE_NAME_TOO_LONG

42701 ERRCODE_DUPLICATE_COLUMN

42702 ERRCODE_AMBIGUOUS_COLUMN

42703 ERRCODE_UNDEFINED_COLUMN

42704 ERRCODE_UNDEFINED_OBJECT

42710 ERRCODE_DUPLICATE_OBJECT

42712 ERRCODE_DUPLICATE_ALIAS

42723 ERRCODE_DUPLICATE_FUNCTION

-301-

 Appendix: Error Codes

42725 ERRCODE_AMBIGUOUS_FUNCTION

42803 ERRCODE_GROUPING_ERROR

42804 ERRCODE_DATATYPE_MISMATCH

42809 ERRCODE_WRONG_OBJECT_TYPE

42830 ERRCODE_INVALID_FOREIGN_KEY

42846 ERRCODE_CANNOT_COERCE

42883 ERRCODE_UNDEFINED_FUNCTION

42939 ERRCODE_RESERVED_NAME

42V01 ERRCODE_UNDEFINED_TABLE

42V02 ERRCODE_UNDEFINED_PARAMETER

42V03 ERRCODE_DUPLICATE_CURSOR

42V04 ERRCODE_DUPLICATE_DATABASE

42V05 ERRCODE_DUPLICATE_PSTATEMENT

42V06 ERRCODE_DUPLICATE_SCHEMA

42V07 ERRCODE_DUPLICATE_TABLE

42V08 ERRCODE_AMBIGUOUS_PARAMETER

42V09 ERRCODE_AMBIGUOUS_ALIAS

42V10 ERRCODE_INVALID_COLUMN_REFERENC
E

42V11 ERRCODE_INVALID_CURSOR_DEFINITION

42V12 ERRCODE_INVALID_DATABASE_DEFINITI
ON

42V13 ERRCODE_INVALID_FUNCTION_DEFINITIO
N

42V14 ERRCODE_INVALID_PSTATEMENT_DEFINI
TION

-302-

Programmer's Guide

42V15 ERRCODE_INVALID_SCHEMA_DEFINITION

42V16 ERRCODE_INVALID_TABLE_DEFINITION

42V17 ERRCODE_INVALID_OBJECT_DEFINITION

42V18 ERRCODE_INDETERMINATE_DATATYPE

42V21 ERRCODE_UNDEFINED_PROJECTION

42V22 ERRCODE_UNDEFINED_NODE

42V23 ERRCODE_UNDEFINED_PERMUTATION

42V24 ERRCODE_UNDEFINED_USER

Class 44 WITH CHECK OPTION Violation

44000 ERRCODE_WITH_CHECK_OPTION_VIOLAT
ION

Class 53 Insufficient Resources <Class53 Error Code Examples
(page 315)>

53000 ERRCODE_INSUFFICIENT_RESOURCES

53100 ERRCODE_DISK_FULL

53200 ERRCODE_OUT_OF_MEMORY

53300 ERRCODE_TOO_MANY_CONNECTIONS

Class 54 Program Limit Exceeded <Class54 Error Code Examples
(page 316)>

54000 ERRCODE_PROGRAM_LIMIT_EXCEEDED

54001 ERRCODE_STATEMENT_TOO_COMPLEX

54011 ERRCODE_TOO_MANY_COLUMNS

54023 ERRCODE_TOO_MANY_ARGUMENTS

Class 55 Object Not In Prerequisite State <Class55 Error Code Examples
(page 316)>

55000 ERRCODE_OBJECT_NOT_IN_PREREQUISI
TE_STATE

-303-

 Appendix: Error Codes

55006 ERRCODE_OBJECT_IN_USE

55V02 ERRCODE_CANT_CHANGE_RUNTIME_PA
RAM

55V03 ERRCODE_LOCK_NOT_AVAILABLE

Class 57 Operator Intervention <Class57 Error Code Examples
(page 317)>

57000 ERRCODE_OPERATOR_INTERVENTION

57014 ERRCODE_QUERY_CANCELED

57V01 ERRCODE_ADMIN_SHUTDOWN

57V02 ERRCODE_CRASH_SHUTDOWN

57V03 ERRCODE_CANNOT_CONNECT_NOW

Class 58 System Error <Class58 Error Code Examples
(page 317)>

58030 ERRCODE_IO_ERROR

58V01 ERRCODE_UNDEFINED_FILE

58V02 0x02026205 ERRCODE_DUPLICATE_FILE

Class V Vertica Error <ClassV Error Code Examples
(page 318)>

V1001 ERRCODE_LOST_CONNECTIVITY

V1002 ERRCODE_K_SAFETY_VIOLATION

V1003 ERRCODE_CLUSTER_CHANGE

V2001 ERRCODE_LICENSE_ISSUE

V2002 ERRCODE_MOVEOUT_ABORTED

VC001 ERRCODE_CONFIG_FILE_ERROR

VC002 ERRCODE_LOCK_FILE_EXISTS

VX001 ERRCODE_INTERNAL_ERROR

VX002 ERRCODE_DATA_CORRUPTED

-304-

Programmer's Guide

VX003 ERRCODE_INDEX_CORRUPTED

Class 01 Error Code Examples
NOTICE "Cannot set locks for shutdown"

NOTICE "Cannot shut down while users are connected"

NOTICE "Shutdown for site already in progress"

WARNING "cannot resolve address"

WARNING "using /tmp for catalog path"

WARNING "Projection <%s> is not available for query processing.

 Execute the select start_refresh() function to copy data into this

 projection

WARNING "Received no response from %s%s"

WARNING "Transaction commit with NO_DISTRIBUTE set. "

WARNING "cannot begin transaction; transaction is already running"

WARNING "no privileges could be revoked for \"%s\""

WARNING "not all privileges could be revoked for \"%s\""

WARNING "no privileges were granted for \"%s\""

WARNING "not all privileges were granted for \"%s\""

Class 08 Error Code Examples
08000

FATAL "no socket created for listening"

FATAL "unsupported frontend protocol %u.%u: server supports %u.0 to %u.%u"

08006

COMMERROR "unexpected EOF on client connection"

ERROR "Received no response from %s%s"

FATAL "SSL initialization failure"

ROLLBACK "client has disconnected"

ROLLBACK "unexpected EOF on client connection"

08V01

COMMERROR "SSL SYSCALL error: EOF detected"

COMMERROR "SSL error: %s"

COMMERROR "SSL failed to send renegotiation request"

COMMERROR "SSL renegotiation failure"

COMMERROR "could not accept SSL connection: %s"

COMMERROR "could not accept SSL connection: EOF detected"

COMMERROR "could not initialize SSL connection: %s"COMMERROR "could not set SSL socket: %s"

COMMERROR "expected password response, got message type %d"

COMMERROR "incomplete message from client"

COMMERROR "invalid message length"

COMMERROR "invalid password packet size"

COMMERROR "unexpected EOF within message length word"

COMMERROR "unrecognized SSL error code: %d"

ERROR "bind message has %d parameter formats but %d parameters"

ERROR "bind message has %d result formats but query has %d columns"

ERROR "insufficient data left in message

ERROR "invalid CLOSE message subtype %d"

ERROR "invalid DESCRIBE message subtype %d"

ERROR "invalid message format"

ERROR "invalid string in message"

ERROR "no data left in message"

FATAL "Incomplete startup packet"

FATAL "SSL negotiation failure"

FATAL "incomplete startup packet"

FATAL "invalid frontend message type %d"

-305-

 Appendix: Error Codes

FATAL "invalid length (%u) of startup packet"

FATAL "invalid startup packet layout: expected terminator as last byte"

ROLLBACK "COPY: Unexpected message type 0x%02X reading from stdin"

Class 0A Error Code Examples
ERROR "%s is not a table. DML not supported"

ERROR "%s.%s is not a table. DML not supported"

ERROR "Aggregate function %s (%llu) is not supported"

ERROR "ArrayRef is not supported"

ERROR "COPY FROM does not support BINARY option"

ERROR "COPY FROM does not support CVS option"

ERROR "COPY FROM does not support OIDS option"

ERROR "CREATE table AS SELECT... is not supported"

ERROR "CSV mode not supported. COPY HEADER available only in CSV mode"

ERROR "CSV mode not supported. COPY escape available only in CSV mode"

ERROR "CSV mode not supported. COPY force not null available only in CSV mode"

ERROR "CSV mode not supported. COPY force quote available only in CSV mode"

ERROR "CSV mode not supported. COPY quote available only in CSV mode"

ERROR "Cannot execute query."

ERROR "Cannot perform requested delete operation"

ERROR "CoalesceExpr is not supported"

ERROR "CoerceToDomain is not supported"

ERROR "CoerceToDomainValue is not supported"

ERROR "Column type int2 is not supported"

ERROR "Column type int4 is not supported"

ERROR "Complex expression in the ON clause is not supported."

ERROR "ConvertRowtypeExpr is not supported"

ERROR "DML on projection is not supported"

ERROR "Executing when OPT:PLAN_ALL_SITES_ACTIVE option is set"

ERROR "Expr is not supported"

ERROR "Expression not supported in query"

ERROR "FieldSelect is not supported"

ERROR "FieldStore is not supported"

ERROR "Function %s can't be used as a case expression"

ERROR "Function %s can't be used in a WHEN clause"

ERROR "Function %s can't be used in a boolean"

ERROR "Function %s can't be used in another function"

ERROR "Function %s can't be used with an operator"

ERROR "Group By, Order By, Aggregates, Having & limits not allowed in update/delete"

ERROR "INSTEAD NOTHING rules on SELECT are not implemented"

ERROR "Join expression not supported in where/having clause when Joins specified in From clause"

ERROR "LIMIT clause is not supported for expressions"

ERROR "Non-Boolean functions in WHERE clause"

ERROR "Not a Star or Snow-Flake Query"

ERROR "Not a Star or Snow-Flake Query; a join column appears more than once in join expressions"

ERROR "Not a Star or Snow-Flake Query; a non-lossless relationship found"

ERROR "Not a Star or Snow-Flake Query; dimension table not a star or snowflake"

ERROR "Not a Star or Snow-Flake Query; no fact table found"

ERROR "Not a Star or Snow-Flake Query; there are multiple fact tables"

ERROR "NullIfExpr is not supported"

ERROR "ORDER BY on a UNION/INTERSECT/EXCEPT result must be on one of the result columns"

ERROR "Only a relation is allowed in the FROM clause"

ERROR "Only inner joins or only outer joins are supported"

ERROR "Operator %s (%llu) is not supported"

ERROR "ROW syntax is not supported"

ERROR "RowExpression is not supported"

ERROR "SELECT FOR UPDATE cannot be applied to NEW or OLD"

ERROR "SELECT FOR UPDATE cannot be applied to a function"

ERROR "SELECT FOR UPDATE cannot be applied to a join"

ERROR "SELECT FOR UPDATE is not allowed with DISTINCT clause"

ERROR "SELECT FOR UPDATE is not allowed with GROUP BY clause"

ERROR "SELECT FOR UPDATE is not allowed with UNION/INTERSECT/EXCEPT"

ERROR "SELECT FOR UPDATE is not allowed with aggregate functions"

ERROR "SQL Feature not supported"

ERROR "Set Operators in query is not supported"

ERROR "SetToDefault is not supported"

-306-

Programmer's Guide

ERROR "Subqueries in UPDATE/DELETE is not supported"

ERROR "Subquery is not supported"

ERROR "There is an inner table that is not joining on its primary key; so outer join not supported"

ERROR "Type %s (%llu) is not supported"

ERROR "Unsupported join between segmented table %s and replicated table %s. Table %s is not replicated

on all nodes."

ERROR "Unsupported join between segmented table and unreplicated table"

ERROR "Unsupported join/aggregate two non-alike segmented projections %s and %s"

ERROR "Update is disallowed on Primary/Foreign Keys columns. Use Delete followed by Insert instead"

ERROR "VALINDEX column must be the first column in ORDER BY list"

ERROR "\"E\" is not supported"

ERROR "\"TZ\"/\"tz\" not supported"

ERROR "argument of %s must not contain subqueries"

ERROR "cannot accept a value of type any"

ERROR "cannot accept a value of type anyarray"

ERROR "cannot accept a value of type anyelement"

ERROR "cannot accept a value of type internal"

ERROR "cannot accept a value of type language_handler"

ERROR "cannot accept a value of type opaque"

ERROR "cannot accept a value of type trigger"

ERROR "cannot assign to system column \"%s\""

ERROR "cannot compare rows of zero length"

ERROR "cannot convert relation containing dropped columns to view"

ERROR "cannot delete from a view"

ERROR "cannot display a value of type any"

ERROR "cannot display a value of type anyelement"

ERROR "cannot display a value of type internal"

ERROR "cannot display a value of type language_handler"

ERROR "cannot display a value of type opaque"

ERROR "cannot display a value of type trigger"

ERROR "cannot insert into a view"

ERROR "cannot set a subfield to DEFAULT"

ERROR "cannot set an array element to DEFAULT"

ERROR "cannot update a view"

ERROR "cannot use subquery in EXECUTE parameter"

ERROR "cannot use subquery in SEGMENTED BY expression"

ERROR "command %s is not supported"

ERROR "conditional UNION/INTERSECT/EXCEPT statements are not implemented"

ERROR "cross-database references are not implemented: %s"

ERROR "cross-database references are not implemented: \"%s.%s.%s\""

ERROR "dynamic load not supported"

ERROR "event qualifications are not implemented for rules on SELECT"

ERROR "for SELECT DISTINCT, ORDER BY expressions must appear in select list"

ERROR "input of anonymous composite types is not implemented"

ERROR "interval units \"%s\" not supported"

ERROR "multiple actions for rules on SELECT are not implemented"

ERROR "operator %s is not supported for row expressions"

ERROR "option %s not recognized"

ERROR "replicate_catalog has been shut off"

ERROR "rule actions on NEW are not implemented"

ERROR "rule actions on OLD are not implemented"

ERROR "rules on SELECT must have action INSTEAD SELECT"

ERROR "segmentation expression must have integer type"

ERROR "set-valued function called in context that cannot accept a set"

ERROR "timestamp units \"%s\" not supported"

ERROR "timestamp with time zone units \"%s\" not "

ERROR "timestamp with time zone units \"%s\" not supported"

ERROR "unsupported COPY command clause."

ERROR "unsupported expression in IN clause"

ERROR "vertica does not support GRANT / REVOKE ON FUNCTION"

ERROR "vertica does not support GRANT / REVOKE ON LANGUAGE"

ERROR "vertica does not support GRANT / REVOKE ON TABLESPACE"

FATAL "conversion between %s and %s is not supported"

ROLLBACK "%s not supported"

ROLLBACK "'VALID UNTIL' option is not supported"

ROLLBACK "ADD COLUMN over temporary tables is not supported"

ROLLBACK "ALTER TABLE can specify at most one ADD COLUMN clause"

ROLLBACK "ALTER TABLE cannot specify both ADD COLUMN and ADD CONSTRAINT clauses"

-307-

 Appendix: Error Codes

ROLLBACK "CREATEDB option is not supported"

ROLLBACK "CREATEUSER option is not supported"

ROLLBACK "Column %s has the NOT NULL constraint set and has no default value defined"

ROLLBACK "Constraints cannot be altered on tables with projections"

ROLLBACK "One to one unique joins must be between tables on the same site"

ROLLBACK "Only inner joins are allowed in the projection defining query"

ROLLBACK "Only temporary table's projection can be pinned"

ROLLBACK "Prepared statements are currently unsupported."

ROLLBACK "Site issuing the query cannot be marked as down"

ROLLBACK "Support for UPDATE/DELETE is not enabled"

ROLLBACK "Support for whatever compression you said doesn't exist yet"

ROLLBACK "User groups are not supported"

ROLLBACK "default expression must be a constant"

ROLLBACK "user \"%s\" does not exist"

Class 0L Error Code Examples
0LV01

ERROR "New %s"

ERROR "grant options can only be granted to users"

ERROR "grant options cannot be granted back to your own grantor"

ERROR "invalid privilege type %s for database"

ERROR "invalid privilege type %s for relation"

ERROR "invalid privilege type %s for schema"

ERROR "invalid privilege type %s for sequence"

Class 22 Error Code Examples
22000

ERROR "Test Error @%s"

ERROR "Test Error from @%s"

ERROR "invalid Datum pointer"

22001

ERROR "%d-byte value too long for type %s(%d)"

ERROR "date '%s' too long for type %s(%d)"

ERROR "float '%s' too long for type %s(%d)"

ERROR "integer '%s' too long for type %s(%d)"

ERROR "interval '%s' too long for type %s(%d)"

ERROR "padded length (%lld) exceeds the %d byte limit"

ERROR "result (%d characters) exceeds the field width (%d characters)"

ERROR "result exceeds field width"

ERROR "time '%s' too long for type %s(%d)"

ERROR "timestamp '%s' too long for type %s(%d)"

ERROR "timestamptz '%s' too long for type %s(%d)"

ERROR "timetz '%s' too long for type %s(%d)"

ERROR "value too long for type character varying(%d)"

ERROR "value too long for type character(%d)"

22003

ERROR "\"%s\" is out of range for type double precision"

ERROR "int8 out of range"

ERROR "value \"%s\" is out of range for 8-bit integer"

ERROR "value \"%s\" is out of range for type int8"

ERROR "value \"%s\" is out of range for type integer"

ERROR "value \"%s\" is out of range for type smallint"

22004

ERROR "ACL arrays must not contain null values"

ERROR "Cannot set a NOT NULL column to a NULL value in INSERT/UPDATE statement"

22007

ERROR "AM/PM hour must be between 1 and 12"

ERROR "cannot calculate day of year without year information"

ERROR "inconsistent use of year %04lld and \"BC\""

-308-

Programmer's Guide

ERROR "invalid AM/PM string"

ERROR "invalid format specification for an interval value"

ERROR "invalid input syntax for type %s: \"%s\""

ERROR "invalid value for %s"

22008

ERROR "cannot subtract infinite timestamps"

ERROR "date/time field value out of range: \"%s\""

ERROR "interval out of range"

ERROR "timestamp out of range"

ERROR "timestamptz out of range"

22009

ERROR "time zone displacement out of range: \"%s\""

2200B

ERROR "conflicting or redundant options"

22011

ERROR "negative substring length not allowed"

22012

ERROR "division by zero"

22015

ERROR "interval field value out of range: \"%s\""

ERROR "interval is too large (%lld months)"

22019

ERROR "COPY delimiter must be a single character"

22021

ERROR "Unicode characters greater than or equal to 0x10000 are not supported"

ERROR "invalid byte sequence for encoding \"%s\": 0x%s"

22023

ERROR "ACL array contains wrong data type"

ERROR "ACL arrays must be one-dimensional"

ERROR "COPY delimiter must not appear in the NULL specification"

ERROR "Incorrect statement ID for session"

ERROR "NULL string and record_terminator can not be the same value"

ERROR "No running statement, that session is idle"

ERROR "SET %s takes only one argument"

ERROR "Unknown session ID"

ERROR "\"interval\" time zone is too big"

ERROR "\"time with time zone\" units \"%s\" not recognized"

ERROR "\"time\" units \"%s\" not recognized"

ERROR "cannot calculate week number without year information"

ERROR "conflicting \"datestyle\" specifications"

ERROR "could not convert to time zone \"%s\""

ERROR "delimiter and record_terminator can not be the same value"

ERROR "exceptions and rejected_data can not be the same filename"

ERROR "input file and exceptions can not be the same filename."

ERROR "input file and rejected_data can not be the same filename"

ERROR "interval time zone \"%s\" must not specify month"

ERROR "interval time zone must not specify month"

ERROR "interval units \"%s\" not recognized"

ERROR "interval(%d) precision must be between %d and %d"

ERROR "invalid destination encoding name \"%s\""

ERROR "invalid encoding number: %d"

ERROR "invalid interval value for time zone: day not allowed"

ERROR "invalid interval value for time zone: month not allowed"

ERROR "invalid list syntax for parameter \"datestyle\""

ERROR "invalid source encoding name \"%s\""

ERROR "invalid value for parameter \"%s\": \"%s\""

ERROR "time zone \"%s\" appears to use leap seconds"

ERROR "time zone \"%s\" not recognized"

ERROR "timestamp units \"%s\" not recognized"

ERROR "timestamp with time zone units \"%s\" not recognized"

ERROR "timestamp(%d) precision must be between %d and %d"

-309-

 Appendix: Error Codes

ERROR "unrecognized \"datestyle\" key word: \"%s\""

ERROR "unrecognized privilege type: \"%s\""

ERROR "unrecognized time zone name: \"%s\""

ERROR "unsupported format code: %d"

FATAL "invalid list syntax for \"listen_addresses\""

ROLLBACK "%s is a directory."

WARNING "@INCLUDE without filename in time zone file \"%s\", line %d"

WARNING "Could not open %s file, %s is a directory"

WARNING "invalid number for time zone offset in time zone file \"%s\", line %d"

WARNING "invalid syntax in time zone file \"%s\", line %d"

WARNING "invalid time zone file name \"%s\""

WARNING "missing time zone abbreviation in time zone file \"%s\", line %d"

WARNING "missing time zone offset in time zone file \"%s\", line %d"

WARNING "time zone abbreviation \"%s\" is multiply defined"

WARNING "time zone abbreviation \"%s\" is too long (maximum %d characters) in time zone file \"%s\",

line %d"

WARNING "time zone file recursion limit exceeded in file \"%s\""

WARNING "time zone offset %d is not a multiple of 900 sec (15 min) in time zone file \"%s\", line %d"

WARNING "time zone offset %d is out of range in time zone file \"%s\", line %d"

22025

ERROR "invalid escape string"

22V02

ERROR "\"%s\" is not a number"

ERROR "\"\" is not a valid input syntax for type double precision"

ERROR "invalid input syntax for integer: \"%s\""

ERROR "invalid input syntax for type boolean: \"%s\""

ERROR "invalid input syntax for type bytea"

ERROR "invalid input syntax for type double precision: \"%s\""

ERROR "malformed record literal: \"%s\""

220V03

ERROR "incorrect binary data format in bind parameter %d"

22V04

ROLLBACK "COPY from stdin failed: %s"

ROLLBACK "COPY: Input record %lld has been rejected (%s)"

22V05

WARNING "ignoring unconvertible %s character 0x%04x"

WARNING "ignoring unconvertible UTF-8 character 0x%04x"

22V21

ROLLBACK "Can't run historical queries at epochs prior to the Ancient History Mark"

Class 26 Error Code Examples
26000

ERROR "Cannot issue this command in a read-only transaction"

ERROR "Incorrect number of parameters for prepared statement %s"

ERROR "Prepared statement %s does not exist"

ERROR "Select statement of the insert doesn't have a from clause"

ERROR "unnamed prepared statement does not exist"

Class 28 Error Code Examples
28000

ERROR "conflicting or redundant options"

ERROR "option \"%s\" not recognized"

FATAL "Invalid username or password"

FATAL "invalid password packet size"

FATAL "no Vertica user name specified in startup packet"

ROLLBACK "conflicting or redundant options"

ROLLBACK "current user cannot be dropped"

ROLLBACK "session user cannot be dropped"

-310-

Programmer's Guide

Class 42 Error Code Examples
42501

ERROR "Insufficient privilege: USAGE on SCHEMA '%s' not granted for current user"

ERROR "must be superuser to COPY to or from a file"

ERROR "permission denied"

ERROR "permission denied: \"%s\" is a system catalog"

ROLLBACK "must be owner of conversion %s"

ROLLBACK "must be owner of database %s"

ROLLBACK "must be owner of function %s"

ROLLBACK "must be owner of language %s"

ROLLBACK "must be owner of operator %s"

ROLLBACK "must be owner of operator class %s"

ROLLBACK "must be owner of relation %s"

ROLLBACK "must be owner of schema %s"

ROLLBACK "must be owner of sequence %s"

ROLLBACK "must be owner of tablespace %s"

ROLLBACK "must be owner of type %s"

ROLLBACK "must be superuser to create users"

ROLLBACK "must be superuser to drop users"

ROLLBACK "permission denied for conversion %s"

ROLLBACK "permission denied for database %s"

ROLLBACK "permission denied for function %s"

ROLLBACK "permission denied for language %s"

ROLLBACK "permission denied for operator %s"

ROLLBACK "permission denied for operator class %s"

ROLLBACK "permission denied for relation %s"

ROLLBACK "permission denied for schema %s"

ROLLBACK "permission denied for sequence %s"

ROLLBACK "permission denied for tablespace %s"

ROLLBACK "permission denied for type %s"

42601

ERROR "A site name can be specified only once in a create projection, site %s appears

 more than once"

ERROR "All columns in select list must be columns used by projection"

ERROR "Bad epoch range"

ERROR "CREATE TABLE AS specifies too many column names"

ERROR "CREATE VIEW specifies more column "

ERROR "Duplicate columns are not allowed in create table statement"

ERROR "Duplicate columns in select list of projection not allowed"

ERROR "Duplicate tables in projection not allowed"

ERROR "End epoch number out of range"

ERROR "Epoch number out of range"

ERROR "Epoch time out of range"

ERROR "Group by is not allowed in a projection"

ERROR "INSERT ... SELECT may not specify INTO"

ERROR "INSERT ... SELECT may not specify a virtual table (ie %s)"

ERROR "INSERT ... SELECT may not specify a virtual table"

ERROR "INSERT has more expressions than target columns"

ERROR "INSERT has more target columns than expressions"

ERROR "INTO is only allowed on first SELECT of UNION/INTERSECT/EXCEPT"

ERROR "Invalid hint identifier"

ERROR "Invalid predicate in projection-select. Only PK=FK equijoins are allowed."

ERROR "Join in From clause without ON clause is not supported"

ERROR "No columns specified in select list"

ERROR "Not a Star or Snow-Flake Query"

ERROR "Number of columns in the PROJECTION statement must be the same the number of columns in the

 SELECT statement"

ERROR "Only columns are allowed in SELECT list of projection"

ERROR "Only inner joins are allowed in a projection defining query"

ERROR "Only tables are allowed in FROM clause of projection"

ERROR "Projections can only be sorted in ascending order"

ERROR "SELECT * with no tables specified is not valid"

ERROR "SELECT DISTINCT ON is not standard SQL, use just SELECT DISTINCT"

ERROR "Site \"%s\" does not exist"

-311-

 Appendix: Error Codes

ERROR "Sort key should be in the target list"

ERROR "Start epoch number out of range"

ERROR "The foreign key in this constraint has already been defined as a foreign key for relation \"%s\"

"

ERROR "Unsupported From clause expression"

ERROR "Unsupported Join in From clause"

ERROR "Unsupported SET option %s"

ERROR "Unsupported SHOW option %s"

ERROR "Unsupported transaction option %s"

ERROR "Virtual tables are not allowed in FROM clause of projection"

ERROR "\"0\" must be ahead of \"PR\""

ERROR "\"9\" must be ahead of \"PR\""

ERROR "a column definition list is only allowed for functions returning \"record\""

ERROR "a column definition list is required for functions returning \"record\""

ERROR "arguments of row IN must all be row expressions"

ERROR "cannot insert into system column \"%s\""

ERROR "cannot insert multiple commands into a prepared statement"

ERROR "cannot use \"PR\" and \"S\"/\"PL\"/\"MI\"/\"SG\" together"

ERROR "cannot use \"S\" and \"MI\" together"

ERROR "cannot use \"S\" and \"PL\" together"

ERROR "cannot use \"S\" and \"PL\"/\"MI\"/\"SG\"/\"PR\" together"

ERROR "cannot use \"S\" and \"SG\" together"

ERROR "cannot use \"V\" and decimal point together"

ERROR "column alias list for \"%s\" has too many entries"

ERROR "conflicting NULL/NOT NULL declarations for column \"%s\" of table \"%s\""

ERROR "constraint \"%s\" for relation \"%s\" already exists"

ERROR "constraint declared INITIALLY DEFERRED must be DEFERRABLE"

ERROR "each %s query must have the same number of columns"

ERROR "improper %%TYPE reference (too few dotted names): %s"

ERROR "improper %%TYPE reference (too many dotted names): %s"

ERROR "improper qualified name (too many dotted names): %s"

ERROR "improper relation name (too many dotted names): %s"

ERROR "misplaced DEFERRABLE clause"

ERROR "misplaced INITIALLY DEFERRED clause"

ERROR "misplaced INITIALLY IMMEDIATE clause"

ERROR "misplaced NOT DEFERRABLE clause"

ERROR "multiple DEFERRABLE/NOT DEFERRABLE clauses not allowed"

ERROR "multiple INITIALLY IMMEDIATE/DEFERRED clauses not allowed"

ERROR "multiple assignments to same column \"%s\""

ERROR "multiple decimal points"

ERROR "multiple default values specified for column \"%s\" of table \"%s\""

ERROR "non-integer constant in %s"

ERROR "not unique \"S\""

ERROR "schema name may not be qualified"

ERROR "subquery in FROM may not have SELECT INTO"

ERROR "subquery in FROM must have an alias"

ERROR "unequal number of entries in row expression"

ERROR "unequal number of entries in row expressions"

ERROR "wrong number of parameters for prepared statement \"%s\""

ROLLBACK "Add Column driver: Unrecognized command type"

WARNING "Invalid projection name in hint"

WARNING "Invalid site name in hint"

42602

ERROR "invalid name syntax"

ROLLBACK "user ID %llu is already assigned"

ROLLBACK "user \"%s\" already exists"

ROLLBACK "user \"%s\" does not exist"

WARNING "DEPRECATED syntax. Segment expression "

42622

ERROR "encoding name too long"

ERROR "identifier \"%s\" is %d bytes long. Maximum limit is %d bytes."

ROLLBACK "Cannot open FileColumn because path is too long %s"

42701

ERROR "column %s specified more than once"

ERROR "column \"%s\" appears twice in primary key constraint"

-312-

Programmer's Guide

ERROR "column \"%s\" appears twice in unique constraint"

ERROR "column \"%s\" specified more than once"

ERROR "column name \"%s\" appears more than once in USING clause"

ROLLBACK "Duplicate column name"

ROLLBACK "Duplicate projection column name (projection: %s)"

42702

ERROR "%s \"%s\" is ambiguous"

ERROR "column reference \"%s\" is ambiguous"

ERROR "common column name \"%s\" appears more than once in left table"

ERROR "common column name \"%s\" appears more than once in right table"

42703

ERROR "cannot assign to field \"%s\" of column \"%s\" because there is no such column in

 data type %s"

ERROR "cannot assign to system column \"%s\""

ERROR "column %s does not exist"

ERROR "column %s.%s does not exist"

ERROR "column \"%s\" does not exist"

ERROR "column \"%s\" does not exist;\n\tvertica does not support 'SELECT <table_name> FROM

 <table_name>'"

ERROR "column \"%s\" named as primary key does not exist"

ERROR "column \"%s\" named in key does not exist"

ERROR "column \"%s\" not found in data type %s"

ERROR "column \"%s\" of relation \"%s\" does not exist"

ERROR "column \"%s\" specified in USING clause does not exist in left table"

ERROR "column \"%s\" specified in USING clause does not exist in right table"

ERROR "could not identify column \"%s\" in record data type"

ROLLBACK "column %s does not exist in table\n"

42704

ERROR "Node %s does not exist"

ERROR "could not find array type for data type %s"

ERROR "invalid user ID: %llu"

ERROR "no value found for parameter %d"

ERROR "no value found for parameter \"%s\""

ERROR "rule \"%s\" for relation \"%s\" does not exist"

ERROR "type %s is only a shell"

ERROR "type \"%s\" does not exist"

ERROR "type \"%s\" is only a shell"

ERROR "type with OID %llu does not exist"

ERROR "user \"%s\" does not exist"

ROLLBACK "projection \"%s\" does not exist"

ROLLBACK "relation \"%s\" does not exist"

ROLLBACK "site \"%s\" does not exist"42710

ERROR "rule \"%s\" for relation \"%s\" already exists"

ROLLBACK "a table named \"%s\" exists"

ROLLBACK "relation \"%s\" already exists"

ROLLBACK "site \"%s\" already exists"

ROLLBACK "unrecognized drop object type: %d"

42710

ERROR "rule \"%s\" for relation \"%s\" already exists"

ROLLBACK "a table named \"%s\" exists"

ROLLBACK "relation \"%s\" already exists"

ROLLBACK "site \"%s\" already exists"

42712

ERROR "table name \"%s\" specified more than once"

42725

ERROR "function %s is not unique"

ERROR "operator is not unique: %s"

42803

ERROR "SEGMENTED BY expression may not contain aggregate functions"

-313-

 Appendix: Error Codes

ERROR "aggregate function calls may not be nested"

ERROR "aggregates not allowed in GROUP BY clause"

ERROR "aggregates not allowed in JOIN conditions"

ERROR "aggregates not allowed in WHERE clause"

ERROR "argument of %s must not contain aggregates"

ERROR "cannot use aggregate function in EXECUTE parameter"

ERROR "cannot use aggregate function in function expression in FROM"

ERROR "column \"%s.%s\" must appear in the GROUP BY clause or be used in an aggregate

 function"

ERROR "rule WHERE condition may not contain aggregate functions"

ERROR "subquery uses ungrouped column \"%s.%s\" from outer query"

42804

ERROR "%s types %s and %s cannot be matched"

ERROR "IS DISTINCT FROM requires = operator to yield boolean"

ERROR "NULLIF requires = operator to yield boolean"

ERROR "argument of %s must be type boolean, not type %s"

ERROR "argument of %s must be type integer, not type %s"

ERROR "argument of %s must not return a set"

ERROR "arguments declared \"anyelement\" are not all alike"

ERROR "array assignment requires type %s"

ERROR "array assignment to \"%s\" requires type %s"

ERROR "array subscript must have type integer"

ERROR "cannot assign to field \"%s\" of column \"%s\" because its type %s is not a composite

 type"

ERROR "cannot subscript type %s because it is not an array"

ERROR "column \"%s\" is of type %s"

ERROR "could not determine anyarray/anyelement type because input has type \"unknown\""

ERROR "could not determine row description for function returning record"

ERROR "function \"%s\" in FROM has unsupported return type %s"

ERROR "index expression may not return a set"

ERROR "mismatched types in VALUES LESS THAN expressions"

ERROR "no column alias was provided"

ERROR "number of aliases does not match number of columns"

ERROR "parameter $%d of type %s cannot be coerced to the expected type %s"

ERROR "row comparison operator must not return a set"

ERROR "row comparison operator must yield type boolean, "

ERROR "subfield \"%s\" is of type %s"

42809

ERROR "%s(*) specified, but %s is not an aggregate function"

ERROR "DISTINCT specified, but %s is not an aggregate function"

ERROR "\"%s\" is not a projection"

ERROR "column notation .%s applied to type %s, "

ERROR "function %s(%s) is not an aggregate"

ERROR "inherited relation \"%s\" is not a table"

ERROR "op ANY/ALL (array) requires array on right side"

ERROR "op ANY/ALL (array) requires operator not to return a set"

ERROR "op ANY/ALL (array) requires operator to yield boolean"

ERROR "record type has not been registered"

ROLLBACK "COPY requires relation %s to be a Table"

ROLLBACK "COPY requires relation %s to be a Table, not a %s"

42830

ROLLBACK "foreign keys not specified"

ROLLBACK "incompatible data types between primary and foreign key columns: fk: %s, pk: %s"

ROLLBACK "number of primary and foreign keys must be the same"

42846

ERROR "%s could not convert type %s to %s"

ERROR "cannot cast type %s to %s"

ROLLBACK "column \"%s\" is of type %s but default expression is of type %s"

42883

ERROR "Function %s (%llu) is not supported"

ERROR "Meta-function %s (%llu) is not supported with FROM"

ERROR "Operator %s (%llu) is not supported"

ERROR "aggregate %s(%s) does not exist"

-314-

Programmer's Guide

ERROR "aggregate %s(*) does not exist"

ERROR "function %s does not exist"

ERROR "function with OID %llu does not exist"

ERROR "no binary input function available for type %s"

ERROR "no binary output function available for type %s"

ERROR "no input function available for type %s"

ERROR "no output function available for type %s"

ERROR "operator does not exist: %s"

ERROR "operator requires run-time type coercion: %s"

LOG "default conversion function for encoding \"%s\" to \"%s\" does not exist"

42939

ROLLBACK "user name \"%s\" is reserved"

42V01

ERROR "Site \"%s\" does not exist"

ERROR "Table with name '%s' does not exist"

ERROR "missing FROM-clause entry for table \"%s\""

ERROR "missing FROM-clause entry in subquery for table \"%s\""

ERROR "relation \"%s.%s\" does not exist"

ERROR "relation \"%s\" does not exist"

ERROR "relation \"%s\" in FOR UPDATE clause not found in FROM clause"

ERROR "relation with OID %llu does not exist"

ERROR "schema \"%s\" does not exist"

ERROR "site \"%s\" does not exist"

ERROR "table \"%s\" does not exist"

NOTICE "adding missing FROM-clause entry for table \"%s\""

NOTICE "adding missing FROM-clause entry in subquery for table \"%s\""

ROLLBACK "Can't find table"

ROLLBACK "primary table \"%s\" does not exist"

ROLLBACK "table \"%s\" does not exist"

42V02

ERROR "there is no parameter $%d"

42V03

ERROR "cursor \"%s\" already exists"

WARNING "closing existing cursor \"%s\""

42V06

ERROR "schema \"%s\" already exists"

42V07

ERROR "location \"%s\" already exists for site %s"

ROLLBACK "a projection named \"%s\" exists"

ROLLBACK "a table named \"%s\" exists"

ROLLBACK "relation \"%s\" already exists"

42V08

ERROR "could not determine data type of parameter $%d"

ERROR "inconsistent types deduced for parameter

42V09

ERROR "table reference %llu is ambiguous"

ERROR "table reference \"%s\" is ambiguous"

42V10

ERROR "%s position %d is not in select list"

ERROR "JOIN/ON clause refers to \"%s\", which is not part of JOIN"

ERROR "UNION/INTERSECT/EXCEPT member statement may not refer to other relations of same

 query level"

ERROR "argument of %s must not contain variables"

ERROR "function expression in FROM may not refer to other relations of same query level"

ERROR "subquery in FROM may not refer to other relations of same query level"

ERROR "table \"%s\" has %d columns available but %d columns specified"

ERROR "too many column aliases specified for function %s"

42V11

ERROR "cannot specify both SCROLL and NO SCROLL"

42V13

-315-

 Appendix: Error Codes

ERROR "aggregates may not return sets"

42V15

ERROR "CREATE specifies a schema (%s) "

ERROR "Insufficient projections to answer query"

ERROR "No super projection found for table %s"

42V16

ERROR "column \"%s\" cannot be declared SETOF"

ERROR "multiple primary keys for table \"%s\" are not allowed"

ERROR "temporary tables may not specify a schema name"

ROLLBACK "Column \"%s\" from table \"%s\" in the SEGMENTED BY "

ROLLBACK "MATCH types other than SIMPLE (the default) are not supported for foreign

 key constraints"

ROLLBACK "ON DELETE actions other than NO ACTION are not supported for foreign key

 constraints"

ROLLBACK "ON UPDATE actions other than NO ACTION are not supported for foreign key

 constraints"

ROLLBACK "Table changed by another DDL statement"

ROLLBACK "constraint \"%s\" for relation \"%s\" already exists"

ROLLBACK "primary constraint for relation \"%s\" already exists"

ROLLBACK "primary keys not specified"

ROLLBACK "referenced primary key constraint does not exist"

42V17

ERROR "ON DELETE rule may not use NEW"

ERROR "ON INSERT rule may not use OLD"

ERROR "ON SELECT rule may not use NEW"

ERROR "ON SELECT rule may not use OLD"

ERROR "SELECT rule's target entry %d has different column name from \"%s\""

ERROR "SELECT rule's target entry %d has different size from column \"%s\""

ERROR "SELECT rule's target entry %d has different type from column \"%s\""

ERROR "SELECT rule's target list has too few entries"

ERROR "SELECT rule's target list has too many entries"

ERROR "catalog_table requested non-existent object type %s"

ERROR "rule WHERE condition may not contain references to other relations"

ERROR "rules with WHERE conditions may only have SELECT, INSERT, UPDATE, or DELETE actions"

ERROR "view rule for \"%s\" must be named \"%s\""

42V18

ERROR "could not determine data type of parameter $%d"

42V21

ERROR "projection \"%s\" does not exist"

42V22

ERROR "site \"%s\" does not exist"

42V23

ERROR "permutation \"%s\" does not exist"

Class 53 Error Code Examples
53000

ERROR "Too many ROS containers exist for the "

ROLLBACK "Could not create thread for SubsessionHandler"

ROLLBACK "Could not create thread for recoverProjection"

ROLLBACK "Thread limit %d, but statement needs %lld threads"

53100

ROLLBACK "Could not write to %s: %s"

ROLLBACK "Unable to create catalog file %s"

53200

ERROR "Insufficient resources to execute localized plan [%s]"

ERROR "out of memory"

FATAL "out of memory"

LOG "out of memory"

ROLLBACK "Plan memory limit exhausted: %s"

ROLLBACK "Ran out of WOS memory during %s"

ROLLBACK "malloc of %zu bytes for %s failed"

-316-

Programmer's Guide

Class 54 Error Code Examples
54000

ERROR "%d-byte varchar, oid = %lld"

ERROR "Function %s may give a %d-byte Varchar result; the limit is %d bytes"

ERROR "Unsupported access to virtual table"

ERROR "Unsupported virtual table query. Only a single table reference in FROM clause

 is allowed."

ERROR "target lists can have at most %d entries"

ERROR "timezone directory stack overflow"

FATAL "out of on_proc_exit slots"

ROLLBACK "Cannot prepare statement - too many prepared statements"

WARNING "line is too long in time zone file \"%s\", line %d"

54011

ERROR "number of columns (%d) exceeds limit (%d)"

ROLLBACK "A table can have at most %d columns"

ROLLBACK "a table/projection can only have up to %d columns -- adding one will exceed

 this limit"

ROLLBACK "a table/projection can only have up to %d columns -- attempt to create one

 with %d\n"

54023

ERROR "cannot pass more than %d arguments to a function"

ERROR "functions cannot have more than %d arguments"

Class 55 Error Code Examples
55000

ERROR "Cannot issue this command in a read-only transaction"

ERROR "No plan received at node"

ERROR "No transaction running on node"

ERROR "Node has not been set up for plan execution"

ERROR "Node not prepared to accept plan"

ERROR "System is not k-safe. DDL/DML is disallowed"

ERROR "\"%s\" is already a view"

ERROR "could not convert table \"%s\" to a view because it has child tables"

ERROR "could not convert table \"%s\" to a view because it has indexes"

ERROR "could not convert table \"%s\" to a view because it has triggers"

ERROR "could not convert table \"%s\" to a view because it is not empty"

ERROR "cursor can only scan forward"

ERROR "portal \"%s\" cannot be run"

FATAL "data directory \"%s\" has group or world access"

FATAL "data directory \"%s\" has wrong ownership"

ROLLBACK "Cannot Drop: %s %s depends on %s %s"

ROLLBACK "Error: Projection table no longer valid"

ROLLBACK "Query is directly referencing a projection. Unable to retrieve data from requested

projection because one or more sites containing its data are down."

55006

ERROR "Manual analyze statistics not supported"

ERROR "Manual mergeout not supported"

ERROR "Manual moveout not supported"

ERROR "Projection cannot be dropped because K-safety would be violated"

ROLLBACK "A DDL statement interfered with this statement"

ROLLBACK "The status of one or more nodes changed during query planning"

55V03

ERROR "Tuple Mover %s error S locking global catalog"

ERROR "Tuple Mover %s error S locking local catalog"

ERROR "Tuple Mover %s error X locking TMMergeOut lock for moveout"

ROLLBACK "%s error S locking epoch map for installNewCatalog"

ROLLBACK "%s error X locking global catalog for installNewCatalog"

ROLLBACK "%s error X locking local catalog for installNewCatalog"

ROLLBACK "Could not access local catalog due to locking timeout"

ROLLBACK "Could not lock file %s for reading."

-317-

 Appendix: Error Codes

ROLLBACK "Could not lock file %s for writing."

ROLLBACK "Error T locking projection anchor table for mergeout"

ROLLBACK "Error T locking projection anchor table for moveout"

ROLLBACK "Error getting epoch map sLock: %s"

ROLLBACK "Error getting table (%llx) sLock: %s"

ROLLBACK "Finalize error (%s) getting S lock on global catalog"

ROLLBACK "Locking failure: %s"

ROLLBACK "Tuple Mover %s error S locking epoch map"

ROLLBACK "Tuple Mover %s error S locking global catalog"

ROLLBACK "Tuple Mover %s error S locking local catalog"

ROLLBACK "Tuple Mover %s error X locking TMMergeOut lock for mergeout"

ROLLBACK "Tuple Mover %s error X locking local catalog"

ROLLBACK "Tuple Mover %s error locking for mergeout"

ROLLBACK "Tuple Mover %s error locking for moveout"

ROLLBACK "Txn %#llx: %s error %s"

ROLLBACK "Txn %#llx: %s error S locking epoch map for DDL"

ROLLBACK "Txn %#llx: %s error X locking local catalog for DDL"

ROLLBACK "analyze_stats: %s error S locking epoch map for commit"

WARNING "Could not lock file %s for writing."

Class 57 Error Code Examples
57014

ERROR "Execution canceled (prepare)"

ERROR "Execution canceled (start)"

ERROR "Execution canceled by operator"

ERROR "Execution canceled in EE"

ERROR "Node failure in %s"

ERROR "Operator intervention"

ERROR "Plan canceled prior to execute call"

ERROR "Processing aborted by peer"

ERROR "Statement abandoned due to subsequent DDL"

ERROR "analyze_statistics abandoned due to subsequent DDL"

FATAL "Session canceled by client"

ROLLBACK "Subsession interrupted"

ROLLBACK "Txn %#llx: %s %s"

57V03

FATAL "Shutdown in progress. No longer accepting connections"

FATAL "Site startup/recovery in progress. Not yet ready to accept connections"

ROLLBACK "Session manager cannot add an external session - disabled"

ROLLBACK "Session manager cannot add an internal session - disabled"

Class 58 Error Code Examples
58030

ERROR "Bad return from WaitForMultipleObjects: %i (%i)"

ERROR "Failed to create socket waiting event: %i"

ERROR "Failed to reset socket waiting event: %i"

FATAL "Failed to load netmsg.dll: %i"

FATAL "failed to enumerate network events: %i"

PANIC "Failure in catalog access; cannot proceed"

PANIC "Failure to roll back transaction; cannot proceed"

PANIC "Failure to roll back transaction; cannot proceed."

ROLLBACK "AddColumn: error writing data file %s"

ROLLBACK "Unable to write catalog file %s"

WARNING "getnameinfo_all() failed: %s"

58V01

ERROR "Invalid filename. Input filename is an empty string"

-318-

Programmer's Guide

Class V Error Code Examples
V1001

ERROR "Connection to spread closed"

ERROR "Receive: Message receipt failed: %s"

ERROR "Receive: Unexpected end of stream: %s"

ERROR "Some nodes did not receive their plans"

ROLLBACK "Receive: open failed on node: %s (%s)"

ROLLBACK "Send: Connection not open [%s tag:%d plan %llu]"

ROLLBACK "Send: Open failed on node [%s] (%s)"

V1002

NOTICE "Cannot shutdown unsafe cluster with this command"

V1003

ERROR "A node has entered/left the spread group"

ERROR "A node has gone UP/DOWN"

V2001

NOTICE "Vertica license is in its grace period"

WARNING "License issue: %s"

V2002

ROLLBACK "A DDL interfered with moveout"

ROLLBACK "A DDL interfered with recover"

ROLLBACK "A DDL interfered with split"

VC001

FATAL "Cannot load configuration from %s"

FATAL "could not load server certificate file \"%s\": %s"

FATAL "unsafe permissions on private key file \"%s\""

LOG "authentication file token too long, skipping: \"%s\""

VC002

LOG "lock file \"%s\" already exists, %d"

VX001

ERROR "password encryption failed"

FATAL "Unhandled exception during recovery assessment"

FATAL "Unhandled exception during recovery startup assessment"

FATAL "could not get current working directory: %m"

FATAL "failed to create signal event: %d"

FATAL "failed to create signal handler thread"

FATAL "failed to create waitable timer: %i"

FATAL "failed to set console control handler"

FATAL "failed to set waitable timer: %i"

FATAL "findMySession: no session for thread id 0x%llx"

INTERNAL " file %s is not under management"

INTERNAL "AddColumn: internal error writing data file to %s"

INTERNAL "Asked to send %d, but sent %d"

INTERNAL "Attempt to access undefined argument %d"

INTERNAL "Attempt to send distributed calls"

INTERNAL "CALL_DISPATCH_ANY_THREAD is currently unsupported"

INTERNAL "CALL_DISPATCH_SINGLE_THREAD currently requires CAL_RETURN_ASYNCHRONOUS"

INTERNAL "CALL_USE_SESSION_NODES used without setting nodes"

INTERNAL "CALL_USE_SPECIFIED_GROUP requires CALL_RETURN_ASYNCHRONOUS"

INTERNAL "Cannot Begin Transaction when Transaction is already running"

INTERNAL "Caught an exception from EE operator constructor of type %d: %s"

INTERNAL "Caught an unknown exception from EE operator constructor of type %d"

INTERNAL "Caught exception '%s' in dispatchIncomingCallMessage"

INTERNAL "Caught unknown exception in dispatchIncomingCallMessage"

INTERNAL "Compression failed..."

INTERNAL "Corrupt callNodeSelection"

INTERNAL "Couldn't update this session's state"

INTERNAL "DTop: internal error writing data file to %s"

INTERNAL "Did not get the correct sum in "

INTERNAL "DistCalls does not support recursion;"

INTERNAL "EE Block queue corrupted"

-319-

 Appendix: Error Codes

INTERNAL "Error creating operator for plan node of type %d: not implemented"

INTERNAL "Error during recover projection"

INTERNAL "Exception decoding the call we just locally encoded"

INTERNAL "Got unexpected error code from spread %d"

INTERNAL "Internal error during data load operation"

INTERNAL "Invalid Execution Point 10"

INTERNAL "Invalid Execution Point 11"

INTERNAL "Invalid Execution Point 12"

INTERNAL "Invalid Execution Point 4"

INTERNAL "Invalid Execution Point 5"

INTERNAL "Invalid Execution Point 6"

INTERNAL "Invalid plan node type for operator DS: expected %d but got %d"

INTERNAL "Join: Invalid phase %d"

INTERNAL "Recover error: recoverProjection"

INTERNAL "Send: cannot execute in undistributed plan %llu"

INTERNAL "Unable to serialize message;"

INTERNAL "Unknown compression algorithm"

INTERNAL "VEval: unhandled Boolean type %d"

INTERNAL "VEval: unhandled boolean test type %d"

INTERNAL "VEval: unhandled evaluateExpr oid %u"

INTERNAL "VEval: unhandled null check data type %d"

INTERNAL "VEval::VEval unhandled expression type %d"

INTERNAL "aggregate function %llu called as normal function"

INTERNAL "bogus ContainsOids value: %d"

INTERNAL "bogus InhOption value: %d"

INTERNAL "bogus resno %d in targetlist"

INTERNAL "can't happen"

INTERNAL "compile plan already compiled."

INTERNAL "compile plan node of type %d (operator %s) has NULL dest on output edge %d"

INTERNAL "compile plan node of type %d (operator %s) has NULL source on input edge %d."

INTERNAL "compile plan not yet compiled."

INTERNAL "could not create signal listener pipe for pid %d: error code %d"

INTERNAL "expected SELECT query from subquery in FROM"

INTERNAL "getMySessionID: no session for thread id 0x%llx"

INTERNAL "invalid ObjectType"

INTERNAL "invalid datetoken tables, please fix %s"

INTERNAL "invalid return code %d from operator %s"

INTERNAL "scalar array op %s (%llu) is not supported"

INTERNAL "sendCallToOne applies only to calls sent to specified nodes"

INTERNAL "too many arguments"

INTERNAL "unexpected parse analysis result for subquery in FROM"

INTERNAL "unhandled AclObjectKind value"

INTERNAL "unhandled AclResult value"

INTERNAL "unhandled GrantObjectType value"

INTERNAL "unrecognized GrantStmt.objtype: %d"

INTERNAL "unrecognized join type: %d"

INTERNAL "unrecognized node type: %d"

INTERNAL "unrecognized object kind: %d"

INTERNAL "unrecognized objkind: %d"

INTERNAL "unrecognized portal strategy: %d"

INTERNAL "unrecognized sortby_kind: %d"

INTERNAL "updateCheckpointEpoch called without a transaction"

NOTICE "Unknown win32 socket error code: %i"

PANIC "Message could not be deserialized: %s"

PANIC "Redundant bind of conflicting transaction "

PANIC "Unbind of conflicting transaction "

WARNING "Exception decoding the response we just locally encoded"

VX002

ROLLBACK "Delete: could not find a data row to delete (data integrity violation?)"

ROLLBACK "Error finalizing AddColumn"

ROLLBACK "Error finalizing DT; column data may be lost."

ROLLBACK "FileColumnReader: Decompression error in %s at offset %llu"

-321-

Index

!

! [COMMAND] • 147, 150, 171

?

? • 147

? --help • 142

A

a • 149, 162, 172

a --echo-all • 142, 166

A --no-align • 142, 143, 149, 172

About the Documentation • 2

Acrobat • 6

addBatch • 86

addSreamToCopyIn • 102, 103

ADO.NET • 10, 14, 18, 20, 21, 23, 114, 115, 116,

119, 120, 121, 123, 124, 126, 127, 128, 129

ADO.NET Prerequisites • 14

Adobe Acrobat • 6

Aggregates, reporting • 226

Aggregates, windowing • 226

Algorithms, join • 200

Altering and Dropping SQL Macros • 275

analytics • 214, 254

ANSI join syntax • 200

Appendix

Error Codes • 299

AUTOCOMMIT • 165

AutoCommit Functionality • 121, 126, 128

B

b • 149

Batch Inserts Using JDBC Prepared Statements •

83, 99

Best Practices for Statistics Collection • 282

BNF grammar • 200

Bold text • 7

Braces • 7

Brackets • 7

Bulk Loading Using the COPY Statement • 99

C

c (or \connect) [dbname [username]] • 146, 149

C [STRING] • 149, 162

c command --command command • 142, 144, 173

cd [DIR] • 150

Changing the Transaction Isolation Level • 73, 76

Class 01 Error Code Examples • 300, 313

Class 08 Error Code Examples • 301, 313

Class 0A Error Code Examples • 301, 314

Class 0L Error Code Examples • 302, 316

Class 22 Error Code Examples • 302, 316

Class 26 Error Code Examples • 306, 318

Class 28 Error Code Examples • 306, 319

Class 42 Error Code Examples • 309, 319

Class 53 Error Code Examples • 311, 325

Class 54 Error Code Examples • 311, 325

Class 55 Error Code Examples • 311, 325

Class 57 Error Code Examples • 312, 326

Class 58 Error Code Examples • 312, 327

Class V Error Code Examples • 312, 327

Client Driver Install Procedures • 14, 15, 16

Closing a Database Connection • 119

Collecting Statistics • 281

Colored bold text • 7

Command Line Editing • 170

Command Line Options • 141, 146

Command Reference for Handling Large Result

Sets • 106

Command Reference for Multiple Streams • 102

Command Reference for Prepared Statements •

56, 57

Command Reference for Prepared Statements in

JDBC • 84, 86

Configuring the ODBC Run-time Environment

on Linux • 132

Connecting From a Non-Cluster Host • 146

Connecting From the Administration Tools • 139,

140

Connecting from the Command Line • 139, 141

Connecting to the Database • 114, 115, 119, 120,

121, 123, 127

Connection Properties • 69, 70, 106

Connection String Keywords • 115, 116, 117

Constant Interpolation • 236

Constant Propagation and IN-list Constant

Folding • 262

Copy Multiple Streams Example • 102, 104

Copying Data Using vsql • 174

Copying Individual Streams • 100

Copying Multiple Streams • 100, 102

Copying Streams • 99, 100

Copying the Plug-in Library on the Server • 291

Copyright Notice • 337

Creating a Pooling Datasource • 77

-322-

Programmer's Guide

Creating an ADO.NET DSN Entry (optional) •

114, 115, 117

Creating an ODBC Data Source Name (DSN) •

14, 18, 22, 23, 27, 291

Creating an ODBC DSN for Linux and Solaris

Clients • 11, 16, 18, 19, 20, 27, 39, 50

Creating an ODBC DSN for Windows Clients •

27, 29, 39, 50

Creating and Closing Database Connections • 115

Creating and Configuring a Connection • 68, 75,

81

Creating and Executing Prepared Statements • 56

Creating External Procedures • 268, 270, 271

Creating SQL Macros • 274

Creating User and System DSN Entries • 29, 38

Cross Joins • 181, 200, 206

D

d [PATTERN] • 150

d \d <table> \df \dj \dn \dp \ds \dS \dt \dT \dtv \du

\dv • 151

d dbname --dbname dbname • 142

Data Source Name • 27, 29, 33, 36, 38, 39, 114

Data Types • 126

DBD

ODBC • 135

ODBC • 136

DBI • 135, 136

DBNAME • 166

Default locale, overriding • 158

Overriding default locale • 158

DELETE Statement Subqueries • 188

Dimensions, slowly changing • 208

Directly Loading Batches into ROS • 94

dj [PATTERN] • 152

dn [PATTERN] • 153

Documentation • 6

dp [PATTERN] • 153, 164

Driver Prerequisites • 11, 18, 21, 23

Dropping External Procedures • 268, 273

ds [PATTERN] • 153

dS [PATTERN] • 154

DSN • 27, 29, 33, 36, 38, 39, 114

DSN Parameters • 28, 38, 39, 50

dt [PATTERN] • 154

dT [PATTERN] • 155

dtv [PATTERN] • 155

du [PATTERN] • 156

dv [PATTERN] • 156

E

E • 142, 166

e --echo-queries • 142, 166

e \edit [FILE] • 157

ECHO • 142, 158, 166

echo [STRING] • 157, 162

ECHO_HIDDEN • 166

Ellipses • 7

ENCODING • 166

Environment • 171

Environment variable • 24, 65, 139, 157, 160, 171

Equi-joins • 203

Equi-joins and Non Equi-Joins • 197, 203, 205,

210

Error codes • 299, 300, 313, 314, 316, 318, 319,

325, 326, 327

Error Codes • 300

Error Handling During Batch Loads • 61, 94

Event-based windows • 227, 235

Event-based Windows • 227, 234, 235

Examples • 66

execute • 86, 87

executeBatch • 86, 87

executeQuery • 86, 88

executeUpdate • 86, 88

Executing External Procedures • 268, 272

Executing Queries • 109

Executing Queries Through JDBC • 81

EXISTS • 194

EXISTS Conditions • 194

Exporting Data Using vsql • 172, 174

Expressions in subqueries • 193

F

f [string] • 143, 157

f filename --file filename • 142, 167

F separator --field-separator separator • 143, 173

Files • 172

finishCopyIn • 103

Flattening FROM Clause Subqueries and Views •

187

Flattening subqueries • 187

Framing Windows with RANGE • 223

Framing Windows with ROWS • 220

-323-

 Index

G

g • 157, 160

Gap filling • 235

Gap Filling and Interpolation (GFI) • 236, 242

getMaxLRSMemory • 106, 107

getStreamingLRS • 106, 107

GFI • 236

GFI Examples • 240

GROUP BY Pipelined or Hash • 250

H

H • 144, 158, 162

h \help [command] • 158

h hostname --host hostname • 144

H --html • 144

Handling Large Result Sets • 105

Handling Parameters • 124

HAVING clause subqueries • 198

HAVING Conditions • 198

HISTCONTROL • 167

Historical (Snapshot) Queries • 178

Historical query • 178

HISTSIZE • 167

HOST • 167

How Statistics are Computed • 282

HTML • 6

I

i FILE • 142, 157, 158

IDataReader Implementations • 14, 117, 128, 129

Identifying Accepted and Rejected Rows (JDBC)

• 95, 98

Identifying Accepted and Rejected Rows

(ODBC) • 60

Identifying the Number of Accepted and Rejected

Rows • 95, 96

Identifying the Number of Accepted Rows

(ODBC) • 60

IGNOREEOF • 167

Implementing External Procedures • 268

Importing and Exporting Statistics • 283, 284

IN Conditions • 196

Indentation • 7

Inner Joins • 200, 202

Inserting Data • 119, 120

Installing AIX, Linux, and Solaris Driver

Managers • 13, 14, 16, 17

Installing Drivers on 32-bit Windows • 21

Installing Drivers on 64-bit Windows • 23

Installing External Procedure Executable Files •

268, 270

Installing JDBC Driver on Linux and Solaris • 20

Installing ODBC on AIX, Linux, and Solaris • 18,

26

Installing ODBC, JDBC, and ADO.NET Drivers

on Windows • 20, 26, 29

Installing the Client RPM on Red Hat 5 64-bit,

and SUSE 64-bit • 17, 20, 146

Installing the Vertica Client Drivers • 10, 68

Installing the Vertica Plug-in for PowerCenter •

285

Interpolation • 235

iODBC • 10, 11, 12, 15, 27, 130, 131, 132, 135,

136

Isolation • 76, 178

Italic text • 7

J

Java • 2, 68, 76, 111

JavaDoc • 68

JDBC • 18, 20, 21, 23, 24, 68, 76, 77, 81, 95, 96,

98, 108, 111

JDBC Data Types • 79

JDBC Examples • 109

JOIN • 184, 200, 202, 203, 205, 206, 207, 208,

210, 214, 256, 259

Join algorithms • 200

Join conditions vs. filter conditions • 200

Join Conditions vs. Filter Conditions • 201

Join Notes and Restrictions • 203, 212

Join Predicates • 210

Joins • 180, 184, 200

Joins Optimizations • 256

K

Key ranges • 208

L

l • 158

l --list • 144

large result sets • 65

Large Result Sets Example • 106, 107

LD_LIBRARY_PATH • 132, 139

LIKE Conditions • 198

Linear Interpolation • 239

-324-

Programmer's Guide

Loading Batches in Parallel • 51, 62

Loading Data • 119, 121

Loading Data Into the WOS/ROS • 51, 64

Loading Data Through JDBC • 82

Loading Data Through ODBC • 51, 134, 138

locale • 158, 172

Locales • 27, 29, 39, 50, 70, 73, 75, 158, 170, 171

Overriding default locale • 158

M

Managing Access to SQL Macros • 276

Merge joins • 200, 256

Merge Joins for Insert-Select Queries • 256, 257

Meta-Commands • 141, 147

Migrating Built-in Functions • 278

Modifying the CLASSPATH • 11, 16, 18, 20, 22,

23, 24

Monospace text • 7

Multicolumn Subqueries • 180, 184

Multiple-row Subqueries • 184

N

n • 144

Named Windows • 216

Natural Joins • 200, 205

Nested loop joins • 200

Noncorrelated and Correlated Subqueries • 185,

192, 198, 200

Noncorrelated subqueries • 185

Notes for Windows Users • 175

NULL • 160, 252

Null Placement • 214, 218, 252

Nulls and GFI • 236

O

o • 144, 157, 158, 159, 162, 173

o filename --output filename • 144, 173

ODBC • 18, 20, 21, 23, 26, 29, 33, 44, 46, 49, 51,

56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 132

ODBC Architecture • 26

ODBC Prerequisites • 12, 15, 16, 26

ON_ERROR_STOP • 167

Optimizing Deletes and Updates • 262

Optimizing Deletes and Updates for Performance

• 263

Optimizing Query Performance • 248

Optimizing Query Speed with Predicates • 262

Outer Joins • 200, 203, 207

Output Formatting Examples • 162, 175

P

p • 157, 160, 162

P assignment --pset assignment • 144

p port --port port • 144

password [USER] • 160

PDF • 6

Performance Considerations for Deletes and

Updates • 263

Performing a Bulk Copy • 119, 123

Perl driver module • 135

Perl Prerequisites • 15, 135

Perl Unicode Support • 136

Port • 68, 144, 167, 171

PORT • 167

Preface • 9

Pre-join Projections • 210

Pre-join Projections and Join Predicates • 202,

206, 210, 212

PreparedStatement • 86, 89

Preparing the PowerCenter Client • 289

Printing Full Books • 4

PROMPT1 PROMPT2 PROMPT3 • 167

Prompting • 167, 169

pset NAME [VALUE] • 143, 144, 145, 149, 157,

158, 160, 163, 164, 171, 173

pyodbc • 15, 130, 131, 132

Python driver module • 130

Python Prerequisites • 15, 130, 131

Python Unicode Support for Wide Characters •

131

Q

q • 162, 168

q --quiet • 144

qecho [STRING] • 157, 160, 162

Querying the Database Programmatically • 119

Querying the Database Using Perl • 136

Querying the Database Using Python • 132

QUIET • 144, 168

R

r • 162

R separator --record-separator separator • 145

RANGE • 219, 223

Range Joins • 200, 208

Reading Data • 119

-325-

 Index

Reading the Online Documentation • 2

Re-executing Failed Statements • 108

Registering the Plug-in's Metadata • 286

Removing Statistics • 284

Reporting aggregates • 226

Reporting Aggregates • 226

Requirements for External Procedures • 268, 269,

271

ROWS • 219, 220

S

s [FILE] • 162

S --single-line • 145, 168

s --single-step • 145, 168

Sample JDBC Application • 109, 111

Search conditions, subqueries • 194, 196

SERIALIZABLE • 29, 39, 76

Sessionization • 227, 235

Sessionization with Event-based Windows • 232,

235

set [NAME [VALUE [...]]] • 145, 162, 163,

164, 165

setBoolean • 86, 89

setDate • 86, 89

setDouble • 86, 90

setFloat • 86, 90

setInt • 86, 91

setLong • 86, 91

setMaxLRSMemory • 106, 107

setNull • 86, 92

setStreamingLRS • 106

setString • 86, 92

setTime • 86, 92

setTimestamp • 86, 93

Setting and Getting Connection Property Values •

69, 73, 75, 94, 106

Setting PowerCenter's Buffer Size • 285, 295, 296

Setting the Locale for ADO.NET Sessions • 115

Setting the Locale for JDBC Sessions • 75

Setting the Locale for ODBC Sessions • 50

Setting the Transaction Isolation Level • 117

Setting Up a DSN • 29

setting up DSN • 29

Shell script • 7

SINGLELINE • 168

Single-row Subqueries • 183

SINGLESTEP • 168

Slowly-changing dimensions • 208

Snapshot isolation • 178, 179

Sort Optimizations • 249, 250

SQL • 179, 183, 184, 185, 187, 193, 194, 196,

198, 200, 202, 203, 205, 206, 207, 210, 214

SQL Queries • 179

SQLBindParameter • 56, 57

SQLExecute • 56, 58

SQLFetch • 39, 44, 46, 65, 132

SQLFetchScroll • 46, 132

SQLParamData • 59

SQLPrepare • 56, 57

SQLPutData • 59

SQLWCHAR • 131

startCopyIn • 102, 103

Statement • 86, 93

Statistics Collection Guidelines • 281

Statistics Used by the Query Optimizer • 281

Subqueries • 181, 183, 200

Subquery • 183, 184, 185, 193, 194, 196, 198

Subquery Expressions • 184, 193

Subquery Notes and Restrictions • 183, 188, 194,

196, 197, 198, 199

Suggested Reading Paths • 2, 4

Support • 1

Supported ODBC Functions • 46

Supported Third-party Software • 11

Syntax conventions • 7

T

t • 145, 162, 163, 172

T [STRING] • 162, 163

T table_options --table-attr table_options • 145

t --tuples-only • 145, 172

Technical Support • 1, 4, 284

Temp Files Created During Processing • 106, 108

Temporary Tables • 179

Temporary Tables and AUTOCOMMIT • 66,

109

Testing a DSN Using Excel 2003 • 29, 33

Testing a DSN Using Excel 2007 • 29, 36

The ANSI Join Syntax • 201

The \d [PATTERN] meta-commands • 150

The TIMESERIES Clause and Aggregates • 238

The Window OVER() Clause • 215

timing • 163

Top-K Optimizations • 254

Tracking Load Status • 98, 99, 109, 110

Tracking Load Status on the Server • 61, 94, 95,

111

-326-

Programmer's Guide

Tracking Load Status on the Server with ODBC •

60

Transaction • 64, 123, 178

Troubleshooting Issues Using Statistics • 284

Typographical Conventions • 7

U

U username --username username • 145

UCS-2 • 131

UCS-4 • 131

Unicode in Python • 131

unixODBC • 10, 11, 12, 15, 18, 27, 130, 131, 135,

136

unset [NAME] • 163, 164

Unsupported ODBC Functions and Parameters •

48, 49

UPDATE Statement Subqueries • 190

Uppercase text • 7

USER • 168

Using a Single Row Insert • 51, 83

Using ADO.NET • 10, 15, 22, 114

Using Batch Insert With Version 4.0 Drivers • 55

Using Batch Inserts • 43, 51

Using Delimiters and Record Terminators for

Batch Insert • 95

Using External Procedures • 267

Using Identically Segmented Projections • 259

Using Informatica PowerCenter • 12, 285

Using JDBC • 10, 68

Using ODBC • 10, 14, 26

Using Perl • 10, 16, 135

Using Prepared Statements • 56

Using Python • 10, 15, 130

Using SQL Analytics • 214, 235

Using SQL Macros • 274

Using SSL

Installing Certificates on Windows • 116, 119

Using the COPY Statement • 51, 63, 64

Using the LCOPY Statement • 51, 63, 64

Using the Vertica Data Adapter • 127

Using the Vertica Plug-in for PowerCenter • 291

Using Time Series Analytics • 215, 232, 235

Using Vertica-Specific Parameters With INSERT

• 66

Using vsql • 139

V

v assignment --set assignment --variable

assignment • 145

V --version • 145

Variables • 163, 164

VERBOSITY • 168

Vertica Extensions for .NET • 114, 128

Vertical line • 7

Vertica-specific ODBC Header File • 39, 44, 50,

66

Viewing Information About SQL Macros • 275,

277

VSQL_HOME • 168

W

w [FILE] • 164

w password • 141, 146

W --password • 146

wchar_t • 131

When Time Series Data Contains Nulls • 238,

245

Where to Find Additional Information • 6

Where to Find the Vertica Documentation • 2

WideCharSizeIn • 131

WideCharSizeOut • 131

Window aggregates • 226

Window Framing • 216, 219, 228

Window Ordering • 182, 214, 216, 218

Window Partitioning • 214, 216, 217

Working With Large Result Sets • 65

Working with ODBC Transactions • 64

Working with Transactions • 123

Writing Queries • 178

X

x • 146, 162, 164

x --expanded • 146

X, --no-vsqlrc • 146

Z

z • 153, 164

-327-

Copyright Notice

Copyright© 2006-2011 Vertica Systems, Inc., and its licensors. All rights reserved.

Vertica Systems, Inc.

8 Federal Street

Billerica, MA 01821

Phone: (978) 600-1000

Fax: (978) 600-1001

E-Mail: info@vertica.com

Web site: http://www.vertica.com
(http://www.vertica.com)

The software described in this copyright notice is furnished under a license and may be used or
copied only in accordance with the terms of such license. Vertica Systems, Inc. software contains
proprietary information, as well as trade secrets of Vertica Systems, Inc., and is protected under
international copyright law. Reproduction, adaptation, or translation, in whole or in part, by any
means — graphic, electronic or mechanical, including photocopying, recording, taping, or
storage in an information retrieval system — of any part of this work covered by copyright is
prohibited without prior written permission of the copyright owner, except as allowed under the
copyright laws.

This product or products depicted herein may be protected by one or more U.S. or international
patents or pending patents.

Trademarks

Vertica™, the Vertica® Analytic Database™, and FlexStore™ are trademarks of Vertica Systems, Inc..

Adobe®, Acrobat®, and Acrobat® Reader® are registered trademarks of Adobe Systems Incorporated.

AMD™ is a trademark of Advanced Micro Devices, Inc., in the United States and other countries.

DataDirect® and DataDirect Connect® are registered trademarks of Progress Software Corporation in the
U.S. and other countries.

Fedora™ is a trademark of Red Hat, Inc.

Intel® is a registered trademark of Intel.

Linux® is a registered trademark of Linus Torvalds.

Microsoft® is a registered trademark of Microsoft Corporation.

Novell® is a registered trademark and SUSE™ is a trademark of Novell, Inc., in the United States and other
countries.

Oracle® is a registered trademark of Oracle Corporation.

Red Hat® is a registered trademark of Red Hat, Inc.

VMware® is a registered trademark or trademark of VMware, Inc., in the United States and/or other
jurisdictions.

Other products mentioned may be trademarks or registered trademarks of their respective
companies.

mailto:info@vertica.com
http://www.vertica.com/
http://www.vertica.com/

-328-

Programmer's Guide

Open Source Software Acknowledgments

Vertica makes no representations or warranties regarding any third party software. All third-party
software is provided or recommended by Vertica on an AS IS basis.

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

ASMJIT

Copyright (c) 2008-2010, Petr Kobalicek <kobalicek.petr@gmail.com>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Boost

Boost Software License - Version 1.38 - February 8th, 2009

Permission is hereby granted, free of charge, to any person or organization obtaining a copy of the
software and accompanying documentation covered by this license (the "Software") to use,
reproduce, display, distribute, execute, and transmit the Software, and to prepare derivative works
of the Software, and to permit third-parties to whom the Software is furnished to do so, all subject
to the following:

The copyright notices in the Software and this entire statement, including the above license grant,
this restriction and the following disclaimer, must be included in all copies of the Software, in whole
or in part, and all derivative works of the Software, unless such copies or derivative works are
solely in the form of machine-executable object code generated by a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE
LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

mailto:eay@cryptsoft.com
mailto:kobalicek.petr@gmail.com

-329-

 Copyright Notice

bzip2

This file is a part of bzip2 and/or libbzip2, a program and library for lossless, block-sorting data
compression.

Copyright © 1996-2005 Julian R Seward. All rights reserved.

1 Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

2 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

3 The origin of this software must not be misrepresented; you must not claim that you wrote the
original software. If you use this software in a product, an acknowledgment in the product
documentation would be appreciated but is not required.

4 Altered source versions must be plainly marked as such, and must not be misrepresented as
being the original software.

5 The name of the author may not be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Julian Seward, Cambridge, UK.

jseward@bzip.org <mailto:jseward@bzip.org>

bzip2/libbzip2 version 1.0 of 21 March 2000

This program is based on (at least) the work of:

Mike Burrows

David Wheeler

Peter Fenwick

Alistair Moffat

Radioed Neal

Ian H. Witten

Robert Sedgewick

Jon L. Bentley

Daemonize

Copyright © 2003-2007 Brian M. Clapper.

All rights reserved.

mailto:jseward@bzip.org
mailto:jseward@bzip.org

-330-

Programmer's Guide

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

 Neither the name of the clapper.org nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Ganglia Open Source License

Copyright © 2001 by Matt Massie and The Regents of the University of California.

All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose, without fee, and without written agreement is hereby granted, provided that the above
copyright notice and the following two paragraphs appear in all copies of this software.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE
UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER
IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO
PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

ICU (International Components for Unicode) License - ICU 1.8.1 and later

COPYRIGHT AND PERMISSION NOTICE

Copyright © 1995-2009 International Business Machines Corporation and others

All rights reserved.

-331-

 Copyright Notice

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, provided
that the above copyright notice(s) and this permission notice appear in all copies of the Software
and that both the above copyright notice(s) and this permission notice appear in supporting
documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY
RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS
NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in advertising
or otherwise to promote the sale, use or other dealings in this Software without prior written
authorization of the copyright holder.

All trademarks and registered trademarks mentioned herein are the property of their respective
owners.

Keepalived Vertica IPVS (IP Virtual Server) Load Balancer

Copyright © 2007 Free Software Foundation, Inc.

http://fsf.org/

The keepalived software contained in the

VerticaIPVSLoadBalancer-4.1.x.RHEL5.x86_64.rpm software package is licensed

under the GNU General Public License ("GPL"). You are entitled to receive the source code for
such software. For no less than three years from the date you obtained this software package, you
may download a copy of the source code for the software in this package licensed under the GPL
at no charge by visiting http://www.vertica.com/licenses/keepalived-1.1.17.tar.gz
http://www.vertica.com/licenses/keepalived-1.1.17.tar.gz. You may download this source
code so that it remains separate from other software on your computer system.

jQuery

Copyright © 2009 John Resig, http://jquery.com/

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

http://fsf.org/
http://www.vertica.com/licenses/keepalived-1.1.17.tar.gz
http://www.vertica.com/licenses/keepalived-1.1.17.tar.gz
http://jquery.com/

-332-

Programmer's Guide

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Lighttpd Open Source License

Copyright © 2004, Jan Kneschke, incremental

All rights reserved.

1 Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

2 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

3 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

4 Neither the name of the 'incremental' nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

MersenneTwister.h

Copyright © 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,

Copyright © 2000 - 2009, Richard J. Wagner

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3 The names of its contributors may not be used to endorse or promote products derived from
this software without specific prior written permission.

-333-

 Copyright Notice

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

MIT Kerberos

Copyright © 1985-2007 by the Massachusetts Institute of Technology.

Export of software employing encryption from the United States of America may require a specific
license from the United States Government. It is the responsibility of any person or organization
contemplating export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that the above
copyright notice appear in all copies and that both that copyright notice and this permission notice
appear in supporting documentation, and that the name of M.I.T. not be used in advertising or
publicity pertaining to distribution of the software without specific, written prior permission.
Furthermore if you modify this software you must label your software as modified software and not
distribute it in such a fashion that it might be confused with the original MIT software. M.I.T. makes
no representations about the suitability of this software for any purpose. It is provided ―as is‖
without express or implied warranty.

Individual source code files are copyright MIT, Cygnus Support, Novell, OpenVision Technologies,
Oracle, Red Hat, Sun Microsystems, FundsXpress, and others.

Project Athena, Athena, Athena MUSE, Discuss, Hesiod, Kerberos, Moira, and Zephyr are
trademarks of the Massachusetts Institute of Technology (MIT). No commercial use of these
trademarks may be made without prior written permission of MIT.

―Commercial use‖ means use of a name in a product or other for-profit manner. It does NOT
prevent a commercial firm from referring to the MIT trademarks in order to convey information
(although in doing so, recognition of their trademark status should be given).

Portions of src/lib/crypto have the following copyright:

Copyright © 1998 by the FundsXpress, INC.

All rights reserved.

Export of this software from the United States of America may require a specific license from the
United States Government. It is the responsibility of any person or organization contemplating
export to obtain such a license before exporting.

-334-

Programmer's Guide

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that the above
copyright notice appear in all copies and that both that copyright notice and this permission notice
appear in supporting documentation, and that the name of FundsXpress. not be used in
advertising or publicity pertaining to distribution of the software without specific, written prior
permission. FundsXpress makes no representations about the suitability of this software for any
purpose. It is provided ―as is‖ without express or implied warranty.

THIS SOFTWARE IS PROVIDED ―AS IS‖ AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

The implementation of the AES encryption algorithm in src/lib/crypto/aes has the following
copyright:

Copyright © 2001, Dr Brian Gladman <brg@gladman.uk.net>, Worcester, UK.
All rights reserved.

LICENSE TERMS

The free distribution and use of this software in both source and binary form is allowed (with or
without changes) provided that:

1 Distributions of this source code include the above copyright notice, this list of conditions and
the following disclaimer.

2 Distributions in binary form include the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other associated materials.

3 The copyright holder's name is not used to endorse products built using this software without
specific written permission.

DISCLAIMER

This software is provided 'as is' with no explicit or implied warranties in respect of any properties,
including, but not limited to, correctness and fitness for purpose.

The implementations of GSSAPI mechglue in GSSAPI-SPNEGO in src/lib/gssapi, including the
following files:

 lib/gssapi/generic/gssapi_err_generic.et

 lib/gssapi/mechglue/g_accept_sec_context.c

 lib/gssapi/mechglue/g_acquire_cred.c

 lib/gssapi/mechglue/g_canon_name.c

 lib/gssapi/mechglue/g_compare_name.c

 lib/gssapi/mechglue/g_context_time.c

 lib/gssapi/mechglue/g_delete_sec_context.c

 lib/gssapi/mechglue/g_dsp_name.c

 lib/gssapi/mechglue/g_dsp_status.c

 lib/gssapi/mechglue/g_dup_name.c

 lib/gssapi/mechglue/g_exp_sec_context.c

 lib/gssapi/mechglue/g_export_name.c

 lib/gssapi/mechglue/g_glue.c

 lib/gssapi/mechglue/g_imp_name.c

mailto:brg@gladman.uk.net

-335-

 Copyright Notice

 lib/gssapi/mechglue/g_imp_sec_context.c

 lib/gssapi/mechglue/g_init_sec_context.c

 lib/gssapi/mechglue/g_initialize.c

 lib/gssapi/mechglue/g_inquire_context.c

 lib/gssapi/mechglue/g_inquire_cred.c

 lib/gssapi/mechglue/g_inquire_names.c

 lib/gssapi/mechglue/g_process_context.c

 lib/gssapi/mechglue/g_rel_buffer.c

 lib/gssapi/mechglue/g_rel_cred.c

 lib/gssapi/mechglue/g_rel_name.c

 lib/gssapi/mechglue/g_rel_oid_set.c

 lib/gssapi/mechglue/g_seal.c

 lib/gssapi/mechglue/g_sign.c

 lib/gssapi/mechglue/g_store_cred.c

 lib/gssapi/mechglue/g_unseal.c

 lib/gssapi/mechglue/g_userok.c

 lib/gssapi/mechglue/g_utils.c

 lib/gssapi/mechglue/g_verify.c

 lib/gssapi/mechglue/gssd_pname_to_uid.c

 lib/gssapi/mechglue/mglueP.h

 lib/gssapi/mechglue/oid_ops.c

 lib/gssapi/spnego/gssapiP_spnego.h

 lib/gssapi/spnego/spnego_mech.c

are subject to the following license:

Copyright © 2004 Sun Microsystems, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the ―Software‖), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED ―AS IS‖, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Npgsql-.Net Data Provider for Postgresql

Copyright © 2002-2008, The Npgsql Development Team

-336-

Programmer's Guide

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose, without fee, and without a written agreement is hereby granted, provided that the above
copyright notice and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE NPGSQL DEVELOPMENT TEAM BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE NPGSQL DEVELOPMENT TEAM HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

THE NPGSQL DEVELOPMENT TEAM SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER
IS ON AN "AS IS" BASIS, AND THE NPGSQL DEVELOPMENT TEAM HAS NO OBLIGATIONS
TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR
MODIFICATIONS.

Open LDAP

The OpenLDAP Public License

Version 2.8, 17 August 2003

Redistribution and use of this software and associated documentation ("Software"), with or without
modification, are permitted provided that the following conditions are met:

1 Redistributions in source form must retain copyright statements and notices,

2 Redistributions in binary form must reproduce applicable copyright statements and notices,
this list of conditions, and the following disclaimer in the documentation and/or other materials
provided with the distribution, and

3 Redistributions must contain a verbatim copy of this document.

The OpenLDAP Foundation may revise this license from time to time. Each revision is
distinguished by a version number. You may use this Software under terms of this license
revision or under the terms of any subsequent revision of the license.

THIS SOFTWARE IS PROVIDED BY THE OPENLDAP FOUNDATION AND ITS
CONTRIBUTORS ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OPENLDAP
FOUNDATION, ITS CONTRIBUTORS, OR THE AUTHOR(S) OR OWNER(S) OF THE
SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

The names of the authors and copyright holders must not be used in advertising or otherwise to
promote the sale, use or other dealing in this Software without specific, written prior permission.
Title to copyright in this Software shall at all times remain with copyright holders.

-337-

 Copyright Notice

OpenLDAP is a registered trademark of the OpenLDAP Foundation.

Copyright 1999-2003 The OpenLDAP Foundation, Redwood City, California, USA. All Rights Reserved.
Permission to copy and distribute verbatim copies of this document is granted.

Open SSL

OpenSSL License

Copyright © 1998-2008 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3 All advertising materials mentioning features or use of this software must display the following
acknowledgment: "This product includes software developed by the OpenSSL Project for use
in the OpenSSL Toolkit. (http://www.openssl.org/)"

4 The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact openssl-core@openssl.org.

5 Products derived from this software may not be called "OpenSSL" nor may "OpenSSL" appear
in their names without prior written permission of the OpenSSL Project.

6 Redistributions of any form whatsoever must retain the following acknowledgment: "This
product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ̀ `AS IS'' AND ANY EXPRESSED
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR ITS CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

PCRE LICENCE

PCRE is a library of functions to support regular expressions whose syntax and semantics are as
close as possible to those of the Perl 5 language.

Release 8 of PCRE is distributed under the terms of the "BSD" licence, as specified below. The
documentation for PCRE, supplied in the "doc" directory, is distributed under the same terms as
the software itself.

http://www.openssl.org/
mailto:openssl-core@openssl.org
http://www.openssl.org/

-338-

Programmer's Guide

The basic library functions are written in C and are freestanding. Also included in the distribution is
a set of C++ wrapper functions.

THE BASIC LIBRARY FUNCTIONS

Written by: Philip Hazel

Email local part: ph10

Email domain: cam.ac.uk

University of Cambridge Computing Service,

Cambridge, England.

Copyright (c) 1997-2010 University of Cambridge

All rights reserved.

THE C++ WRAPPER FUNCTIONS

Contributed by: Google Inc.

Copyright (c) 2007-2010, Google Inc.

All rights reserved.

THE "BSD" LICENCE

 Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

Neither the name of the University of Cambridge nor the name of Google Inc. nor the names of
their contributors may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF ERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

End

Perl Artistic License

Copyright © August 15, 1997

Preamble

-339-

 Copyright Notice

The intent of this document is to state the conditions under which a Package may be copied, such
that the Copyright Holder maintains some semblance of artistic control over the development of
the package, while giving the users of the package the right to use and distribute the Package in a
more-or-less customary fashion, plus the right to make reasonable modifications.

Definitions

"Package" refers to the collection of files distributed by the Copyright Holder, and derivatives of
that collection of files created through textual modification.

"Standard Version" refers to such a Package if it has not been modified, or has been modified in
accordance with the wishes of the Copyright Holder as specified below.

"Copyright Holder" is whoever is named in the copyright or copyrights for the package.

"You" is you, if you're thinking about copying or distributing this Package.

"Reasonable copying fee" is whatever you can justify on the basis of media cost, duplication
charges, time of people involved, and so on. (You will not be required to justify it to the Copyright
Holder, but only to the computing community at large as a market that must bear the fee.)

"Freely Available" means that no fee is charged for the item itself, though there may be fees
involved in handling the item. It also means that recipients of the item may redistribute it under the
same conditions they received it.

1 You may make and give away verbatim copies of the source form of the Standard Version of
this Package without restriction, provided that you duplicate all of the original copyright notices
and associated disclaimers.

2 You may apply bug fixes, portability fixes and other modifications derived from the Public
Domain or from the Copyright Holder. A Package modified in such a way shall still be
considered the Standard Version.

3 You may otherwise modify your copy of this Package in any way, provided that you insert a
prominent notice in each changed file stating how and when you changed that file, and
provided that you do at least ONE of the following:

4 place your modifications in the Public Domain or otherwise make them Freely Available, such
as by posting said modifications to Usenet or an equivalent medium, or placing the
modifications on a major archive site such as uunet.uu.net, or by allowing the Copyright Holder
to include your modifications in the Standard Version of the Package.

1. use the modified Package only within your corporation or organization.

2. rename any non-standard executables so the names do not conflict with standard
executables, which must also be provided, and provide a separate manual page for each
non-standard executable that clearly documents how it differs from the Standard Version.

3. make other distribution arrangements with the Copyright Holder.

5 You may distribute the programs of this Package in object code or executable form, provided
that you do at least ONE of the following:

1. distribute a Standard Version of the executables and library files, together with instructions
(in the manual page or equivalent) on where to get the Standard Version.

2. accompany the distribution with the machine-readable source of the Package with your
modifications.

-340-

Programmer's Guide

3. give non-standard executables non-standard names, and clearly document the
differences in manual pages (or equivalent), together with instructions on where to get the
Standard Version.

4. make other distribution arrangements with the Copyright Holder.

6 You may charge a reasonable copying fee for any distribution of this Package. You may
charge any fee you choose for support of this Package. You may not charge a fee for this
Package itself. However, you may distribute this Package in aggregate with other (possibly
commercial) programs as part of a larger (possibly commercial) software distribution provided
that you do not advertise this Package as a product of your own. You may embed this
Package's interpreter within an executable of yours (by linking); this shall be construed as a
mere form of aggregation, provided that the complete Standard Version of the interpreter is so
embedded.

7 The scripts and library files supplied as input to or produced as output from the programs of
this Package do not automatically fall under the copyright of this Package, but belong to
whomever generated them, and may be sold commercially, and may be aggregated with this
Package. If such scripts or library files are aggregated with this Package via the so-called
"undump" or "unexec" methods of producing a binary executable image, then distribution of
such an image shall neither be construed as a distribution of this Package nor shall it fall under
the restrictions of Paragraphs 3 and 4, provided that you do not represent such an executable
image as a Standard Version of this Package.

8 C subroutines (or comparably compiled subroutines in other languages) supplied by you and
linked into this Package in order to emulate subroutines and variables of the language defined
by this Package shall not be considered part of this Package, but are the equivalent of input as
in Paragraph 6, provided these subroutines do not change the language in any way that would
cause it to fail the regression tests for the language.

9 Aggregation of this Package with a commercial distribution is always permitted provided that
the use of this Package is embedded; that is, when no overt attempt is made to make this
Package's interfaces visible to the end user of the commercial distribution. Such use shall not
be construed as a distribution of this Package.

10 The name of the Copyright Holder may not be used to endorse or promote products derived
from this software without specific prior written permission.

THIS PACKAGE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

The End

Pexpect

Copyright © 2010 Noah Spurrier

Credits: Noah Spurrier, Richard Holden, Marco Molteni, Kimberley Burchett, Robert Stone,
Hartmut Goebel, Chad Schroeder, Erick Tryzelaar, Dave Kirby, Ids vander Molen, George
Todd, Noel Taylor, Nicolas D. Cesar, Alexander Gattin, Geoffrey Marshall, Francisco
Lourenco, Glen Mabey, Karthik Gurusamy, Fernando Perez, Corey Minyard, Jon Cohen,
Guillaume Chazarain, Andrew Ryan, Nick Craig-Wood, Andrew Stone, Jorgen Grahn (Let me
know if I forgot anyone.)

Free, open source, and all that good stuff.

-341-

 Copyright Notice

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

PHP License

The PHP License, version 3.01

Copyright © 1999 - 2009 The PHP Group. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, is permitted
provided that the following conditions are met:

1 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3 The name "PHP" must not be used to endorse or promote products derived from this software
without prior written permission. For written permission, please contact group@php.net.

4 Products derived from this software may not be called "PHP", nor may "PHP" appear in their
name, without prior written permission from group@php.net. You may indicate that your
software works in conjunction with PHP by saying "Foo for PHP" instead of calling it "PHP Foo"
or "phpfoo"

5 The PHP Group may publish revised and/or new versions of the license from time to time.
Each version will be given a distinguishing version number.

 Once covered code has been published under a particular version of the license, you may always
continue to use it under the terms of that version. You may also choose to use such covered code under
the terms of any subsequent version of the license published by the PHP Group. No one other than the
PHP Group has the right to modify the terms applicable to covered code created under this
License.

6 Redistributions of any form whatsoever must retain the following acknowledgment:

"This product includes PHP software, freely available from <http://www.php.net/software/>".

mailto:group@php.net
mailto:group@php.net
http://www.php.net/software/

-342-

Programmer's Guide

THIS SOFTWARE IS PROVIDED BY THE PHP DEVELOPMENT TEAM ``AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE PHP DEVELOPMENT TEAM OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the PHP
Group.

The PHP Group can be contacted via Email at group@php.net.

For more information on the PHP Group and the PHP project, please see <http://www.php.net>.

PHP includes the Zend Engine, freely available at <http://www.zend.com>.

PostgreSQL

This product uses the PostgreSQL Database Management System(formerly known as Postgres,
then as Postgres95)

Portions Copyright © 1996-2005, The PostgreSQL Global Development Group

Portions Copyright © 1994, The Regents of the University of California

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose, without fee, and without a written agreement is hereby granted, provided that the above
copyright notice and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER
IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO
PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Python Dialog

The Administration Tools part of this product uses Python Dialog, a Python module for doing
console-mode user interaction.

Upstream Author:

Peter Astrand <peter@cendio.se>

Robb Shecter <robb@acm.org>

mailto:group@php.net
http://www.php.net/
http://www.zend.com/
mailto:peter@cendio.se
mailto:robb@acm.org

-343-

 Copyright Notice

Sultanbek Tezadov <http://sultan.da.ru>

Florent Rougon <flo@via.ecp.fr>

Copyright © 2000 Robb Shecter, Sultanbek Tezadov

Copyright © 2002, 2003, 2004 Florent Rougon

License:

This package is free software; you can redistribute it and/or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This package is distributed in the hope that it is useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this
package; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA

The complete source code of the Python dialog package and complete text of the GNU Lesser
General Public License can be found on the Vertica Systems Web site at
http://www.vertica.com/licenses/pythondialog-2.7.tar.bz2
http://www.vertica.com/licenses/pythondialog-2.7.tar.bz2

RRDTool Open Source License

Note: rrdtool is a dependency of using the ganglia-web third-party tool. RRDTool allows the
graphs displayed by ganglia-web to be produced.

RRDTOOL - Round Robin Database Tool

A tool for fast logging of numerical data graphical display of this data.

Copyright © 1998-2008 Tobias Oetiker

All rights reserved.

GNU GPL License

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if
not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA

FLOSS License Exception

(Adapted from http://www.mysql.com/company/legal/licensing/foss-exception.html)

http://sultan.da.ru/
mailto:flo@via.ecp.fr
http://www.vertica.com/licenses/pythondialog-2.7.tar.bz2
http://www.vertica.com/licenses/pythondialog-2.7.tar.bz2
http://www.mysql.com/company/legal/licensing/foss-exception.html

-344-

Programmer's Guide

I want specified Free/Libre and Open Source Software ("FLOSS") applications to be able to use
specified GPL-licensed RRDtool libraries (the "Program") despite the fact that not all FLOSS
licenses are compatible with version 2 of the GNU General Public License (the "GPL").

As a special exception to the terms and conditions of version 2.0 of the GPL:

You are free to distribute a Derivative Work that is formed entirely from the Program and one or
more works (each, a "FLOSS Work") licensed under one or more of the licenses listed below, as
long as:

1 You obey the GPL in all respects for the Program and the Derivative Work, except for
identifiable sections of the Derivative Work which are not derived from the Program, and which
can reasonably be considered independent and separate works in themselves

2 All identifiable sections of the Derivative Work which are not derived from the Program, and
which can reasonably be considered independent and separate works in themselves

 are distributed subject to one of the FLOSS licenses listed below, and

 the object code or executable form of those sections are accompanied by the complete
corresponding machine-readable source code for those sections on the same medium and
under the same FLOSS license as the corresponding object code or executable forms of
those sections.

3 Any works which are aggregated with the Program or with a Derivative Work on a volume of a
storage or distribution medium in accordance with the GPL, can reasonably be considered
independent and separate works in themselves which are not derivatives of either the
Program, a Derivative Work or a FLOSS Work.

If the above conditions are not met, then the Program may only be copied, modified, distributed or
used under the terms and conditions of the GPL.

FLOSS License List

License name Version(s)/Copyright Date

Academic Free License 2.0

Apache Software License 1.0/1.1/2.0

Apple Public Source License 2.0

Artistic license From Perl 5.8.0

BSD license "July 22 1999"

Common Public License 1.0

GNU Library or "Lesser" General Public License (LGPL) 2.0/2.1

IBM Public License, Version 1.0

Jabber Open Source License 1.0

MIT License (As listed in file MIT-License.txt) -

Mozilla Public License (MPL) 1.0/1.1

Open Software License 2.0

OpenSSL license (with original SSLeay license) "2003" ("1998")

PHP License 3.0

Python license (CNRI Python License) -

Python Software Foundation License 2.1.1

Sleepycat License "1999"

-345-

 Copyright Notice

W3C License "2001"

X11 License "2001"

Zlib/libpng License -

Zope Public License 2.0/2.1

Spread

This product uses software developed by Spread Concepts LLC for use in the Spread toolkit. For
more information about Spread see http://www.spread.org (http://www.spread.org).

Copyright © 1993-2006 Spread Concepts LLC.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer and request.

2 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer and request in the documentation and/or other materials provided
with the distribution.

3 All advertising materials (including web pages) mentioning features or use of this software, or
software that uses this software, must display the following acknowledgment: "This product
uses software developed by Spread Concepts LLC for use in the Spread toolkit. For more
information about Spread see http://www.spread.org"

4 The names "Spread" or "Spread toolkit" must not be used to endorse or promote products
derived from this software without prior written permission.

5 Redistributions of any form whatsoever must retain the following acknowledgment:

6 "This product uses software developed by Spread Concepts LLC for use in the Spread toolkit.
For more information about Spread, see http://www.spread.org"

7 This license shall be governed by and construed and enforced in accordance with the laws of
the State of Maryland, without reference to its conflicts of law provisions. The exclusive
jurisdiction and venue for all legal actions relating to this license shall be in courts of competent
subject matter jurisdiction located in the State of Maryland.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, SPREAD IS PROVIDED
UNDER THIS LICENSE ON AN AS IS BASIS, WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES THAT
SPREAD IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE OR
NON-INFRINGING. ALL WARRANTIES ARE DISCLAIMED AND THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE CODE IS WITH YOU. SHOULD ANY CODE PROVE
DEFECTIVE IN ANY RESPECT, YOU (NOT THE COPYRIGHT HOLDER OR ANY OTHER
CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY SERVICING, REPAIR OR
CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL PART OF
THIS LICENSE. NO USE OF ANY CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER
THIS DISCLAIMER.

http://www.spread.org/
http://www.spread.org/
http://www.spread.org/
http://www.spread.org/

-346-

Programmer's Guide

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR ANY OTHER CONTRIBUTOR BE LIABLE FOR ANY SPECIAL,
INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES FOR LOSS OF PROFITS,
REVENUE, OR FOR LOSS OF INFORMATION OR ANY OTHER LOSS.

YOU EXPRESSLY AGREE TO FOREVER INDEMNIFY, DEFEND AND HOLD HARMLESS THE
COPYRIGHT HOLDERS AND CONTRIBUTORS OF SPREAD AGAINST ALL CLAIMS,
DEMANDS, SUITS OR OTHER ACTIONS ARISING DIRECTLY OR INDIRECTLY FROM YOUR
ACCEPTANCE AND USE OF SPREAD.

Although NOT REQUIRED, we at Spread Concepts would appreciate it if active users of Spread
put a link on their web site to Spread's web site when possible. We also encourage users to let us
know who they are, how they are using Spread, and any comments they have through either
e-mail (spread@spread.org) or our web site at (http://www.spread.org/comments).

SNMP

Various copyrights apply to this package, listed in various separate parts below. Please make
sure that you read all the parts. Up until 2001, the project was based at UC Davis, and the first part
covers all code written during this time. From 2001 onwards, the project has been based at
SourceForge, and Networks Associates Technology, Inc hold the copyright on behalf of the wider
Net-SNMP community, covering all derivative work done since then. An additional copyright
section has been added as Part 3 below also under a BSD license for the work contributed by
Cambridge Broadband Ltd. to the project since 2001. An additional copyright section has been
added as Part 4 below also under a BSD license for the work contributed by Sun Microsystems,
Inc. to the project since 2003.

Code has been contributed to this project by many people over the years it has been in
development, and a full list of contributors can be found in the README file under the THANKS
section.

Part 1: CMU/UCD copyright notice: (BSD like)

Copyright © 1989, 1991, 1992 by Carnegie Mellon University

Derivative Work - 1996, 1998-2000

Copyright © 1996, 1998-2000 The Regents of the University of California

All Rights Reserved

Permission to use, copy, modify and distribute this software and its documentation for any
purpose and without fee is hereby granted, provided that the above copyright notice appears in all
copies and that both that copyright notice and this permission notice appear in supporting
documentation, and that the name of CMU and The Regents of the University of California not be
used in advertising or publicity pertaining to distribution of the software without specific written
permission.

mailto:spread@spread.org
http://www.spread.org/comments

-347-

 Copyright Notice

CMU AND THE REGENTS OF THE UNIVERSITY OF CALIFORNIA DISCLAIM ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL CMU OR THE
REGENTS OF THE UNIVERSITY OF CALIFORNIA BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
THE LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH
THE USE OR PERFORMANCE OF THIS SOFTWARE.

Part 2: Networks Associates Technology, Inc copyright notice (BSD)

Copyright © 2001-2003, Networks Associates Technology, Inc

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

 Neither the name of the Networks Associates Technology, Inc nor the names of its contributors
may be used to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Part 3: Cambridge Broadband Ltd. copyright notice (BSD)

Portions of this code are copyright (c) 2001-2003, Cambridge Broadband Ltd.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

-348-

Programmer's Guide

 The name of Cambridge Broadband Ltd. may not be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Part 4: Sun Microsystems, Inc. copyright notice (BSD)

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,

California 95054, U.S.A. All rights reserved.

Use is subject to license terms below.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo and Solaris are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and other countries.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

 Neither the name of the Sun Microsystems, Inc. nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Part 5: Sparta, Inc copyright notice (BSD)

Copyright © 2003-2006, Sparta, Inc

-349-

 Copyright Notice

All rights reserved.

 Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

 Neither the name of Sparta, Inc nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Part 6: Cisco/BUPTNIC copyright notice (BSD)

Copyright © 2004, Cisco, Inc and Information Network Center of Beijing University of Posts
and Telecommunications.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

 Neither the name of Cisco, Inc, Beijing University of Posts and Telecommunications, nor the
names of their contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

-350-

Programmer's Guide

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Part 7: Fabasoft R&D Software GmbH & Co KG copyright notice (BSD)

Copyright © Fabasoft R&D Software GmbH & Co KG, 2003

oss@fabasoft.com

Author: Bernhard Penz

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

 The name of Fabasoft R&D Software GmbH & Co KG or any of its subsidiaries, brand or
product names may not be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Tecla Command-line Editing

Copyright © 2000 by Martin C. Shepherd.

All rights reserved.

mailto:oss@fabasoft.com

-351-

 Copyright Notice

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, provided
that the above copyright notice(s) and this permission notice appear in all copies of the Software
and that both the above copyright notice(s) and this permission notice appear in supporting
documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY
RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS
NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in advertising
or otherwise to promote the sale, use or other dealings in this Software without prior written
authorization of the copyright holder.

Webmin Open Source License

Copyright © Jamie Cameron

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3 Neither the name of the developer nor the names of contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE DEVELOPER ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE DEVELOPER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

-352-

Programmer's Guide

xerces

NOTICE file corresponding to section 4(d) of the Apache License,

Version 2.0, in this case for the Apache Xerces distribution.

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

Portions of this software were originally based on the following:

Software copyright © 1999, IBM Corporation., http://www.ibm.com.

zlib

This is used by the project to load zipped files directly by COPY command. www.zlib.net/

zlib.h -- interface of the 'zlib' general purpose compression library version 1.2.3, July 18th, 2005

Copyright © 1995-2005 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied warranty. In no event will the
authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial
applications, and to alter it and redistribute it freely, subject to the following restrictions:

1 The origin of this software must not be misrepresented; you must not claim that you wrote the
original software. If you use this software in a product, an acknowledgment in the product
documentation would be appreciated but is not required.

2 Altered source versions must be plainly marked as such, and must not be misrepresented as
being the original software.

3 This notice may not be removed or altered from any source distribution.

Jean-loup Gailly jloup@gzip.org

Mark Adler madler@alumni.caltech.edu

http://www.apache.org/
http://www.ibm.com/
http://www.zlib.net/
mailto:jloup@gzip.org
mailto:madler@alumni.caltech.edu

	Technical Support
	About the Documentation
	Where to Find the Vertica Documentation
	Reading the Online Documentation
	Printing Full Books
	Suggested Reading Paths
	Where to Find Additional Information
	Typographical Conventions

	Preface
	Installing the Vertica Client Drivers
	Driver Prerequisites
	Supported Third-party Software
	ODBC Prerequisites
	ADO.NET Prerequisites
	Python Prerequisites
	Perl Prerequisites

	Client Driver Install Procedures
	Installing AIX, Linux, and Solaris Driver Managers
	Installing the Client RPM on Red Hat 5 64-bit, and SUSE 64-bit
	Installing ODBC on AIX, Linux, and Solaris
	Installing JDBC Driver on Linux and Solaris
	Installing ODBC, JDBC, and ADO.NET Drivers on Windows
	Installing Drivers on 32-bit Windows
	Installing Drivers on 64-bit Windows

	Modifying the CLASSPATH

	Using ODBC
	ODBC Architecture
	Creating an ODBC Data Source Name (DSN)
	Creating an ODBC DSN for Linux and Solaris Clients
	Creating an ODBC DSN for Windows Clients
	Setting Up a DSN
	Testing a DSN Using Excel 2003
	Testing a DSN Using Excel 2007
	Creating User and System DSN Entries

	DSN Parameters

	Vertica-specific ODBC Header File
	Supported ODBC Functions
	Unsupported ODBC Functions and Parameters
	Setting the Locale for ODBC Sessions
	Loading Data Through ODBC
	Using a Single Row Insert
	Using Batch Inserts
	Using Batch Insert With Version 4.0 Drivers
	Using Prepared Statements
	Creating and Executing Prepared Statements
	Command Reference for Prepared Statements
	SQLPrepare
	SQLBindParameter
	SQLExecute
	SQLParamData
	SQLPutData

	Tracking Load Status on the Server with ODBC
	Identifying the Number of Accepted Rows (ODBC)
	Identifying Accepted and Rejected Rows (ODBC)

	Error Handling During Batch Loads
	Loading Batches in Parallel

	Using the COPY Statement
	Using the LCOPY Statement
	Loading Data Into the WOS/ROS

	Working with ODBC Transactions
	Working With Large Result Sets
	Temporary Tables and AUTOCOMMIT
	Examples
	Using Vertica-Specific Parameters With INSERT

	Using JDBC
	Creating and Configuring a Connection
	Connection Properties
	Setting and Getting Connection Property Values
	Setting the Locale for JDBC Sessions
	Changing the Transaction Isolation Level
	Creating a Pooling Datasource

	JDBC Data Types
	Executing Queries Through JDBC
	Loading Data Through JDBC
	Using a Single Row Insert
	Batch Inserts Using JDBC Prepared Statements
	Command Reference for Prepared Statements in JDBC
	addBatch
	execute
	executeBatch
	executeQuery
	executeUpdate
	PreparedStatement
	setBoolean
	setDate
	setDouble
	setFloat
	setInt
	setLong
	setNull
	setString
	setTime
	setTimestamp
	Statement

	Directly Loading Batches into ROS
	Error Handling During Batch Loads
	Using Delimiters and Record Terminators for Batch Insert
	Tracking Load Status on the Server
	Identifying the Number of Accepted and Rejected Rows
	Identifying Accepted and Rejected Rows (JDBC)

	Bulk Loading Using the COPY Statement
	Copying Streams
	Copying Individual Streams
	Copying Multiple Streams
	Command Reference for Multiple Streams
	startCopyIn
	addSreamToCopyIn
	finishCopyIn

	Copy Multiple Streams Example

	Handling Large Result Sets
	Command Reference for Handling Large Result Sets
	setStreamingLRS
	getStreamingLRS
	setMaxLRSMemory
	getMaxLRSMemory

	Large Result Sets Example
	Temp Files Created During Processing

	Re-executing Failed Statements
	Temporary Tables and AUTOCOMMIT
	JDBC Examples
	Executing Queries
	Tracking Load Status
	Sample JDBC Application

	Using ADO.NET
	Creating an ADO.NET DSN Entry (optional)
	Setting the Locale for ADO.NET Sessions
	Creating and Closing Database Connections
	Connecting to the Database
	Connection String Keywords
	Setting the Transaction Isolation Level
	Using SSL: Installing Certificates on Windows
	Closing a Database Connection

	Querying the Database Programmatically
	Reading Data
	Inserting Data
	Loading Data
	Performing a Bulk Copy

	Working with Transactions
	Handling Parameters
	Data Types
	Using the Vertica Data Adapter
	Vertica Extensions for .NET
	AutoCommit Functionality
	IDataReader Implementations

	Using Python
	Python Unicode Support for Wide Characters
	Configuring the ODBC Run-time Environment on Linux
	Querying the Database Using Python

	Using Perl
	Perl Unicode Support
	Querying the Database Using Perl

	Using vsql
	Connecting From the Administration Tools
	Connecting from the Command Line
	Command Line Options
	? --help
	a --echo-all
	A --no-align
	c command --command command
	d dbname --dbname dbname
	e --echo-queries
	E
	f filename --file filename
	F separator --field-separator separator
	h hostname --host hostname
	H --html
	l --list
	n
	o filename --output filename
	p port --port port
	P assignment --pset assignment
	q --quiet
	R separator --record-separator separator
	s --single-step
	S --single-line
	t --tuples-only
	T table_options --table-attr table_options
	U username --username username
	v assignment --set assignment --variable assignment
	V --version
	w password
	W --password
	x --expanded
	X, --no-vsqlrc

	Connecting From a Non-Cluster Host

	Meta-Commands
	! [COMMAND]
	?
	a
	b
	c (or \connect) [dbname [username]]
	C [STRING]
	cd [DIR]
	The \d [PATTERN] meta-commands
	d [PATTERN]
	d \d <table> \df \dj \dn \dp \ds \dS \dt \dT \dtv \du \dv
	dj [PATTERN]
	dn [PATTERN]
	dp [PATTERN]
	ds [PATTERN]
	dS [PATTERN]
	dt [PATTERN]
	dT [PATTERN]
	dtv [PATTERN]
	du [PATTERN]
	dv [PATTERN]

	e \edit [FILE]
	echo [STRING]
	f [string]
	g
	H
	h \help [command]
	i FILE
	l
	locale
	o
	p
	password [USER]
	pset NAME [VALUE]
	q
	qecho [STRING]
	r
	s [FILE]
	set [NAME [VALUE [...]]]
	t
	T [STRING]
	timing
	unset [NAME]
	w [FILE]
	x
	z

	Variables
	AUTOCOMMIT
	DBNAME
	ECHO
	ECHO_HIDDEN
	ENCODING
	HISTCONTROL
	HISTSIZE
	HOST
	IGNOREEOF
	ON_ERROR_STOP
	PORT
	PROMPT1 PROMPT2 PROMPT3
	QUIET
	SINGLELINE
	SINGLESTEP
	USER
	VERBOSITY
	VSQL_HOME

	Prompting
	Command Line Editing
	Environment
	Locales
	Files
	Exporting Data Using vsql
	Copying Data Using vsql
	Notes for Windows Users
	Output Formatting Examples

	Writing Queries
	Historical (Snapshot) Queries
	Temporary Tables
	SQL Queries
	Subqueries
	Single-row Subqueries
	Multiple-row Subqueries
	Multicolumn Subqueries
	Noncorrelated and Correlated Subqueries
	Flattening FROM Clause Subqueries and Views
	DELETE Statement Subqueries
	UPDATE Statement Subqueries
	Subquery Expressions
	EXISTS Conditions
	IN Conditions
	LIKE Conditions
	HAVING Conditions

	Subquery Notes and Restrictions

	Joins
	The ANSI Join Syntax
	Join Conditions vs. Filter Conditions
	Inner Joins
	Equi-joins and Non Equi-Joins
	Natural Joins
	Cross Joins

	Outer Joins
	Range Joins
	Pre-join Projections and Join Predicates
	Join Notes and Restrictions

	Using SQL Analytics
	The Window OVER() Clause
	Named Windows
	Window Partitioning
	Window Ordering
	Window Framing
	Framing Windows with ROWS
	Framing Windows with RANGE
	Reporting Aggregates

	Event-based Windows
	Sessionization with Event-based Windows

	Using Time Series Analytics
	Gap Filling and Interpolation (GFI)
	Constant Interpolation
	The TIMESERIES Clause and Aggregates
	Linear Interpolation
	GFI Examples

	When Time Series Data Contains Nulls

	Optimizing Query Performance
	Sort Optimizations
	GROUP BY Pipelined or Hash
	Null Placement

	Top-K Optimizations
	Joins Optimizations
	Merge Joins for Insert-Select Queries
	Using Identically Segmented Projections

	Optimizing Query Speed with Predicates
	Constant Propagation and IN-list Constant Folding
	Optimizing Deletes and Updates
	Performance Considerations for Deletes and Updates
	Optimizing Deletes and Updates for Performance

	Using External Procedures
	Implementing External Procedures
	Requirements for External Procedures
	Installing External Procedure Executable Files
	Creating External Procedures

	Executing External Procedures
	Dropping External Procedures

	Using SQL Macros
	Creating SQL Macros
	Altering and Dropping SQL Macros
	Managing Access to SQL Macros
	Viewing Information About SQL Macros
	Migrating Built-in Functions

	Collecting Statistics
	Statistics Used by the Query Optimizer
	Statistics Collection Guidelines
	How Statistics are Computed
	Best Practices for Statistics Collection
	Importing and Exporting Statistics
	Removing Statistics
	Troubleshooting Issues Using Statistics

	Using Informatica PowerCenter
	Installing the Vertica Plug-in for PowerCenter
	Registering the Plug-in's Metadata
	Preparing the PowerCenter Client
	Copying the Plug-in Library on the Server

	Using the Vertica Plug-in for PowerCenter
	Setting PowerCenter's Buffer Size

	Appendix: Error Codes
	Error Codes
	Class 01 Error Code Examples
	Class 08 Error Code Examples
	Class 0A Error Code Examples
	Class 0L Error Code Examples
	Class 22 Error Code Examples
	Class 26 Error Code Examples
	Class 28 Error Code Examples
	Class 42 Error Code Examples
	Class 53 Error Code Examples
	Class 54 Error Code Examples
	Class 55 Error Code Examples
	Class 57 Error Code Examples
	Class 58 Error Code Examples
	Class V Error Code Examples

	Index
	Copyright Notice

