
Vertica® Analytic Database 4.1, Revision 1

SQL Reference Manual
Copyright© 2006-2011 Vertica Systems, Inc.

Date of Publication: January 7, 2011

CONFIDENTIAL

-ii-

Contents

Technical Support 1

About the Documentation 2

Where to Find the Vertica Documentation ... 2
Reading the Online Documentation .. 2
Printing Full Books ... 4
Suggested Reading Paths .. 4
Where to Find Additional Information ... 6
Typographical Conventions .. 7

Preface 9

SQL Overview 10

System Limits 11

SQL Language Elements 12

Keywords and Reserved Words .. 12
Keywords ... 12
Reserved Words ... 14

Identifiers .. 15
Literals .. 17

Number-type Literals ... 17
String Literals .. 19
Date/Time Literals ... 27

Operators .. 33
Binary Operators ... 33
Boolean Operators ... 36
Comparison Operators ... 36
Data Type Coercion Operators (CAST) .. 37
Date/Time Operators ... 38
Mathematical Operators .. 39
NULL Operators .. 40
String Concatenation Operators ... 41

Expressions ... 42
Aggregate Expressions .. 43
CASE Expressions ... 44
Column References ... 45
Comments .. 46
Date/Time Expressions .. 47
NULL Value .. 49
Numeric Expressions ... 49

-iii-

 Contents

Predicates .. 50
BETWEEN-predicate .. 50
Boolean-predicate .. 51
column-value-predicate ... 52
IN-predicate ... 53
join-predicate ... 54
LIKE-predicate .. 55
NULL-predicate .. 59

SQL Data Types 60

Binary Data Types .. 61
Boolean Data Type ... 65
Character Data Types.. 66
Date/Time Data Types .. 68

DATE .. 69
DATETIME ... 70
INTERVAL ... 70
SMALLDATETIME ... 85
TIME ... 85
TIMESTAMP .. 87

Numeric Data Types ... 92
DOUBLE PRECISION (FLOAT) ... 94
INTEGER .. 97
NUMERIC ... 97

Data Type Coercion .. 101
Data Type Coercion Chart .. 104

SQL Functions 106

Aggregate Functions ... 107
AVG [Aggregate] .. 107
COUNT [Aggregate] ... 108
MAX [Aggregate] ... 112
MIN [Aggregate] ... 112
STDDEV [Aggregate] ... 113
STDDEV_POP [Aggregate] .. 114
STDDEV_SAMP [Aggregate] .. 115
SUM [Aggregate] .. 116
SUM_FLOAT [Aggregate] ... 117
VAR_POP [Aggregate] ... 117
VAR_SAMP [Aggregate] .. 118
VARIANCE [Aggregate] .. 119

Analytic Functions .. 120
window_partition_clause ... 121
window_order_clause .. 123
window_frame_clause ... 125
named_windows .. 127
AVG [Analytic] ... 128
CONDITIONAL_CHANGE_EVENT [Analytic] ... 129
CONDITIONAL_TRUE_EVENT [Analytic] ... 130
COUNT [Analytic] .. 131

-iv-

SQL Reference Manual

CUME_DIST [Analytic] ... 132
DENSE_RANK [Analytic] .. 133
EXPONENTIAL_MOVING_AVERAGE [Analytic] ... 135
FIRST_VALUE [Analytic] ... 137
LAG [Analytic] ... 140
LAST_VALUE [Analytic] .. 143
LEAD [Analytic] ... 144
MAX [Analytic] .. 146
MEDIAN [Analytic] .. 148
MIN [Analytic] .. 149
NTILE [Analytic] .. 150
PERCENT_RANK [Analytic] ... 151
PERCENTILE_CONT [Analytic] ... 154
PERCENTILE_DISC [Analytic] ... 156
RANK [Analytic] .. 157
ROW_NUMBER [Analytic] ... 159
STDDEV [Analytic] .. 161
STDDEV_POP [Analytic] ... 162
STDDEV_SAMP [Analytic] ... 163
SUM [Analytic] ... 164
VAR_POP [Analytic] .. 165
VAR_SAMP [Analytic] .. 166
VARIANCE [Analytic] ... 168
Performance Optimization for Analytic Sort Computation ... 169

Boolean Functions .. 172
BIT_AND .. 172
BIT_OR ... 173
BIT_XOR .. 175

Date/Time Functions... 176
ADD_MONTHS .. 177
AGE_IN_MONTHS .. 178
AGE_IN_YEARS .. 179
CLOCK_TIMESTAMP... 180
CURRENT_DATE .. 181
CURRENT_TIME ... 182
CURRENT_TIMESTAMP ... 182
DATE_PART .. 183
DATE_TRUNC ... 187
DATEDIFF .. 188
EXTRACT ... 193
GETDATE ... 197
GETUTCDATE ... 197
ISFINITE ... 198
LAST_DAY .. 199
LOCALTIME .. 199
LOCALTIMESTAMP ... 200
MONTHS_BETWEEN ... 200
NOW [Date/Time] ... 202
OVERLAPS .. 203
STATEMENT_TIMESTAMP .. 204
SYSDATE ... 204
TIME_SLICE .. 205
TIMEOFDAY.. 210
TRANSACTION_TIMESTAMP .. 210

-v-

 Contents

Formatting Functions .. 212
TO_BITSTRING ... 212
TO_CHAR ... 213
TO_DATE ... 215
TO_HEX ... 216
TO_TIMESTAMP ... 216
TO_NUMBER ... 218
Template Patterns for Date/Time Formatting .. 219
Template Patterns for Numeric Formatting ... 221

IP Conversion Functions ... 222
INET_ATON ... 222
INET_NTOA ... 223
V6_ATON ... 224
V6_NTOA ... 225
V6_SUBNETA .. 226
V6_SUBNETN .. 227
V6_TYPE .. 228

Mathematical Functions .. 229
ABS ... 229
ACOS .. 230
ASIN .. 230
ATAN .. 231
ATAN2 .. 231
CBRT... 232
CEILING (CEIL) ... 232
COS ... 233
COT ... 233
DEGREES ... 234
EXP ... 234
FLOOR .. 235
HASH .. 236
LN .. 237
LOG ... 237
MOD .. 238
MODULARHASH .. 239
PI ... 239
POWER ... 240
RADIANS ... 240
RANDOM ... 241
RANDOMINT ... 242
ROUND ... 242
SIGN .. 244
SIN... 244
SQRT ... 244
TAN ... 245
TRUNC ... 245
WIDTH_BUCKET .. 246

NULL-handling Functions .. 248
COALESCE .. 248
ISNULL ... 249
NULLIF ... 250
NVL ... 251
NVL2 ... 253

-vi-

SQL Reference Manual

Sequence Functions .. 254
NEXTVAL .. 254
CURRVAL .. 255
LAST_INSERT_ID ... 257

String Functions .. 259
ASCII... 259
BIT_LENGTH ... 260
BITCOUNT ... 261
BITSTRING_TO_BINARY .. 261
BTRIM .. 262
CHARACTER_LENGTH ... 263
CHR ... 264
DECODE ... 264
GREATEST ... 266
GREATESTB .. 267
HEX_TO_BINARY .. 268
INET_ATON ... 269
INET_NTOA ... 270
INITCAP ... 271
INITCAPB ... 272
INSTR ... 272
INSTRB ... 274
LEAST ... 275
LEASTB .. 277
LEFT ... 278
LENGTH ... 279
LOWER ... 279
LOWERB .. 280
LPAD... 281
LTRIM ... 281
MD5... 282
OCTET_LENGTH .. 283
OVERLAY .. 284
OVERLAYB ... 285
POSITION ... 286
POSITIONB .. 287
QUOTE_IDENT .. 288
QUOTE_LITERAL ... 289
REPEAT .. 289
REPLACE ... 290
RIGHT ... 291
RPAD .. 292
RTRIM .. 292
SPLIT_PART .. 293
SPLIT_PARTB.. 294
STRPOS .. 295
STRPOSB .. 296
SUBSTR .. 296
SUBSTRB ... 297
SUBSTRING ... 298
TO_BITSTRING ... 299
TO_HEX ... 300
TRANSLATE .. 301
TRIM ... 301

-vii-

 Contents

UPPER ... 303
UPPERB .. 303
V6_ATON ... 304
V6_NTOA ... 305
V6_SUBNETA .. 306
V6_SUBNETN .. 307
V6_TYPE .. 308

System Information Functions .. 310
CURRENT_DATABASE ... 310
CURRENT_SCHEMA .. 310
CURRENT_USER .. 311
HAS_TABLE_PRIVILEGE .. 311
SESSION_USER ... 312
USER ... 313
VERSION .. 314

Timeseries Aggregate (TSA) Functions ... 314
TS_FIRST_VALUE .. 314
TS_LAST_VALUE ... 316

Vertica Functions .. 318
Alphabetical List of Vertica Functions .. 318
Catalog Management Functions .. 395
Constraint Management Functions .. 401
Database Management Functions .. 411
Epoch Management Functions .. 418
Partition Management Functions ... 424
Projection Management Functions .. 432
Purge Functions ... 440
Regular Expression Functions ... 442
Session Management Functions .. 455
Statistic Management Functions .. 465
Storage Management Functions .. 469
Tuple Mover Functions ... 475

SQL Statements 477

ALTER FUNCTION .. 477
ALTER PROJECTION RENAME ... 479
ALTER PROFILE .. 479
ALTER PROFILE RENAME... 481
ALTER RESOURCE POOL .. 481
ALTER SCHEMA .. 484
ALTER SEQUENCE .. 485
ALTER TABLE .. 488

table-constraint .. 492
ALTER USER .. 494
COMMIT .. 496
COPY .. 497

Parameters ... 498
COPY Formats .. 507
Notes .. 508
Examples ... 509
See Also ... 515

-viii-

SQL Reference Manual

CREATE FUNCTION .. 515
CREATE PROCEDURE .. 518
CREATE PROFILE .. 519
CREATE PROJECTION .. 522

encoding-type .. 526
hash-segmentation-clause .. 528
range-segmentation-clause .. 529

CREATE RESOURCE POOL .. 531
Built-in Pools ... 534
Built-in Pool Configuration ... 536

CREATE SCHEMA ... 539
CREATE SEQUENCE ... 540
CREATE TABLE ... 546

column-definition (table) ... 552
column-name-list (table) .. 553
column-constraint .. 556
table-constraint .. 560
hash-segmentation-clause (table) ... 561
range-segmentation-clause (table) ... 562

CREATE TEMPORARY TABLE ... 564
column-definition (temp table) .. 569
column-name-list (temp table) ... 570
hash-segmentation-clause (temp table) .. 572
range-segmentation-clause (temp table) .. 573

-ix-

 Contents

CREATE USER .. 576
CREATE VIEW ... 578
DELETE ... 580
DROP FUNCTION... 582
DROP PROCEDURE ... 583
DROP PROFILE .. 584
DROP PROJECTION ... 585
DROP RESOURCE POOL .. 586
DROP SCHEMA .. 586
DROP SEQUENCE .. 587
DROP TABLE .. 589
DROP USER .. 591
DROP VIEW .. 591
EXPLAIN ... 593
GRANT (Database) .. 595
GRANT (Function) ... 596
GRANT (Procedure) ... 597
GRANT (Resource Pool) .. 598
GRANT (Schema) .. 599
GRANT (Sequence) .. 599
GRANT (Table) .. 601
GRANT (View) .. 602
INSERT .. 603
LCOPY ... 604
PROFILE .. 605
RELEASE SAVEPOINT .. 606
REVOKE (Database) .. 606
REVOKE (Function) .. 607
REVOKE (Procedure) .. 608
REVOKE (Resource Pool) ... 608
REVOKE (Schema) .. 610
REVOKE (Sequence) ... 610
REVOKE (Table) ... 612
REVOKE (View) .. 612
ROLLBACK ... 614
ROLLBACK TO SAVEPOINT ... 614
SAVEPOINT .. 615
SELECT .. 617

INTO Clause .. 618
FROM Clause .. 620
WHERE Clause ... 622
TIMESERIES Clause .. 623
GROUP BY Clause ... 626
HAVING Clause ... 628
ORDER BY Clause ... 629
LIMIT Clause .. 631
OFFSET Clause ... 632

SET ... 633
DATESTYLE .. 634
ESCAPE_STRING_WARNING ... 635
INTERVALSTYLE ... 635
LOCALE ... 636
SEARCH_PATH ... 639

-x-

SQL Reference Manual

SESSION CHARACTERISTICS .. 641
SESSION MEMORYCAP .. 642
SESSION RESOURCE POOL .. 643
SESSION RUNTIMECAP .. 643
SESSION TEMPSPACECAP ... 645
STANDARD_CONFORMING_STRINGS .. 646
TIME ZONE .. 647

SHOW .. 650
TRUNCATE TABLE ... 651
UNION ... 652
UPDATE .. 656

SQL System Tables (Monitoring APIs) 660

V_CATALOG Schema ... 664
COLUMNS ... 664
DUAL .. 665
FOREIGN_KEYS ... 666
GRANTS ... 667
PASSWORDS ... 669
PRIMARY_KEYS .. 669
PROFILE_PARAMETERS ... 670
PROFILES ... 671
PROJECTION_COLUMNS .. 672
PROJECTIONS ... 673
RESOURCE_POOLS .. 676
SEQUENCES .. 677
SYSTEM_TABLES .. 679
TABLE_CONSTRAINTS ... 680
TABLES .. 681
TYPES ... 682
USER_FUNCTIONS... 683
USER_PROCEDURES ... 684
USERS ... 685
VIEW_COLUMNS ... 686
VIEWS .. 688

V_MONITOR Schema ... 689
ACTIVE_EVENTS ... 689
COLUMN_STORAGE ... 691
CONFIGURATION_PARAMETERS .. 693
CURRENT_SESSION .. 694
DELETE_VECTORS .. 697
DISK_RESOURCE_REJECTIONS .. 698
DISK_STORAGE ... 699
EVENT_CONFIGURATIONS ... 703
EXECUTION_ENGINE_PROFILES ... 704
HOST_RESOURCES .. 708
LOAD_STREAMS .. 710
LOCKS .. 712
NODE_RESOURCES ... 714
PARTITIONS .. 716
PROJECTION_REFRESHES ... 717
PROJECTION_STORAGE ... 719

-xi-

 Contents

QUERY_METRICS .. 721
QUERY_PROFILES ... 722
RESOURCE_ACQUISITIONS .. 724
RESOURCE_ACQUISITIONS_HISTORY ... 727
RESOURCE_POOL_STATUS ... 730
RESOURCE_QUEUES... 734
RESOURCE_REJECTIONS ... 735
RESOURCE_USAGE ... 736
SESSION_PROFILES... 739
SESSIONS ... 741
STORAGE_CONTAINERS ... 743
STRATA ... 746
STRATA_STRUCTURES .. 749
SYSTEM ... 751
TUPLE_MOVER_OPERATIONS .. 752
WOS_CONTAINER_STORAGE ... 753

Appendix: Compatibility with Other RDBMS 757

Data Type Mappings Between Vertica and Oracle ... 757

Index 761

Copyright Notice 770

-1-

Technical Support

To submit problem reports, questions, comments, and suggestions, use the Technical Support
page on the Vertica Systems, Inc., Web site.

Note: You must be a registered user in order to access the support page.

1 Go to http://www.vertica.com/support (http://www.vertica.com/support).

2 Click My Support.

You can also email verticahelp@vertica.com.

Before you report a problem, run the Diagnostics Utility described in the Troubleshooting Guide

and attach the resulting .zip file to your ticket.

http://www.vertica.com/support
http://www.vertica.com/support
mailto:verticahelp@vertica.com

-2-

About the Documentation

This section describes how to access and print Vertica documentation. It also includes suggested
reading paths (page 4).

Where to Find the Vertica Documentation
You can read or download the Vertica documentation for the current release of Vertica® Analytic
Database from the Product Documentation Page
http://www.vertica.com/v-zone/product_documentation. You must be a registered user to
access this page.

The documentation is available as a compressed tarball (.tar) or a zip archive (.zip) file. When

you extract the file on the database server system or locally on the client, contents are placed in a

/vertica41_doc/ directory.

Note: The documentation on the Vertica Systems, Inc., Web site is updated each time a new
release is issued. If you are using an older version of the software, refer to the documentation
on your database server or client systems.

See Installing Vertica Documentation in the Installation Guide.

Reading the Online Documentation

Reading the HTML documentation files

The Vertica documentation files are provided in HTML browser format for platform independence.
The HTML files require only a browser that displays frames properly with JavaScript enabled. The
HTML files do not require a Web (HTTP) server.

The Vertica documentation is supported on the following browsers:

 Mozilla FireFox

 Internet Explorer

 Apple Safari

 Opera

 Google Chrome (server-side installations only)

The instructions that follow assume you have installed the documentation on a client or server
machine.

Mozilla Firefox

1 Open a browser window.

2 Choose one of the following methods to access the documentation:

 Select File > Open File, navigate to ..\HTML-WEBHELP\index.htm, and click Open.

 OR drag and drop index.htm into a browser window.

http://www.vertica.com/v-zone/product_documentation

-3-

 About the Documentation

 OR press CTRL+O, navigate to index.htm, and click Open.

Internet Explorer

Use one of the following methods:

1 Open a browser window.

2 Choose one of the following methods to access the documentation:

 Select File > Open > Browse, navigate to ..\HTML-WEBHELP\index.htm, click Open,

and click OK.

 OR drag and drop index.htm into the browser window.

 OR press CTRL+O, Browse to the file, click Open, and click OK.

Note: If a message warns you that Internet Explorer has restricted the web page from running
scripts or ActiveX controls, right-click anywhere within the message and select Allow Blocked
Content.

Apple Safari

1 Open a browser window.

2 Choose one of the following methods to access the documentation:

 Select File > Open File, navigate to ..\HTML-WEBHELP\index.htm, and click Open.

 OR drag and drop index.htm into the browser window.

 OR press CTRL+O, navigate to index.htm, and click Open.

Opera

1 Open a browser window.

2 Position your cursor in the title bar and right click > Customize > Appearance, click the
Toolbar tab and select Main Bar.

3 Choose one of the following methods to access the documentation:

 Open a browser window and click Open, navigate to ..\HTML-WEBHELP\index.htm,

and click Open.

 OR drag and drop index.htm into the browser window.

 OR press CTRL+O, navigate to index.htm, and click Open.

Google Chrome

Google does not support access to client-side installations of the documentation. You'll have to
point to the documentation installed on a server system.

1 Open a browser window.

2 Choose one of the following methods to access the documentation:

In the address bar, type the location of the index.htm file on the server. For example:
file://<servername>//vertica41_doc//HTML/Master/index.htm

 OR drag and drop index.htm into the browser window.

 OR press CTRL+O, navigate to index.htm, and click Open.

-4-

SQL Reference Manual

Notes

The .tar or .zip file you download contains a complete documentation set.

The documentation page of the Downloads Web site
http://www.vertica.com/v-zone/download_vertica is updated as new versions of Vertica are
released. When the version you download is no longer the most recent release, refer only to the
documentation included in your RPM.

The Vertica documentation contains links to Web sites of other companies or organizations that
Vertica does not own or control. If you find broken links, please let us know.

Report any script, image rendering, or text formatting problems to Technical Support (on page
1).

Printing Full Books
Vertica also publishes books as Adobe Acrobat™ PDF. The books are designed to be printed on
standard 8½ x 11 paper using full duplex (two-sided) printing.

Note: Vertica manuals are topic driven and not meant to be read in a linear fashion. Therefore,
the PDFs do not resemble the format of typical books. Each topic starts a new page, so some of
the pages are very short, and there are blank pages between each topic.

Open and print the PDF documents using Acrobat Acrobat Reader. You can download the latest
version of the free Reader from the Adobe Web site
(http://www.adobe.com/products/acrobat/readstep2.html).

The following list provides links to the PDFs.

 Release Notes

 Concepts Guide

 Installation Guide

 Getting Started Guide

 Administrator's Guide

 Programmer's Guide

 SQL Reference Manual

 Troubleshooting Guide

Suggested Reading Paths
This section provides a suggested reading path for various users. Vertica recommends that you
read the manuals listed under All Users first.

All Users

 Release Notes — Release-specific information, including new features and behavior changes
to the product and documentation

 Concepts Guide — Basic concepts critical to understanding Vertica

http://www.vertica.com/v-zone/download_vertica
http://www.adobe.com/products/acrobat/readstep2.html

-5-

 About the Documentation

 Getting Started Guide — A tutorial that takes you through the process of configuring a Vertica
database and running example queries

 Troubleshooting Guide — General troubleshooting information

System Administrators

 Installation Guide — Platform configuration and software installation

 Release Notes — Release-specific information, including new features and behavior changes
to the product and documentation

Database Administrators

 Installation Guide — Platform configuration and software installation

 Administrator's Guide — Database configuration, loading, security, and maintenance

Application Developers

 Programmer's Guide — Connecting to a database, queries, transactions, and so on

 SQL Reference Manual — SQL and Vertica-specific language information

-6-

Where to Find Additional Information
Visit the Vertica Systems, Inc. Web site (http://www.vertica.com) to keep up to date with:

 Downloads

 Frequently Asked Questions (FAQs)

 Discussion forums

 News, tips, and techniques

 Training

http://www.vertica.com/

-7-

 7

Typographical Conventions
The following are the typographical and syntax conventions used in the Vertica documentation.

Typographical Convention Description

Bold Indicates areas of emphasis, such as a special menu command.

Button Indicates the word is a button on the window or screen.

Code SQL and program code displays in a monospaced (fixed-width) font.

Database objects Names of database objects, such as tables, are shown in san-serif
type.

Emphasis Indicates emphasis and the titles of other documents or system files.

monospace Indicates literal interactive or programmatic input/output.

monospace italics Indicates user-supplied information in interactive or programmatic
input/output.

UPPERCASE Indicates the name of a SQL command or keyword. SQL keywords

are case insensitive; SELECT is the same as Select, which is the

same as select.

User input Text entered by the user is shown in bold san serif type.

 indicates the Return/Enter key; implicit on all user input that includes
text

Right-angle bracket > Indicates a flow of events, usually from a drop-down menu.

Click Indicates that the reader clicks options, such as menu command
buttons, radio buttons, and mouse selections; for example, "Click OK
to proceed."

Press Indicates that the reader perform some action on the keyboard; for
example, "Press Enter."

Syntax Convention Description

Text without brackets/braces Indicates content you type as shown.

< Text inside angle brackets > Placeholder for which you must supply a value. The variable is usually
shown in italics. See Placeholders below.

[Text inside brackets] Indicates optional items; for example, CREATE TABLE
[schema_name.]table_name

The brackets indicate that the schema_name is optional. Do not type
the square brackets.

{ Text inside braces } Indicates a set of options from which you choose one; for example:

QUOTES { ON | OFF } indicates that exactly one of ON or OFF must

-8-

SQL Reference Manual

be provided.You do not type the braces: QUOTES ON

Backslash \ Continuation character used to indicate text that is too long to fit on a
single line.

Ellipses ... Indicate a repetition of the previous parameter. For example,

option[,...] means that you can enter multiple,

comma-separated options.

Note: Showing an ellipses in code examples might also mean that
part of the text has been omitted for readability, such as in multi-row
result sets.

 Indentation Is an attempt to maximize readability; SQL is a free-form language.

Placeholders Items that must be replaced with appropriate identifiers or
expressions are shown in italics.

Vertical bar | Is a separator for mutually exclusive items. For example: [ASC |
DESC]

Choose one or neither. You do not type the square brackets.

-9-

Preface

This guide provides a reference description of the Vertica SQL database language.

Audience

This document is intended for anyone who uses Vertica. It assumes that you are familiar with the
basic concepts and terminology of the SQL language and relational database management
systems.

-10-

SQL Overview

An abbreviation for Structured Query Language, SQL is a widely-used, industry standard data
definition and data manipulation language for relational databases.

Note: In Vertica, use a semicolon to end a statement or to combine multiple statements on one
line.

Vertica Support for ANSI SQL Standards

Vertica SQL supports a subset of ANSI SQL-99.

See BNF Grammar for SQL-99 (http://savage.net.au/SQL/sql-99.bnf.html)

Support for Historical Queries

Unlike most databases, the DELETE (page 580) command in Vertica does not delete data; it
marks records as deleted. The UPDATE (page 656) command performs an INSERT and a
DELETE. This behavior is necessary for historical queries. See Historical (Snapshot) Queries in
the Programmer's Guide.

Joins

Vertica supports typical data warehousing query joins. For details, see Joins in the Programmer's
Guide.

Transactions

Session-scoped isolation levels determine transaction characteristics for transactions within a
specific user session. You set them through the SET SESSION CHARACTERISTICS (page 641)
command. Specifically, they determine what data a transaction can access when other
transactions are running concurrently. See Transactions in the Concepts Guide.

http://savage.net.au/SQL/sql-99.bnf.html

-11-

System Limits

This section describes system limits on the size and number of objects in a Vertica database. In
most cases, computer memory and disk drive are the limiting factors.

Item Limit

Database size Approximates the number of files times the file size on a
platform, depending on the maximum disk configuration.

Table size 2^64 rows per node, or 2^63 bytes per column,
whichever is smaller.

Row size 8MB. The row size is approximately the sum of its
maximum column sizes, where, for example a
varchar(80) has a maximum size of 80 bytes.

Key size 1600 x 4000

Number of tables/projections per
database

Limited by physical RAM, as the catalog must fit in
memory.

Number of concurrent connections per
node

Default of 50, limited by physical RAM (or threads per
process), typically 1024.

Number of concurrent connections per
cluster

Limited by physical RAM of a single node (or threads per
process), typically 1024.

Number of columns per table 1600.

Number of rows per load 2^63.

Number of partitions 256.

Note: The maximum number of partitions varies with

the number of columns in the table, as well as system
RAM. Vertica recommends a maximum of 20 partitions.
Ideally, create no more than 12.

Length for a fixed-length column 65000 bytes.

Length for a variable-length column 65000 bytes.

Length of basic names 128 bytes. Basic names include table names, column
names, etc.

Depth of nesting subqueries Unlimited in FROM or WHERE or HAVING clause.

-12-

SQL Language Elements

This chapter presents detailed descriptions of the language elements and conventions of Vertica
SQL.

Keywords and Reserved Words
Keywords are words that have a specific meaning in the SQL language. Although SQL is not
case-sensitive with respect to keywords, they are generally shown in uppercase letters throughout
this documentation for readability purposes.

Some SQL keywords are also reserved words that cannot be used in an identifier unless enclosed
in double quote (") characters.

Keywords

Keyword are words that are specially handled by the grammar. Every SQL statement contains one
or more keywords.

Begins with Keyword

A ABORT, ABSOLUTE, ACCESS, ACCESRANK, ACTION, ADD, AFTER,
AGGREGATE, ALL, ALSO, ALTER, ANALYSE, ANALYZE, AND, ANY, ARRAY,
AS, ASC, ASSERTION, ASSIGNMENT, AT, AUTHORIZATION, AUTO,
AUTO_INCREMENT

B BACKWARD, BEFORE, BEGIN, BETWEEN, BIGINT, BINARY, BIT,
BLOCK_DICT, BLOCKDICT_COMP, BOOLEAN, BOTH, BY, BYTEA, BZIP

C CACHE, CALLED, CASCADE, CASE, CAST, CATALOGPATH, CHAIN, CHAR,
CHAR_LENGTH, CHARACTER, CHARACTER_LENGTH, CHARACTERISTICS,
CHARACTERS, CHECK, CHECKPOINT, CLASS, CLOSE, CLUSTER,
COALESCE, COLLATE, COLUMN, COLUMN_COUNT, COMMENT, COMMIT,
COMMITTED, COMMONDELTA_COMP, CONSTRAINT, CONSTRAINTS, COPY,
CORRELATION, CREATE, CREATEDB, CREATEUSER, CROSS, CSV,
CURRENT_DATABASE, CURRENT_DATE, CURRENT_SCHEMA,
CURRENT_TIME, CURRENT_TIMESTAMP, CURRENT_USER, CURSOR,
CYCLE

D DATA, DATABASE, DATAPATH, DATE, DATEDIFF, DATETIME, DAY,
DEALLOCATE, DEC, DECIMAL, DECLARE, DECODE, DEFAULT, DEFAULTS,
DEFERRABLE, DEFERRED, DEFINER, DELETE, DELIMITER, DELIMITERS,
DELTARANGE_COMP, DELTARANGE_COMP_SP, DELTAVAL, DESC,
DETERMINES, DIRECT, DIRECTCOLS, DIRECTGROUPED, DISTINCT,
DISTVALINDEX, DO, DOMAIN, DOUBLE, DROP, DURABLE

E EACH, ELSE, ENCLOSED, ENCODING, ENCRYPTED, END,
ENFORCELENGTH, EPOCH, ERROR, ESCAPE, EXCEPT, EXCEPTIONS,
EXCLUDE, EXCLUDING, EXCLUSIVE, EXECUTE, EXISTS, EXPLAIN,
EXTERNAL, EXTRACT

F FALSE, FETCH, FILLER, FIRST, FLOAT, FOLLOWING, FOR, FORCE,
FOREIGN, FORMAT, FORWARD, FREEZE, FROM, FULL, FUNCTION

-13-

 SQL Language Elements

G GCDDELTA, GLOBAL, GRANT, GROUP, GROUPED, GZIP

H HANDLER, HASH, HAVING, HOLD, HOUR, HOURS

I IDENTITY, IGNORE, ILIKE, ILIKEB, IMMEDIATE, IMMUTABLE, IMPLICIT, IN,
INCLUDING, INCREMENT, INDEX, INHERITS, INITIALLY, INNER, INOUT,
INPUT, INSENSITIVE, INSERT, INSTEAD, INT, INTEGER, INTERSECT,
INTERVAL, INTERVALYM, INTO, INVOKER, IS, ISNULL, ISOLATION

J JOIN

K KEY, KSAFE

L LANCOMPILER, LANGUAGE, LARGE, LAST, LATEST, LEADING, LEFT, LESS,
LEVEL, LIKE, LIKEB, LIMIT, LISTEN, LOAD, LOCAL, LOCALTIME,
LOCALTIMESTAMP, LOCATION, LOCK

M MANAGED, MATCH, MAXCONCURRENCY, MAXMEMORYSIZE, MAXVALUE,
MEMORYCAP, MEMORYSIZE, MERGEOUT, MICROSECONDS,
MILLISECONDS, MINUTE, MINUTES, MINVALUE, MODE, MONEY, MONTH,
MOVE, MOVEOUT

N NAME, NATIONAL, NATIVE, NATURAL, NCHAR, NEW, NEXT, NO,
NOCREATEDB, NOCREATEUSER, NODE, NODES, NONE, NOT, NOTHING,
NOTIFY, NOTNULL, NOWAIT, NULL, NULLCOLS, NULLS, NULLSEQUAL,
NULLIF, NUMBER, NUMERIC

O OBJECT, OCTETS, OF, OFF, OFFSET, OIDS, OLD, ON, ONLY, OPERATOR,
OPTION, OR, ORDER, OTHERS, OUT, OUTER, OVER, OVERLAPS, OVERLAY,
OWNER

P PARTIAL, PASSWORD, PINNED, PLACING, PLANNEDCONCURRENCY,
POOL, POSITION, PRECEDING, PRECISION, PREPARE, PRESERVE,
PRIMARY, PRIOR, PRIORITY, PRIVILEGES, PROCEDURAL, PROCEDURE,
PROFILE, PROJECTION

Q QUEUETIMEOUT, QUOTE

R RANGE, RAW, READ, REAL, RECHECK, RECORD, RECOVER, REFERENCES,
REFRESH, REINDEX, REJECTED, REJECTMAX, RELATIVE, RELEASE,
RENAME, REPEATABLE, REPLACE, RESET, RESOURCE, RESTART,
RESTRICT, RETURN, RETURNREJECTED, REVOKE, RIGHT, RLE,
ROLLBACK, ROW, ROWS, RULE, RUNTIMECAP

S SAVEPOINT, SCHEMA, SCROLL, SECOND, SECONDS, SECURITY,
SEGMENTED, SELECT, SEQUENCE, SERIALIZABLE, SESSION,
SESSION_USER, SET, SETOF, SHARE, SHOW, SIMILAR, SIMPLE,
SINGLEINITIATOR, SITE, SITES, SKIP, SMALLDATETIME, SMALLINT, SOME,
SPLIT, STABLE, START, STATEMENT, STATISTICS, STDERR, STDIN,
STDOUT, STORAGE, STREAM, STRICT, SUBSTRING, SYSDATE, SYSID

T TABLE, TABLESPACE, TEMP, TEMPLATE, TEMPORARY, TEMPSPACECAP,
TERMINATOR, THAN, THEN, TIES, TIME, TIMESERIES, TIMESTAMP,
TIMESTAMPK, TIMESTAMPTZ, TIMETZ, TIMEZONE, TINYINT, TO, TOAST,
TRAILING, TRANSACTION, TREAT, TRICKLE, TRIGGER, TRIM, TRUE,
TRUNCATE, TRUSTED, TYPE

U UNBOUNDED, UNCOMMITTED, UNENCRYPTED, UNION, UNIQUE,
UNKNOWN, UNLISTEN, UNSEGMENTED, UNTIL, UPDATE, USAGE, USER,

-14-

SQL Reference Manual

USING

V VACUUM, VALID, VALIDATOR, VALINDEX, VALUES, VARBINARY, VARCHAR,
VARYING, VERBOSE, VIEW, VOLATILE

W WHEN, WHERE, WINDOW, WITH, WITHIN, WITHOUT, WORK, WRITE

Y YEAR

Z ZONE

Reserved Words

Many SQL keywords are also reserved words, all reserved word is not necessarily keyword; for
example, a reserved word might be reserved for other/future use. In Vertica, reserved words can
be used anywhere an identifier is used, as long as they are double-quoted.

Begins with Reserved Word

A ACCESRANK, ALL, ANALYSE, ANALYZE, AND, ANY, ARRAY, AS, ASC,
AUTHORIZATION, AUTO_INCREMENT

B BETWEEN, BIGINT, BINARY, BIT, BOOLEAN, BOTH, BYTEA

C CASE, CAST, CHAR, CHAR_LENGTH, CHARACTER, CHARACTER_LENGTH,
CHECK, COLLATE, COLUMN, CONSTRAINT, CORRELATION, CREATE,
CROSS, CURRENT_DATABASE, CURRENT_DATE, CURRENT_SCHEMA,
CURRENT_TIME, CURRENT_TIMESTAMP, CURRENT_USER

D DATEDIFF, DATETIME, DECIMAL, DECODE, DEFAULT, DEFERRABLE, DESC,
DISTINCT, DO

E ELSE, ENCODED, END, EXCEPT, EXISTS, EXTRACT

F FALSE, FLOAT, FOR, FOREIGN, FREEZE, FROM, FULL

G GRANT, GROUP. GROUPED

H HAVING

I IDENTITY, ILIKE, ILIKEB, IN, IN_P, INITIALLY, INNER, INOUT, INT, INTEGER,
INTERSECT, INTERVAL, INTERVALYM, INTO, IS, ISNULL

J JOIN

K KSAFE

L LEADING, LEFT, LIKE, LIKEB, LIMIT, LOCALTIME, LOCALTIMESTAMP

M MONEY

N NATIONAL, NATURAL, NCHAR, NEW, NODE, NODES, NONE, NOT, NOTNULL,
NULL, NULLSEQUAL, NUMBER, NUMERIC

O OFF, OFFSET, OLD, ON, ONLY, OR, ORDER, OUT, OUTER, OVER,
OVERLAPS, OVERLAY

P PINNED, PLACING, POSITION, PRECISION, PRIMARY, PROJECTION

R RAW, REAL, REFERENCES, RIGHT, ROW

-15-

 SQL Language Elements

S SCHEMA, SEGMENTED, SELECT, SESSION_USER, SETOF, SIMILAR,
SMALLDATETIME, SMALLINT, SOME, SUBSTRING, SYSDATE

T TABLE, THEN, TIME, TIMESERIES, TIMESTAMP, TIMESTAMPTZ, TIMETZ,
TIMEZONE, TINYINT, TO, TRAILING, TREAT, TRIM, TRUE_P

U UNBOUNDED, UNION, UNIQUE, UNSEGMENTED, USER, USING

V VALINDEX, VARBINARY, VARCHAR, VERBOSE,

W WHEN, WHERE, WINDOW, WITH, WITHIN

Identifiers
Identifiers (names) of objects such as schema, table, projection, column names, and so on, can be
up to 128 bytes in length.

Unquoted Identifiers

Unquoted SQL identifiers must begin with one of the following:

 An alphabetic character (A-Z or a-z, including letters with diacritical marks and non-Latin
letters)

 Underscore (_)

Subsequent characters in an identifier can be:

 Alphabetic

 Digits(0-9)

 Dollar sign ($). Dollar sign is not allowed in identifiers according to the SQL standard and could

cause application portability problems.

Quoted Identifiers

Identifiers enclosed in double quote (") characters can contain any character. If you want to

include a double quote, you need a pair of them; for example """". You can use names that

would otherwise be invalid, such as names that include only numeric characters ("123") or

contain space characters, punctuation marks, keywords, and so on; for example, CREATE
SEQUENCE "my sequence!";

Double quotes are required for non-alphanumerics and SQL keywords such as "1time", "Next
week" and "Select".

Note: Identifiers are not case-sensitive. Thus, identifiers "ABC", "ABc", and "aBc" are

synonymous, as are ABC, ABc, and aBc.

-16-

SQL Reference Manual

Identifiers Are Stored As Created

SQL identifiers, such as table and column names, are no longer converted to lowercase. They are
stored as created, and references to them are resolved using case-insensitive compares. It is not
necessary to double quote mixed-case identifiers. For example, The following statement creates

table ALLCAPS.

=> CREATE TABLE ALLCAPS(c1 varchar(30));

=> INSERT INTO ALLCAPS values('upper case');

The following statements are variations of the same query and all return identical results:

=> SELECT * FROM ALLCAPS;

=> SELECT * FROM allcaps;

=> SELECT * FROM "allcaps";

All three commands return the same result:

 c1

 upper case

(1 row)

Note that the system returns an error if you try to create table AllCaps:

=> CREATE TABLE allcaps(c1 varchar(30));

 ROLLBACK: table "AllCaps" already exists

See QUOTE_IDENT (page 288) for additional information.

-17-

 SQL Language Elements

Special note about Case-sensitive System Tables

The V_CATALOG.TABLES (page 681).TABLE_SCHEMA and TABLE_NAME columns

are case sensitive when used with an equality (=) predicate in queries. For example, given
the following schema:

=> CREATE SCHEMA SS;

=> CREATE TABLE SS.TT (c1 int);

=> INSERT INTO ss.tt VALUES (1);

If you execute a query using the = predicate, Vertica returns 0 rows:

=> SELECT table_schema, table_name FROM v_catalog.tables WHERE table_schema

='ss';

 table_schema | table_name

--------------+------------

(0 rows)

Use the case-insensitive ILIKE predicate to return the expected results:

=> SELECT table_schema, table_name FROM v_catalog.tables WHERE table_schema

ILIKE 'ss';

 table_schema | table_name

--------------+------------

 SS | TT

(1 row)

Literals
Literals are numbers or strings used in SQL as constants. Literals are included in the select-list,
along with expressions and built-in functions and can also be constants.

Vertica provides support for number-type literals (integers, numerics, and floating points) string
literals, and date/time literals. The various string literal formats are discussed in this section.

Number-type Literals

There are three types of numbers in Vertica: Integers, numerics, and floats.

 Integers (page 97) are whole numbers less than 2^63 and must be digits.

 Numerics (page 97) are very large integers or include a decimal point with a precision and a
scale.

Note: Whole numbers that are larger than 2^63 are treated as numerics. Numbers with a
decimal point but no exponent are treated as numerics with default precision and scale.

 Floating point (page 94) literals are like numerics with the addition of an exponent.

Numeric-type values can also be generated using casts from character strings. This is a more
general syntax. See the Examples section below, as well as Data Type Coercion Operators
(CAST) (page 37).

-18-

SQL Reference Manual

Syntax

digits

digits.[digits] | [digits].digits

digits e[+-]digits | [digits].digits e[+-]digits | digits.[digits] e[+-]digits

Parameters

digits represents one or more numeric characters (0 through 9).

Notes

 At least one digit must follow the exponent marker (e), if e is present.

 There cannot be any spaces or other characters embedded in the constant.

 Leading plus (+) or minus (-) signs are not considered part of the constant; they are unary
operators applied to the constant.

 A numeric constant that contains neither a decimal point nor an exponent is initially presumed

to be type INTEGER if its value fits; otherwise it is presumed to be NUMERIC.

 In most cases a numeric-type constant is automatically coerced to the most appropriate type
depending on context. When necessary, you can force a numeric value to be interpreted as a
specific data type by casting it as described in Data Type Coercion Operators (CAST) (page
37).

 Vertica follows the IEEE specification for floating point, including NaN (not a number) and
Infinity (Inf).

 A NaN is not greater than and at the same time not less than anything, even itself. In other
words, comparisons always return false whenever a NaN is involved. See Numeric
Expressions (page 49) for examples.

Examples

The following are examples of number-type literals:

42

3.5

4.

.001

5e2

1.925e-3

Scientific notation:

=> SELECT NUMERIC '1e10';

 ?column?

 10000000000

(1 row)

BINARY scaling:

=> SELECT NUMERIC '1p10';

 ?column?

 1024

(1 row)

-19-

 SQL Language Elements

=> SELECT FLOAT 'Infinity';

?column?

 Infinity

(1 row)

See Also

Data Type Coercion (page 101)

String Literals

String literals are surrounded by single or double quotes.

Double-quoted strings are subject to the backslash

Single-quoted strings do not require a backslash, except for \' and \\

You can embed single quotes and backslashes into single-quoted strings.

To include other backslash (escape) sequences, such as \t (tab), you must use the double-quoted
form.

Single quoted strings require a preceding space between them and the word before because
single quotes are allowed in identifiers.

Standard Conforming Strings and Escape Characters

When interpreting commands, such as those entered in vsql or in queries passed via JDBC or
ODBC, Vertica uses standard conforming strings as specified in the SQL standard. In standard
conforming strings, backslashes are treated as string literals (ordinary characters), not escape
characters.

Note: Text read in from files or streams (such as the data inserted using the COPY (page 497)
statement) are not treated as literal strings. The COPY command defines its own escape
characters for the data it reads. See the COPY (page 497) statement documentation for details.

In Vertica databases prior to 4.0, standard conforming strings was not on by default, and
backslashes were considered escape sequences. After 4.0, escape sequences, including

Windows path names, do not work as before. For example, the TAB character '\t' is two

characters: '\' and 't'.

E'...' is the Extended character string literal (page 24) format, so to treat backslashes as

escape characters, use E'\t'.

You have the following options, but Vertica recommends that you migrate your application to use
standard conforming strings at your earliest convenience, when the warnings have been
addressed.

 To revert to this older behavior, set the StandardConformingStrings parameter to '0', as
described in Configuration Parameters in the Administrator's Guide.

 To enable standard conforming strings permanently, set the StandardConformingStrings
parameter to '1', as described in the procedure below.

-20-

SQL Reference Manual

 To enable standard conforming strings per session, use SET
STANDARD_CONFORMING_STRING TO ON (page 646), which treats backslashes as
escape characters for the current session.

The two sections that follow help you identify issues between Vertica 3.5 and 4.0.

Identifying Strings that are not Standard Conforming

The following procedure can be used to identify non-standard conforming strings in your
application so that you can convert them into standard conforming strings:

1 Be sure the StandardConformingStrings parameter is off, as described in Internationalization
Parameters in the Administrator's Guide.

=> SELECT SET_CONFIG_PARAMETER ('StandardConformingStrings' ,'0');

Note: Vertica recommends that you migrate your application to use Standard Conforming
Strings at your earliest convenience.

2 Turn on the EscapeStringWarning parameter. (ON is the default in <DBMS_SHORT 4.0.)

=> SELECT SET_CONFIG_PARAMETER ('EscapeStringWarning','1');

Vertica now returns a warning each time it encounters an escape string within a string literal.

For example, Vertica interprets the \n in the following example as a new line:

=> SELECT 'a\nb';

 WARNING: nonstandard use of escape in a string literal at character

8

 HINT: Use the escape string syntax for escapes, e.g., E'\r\n'.

 ?column?

 a

b

(1 row)

When StandardConformingStrings is ON, the string is interpreted as four characters: a \ n b.

Modify each string that Vertica flags by extending it as in the following example:

E'a\nb'

Or if the string has quoted single quotes, double them; for example, 'one'' double'.

3 Turn on the StandardConformingStrings parameter for all sessions:

SELECT SET_CONFIG_PARAMETER ('StandardConformingStrings' ,'1');

Doubled Single Quotes

This section discusses vsql inputs that are not passed on to the server.

Vertica recognizes two consecutive single quotes within a string literal as one single quote

character. For example, the following inputs, 'You''re here!' ignored the second

consecutive quote and returns the following:

vmartdb=> SELECT 'You''re here!';

 ?column?

 You're here!

-21-

 SQL Language Elements

(1 row)

This is the SQL standard representation and is preferred over the form, 'You\'re here!',

because backslashes are not parsed as before. You need to escape the backslash:

=> SELECT (E'You\'re here!');

 ?column?

 You're here!

(1 row)

This behavior change introduces a potential incompatibility in the use of the vsql \set command,
which automatically concatenates its arguments. For example, the following works in both Vertica
3.5 and 4.0:

\set file '\'' `pwd` '/file.txt' '\''

\echo :file

vsql takes the four arguments and outputs the following:

'/home/vertica/file.txt'

In Vertica 3.5 the above \set file command could be written all with the arguments run

together, but in 4.0 the adjacent single quotes are now parsed differently:

\set file '\''`pwd`'/file.txt''\''

\echo :file

'/home/vertica/file.txt''

Note the extra single quote at the end. This is due to the pair of adjacent single quotes together
with the backslash-quoted single quote.

The extra quote can be resolved either as in the first example above, or by combining the literals
as follows:

\set file '\''`pwd`'/file.txt'''

\echo :file

'/home/vertica/file.txt'

In either case the backslash-quoted single quotes should be changed to doubled single quotes as
follows:

\set file '''' `pwd` '/file.txt'''

See Also

STANDARD_CONFORMING_STRINGS (page 646)

ESCAPE_STRING_WARNING (page 635)

Internationalization Parameters and Implement Locales for International Data Sets in the
Administrator's Guide

String Literals (Standard)

Syntax

'characters'

-22-

SQL Reference Manual

Parameters

characters is an arbitrary sequence of UTF-8 characters bounded by single quotes (').

Using Single Quotes in a String

The SQL standard way of writing a single-quote character within a string literal is to write two
adjacent single quotes. for example:

SELECT 'Chester''s gorilla' returns Chester's gorilla.

Standard Conforming Strings and Escape Characters

Vertica uses standard conforming strings as specified in the SQL standard, which means that
backslashes are treated as string literals, not escape characters.

Note: Earlier versions of Vertica did not use standard conforming strings, and backslashes
were always considered escape sequences. To revert to this older behavior, set the

StandardConformingStrings parameter to '0', as described in Configuration Parameters

in the Administrator's Guide.

Notes

Vertica supports the UTF-8 character set.

Examples

=> SELECT 'This is a string';

 ?column?

 This is a string

(1 row)

=> SELECT 'This \is a string';

 WARNING: nonstandard use of escape in a string literal at character 8

 HINT: Use the escape string syntax for escapes, e.g., E'\r\n'.

 ?column?

 This is a string

(1 row)

vmartdb=> SELECT E'This \is a string';

 ?column?

 This is a string

=> SELECT E'This is a \n new line';

 ?column?

 This is a

 new line

(1 row)

=> SELECT 'String''s characters';

 ?column?

-23-

 SQL Language Elements

 String's characters

(1 row)

String Literals (Character)

Character string literals are a sequence of characters from a predefined character set and are

enclosed by single quotes. If the single quote is part of the sequence, it must be doubled as "''".

Standard Conforming Strings

Vertica now supports standard conforming strings as specified in the SQL standard, which means
that backslashes are treated as ordinary characters, not escape characters. In that case, escape
sequences, including Windows file names, do not work as before. To treat backslashes as escape

characters, use the new Extended string syntax (E'...').

To enable standard conforming strings permanently, set the StandardConformingStrings

parameter to '1', as described in the procedure below.

To enable standard conforming strings per session, use SET STANDARD_CONFORMING_STRING

TO ON (page 646), which treats back slashes as escape characters for the current session.

Identifying Strings that are not Standard Conforming

The following procedure can be used to identify non-standard conforming strings in your
application so that you can convert them into standard conforming strings:

1 Be sure the StandardConformingStrings parameter is off, as described in Internationalization
Parameters in the Administrator's Guide.

=> SELECT SET_CONFIG_PARAMETER ('StandardConformingStrings' ,'0');

Note: Vertica recommends migrating your application to use Standard Conforming Strings at
your earliest convenience.

2 Turn on the EscapeStringWarning parameter (ON is the default in <DBMS_SHORT 4.0):

=> SELECT SET_CONFIG_PARAMETER ('EscapeStringWarning','1');

Vertica now returns a warning each time it encounters an escape string within a string literal.

For example, Vertica interprets the \n in the following example as a new line:

'a\nb'

When StandardConformingStrings is ON, the string is interpreted as four characters.

3 Modify each string that Vertica flags.

To modify the string, extended it as in the following example:

E'a\nb'

Or if the string has quoted single quotes, double them; for example, 'one'' double'.

4 Turn on the StandardConformingStrings parameter:

=> SELECT SET_CONFIG_PARAMETER ('StandardConformingStrings' ,'1');

-24-

SQL Reference Manual

Doubled Single Quotes in vsql

Vertica recognizes two consecutive single quotes within a string literal as one single quote

character. For example, 'You''re here!'. This is the SQL standard representation and is

preferred over the form, E'You\'re here!', as backslashes are not parsed as before.

This behavior change introduces a potential incompatibility in the use of the vsql \set command,

which automatically concatenates its arguments. vsql commands (backslash commands) do not
use the standard conforming strings syntax, but accept two consecutive single quotes as one

single quote character. '' is preferred over \' because '' works in all cases. For example,

the following works in both Vertica 3.5 and 4.0:

\set file '\'' `pwd` '/file.txt' '\''

\echo :file

vsql takes the four arguments and outputs the following:

'/home/vertica/file.txt'

In Vertica 3.5 the above \set file command could be written all with the arguments run

together, but in 4.0 the adjacent single quotes are now parsed differently:

\set file '\''`pwd`'/file.txt''\''

\echo :file

'/home/vertica/file.txt''

Note the extra single quote at the end. This is due to the pair of adjacent single quotes together
with the backslash-quoted single quote.

The extra quote can be resolved either as in the first example above, or by combining the literals
as follows:

\set file '\''`pwd`'/file.txt'''

\echo :file

'/home/vertica/file.txt'

In either case the backslash-quoted single quotes should be changed to doubled single quotes as
follows:

\set file '''' `pwd` '/file.txt'''

See Also

STANDARD_CONFORMING_STRINGS (page 646) and ESCAPE_STRING_WARNING (page
635) in the SQL Reference Manual

Internationalization Parameters and Implement Locales for International Data Sets in the
Administrator's Guide

Extended String Literals

Syntax

E'characters'

-25-

 SQL Language Elements

Parameters

characters is an arbitrary sequence of characters bounded by single quotes (').

You can use C-style backslash sequence in extended string literals, which are an extension to the
SQL standard. You specify an escape string literal by writing the letter E as a prefix (before the
opening single quote); for example:

E'extended character string\n'

When an extended string literal continues across lines, write E only before the first opening quote.

Within an escape string, the backslash character (\) starts a C-style backslash escape sequence,

in which the combination of backslash and following character or numbers represent a special
byte value, as shown in the following list. Any other character following a backslash is taken

literally; for example, to include a backslash character, write two backslashes (\\).

 \\ is a backslash

 \b is a backspace

 \f is a form feed

 \n is a newline

 \r is a carriage return

 \t is a tab

 \x## is a tab where ## is a 1 or 2-digit hexadecimal number

 \###, where ### is a 1, 2, or 3-digit octal number representing a byte with the corresponding

code.

Note: It is your responsibility to ensure that the byte sequences you create contain valid
characters.

Unicode String Literals

Syntax

U&'characters' [UESCAPE '<Unicode escape character>']

Parameters

characters is an arbitrary sequence of UTF-8 characters bounded by single quotes (').

Unicode escape character is a single character from the source language character set other than
a hexit, plus sign (+), quote ('), double quote (''), or white space.

When StandardConformingStrings is enabled, Vertica supports SQL standard Unicode character
string literals (the character set is UTF-8 only).

Before entering a Unicode character string literal, enable standard conforming strings in one of the
following ways.

 To enable for all sessions, update the StandardConformingStrings configuration parameter.
See Configuration Parameters in the Administrator's Guide.

-26-

SQL Reference Manual

 To treats back slashes as escape characters for the current session, use the SET
STANDARD_CONFORMING_STRINGS (page 646) statement.

To enter a Unicode character in hexadecimal, use the following syntax:

SET STANDARD_CONFORMING_STRINGS TO ON;

To enter, for example, the Russian phrase for "thank you":

SELECT U&'\0441\043F\0430\0441\0438\0431\043E' as 'thank you';

 thank you

 спасибо

(1 row)

To enter in hexadecimal, for example, the German word 'mude' (where u is really u-umlaut):

SELECT U&'m\00fcde';

?column?

müde

(1 row)

SELECT 'ü';

?column?

ü

(1 row)

See Also

STANDARD_CONFORMING_STRINGS (page 646) and ESCAPE_STRING_WARNING (page
635) in the SQL Reference Manual

Internationalization Parameters and Implement Locales for International Data Sets in the
Administrator's Guide

String Literals (Dollar-Quoted)

Dollar-quoted string literals are rarely used but are here for your convenience.

The standard syntax for specifying string literals can be difficult to understand. To allow more
readable queries in such situations, Vertica SQL provides "dollar quoting." Dollar quoting is not
part of the SQL standard, but it is often a more convenient way to write complicated string literals
than the standard-compliant single quote syntax. It is particularly useful when representing string
literals inside other literals.

Syntax

$$characters$$

Parameters

characters is an arbitrary sequence of UTF-8 characters bounded by paired dollar signs ($$).

Dollar-quoted string content is treated as a literal. Single quote, backslash, and dollar sign
characters have no special meaning within a dollar-quoted string.

-27-

 SQL Language Elements

Notes

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Examples

SELECT $$Fred's\n car$$;

 ?column?

 Fred's\n car

(1 row)

SELECT 'SELECT 'fact';';

Date/Time Literals

Date or time literal input must be enclosed in single quotes. Input is accepted in almost any
reasonable format, including ISO 8601, SQL-compatible, traditional POSTGRES, and others.

Vertica is more flexible in handling date/time input than the SQL standard requires.The exact
parsing rules of date/time input and for the recognized text fields including months, days of the
week, and time zones are described in Date/Time Expressions (page 47).

Time Zone Values

Vertica attempts to be compatible with the SQL standard definitions for time zones. However, the
SQL standard has an odd mix of date and time types and capabilities. Obvious problems are:

 Although the DATE (page 69) type does not have an associated time zone, the TIME (page 85)

type can. Time zones in the real world have little meaning unless associated with a date as
well as a time, since the offset can vary through the year with daylight-saving time boundaries.

 Vertica assumes your local time zone for any data type containing only date or time.

 The default time zone is specified as a constant numeric offset from UTC. It is therefore not
possible to adapt to daylight-saving time when doing date/time arithmetic across DST
boundaries.

To address these difficulties, Vertica recommends using Date/Time types that contain both date

and time when you use time zones. Vertica recommends that you do not use the type TIME WITH

TIME ZONE, even though it is supported it for legacy applications and for compliance with the

SQL standard.

Time zones and time-zone conventions are influenced by political decisions, not just earth
geometry. Time zones around the world became somewhat standardized during the 1900's, but
continue to be prone to arbitrary changes, particularly with respect to daylight-savings rules.

Vertica currently supports daylight-savings rules over the time period 1902 through 2038,
corresponding to the full range of conventional UNIX system time. Times outside that range are
taken to be in "standard time" for the selected time zone, no matter what part of the year in which
they occur.

-28-

SQL Reference Manual

Example Description

PST Pacific Standard Time

-8:00 ISO-8601 offset for PST

-800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST

zulu Military abbreviation for UTC

z Short form of zulu

Day of the Week Names

The following tokens are recognized as names of days of the week:

Day Abbreviations

SUNDAY SUN

MONDAY MON

TUESDAY TUE, TUES

WEDNESDAY WED, WEDS

THURSDAY THU, THUR, THURS

FRIDAY FRI

SATURDAY SAT

Month Names

The following tokens are recognized as names of months:

Month Abbreviations

JANUARY JAN

FEBRUARY FEB

MARCH MAR

APRIL APR

MAY MAY

JUNE JUN

JULY JUL

AUGUST AUG

-29-

 SQL Language Elements

SEPTEMBER SEP, SEPT

OCTOBER OCT

NOVEMBER NOV

DECEMBER DEC

Interval Values

An interval value represents the duration between two points in time.

Syntax

[@] quantity unit [quantity unit...] [AGO]

Parameters

@ (at sign) is optional and ignored

quantity Is an integer numeric constant (page 17)

unit

Is one of the following units or abbreviations or plurals of the
following units:

MILLISECOND

SECOND

MINUTE

HOUR

DAY

WEEK

MONTH

YEAR

DECADE

CENTURY

MILLENNIUM

AGO [Optional] specifies a negative interval value (an interval going back
in time). 'AGO' is a synonym for '-'.

The amounts of different units are implicitly added up with appropriate sign accounting.

Notes

 Quantities of days, hours, minutes, and seconds can be specified without explicit unit
markings. For example:

'1 12:59:10' is read the same as '1 day 12 hours 59 min 10 sec'

 The boundaries of an interval constant are:

 '9223372036854775807 usec' to '9223372036854775807 usec ago'

 296533 years 3 mons 21 days 04:00:54.775807 to -296533 years -3 mons -21 days
-04:00:54.775807

 The range of an interval constant is +/- 263 - 1 (plus or minus two to the sixty-third minus one)
microseconds.

 In Vertica, the interval fields are additive and accept large floating point numbers.

Examples

SELECT INTERVAL '1 12:59:10';

 ?column?

 1 12:59:10

-30-

SQL Reference Manual

(1 row)

SELECT INTERVAL '9223372036854775807 usec';

 ?column?

 106751991 04:00:54.775807

(1 row)

SELECT INTERVAL '-9223372036854775807 usec';

 ?column?

 -106751991 04:00:54.775807

(1 row)

SELECT INTERVAL '-1 day 48.5 hours';

 ?column?

 -3 00:30

(1 row)

SELECT TIMESTAMP 'Apr 1, 07' - TIMESTAMP 'Mar 1, 07';

 ?column?

 31

(1 row)

SELECT TIMESTAMP 'Mar 1, 07' - TIMESTAMP 'Feb 1, 07';

 ?column?

 28

(1 row)

SELECT TIMESTAMP 'Feb 1, 07' + INTERVAL '29 days';

 ?column?

 03/02/2007 00:00:00

(1 row)

SELECT TIMESTAMP WITHOUT TIME ZONE '1999-10-01' + INTERVAL '1 month - 1

second'

AS "Oct 31";

 Oct 31

 10/30/1999 23:59:59

(1 row)

interval-literal

The following table lists the units allowed for an interval-literal parameter.

Unit Description

a Julian year, 365.25 days exactly

ago Indicates negative time offset

c, cent, century Century

centuries Centuries

d, day Day

-31-

 SQL Language Elements

days Days

dec, decade Decade

decades, decs Decades

h, hour, hr Hour

hours, hrs Hours

ka Julian kilo-year, 365250 days exactly

m Minute or month for year/month, depending
on context. See Notes below table.

microsecond Microsecond

microseconds Microseconds

mil, millennium Millennium

millennia, mils Millennia

millisecond Millisecond

milliseconds Milliseconds

min, minute, mm Minute

mins, minutes Minutes

mon, month Month

mons, months Months

ms, msec, millisecond Millisecond

mseconds, msecs Milliseconds

p Start of ISO Duration (Period) fields

qtr, quarter Quarter

s, sec, second Second

seconds, secs Seconds

t Start of ISO Duration (Period) fields

time zone Time zone, if quoted time offset

timezone Timezone time offset

timezone_h Timezone hour

timezone_m Timezone minutes

us, usec Microsecond

microseconds, useconds, usecs Microseconds

w, week Week

weeks Weeks

-32-

SQL Reference Manual

y, year, yr Year

years, yrs Years

Notes

The input unit 'm' can represent either 'months' or 'minutes,' depending on context. To illustrate,

the following command creates a one-column table with some interval vales:

=> CREATE TABLE int_test(i INTERVAL YEAR TO MONTH);

In the first INSERT statement, the values are inserted as 1 year, six months:

=> INSERT INTO int_test VALUES('1 year 6 months');

In the second INSERT statement, the minutes value is ignored, as the DAY TO SECOND part is

truncated:

=> INSERT INTO int_test VALUES('1 year 6 minutes');

In the third INSERT statement, the 'm' counts as minutes value is ignored, as the DAY TO SECOND

part is truncated:

=> INSERT INTO int_test VALUES('1 year 6 m'); -- the m counts as months Query the table and
you will notice that the second row does not contain the minutes input:

=> SELECT * FROM int_test;

 i

 1-6

 1-0

 1-6

(3 rows)

In the following command, the the 'm' counts as minutes, because the DAY TO SECOND

interval-qualifier extracts day/time values from the input:

=> SELECT INTERVAL '1y6m' DAY TO SECOND;

 ?column?

 365 00:06

(1 row)

interval-qualifier

The following table lists the optional interval qualifiers. Values in INTERVAL fields, other than

SECOND, are integers with a default precision of 2 when they are not the first field.

Interval Type Units Valid interval-literal entries

Day/time intervals DAY Unconstrained.

 DAY TO HOUR An interval that represents a span of days and hours.

-33-

 SQL Language Elements

 DAY TO MINUTE An interval that represents a span of days and
minutes.

 DAY TO SECOND (Default) interval that represents a span of days,
hours, minutes, seconds, and fractions of a second if
subtype unspecified.

 HOUR Hours within days.

 HOUR TO MINUTE An interval that represents a span of hours and
minutes.

 HOUR TO SECOND An interval that represents a span of hours and
seconds.

 MINUTE Minutes within hours.

 MINUTE TO SECOND An interval that represents a span of minutes and
seconds.

 SECOND Seconds within minutes.

Note: The SECOND field can have an interval

fractional seconds precision, which indicates the
number of decimal digits maintained following the

decimal point in the SECONDS value. When SECOND is

not the first field, it has a precision of 2 places before
the decimal point.

Year/month intervals MONTH Months within year.

 YEAR Unconstrained.

 YEAR TO MONTH An interval that represents a span of years and
months.

Notes

You cannot combine day/time and year/month qualifiers. For example, the following intervals are
not allowed:

 DAY TO YEAR

 HOUR TO MONTH

Operators
Operators are logical, mathematical, and equality symbols used in SQL to evaluate, compare, or
calculate values.

Binary Operators

Each of the functions in the following table works with binary and varbinary data types.

-34-

SQL Reference Manual

Operator Function Description

'=' binary_eq Equal to

'<>' binary_ne Not equal to

'<' binary_lt Less than

'<=' binary_le Less than or equal to

'>' binary_gt Greater than

 '>=' binary_ge Greater than or equal to

'&' binary_and And

'~' binary_not Not

'|' binary_or Or

'#' binary_xor Either or

'||' binary_cat Concatenate

Notes

If the arguments vary in length binary operators treat the values as though they are all equal in
length by right-extending the smaller values with the zero byte to the full width of the column

(except when using the binary_cat function). For example, given the values 'ff' and 'f', the

value 'f' is treated as 'f0'.

Operators are strict with respect to nulls. The result is null if any argument is null. For example,

null <> 'a'::binary returns null.

To apply the OR ('|') operator to a varbinary type, explicitly cast the arguments; for example:

=> SELECT '1'::VARBINARY | '2'::VARBINARY;

 ?column?

 3

(1 row)

Similarly, to apply the LENGTH (page 279), REPEAT (page 289), TO_HEX (page 216), and
SUBSTRING (page 298) functions to a binary type, explicitly cast the argument; for example:

=> SELECT LENGTH('\\001\\002\\003\\004'::varbinary(4));

 LENGTH

 4

(1 row)

When applying an operator or function to a column, the operator's or function's argument type is
derived from the column type.

Examples

In the following example, the zero byte is not removed from column cat1 when values are
concatenated:

-35-

 SQL Language Elements

=> SELECT 'ab'::BINARY(3) || 'cd'::BINARY(2) AS cat1, 'ab'::VARBINARY(3) ||

 'cd'::VARBINARY(2) AS cat2;

 cat1 | cat2

----------+------

 ab\000cd | abcd

(1 row)

When the binary value 'ab'::binary(3) is translated to varbinary, the result is equivalent to

'ab\\000'::varbinary(3); for example:

=> SELECT 'ab'::binary(3);

 binary

 ab\000

(1 row)

The following example performs a bitwise AND operation on the two input values (see also
BIT_AND (page 172)):

=> SELECT '10001' & '011' as AND;

 AND

 1

(1 row)

The following example performs a bitwise OR operation on the two input values (see also BIT_OR
(page 173)):

=> SELECT '10001' | '011' as OR;

 OR

 10011

(1 row)

The following example concatenates the two input values:

=> SELECT '10001' || '011' as CAT;

 CAT

 10001011

(1 row)

-36-

 36

Boolean Operators

Syntax

[AND | OR | NOT]

Parameters

SQL uses a three-valued Boolean logic where the null value represents "unknown."

a b a AND b a OR b

TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE

TRUE NULL NULL TRUE

FALSE FALSE FALSE FALSE

FALSE NULL FALSE NULL

NULL NULL NULL NULL

a NOT a

TRUE FALSE

FALSE TRUE

NULL NULL

Notes

 The operators AND and OR are commutative, that is, you can switch the left and right operand

without affecting the result. However, the order of evaluation of subexpressions is not defined.
When it is essential to force evaluation order, use a CASE (page 44) construct.

 Do not confuse Boolean operators with the Boolean-predicate (page 51) or the Boolean
(page 65) data type, which can have only two values: true and false.

Comparison Operators

Comparison operators are available for all data types where comparison makes sense. All
comparison operators are binary operators that return values of True, False, or NULL.

Syntax and Parameters

< less than

> greater than

<= less than or equal to

>= greater than or equal to

-37-

 SQL Language Elements

= or <=> equal

<> or != not equal

Notes

 The != operator is converted to <> in the parser stage. It is not possible to implement != and

<> operators that do different things.

 The comparison operators return NULL (signifying "unknown") when either operand is null.

 The <=> operator performs an equality comparison like the = operator, but it returns true,

instead of NULL, if both operands are NULL, and false, instead of NULL, if one operand is
NULL.

Data Type Coercion Operators (CAST)

Data type coercion (casting) passes an expression value to an input conversion routine for a
specified data type, resulting in a constant of the indicated type.

Syntax

CAST (expression AS data-type)

 expression::data-type

 data-type 'string'

Parameters

expression Is an expression of any type

data-type Converts the value of expression to one of the following data types:

BINARY (page 61)

BOOLEAN (page 65)

CHARACTER (page 66)

DATE/TIME (page 68)

NUMERIC (page 92)

Notes

 In Vertica, data type coercion (casting) can be invoked only by an explicit cast request. It must
use, for example, one of the following constructs:

CAST(x AS data-type-name)

or

x::data-type-name

 Type coercion format of data-type 'string' can be used only to specify the data type of a quoted
string constant.

 The explicit type cast can be omitted if there is no ambiguity as to the type the constant must
be. For example, when a constant is assigned directly to a column, it is automatically coerced
to the column's data type.

 If a binary value is cast (implicitly or explicitly) to a binary type with a smaller length, the value
is silently truncated. For example:

-38-

SQL Reference Manual

=> SELECT 'abcd'::BINARY(2);

 binary

 ab

(1 row)

 No casts other than BINARY to and from VARBINARY and resize operations are currently
supported.

 On binary data that contains a value with fewer bytes than the target column, values are

right-extended with the zero byte '\0' to the full width of the column. Trailing zeros on

variable length binary values are not right-extended:

=> SELECT 'ab'::BINARY(4), 'ab'::VARBINARY(4); binary | varbinary

------------+-----------

 ab\000\000 | ab

(1 row)

Examples

=> SELECT CAST((2 + 2) AS VARCHAR);

 varchar

 4

(1 row)

=> SELECT (2 + 2)::VARCHAR;

 varchar

 4

(1 row)

=> SELECT '2.2' + 2;

 ERROR: invalid input syntax for integer: "2.2"

=> SELECT FLOAT '2.2' + 2;

 ?column?

 4.2

(1 row)

 See Also

Data Type Coercion (page 101)

Date/Time Operators

Syntax

[+ | - | * | /]

Parameters

+ Addition

- Subtraction

* Multiplication

/ Division

-39-

 SQL Language Elements

Notes

 The operators described below that take TIME or TIMESTAMP inputs actually come in two

variants: one that takes TIME WITH TIME ZONE or TIMESTAMP WITH TIME ZONE, and one

that takes TIME WITHOUT TIME ZONE or TIMESTAMP WITHOUT TIME ZONE. For brevity,

these variants are not shown separately.

 The + and * operators come in commutative pairs (for example both DATE + INTEGER and

INTEGER + DATE); only one of each such pair is shown.

Example Result Type Result
DATE '2001-09-28' + INTEGER '7' DATE '2001-10-05'

DATE '2001-09-28' + INTERVAL '1 HOUR' TIMESTAMP '2001-09-28 01:00:00'

DATE '2001-09-28' + TIME '03:00' TIMESTAMP '2001-09-28 03:00:00'

INTERVAL '1 DAY' + INTERVAL '1 HOUR' INTERVAL '1 DAY 01:00:00'

TIMESTAMP '2001-09-28 01:00' + INTERVAL '23 HOURS' TIMESTAMP '2001-09-29 00:00:00'

TIME '01:00' + INTERVAL '3 HOURS' TIME '04:00:00'

- INTERVAL '23 HOURS' INTERVAL '-23:00:00'

DATE '2001-10-01' - DATE '2001-09-28' INTEGER '3'

DATE '2001-10-01' - INTEGER '7' DATE '2001-09-24'

DATE '2001-09-28' - INTERVAL '1 HOUR' TIMESTAMP '2001-09-27 23:00:00'

TIME '05:00' - TIME '03:00' INTERVAL '02:00:00'

TIME '05:00' - INTERVAL '2 HOURS' TIME '03:00:00'

TIMESTAMP '2001-09-28 23:00' - INTERVAL '23 HOURS' TIMESTAMP '2001-09-28 00:00:00'

INTERVAL '1 DAY' - INTERVAL '1 HOUR' INTERVAL '1 DAY -01:00:00'

TIMESTAMP '2001-09-29 03:00' - TIMESTAMP '2001-09-27

 12:00'

INTERVAL '1 DAY 15:00:00'

900 * INTERVAL '1 SECOND' INTERVAL '00:15:00'

21 * INTERVAL '1 DAY' INTERVAL '21 DAYS'

DOUBLE PRECISION '3.5' * INTERVAL '1 HOUR' INTERVAL '03:30:00'

INTERVAL '1 HOUR' / DOUBLE PRECISION '1.5' INTERVAL '00:40:00'

Mathematical Operators

Mathematical operators are provided for many data types.

Operator Description Example Result

! Factorial 5 ! 120

+ Addition 2 + 3 5

- Subtraction 2 - 3 -1

* Multiplication 2 * 3 6

/ Division (integer division truncates results) 4 / 2 2

% Modulo (remainder) 5 % 4 1

^ Exponentiation 2.0 ^ 3.0 8

|/ Square root |/ 25.0 5

||/ Cube root ||/ 27.0 3

-40-

SQL Reference Manual

!! Factorial (prefix operator) !! 5 120

@ Absolute value @ -5.0 5

& Bitwise AND 91 & 15 11

| Bitwise OR 32 | 3 35

Bitwise XOR 17 # 5 20

~ Bitwise NOT ~1 -2

<< Bitwise shift left 1 << 4 16

>> Bitwise shift right 8 >> 2 2

Notes

 The bitwise operators work only on integer data types, whereas the others are available for all
numeric data types.

 Vertica supports the use of the factorial operators on positive and negative floating point

(DOUBLE PRECISION (page 94)) numbers as well as integers. For example:

=> SELECT 4.98!;

 ?column?

 115.978600750905

(1 row)

 Factorial is defined in term of the gamma function, where (-1) = Infinity and the other negative
integers are undefined. For example

(-4)! = NaN

-4! = -(4!) = -24.

 Factorial is defined as z! = gamma(z+1) for all complex numbers z. See the Handbook of
Mathematical Functions http://www.math.sfu.ca/~cbm/aands/ (1964) Section 6.1.5.

 See MOD() (page 238) for details about the behavior of %.

NULL Operators

To check whether a value is or is not NULL, use the constructs:

expression IS NULL expression IS NOT NULL

Alternatively, use equivalent, but nonstandard, constructs:

expression ISNULL expression NOTNULL

Do not write expression = NULL because NULL is not "equal to" NULL. (The null value represents

an unknown value, and it is not known whether two unknown values are equal.) This behavior
conforms to the SQL standard.

Note: Some applications might expect that expression = NULL returns true if expression
evaluates to the null value. Vertica strongly recommends that these applications be modified to
comply with the SQL standard.

http://www.math.sfu.ca/~cbm/aands/

-41-

 SQL Language Elements

String Concatenation Operators

To concatenate two strings on a single line, use the concatenation operator (two consecutive
vertical bars).

Syntax

string || string

Parameters

string Is an expression of type CHAR or VARCHAR

Notes

 || is used to concatenate expressions and constants. The expressions are cast to VARCHAR if

possible, otherwise to VARBINARY, and must both be one or the other.

 Two consecutive strings within a single SQL statement on separate lines are automatically
concatenated

Examples

The following example is a single string written on two lines:

=> SELECT E'xx'

-> '\\';

 ?column?

 xx\

(1 row)

This example shows two strings concatenated:

=> SELECT E'xx' ||

-> '\\';

 ?column?

 xx\\

(1 row)

=> SELECT 'auto' || 'mobile';

 ?column?

 automobile

(1 row)

=> SELECT 'auto'

-> 'mobile';

 ?column?

 automobile

(1 row)

=> SELECT 1 || 2;

 ?column?

 12

-42-

SQL Reference Manual

(1 row)

=> SELECT '1' || '2';

 ?column?

 12

(1 row)

=> SELECT '1'

-> '2';

 ?column?

 12

(1 row)

Expressions
SQL expressions are the components of a query that compare a value or values against other
values. They can also perform calculations. Expressions found inside any SQL command are
usually in the form of a conditional statement.

Operator Precedence

The following table shows operator precedence in decreasing (high to low) order.

Note: When an expression includes more than one operator, Vertica Systems, Inc.
recommends that you specify the order of operation using parentheses, rather than relying on
operator precedence.

Operator/Element Associativity Description

. left table/column name separator

:: left typecast

[] left array element selection

- right unary minus

^ left exponentiation

* / % left multiplication, division, modulo

+ - left addition, subtraction

IS IS TRUE, IS FALSE, IS UNKNOWN, IS NULL

IN set membership

BETWEEN range containment

OVERLAPS time interval overlap

LIKE string pattern matching

< > less than, greater than

= right equality, assignment

-43-

 SQL Language Elements

NOT right logical negation

AND left logical conjunction

OR left logical disjunction

Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated left-to-right or in any other fixed order. To force evaluation

in a specific order, use a CASE (page 44) construct. For example, this is an untrustworthy way of

trying to avoid division by zero in a WHERE clause:

=> SELECT x, y WHERE x <> 0 AND y/x > 1.5;

But this is safe:

=> SELECT x, y

 WHERE

 CASE

 WHEN x <> 0 THEN y/x > 1.5

 ELSE false

 END;

A CASE construct used in this fashion defeats optimization attempts, so use it only when

necessary. (In this particular example, it would be best to avoid the issue by writing y > 1.5*x

instead.)

Aggregate Expressions

An aggregate expression represents the application of an aggregate function (page 107) across
the rows or groups of rows selected by a query.

Using AVG() as an example, the syntax of an aggregate expression is one of the following.

Invokes the aggregate across all input rows for which the given expression yields a non-null value:

AVG (expression)

Is the same as AVG(expression), because ALL is the default:

AVG (ALL expression)

Invokes the AVG() function across all input rows for all distinct, non-null values of the expression,

where expression is any value expression that does not itself contain an aggregate expression.

AVG (DISTINCT expression)

An aggregate expression only can appear in the select list or HAVING clause of a SELECT

statement. It is forbidden in other clauses, such as WHERE, because those clauses are evaluated

before the results of aggregates are formed.

-44-

 44

CASE Expressions

The CASE expression is a generic conditional expression that can be used wherever an
expression is valid. It is similar to case and if/then/else statements in other languages.

Syntax (form 1)

CASE

 WHEN condition THEN result

 [WHEN condition THEN result]...

 [ELSE result]

END

Parameters

condition Is an expression that returns a boolean (true/false) result. If
the result is false, subsequent WHEN clauses are
evaluated in the same manner.

result Specifies the value to return when the associated condition
is true.

ELSE result If no condition is true then the value of the CASE
expression is the result in the ELSE clause. If the ELSE
clause is omitted and no condition matches, the result is
null.

Syntax (form 2)

CASE expression

 WHEN value THEN result

 [WHEN value THEN result]...

 [ELSE result]

END

Parameters

expression Is an expression that is evaluated and compared to all the
value specifications in the WHEN clauses until one is found
that is equal.

value Specifies a value to compare to the expression.

result Specifies the value to return when the expression is equal
to the specified value.

ELSE result Specifies the value to return when the expression is not
equal to any value; if no ELSE clause is specified, the value
returned is null.

Notes

The data types of all the result expressions must be convertible to a single output type.

-45-

 SQL Language Elements

Examples

=> SELECT * FROM test;

 a

 1

 2

 3

=> SELECT a,

 CASE WHEN a=1 THEN 'one'

 WHEN a=2 THEN 'two'

 ELSE 'other'

 END

 FROM test;

 a | case

---+-------

 1 | one

 2 | two

 3 | other

=> SELECT a,

 CASE a WHEN 1 THEN 'one'

 WHEN 2 THEN 'two'

 ELSE 'other'

 END

 FROM test;

 a | case

---+-------

 1 | one

 2 | two

 3 | other

Special Example

A CASE expression does not evaluate subexpressions that are not needed to determine the result.

You can use this behavior to avoid division-by-zero errors:

=> SELECT x FROM T1 WHERE

 CASE WHEN x <> 0 THEN y/x > 1.5

 ELSE false

 END;

Column References

Syntax

[[schemaname.] tablename.] columnname

Parameters

schemaname Is the name of the schema

tablename Is one of:

-46-

SQL Reference Manual

 The name of a table

 An alias for a table defined by means of a FROM clause in a query

columnname Is the name of a column that must be unique across all the tables being used
in a query

Notes

There are no space characters in a column reference.

If you do not specify a schemaname, Vertica searches the existing schemas according to the

order defined in the SET SEARCH_PATH (page 639) command.

Example

This example uses the schema from the VMart Example Database.

In the following command, transaction_type and transaction_time are the unique

column references, store is the name of the schema, and store_sales_fact is the table

name:

=> SELECT transaction_type, transaction_time

 FROM store.store_sales_fact

 ORDER BY transaction_time;

 transaction_type | transaction_time

------------------+------------------

 purchase | 00:00:23

 purchase | 00:00:32

 purchase | 00:00:54

 purchase | 00:00:54

 purchase | 00:01:15

 purchase | 00:01:30

 purchase | 00:01:50

 return | 00:03:34

 return | 00:03:35

 purchase | 00:03:39

 purchase | 00:05:13

 purchase | 00:05:20

 purchase | 00:05:23

 purchase | 00:05:27

 purchase | 00:05:30

 purchase | 00:05:35

 purchase | 00:05:35

 purchase | 00:05:42

 return | 00:06:36

 purchase | 00:06:39

(20 rows)

Comments

A comment is an arbitrary sequence of characters beginning with two consecutive hyphen
characters and extending to the end of the line. For example:

 -- This is a standard SQL comment

-47-

 SQL Language Elements

A comment is removed from the input stream before further syntax analysis and is effectively
replaced by white space.

Alternatively, C-style block comments can be used where the comment begins with /* and

extends to the matching occurrence of */.

 /* multiline comment

 * with nesting: /* nested block comment */

 */

These block comments nest, as specified in the SQL standard. Unlike C, you can comment out
larger blocks of code that might contain existing block comments.

Date/Time Expressions

Vertica uses an internal heuristic parser for all date/time input support. Dates and times are input
as strings, and are broken up into distinct fields with a preliminary determination of what kind of
information might be in the field. Each field is interpreted and either assigned a numeric value,
ignored, or rejected. The parser contains internal lookup tables for all textual fields, including
months, days of the week, and time zones.

The date/time type inputs are decoded using the following procedure.

 Break the input string into tokens and categorize each token as a string, time, time zone, or
number.

 If the numeric token contains a colon (:), this is a time string. Include all subsequent digits and
colons.

 If the numeric token contains a dash (-), slash (/), or two or more dots (.), this is a date string
which might have a text month.

 If the token is numeric only, then it is either a single field or an ISO 8601 concatenated date (for
example, 19990113 for January 13, 1999) or time (for example, 141516 for 14:15:16).

 If the token starts with a plus (+) or minus (-), then it is either a time zone or a special field.

 If the token is a text string, match up with possible strings.

 Do a binary-search table lookup for the token as either a special string (for example, today),
day (for example, Thursday), month (for example, January), or noise word (for example, at,
on).

 Set field values and bit mask for fields. For example, set year, month, day for today, and
additionally hour, minute, second for now.

 If not found, do a similar binary-search table lookup to match the token with a time zone.

 If still not found, throw an error.

 When the token is a number or number field:

 If there are eight or six digits, and if no other date fields have been previously read, then
interpret as a "concatenated date" (for example, 19990118 or 990118). The interpretation is

YYYYMMDD or YYMMDD.

 If the token is three digits and a year has already been read, then interpret as day of year.

 If four or six digits and a year has already been read, then interpret as a time (HHMM or

HHMMSS).

-48-

SQL Reference Manual

 If three or more digits and no date fields have yet been found, interpret as a year (this forces
yy-mm-dd ordering of the remaining date fields).

 Otherwise the date field ordering is assumed to follow the DateStyle setting: mm-dd-yy,

dd-mm-yy, or yy-mm-dd. Throw an error if a month or day field is found to be out of range.

 If BC has been specified, negate the year and add one for internal storage. (There is no year
zero in the Gregorian calendar, so numerically 1 BC becomes year zero.)

 If BC was not specified, and if the year field was two digits in length, then adjust the year to four
digits. If the field is less than 70, then add 2000, otherwise add 1900.

Tip: Gregorian years AD 1-99 can be entered by using 4 digits with leading zeros (for example,
0099 is AD 99).

Month Day Year Ordering

For some formats, ordering of month, day, and year in date input is ambiguous and there is
support for specifying the expected ordering of these fields. See Date/Time Run-Time Parameters
for information about output styles.

Special Date/Time Values

Vertica supports several special date/time values for convenience, as shown below. All of these
values need to be written in single quotes when used as constants in SQL statements.

The values INFINITY and -INFINITY are specially represented inside the system and are

displayed the same way. The others are simply notational shorthands that are converted to

ordinary date/time values when read. (In particular, NOW and related strings are converted to a

specific time value as soon as they are read.)

String Valid Data Types Description

epoch DATE, TIMESTAMP 1970-01-01 00:00:00+00 (UNIX SYSTEM TIME
ZERO)

INFINITY TIMESTAMP Later than all other time stamps

-INFINITY TIMESTAMP Earlier than all other time stamps

NOW DATE, TIME,

TIMESTAMP
Current transaction's start time

Note: NOW is not the same as the NOW (see "NOW

[Date/Time]" on page 202) function.

TODAY DATE, TIMESTAMP Midnight today

TOMORROW DATE, TIMESTAMP Midnight tomorrow

YESTERDAY DATE, TIMESTAMP Midnight yesterday

ALLBALLS TIME 00:00:00.00 UTC

The following SQL-compatible functions can also be used to obtain the current time value for the
corresponding data type:

 CURRENT_DATE (page 181)

 CURRENT_TIME (page 182)

-49-

 SQL Language Elements

 CURRENT_TIMESTAMP (page 182)

 LOCALTIME (page 199)

 LOCALTIMESTAMP (page 200)

The latter four accept an optional precision specification. (See Date/Time Functions.) Note
however that these are SQL functions and are not recognized as data input strings.

NULL Value

NULL is a reserved keyword used to indicate that a data value is unknown.

Be very careful when using NULL in expressions. NULL is not greater than, less than, equal to, or

not equal to any other expression. Use the Boolean-predicate (on page 51) for determining
whether an expression value is NULL.

Notes

 Vertica stores data in projections, which are sorted in a specific way. All columns are stored in

ASC (ascending) order. For columns of data type NUMERIC, INTEGER, DATE, TIME,

TIMESTAMP, and INTERVAL, NULL values are placed at the beginning of sorted projections

(NULLS FIRST), while for columns of data type FLOAT, STRING, and BOOLEAN, NULL values

are placed at the end (NULLS LAST). For details, see Null Placement in the Programmer's

Guide.

 Vertica also accepts NUL characters ('\0') in constant strings and no longer removes null

characters from VARCHAR fields on input or output. NUL is the ASCII abbreviation for the NULL

character.

 You can write queries with expressions that contain the <=> operator for NULL=NULL joins.

See Equi-joins and Non Equi-Joins in the Programmer's Guide.

See Also

NULL-handling Functions (page 248)

Numeric Expressions

Vertica follows the IEEE specification for floating point, including NaN.

A NaN is not greater than and at the same time not less than anything, even itself. In other words,
comparisons always return false whenever a NaN is involved.

Examples

=> SELECT CBRT('Nan'); -- cube root

 cbrt

 NaN

(1 row)

=> SELECT 'Nan' > 1.0;

 ?column?

 f

(1 row)

-50-

SQL Reference Manual

Predicates
In general, predicates are truth-valued functions; that is, when invoked, they return a truth value.
Predicates have a set of parameters and arguments. For example, in the following example

WHERE clause:

WHERE name = 'Smith';

 name = 'Smith' is the predicate

 'Smith' is an expression

BETWEEN-predicate

The special BETWEEN predicate is available as a convenience.

Syntax

a BETWEEN x AND y

Notes

a BETWEEN x AND y

Is equivalent to:

a >= x AND a <= y

Similarly:

a NOT BETWEEN x AND y

is equivalent to:

a < x OR a > y

-51-

 51

Boolean-predicate

Retrieves rows where the value of an expression is true, false, or unknown (null).

Syntax

expression IS [NOT] TRUE

expression IS [NOT] FALSE

expression IS [NOT] UNKNOWN

Notes

 A null input is treated as the value UNKNOWN.

 IS UNKNOWN and IS NOT UNKNOWN are effectively the same as the NULL-predicate (page

59), except that the input expression does not have to be a single column value. To check a

single column value for NULL, use the NULL-predicate.

 Do not confuse the boolean-predicate with Boolean Operators (on page 36) or the Boolean
(page 65) data type, which can have only two values: true and false.

-52-

 52

column-value-predicate

Syntax

column-name comparison-op constant-expression

Parameters

column-name Is a single column of one the tables specified in the FROM clause

(page 620).

comparison-op Is one of the comparison operators (on page 36).

constant-expression Is a constant value of the same data type as the column-name.

Notes

To check a column value for NULL, use the NULL-predicate (page 59).

Examples

table.column1 = 2

table.column2 = 'Seafood'

table.column3 IS NULL

-53-

 53

IN-predicate

Syntax

column-expression [NOT] IN (list-expression)

Parameters

column-expression A single column of one the tables specified in the FROM clause (page
620).

list-expression A comma-separated list of constant values matching the data type of the
column-expression

Examples

x IN (5, 6, 7)

x, y IN ((1,2), (3, 4)), OR x, y IN (SELECT a, b FROM table)

-54-

 54

join-predicate

Combines records from two or more tables in a database.

Syntax

column-reference (see "Column References" on page 45) = column-reference

Parameters

column-reference Refers to a column of one the tables specified in the FROM clause
(page 620).

-55-

 55

LIKE-predicate

Retrieves rows where the string value of a column matches a specified pattern. The pattern can
contain one or more wildcard characters. ILIKE is equivalent to LIKE except that the match is
case-insensitive (non-standard extension).

Syntax

string [NOT]{ LIKE | ILIKE | LIKEB | ILIKEB }

... pattern [ESCAPE 'escape-character']

Parameters

string (CHAR, VARCHAR, BINARY, VARBINARY) is the column value to be

compared to the pattern.

NOT Returns true if LIKE returns false, and the reverse; equivalent to NOT

string LIKE pattern.

pattern Specifies a string containing wildcard characters.

 Underscore (_) matches any single character.

 Percent sign (%) matches any string of zero or more characters.

ESCAPE Specifies an escape-character. An ESCAPE character can be used to

escape itself, underscore (_), and % only. This is enforced only for

non-default collations.

To match the ESCAPE character itself, use two consecutive escape

characters. The default ESCAPE character is the backslash (\) character,

although standard SQL specifies no default ESCAPE character. ESCAPE

works for char and varchar strings only.

escape-character Causes character to be treated as a literal, rather than a wildcard, when
preceding an underscore or percent sign character in the pattern.

Notes

 The LIKE predicate is compliant with the SQL standard.

 In the default locale, LIKE and ILIKE handle UTF-8 character-at-a-time, locale-insensitive

comparisons. ILIKE handles language-independent case-folding.

Note: In non-default locales, LIKE and ILIKE do locale-sensitive string comparisons,

including some automatic normalization, using the same algorithm as the "=" operator on

VARCHAR types.

 The LIKEB and ILIKEB predicates do byte-at-a-time ASCII comparisons, providing access to

Vertica 4.0 functionality.

 LIKE and ILIKE are stable for character strings, but immutable for binary strings, while

LIKEB and ILIKEB are both immutable

 For collation=binary settings, the behavior is similar to Vertica 4.0. For other collations,

LIKE operates on UTF-8 character strings, with the exact behavior dependent on collation

parameters, such as strength. In particular, ILIKE works by setting S=2 (ignore case) in the

current session locale. See Locale Specification in the Administrator's Guide.

-56-

SQL Reference Manual

 Although the SQL standard specifies no default ESCAPE character, in Vertica the default is the

backslash (\) and works for CHAR and VARCHAR strings only.

Tip: Vertica recommends that you specify an explicit escape character in all cases, to avoid
problems should this behavior change. To use a backslash character as a literal, either specify
a different escape character or use two backslashes.

 ESCAPE expressions evaluate to exactly one octet — or one UTF-8 character for non-default

locales.

 An ESCAPE character can be used only to escape itself, _, and %. This is enforced only for

non-default collations.

 LIKE requires that the entire string expression match the pattern. To match a sequence of

characters anywhere within a string, the pattern must start and end with a percent sign.

 The LIKE predicate does not ignore trailing "white space" characters. If the data values that

you want to match have unknown numbers of trailing spaces, tabs, etc., terminate each LIKE

predicate pattern with the percent sign wildcard character.

 To use binary data types, you must use a valid binary character as the escape character, since

backslash is not a valid BINARY character.

 The following symbols are substitutes for the actual keywords:

~~ LIKE

~~* ILIKE

!~~ NOT LIKE

!~~* NOT ILIKE

The ESCAPE keyword is not valid for the above symbols.

Querying Case-sensitive data in System Tables

The V_CATALOG.TABLES (page 681).TABLE_SCHEMA and TABLE_NAME columns are case

sensitive when used with an equality (=) predicate in queries. For example, given the following
schema:

=> CREATE SCHEMA SS;

=> CREATE TABLE SS.TT (c1 int);

=> INSERT INTO ss.tt VALUES (1);

If you execute a query using the = predicate, Vertica returns 0 rows:

=> SELECT table_schema, table_name FROM v_catalog.tables WHERE table_schema ='ss';

table_schema | table_name

--------------+------------

(0 rows)

Use the case-insensitive ILIKE predicate to return the expected results:

=> SELECT table_schema, table_name FROM v_catalog.tables WHERE table_schema ILIKE

'ss';

 table_schema | table_name

--------------+------------

 SS | TT

(1 row)

-57-

 SQL Language Elements

Examples

'abc' LIKE 'abc' true

'abc' LIKE 'a%' true

'abc' LIKE '_b_' true

'abc' LIKE 'c' false

'abc' LIKE 'ABC' false

'abc' ILIKE 'ABC' true

'abc' not like 'abc' false

not 'abc' like 'abc' false

The following example illustrates pattern matching in locales.

\locale default

=> CREATE TABLE src(c1 VARCHAR(100));

=> INSERT INTO src VALUES (U&'\00DF'); --The beta (ß)

=> INSERT INTO src VALUES ('ss');

=> COMMIT;

Querying the src table in the default locale returns both ss and beta.

=> SELECT * FROM src;

 c1

 ß

 ss

(2 rows)

The following query combines pattern-matching predicates to return the results from column c1:

=> SELECT c1, c1 = 'ss' AS equality, c1 LIKE 'ss' AS LIKE, c1

 ILIKE 'ss' AS ILIKE FROM src;

 c1 | equality | LIKE | ILIKE

----+----------+------+-------

 ß | f | f | f

 ss | t | t | t

(2 rows)

The next query specifies unicode format for c1:

=> SELECT c1, c1 = U&'\00DF' AS equality, c1 LIKE U&'\00DF' AS LIKE, c1 ILIKE

U&'\00DF' AS ILIKE from src;

 c1 | equality | LIKE | ILIKE

----+----------+------+-------

 ß | t | t | t

 ss | f | f | f

(2 rows)

Now change the locale to German with a strength of 1 (ignore case and accents):

\locale LDE_S1

=> SELECT c1, c1 = 'ss' AS equality, c1 LIKE 'ss' as LIKE, c1 ILIKE 'ss' AS ILIKE

from src;

 c1 | equality | LIKE | ILIKE

----+----------+------+-------

 ß | t | t | f

 ss | t | t | t

-58-

SQL Reference Manual

(2 rows)

The following query fails because ILIKE forces collation into S2. Because the locale is S1, the
ignore-accents part is lost and the beta is considered an accent:

=> SELECT c1, c1 = U&'\00DF' AS equality, c1 LIKE U&'\00DF' AS LIKE, c1 ILIKE

U&'\00DF' AS ILIKE from src;

 c1 | equality | LIKE | ILIKE

----+----------+------+-------

 ss | t | t | f

 ß | t | t | t

(2 rows)

This example illustrates binary data types with pattern-matching predicates:

=> CREATE TABLE t (c BINARY(1));

=> INSERT INTO t values(HEX_TO_BINARY('0x00'));

=> INSERT INTO t values(HEX_TO_BINARY('0xFF'));

=> SELECT TO_HEX(c) from t;

 TO_HEX

 00

 ff

(2 rows)

select * from t;

 c

 \000

 \377

(2 rows)

=> SELECT c, c = '\000', c LIKE '\000', c ILIKE '\000' from t;

 c | ?column? | ?column? | ?column?

------+----------+----------+----------

 \000 | t | t | t

 \377 | f | f | f

(2 rows)

=> SELECT c, c = '\377', c LIKE '\377', c ILIKE '\377' from t; c | ?column? |

?column? | ?column?

------+----------+----------+----------

 \000 | f | f | f

 \377 | t | t | t

(2 rows)

-59-

 59

NULL-predicate

Tests for null values.

Syntax

column-name IS [NOT] NULL

Parameters

column-name Is a single column of one the tables specified in the FROM clause
(page 620).

Examples

a IS NULL

b IS NOT NULL

See Also

NULL Value (page 49)

-60-

SQL Data Types

The following tables summarizes the data types supported by Vertica, as well as the default
placement of null values in projections. The Size column is shown in uncompressed bytes.

Type Size Description NULL Sorting

Binary types

BINARY 1 to 65000 Fixed-length binary string NULLS LAST

VARBINARY 1 to 65000 Variable-length binary string NULLS LAST

BYTEA 1 to 65000 Variable-length binary string (synonym
for VARBINARY)

NULLS LAST

RAW 1 to 65000 Variable-length binary string (synonym
for VARBINARY)

NULLS LAST

Boolean types

BOOLEAN 1 True or False or NULL NULLS LAST

Character types

CHAR 1 to 65000 Fixed-length character string NULLS LAST

VARCHAR 1 to 65000 Variable-length character string NULLS LAST

Date/time types

DATE 8 Represents a month, day, and year NULLS FIRST

DATETIME 8 Represents a date and time with or
without timezone (synonym for

TIMESTAMP)

NULLS FIRST

SMALLDATETIME 8 Represents a date and time with or
without timezone (synonym for

TIMESTAMP)

NULLS FIRST

TIME 8 Represents a time of day without
timezone

NULLS FIRST

TIME WITH

TIMEZONE

8 Represents a time of day with timezone NULLS FIRST

TIMESTAMP 8 Represents a date and time without
timezone

NULLS FIRST

TIMESTAMP WITH

TIMEZONE

8 Represents a date and time with
timezone

NULLS FIRST

INTERVAL 8 Measures the difference between two
points in time

NULLS FIRST

-61-

 SQL Data Types

Approximate numeric types

DOUBLE PRECISION 8 Signed 64-bit IEEE floating point
number, requiring 8 bytes of storage

NULLS LAST

FLOAT 8 Signed 64-bit IEEE floating point
number, requiring 8 bytes of storage

NULLS LAST

FLOAT(n) 8 Signed 64-bit IEEE floating point
number, requiring 8 bytes of storage

NULLS LAST

FLOAT8 8 Signed 64-bit IEEE floating point
number, requiring 8 bytes of storage

NULLS LAST

REAL 8 Signed 64-bit IEEE floating point
number, requiring 8 bytes of storage

NULLS LAST

Exact numeric types

INTEGER 8 Signed 64-bit integer, requiring 8 bytes
of storage

NULLS FIRST

INT 8 Signed 64-bit integer, requiring 8 bytes
of storage

NULLS FIRST

BIGINT 8 Signed 64-bit integer, requiring 8 bytes
of storage

NULLS FIRST

INT8 8 Signed 64-bit integer, requiring 8 bytes
of storage

NULLS FIRST

SMALLINT 8 Signed 64-bit integer, requiring 8 bytes
of storage

NULLS FIRST

TINYINT 8 Signed 64-bit integer, requiring 8 bytes
of storage

NULLS FIRST

DECIMAL 8+ 8 bytes for the first 18 digits of
precision, plus 8 bytes for each
additional 19 digits

NULLS FIRST

NUMERIC 8+ 8 bytes for the first 18 digits of
precision, plus 8 bytes for each
additional 19 digits

NULLS FIRST

NUMBER 8+ 8 bytes for the first 18 digits of
precision, plus 8 bytes for each
additional 19 digits

NULLS FIRST

MONEY 8+ 8 bytes for the first 18 digits of
precision, plus 8 bytes for each
additional 19 digits

NULLS FIRST

Binary Data Types
Store raw-byte data, such as IP addresses, up to 65000 bytes.

-62-

SQL Reference Manual

Syntax

BINARY (length)

{ VARBINARY | BINARY VARYING | BYTEA | RAW } (max-length)

Parameters

length | max-length Specifies the length of the string.

Notes

 The data types BINARY and BINARY VARYING (VARBINARY) are collectively referred to as

binary string types and the values of binary string types are referred to as binary strings.

 A binary string is a sequence of octets, or bytes. Binary strings store raw-byte data, while
character strings store text.

 The binary data types, BINARY and VARBINARY, are similar to the character data types

(page 66), CHAR and VARCHAR, respectively, except that binary data types contain byte

strings, rather than character strings. The allowable maximum length is the same for binary
data types as it is for character data types, except that the length for BINARY and
VARBINARY is a length in bytes, rather than in characters.

 BINARY — A fixed-width string of length bytes, where the number of bytes is declared as an

optional specifier to the type. If length is omitted, the default is 1. Where necessary, values are
right-extended to the full width of the column with the zero byte. For example:

=> SELECT TO_HEX('ab'::BINARY(4));

 to_hex

 61620000

 VARBINARY — A variable-width string up to a length of max-length bytes, where the maximum

number of bytes is declared as an optional specifier to the type. The default is the default
attribute size, which is 80, and the maximum length is 65000 bytes. Varbinary values are not
extended to the full width of the column. For example:

=> SELECT TO_HEX('ab'::VARBINARY(4));

 to_hex

 6162

 BYTEA and RAW are synonyms for VARBINARY.

 You can use several formats when working with binary values, but the hexadecimal format is
generally the most straightforward and is emphasized in Vertica documentation.

 The &, ~, | and # binary operands have special behavior for binary data types, as described

in Binary Operators (page 33).

 On input, strings are translated from hexadecimal representation to a binary value using the

HEX_TO_BINARY (page 268) function. Strings are translated from bitstring representation to

binary values using the BITSTRING_TO_BINARY (page 261) function. Both functions take a

VARCHAR argument and return a VARBINARY value. See the Examples section below.

Binary values can also be represented in octal format by prefixing the value with a backslash
'\'.

-63-

 SQL Data Types

Note: If you use vsql, you must use the escape character (\) when inserting another backslash

on input; for example, input '\141' as '\\141'.

You can also input values represented by printable characters. For example, the hexadecimal

value '0x61' can also be represented by the symbol '.

See Loading Binary Data in the Administrator's Guide.

 Like the input format the output format is a hybrid of octal codes and printable ASCII

characters. A byte in the range of printable ASCII characters (the range [0x20, 0x7e]) is

represented by the corresponding ASCII character, with the exception of the backslash ('\'),

which is escaped as '\\'. All other byte values are represented by their corresponding octal

values. For example, the bytes {97,92,98,99}, which in ASCII are {a,\,b,c}, are translated

to text as 'a\\bc'.

 The following aggregate functions are supported for binary data types:

 BIT_AND (page 172)

 BIT_OR (page 173)

 BIT_XOR (page 175)

 MAX (page 112)

 MIN (page 112)

BIT_AND, BIT_OR, and BIT_XOR are bitwise operations that are applied to each non-null

value in a group, while MAX and MIN are bytewise comparisons of binary values.

 Like their binary operator (page 33) counterparts, if the values in a group vary in length, the
aggregate functions treat the values as though they are all equal in length by extending shorter
values with zero bytes to the full width of the column. For example, given a group containing

the values 'ff', null, and 'f', a binary aggregate ignores the null value and treats the

value 'f' as 'f0'. Also, like their binary operator counterparts, these aggregate functions

operate on VARBINARY types explicitly and operate on BINARY types implicitly through casts.

See Data Type Coercion Operators (CAST) (page 37).

Examples

The following example shows VARBINARY HEX_TO_BINARY (page 268)(VARCHAR) and

VARCHAR TO_HEX (page 216)(VARBINARY) usage.

Table t and and its projection are created with binary columns:

=> CREATE TABLE t (c BINARY(1));

=> CREATE PROJECTION t_p (c) AS SELECT c FROM t;

Insert minimum byte and maximum byte values:

=> INSERT INTO t values(HEX_TO_BINARY('0x00'));

=> INSERT INTO t values(HEX_TO_BINARY('0xFF'));

Binary values can then be formatted in hex on output using the TO_HEX function:

=> SELECT TO_HEX(c) FROM t;

 to_hex

 00

 ff

-64-

SQL Reference Manual

 (2 rows)

The BIT_AND, BIT_OR, and BIT_XOR functions are interesting when operating on a group of

values. For example, create a sample table and projections with binary columns:

This examples uses the following schema, which creates table t with a single column of

VARBINARY data type:

=> CREATE TABLE t (

 c VARBINARY(2));

=> INSERT INTO t values(HEX_TO_BINARY('0xFF00'));

=> INSERT INTO t values(HEX_TO_BINARY('0xFFFF'));

=> INSERT INTO t values(HEX_TO_BINARY('0xF00F'));

Query table t to see column c output:

=> SELECT TO_HEX(c) FROM t;

 TO_HEX

 ff00

 ffff

 f00f

(3 rows)

Now issue the bitwise AND operation. Because these are aggregate functions, an implicit GROUP

BY operation is performed on results using (ff00&(ffff)&f00f):

=> SELECT TO_HEX(BIT_AND(c)) FROM t;

to_hex

f000

(1 row)

Issue the bitwise OR operation on (ff00|(ffff)|f00f):

=> SELECT TO_HEX(BIT_OR(c)) FROM t;

to_hex

ffff

(1 row)

Issue the bitwise XOR operation on (ff00#(ffff)#f00f):

=> SELECT TO_HEX(BIT_XOR(c)) FROM t;

to_hex

f0f0

(1 row)

See Also

Aggregate functions BIT_AND (page 172), BIT_OR (page 173), BIT_XOR (page 175), MAX
(page 112), and MIN (page 112)

Binary Operators (page 33)

-65-

 SQL Data Types

COPY (page 497)

Data Type Coercion Operators (CAST) (page 37)

IP conversion function INET_ATON (page 222), INET_NTOA (page 223), V6_ATON (page 224),
V6_NTOA (page 225), V6_SUBNETA (page 226), V6_SUBNETN (page 227), V6_TYPE (page
228)

String functions BITCOUNT (page 261), BITSTRING_TO_BINARY (page 261),
HEX_TO_BINARY (page 268), LENGTH (page 279), REPEAT (page 289), SUBSTRING (page
298), TO_HEX (page 216), and TO_BITSTRING (page 212)

Loading Binary Data in the Administrator's Guide

Boolean Data Type
Vertica provides the standard SQL type BOOLEAN, which has two states: true and false. The third
state in SQL boolean logic is unknown, which is represented by the NULL value.

Syntax

BOOLEAN

Parameters

Valid literal data values for input are:

TRUE 't' 'true' 'y' 'yes' '1'

FALSE 'f' 'false' 'n' 'no' '0'

Notes

 Do not confuse the BOOLEAN data type with Boolean Operators (on page 36) or the

Boolean-predicate (on page 51).

 The keywords TRUE and FALSE are preferred and are SQL-compliant.

 All other values must be enclosed in single quotes.

 Boolean values are output using the letters t and f.

See Also

NULL Value (page 49)

-66-

SQL Reference Manual

Character Data Types
Stores strings of letters, numbers and symbols. Character data can be stored as fixed-length or
variable-length strings; the difference is that fixed-length strings are right-extended with spaces on
output, and variable-length strings are not extended.

Syntax

[CHARACTER | CHAR] (length)

[VARCHAR | CHARACTER VARYING] (length)

Parameters

length Specifies the length of the string in octets.

Notes

 A character is a Unicode codepoint represented as UTF-8.

 The data types CHARACTER (CHAR) and CHARACTER VARYING (VARCHAR) are collectively

referred to as character string types, and the values of character string types are known as
character strings.

 CHAR is conceptually a fixed-length, blank padded string. Any trailing blanks (spaces) are

removed on input, and only restored on output. The default length is 1 and the maximum
length is 65000 octets (bytes).

 VARCHAR is a variable-length character data type. The default length is 80 and the maximum

length is 65000 octets. Values can include trailing spaces.

 When you define character columns, you specify the maximum size of any string to be stored
in the column. For example, if you want to store strings up to 24 octets in length, you could use
either of the following definitions:

CHAR(24) /* fixed-length */

VARCHAR(24) /* variable-length */

 The maximum length parameter for VARCHAR and CHAR data type refers to the number of

octets that can be stored in that field and not number of characters. When using multibyte
UTF-8 characters, the fields must be sized to accommodate from 1 to 4 octets per character,

depending on the data. If the data being loaded into a VARCHAR/CHAR column exceeds the

specified maximum size for that column, data is truncated on UTF-8 character boundaries to fit

within the specified size. See COPY (page 497).

Note: Remember to include the extra octets required for multibyte characters in the
column-width declaration, keeping in mind the 65000 octet column-width limit.

 String literals in SQL statements must be enclosed in single quotes.

 Due to compression in Vertica, the cost of over-estimating the length of these fields is incurred
primarily at load time and during sorts.

 NULL appears last (largest) in ascending order. See also GROUP BY Clause (page 626) for
additional information about null ordering.

-67-

 SQL Data Types

NULL vs NUL

NUL represents a character whose ASCII/Unicode code is zero, sometimes qualified "ASCII NUL".

NULL means no value, and is true of a field (column) or constant, not of a character.

VARCHAR string data types accept ASCII NULs.

The following example casts the input string containing NUL values to VARCHAR:

=> SELECT E'vert\0ica'::CHARACTER VARYING AS varchar;

 varchar

 vertica

(1 row)

The following example casts the input string containing NUL values to VARBINARY:

=> SELECT E'vert\0ica'::BINARY VARYING as varbinary;

 varbinary

 vert\000ica

(1 row)

In both cases, the result contains 8 characters, but in the VARCHAR case, the '\000' is not visible:

=> SELECT LENGTH('vert\0ica'::CHARACTER VARYING);

 length

 8

(1 row)

=> SELECT LENGTH('vert\0ica'::BINARY VARYING);

 length

 8

(1 row)

See Also

Data Type Coercion (page 101)

-68-

 68

Date/Time Data Types
Vertica supports the full set of SQL date and time data types. In most cases, a combination of

DATE, DATETIME, SMALLDATETIME, TIME, TIMESTAMP WITHOUT TIME ZONE, and TIMESTAMP

WITH TIME ZONE, and INTERVAL provides a complete range of date/time functionality required

by any application.

In compliance with the SQL standard, Vertica also supports the TIME WITH TIME ZONE data type.

The following table lists the date/time data types, their sizes, values, and resolution.

Date/Time Data Types

Name Size Description Low Value High Value Resolution
DATE

8 bytes Dates only (no time
of day)

4713 BC 5874897 AD 1 day

DATETIME
8 bytes Both date and time,

with [w/o] time zone
4713 BC 5874897 AD 1 microsecond/14

digits

INTERVAL [(p)]
8 bytes Time intervals -178000000 yrs 178000000 yrs 1 microsecond/14

digits

SMALLDATETIME
8 bytes Both date and time,

with [w/o] time zone
4713 BC 5874897 AD 1 microsecond/14

digits

TIME [(p] [WITHOUT

TIME ZONE]
8 bytes Times of day only

(no date)
00:00:00.00 23:59:59.99 1 microsecond/14

digits

TIME [(p)] WITH

TIME ZONE
8 bytes Times of day only,

with time zone
00:00:00.00+12 23:59:59.99-1

2
1 microsecond/14
digits

TIMESTAMP [(p)]

[{ WITH | WITHOUT}

TIME ZONE] |

TIMESTAMPTZ

8 bytes Both date and time,
with [w/o] time zone

4713 BC 5874897 AD 1 microsecond/14
digits

Time Zone Abbreviations for Input

The files in /opt/vertica/share/timezonesets are recognized by Vertica as date/time

input values and define the default list of strings accepted in the AT TIME ZONE zone parameter.
The names are not necessarily used for date/time output — output is driven by the official time
zone abbreviations associated with the currently selected time zone parameter setting.

Notes

 In Vertica, TIME ZONE is a synonym for TIMEZONE.

 Vertica uses Julian dates for all date/time calculations. They can correctly predict and
calculate any date more recent than 4713 BC to far into the future, based on the assumption
that the length of the year is 365.2425 days.

 All date/time types are stored in eight bytes.

 A date/time value of NULL appears first (smallest) in ascending order.

-69-

 SQL Data Types

 All the date/time data types accept the special literal value NOW to specify the current date and

time. For example:

=> SELECT TIMESTAMP 'NOW';

 ?column?

 2010-10-04 11:18:15.227544

(1 row)

 In Vertica, The INTERVALS (page 70) data type is SQL-2008 compliant and allows

modifiers, called interval qualifiers (page 32), that divide the INTERVAL type into two primary

subtypes, DAY TO SECOND (the default) and YEAR TO MONTH. You use the SET

INTERVALSTYLE (page 635) command to change the run-time parameter for the current

session.

Intervals are represented internally as some number of microseconds and printed as up to 60
seconds, 60 minutes, 24 hours, 30 days, 12 months, and as many years as necessary. Fields
can be positive or negative.

See Also

Set the Default Time Zone and Using Time Zones with Vertica in the Installation Guide

Sources for Time Zone and Daylight Saving Time Data
http://www.twinsun.com/tz/tz-link.htm

DATE

Consists of a month, day, and year.

Syntax

DATE

Parameters

Low Value High Value Resolution

4713 BC 32767 AD 1 DAY

 See SET DATESTYLE (page 634) for information about ordering.

Example Description

January 8, 1999 Unambiguous in any datestyle input mode

1999-01-08 ISO 8601; January 8 in any mode (recommended format)

1/8/1999 January 8 in MDY mode; August 1 in DMY mode

1/18/1999 January 18 in MDY mode; rejected in other modes

01/02/03 January 2, 2003 in MDY mode

February 1, 2003 in DMY mode

February 3, 2001 in YMD mode

1999-Jan-08 January 8 in any mode

http://www.twinsun.com/tz/tz-link.htm

-70-

SQL Reference Manual

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 in YMD mode, else error

08-Jan-99 January 8, except error in YMD mode

Jan-08-99 January 8, except error in YMD mode

19990108 ISO 8601; January 8, 1999 in any mode

990108 ISO 8601; January 8, 1999 in any mode

1999.008 Year and day of year

J2451187 Julian day

January 8, 99 BC Year 99 before the Common Era

DATETIME

DATETIME is an alias for TIMESTAMP (page 87).

INTERVAL

Measures the difference between two points in time. The INTERVAL data type is divided into two

major subtypes: DAY TO SECOND (day/time, kept in microseconds) and YEAR TO MONTH

(year/month, kept in months). A day/time interval represents a span of days, hours, minutes,
seconds, and fractional seconds. A year/month interval represents a span of years and months.

The default interval-qualifier, if not specified, is INTERVAL DAY TO SECOND(6). Intervals

can be positive or negative.

Syntax

INTERVAL [(p)] [- 'interval-literal (on page 30)'] [interval-qualifier (on

page 32)]

Parameters

p (Precision) can specify the number of fractional digits retained in the
seconds field, in the range 0 to 6. The default is 6.

interval-literal [Optional] A literal character string expressing a specific interval.
Sometimes referred to as data in this topic.

interval-qualifier Specifies a range of interval subtypes with optional precision

specifications. If omitted, the default is DAY TO SECOND(6). Sometimes

referred to as subtype in this topic.

You can specify optional date/time units on interval input and output. The sections that follow
describe each of the three methods available to you:

-71-

 SQL Data Types

 The SQL-compliant implementation: no units on output (the default)

 The Vertica extension: optional units on output

 Optional units on input

No units on output

The default style is PLAIN (no units on output) and follows the SQL-2008 standard:

=> SELECT INTERVAL '3 2';

 ?column?

 3 02:00

(1 row)

Note that the following command returns the same result, even though units are specified inside
the interval-literal. Those units are omitted from the result:

=> SELECT INTERVAL '3 days 2 hours';

 ?column?

 3 02:00

(1 row)

You change the INTERVAL style with the SET INTERVALSTYLE (page 635) command:

=> SET INTERVALSTYLE TO PLAIN;

If you get unexpected results, issue the SHOW (page 650) command to display the run-time
parameters:

=> SHOW INTERVALSTYLE;

 name | setting

---------------+---------

 intervalstyle | plain

(1 row)

The same interval (3 days, 2 hours) can be expressed in several other ways in SQL-2008. For

example, if you issue the command SET DATESTYLE to SQL the output matches

INTERVALSTYLE PLAIN (no units); thus, all of the following commands return 3 02:

=> SELECT INTERVAL '3' DAY + INTERVAL '2' HOUR;

=> SELECT INTERVAL '3 2' DAY TO HOUR;

=> SELECT INTERVAL '3 days 2 hours' DAY TO HOUR;

=> SELECT INTERVAL '3 days 2' DAY TO HOUR;

The following example extracts the HOUR value from the input parameters:

=> SELECT INTERVAL '28 days 3 hours' HOUR;

 ?column?

 675

(1 row)

In the next example, HOUR(2) instructs Vertica to use up to 2 places to output hours, but note that
Vertica uses as many entries as needed, so the (2) specification is ignored. Note also that Vertica
ignores spaces; for example HOUR(2) is processed the same as HOUR (2).

=> SELECT INTERVAL '28 days 3 hours' HOUR (2);

-72-

SQL Reference Manual

 ?column?

 675

(1 row)

If seconds contain decimal places, they are rounded on output to the precision you specify; for

example INTERVAL(3) in the following command:

=> SELECT INTERVAL(3) '28 days 3 hours 1.234567 sec';

 ?column?

 28 03:00:01.235

(1 row)

Vertica ignores a precision placed on a unit specified inside an interval-literal:

=> SELECT INTERVAL '28 days 3 hours 1.234567 sec(3)';

 ?column?

 28 03:03:01.234567

(1 row)

If you move the precision outside of the interval-literal, Vertica honors it:

=> SELECT INTERVAL '28 days 3 hours 1.234567)' second(3);

 ?column?

 2430001.235

(1 row)

If there are two different specifiers, Vertica picks the lesser ot the two for seconds. For example, in
the following command, Vertica picks (1):

=> SELECT INTERVAL(1) '1.2467' SECOND(2);

 ?column?

 1.2

(1 row)

Intervals can be cast within the day/time or the year/month subtypes but not between them. For

example, the following command converts to DAY TO SECOND (the default):

=> SELECT CAST(INTERVAL '4440' MINUTE as INTERVAL);

 ?column?

 3 02:00

(1 row)

=> SELECT CAST(INTERVAL -'01:15' as INTERVAL MINUTE);

 ?column?

 -75

(1 row)

The following query, however, returns an error:

=> SELECT INTERVAL '1 02:03:04.56' HOUR TO SECOND;

 ERROR: invalid input syntax for type interval hour to second: "1 02:03:04.56"

-73-

 SQL Data Types

The error is legitimate. For standalone fields without units, such as the first '1' in an interval-literal
'1 02:03:04.56', the units are determined as the first not-already matched subtype field. Thus if the

subtype range is HOUR TO SECOND, the first '1' is '1 hour' and conflicts with the '02' in the example,

which is also an hour.

Following are some examples showing no units on output:

=> SELECT INTERVAL '15' MINUTE;

 ?column?

 15

(1 row)

=> SELECT INTERVAL '12 03' DAY TO HOUR;

 ?column?

 12 03

(1 row)

The following example illustrates a SQL extension, where the 1 is in hours:

=> SELECT INTERVAL '1 2:3.004' HOUR TO SECOND;

 ?column?

 01:02:03.004

(1 row)

You can express the same inputs using a cast, or you can specify units:

=> SELECT (INTERVAL '1 02:03:04.56')::INTERVAL HOUR TO SECOND;

 ?column?

 26:03:04.56

(1 row)

You can also specify units in the above command:

=> SELECT INTERVAL '1 day 02:03:04.56' HOUR TO SECOND;

 ?column?

 26:03:04.56

(1 row)

Units on output

To enable interval units on output, issue the following command:

=> SET INTERVALSTYLE TO UNITS;

Units are now returned with the interval value 'days':

=> SELECT INTERVAL '3 days 2 hours';

 ?column?

 3 days 02:00

(1 row)

-74-

SQL Reference Manual

INTERVALSTYLE (page 635) and DATESTYLE (page 634) settings affect the interval output

format only, not the interval input format. All interval output formats are accepted as input,
independent of the current output format.

When units are enabled, their format is controlled by DATESTYLE (page 634). If you are

expecting units on output but not seeing them, issue the SHOW DATESTYLE command.

DATESTYLE must be set to ISO for INTERVAL to display units on output.

Units on input

A Vertica extension lets you include units within the interval-literal (page 30). These units do not
control or affect the declared subtype range, which is declared by the interval-qualifier (on page
32).

=> SELECT INTERVAL '3 days 2 hours';

 ?column?

 3 days 02:00

(1 row)

Using the same interval-literal from the previous example, the following command still specifies
units as days and hours, but the interval-qualifier extracts minutes values from the inputs:

=> SELECT INTERVAL '3 days 2 hours' MINUTE;

 ?column?

 4440 mins

(1 row)

Note: Inside the single quotes of an interval-literal, units can be plural, but outside the quotes,
the interval-qualifier must take the singular form.

Vertica allows combinations of units, such as second and millisecond together in an INTERVAL

DAY TO SECOND (or HOUR TO SECOND) subtype; however, each unit can be used one time only

in the interval-literal string. The follow commands shows some of the combinations of units that
are allowed:

=> SELECT INTERVAL '1 second 1 millisecond' DAY TO SECOND;

 ?column?

 00:00:01.001

(1 row)

=> SELECT INTERVAL '12:13:14 15 microseconds' DAY TO SECOND;

 ?column?

 12:13:14.000015

(1 row)

=> SELECT INTERVAL '12:13:14.123 15 microseconds' DAY TO SECOND;

 ?column?

 12:13:14.123015

(1 row)

The following command, however, is rejected because there are two seconds fields:

-75-

 SQL Data Types

=> SELECT INTERVAL '12:13:14 15 seconds' DAY TO SECOND;

 ERROR: invalid input syntax for type interval: "12:13:14 15 seconds"

If you remove the seconds unit, the command returns the expected result of 15 days, 12 hours,

13 minutes, and 14 seconds:

=> SELECT INTERVAL '12:13:14 15' DAY TO SECOND;

 ?column?

 15 12:13:14

(1 row)

There are cases where the data (interval-literal) looks like a year/month type, but the type is
day/second, and the reverse. Vertica reads interval-literal data from left to right, where
number-number is years-months, and number <space> <signed number> is whatever the units
specify.

The following command is processed as follows: (-) 1 year 1 month as (-) 365 + 30 = -395 days:

=> SELECT INTERVAL '-1-1' DAY TO HOUR;

 ?column?

 -395

(1 row)

The next command is processed as follows: (-) 1 day - 1 hour as (-) 24 - 1 = -23 hours:

=> SELECT INTERVAL '-1 -1' DAY TO HOUR;

 ?column?

 -23

(1 row)

The next command is processed as follows: (-) 1 year - 1 month as (-) 365 - 30 = -335 days

=> SELECT INTERVAL '-1--1' DAY TO HOUR;

 ?column?

 -335

(1 row)

The next command is processed as follows: 1 year 0 month -1 day as 365 + 0 - 1 = -364 days

=> SELECT INTERVAL '1- -1' DAY TO HOUR;

 ?column?

 364

(1 row)

In the following example, the inputs '1 4 5 6' returns 1 day, 4 hours, 5 minutes, 6 seconds:

=> SELECT INTERVAL '1 4 5 6';

 ?column?

 1 04:05:06

(1 row)

The following example shows the previous command with units turned on:

=> SELECT INTERVAL '1 4 5 6';

-76-

SQL Reference Manual

 ?column?

 1 day 04:05:06

(1 row)

In this example, the system recognizes the colon as being part of the timestamp and outputs 4
hours, 5 minutes, 6 seconds appropriately. When it reaches the 1, it knows it has already
processed hours, minutes, and seconds and assigns the 1 value to the day field:

=> SELECT INTERVAL '4:5:6 1';

 ?column?

 1 04:05:06

(1 row)

You get the same results if you rewrite the command as follows:

=> SELECT INTERVAL '1 4:5:6';

In the next example, Vertica recognizes the 4:5 combination as hour/minute, so input value 1 is
assigned to day and the final value 2 is assigned to seconds:

SELECT INTERVAL '4:5 1 2';

 ?column?

 1 04:05:02

(1 row)

You get the same results if you rewrite the command as follows:

=> SELECT INTERVAL '1 4:5 2';

If you reverse the 1 and the 2. the results change because of how Vertica processes the
command:

=> SELECT INTERVAL '2 4:5 1';

 ?column?

 2 04:05:01

(1 row)

Day/time and year/month intervals are logically independent and cannot be combined with or

compared to one another. For example, in the following command, the days interval-literal is

ignored when combined with the YEAR TO MONTH interval-qualifier, so the system returns only 1
year:

=> SELECT INTERVAL '1 y 30 days' YEAR TO MONTH;

 ?column?

 1-0

(1 row)

If you replace the days interval-literal with an appropriate unit, for example one that represents
months, Vertica returns the correct information of 1 year, 3 months:

=> SELECT INTERVAL '1 y 3 m' YEAR TO MONTH;

 ?column?

 1-3

-77-

 SQL Data Types

(1 row)

Notice that m was used as the interval-literal in the previous example, representing months. If you

specify a DAY TO SECOND interval-qualifier, Vertica knows that m represents minutes. The

following command, for example, returns 1 day, 0 hours, and three minutes:

=> SELECT INTERVAL '1 d 3 m' DAY TO SECOND;

 ?column?

 1 00:03

(1 row)

The following series of examples use units in the input to return microseconds:

=> SELECT INTERVAL '4:5 1 2 34us';

 ?column?

 1 04:05:02.000034

(1 row)

=> SELECT INTERVAL '4:5 1d 2 34us' HOUR TO SECOND;

 ?column?

 28:05:02.000034

(1 row)

In the following example, 4:5 represents min:sec.

=> SELECT INTERVAL '4:5 1d 34us' MINUTE TO SECOND;

 ?column?

 1444:05.000034

(1 row)

The input unit 'm' can represent either 'months' or 'minutes,' depending on context. To illustrate,

the following command creates a one-column table with some interval vales:

=> CREATE TABLE int_test(i INTERVAL YEAR TO MONTH);

In the first INSERT statement, the values are inserted as 1 year, six months:

=> INSERT INTO int_test VALUES('1 year 6 months');

In the second INSERT statement, the minutes value is ignored, as the DAY TO SECOND part is

truncated:

=> INSERT INTO int_test VALUES('1 year 6 minutes');

In the third INSERT statement, the 'm' counts as minutes value is ignored, as the DAY TO SECOND

part is truncated:

=> INSERT INTO int_test VALUES('1 year 6 m'); -- the m counts as months Query the table and
you will notice that the second row does not contain the minutes input:

=> SELECT * FROM int_test;

 i

 1-6

 1-0

 1-6

-78-

SQL Reference Manual

(3 rows)

In the following command, the the 'm' counts as minutes, because the DAY TO SECOND

interval-qualifier extracts day/time values from the input:

=> SELECT INTERVAL '1y6m' DAY TO SECOND;

 ?column?

 365 00:06

(1 row)

Notes

 The Vertica INTERVAL data type is SQL-2008 compliant, with extensions. It maintains
compatibility with existing interval data. On Vertica databases created prior to version 4.0, all

INTERVAL columns are interpreted as INTERVAL DAY TO SECOND, as in the previous

release.

 On input, day/time intervals can be expressed as a combination of fields. Vertica converts
these to microseconds, adds them together, and operates on the sum.

 An INTERVAL can include only the subset of units that you need; however, year/month

intervals represent calendar years and months with no fixed fixed number of days, so
year/month interval values cannot include days, hours, minutes. Similarly, day/time intervals
cannot include year, month, and so on..

 Day/time and year/month intervals are logically independent and cannot be combined with or

compared to one another. In the following example, data that contains days cannot be

combined with the YEAR TO MONTH type.

 The primary day/time (DAY TO SECOND) and year/month (YEAR TO MONTH) subtype ranges

can be restricted to more specific range of types by an interval-qualifier. For example, HOUR

TO MINUTE is a limited form of day/time interval, which can be used to express time zone

offsets.

 Quantities of days, hours, minutes, and seconds can be specified without explicit unit
markings. For example, '1 12:59:10' is read the same as '1 day 12 hours 59 minutes 10
seconds'.

 Vertica accepts intervals up to 2^63 – 1 microseconds or months (about 18 digits).

 If an interval-qualifier is not specified, the default type is DAY TO SECOND(6), no matter what

data goes inside the quotes. For example, as an extension to SQL-2008, both of the following

commands return 910 (days):

=> SELECT INTERVAL '2-6';

=> SELECT INTERVAL '2 years 6 months';

However, if you change the interval-qualifier to YEAR TO MONTH, as in the following command,

the returned value is 2-6 for 2 years 6 months:

=> SELECT INTERVAL '2 years 6 months' YEAR TO MONTH;

 SQL-2008 allows both the leftmost units field and the SECOND units field to include a precision

specification of up to 6 fractional second places, with rounding, if fewer digits are wanted.

When SECOND is not the first field, it has a precision of 2 places before the decimal point.

-79-

 SQL Data Types

The following command specifies that the day field can hold 4 digits, the hour field 2 digits, the
minutes field 2 digits, the seconds field 2 digits, and the fractional seconds field 6 digits:

=> SELECT INTERVAL '1000 12:00:01.123456' DAY(4) TO SECOND(6);

 ?column?

 1000 days 12:00:01.123456

A Vertica extension also lets you specify the seconds precision in the leftmost field. The result
is the same:

=> SELECT INTERVAL(6) '1000 12:00:01.123456' DAY(4) TO SECOND;

 1000 12:00:01.123456

If you specify the seconds precision in both places, Vertica chooses the lesser value, rounding
down:

=> SELECT INTERVAL(4) '1000 12:00:01.123456' DAY(4) TO SECOND(6);

 1000 12:00:01.1235

Notice that the placement of the seconds precision does not matter; Vertica chooses the lesser
value, rounding down:

=> SELECT INTERVAL(6) '1000 12:00:01.123456' DAY(4) TO SECOND(4);

 1000 12:00:01.1235

 An interval-qualifier subtype can extracts other values from the input parameters. For

example, the following commands extracts the HOUR value from the input parameters:

=> SELECT INTERVAL '3 days 2 hours' HOUR;

 ?column?

 74

 When specifying intervals that use subtype YEAR TO MONTH, the returned value is kept as

months. For example, in SQL format, SELECT INTERVAL '2 years 6 months' YEAR TO

MONTH; returns 2-6, for two years and six months. If you use interval-qualifier month, you force

the system to extract months from the input parameter; for example:

=> SELECT INTERVAL '2 years 6 months' MONTH;

 ?column?

 30

 INTERVAL YEAR TO MONTH can be used in an analytic RANGE window when the ORDER BY

column type is TIMESTAMP/TIMESTAMP WITH TIMEZONE, or DATE; TIME/TIME WITH

TIMEZONE are not supported. INTERVAL DAY TO SECOND can be used when the ORDER BY

column type is TIMESTAMP/TIMESTAMP WITH TIMEZONE, DATE, and TIME/TIME WITH

TIMEZONE.

 When months or years are specified for day/time intervals, the intervals extension assumes 30
days per month and 365 days per year.

 Since the length of a given month or year varies, day/time intervals are never output as months
or years, only as days, hours, minutes, and so on.

 If you divide an interval by an interval, you get a pure number. For example, an interval divided

by an interval returns FLOAT:

=> SELECT INTERVAL '28 days 3 hours' HOUR(4) / INTERVAL '27 days 3 hours'

HOUR(4);

-80-

SQL Reference Manual

 1.036866359447

 INTERVAL divided by FLOAT is INTERVAL:

=> SELECT INTERVAL '3' MINUTE / 1.5;

 2

 INTERVAL MODULO (remainder) INTERVAL returns an INTERVAL:

=> SELECT INTERVAL '28 days 3 hours' HOUR(4) % INTERVAL '27 days 3 hours'

HOUR(4);

 24

 You can add INTERVAL and TIME. TIME implicitly converts to INTERVAL, if necessary.

=> SELECT INTERVAL '1' HOUR + TIME '1:30';

 02:30:00

 Vertica supports intervals in milliseconds (hh:mm:ss:ms), where 01:02:03:25 represents 1

hour, 2 minutes, 3 seconds, and 025 milliseconds.

Milliseconds are converted to fractional seconds; for example, the following command returns
1 day, 2 hours, 3 minutes, 4 seconds, and 25.5 milliseconds:

=> SELECT INTERVAL '1 02:03:04:25.5';

 1 02:03:04.0255

 In the SQL-2008 standard, the placement of a minus sign either before an INTERVAL literal or

as the first character of the literal negates the entire literal, not just the first component.

In Vertica a leading minus sign negates the entire interval, not just the first component. For

example, both of the following commands return -29 23:59:59:

=> SELECT INTERVAL '-1 month - 1 second';

=> SELECT INTERVAL -'1 month - 1 second';

Use one of the following commands instead, which return the intended -30 00:00:01:

=> SELECT INTERVAL -'1 month 1 second';

=> SELECT INTERVAL -'30 00:00:01';

Note that two negatives together return a positive:

=> SELECT INTERVAL -'-1 month - 1 second';

 29 23:59:59

=> SELECT INTERVAL -'-1 month 1 second';

 30 00:00:01

 Vertica allows the input of negative months but requires two negatives when paired with years.
Note that the year-hyphen-month syntax allows no spaces:

=> SELECT INTERVAL '3-3' YEAR TO MONTH;

 3-3

=> SELECT INTERVAL '3--3' YEAR TO MONTH;

 2-9

 Vertica allows fractional minutes. If the number comes out uneven enough it goes into the
seconds field. In the following example, the command returns a value of 0 hours and 10
minutes:

=> SELECT INTERVAL '10 minutes';

 00:10

Now specify an interval of 10.5 minutes:

=> SELECT INTERVAL '10.5 minutes';

-81-

 SQL Data Types

 00:10:30

 INTERVALYM is an alias for the INTERVAL YEAR TO MONTH subtypes and is used only on

input. For example, the following command returns 1 year:

=> SELECT INTERVALYM '1' year;

 1

However, you cannot use day as the input:

=> SELECT INTERVALYM '1' day;

 ERROR: Conflicting INTERVAL subtypes

Examples

The table that follows shows additional interval examples. The INTERVALSTYLE is set to plain
(omitting units on output) for brevity.

Note: Remember that if you omit the interval-qualifier (page 32), the type defaults to DAY TO
SECOND(6).

Command Result
select interval '00:2500:00'; 1 17:40

select interval '2500' minute to second; 2500

select interval '2500' minute; 2500

select interval '28 days 3 hours' hour to second; 675.00

select interval(3) '28 days 3 hours'; 28 03:00

select interval(3) '28 days 3 hours 1.234567'; 28 03:01:14.074

select interval(3) '28 days 3 hours 1.234567 sec'; 28 03:00:01.235

select interval(3) '28 days 3.3 hours' hour to second; 675.18

select interval(3) '28 days 3.35 hours' hour to second; 675.21

select interval(3) '28 days 3.37 hours' hour to second; 675:22:12

select interval '1.234567 days' hour to second; 29:37:46.5888

select interval '1.23456789 days' hour to second; 29:37:46.665696

select interval(3) '1.23456789 days' hour to second; 29:37:46.666

select interval(3) '1.23456789 days' hour to second(2); 29:37:46.67

select interval(3) '01:00:01.234567' as "one hour+"; 01:00:01.235

select interval(3) '01:00:01.234567' = interval(3) '01:00:01.234567'; t

select interval(3) '01:00:01.234567' = interval '01:00:01.234567'; f

select interval(3) '01:00:01.234567' = interval '01:00:01.234567'

hour to second(3);

t

select interval(3) '01:00:01.234567' = interval '01:00:01.234567'

minute to second(3);

t

select interval '255 1.1111' minute to second(3); 255:01.111

select interval '@ - 5 ago'; 5

select interval '@ - 5 minutes ago'; 00:05

select interval '@ 5 minutes ago'; -00:05

select interval '@ ago -5 minutes'; 00:05

select date_part('month', interval '2-3' year to month); 3

SELECT FLOOR((TIMESTAMP '2005-01-17 10:00' - TIMESTAMP '2005-01-01')

/ INTERVAL '7');

2

See Also

Interval Values (page 29) for a description of the values that can be represented in an INTERVAL
type

INTERVALSTYLE (page 635) and DATESTYLE (page 634)

-82-

SQL Reference Manual

AGE_IN_MONTHS (page 178) and AGE_IN_YEARS (page 179)

interval-literal

The following table lists the units allowed for an interval-literal parameter.

Unit Description

a Julian year, 365.25 days exactly

ago Indicates negative time offset

c, cent, century Century

centuries Centuries

d, day Day

days Days

dec, decade Decade

decades, decs Decades

h, hour, hr Hour

hours, hrs Hours

ka Julian kilo-year, 365250 days exactly

m Minute or month for year/month, depending
on context. See Notes below table.

microsecond Microsecond

microseconds Microseconds

mil, millennium Millennium

millennia, mils Millennia

millisecond Millisecond

milliseconds Milliseconds

min, minute, mm Minute

mins, minutes Minutes

mon, month Month

mons, months Months

ms, msec, millisecond Millisecond

mseconds, msecs Milliseconds

p Start of ISO Duration (Period) fields

qtr, quarter Quarter

s, sec, second Second

-83-

 SQL Data Types

seconds, secs Seconds

t Start of ISO Duration (Period) fields

time zone Time zone, if quoted time offset

timezone Timezone time offset

timezone_h Timezone hour

timezone_m Timezone minutes

us, usec Microsecond

microseconds, useconds, usecs Microseconds

w, week Week

weeks Weeks

y, year, yr Year

years, yrs Years

Notes

The input unit 'm' can represent either 'months' or 'minutes,' depending on context. To illustrate,

the following command creates a one-column table with some interval vales:

=> CREATE TABLE int_test(i INTERVAL YEAR TO MONTH);

In the first INSERT statement, the values are inserted as 1 year, six months:

=> INSERT INTO int_test VALUES('1 year 6 months');

In the second INSERT statement, the minutes value is ignored, as the DAY TO SECOND part is

truncated:

=> INSERT INTO int_test VALUES('1 year 6 minutes');

In the third INSERT statement, the 'm' counts as minutes value is ignored, as the DAY TO SECOND

part is truncated:

=> INSERT INTO int_test VALUES('1 year 6 m'); -- the m counts as months Query the table and
you will notice that the second row does not contain the minutes input:

=> SELECT * FROM int_test;

 i

 1-6

 1-0

 1-6

(3 rows)

In the following command, the the 'm' counts as minutes, because the DAY TO SECOND

interval-qualifier extracts day/time values from the input:

=> SELECT INTERVAL '1y6m' DAY TO SECOND;

 ?column?

-84-

SQL Reference Manual

 365 00:06

(1 row)

interval-qualifier

The following table lists the optional interval qualifiers. Values in INTERVAL fields, other than

SECOND, are integers with a default precision of 2 when they are not the first field.

Interval Type Units Valid interval-literal entries

Day/time intervals DAY Unconstrained.

 DAY TO HOUR An interval that represents a span of days and hours.

 DAY TO MINUTE An interval that represents a span of days and
minutes.

 DAY TO SECOND (Default) interval that represents a span of days,
hours, minutes, seconds, and fractions of a second if
subtype unspecified.

 HOUR Hours within days.

 HOUR TO MINUTE An interval that represents a span of hours and
minutes.

 HOUR TO SECOND An interval that represents a span of hours and
seconds.

 MINUTE Minutes within hours.

 MINUTE TO SECOND An interval that represents a span of minutes and
seconds.

 SECOND Seconds within minutes.

Note: The SECOND field can have an interval

fractional seconds precision, which indicates the
number of decimal digits maintained following the

decimal point in the SECONDS value. When SECOND is

not the first field, it has a precision of 2 places before
the decimal point.

Year/month intervals MONTH Months within year.

 YEAR Unconstrained.

 YEAR TO MONTH An interval that represents a span of years and
months.

Notes

You cannot combine day/time and year/month qualifiers. For example, the following intervals are
not allowed:

-85-

 SQL Data Types

 DAY TO YEAR

 HOUR TO MONTH

SMALLDATETIME

SMALLDATETIME is an alias for TIMESTAMP (page 87).

TIME

Consists of a time of day with or without a time zone.

Syntax

TIME [(p)] [{ WITH | WITHOUT } TIME ZONE] | TIMETZ

[AT TIME ZONE (see "TIME AT TIME ZONE" on page 86)]

Parameters

p (Precision) specifies the number of fractional digits retained in the seconds
field. By default, there is no explicit bound on precision. The allowed range
0 to 6.

WITH TIME ZONE Specifies that valid values must include a time zone

WITHOUT TIME ZONE Specifies that valid values do not include a time zone (default). If a time
zone is specified in the input it is silently ignored.

TIMETZ Is the same as TIME WITH TIME ZONE with no precision

Limits

Data Type Low Value High Value Resolution

TIME [p] 00:00:00.00 23:59:59.99 1 MS / 14 digits

TIME [p] WITH TIME ZONE 00:00:00.00+1

2

23:59:59.99-12 1 ms / 14 digits

Example Description

04:05:06.789 ISO 8601

04:05:06 ISO 8601

04:05 ISO 8601

040506 ISO 8601

04:05 AM Same as 04:05; AM does not affect value

04:05 PM Same as 16:05; input hour must be <= 12

04:05:06.789-8 ISO 8601

04:05:06-08:00 ISO 8601

-86-

SQL Reference Manual

04:05-08:00 ISO 8601

040506-08 ISO 8601

04:05:06 PST Time zone specified by name

Notes

 TIME is purely a time-of-day, so you cannot ADD_MONTHS (page 177) to it or cast it to a
TIMESTAMP; both of these need a date-part.

 Vertica supports adding milliseconds to a TIME or TIMETZ value.

=> CREATE TABLE temp (datecol TIME);

=> INSERT INTO temp VALUES (TIME '12:47:32.62');

=> INSERT INTO temp VALUES (TIME '12:55:49.123456');

=> INSERT INTO temp VALUES (TIME '01:08:15.12374578');

=> SELECT * FROM temp;

 datecol

 12:47:32.62

 12:55:49.123456

 01:08:15.123746

(3 rows)

TIME AT TIME ZONE

The TIME AT TIME ZONE construct converts TIMESTAMP and TIMESTAMP WITH ZONE types

to different time zones.

TIME ZONE is a synonym for TIMEZONE. Both are allowed in Vertica syntax.

Syntax

timestamp AT TIME ZONE zone

Parameters

timestamp

TIMESTAMP Converts UTC to local time in given time zone

TIMESTAMP WITH TIME ZONE Converts local time in given time zone to UTC

TIME WITH TIME ZONE Converts local time across time zones

zone Is the desired time zone specified either as a text string (for example: 'PST') or as an

interval (for example: INTERVAL '-08:00'). In the text case, the available zone

names are abbreviations.

The files in /opt/vertica/share/timezonesets define the default list of strings

accepted in the zone parameter

Examples

The local time zone is PST8PDT. The first example takes a zone-less timestamp and interprets it

as MST time (UTC- 7) to produce a UTC timestamp, which is then rotated to PST (UTC-8) for
display:

-87-

 SQL Data Types

=> SELECT TIMESTAMP '2001-02-16 20:38:40' AT TIME ZONE 'MST'; timezone

 2001-02-16 22:38:40-05

(1 row)

The second example takes a timestamp specified in EST (UTC-5) and converts it to local time in
MST (UTC-7):

=> SELECT TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40-05' AT TIME ZONE 'MST';

timezone

 2001-02-16 18:38:40

(1 row)

TIMESTAMP

Consists of a date and a time with or without a time zone and with or without a historical epoch (AD

or BC).

Syntax

TIMESTAMP [(p)] [{ WITH | WITHOUT } TIME ZONE] | TIMESTAMPTZ

[AT TIME ZONE (see "TIME AT TIME ZONE" on page 86)]

Parameters

p Optional precision value that specifies the number of fractional digits
retained in the seconds field. By default, there is no explicit bound on
precision. The allowed range of p is 0 to 6.

WITH TIME ZONE Specifies that valid values must include a time zone. All TIMESTAMP WITH

TIME ZONE values are stored internally in UTC.

They are converted to local time in the zone specified by the time zone
configuration parameter before being displayed to the client.

WITHOUT TIME ZONE Specifies that valid values do not include a time zone (default). If a time
zone is specified in the input it is silently ignored.

TIMESTAMPTZ Is the same as TIMESTAMP WITH TIME ZONE.

Limits

In the following table, values are rounded.

Data Type Low Value High Value Resolution

TIMESTAMP [(p)] [WITHOUT TIME ZONE] 290279 BC 294277 AD 1 US / 14 digits

TIMESTAMP [(p)] WITH TIME ZONE 290279 BC 294277 AD 1 US / 14 digits

Notes

 TIMESTAMP is an alias for DATETIME and SMALLDATETIME.

 Valid input for TIMESTAMP types consists of a concatenation of a date and a time, followed by

an optional time zone, followed by an optional AD or BC.

-88-

SQL Reference Manual

 AD/BC can appear before the time zone, but this is not the preferred ordering.

 The SQL standard differentiates TIMESTAMP WITHOUT TIME ZONE and TIMESTAMP WITH

TIME ZONE literals by the existence of a "+"; or "-". Hence, according to the standard:

TIMESTAMP '2004-10-19 10:23:54' is a TIMESTAMP WITHOUT TIME ZONE.

TIMESTAMP '2004-10-19 10:23:54+02' is a TIMESTAMP WITH TIME ZONE.

Note: Vertica differs from the standard by requiring that TIMESTAMP WITH TIME ZONE literals

be explicitly typed:
TIMESTAMP WITH TIME ZONE '2004-10-19 10:23:54+02'

 If a literal is not explicitly indicated as being of TIMESTAMP WITH TIME ZONE, Vertica silently

ignores any time zone indication in the literal. That is, the resulting date/time value is derived
from the date/time fields in the input value, and is not adjusted for time zone.

 For TIMESTAMP WITH TIME ZONE, the internally stored value is always in UTC. An input

value that has an explicit time zone specified is converted to UTC using the appropriate offset
for that time zone. If no time zone is stated in the input string, then it is assumed to be in the

time zone indicated by the system's TIME ZONE parameter, and is converted to UTC using the

offset for the TIME ZONE zone.

 When a TIMESTAMP WITH TIME ZONE value is output, it is always converted from UTC to the

current TIME ZONE zone and displayed as local time in that zone. To see the time in another

time zone, either change TIME ZONE or use the AT TIME ZONE construct.

 Conversions between TIMESTAMP WITHOUT TIME ZONE and TIMESTAMP WITH TIME ZONE

normally assume that the TIMESTAMP WITHOUT TIME ZONE value are taken or given as TIME

ZONE local time. A different zone reference can be specified for the conversion using AT TIME

ZONE.

 TIMESTAMPTZ and TIMETZ are not parallel SQL constructs. TIMESTAMPTZ records a time

and date in GMT, converting from the specified TIME ZONE. TIMETZ records the specified

time and the specified time zone, in minutes, from GMT.timezone

 The following list represents typical date/time input variations:

 1999-01-08 04:05:06

 1999-01-08 04:05:06 -8:00

 January 8 04:05:06 1999 PST

 Vertica supports adding a floating-point (in days) to a TIMESTAMP or TIMESTAMPTZ value.

 Vertica supports adding milliseconds to a TIMESTAMP or TIMESTAMPTZ value.

 In Vertica, intervals (page 70) are represented internally as some number of microseconds
and printed as up to 60 seconds, 60 minutes, 24 hours, 30 days, 12 months, and as many
years as necessary. Fields are either positive or negative.

Examples

You can return infinity by specifying 'infinity':

=> SELECT TIMESTAMP 'infinity';

 timestamp

 infinity

(1 row)

-89-

 SQL Data Types

To use the minimum TIMESTAMP value lower than the minimum rounded value:

=> SELECT '-infinity'::timestamp;

 timestamp

 -infinity

(1 row)

TIMESTAMP/TIMESTAMPTZ has +/-infinity values.

AD/BC can be placed almost anywhere within the input string; for example:

SELECT TIMESTAMPTZ 'June BC 1, 2000 03:20 PDT';

 timestamptz

 2000-06-01 05:20:00-05 BC

(1 row)

Notice the results are the same if you move the BC after the 1:

SELECT TIMESTAMPTZ 'June 1 BC, 2000 03:20 PDT';

 timestamptz

 2000-06-01 05:20:00-05 BC

(1 row)

And the same if you place the BC in front of the year:

SELECT TIMESTAMPTZ 'June 1, BC 2000 03:20 PDT';

 timestamptz

 2000-06-01 05:20:00-05 BC

(1 row);

The following example returns the year 45 before the Common Era:

=> SELECT TIMESTAMP 'April 1, 45 BC';

 timestamp

 0045-04-01 00:00:00 BC

(1 row)

If you omit the BC from the date input string, the system assumes you want the year 45 in the
current century:

=> SELECT TIMESTAMP 'April 1, 45';

 timestamp

 2045-04-01 00:00:00

(1 row)

In the following example, Vertica returns results in years, months, and days, whereas other
RDBMS might return results in days only:

=> SELECT TIMESTAMP WITH TIME ZONE '02/02/294276'- TIMESTAMP WITHOUT TIME ZONE

'02/20/2009' AS result;

 result

 292266 years 11 mons 12 days

-90-

SQL Reference Manual

(1 row)

To specify a specific time zone, add it to the statement, such as the use of 'ACST' in the following
example:

=> SELECT T1 AT TIME ZONE 'ACST', t2 FROM test;

 timezone | t2

---------------------+-------------

 2009-01-01 04:00:00 | 02:00:00-07

 2009-01-01 01:00:00 | 02:00:00-04

 2009-01-01 04:00:00 | 02:00:00-06

You can specify a floating point in days:

=> SELECT 'NOW'::TIMESTAMPTZ + INTERVAL '1.5 day' AS '1.5 days from now';

 1.5 days from now

 2009-03-18 21:35:23.633-04

(1 row)

The following example illustrates the difference between TIMESTAMPTZ with and without a
precision specified:

=> SELECT TIMESTAMPTZ(3) 'now', TIMESTAMPTZ 'now';

 timestamptz | timestamptz

----------------------------+-------------------------------

 2009-02-24 11:40:26.177-05 | 2009-02-24 11:40:26.177368-05

(1 row)

The following statement returns an error because the TIMESTAMP is out of range:

=> SELECT TIMESTAMP '294277-01-09 04:00:54.775808';

ERROR: date/time field value out of range: "294277-01-09 04:00:54.775808"

There is no 0 AD, so be careful when you subtract BC years from AD years:

=> SELECT EXTRACT(YEAR FROM TIMESTAMP '2001-02-16 20:38:40'); date_part

 2001

(1 row)

The following commands create a table with a TIMESTAMP column that contains milliseconds:

CREATE TABLE temp (datecol TIMESTAMP);

INSERT INTO temp VALUES (TIMESTAMP '2010-03-25 12:47:32.62');

INSERT INTO temp VALUES (TIMESTAMP '2010-03-25 12:55:49.123456');

INSERT INTO temp VALUES (TIMESTAMP '2010-03-25 01:08:15.12374578');

 SELECT * FROM temp;

 datecol

 2010-03-25 12:47:32.62

 2010-03-25 12:55:49.123456

 2010-03-25 01:08:15.123746

(3 rows)

-91-

 SQL Data Types

Additional Examples

Command Result
select (timestamp '2005-01-17 10:00' - timestamp '2005-01-01'); 16 10:10

select (timestamp '2005-01-17 10:00' - timestamp '2005-01-01') / 7; 2 08:17:08.571429

select (timestamp '2005-01-17 10:00' - timestamp '2005-01-01') day; 16

select cast((timestamp '2005-01-17 10:00' - timestamp

'2005-01-01') day as integer) / 7;

2

select floor((timestamp '2005-01-17 10:00' - timestamp

'2005-01-01') / interval '7');

2

select timestamptz '2009-05-29 15:21:00.456789'; 2009-05-29

15:21:00.456789-04

select timestamptz '2009-05-28'; 2009-05-28

00:00:00-04

select timestamptz '2009-05-29 15:21:00.456789'-timestamptz

'2009-05-28';

1 15:21:00.456789

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz

'2009-05-28');

1 15:21:00.456789

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz

'2009-05-28')(3);

1 15:21:00.457

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz

'2009-05-28')second;

141660.456789

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz

'2009-05-28') year;

0

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz

'2007-01-01') month;

28

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz

'2007-01-01') year;

2

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz

'2007-01-01') year to month;

2-4

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz

'2009-05-28') second(3);

141660.457

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz

'2009-05-28') minute(3);

2361

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz

'2009-05-28') minute;

2361

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz

'2009-05-28') minute to second(3);

2361:00.457

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz

'2009-05-28') minute to second;

2361:00.456789

TIMESTAMP AT TIME ZONE

The TIMESTAMP AT TIME ZONE construct converts TIMESTAMP and TIMESTAMP WITH ZONE

types to different time zones.

TIME ZONE is a synonym for TIMEZONE. Both are allowed in Vertica syntax.

Syntax

timestamp AT TIME ZONE zone

Parameters

timestamp

TIMESTAMP Converts UTC to local time in given time zone

TIMESTAMP WITH TIME ZONE Converts local time in given time zone to UTC

TIME WITH TIME ZONE Converts local time across time zones

-92-

SQL Reference Manual

zone Is the desired time zone specified either as a text string (for example: 'PST') or as an

interval (for example: INTERVAL '-08:00'). In the text case, the available zone

names are abbreviations.

The files in /opt/vertica/share/timezonesets define the default list of strings

accepted in the zone parameter.

Examples

The local time zone is PST8PDT. The first example takes a zone-less timestamp and interprets it

as MST time (UTC- 7) to produce a UTC timestamp, which is then rotated to PST (UTC-8) for
display:

=> SELECT TIMESTAMP '2001-02-16 20:38:40' AT TIME ZONE 'MST'; timezone

 2001-02-16 22:38:40-05

(1 row)

The second example takes a timestamp specified in EST (UTC-5) and converts it to local time in
MST (UTC-7):

=> SELECT TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40-05' AT TIME ZONE 'MST';

timezone

 2001-02-16 18:38:40

(1 row)

Numeric Data Types
Numeric data types are numbers stored in database columns. These data types are typically
grouped by:

 Exact numeric types , values where the precision and scale need to be preserved. The exact

numeric types are BIGINT, DECIMAL, INTEGER, NUMERIC, NUMBER, and MONEY.

 Approximate numeric types, values where the precision needs to be preserved and the scale

can be floating. The approximate numeric types are DOUBLE PRECISION, FLOAT, and REAL.

Implicit casts from INTEGER, FLOAT, and NUMERIC to VARCHAR are not supported. If you need

that functionality, write an explicit cast using one of the following forms:

CAST(x AS data-type-name) or x::data-type-name

The following example casts a float to an integer:

=> SELECT(FLOAT '123.5')::INT;

 ?column?

 124

(1 row)

String-to-numeric data type conversions accept formats of quoted constants for scientific notation,
binary scaling, hexadecimal, and combinations of numeric-type literals:

 Scientific notation:

=> SELECT FLOAT '1e10';

-93-

 SQL Data Types

 ?column?

 10000000000

(1 row)

 BINARY scaling:

=> SELECT NUMERIC '1p10';

 ?column?

 1024

(1 row)

 Hexadecimal:

=> SELECT NUMERIC '0x0abc';

 ?column?

 2748

(1 row)

 Combinations:

=> SELECT NUMERIC '0x1pe3';

 ?column?

 1000

(1 row)

Note: The p (which defaults to p0) is required for hexadecimal, because SELECT

'0x1e3'::NUMERIC = 483.

-94-

SQL Reference Manual

DOUBLE PRECISION (FLOAT)

Vertica supports the numeric data type DOUBLE PRECISION, which is the IEEE-754 8-byte

floating point type, along with most of the usual floating point operations.

Syntax

[DOUBLE PRECISION | FLOAT | FLOAT(n) | FLOAT8 | REAL]

Parameters

Note: On a machine whose floating-point arithmetic does not follow IEEE-754, these values
probably do not work as expected.

Double precision is an inexact, variable-precision numeric type. In other words, some values
cannot be represented exactly and are stored as approximations. Thus, input and output
operations involving double precision might show slight discrepancies.

 All of the DOUBLE PRECISION data types are synonyms for 64-bit IEEE FLOAT.

 The n in FLOAT(n) must be between 1 and 53, inclusive, but a 53-bit fraction is always used.

See the IEEE-754 standard for details.

 For exact numeric storage and calculations (money for example), use NUMERIC.

 Floating point calculations depend on the behavior of the underlying processor, operating
system, and compiler.

 Comparing two floating-point values for equality might not work as expected.

Values

COPY (page 497) accepts floating-point data in the following format:

1 Optional leading white space

2 An optional plus ("+") or minus sign ("-")

3 A decimal number, a hexadecimal number, an infinity, a NAN, or a null value

A decimal number consists of a non-empty sequence of decimal digits possibly containing a radix
character (decimal point "."), optionally followed by a decimal exponent. A decimal exponent
consists of an "E" or "e", followed by an optional plus or minus sign, followed by a non-empty
sequence of decimal digits, and indicates multiplication by a power of 10.

A hexadecimal number consists of a "0x" or "0X" followed by a non-empty sequence of
hexadecimal digits possibly containing a radix character, optionally followed by a binary exponent.
A binary exponent consists of a "P" or "p", followed by an optional plus or minus sign, followed by
a non-empty sequence of decimal digits, and indicates multiplication by a power of 2. At least one
of radix character and binary exponent must be present.

An infinity is either INF or INFINITY, disregarding case.

A NaN (Not A Number) is NAN (disregarding case) optionally followed by a sequence of characters

enclosed in parentheses. The character string specifies the value of NAN in an
implementation-dependent manner. (The Vertica internal representation of NAN is
0xfff8000000000000LL on x86 machines.)

-95-

 SQL Data Types

When writing infinity or NAN values as constants in a SQL statement, enclose them in single
quotes. For example:

=> UPDATE table SET x = 'Infinity'

Note: Vertica follows the IEEE definition of NaNs (IEEE 754). The SQL standards do not specify
how floating point works in detail.

IEEE defines NaNs as a set of floating point values where each one is not equal to anything, even
to itself. A NaN is not greater than and at the same time not less than anything, even itself. In other
words, comparisons always return false whenever a NaN is involved.

However, for the purpose of sorting data, NaN values must be placed somewhere in the result.
The value generated 'NaN' appears in the context of a floating point number matches the NaN
value generated by the hardware. For example, Intel hardware generates
(0xfff8000000000000LL), which is technically a Negative, Quiet, Non-signaling NaN.

Vertica uses a different NaN value to represent floating point NULL (0x7ffffffffffffffeLL). This is a
Positive, Quiet, Non-signaling NaN and is reserved by Vertica

The load file format of a null value is user defined, as described in the COPY (page 497) command.

The Vertica internal representation of a null value is 0x7fffffffffffffffLL. The interactive format is
controlled by the vsql printing option null. For example:

\pset null '(null)'

The default option is not to print anything.

Rules

 -0 == +0

 1/0 = Infinity

 0/0 == Nan

 NaN != anything (even NaN)

To search for NaN column values, use the following predicate:

... WHERE column != column

This is necessary because WHERE column = 'Nan' cannot be true by definition.

Sort Order (Ascending)

 NaN

 -Inf

 numbers

 +Inf

 NULL

Notes

 Vertica does not support REAL (FLOAT4) or NUMERIC.

-96-

SQL Reference Manual

 NULL appears last (largest) in ascending order.

 All overflows in floats generate +/-infinity or NaN, per the IEEE floating point standard.

-97-

 SQL Data Types

INTEGER

A signed 8-byte (64-bit) data type.

Syntax

[INTEGER | INT | BIGINT | INT8 | SMALLINT | TINYINT]

Parameters

INT, INTEGER, INT8, and BIGINT are all synonyms for the same signed 64-bit integer data

type. Automatic compression techniques are used to conserve disk space in cases where the full
64 bits are not required.

Notes

 The range of values is -2^63+1 to 2^63-1.

 2^63 = 9,223,372,036,854,775,808 (19 digits).

 The value -2^63 is reserved to represent NULL.

 NULL appears first (smallest) in ascending order.

 Vertica does not have an explicit 4-byte (32-bit integer) or smaller types. Vertica's encoding
and compression automatically eliminate the storage overhead of values that fit in less than 64
bits.

Restrictions

 The JDBC type INTEGER is 4 bytes and is not supported by Vertica. Use BIGINT instead.

 Vertica does not support the SQL/JDBC types NUMERIC, SMALLINT, or TINYINT.

 Vertica does not check for overflow (positive or negative) except in the aggregate function SUM

(page 116)(). If you encounter overflow when using SUM, use SUM_FLOAT (page 117)()

which converts to floating point.

NUMERIC

Numeric data types store numeric data. For example, a money value of $123.45 could be stored in

a NUMERIC(5,2) field.

Syntax

NUMERIC | DECIMAL | NUMBER | MONEY [(precision [, scale])]

Parameters

precision The number of significant decimal digits, or the number of digits
that the data type stores. Precision p must be positive and <=
1024.

scale Expressed in decimal digits and can be any integer
representable in a 16-bit field. The default scale s is 0 <=scale
<= precision; omitting scale is the same as s=0.

-98-

SQL Reference Manual

Notes

 NUMERIC, DECIMAL, NUMBER, and MONEY are all synonyms that return NUMERIC types. Note,

however, that the default values for NUMBER and MONEY are implemented a bit differently:

Type Precision Scale

NUMERIC 37 15

DECIMAL 37 15

NUMBER 38 0

MONEY 18 4

 NUMERIC data types support exact representations of numbers that can be expressed with a

number of digits before and after a decimal point. This contrasts slightly with existing Vertica
data types:

 DOUBLE PRECISION (page 94) (FLOAT) types support ~15 digits, variable exponent, and

represent numeric values approximately.

 INTEGER (page 97) (and similar) types support ~18 digits, whole numbers only.

 NUMERIC data types are generally called exact numeric data types because they store

numbers of a specified precision and scale. The approximate numeric data types, such as

DOUBLE PRECISION, use floating points and are less precise.

 Supported numeric operations include the following:

 Basic math; for example, +, -, *, /

 Aggregation; for example, SUM, MIN, MAX, COUNT

 Comparison operators; for example, <=, =, <=>, <>, >, >=

 NUMERIC divide operates directly on numeric values, without converting to floating point. The

result has at least 18 decimal places and is rounded.

 NUMERIC mod (including %) operates directly on numeric values, without converting to floating

point. The result has the same scale as the numerator and never needs rounding.

 COPY (page 497) accepts DECIMAL number with a decimal point ('.'), prefixed by - or
+(optional).

 LZO, RLE, and BLOCK_DICT are supported encoding types. Anything that can be used on an
INTEGER can also be used on a NUMERIC, as long as the precision is <= 18.

 NUMERIC is preferred for non-integer constants, as this typically improves precision. For

example:

=> SELECT 1.1 + 2.2 = 3.3;

 ?column?

 t

(1 row)

=> SELECT 1.1::float + 2.2::float = 3.3::float;

 ?column?

 f

(1 row)

 Performance of the NUMERIC data type has been fine tuned for the common case of 18 digits

of precision.

-99-

 SQL Data Types

 Some of the more complex operations used with NUMERIC data types result in an implicit cast

to FLOAT. When using SQRT, STDDEV, transcendental functions such as LOG, and

TO_CHAR/TO_NUMBER formatting, the result is always FLOAT.

Examples

The following series of commands creates a table that contains a NUMERIC data type and then
performs some mathematical operations on the data:

=> CREATE TABLE num1 (id INTEGER, amount NUMERIC(8,2));

Now insert some values into the table:

=> INSERT INTO num1 VALUES (1, 123456.78);

Query the table:

=> SELECT * FROM num1;

 id | amount

------+-----------

 1 | 123456.78

(1 row)

The following example returns the NUMERIC column, amount, from table num1:

=> SELECT amount FROM num1;

 amount

 123456.78

(1 row)

The following syntax adds one (1) to the amount:

=> SELECT amount+1 AS 'amount' FROM num1;

 amount

 123457.78

(1 row)

The following syntax multiplies the amount column by 2:

=> SELECT amount*2 AS 'amount' FROM num1;

 amount

 246913.56

(1 row)

The following syntax returns a negative number for the amount column:

=> SELECT -amount FROM num1;

 ?column?

 -123456.78

(1 row)

The following syntax returns the absolute value of the amount argument:

=> SELECT ABS(amount) FROM num1;

 ABS

-100-

SQL Reference Manual

 123456.78

(1 row)

The following syntax casts the NUMERIC amount as a FLOAT data type:

=> SELECT amount::float FROM num1;

 amount

 123456.78

(1 row)

See Also

Mathematical Functions (page 229)

Numeric Data Type Overflow

Vertica does not check for overflow (positive or negative) except in the aggregate function SUM

(page 116)(). If you encounter overflow when using SUM, use SUM_FLOAT (page 117)()

which converts to floating point.

For INTEGER data types, dividing zero by zero returns zero:

=> SELECT 0/0;

 ?column?

 0

(1 row)

Dividing anything else by zero returns a run-time error.

=> SELECT 1/0;

 ERROR: division by zero

=> SELECT 0.0/0;

 ERROR: numeric division by zero

Add, subtract, and multiply operations ignore overflow. Sum and average operations use 128-bit

arithmetic internally. SUM (page 116)() reports an error if the final result overflows, suggesting

the use of SUM_FLOAT (page 117)(INT), which converts the 128-bit sum to a FLOAT8. For

example:

=> CREATE TEMP TABLE t (i INT);

=> INSERT INTO t VALUES (1<<62);

=> INSERT INTO t VALUES (1<<62);

=> INSERT INTO t VALUES (1<<62);

=> INSERT INTO t VALUES (1<<62);

=> INSERT INTO t VALUES (1<<62);

=> SELECT SUM(i) FROM t;

 ERROR: sum() overflowed

 HINT: try sum_float() instead

=> SELECT SUM_FLOAT(i) FROM t;

 sum_float

 2.30584300921369e+19

-101-

 SQL Data Types

Data Type Coercion
Vertica currently has two types of cast, implicit and explicit. Vertica implicitly casts (coerces)
expressions from one type to another under certain circumstances.

To illustrate, first get today's date:

=> SELECT DATE 'now';

 ?column?

 2010-10-19

(1 row)

The following command converts DATE to a TIMESTAMP and adds a day and a half to the results

by using INTERVAL:

=> SELECT DATE 'now' + INTERVAL '1 12:00:00';

 ?column?

 2010-10-20 12:00:00

(1 row)

When there is no ambiguity as to the data type of an expression value, it is implicitly coerced to

match the expected data type. In the following command,the quoted string constant '2' is implicitly

coerced into an INTEGER value so that it can be the operand of an arithmetic operator (addition):

=> SELECT 2 + '2';

 ?column?

 4

(1 row)

The result of the following arithmetic expression 2 + 2 and the INTEGER constant 2 are implicitly

coerced into VARCHAR values so that they can be concatenated.

=> SELECT 2 + 2 || 2;

 ?column?

 42

(1 row)

Most implicit casts stay within their relational family and go in one direction, from less detailed to
more detailed. For example:

 DATE to TIMESTAMP/TZ

 INTEGER to NUMERIC to FLOAT

 CHAR to FLOAT

 CHAR to VARCHAR

CHAR and/or VARCHAR to FLOAT More specifically, data type coercion works in this manner in

Vertica:

 INT8 -> FLOAT8—implicit, can lose significance

 FLOAT8 -> INT8—explicit, rounds

-102-

SQL Reference Manual

 VARCHAR <-> CHAR—implicit, adjusts trailing spaces

 VARBINARY <-> BINARY—implicit, adjusts trailing NULs

No other types cast to or from varbinary or binary. In the following list, <any> means one these
types: INT8, FLOAT8, DATE, TIME, TIMETZ, TIMESTAMP, TIMESTAMPTZ, INTERVAL

 <any> -> VARCHAR—implicit

 VARCHAR -> <any>—explicit, except that VARCHAR->FLOAT is implicit

 <any> <-> CHAR—explicit

 DATE -> TIMESTAMP/TZ—implicit

 TIMESTAMP/TZ -> DATE—explicit, loses time-of-day

 TIME -> TIMETZ—implicit, adds local timezone

 TIMETZ -> TIME—explicit, loses timezone

 TIME -> INTERVAL—implicit, day to second with days=0

 INTERVAL -> TIME—explicit, truncates non-time parts

 TIMESTAMP <-> TIMESTAMPTZ—implicit, adjusts to local timezone

 TIMESTAMP/TZ -> TIME—explicit, truncates non-time parts

 TIMESTAMPTZ -> TIMETZ—explicit

IMPORTANT: Implicit casts from INTEGER, FLOAT, and NUMERIC to VARCHAR are not supported.

If you need that functionality, write an explicit cast:

CAST(x AS data-type-name)

or

x::data-type-name

The following example casts a FLOAT to an INTEGER:

=> SELECT(FLOAT '123.5')::INT;

 ?column?

 124

(1 row)

String-to-numeric data type conversions accept formats of quoted constants for scientific notation,
binary scaling, hexadecimal, and combinations of numeric-type literals:

 Scientific notation:

=> SELECT FLOAT '1e10';

 ?column?

 10000000000

(1 row)

 BINARY scaling:

=> SELECT NUMERIC '1p10';

 ?column?

-103-

 SQL Data Types

 1024

(1 row)

 Hexadecimal:

=> SELECT NUMERIC '0x0abc';

 ?column?

 2748

(1 row)

 Combinations:

=> SELECT NUMERIC '0x1pe3';

 ?column?

 1000

(1 row)

Note: The p (which defaults to p0) is required for hexadecimal, because SELECT

'0x1e3'::NUMERIC = 483.

 Examples

=> SELECT NUMERIC '12.3e3', '12.3p10'::NUMERIC, CAST('0x12.3p-10e3' AS NUMERIC);

 ?column? | ?column? | ?column?

----------+----------+-------------------

 12300 | 12595.2 | 17.76123046875000

(1 row)

=> SELECT (18. + 3./16)/1024*1000;

 ?column?

 17.761230468750000000000000000000000000

(1 row)

Note: In SQL expressions, pure numbers between -(2^63-1) and (2^63-1) are INTEGERs;

numbers with decimal points are NUMERIC, and do not support the above notation. Numbers

using e notation are FLOAT.

The following two examples show queries that once work but now fail; below the failed query is a
rewrite with the cast to VARCHAR to make such queries work again:

=> SELECT TO_NUMBER(1);

ERROR: function to_number(int) does not exist

HINT: No function matches the given name and argument types. You may need to add

explicit type casts.

=> SELECT TO_NUMBER(1::VARCHAR);

 to_number

 1

(1 row)

=> SELECT TO_DATE(20100302, 'YYYYMMDD');

ERROR: function to_date(int, "unknown") does not exist

HINT: No function matches the given name and argument types. You may need to add

explicit type casts.

=> SELECT TO_DATE(20100302::VARCHAR, 'YYYYMMDD');

-104-

SQL Reference Manual

 to_date

 2010-03-02

(1 row)

See Also

Data Type Coercion Chart (page 104)

Data Type Coercion Operators (CAST) (page 37)

Data Type Coercion Chart

Conversion Types

The following table defines all possible type conversions that Vertica supports. The values across
the top row are the data types you want, and the values down the first column on the left are the
data types that you have.

Want

> BOOL INT FLT CHR VCHR DTM TM TS TSTZ INVL TTZ NUM VBIN BIN INTYM

Have

BOOL N/A a a

INT N/A i a** a** a i a

FLT a N/A a a a

CHR e e i Yes i e e e e e e e e

VCHR e e i i Yes e e e e e e e e

DTM a a N/A i a

TM a a Yes i i

TS a a a a Yes i

TSTZ a a a a i Yes a

INVL a a a a Yes

TTZ a a a Yes

NUM a i a a Yes

VBIN Yes i

BIN i Yes

INTYM a a a Yes

-105-

 SQL Data Types

KEY

Type:

(i)mplicit,

(a)ssignment,

(e)xplicit

Matrix:

 ** means that the numeric meaning is lost, and the

value is subject to (VAR)CHAR compares

Abbreviation:

 BOOL = Boolean

 INT = Integer

 FLT = Float

 CHR = Char

 VCHR = Varchar

 DTM = Date

 TM = Time

 TS = Timestamp

 TSTZ = Timestamp with Time Zone

 INVL = Interval Day to Second

 TTZ = Time with time zone

 NUM = Numeric

 VBIN = Varbinary

 BIN = Binary

 INTYM = Interval Year to Month

See Also

Data Type Coercion Operators (CAST) (page 37)

-106-

SQL Functions

Functions return information from the database and are allowed anywhere an expression is
allowed. The exception is Vertica-specific functions (page 318), which are not allowed
everywhere.

Some functions could produce different results on different invocations with the same set of
arguments. The following three categories of functions are defined based on their behavior:

 Immutable (invariant): When run with a given set of arguments, immutable functions always
produces the same result. The function is independent on any environment or session
settings, such as locale. For example, 2+2 always equals 4. Another immutable function is
AVG(). Some immutable functions can take an optional stable argument; in this case they are
treated as stable functions.

 Stable: When run with a given set of arguments, stable functions produce the same result
within a single query or scan operation. However, a stable function could produce different
results when issued under a different environment, such as a change of locale and time zone.
Expressions that could give different results in the future are also stable, for example

SYSDATE() or 'today'.

 Volatile: Regardless of the arguments or environment, volatile functions can return different
results on multiple invocations. RANDOM() is one example.

This chapter describes the functions that Vertica supports.

 Each function is annotated with behavior type as immutable, stable or volatile.

 All Vertica-specific functions can be assumed to be volatile and are not annotated individually.

-107-

 107

Aggregate Functions
Note: All functions in this section that have an analytic (page 120) function counterpart are
appended with [Aggregate] to avoid confusion between the two.

Aggregate functions summarize data over groups of rows from a query result set. The groups are
specified using the GROUP BY (page 626) clause. They are allowed only in the select list and in
the HAVING (page 628) and ORDER BY (page 629) clauses of a SELECT (page 617) statement
(as described in Aggregate Expressions (page 43)).

Notes

 Except for COUNT, these functions return a null value when no rows are selected. In
particular, SUM of no rows returns NULL, not zero.

 In some cases you can replace an expression that includes multiple aggregates with an single
aggregate of an expression. For example SUM(x) + SUM(y) can be expressed as as
SUM(x+y) (where x and y are NOT NULL).

 Vertica does not support nested aggregate functions.

You can also use some of the simple aggregate functions as analytic (window) functions. See
Analytic Functions (page 120) for details. See also Using SQL Analytics in the Programmer's
Guide.

AVG [Aggregate]

Computes the average (arithmetic mean) of an expression over a group of rows. It returns a

DOUBLE PRECISION value for a floating-point expression. Otherwise, the return value is the same

as the expression data type.

Behavior Type

Immutable

Syntax

AVG ([ALL | DISTINCT] expression)

Parameters

ALL Invokes the aggregate function for all rows in the group (default).

DISTINCT Invokes the aggregate function for all distinct non-null values of the expression
found in the group.

expression The value whose average is calculated over a set of rows. Can be any

expression resulting in DOUBLE PRECISION.

Notes

The AVG() aggregate function is different from the AVG() analytic function, which computes an

average of an expression over a group of rows within a window.

-108-

SQL Reference Manual

Examples

The following example returns the average income from the customer table:

=> SELECT AVG(annual_income) FROM customer_dimension;

 avg

 2104270.6485

(1 row)

See Also

AVG (page 128) analytic function

COUNT (page 108) and SUM (page 116)

Numeric Data Types (page 92)

COUNT [Aggregate]

Returns the number of rows in each group of the result set for which the expression is not NULL.

The return value is a BIGINT.

Behavior Type

Immutable

Syntax

COUNT ([*] [ALL | DISTINCT] expression)

Parameters

* Indicates that the count does not apply to any specific column or expression in

the select list. Requires a FROM clause (page 620).

ALL Invokes the aggregate function for all rows in the group (default).

DISTINCT Invokes the aggregate function for all distinct non-null values of the expression
found in the group.

expression Returns the number of rows in each group for which the expression is not null.

Can be any expression resulting in BIGINT.

Notes

The COUNT() aggregate function is different from the COUNT() analytic function, which returns

the number over a group of rows within a window.

Examples

The following query returns the number of distinct values in the primary_key column of the

date_dimension table:

-109-

 SQL Functions

=> SELECT COUNT (DISTINCT date_key) FROM date_dimension; count

 1826

(1 row)

The next example returns all distinct values of evaluating the expression x+y for all records of fact.

=> SELECT COUNT (DISTINCT date_key + product_key) FROM inventory_fact; count

 21560

(1 row)

An equivalent query is as follows (using the LIMIT key to restrict the number of rows returned):

=> SELECT COUNT(date_key + product_key) FROM inventory_fact

 GROUP BY date_key LIMIT 10;

 count

 173

 31

 321

 113

 286

 84

 244

 238

 145

 202

(10 rows)

Each distinct product_key value in table inventory_fact and returns the number of distinct

values of date_key in all records with the specific distinct product_key value.

=> SELECT product_key, COUNT (DISTINCT date_key) FROM inventory_fact

 GROUP BY product_key LIMIT 10;

 product_key | count

-------------+-------

 1 | 12

 2 | 18

 3 | 13

 4 | 17

 5 | 11

 6 | 14

 7 | 13

 8 | 17

 9 | 15

 10 | 12

(10 rows)

This query counts each distinct product_key value in table inventory_fact with the constant

"1".

=> SELECT product_key, COUNT (DISTINCT product_key) FROM inventory_fact

 GROUP BY product_key LIMIT 10;

product_key | count

-------------+-------

 1 | 1

-110-

SQL Reference Manual

 2 | 1

 3 | 1

 4 | 1

 5 | 1

 6 | 1

 7 | 1

 8 | 1

 9 | 1

 10 | 1

(10 rows)

This query selects each distinct date_key value and counts the number of distinct

product_key values for all records with the specific product_key value. It then sums the

qty_in_stock values in all records with the specific product_key value and groups the

results by date_key.

=> SELECT date_key, COUNT (DISTINCT product_key), SUM(qty_in_stock) FROM

inventory_fact

 GROUP BY date_key LIMIT 10;

 date_key | count | sum

----------+-------+--------

 1 | 173 | 88953

 2 | 31 | 16315

 3 | 318 | 156003

 4 | 113 | 53341

 5 | 285 | 148380

 6 | 84 | 42421

 7 | 241 | 119315

 8 | 238 | 122380

 9 | 142 | 70151

 10 | 202 | 95274

(10 rows)

This query selects each distinct product_key value and then counts the number of distinct

date_key values for all records with the specific product_key value and counts the number of

distinct warehouse_key values in all records with the specific product_key value.

=> SELECT product_key, COUNT (DISTINCT date_key), COUNT (DISTINCT warehouse_key)

 FROM inventory_fact GROUP BY product_key LIMIT 15;

 product_key | count | count

-------------+-------+-------

 1 | 12 | 12

 2 | 18 | 18

 3 | 13 | 12

 4 | 17 | 18

 5 | 11 | 9

 6 | 14 | 13

 7 | 13 | 13

 8 | 17 | 15

 9 | 15 | 14

 10 | 12 | 12

 11 | 11 | 11

 12 | 13 | 12

 13 | 9 | 7

 14 | 13 | 13

-111-

 SQL Functions

 15 | 18 | 17

(15 rows)

This query selects each distinct product_key value, counts the number of distinct date_key and

warehouse_key values for all records with the specific product_key value, and then sums all

qty_in_stock values in records with the specific product_key value. It then returns the number of

product_version values in records with the specific product_key value.

=> SELECT product_key, COUNT (DISTINCT date_key), COUNT (DISTINCT warehouse_key),

 SUM (qty_in_stock), COUNT (product_version)

 FROM inventory_fact GROUP BY product_key LIMIT 15;

 product_key | count | count | sum | count

-------------+-------+-------+-------+-------

 1 | 12 | 12 | 5530 | 12

 2 | 18 | 18 | 9605 | 18

 3 | 13 | 12 | 8404 | 13

 4 | 17 | 18 | 10006 | 18

 5 | 11 | 9 | 4794 | 11

 6 | 14 | 13 | 7359 | 14

 7 | 13 | 13 | 7828 | 13

 8 | 17 | 15 | 9074 | 17

 9 | 15 | 14 | 7032 | 15

 10 | 12 | 12 | 5359 | 12

 11 | 11 | 11 | 6049 | 11

 12 | 13 | 12 | 6075 | 13

 13 | 9 | 7 | 3470 | 9

 14 | 13 | 13 | 5125 | 13

 15 | 18 | 17 | 9277 | 18

(15 rows)

The following example returns the number of warehouses from the warehouse dimension table:

=> SELECT COUNT(warehouse_name) FROM warehouse_dimension; count

 100

(1 row)

The next example returns the total number of vendors:

=> SELECT COUNT(*) FROM vendor_dimension;

 count

 50

(1 row)

See Also

Analytic Functions (page 120)

AVG (page 107)

SUM (page 116)

Using SQL Analytics in the Programmer's Guide

-112-

SQL Reference Manual

MAX [Aggregate]

Returns the greatest value of an expression over a group of rows. The return value is the same as
the expression data type.

Behavior Type

Immutable

Syntax

MAX ([ALL | DISTINCT] expression)

Parameters

ALL | DISTINCT Are meaningless in this context.

expression Can be any expression for which the maximum value is calculated,
typically a column reference (see "Column References" on page 45).

Notes

The MAX() aggregate function is different from the MAX() analytic function, which returns the

maximum value of an expression over a group of rows within a window.

Example

This example returns the largest value (dollar amount) of the sales_dollar_amount column.

=> SELECT MAX(sales_dollar_amount) AS highest_sale FROM store.store_sales_fact;

highest_sale

 600

(1 row)

See Also

Analytic Functions (page 120)

MIN (page 112)

MIN [Aggregate]

Returns the smallest value of an expression over a group of rows. The return value is the same as
the expression data type.

Behavior Type

Immutable

Syntax

MIN ([ALL | DISTINCT] expression)

-113-

 SQL Functions

Parameters

ALL | DISTINCT Are meaningless in this context.

expression Can be any expression for which the minimum value is calculated, typically
a column reference (see "Column References" on page 45).

Notes

The MIN() aggregate function is different from the MIN() analytic function, which returns the

minimum value of an expression over a group of rows within a window.

Example

This example returns the lowest salary from the employee dimension table.

=> SELECT MIN(annual_salary) AS lowest_paid FROM employee_dimension; lowest_paid

 1200

(1 row)

See Also

Analytic Functions (page 120)

MAX (page 112)

Using SQL Analytics in the Programmer's Guide

STDDEV [Aggregate]

Note: The non-standard function STDDEV() is provided for compatibility with other databases.

It is semantically identical to STDDEV_SAMP() (page 115).

Evaluates the statistical sample standard deviation for each member of the group. The

STDDEV_SAMP() return value is the same as the square root of the VAR_SAMP() function:

STDDEV(expression) = SQRT(VAR_SAMP(expression))

When VAR_SAMP() returns null, this function returns null.

Behavior Type

Immutable

Syntax

STDDEV (expression)

Parameters

expression Any NUMERIC data type (page 92) or any non-numeric data

type that can be implicitly converted to a numeric data type.
The function returns the same data type as the numeric data
type of the argument.

-114-

SQL Reference Manual

Notes

The STDDEV() aggregate function is different from the STDDEV() analytic function, which

computes the statistical sample standard deviation of the current row with respect to the group of
rows within a window.

Examples

The following example returns the statistical sample standard deviation for each household ID

from the customer dimension table.

=> SELECT STDDEV_SAMP(household_id) FROM customer_dimension; stddev_samp

 8651.50842400771

(1 row)

See Also

Analytic Functions (page 120)

STDDEV_SAMP (page 115)

Using SQL Analytics in the Programmer's Guide

STDDEV_POP [Aggregate]

Evaluates the statistical population standard deviation for each member of the group. The

STDDEV_POP() return value is the same as the square root of the VAR_POP() function

STDDEV_POP(expression) = SQRT(VAR_POP(expression))

When VAR_SAMP() returns null, this function returns null.

Behavior Type

Immutable

Syntax

STDDEV_POP (expression)

Parameters

expression Any NUMERIC data type (page 92) or any non-numeric data

type that can be implicitly converted to a numeric data type. The
function returns the same data type as the numeric data type of
the argument.

Notes

The STDDEV_POP() aggregate function is different from the STDDEV_POP() analytic function,

which evaluates the statistical population standard deviation for each member of the group of rows
within a window.

-115-

 SQL Functions

Examples

The following example returns the statistical population standard deviation for each household ID

in the customer table.

=> SELECT STDDEV_POP(household_id) FROM customer_dimension; stddev_samp

 8651.41895973367

(1 row)

See Also

Analytic Functions (page 120)

Using SQL for Analytics in the Programmer's Guide

STDDEV_SAMP [Aggregate]

Evaluates the statistical sample standard deviation for each member of the group. The

STDDEV_SAMP() return value is the same as the square root of the VAR_SAMP() function:

STDDEV_SAMP(expression) = SQRT(VAR_SAMP(expression))

When VAR_SAMP() returns null, this function returns null.

Behavior Type:

Immutable

Syntax

STDDEV_SAMP (expression)

Parameters

expression Any NUMERIC data type (page 92) or any non-numeric data

type that can be implicitly converted to a numeric data type. The
function returns the same data type as the numeric data type of
the argument.

Notes

 STDDEV_SAMP() is semantically identical to the non-standard function, STDDEV() (page

113), which is provided for compatibility with other databases.

 The STDDEV_SAMP() aggregate function is different from the STDDEV_SAMP() analytic

function, which computes the statistical sample standard deviation of the current row with
respect to the group of rows within a window.

Examples

The following example returns the statistical sample standard deviation for each household ID

from the customer dimension table.

=> SELECT STDDEV_SAMP(household_id) FROM customer_dimension; stddev_samp

 8651.50842400771

-116-

SQL Reference Manual

(1 row)

See Also

Analytic Functions (page 120)

STDDEV (page 113)

Using SQL Analytics in the Programmer's Guide

SUM [Aggregate]

Computes the sum of an expression over a group of rows. It returns a DOUBLE PRECISION value

for a floating-point expression. Otherwise, the return value is the same as the expression data
type.

Behavior Type

Immutable

Syntax

SUM ([ALL | DISTINCT] expression)

Parameters

ALL Invokes the aggregate function for all rows in the group (default)

DISTINCT Invokes the aggregate function for all distinct non-null values of
the expression found in the group

expression Any NUMERIC data type (page 92) or any non-numeric data type

that can be implicitly converted to a numeric data type. The
function returns the same data type as the numeric data type of
the argument.

Notes

 The SUM() aggregate function is different from the SUM() analytic function, which returns the

minimum value of an expression within a window.

 If you encounter data overflow when using SUM(), use SUM_FLOAT() (page 117) which

converts the data to a floating point.

Example

This example returns the total sum of the product_cost column.

=> SELECT SUM(product_cost) AS cost FROM product_dimension; cost

 9042850

(1 row)

See Also

AVG (page 107)

-117-

 SQL Functions

COUNT (page 108)

Numeric Data Types (page 92)

Using SQL Analytics in the Programmer's Guide

SUM_FLOAT [Aggregate]

Computes the sum of an expression over a group of rows. It returns a DOUBLE PRECISION value

for the expression, regardless of the expression type.

Behavior Type

Immutable

Syntax

SUM_FLOAT ([ALL | DISTINCT] expression)

Parameters

ALL Invokes the aggregate function for all rows in the group (default).

DISTINCT Invokes the aggregate function for all distinct non-null values of the
expression found in the group.

expression Can be any expression resulting in DOUBLE PRECISION.

Example

The following example returns the floating point sum of the average price from the product table:

=> SELECT SUM_FLOAT(average_competitor_price) AS cost FROM product_dimension;

cost

 18181102

(1 row)

VAR_POP [Aggregate]

Evaluates the population variance for each member of the group. This is defined as the sum of
squares of the difference of expression from the mean of expression, divided by the number of
rows remaining.

(SUM(expression*expression) - SUM(expression)*SUM(expression) /

COUNT(expression)) / COUNT(expression)

Behavior Type

Immutable

Syntax

VAR_POP (expression)

-118-

SQL Reference Manual

Parameters

expression Any NUMERIC data type (page 92) or any non-numeric data type

that can be implicitly converted to a numeric data type. The
function returns the same data type as the numeric data type of
the argument.

Notes

The VAR_POP() aggregate function is different from the VAR_POP() analytic function, which

computes the population variance of the current row with respect to the group of rows within a
window.

Examples

The following example returns the population variance for each household ID in the customer

table.

=> SELECT VAR_POP(household_id) FROM customer_dimension; var_pop

 74847050.0168393

(1 row)

VAR_SAMP [Aggregate]

Evaluates the sample variance for each row of the group. This is defined as the sum of squares of
the difference of expression from the mean of expression, divided by the number of rows
remaining minus 1 (one).

(SUM(expression*expression) - SUM(expression) *SUM(expression) /

COUNT(expression)) / (COUNT(expression) -1)

Behavior Type

Immutable

Syntax

VAR_SAMP (expression)

Parameters

expression Any NUMERIC data type (page 92) or any non-numeric data

type that can be implicitly converted to a numeric data type.
The function returns the same data type as the numeric data
type of the argument.

Notes

 VAR_SAMP() is semantically identical to the non-standard function, VARIANCE (page

119)(), which is provided for compatibility with other databases.

-119-

 SQL Functions

 The VAR_SAMP() aggregate function is different from the VAR_SAMP() analytic function,

which computes the sample variance of the current row with respect to the group of rows within
a window.

Examples

The following example returns the sample variance for each household ID in the customer table.

=> SELECT VAR_SAMP(household_id) FROM customer_dimension; var_samp

 74848598.0106764

(1 row)

See Also

Analytic Functions (page 120)

VARIANCE (page 119)

Using SQL Analytics in the Programmer's Guide

VARIANCE [Aggregate]

Note: The non-standard function VARIANCE() is provided for compatibility with other

databases. It is semantically identical to VAR_SAMP() (page 118).

Evaluates the sample variance for each row of the group. This is defined as the sum of squares of
the difference of expression from the mean of expression, divided by the number of rows
remaining minus 1 (one).

(SUM(expression*expression) - SUM(expression) *SUM(expression) /

COUNT(expression)) / (COUNT(expression) -1)

Behavior Type

Immutable

Syntax

VARIANCE (expression)

Parameters

expression Any NUMERIC data type (page 92) or any non-numeric data type

that can be implicitly converted to a numeric data type. The
function returns the same data type as the numeric data type of the
argument.

Notes

The VARIANCE() aggregate function is different from the VARIANCE() analytic function, which

computes the sample variance of the current row with respect to the group of rows within a
window.

-120-

SQL Reference Manual

Examples

The following example returns the sample variance for each household ID in the customer table.

=> SELECT VARIANCDE(household_id) FROM customer_dimension; variance

 74848598.0106764

(1 row)

See Also

Analytic Functions (page 120)

VAR_SAMP (page 118)

Using SQL Analytics in the Programmer's Guide

Analytic Functions
Note: All analytic functions in this section that have an aggregate counterpart are appended
with [Analytics] in the heading to avoid confusion between the two.

The ANSI SQL 99 standard introduced a set of functionality, called SQL analytic functions, that
handle complex analysis and reporting, for example, a moving average of retail volume over a
specified time frame or a running total.

Analytic aggregate functions differ from standard aggregate functions in that, rather than return a
single summary value, they return the same number of rows as the input. Moreover, unlike
standard aggregate functions, the groups of rows on which the analytic aggregate function
operates are not defined by a GROUP BY clause, but by window partitioning and frame clauses.

You can sort these partitions using a window ORDER BY clause, but the order affects only the

function result set, not the entire query result set. This ordering concept is described more fully
later.

The windowing components (partitioning, ordering, and framing) are specified in the analytic

OVER() clause. For example, window framing defines the unique construct of a moving window,

whose size is based on either logical intervals (such as time) or on a physical number of rows. For
each row, a window is computed in relation to the current row. As the current row advances, the
window moves along with it.

Analytic Function Syntax

ANALYTIC_FUNCTION(argument-1, ..., argument-n)

 OVER([window_partition_clause (on page 121)]

 [window_order_clause (on page 123)]

 [window_frame_clause (on page 125)])

Analytic Syntactic Construct

OVER(...) Specifies partitioning, ordering, and window framing for the
function—important elements that determine what data the analytic function

takes as input with respect to the current row. The OVER() clause is

evaluated after the FROM, WHERE, GROUP BY, and HAVING clauses. The

-121-

 SQL Functions

SQL OVER() clause must follow the analytic function.

window_partition_clause Divides the rows in the input table by a given list of columns or expressions.

If the window_partition_clause is omitted, all input rows are treated

as a single partition. See window_partition_clause (page 121).

window_order_clause Sorts the rows specified by the window_partition_clause and

supplies an ordered set of rows to the analytic function. See

window_order_clause (page 123).

window_frame_clause Allowed for some analytic function, the window_frame_clause represents a

moving window, defined in the analytic OVER() clause, and specifies the

beginning and end of the window relative to the current row. See

window_frame_clause. (page 125)

Notes

Analytic functions:

 Require the OVER() clause. However, depending on the analytic function, the

window_frame_clause and window_order_clause might not apply.

Note: When used with analytic aggregate functions, OVER() may be used without supplying

any of the windowing clauses; in this case, the aggregate returns the same aggregated value
for each row of the result set.

 Are allowed only in the SELECT and ORDER BY clauses.

 Can be used in a subquery or in the parent query.

 Cannot be nested; for example, the following is not allowed:

=> SELECT MEDIAN(RANK() OVER(ORDER BY sal) OVER().

See Also

Performance Optimization for Analytic Sort Computation (page 169)

Using SQL Analytics in the Programmer's Guide

Named Windows

window_partition_clause

The window_partition_clause is an optional clause that, when specified, divides the rows in

the input by a given list of columns or expressions. If the clause is omitted, all input rows are

treated as a single partition. Window partitioning is similar to GROUP BY operation, except the

function returns only one result row per input row.

-122-

SQL Reference Manual

The analytic function is computed per partition and starts over again (resets) at the beginning of

each subsequent partition. The window_partition_clause is specified within the OVER()

clause.

Syntax

PARTITION BY expression [, ...]

Parameters

expression Expression to sort the partition on. May involve columns,
constants or an arbitrary expression formed on columns.

Sample schema

The examples in this topic use the following schema:

=> CREATE TABLE allsales(

 state VARCHAR(20),

 name VARCHAR(20),

 sales INT);

=> INSERT INTO allsales VALUES('MA', 'A', 60);

=> INSERT INTO allsales VALUES('NY', 'B', 20);

=> INSERT INTO allsales VALUES('NY', 'C', 15);

=> INSERT INTO allsales VALUES('MA', 'D', 20);

=> INSERT INTO allsales VALUES('MA', 'E', 50);

=> INSERT INTO allsales VALUES('NY', 'F', 40);

=> INSERT INTO allsales VALUES('MA', 'G', 10);

=> COMMIT;

Create the example allsales table, insert the data, and query the table:

=> SELECT * FROM allsales;

 state | name | sales

-------+------+-------

 MA | A | 60

 NY | B | 20

 NY | C | 15

 MA | D | 20

 MA | E | 50

 NY | F | 40

 MA | G | 10

(7 rows)

Examples

The first example uses the analytic function MEDIAN to partition the results by state and then
calculate the median of sales:

=> SELECT state, name, sales, MEDIAN(sales)

 OVER (PARTITION BY state) AS MEDIAN from allsales;

 state | name | sales | MEDIAN

-------+------+-------+--------

-123-

 SQL Functions

 NY | C | 15 | 20

 NY | B | 20 | 20

 NY | F | 40 | 20

 MA | G | 10 | 35

 MA | D | 20 | 35

 MA | E | 50 | 35

 MA | A | 60 | 35

(7 rows)

Note: In the above results, notice the two partitions for MA and NY under the state column.

The next example calculates the median of total sales among states. Note that when you use

OVER() with no parameters, there is one partition, the entire input:

=> SELECT state, SUM(sales), MEDIAN(SUM(sales))

 OVER () AS MEDIAN FROM allsales GROUP BY state;

 state | SUM | MEDIAN

-------+-----+--------

 NY | 75 | 107.5

 MA | 140 | 107.5

(2 rows)

window_order_clause
Sorts the rows specified by the window_partition_clause (on page 121) and supplies an ordered

set of rows to the window_frame_clause (if present), to the analytic function, or to both. The

window_order_clause specifies whether data is returned in ascending or descending order and

specifies where null values appear in the sorted result as either first or last. The ordering of the data affects
the results.

Note: The window_order_clause does not guarantee the order of the SQL result. Use the SQL

ORDER BY clause (page 629) to guarantee the ordering of the final result set.

The window_order_clause is part of the OVER() clause.

Syntax

ORDER BY expression

... [{ ASC | DESC }]

... [NULLS { FIRST | LAST | AUTO }] [,expression ...]

Parameters

expression Expression to sort the partition on. May involve columns, constants
or an arbitrary expression formed on columns.

ASC | DESC Specifies the ordering sequence as ascending (default) or
descending.

-124-

SQL Reference Manual

NULLS { FIRST | LAST | AUTO } Indicates the position of nulls in the ordered sequence as either first
or last. The order makes nulls compare either high or low with
respect to non-null values.

If the sequence is specified as ascending order, ASC NULLS FIRST

implies that nulls are smaller than other non-null values. ASC NULLS

LAST implies that nulls are larger than non-null values. The opposite

is true for descending order. If you specify NULLS AUTO, Vertica

chooses the most efficient placement of nulls (for example, either

NULLS FIRST or NULLS LAST) based on your query. The default is

ASC NULLS LAST and DESC NULLS FIRST. See also Performance

Optimization for Analytic Sort Computation (page 169).

The following list shows the default ordering, with bold clauses to indicate what is implicit:

 ORDER BY column1 = ORDER BY a ASC NULLS LAST

 ORDER BY column1 ASC = ORDER BY a ASC NULLS LAST

 ORDER BY column1 DESC = ORDER BY a DESC NULLS FIRST

The placement of the ORDER BY clause might not guarantee the final result order. For example,

the window_order_clause is different from the final ORDER BY in that the

window_order_clause specifies the order within each partition and affects the result of the

analytic calculation; it does not guarantee the order of the SQL result. Use the SQL ORDER BY
clause (page 629) to guarantee the ordering of the final result set. See also Null Placement.

The following examples continue with the sample schema introduced in the
window_partition_clause (page 121) topic.

Example 1

In this example, the query orders the sales inside
each sales partition:

Example 2

In this example, the final ORDER BY clause sorts

the results by name:

=> SELECT state, sales, name, RANK()

 OVER (PARTITION BY state

 ORDER BY sales) AS RANK

 FROM allsales;

 state | sales | name | RANK

-------+-------+------+----------

 MA | 10 | G | 1

 MA | 20 | D | 2

 MA | 50 | E | 3

 MA | 60 | A | 4

 NY | 15 | C | 1

 NY | 20 | B | 2

 NY | 40 | F | 3

(7 rows)

=> SELECT state, sales, name, RANK()

 OVER (PARTITION by state

 ORDER BY sales) AS RANK

 FROM allsales ORDER BY name;

 state | sales | name | RANK

-------+-------+------+----------

 MA | 60 | A | 4

 NY | 20 | B | 2

 NY | 15 | C | 1

 MA | 20 | D | 2

 MA | 50 | E | 3

 NY | 40 | F | 3

 MA | 10 | G | 1

(7 rows)

-125-

 SQL Functions

window_frame_clause

Allowed for some analytic functions, the window_frame_clause specifies the beginning and

end of the window relative to the current row. Each analytic function is computed based on the
data within the window frame boundaries. As Vertica computes an analytic function for each row,

the window slides according the the window_frame_clause, and rows are excluded or included

based on the position (ROWS) or value (RANGE) relative to the current row. The CURRENT ROW is

the next row for which the analytic function computes results.

Note: If you omit the window_frame_clause, the default window is RANGE UNBOUNDED

PRECEDING AND CURRENT ROW.

Syntax

{ ROWS | RANGE }

{

 {

 BETWEEN

 { UNBOUNDED PRECEDING

 | CURRENT ROW

 | constant-value { PRECEDING | FOLLOWING }

 }

 AND

 { UNBOUNDED FOLLOWING

 | CURRENT ROW

 | constant-value { PRECEDING | FOLLOWING }

 }

 }

|

 {

 { UNBOUNDED PRECEDING

 | CURRENT ROW

 | constant-value PRECEDING

 }

 }

}

Parameters

ROWS | RANGE The ROWS and RANGE keywords define the window frame type.

ROWS specifies a window as a physical offset and defines the

window's start and end point by the number of rows before or after the

current row. The value can be INTEGER data type only.

RANGE specifies the window as a logical offset, such as time. The

range value must match the window_order_clause data type,

which can be NUMERIC, DATE/TIME, FLOAT or INTEGER.

Note: The value returned by an analytic function with a logical offset

is always deterministic. However, the value returned by an analytic
function with a physical offset could produce nondeterministic results
unless the ordering expression results in a unique ordering. You
might have to specify multiple columns in the

-126-

SQL Reference Manual

window_order_clause to achieve this unique ordering.

BETWEEN ... AND Specifies a start point and end point for the window. The first

expression (before AND) defines the start point and the second

expression (after AND) defines the end point.

Note: If you use the keyword BETWEEN, you must also use AND.

UNBOUNDED PRECEDING Indicates that the window starts at the first row of the partition. This
start-point specification cannot be used as an end-point specification.

UNBOUNDED FOLLOWING Indicates that the window ends at the last row of the partition. This
end-point specification cannot be used as a start-point specification.

CURRENT ROW As a start point, CURRENT ROW specifies that the window begins at the

current row or value, depending on whether you have specified ROW

or RANGE, respectively. In this case, the end point cannot be

constant-value PRECEDING.

As an end point, CURRENT ROW specifies that the window ends at the

current row or value, depending on whether you have specified ROW

or RANGE, respectively. In this case the start point cannot be

constant-value FOLLOWING.

constant-value {

PRECEDING | FOLLOWING }

For RANGE or ROW:

 If constant-value FOLLOWING is the start point, the end point

must be constant-value FOLLOWING.

 If constant-value PRECEDING is the end point, the start point

must be constant-value PRECEDING.

 If you specify a logical window that is defined by a time
interval in NUMERIC format, you might need to use
conversion functions.

If you specified ROWS:

 constant-value is a physical offset. It must be a constant or

expression and must evaluate to an INTEGER data type

value.

 If constant-value is part of the start point, it must evaluate to a
row before the end point.

If you specified RANGE:

 constant-value is a logical offset. It must be a constant or
expression that evaluates to a positive numeric value or an

INTERVAL literal.

 If constant-value evaluates to a NUMERIC value, the ORDER

BY column type must be a NUMERIC data type..

 If the constant-value evaluates to an INTERVAL DAY TO

SECOND subtype, the ORDER BY column type can only be

TIMESTAMP, TIME, DATE, or INTERVAL DAY TO SECOND.

 If the constant-value evaluates to an INTERVAL YEAR TO

MONTH, the ORDER BY column type can only be TIMESTAMP,

DATE, or INTERVAL YEAR TO MONTH.

-127-

 SQL Functions

 You can specify only one expression in the

window_order_clause.

named_windows

You can avoid typing long OVER() clause syntax by naming a window using the WINDOW clause,

which takes the following form:

WINDOW window_name AS (window_definition_clause);

In the following example, RANK() and DENSE_RANK() use the partitioning and ordering

specifications in the window definition for w:

=> SELECT RANK() OVER w , DENSE_RANK() OVER w

 FROM employee_dimension

 WINDOW w AS (PARTITION BY employee_region ORDER by annual_salary);

Though analytic functions can reference a named window to inherit the

window_partition_clause (page 121), you can define your own window_order_clause

(page 123); for example:

=> SELECT RANK() OVER(w ORDER BY annual_salary ASC) ,

 DENSE_RANK() OVER(w ORDER BY annual_salary DESC)

 FROM employee_dimension

 WINDOW w AS (PARTITION BY employee_region);

Notes:

 The window_partition_clause is defined in the named window specification, not in the

OVER() clause.

 The OVER() clause can specify its own window_order_clause only if the

window_definition_clause did not already define it. For example, if the second example

above is rewritten as follows, the system returns an error:

=> SELECT RANK() OVER(w ORDER BY annual_salary ASC) , DENSE_RANK() OVER(w

ORDER BY annual_salary DESC)

 FROM employee_dimension

 WINDOW w AS (PARTITION BY employee_region ORDER BY annual_salary);

 ERROR: cannot override ORDER BY clause of window "w"

 A window definition cannot contain a window_frame_clause.

 Each window defined in the window_definition_clause must have a unique name.

You can reference window names within their scope only. For example, because named

window w1 below is defined before w2, w2 is within the scope of w1:

=> SELECT RANK() OVER(w1 ORDER BY sal DESC)

 RANK() OVER w2

 FROM EMP AS

 WINDOW w1 AS (PARTITION BY deptno), w2 AS (w1 ORDER BY sal);

-128-

SQL Reference Manual

AVG [Analytic]

Computes an average of an expression in a group within a window.

Behavior Type

Immutable

Syntax

AVG (expression) OVER (

... [window_partition_clause (page 121)]

... [window_order_clause (page 123)]

... [window_frame_clause (page 125)])

Parameters

expression The value whose average is calculated over a set of rows. Can

be any expression resulting in DOUBLE PRECISION.

OVER(...) See Analytic Functions. (page 120)

Notes

AVG() takes as an argument any numeric data type or any non-numeric data type that can be

implicitly converted to a numeric data type. The function returns the same data type as the
argument's numeric data type.

Examples

The following query finds the sales for that calendar month and returns a running/cumulative

average (sometimes called a moving average) using the default window of RANGE UNBOUNDED

PRECEDING AND CURRENT ROW:

=> SELECT calendar_month_number_in_year, SUM(product_price) AS sales,

 AVG(SUM(product_price)) OVER (ORDER BY calendar_month_number_in_year)

 FROM product_dimension, date_dimension, inventory_fact

 WHERE date_dimension.date_key = inventory_fact.date_key

 AND product_dimension.product_key = inventory_fact.product_key

 GROUP BY calendar_month_number_in_year;

 calendar_month_number_in_year | sales | ?column?

-------------------------------+----------+------------------

 1 | 23869547 | 23869547

 2 | 19604661 | 21737104

 3 | 22877913 | 22117373.6666667

 4 | 22901263 | 22313346

 5 | 23670676 | 22584812

 6 | 22507600 | 22571943.3333333

 7 | 21514089 | 22420821.2857143

 8 | 24860684 | 22725804.125

 9 | 21687795 | 22610469.7777778

 10 | 23648921 | 22714314.9

 11 | 21115910 | 22569005.3636364

 12 | 24708317 | 22747281.3333333

-129-

 SQL Functions

(12 rows)

To return a moving average that is not a running (cumulative) average, the window should specify

ROWS BETWEEN 2 PRECEDING AND 2 FOLLOWING:

=> SELECT calendar_month_number_in_year, SUM(product_price) AS sales,

 AVG(SUM(product_price)) OVER (ORDER BY calendar_month_number_in_year

 ROWS BETWEEN 2 PRECEDING AND 2 FOLLOWING)

 FROM product_dimension, date_dimension, inventory_fact

 WHERE date_dimension.date_key = inventory_fact.date_key

 AND product_dimension.product_key = inventory_fact.product_key

 GROUP BY calendar_month_number_in_year;

See Also

AVG (page 107) aggregate function

COUNT (page 131) and SUM (page 164) analytic functions

Using SQL Analytics in the Programmer's Guide

CONDITIONAL_CHANGE_EVENT [Analytic]

Assigns an event window number to each row, starting from 0, and increments by 1 when the
result of evaluating the argument expression on the current row differs from that on the previous
row.

Behavior Type

Immutable

Syntax

CONDITIONAL_CHANGE_EVENT (expression) OVER (

... [window_partition_clause (page 121)]

... window_order_clause (page 123))

Parameters

expression Is a SQL scalar expression that is evaluated on an input record.
The result of expression can be of any data type.

OVER(...) See Analytic Functions. (page 120)

Notes

The analytic window_order_clause is required but the window_partition_clause is

optional.

Example

=> SELECT CONDITIONAL_CHANGE_EVENT(bid)

 OVER (PARTITION BY symbol ORDER BY ts) AS cce

 FROM TickStore;

The system returns an error when no ORDER BY is present:

-130-

SQL Reference Manual

=> SELECT CONDITIONAL_CHANGE_EVENT(bid)

 OVER (PARTITION BY symbol) AS cce

 FROM TickStore;

 ERROR: conditional_change_event must contain an ORDER BY clause within

 its analytic clause

For more examples, see Event-based Windows in the Programmer's Guide.

See Also

CONDITIONAL_TRUE_EVENT (page 130)

ROW_NUMBER (page 159)

Using Time Series Analytics and Event-based Windows in the Programmer's Guide

CONDITIONAL_TRUE_EVENT [Analytic]

Assigns an event window number to each row, starting from 0, and increments the number by 1
when the result of the boolean argument expression evaluates true. For example, given a
sequence of values for column a:

(1, 2, 3, 4, 5, 6)

CONDITIONAL_TRUE_EVENT(a > 3) returns 0, 0, 0, 1, 2, 3.

Behavior Type:

Immutable

Syntax

CONDITIONAL_TRUE_EVENT (boolean-expression) OVER

... ([window_partition_clause (page 121)]

... window_order_clause (page 123))

Parameters

boolean-expression Is a SQL scalar expression that is evaluated on an input
record. The result of boolean-expression is boolean type.

OVER(...) See Analytic Functions (page 120).

Notes

The analytic window_order_clause is required but the window_partition_clause is

optional.

Example

=> SELECT CONDITIONAL_TRUE_EVENT(bid > 10.6)

 OVER(PARTITION BY bid ORDER BY ts) AS cte

 FROM Tickstore;

The system returns an error if the ORDER BY clause is omitted:

=> SELECT CONDITIONAL_TRUE_EVENT(bid > 10.6)

-131-

 SQL Functions

 OVER(PARTITION BY bid) AS cte

 FROM Tickstore;

 ERROR: conditional_true_event must contain an ORDER BY clause within its

 analytic clause

For more examples, see Event-based Windows in the Programmer's Guide.

See Also

CONDITIONAL_CHANGE_EVENT (page 129)

Using Time Series Analytics and Event-based Windows in the Programmer's Guide

COUNT [Analytic]

Counts occurrences within a group within a window. If you specify * or some non-null constant,

COUNT() counts all rows.

Behavior Type

Immutable

Syntax

COUNT (expression) OVER (

... [window_partition_clause (page 121)]

... [window_order_clause (page 123)]

... [window_frame_clause (page 125)])

Parameters

expression Returns the number of rows in each group for which the expression
is not null. Can be any expression resulting in BIGINT.

OVER(...) See Analytic Functions. (page 120)

Example

The following query finds the number of employees who make less than or equivalent to the hourly
rate of the current employee. The query returns a running/cumulative average (sometimes called

a moving average) using the default window of RANGE UNBOUNDED PRECEDING AND CURRENT

ROW:

=> SELECT employee_last_name AS "last_name", hourly_rate, COUNT(*)

 OVER (ORDER BY hourly_rate) AS moving_count from employee_dimension;

 last_name | hourly_rate | moving_count

------------+-------------+--------------

 Gauthier | 6 | 4

 Taylor | 6 | 4

 Jefferson | 6 | 4

 Nielson | 6 | 4

 McNulty | 6.01 | 11

 Robinson | 6.01 | 11

 Dobisz | 6.01 | 11

-132-

SQL Reference Manual

 Williams | 6.01 | 11

 Kramer | 6.01 | 11

 Miller | 6.01 | 11

 Wilson | 6.01 | 11

 Vogel | 6.02 | 14

 Moore | 6.02 | 14

 Vogel | 6.02 | 14

 Carcetti | 6.03 | 19

...

To return a moving average that is not also a running (cumulative) average, the window should

specify ROWS BETWEEN 2 PRECEDING AND 2 FOLLOWING:

=> SELECT employee_last_name AS "last_name", hourly_rate, COUNT(*)

 OVER (ORDER BY hourly_rate ROWS BETWEEN 2 PRECEDING AND 2 FOLLOWING)

 AS moving_count from employee_dimension;

See Also

COUNT (page 108) aggregate function

AVG (page 128) and SUM (page 164) analytic functions

Using SQL Analytics in the Programmer's Guide

CUME_DIST [Analytic]

Calculates the cumulative distribution, or relative rank, of the current row with regard to other rows
in the same partition witihn a window.

CUME_DIST() returns a number greater then 0 and less then or equal to 1, where the number

represents the relative position of the specified row within a group of N rows. For a row x

(assuming ASC ordering), the CUME_DIST of x is the number of rows with values lower than or

equal to the value of x, divided by the number of rows in the partition. In a group of three rows, for

example, the cumulative distribution values returned would be 1/3, 2/3, and 3/3.

Note: Because the result for a given row depends on the number of rows preceding that row in

the same partition, Vertica recommends that you always specify a window_order_clause

when you call this function.

Behavior Type

Immutable

Syntax

CUME_DIST () OVER (

... [window_partition_clause (page 121)]

... window_order_clause (page 123))

Parameters

OVER(...) See Analytic Functions. (page 120)

-133-

 SQL Functions

Notes

The analytic window_order_clause is required but the window_partition_clause is

optional.

Examples

The following example returns the cumulative distribution of sales for different transaction types
within each month of the first quarter.

=> SELECT calendar_month_name AS month, tender_type, SUM(sales_quantity),

 CUME_DIST()

 OVER (PARTITION BY calendar_month_name ORDER BY SUM(sales_quantity)) AS

CUME_DIST

 FROM store.store_sales_fact JOIN date_dimension

 USING(date_key) WHERE calendar_month_name IN ('January','February','March')

 AND tender_type NOT LIKE 'Other'

 GROUP BY calendar_month_name, tender_type;

 month | tender_type | SUM | CUME_DIST

----------+-------------+--------+-----------

 March | Credit | 469858 | 0.25

 March | Cash | 470449 | 0.5

 March | Check | 473033 | 0.75

 March | Debit | 475103 | 1

 January | Cash | 441730 | 0.25

 January | Debit | 443922 | 0.5

 January | Check | 446297 | 0.75

 January | Credit | 450994 | 1

 February | Check | 425665 | 0.25

 February | Debit | 426726 | 0.5

 February | Credit | 430010 | 0.75

 February | Cash | 430767 | 1

(12 rows)

See Also

PERCENT_RANK (page 151)

PERCENTILE_DISC (page 156)

Using SQL Analytics in the Programmer's Guide

DENSE_RANK [Analytic]

Computes the relative rank of each row returned from a query with respect to the other rows,

based on the values of the expressions in the window ORDER BY clause.

The data within a group is sorted by the ORDER BY clause and then a numeric ranking is assigned

to each row in turn starting with 1 and continuing from there. The rank is incremented every time

the values of the ORDER BY expressions change. Rows with equal values receive the same rank

(nulls are considered equal in this comparison). A DENSE_RANK() function returns a ranking

number without any gaps, which is why it is called "DENSE."

-134-

SQL Reference Manual

Behavior Type

Immutable

Syntax

DENSE_RANK () OVER (

... [window_partition_clause (page 121)]

... window_order_clause (page 123))

Parameters

OVER(...) See Analytic Functions. (page 120)

Notes

 The analytic window_order_clause is required but the window_partition_clause is

optional.

 The ranks are consecutive integers beginning with 1. The largest rank value is the number of
unique values returned by the query.

 The primary difference between DENSE_RANK() and RANK() (page 157) is that RANK leaves

gaps when ranking records whereas DENSE_RANK leaves no gaps. For example, N records

occupy a particular position (say, a tie for rank X), RANK assigns all those records with rank X

and skips the next N ranks, therefore the next assigned rank is X+N. DENSE_RANK places all

the records in that position only—it does not skip any ranks.

If there is a tie at the third position with two records having the same value, RANK and

DENSE_RANK place both the records in the third position, but RANK places the next record at

the fifth position, while DENSE_RANK places the next record at the fourth position.

 If you omit NULLS FIRST | LAST | AUTO, the ordering of the NULL values depends on the

ASC or DESC arguments. NULL values are considered larger than any other value. If the

ordering sequence is ASC, then nulls appear last; nulls appear first otherwise. Nulls are

considered equal to other nulls and, therefore, the order in which nulls are presented is
non-deterministic.

Examples

The following example shows the difference between RANK and DENSE_RANK when ranking

customers by their annual income. Notice that RANK has a tie at 10 and skips 11, while

DENSE_RANK leaves no gaps in the ranking sequence:

=> SELECT customer_name, SUM(annual_income),

 RANK () OVER (ORDER BY TO_CHAR(SUM(annual_income),'100000') DESC) rank,

 DENSE_RANK () OVER (ORDER BY TO_CHAR(SUM(annual_income),'100000') DESC)

dense_rank

 FROM customer_dimension GROUP BY customer_name LIMIT 15;

 customer_name | sum | rank | dense_rank

---------------------+-------+------+------------

 Brian M. Garnett | 99838 | 1 | 1

 Tanya A. Brown | 99834 | 2 | 2

 Tiffany P. Farmer | 99826 | 3 | 3

-135-

 SQL Functions

 Jose V. Sanchez | 99673 | 4 | 4

 Marcus D. Rodriguez | 99631 | 5 | 5

 Alexander T. Nguyen | 99604 | 6 | 6

 Sarah G. Lewis | 99556 | 7 | 7

 Ruth Q. Vu | 99542 | 8 | 8

 Theodore T. Farmer | 99532 | 9 | 9

 Daniel P. Li | 99497 | 10 | 10

 Seth E. Brown | 99497 | 10 | 10

 Matt X. Gauthier | 99402 | 12 | 11

 Rebecca W. Lewis | 99296 | 13 | 12

 Dean L. Wilson | 99276 | 14 | 13

 Tiffany A. Smith | 99257 | 15 | 14

(15 rows)

See Also

RANK (page 157)

Using SQL Analytics in the Programmer's Guide

EXPONENTIAL_MOVING_AVERAGE [Analytic]

Calculates the exponential moving average of expression E with smoothing factor X.

The exponential moving average (EMA) is calculated by adding the previous EMA value to the
current data point scaled by the smoothing factor, as in the following formula, where EMA0 is the
previous row's EMA value, X is the smoothing factor, and E is the current data point: EMA = EMA0
+ (X * (E - EMA0)).

Behavior Type

Immutable

Syntax

EXPONENTIAL_MOVING_AVERAGE (E , X) OVER (

... [window_partition_clause (page 121)]

... window_order_clause (page 123))

Parameters

E The value whose average is calculated over a set of rows. Can

be INTEGER, FLOAT or NUMERIC type and must be a constant.

X A positive FLOAT value between 0 and 1 that is used as the

smoothing factor.

OVER(...) See Analytic Functions. (page 120)

Notes

 The analytic window_order_clause is required but the window_partition_clause is

optional.

 There is no [Aggregate] equivalent of this function because of its unique semantics.

-136-

SQL Reference Manual

 EXPONENTIAL_MOVING_AVERAGE() is different from a simple moving average in that it

provides a more stable picture of changes to data over time.

 The EXPONENTIAL_MOVING_AVERAGE() function also works at the row level; for example, it

assumes the data in a given column is sampled at uniform intervals. If the users' data points
are sampled at non-uniform intervals, they should run the time series gap filling and
interpolation (GFI) operations before EMA(). See the Example section below.

Examples

The following example uses time series gap filling and interpolation (GFI) first in a subquery, and

then performs an EXPONENTIAL_MOVING_AVERAGE operation on the subquery result.

Create a simple 4-column table:

=> CREATE TABLE ticker(

 time TIMESTAMP,

 symbol VARCHAR(8),

 bid1 FLOAT,

 bid2 FLOAT);

Now insert some data, including nulls, so GFI can do its interpolation and gap filling:

=> INSERT INTO ticker VALUES ('2009-07-12 03:00:00', 'ABC', 60.45, 60.44);

=> INSERT INTO ticker VALUES ('2009-07-12 03:00:01', 'ABC', 60.49, 65.12);

=> INSERT INTO ticker VALUES ('2009-07-12 03:00:02', 'ABC', 57.78, 59.25);

=> INSERT INTO ticker VALUES ('2009-07-12 03:00:03', 'ABC', null, 65.12);

=> INSERT INTO ticker VALUES ('2009-07-12 03:00:04', 'ABC', 67.88, null);

=> INSERT INTO ticker VALUES ('2009-07-12 03:00:00', 'XYZ', 47.55, 40.15);

=> INSERT INTO ticker VALUES ('2009-07-12 03:00:01', 'XYZ', 44.35, 46.78);

=> INSERT INTO ticker VALUES ('2009-07-12 03:00:02', 'XYZ', 71.56, 75.78);

=> INSERT INTO ticker VALUES ('2009-07-12 03:00:03', 'XYZ', 85.55, 70.21);

=> INSERT INTO ticker VALUES ('2009-07-12 03:00:04', 'XYZ', 45.55, 58.65);

=> COMMIT;

Note: During gap filling and interpolation, Vertica takes the closest non null value on either side
of the time slice and uses that value. For example, if you use a linear interpolation scheme and

you do not specify IGNORE NULLS, and your data has one real value and one null, the result is

null. If the value on either side is null, the result is null. See When Time Series Data Contains
Nulls in the Programmer's Guide for details.

Query the table you just created to you can see the output:

=> SELECT * FROM ticker;

 time | symbol | bid1 | bid2

---------------------+--------+-------+-------

 2009-07-12 03:00:00 | ABC | 60.45 | 60.44

 2009-07-12 03:00:01 | ABC | 60.49 | 65.12

 2009-07-12 03:00:02 | ABC | 57.78 | 59.25

 2009-07-12 03:00:03 | ABC | | 65.12

 2009-07-12 03:00:04 | ABC | 67.88 |

 2009-07-12 03:00:00 | XYZ | 47.55 | 40.15

 2009-07-12 03:00:01 | XYZ | 44.35 | 46.78

 2009-07-12 03:00:02 | XYZ | 71.56 | 75.78

 2009-07-12 03:00:03 | XYZ | 85.55 | 70.21

 2009-07-12 03:00:04 | XYZ | 45.55 | 58.65

-137-

 SQL Functions

(10 rows)

The following query processes the first and last values that belong to each 2-second time slice in

table trades' column a. The query then calculates the exponential moving average of expression

fv and lv with a smoothing factor of 5%:

=> SELECT symbol, slice_time, fv, lv,

 EXPONENTIAL_MOVING_AVERAGE(fv, 0.5)

 OVER (PARTITION BY symbol ORDER BY slice_time) AS ema_first,

 EXPONENTIAL_MOVING_AVERAGE(lv, 0.5)

 OVER (PARTITION BY symbol ORDER BY slice_time) AS ema_last

 FROM (

 SELECT symbol, slice_time,

 TS_FIRST_VALUE(bid1 IGNORE NULLS) as fv,

 TS_LAST_VALUE(bid2 IGNORE NULLS) AS lv

 FROM ticker TIMESERIES slice_time AS '2 seconds'

 OVER (PARTITION BY symbol ORDER BY time)) AS sq;

 symbol | slice_time | fv | lv | ema_first | ema_last

--------+---------------------+-------+-------+-----------+----------

 ABC | 2009-07-12 03:00:00 | 60.45 | 65.12 | 60.45 | 65.12

 ABC | 2009-07-12 03:00:02 | 57.78 | 65.12 | 59.115 | 65.12

 ABC | 2009-07-12 03:00:04 | 67.88 | 65.12 | 63.4975 | 65.12

 XYZ | 2009-07-12 03:00:00 | 47.55 | 46.78 | 47.55 | 46.78

 XYZ | 2009-07-12 03:00:02 | 71.56 | 70.21 | 59.555 | 58.495

 XYZ | 2009-07-12 03:00:04 | 45.55 | 58.65 | 52.5525 | 58.5725

(6 rows)

See Also

TIMESERIES Clause (page 623)

Using Time Series Analytics and Using SQL Analytics in the Programmer's Guide

FIRST_VALUE [Analytic]

Returns values of the expression from the first row of a window for the current row. If no window is

specified for the current row, the default window is UNBOUNDED PRECEDING AND CURRENT ROW.

Behavior Type

Immutable

Syntax

FIRST_VALUE (expression [IGNORE NULLS]) OVER (

... [window_partition_clause (page 121)]

... [window_order_clause (page 123)]

... [window_frame_clause (page 125)])

Parameters

expression Is the expression to evaluate; for example, a constant,
column, nonanalytic function, function expression, or
expressions involving any of these.

-138-

SQL Reference Manual

IGNORE NULLS Returns the first non-null value in the set, or NULL if all values

are NULL.

OVER(...) See Analytic Functions. (page 120)

Notes

 The FIRST_VALUE() function lets you select a table's first value (determined by the

window_order_clause) without having to use a self join. This function is useful when you

want to use the first value as a baseline in calculations.

 Vertica recommends that you use FIRST_VALUE with the window_order_clause to

produce deterministic results.

 If the first value in the set is null, then the function returns NULL unless you specify IGNORE

NULLS. If you specify IGNORE NULLS, FIRST_VALUE returns the first non-null value in the

set, or NULL if all values are null.

Examples

The following query, which asks for the first value in the partitioned day of week, illustrates the

potential nondeterministic nature of the FIRST_VALUE function:

=> SELECT calendar_year, date_key, day_of_week, full_date_description,

 FIRST_VALUE(full_date_description)

 OVER(PARTITION BY calendar_month_number_in_year ORDER BY day_of_week) AS "first_value"

 FROM date_dimension

 WHERE calendar_year=2003 AND calendar_month_number_in_year=1;

The first value returned is January 31, 2003; however, the next time the same query is run, the first
value could be January 24 or January 3, or the 10th or 17th. The reason is because the analytic

ORDER BY column (day_of_week) returns rows that contain ties (multiple Fridays). These

repeated values make the ORDER BY evaluation result nondeterministic, because rows that

contain ties can be ordered in any way, and any one of those rows qualifies as being the first value

of day_of_week.

 calendar_year | date_key | day_of_week | full_date_description | first_value

---------------+----------+-------------+-----------------------+-------------

 2003 | 31 | Friday | January 31, 2003 | January 31, 2003

 2003 | 24 | Friday | January 24, 2003 | January 31, 2003

 2003 | 3 | Friday | January 3, 2003 | January 31, 2003

 2003 | 10 | Friday | January 10, 2003 | January 31, 2003

 2003 | 17 | Friday | January 17, 2003 | January 31, 2003

 2003 | 6 | Monday | January 6, 2003 | January 31, 2003

 2003 | 27 | Monday | January 27, 2003 | January 31, 2003

 2003 | 13 | Monday | January 13, 2003 | January 31, 2003

 2003 | 20 | Monday | January 20, 2003 | January 31, 2003

 2003 | 11 | Saturday | January 11, 2003 | January 31, 2003

 2003 | 18 | Saturday | January 18, 2003 | January 31, 2003

 2003 | 25 | Saturday | January 25, 2003 | January 31, 2003

 2003 | 4 | Saturday | January 4, 2003 | January 31, 2003

 2003 | 12 | Sunday | January 12, 2003 | January 31, 2003

 2003 | 26 | Sunday | January 26, 2003 | January 31, 2003

-139-

 SQL Functions

 2003 | 5 | Sunday | January 5, 2003 | January 31, 2003

 2003 | 19 | Sunday | January 19, 2003 | January 31, 2003

 2003 | 23 | Thursday | January 23, 2003 | January 31, 2003

 2003 | 2 | Thursday | January 2, 2003 | January 31, 2003

 2003 | 9 | Thursday | January 9, 2003 | January 31, 2003

 2003 | 16 | Thursday | January 16, 2003 | January 31, 2003

 2003 | 30 | Thursday | January 30, 2003 | January 31, 2003

 2003 | 21 | Tuesday | January 21, 2003 | January 31, 2003

 2003 | 14 | Tuesday | January 14, 2003 | January 31, 2003

 2003 | 7 | Tuesday | January 7, 2003 | January 31, 2003

 2003 | 28 | Tuesday | January 28, 2003 | January 31, 2003

 2003 | 22 | Wednesday | January 22, 2003 | January 31, 2003

 2003 | 29 | Wednesday | January 29, 2003 | January 31, 2003

 2003 | 15 | Wednesday | January 15, 2003 | January 31, 2003

 2003 | 1 | Wednesday | January 1, 2003 | January 31, 2003

 2003 | 8 | Wednesday | January 8, 2003 | January 31, 2003

(31 rows)

Note: The day_of_week results are returned in alphabetical order because of lexical rules.

The fact that each day does not appear ordered by the 7-day week cycle (for example, starting
with Sunday followed by Monday, Tuesday, and so on) has no affect on results.

To return deterministic results, modify the query so that it performs its analytic ORDER BY

operations on a unique field, such as date_key:

=> SELECT calendar_year, date_key, day_of_week, full_date_description,

 FIRST_VALUE(full_date_description) OVER

 (PARTITION BY calendar_month_number_in_year ORDER BY date_key) AS "first_value"
 FROM date_dimension WHERE calendar_year=2003;

Notice that the results return a first value of January 1 for the January partition and the first value of

February 1 for the February partition. Also, there are no ties in the full_date_description

column:

 calendar_year | date_key | day_of_week | full_date_description | first_value

---------------+----------+-------------+-----------------------+-------------

 2003 | 1 | Wednesday | January 1, 2003 | January 1, 2003

 2003 | 2 | Thursday | January 2, 2003 | January 1, 2003

 2003 | 3 | Friday | January 3, 2003 | January 1, 2003

 2003 | 4 | Saturday | January 4, 2003 | January 1, 2003

 2003 | 5 | Sunday | January 5, 2003 | January 1, 2003

 2003 | 6 | Monday | January 6, 2003 | January 1, 2003

 2003 | 7 | Tuesday | January 7, 2003 | January 1, 2003

 2003 | 8 | Wednesday | January 8, 2003 | January 1, 2003

 2003 | 9 | Thursday | January 9, 2003 | January 1, 2003

 2003 | 10 | Friday | January 10, 2003 | January 1, 2003

 2003 | 11 | Saturday | January 11, 2003 | January 1, 2003

 2003 | 12 | Sunday | January 12, 2003 | January 1, 2003

 2003 | 13 | Monday | January 13, 2003 | January 1, 2003

 2003 | 14 | Tuesday | January 14, 2003 | January 1, 2003

 2003 | 15 | Wednesday | January 15, 2003 | January 1, 2003

 2003 | 16 | Thursday | January 16, 2003 | January 1, 2003

 2003 | 17 | Friday | January 17, 2003 | January 1, 2003

 2003 | 18 | Saturday | January 18, 2003 | January 1, 2003

 2003 | 19 | Sunday | January 19, 2003 | January 1, 2003

-140-

SQL Reference Manual

 2003 | 20 | Monday | January 20, 2003 | January 1, 2003

 2003 | 21 | Tuesday | January 21, 2003 | January 1, 2003

 2003 | 22 | Wednesday | January 22, 2003 | January 1, 2003

 2003 | 23 | Thursday | January 23, 2003 | January 1, 2003

 2003 | 24 | Friday | January 24, 2003 | January 1, 2003

 2003 | 25 | Saturday | January 25, 2003 | January 1, 2003

 2003 | 26 | Sunday | January 26, 2003 | January 1, 2003

 2003 | 27 | Monday | January 27, 2003 | January 1, 2003

 2003 | 28 | Tuesday | January 28, 2003 | January 1, 2003

 2003 | 29 | Wednesday | January 29, 2003 | January 1, 2003

 2003 | 30 | Thursday | January 30, 2003 | January 1, 2003

 2003 | 31 | Friday | January 31, 2003 | January 1, 2003

 2003 | 32 | Saturday | February 1, 2003 | February 1, 2003

 2003 | 33 | Sunday | February 2, 2003 | February 1, 2003

 ...

(365 rows)

See Also

LAST_VALUE (page 143)

TIME_SLICE (page 205)

Using SQL Analytics in the Programmer's Guide

LAG [Analytic]

Returns the value of the input expression at the given offset before the current row within a
window.

Behavior Type

Immutable

Syntax

LAG (expression [, offset] [, default]) OVER (

... [window_partition_clause (page 121)]

... window_order_clause (page 123))

Parameters

expression Is the expression to evaluate; for example, a constant, column,
nonanalytic function, function expression, or expressions involving
any of these.

offset Is an optional parameter that defaults to 1 (the previous row). The
offset parameter must be (or can be evaluated to) a constant positive
integer.

default Is NULL. This optional parameter is the value returned if offset falls

outside the bounds of the table or partition.

Note: The third input argument must be a constant value or an

expression that can be evaluated to a constant; its data type is
coercible to that of the first argument.

-141-

 SQL Functions

OVER(...) See Analytic Functions. (page 120)

Notes

 The analytic window_order_clause is required but the window_partition_clause is

optional.

 The LAG() function returns values from the row before the current row, letting you access

more than one row in a table at the same time. This is useful for comparing values when the
relative positions of rows can be reliably known. It also lets you avoid the more costly self join,
which enhances query processing speed.

 See LEAD() (page 144) for how to get the next rows.

 Analytic functions, such as LAG(), cannot be nested within aggregate functions.

Examples

This example sums the current balance by date in a table and also sums the previous balance
from the last day. Given the inputs that follow, the data satisfies the following conditions:

 For each some_id, there is exactly 1 row for each date represented by month_date.

 For each some_id, the set of dates is consecutive; that is, if there is a row for February 24 and

a row for February 26, there would also be a row for February 25.

 Each some_id has the same set of dates.

=> CREATE TABLE balances (

 month_date DATE,

 current_bal INT,

 some_id INT);

=> INSERT INTO balances values ('2009-02-24', 10, 1);

=> INSERT INTO balances values ('2009-02-25', 10, 1);

=> INSERT INTO balances values ('2009-02-26', 10, 1);

=> INSERT INTO balances values ('2009-02-24', 20, 2);

=> INSERT INTO balances values ('2009-02-25', 20, 2);

=> INSERT INTO balances values ('2009-02-26', 20, 2);

=> INSERT INTO balances values ('2009-02-24', 30, 3);

=> INSERT INTO balances values ('2009-02-25', 20, 3);

=> INSERT INTO balances values ('2009-02-26', 30, 3);

Now run the LAG() function to sum the current balance for each date and sum the previous

balance from the last day:

=> SELECT month_date,

 SUM(current_bal) as current_bal_sum,

 SUM(previous_bal) as previous_bal_sum FROM

 (SELECT month_date, current_bal,

 LAG(current_bal, 1, 0) OVER

 (PARTITION BY some_id ORDER BY month_date)

 AS previous_bal FROM balances) AS subQ

 GROUP BY month_date ORDER BY month_date;

month_date | current_bal_sum | previous_bal_sum

------------+-----------------+------------------

-142-

SQL Reference Manual

 2009-02-24 | 60 | 0

 2009-02-25 | 50 | 60

 2009-02-26 | 60 | 50

(3 rows)

Using the same example data, the following query would not be allowed because LAG() is nested

inside an aggregate function:

=> SELECT month_date,

 SUM(current_bal) as current_bal_sum,

 SUM(LAG(current_bal, 1, 0) OVER

 (PARTITION BY some_id ORDER BY month_date)) AS previous_bal_sum

 FROM some_table GROUP BY month_date ORDER BY month_date;

In the next example, which uses the VMart example database, the LAG() function first returns the

annual income from the previous row, and then it calculates the difference between the income in
the current row from the income in the previous row. Note: The vmart example database returns
over 50,000 rows, so we'll limit the results to 20 records:

=> SELECT occupation, customer_key, customer_name, annual_income,

 LAG(annual_income, 1, 0) OVER (PARTITION BY occupation ORDER BY annual_income) AS prev_income,

annual_income -

 LAG(annual_income, 1, 0) OVER (PARTITION BY occupation ORDER BY annual_income) AS difference

 FROM customer_dimension ORDER BY occupation, customer_key LIMIT 20;

 occupation | customer_key | customer_name | annual_income | prev_income | difference

------------+--------------+----------------------+---------------+-------------+------------

 Accountant | 15 | Midori V. Peterson | 692610 | 692535 | 75

 Accountant | 43 | Midori S. Rodriguez | 282359 | 280976 | 1383

 Accountant | 93 | Robert P. Campbell | 471722 | 471355 | 367

 Accountant | 102 | Sam T. McNulty | 901636 | 901561 | 75

 Accountant | 134 | Martha B. Overstreet | 705146 | 704335 | 811

 Accountant | 165 | James C. Kramer | 376841 | 376474 | 367

 Accountant | 225 | Ben W. Farmer | 70574 | 70449 | 125

 Accountant | 270 | Jessica S. Lang | 684204 | 682274 | 1930

 Accountant | 273 | Mark X. Lampert | 723294 | 722737 | 557

 Accountant | 295 | Sharon K. Gauthier | 29033 | 28412 | 621

 Accountant | 338 | Anna S. Jackson | 816858 | 815557 | 1301

 Accountant | 377 | William I. Jones | 915149 | 914872 | 277

 Accountant | 438 | Joanna A. McCabe | 147396 | 144482 | 2914

 Accountant | 452 | Kim P. Brown | 126023 | 124797 | 1226

 Accountant | 467 | Meghan K. Carcetti | 810528 | 810284 | 244

 Accountant | 478 | Tanya E. Greenwood | 639649 | 639029 | 620

 Accountant | 511 | Midori P. Vogel | 187246 | 185539 | 1707

 Accountant | 525 | Alexander K. Moore | 677433 | 677050 | 383

 Accountant | 550 | Sam P. Reyes | 735691 | 735355 | 336

 Accountant | 577 | Robert U. Vu | 616101 | 615439 | 662

(20 rows)

Continuing with the Vmart database, the next example uses both LEAD() and LAG() to return the

third row after the salary in the current row and fifth salary before the salary in the current row.

=> SELECT hire_date, employee_key, employee_last_name,

 LEAD(hire_date, 1) OVER (ORDER BY hire_date) AS "next_hired" ,

 LAG(hire_date, 1) OVER (ORDER BY hire_date) AS "last_hired"

 FROM employee_dimension ORDER BY hire_date, employee_key;

 hire_date | employee_key | employee_last_name | next_hired | last_hired

------------+--------------+--------------------+------------+------------

 1956-04-11 | 2694 | Farmer | 1956-05-12 |

 1956-05-12 | 5486 | Winkler | 1956-09-18 | 1956-04-11

 1956-09-18 | 5525 | McCabe | 1957-01-15 | 1956-05-12

 1957-01-15 | 560 | Greenwood | 1957-02-06 | 1956-09-18

 1957-02-06 | 9781 | Bauer | 1957-05-25 | 1957-01-15

-143-

 SQL Functions

 1957-05-25 | 9506 | Webber | 1957-07-04 | 1957-02-06

 1957-07-04 | 6723 | Kramer | 1957-07-07 | 1957-05-25

 1957-07-07 | 5827 | Garnett | 1957-11-11 | 1957-07-04

 1957-11-11 | 373 | Reyes | 1957-11-21 | 1957-07-07

 1957-11-21 | 3874 | Martin | 1958-02-06 | 1957-11-11

(10 rows)

The following example specifies arguments that use different data types; for example

annual_income(INT) and occupation(VARCHAR). The query returns an error:

=> SELECT customer_key, customer_name, occupation, annual_income,

 LAG (annual_income, 1, occupation) OVER

 (PARTITION BY occupation ORDER BY customer_key) LAG1

 FROM customer_dimension ORDER BY 3, 1;

 ERROR: Third argument of lag could not be converted from type character varying

to type int8

 HINT: You may need to add explicit type cast.

See Also

LEAD (page 144)

Using SQL Analytics in the Programmer's Guide

LAST_VALUE [Analytic]

Returns values of the expression from the last row of a window for the current row. If no window is

specified for the current row, the default window is UNBOUNDED PRECEDING AND CURRENT ROW.

Behavior Type

Immutable

Syntax

LAST_VALUE (expression [IGNORE NULLS]) OVER (

... [window_partition_clause (page 121)]

... [window_order_clause (page 123)]

... [window_frame_clause (page 125)])

Parameters

expression Is the expression to evaluate; for example, a constant,
column, nonanalytic function, function expression, or
expressions involving any of these.

IGNORE NULLS Returns the last non-null value in the set, or NULL if all
values are NULL.

OVER(...) See Analytic Functions. (page 120)

Notes

 The LAST_VALUE() function lets you select a window's last value (determined by the

window_order_clause), without having to use a self join. This function is useful when you

want to use the last value as a baseline in calculations.

-144-

SQL Reference Manual

 LAST_VALUE() takes the last record from the partition after the analytic

window_order_clause. The expression is then computed against the last record, and

results are returned.

 Vertica recommends that you use LAST_VALUE with the window_order_clause to

produce deterministic results.

Note: Due to default window semantics, LAST_VALUE does not always return the last value of

a partition. If the window_frame_clause is omitted from the analytic clause, LAST_VALUE

operates on this default window. Results, therefore, can seem non-intuitive because the
function does not return the bottom of the current partition. It returns the bottom of the window,
which continues to change along with the current input row being processed. If you want to

return the last value of a partition, use UNBOUNDED PRECEDING AND UNBOUNDED

FOLLOWING.

 If the last value in the set is null, then the function returns NULL unless you specify IGNORE

NULLS. If you specify IGNORE NULLS, LAST_VALUE returns the fist non-null value in the set,

or NULL if all values are null.

 For examples, see FIRST_VALUE() (page 137).

See Also

FIRST_VALUE (page 137)

TIME_SLICE (page 205)

Using SQL for Analytics in the Programmer's Guide

LEAD [Analytic]

Returns the value of the input expression at the given offset after the current row within a window.

Behavior Type

Immutable

Syntax

LEAD (expression [, offset] [, default]) OVER (

... [window_partition_clause (page 121)]

... window_order_clause (page 123))

Parameters

expression Is the expression to evaluate; for example, a constant, column,
nonanalytic function, function expression, or expressions
involving any of these.

offset Is an optional parameter that defaults to 1 (the next row). The
offset parameter must be (or can be evaluated to) a constant
positive integer.

default Is NULL. This optional parameter is the value returned if offset
falls outside the bounds of the table or partition.

Note: The third input argument must be a constant value or an

-145-

 SQL Functions

expression that can be evaluated to a constant; its data type is
coercible to that of the first argument.

OVER(...) See Analytic Functions. (page 120)

Notes

 The analytic window_order_clause is required but the window_partition_clause is

optional.

 The LEAD() function returns values from the row after the current row, letting you access

more than one row in a table at the same time. This is useful for comparing values when the
relative positions of rows can be reliably known. It also lets you avoid the more costly self join,
which enhances query processing speed.

 Analytic functions, such as LEAD(), cannot be nested within aggregate functions.

Examples

In this example, the LEAD() function finds the hire date of the employee hired just after the current

row:

=> SELECT employee_region, hire_date, employee_key, employee_last_name,

 LEAD(hire_date, 1) OVER (PARTITION BY employee_region ORDER BY hire_date) AS "next_hired"

 FROM employee_dimension ORDER BY employee_region, hire_date, employee_key;

 employee_region | hire_date | employee_key | employee_last_name | next_hired

-------------------+------------+--------------+--------------------+---------

 East | 1956-04-08 | 9218 | Harris | 1957-02-06

 East | 1957-02-06 | 7799 | Stein | 1957-05-25
 East | 1957-05-25 | 3687 | Farmer | 1957-06-26

 East | 1957-06-26 | 9474 | Bauer | 1957-08-18

 East | 1957-08-18 | 570 | Jefferson | 1957-08-24

 East | 1957-08-24 | 4363 | Wilson | 1958-02-17

 East | 1958-02-17 | 6457 | McCabe | 1958-06-26

 East | 1958-06-26 | 6196 | Li | 1958-07-16

 East | 1958-07-16 | 7749 | Harris | 1958-09-18

 East | 1958-09-18 | 9678 | Sanchez | 1958-11-10

(10 rows)

The next example uses both LEAD() and LAG() to return the third row after the salary in the

current row and fifth salary before the salary in the current row.

=> SELECT hire_date, employee_key, employee_last_name,

 LEAD(hire_date, 1) OVER (ORDER BY hire_date) AS "next_hired" ,

 LAG(hire_date, 1) OVER (ORDER BY hire_date) AS "last_hired"

 FROM employee_dimension ORDER BY hire_date, employee_key;

 hire_date | employee_key | employee_last_name | next_hired | last_hired

------------+--------------+--------------------+------------+------------

 1956-04-11 | 2694 | Farmer | 1956-05-12 |

 1956-05-12 | 5486 | Winkler | 1956-09-18 | 1956-04-11

 1956-09-18 | 5525 | McCabe | 1957-01-15 | 1956-05-12

 1957-01-15 | 560 | Greenwood | 1957-02-06 | 1956-09-18

 1957-02-06 | 9781 | Bauer | 1957-05-25 | 1957-01-15

 1957-05-25 | 9506 | Webber | 1957-07-04 | 1957-02-06

 1957-07-04 | 6723 | Kramer | 1957-07-07 | 1957-05-25

-146-

SQL Reference Manual

 1957-07-07 | 5827 | Garnett | 1957-11-11 | 1957-07-04

 1957-11-11 | 373 | Reyes | 1957-11-21 | 1957-07-07

 1957-11-21 | 3874 | Martin | 1958-02-06 | 1957-11-11

(10 rows)

The following example returns employee name and salary, along with the next highest and lowest
salaries.

=> SELECT employee_last_name, annual_salary,

 NVL(LEAD(annual_salary) OVER (ORDER BY annual_salary),

 MIN(annual_salary) OVER()) "Next Highest",

 NVL(LAG(annual_salary) OVER (ORDER BY annual_salary),

 MAX(annual_salary) OVER()) "Next Lowest"

 FROM employee_dimension;

 employee_last_name | annual_salary | Next Highest | Next Lowest

--------------------+---------------+--------------+-------------

 Nielson | 1200 | 1200 | 995533

 Lewis | 1200 | 1200 | 1200

 Harris | 1200 | 1202 | 1200

 Robinson | 1202 | 1202 | 1200

 Garnett | 1202 | 1202 | 1202

 Weaver | 1202 | 1202 | 1202

 Nielson | 1202 | 1202 | 1202

 McNulty | 1202 | 1204 | 1202

 Farmer | 1204 | 1204 | 1202

 Martin | 1204 | 1204 | 1204

(10 rows)

The next example returns, for each assistant director in the employees table, the hire date of the
director hired just after the director on the current row. For example, Jackson was hired on
2007-12-28, and the next director hired was Bauer:

=> SELECT employee_last_name, hire_date,

 LEAD(hire_date, 1) OVER (ORDER BY hire_date DESC) as "NextHired"

 FROM employee_dimension WHERE job_title = 'Assistant Director';

 employee_last_name | hire_date | NextHired

--------------------+------------+------------

 Jackson | 2007-12-28 | 2007-12-26

 Bauer | 2007-12-26 | 2007-12-11

 Miller | 2007-12-11 | 2007-12-07

 Fortin | 2007-12-07 | 2007-11-27

 Harris | 2007-11-27 | 2007-11-15

 Goldberg | 2007-11-15 |

(5 rows)

See Also

LAG (page 140)

Using SQL for Analytics in the Programmer's Guide

MAX [Analytic]

Returns the maximum value of an expression within a window. The return value is the same as the
expression data type.

-147-

 SQL Functions

Behavior Type

Immutable

Syntax

MAX ([DISTINCT] expression) OVER (

... [window_partition_clause (page 121)]

... [window_order_clause (page 123)]

... [window_frame_clause (page 125)])

Parameters

DISTINCT Is meaningless in this context.

expression Can be any expression for which the maximum value is
calculated, typically a column reference (see "Column
References" on page 45).

OVER(...) See Analytic Functions. (page 120)

Example

The following query computes the deviation between the employees' annual salary and the
maximum annual salary in Massachusetts:

=> SELECT employee_state, annual_salary,

 MAX(annual_salary)

 OVER(PARTITION BY employee_state ORDER BY employee_key) max,

 annual_salary- MAX(annual_salary)

 OVER(PARTITION BY employee_state ORDER BY employee_key) diff

 FROM employee_dimension

 WHERE employee_state = 'MA';

 employee_state | annual_salary | max | diff

----------------+---------------+--------+---------

 MA | 1918 | 995533 | -993615

 MA | 2058 | 995533 | -993475

 MA | 2586 | 995533 | -992947

 MA | 2500 | 995533 | -993033

 MA | 1318 | 995533 | -994215

 MA | 2072 | 995533 | -993461

 MA | 2656 | 995533 | -992877

 MA | 2148 | 995533 | -993385

 MA | 2366 | 995533 | -993167

 MA | 2664 | 995533 | -992869

(10 rows)

See Also

MAX (page 112) aggregate function

MIN (page 149) analytic function

-148-

SQL Reference Manual

Using SQL Analytics in the Programmer's Guide

MEDIAN [Analytic]

Returns the middle value of an expression in a result set within a window. A median value has the

same number of records below it as above it. If there are an even number of elements, MEDIAN()

returns the average of the two.

MEDIAN() is an alias for 50% PERCENTILE():

PERCENTILE_CONT(0.5) WITHIN GROUP(ORDER BY expression)

Behavior Type

Immutable

Syntax

MEDIAN (expression) OVER ([window_partition_clause (page 121)])

Parameters

expression Any NUMERIC data type (page 92) or any non-numeric data

type that can be implicitly converted to a numeric data type.
The function returns the middle value or an interpolated value
that would be the middle value once the values are sorted.
Null values are ignored in the calculation.

OVER(...) See Analytic Functions. (page 120)

Notes

 For each row, MEDIAN() returns the value that would fall in the middle of a value set within

each partition.

 Vertica determines the argument with the highest numeric precedence, implicitly converts the
remaining arguments to that data type, and returns that data type.

 MEDIAN() does not allow the window_order_clause or window_frame_clause.

Examples

The following query computes the median annual income for first 500 customers in Wisconsin and
in the District of Columbia. Note that median is reported for every row in the result set:

=> SELECT customer_state, annual_income,

 MEDIAN(annual_income) OVER (PARTITION BY customer_state) AS MEDIAN

 FROM customer_dimension

 WHERE customer_state IN ('DC','WI')

 ORDER BY customer_state;

 customer_state | customer_key | annual_income | MEDIAN

----------------+--------------+---------------+----------

 DC | 120 | 299768 | 535413

-149-

 SQL Functions

 DC | 113 | 535413 | 535413

 DC | 130 | 848360 | 535413

 WI | 372 | 34962 | 668147

 WI | 437 | 47128 | 668147

 WI | 435 | 67770 | 668147

 WI | 282 | 638054 | 668147

 WI | 314 | 668147 | 668147

 WI | 128 | 675608 | 668147

 WI | 179 | 825304 | 668147

 WI | 302 | 827618 | 668147

 WI | 29 | 922760 | 668147

(12 rows)

See Also

PERCENTILE_CONT (page 154)

Using SQL Analytics in the Programmer's Guide

MIN [Analytic]

Returns the minimum value of an expression within a window. The return value is the same as the
expression data type.

Behavior Type

Immutable

Syntax

MIN ([DISTINCT] expression) OVER (

... [window_partition_clause (page 121)]

... [window_order_clause (page 123)]

... [window_frame_clause (page 125)])

Parameters

DISTINCT Is meaningless in this context.

expression Can be any expression for which the minimum value is
calculated, typically a column reference (see "Column
References" on page 45).

OVER(...) See Analytic Functions. (page 120)

Examples

The following query computes the deviation between the employees' annual salary and the
minimum annual salary in Massachusetts:

=> SELECT employee_state, annual_salary,

 MIN(annual_salary)

 OVER(PARTITION BY employee_state ORDER BY employee_key) min,

 annual_salary- MIN(annual_salary)

 OVER(PARTITION BY employee_state ORDER BY employee_key) diff

-150-

SQL Reference Manual

 FROM employee_dimension

 WHERE employee_state = 'MA';

 employee_state | annual_salary | min | diff

----------------+---------------+------+------

 MA | 1918 | 1204 | 714

 MA | 2058 | 1204 | 854

 MA | 2586 | 1204 | 1382

 MA | 2500 | 1204 | 1296

 MA | 1318 | 1204 | 114

 MA | 2072 | 1204 | 868

 MA | 2656 | 1204 | 1452

 MA | 2148 | 1204 | 944

 MA | 2366 | 1204 | 1162

 MA | 2664 | 1204 | 1460

(10 rows)

See Also

MIN (page 112) aggregate function

MAX (page 146) analytic function

Using SQL Analytics in the Programmer's Guide

NTILE [Analytic]

Divides an ordered data set (partition) into buckets within a window, with the buckets numbered 1
through constant-value. For example, if constant-value = 4, then each row in the partition is
assigned a number from 1 to 4. If the partition contains 20 rows, the first 5 would be assigned 1,
the next 5 would be assigned 2, and so on.

Behavior Type

Immutable

Syntax

NTILE (constant-value) OVER (

... [window_partition_clause (page 121)]

... window_order_clause (page 123))

Parameters

constant-value Represents the number of buckets and must resolve to a
positive constant for each partition.

OVER(...) See Analytic Functions. (page 120)

Notes

 The analytic window_order_clause is required but the window_partition_clause is

optional.

-151-

 SQL Functions

 If the number of buckets is greater than the number of rows, then a number of buckets equal to
the number of rows is filled, and the remaining buckets are empty.

 In the event the cardinality of the partition is not evenly divisible by the number of buckets, the
rows are distributed so no bucket has more than 1 row more then any other bucket, and the
lowest buckets are the ones that have extra rows. For example, using constant-value = 4 again
and the number of rows = 21, bucket = 1 has 6 rows, bucket = 2 has 5, and so on.

 Analytic functions, such as NTILE(), cannot be nested within aggregate functions.

Examples

The following query assigns each month's sales total into one of four buckets:

=> SELECT calendar_month_name AS MONTH, SUM(sales_quantity),

 NTILE(4) OVER (ORDER BY SUM(sales_quantity)) AS NTILE

 FROM store.store_sales_fact JOIN date_dimension

 USING(date_key)

 GROUP BY calendar_month_name

 ORDER BY NTILE;

 MONTH | SUM | NTILE

-----------+------+-------

 February | 755 | 1

 June | 842 | 1

 September | 849 | 1

 January | 881 | 2

 May | 882 | 2

 July | 894 | 2

 August | 921 | 3

 April | 952 | 3

 March | 987 | 3

 October | 1010 | 4

 November | 1026 | 4

 December | 1094 | 4

(12 rows)

See Also

PERCENTILE_CONT (page 154)

WIDTH_BUCKET (page 246)

Using SQL Analytics in the Programmer's Guide

PERCENT_RANK [Analytic]

Calculates the relative rank of a row for a given row in a group within a window by dividing that
row‘s rank less 1 by the number of rows in the partition, also less 1. This function always returns

values from 0 to 1 inclusive. The first row in any set has a PERCENT_RANK() of 0. The return

value is NUMBER.

(rank - 1) / ([rows] - 1)

In the above formula, rank is the rank position of a row in the group and rows is the total number

of rows in the partition defined by the OVER() clause.

-152-

SQL Reference Manual

Behavior Type

Immutable

Syntax

PERCENT_RANK () OVER (

... [window_partition_clause (page 121)]

... window_order_clause (page 123))

Parameters

OVER(...) See Analytic Functions. (page 120)

Notes

The window_order_clause is required but the window_partition_clause is

optional.

Examples

The following example finds the percent rank of gross profit for different states within each month
of the first quarter:

=> SELECT calendar_month_name AS MONTH, store_state ,

 SUM(gross_profit_dollar_amount),

 PERCENT_RANK() OVER (PARTITION BY calendar_month_name

 ORDER BY SUM(gross_profit_dollar_amount)) AS PERCENT_RANK

 FROM store.store_sales_fact JOIN date_dimension

 USING(date_key)

 JOIN store.store_dimension

 USING (store_key)

 WHERE calendar_month_name IN ('January','February','March')

 AND store_state IN ('OR','IA','DC','NV','WI')

 GROUP BY calendar_month_name, store_state

 ORDER BY calendar_month_name, PERCENT_RANK;

 MONTH | store_state | SUM | PERCENT_RANK

----------+-------------+------+-------------------

 February | OR | 16 | 0

 February | IA | 47 | 0.25

 February | DC | 94 | 0.5

 February | NV | 113 | 0.75

 February | WI | 119 | 1

 January | IA | -263 | 0

 January | OR | 91 | 0.333333333333333

 January | NV | 372 | 0.666666666666667

 January | DC | 497 | 1

 March | NV | -141 | 0

 March | OR | 224 | 1

(11 rows)

-153-

 SQL Functions

The following example calculates, for each employee, the percent rank of the employee's salary
by their job title:

=> SELECT job_title, employee_last_name, annual_salary,

 PERCENT_RANK()

 OVER (PARTITION BY job_title ORDER BY annual_salary DESC) AS percent_rank

 FROM employee_dimension

 ORDER BY percent_rank, annual_salary;

 job_title | employee_last_name | annual_salary | PERCENT_RANK

--------------------+--------------------+---------------+--------------------

-

 CEO | Campbell | 963914 | 0

 Co-Founder | Nguyen | 968625 | 0

 Founder | Overstreet | 995533 | 0

 Greeter | Peterson | 3192 | 0.00113895216400911

 Greeter | Greenwood | 3192 | 0.00113895216400911

 Customer Service | Peterson | 3190 | 0.00121065375302663

 Delivery Person | Rodriguez | 3192 | 0.00121065375302663

 Shelf Stocker | Martin | 3194 | 0.00125786163522013

 Shelf Stocker | Vu | 3194 | 0.00125786163522013

 Marketing | Li | 99711 | 0.00190114068441065

 Assistant Director | Sanchez | 99913 | 0.00190839694656489

 Branch Manager | Perkins | 99901 | 0.00192307692307692

 Advertising | Lampert | 99809 | 0.00204918032786885

 Sales | Miller | 99727 | 0.00211416490486258

 Shift Manager | King | 99904 | 0.00215982721382289

 Custodian | Bauer | 3196 | 0.00235849056603774

 Custodian | Goldberg | 3196 | 0.00235849056603774

 Customer Service | Fortin | 3184 | 0.00242130750605327

 Delivery Person | Greenwood | 3186 | 0.00242130750605327

 Cashier | Overstreet | 3178 | 0.00243605359317905

 Regional Manager | McCabe | 199688 | 0.00306748466257669

 VP of Sales | Li | 199309 | 0.00313479623824451

 Director of HR | Goldberg | 199592 | 0.00316455696202532

 Head of Marketing | Stein | 199941 | 0.00317460317460317

 VP of Advertising | Goldberg | 199036 | 0.00323624595469256

 Head of PR | Stein | 199767 | 0.00323624595469256

 Customer Service | Rodriguez | 3180 | 0.0036319612590799

 Delivery Person | King | 3184 | 0.0036319612590799

 Cashier | Dobisz | 3174 | 0.00365408038976857

 Cashier | Miller | 3174 | 0.00365408038976857

 Marketing | Dobisz | 99655 | 0.00380228136882129

 Branch Manager | Gauthier | 99082 | 0.025

 Branch Manager | Moore | 98415 | 0.05

...

See Also

CUME_DIST (page 132)

Using SQL Analytics in the Programmer's Guide

-154-

SQL Reference Manual

PERCENTILE_CONT [Analytic]

An inverse distribution function where, for each row, PERCENTILE_CONT() returns the value that

would fall into the specified percentile among a set of values in each partition within a window. For
example, if the argument to the function is 0.5, the result of the function is the median of the data

set (the 50th percentile). PERCENTILE_CONT() assumes a continuous distribution data model.

Nulls are ignored.

Behavior Type

Immutable

Syntax

PERCENTILE_CONT (%_number) WITHIN GROUP (

... ORDER BY expression [ASC | DESC]) OVER (

... [window_partition_clause (page 121)])

Parameters

%_number Is the percentile value, which must be a FLOAT constant ranging

from 0 to 1 (inclusive).

WITHIN GROUP(ORDER BY

expression)

Specifies how the data is sorted within each group. ORDER BY takes

only one column/expression that must be INTEGER, FLOAT,

INTERVAL, or NUMERIC data type. Nulls are discarded.

Note: The WITHIN GROUP(ORDER BY) clause does not guarantee

the order of the SQL result. Use the SQL ORDER BY clause (page
629) to guarantee the ordering of the final result set.

ASC | DESC Specifies the ordering sequence as ascending (default) or
descending.

OVER(...) See Analytic Functions. (page 120)

Notes

 Vertica computes the percentile by first computing the row number where the percentile row
would exist; for example:

ROW_NUMBER = 1 + PERCENTILE_VALUE * (NUMBER_OF_ROWS_IN_PARTITION -1)

If the CEILING(ROW_NUMBER) = FLOOR(ROW_NUMBER), then the percentile is the value at

the ROW_NUMBER. Otherwise there was an even number of rows, and Vertica interpolates the

value between the rows. In this case, the percentile CEILING_VAL = get the value at the

CEILING(ROW_NUMBER). FLOOR_VAL = get the value at the FLOOR(ROW_NUMBER) would

be (CEILING(ROW_NUMBER) - ROW_NUMBER) * CEILING_VAL + (ROW_NUMBER -

FLOOR(ROW_NUMBER) * FLOOR+VAL.

If CEIL(num) = FLOOR(num) = num, then retrieve the value in that row. Otherwise compute

values at [CEIL(num) + FLOOR(num)] / 2

 Specifying ASC or DESC in the WITHIN GROUP clause affects results as long as the percentile

parameter is not .5.

-155-

 SQL Functions

 The MEDIAN() function is a specific case of PERCENTILE_CONT() where the percentile

value defaults to 0.5. For more information, see MEDIAN() (page 148).

Examples

This query computes the median annual income per group for the first 500 customers in Wisconsin
and the District of Columbia.

=> SELECT customer_state, customer_key, annual_income,

 PERCENTILE_CONT(.5) WITHIN GROUP(ORDER BY annual_income)

 OVER (PARTITION BY customer_state) AS PERCENTILE_CONT

 FROM customer_dimension

 WHERE customer_state IN ('DC','WI')

 AND customer_key < 300

 ORDER BY customer_state, customer_key;

 customer_state | customer_key | annual_income | PERCENTILE_CONT

----------------+--------------+---------------+-----------------

 DC | 104 | 658383 | 658383

 DC | 168 | 417092 | 658383

 DC | 245 | 670205 | 658383

 WI | 106 | 227279 | 458607

 WI | 127 | 703889 | 458607

 WI | 209 | 458607 | 458607

(6 rows)

The median value for DC is 65838, and the median value for WI is 458607. Note that with a

%_number of .5 in the above query, PERCENTILE_CONT() returns the same result as

MEDIAN() in the following query:

=> SELECT customer_state, customer_key, annual_income,

 MEDIAN(annual_income)

 OVER (PARTITION BY customer_state) AS MEDIAN

 FROM customer_dimension

 WHERE customer_state IN ('DC','WI')

 AND customer_key < 300

 ORDER BY customer_state, customer_key;

 customer_state | customer_key | annual_income | MEDIAN

----------------+--------------+---------------+--------

 DC | 104 | 658383 | 658383

 DC | 168 | 417092 | 658383

 DC | 245 | 670205 | 658383

 WI | 106 | 227279 | 458607

 WI | 127 | 703889 | 458607

 WI | 209 | 458607 | 458607

(6 rows)

See Also

MEDIAN (page 148)

Using SQL Analytics in the Programmer's Guide

-156-

SQL Reference Manual

PERCENTILE_DISC [Analytic]

An inverse distribution function where, for each row, PERCENTILE_DISC() returns the value that

would fall into the specified percentile among a set of values in each partition within a window.

PERCENTILE_DISC() assumes a discrete distribution data model. Nulls are ignored.

Behavior Type

Immutable

Syntax

PERCENTILE_DISC (%_number) WITHIN GROUP (

... ORDER BY expression [ASC | DESC]) OVER (

... [window_partition_clause (page 121)])

Parameters

%_number Is the percentile value, which must be a FLOAT constant ranging
from 0 to 1 (inclusive).

WITHIN GROUP(ORDER BY

expression)

Specifies how the data is sorted within each group. ORDER BY

takes only one column/expression that must be INTEGER,

FLOAT, INTERVAL, or NUMERIC data type. Nulls are discarded.

Note: The WITHIN GROUP(ORDER BY) clause does not

guarantee the order of the SQL result. Use the SQL ORDER BY
clause (page 629) to guarantee the ordering of the final result set.

ASC | DESC Specifies the ordering sequence as ascending (default) or
descending.

OVER(...) See Analytic Functions. (page 120)

Notes

 PERCENTILE_DISC(%_number) examines the cumulative distribution values in each group

until it finds one that is greater than or equal to %_number.

 Vertica computes the percentile where, for each row, PERCENTILE_DISC outputs the first

value of the WITHIN GROUP(ORDER BY) column whose CUME_DIST (cumulative distribution)

value is >= the argument FLOAT value (for example, .4). Specifically:

PERCENTILE_DIST(.4) WITHIN GROUP (ORDER BY salary) OVER(PARTITION By

deptno) ...

If you write, for example, SELECT CUME_DIST() OVER(ORDER BY salary) FROM table;

you notice that the smallest CUME_DIST value that is greater than .4 is also the

PERCENTILE_DISC.

Examples

This query computes the 20th percentile annual income by group for first 500 customers in
Wisconsin and the District of Columbia.

=> SELECT customer_state, customer_key, annual_income,

 PERCENTILE_DISC(.2) WITHIN GROUP(ORDER BY annual_income)

-157-

 SQL Functions

 OVER (PARTITION BY customer_state) AS PERCENTILE_DISC

 FROM customer_dimension

 WHERE customer_state IN ('DC','WI')

 AND customer_key < 300

 ORDER BY customer_state, customer_key;

 customer_state | customer_key | annual_income | PERCENTILE_DISC

----------------+--------------+---------------+-----------------

 DC | 104 | 658383 | 417092

 DC | 168 | 417092 | 417092

 DC | 245 | 670205 | 417092

 WI | 106 | 227279 | 227279

 WI | 127 | 703889 | 227279

 WI | 209 | 458607 | 227279

(6 rows)

See Also

CUME_DIST (page 132)

PERCENTILE_CONT (page 154)

Using SQL Analytics in the Programmer's Guide

RANK [Analytic]

Assigns a rank to each row returned from a query with respect to the other rows, based on the

values of the expressions in the window ORDER BY clause. The data within a group is sorted by the

ORDER BY clause and then a numeric ranking is assigned to each row in turn, starting with 1, and

continuing up. Rows with the same values of the ORDER BY expressions receive the same rank;

however, if two rows receive the same rank (a tie), RANK() skips the ties. If, for example, two rows

are numbered 1, RANK() skips number 2 and assigns 3 to the next row in the group. This is in

contrast to DENSE_RANK() (page 133), which does not skip values.

Behavior Type

Immutable

Syntax

RANK () OVER (

... [window_partition_clause (page 121)]

... window_order_clause (page 123))

Parameters

OVER(...) See Analytic Functions. (page 120)

-158-

SQL Reference Manual

Notes

 Ranking functions return a rank value for each row in a result set based on the order specified
in the query. For example, a territory sales manager might want to identify the top or bottom
ranking sales associates in a department or the highest/lowest-performing sales offices by
region.

 RANK() requires an OVER() clause. The window_partition_clause is optional.

 In ranking functions, OVER() specifies the measures expression on which ranking is done and

defines the order in which rows are sorted in each group (or partition). Once the data is sorted
within each partition, ranks are given to each row starting from 1.

 The primary difference between RANK and DENSE_RANK is that RANK leaves gaps when

ranking records; DENSE_RANK leaves no gaps. For example, if more than one record occupies

a particular position (a tie), RANK places all those records in that position and it places the

next record after a gap of the additional records (it skips one). DENSE_RANK places all the

records in that position only—it does not leave a gap for the next rank.

If there is a tie at the third position with two records having the same value, RANK and

DENSE_RANK place both the records in the third position only, but RANK has the next record at

the fifth position — leaving a gap of 1 position—while DENSE_RANK places the next record at

the forth position (no gap).

 If you omit NULLS FIRST | LAST | AUTO, the ordering of the null values depends on the ASC

or DESC arguments. Null values are considered larger than any other values. If the ordering

sequence is ASC, then nulls appear last; nulls appear first otherwise. Nulls are considered

equal to other nulls and, therefore, the order in which nulls are presented is non-deterministic.

Examples

This example ranks the longest-standing customers in Massachusetts. The query first computes

the customer_since column by region, and then partitions the results by customers with

businesses in MA. Then within each region, the query ranks customers over the age of 70.

=> SELECT customer_type, customer_name,

 RANK() OVER (PARTITION BY customer_region ORDER BY customer_since) as rank

 FROM customer_dimension

 WHERE customer_state = 'MA'

 AND customer_age > '70';

 customer_type | customer_name | rank

---------------+---------------+------

 Company | Virtadata | 1

 Company | Evergen | 2

 Company | Infocore | 3

 Company | Goldtech | 4

 Company | Veritech | 5

 Company | Inishop | 6

 Company | Intracom | 7

 Company | Virtacom | 8

 Company | Goldcom | 9

 Company | Infostar | 10

 Company | Golddata | 11

-159-

 SQL Functions

 Company | Everdata | 12

 Company | Goldcorp | 13

(13 rows)

The following example shows the difference between RANK and DENSE_RANK when ranking

customers by their annual income. Notice that RANK has a tie at 10 and skips 11, while

DENSE_RANK leaves no gaps in the ranking sequence:

=> SELECT customer_name, SUM(annual_income),

 RANK () OVER (ORDER BY TO_CHAR(SUM(annual_income),'100000') DESC) rank,

 DENSE_RANK () OVER (ORDER BY TO_CHAR(SUM(annual_income),'100000') DESC)

dense_rank

 FROM customer_dimension

 GROUP BY customer_name

 LIMIT 15;

 customer_name | sum | rank | dense_rank

---------------------+-------+------+------------

 Brian M. Garnett | 99838 | 1 | 1

 Tanya A. Brown | 99834 | 2 | 2

 Tiffany P. Farmer | 99826 | 3 | 3

 Jose V. Sanchez | 99673 | 4 | 4

 Marcus D. Rodriguez | 99631 | 5 | 5

 Alexander T. Nguyen | 99604 | 6 | 6

 Sarah G. Lewis | 99556 | 7 | 7

 Ruth Q. Vu | 99542 | 8 | 8

 Theodore T. Farmer | 99532 | 9 | 9

 Daniel P. Li | 99497 | 10 | 10

 Seth E. Brown | 99497 | 10 | 10

 Matt X. Gauthier | 99402 | 12 | 11

 Rebecca W. Lewis | 99296 | 13 | 12

 Dean L. Wilson | 99276 | 14 | 13

 Tiffany A. Smith | 99257 | 15 | 14

(15 rows)

See Also

DENSE_RANK (page 133)

Using SQL Analytics in the Programmer's Guide

ROW_NUMBER [Analytic]

Assigns a unique number, sequentially, starting from 1, to each row in a partition within a window.

Behavior Type

Immutable

Syntax

ROW_NUMBER () OVER (

... [window_partition_clause (page 121)]

... window_order_clause (page 123))

-160-

SQL Reference Manual

Parameters

OVER(...) See Analytic Functions. (page 120)

Notes

 ROW_NUMBER() is a Vertica extension, not part of the SQL-99 standard. It requires an OVER()

clause. The window_partition_clause is optional.

 You can use the optional partition clause to group data into partitions before operating on it; for
example:

SUM OVER (PARTITION BY col1, col2, ...)

 You can substitute any RANK() example for ROW_NUMBER(). The difference is that

ROW_NUMBER assigns a unique ordinal number, starting with 1, to each row in the ordered set.

Examples

The following query first partitions customers in the customer_dimension table by occupation and
then ranks those customers based on the ordered set specified by the analytic partition_clause.

=> SELECT occupation, customer_key, customer_since, annual_income,

 ROW_NUMBER() OVER (PARTITION BY occupation) AS customer_since_row_num

 FROM public.customer_dimension

 ORDER BY occupation, customer_since_row_num;

 occupation | customer_key | customer_since | annual_income | customer_since_row_num

--------------------+--------------+----------------+---------------+------------------------

 Accountant | 19453 | 1973-11-06 | 602460 | 1

 Accountant | 42989 | 1967-07-09 | 850814 | 2

 Accountant | 24587 | 1995-05-18 | 180295 | 3

 Accountant | 26421 | 2001-10-08 | 126490 | 4

 Accountant | 37783 | 1993-03-16 | 790282 | 5

 Accountant | 39170 | 1980-12-21 | 823917 | 6

 Banker | 13882 | 1998-04-10 | 15134 | 1

 Banker | 14054 | 1989-03-16 | 961850 | 2

 Banker | 15850 | 1996-01-19 | 262267 | 3

 Banker | 29611 | 2004-07-14 | 739016 | 4

 Doctor | 261 | 1969-05-11 | 933692 | 1

 Doctor | 1264 | 1981-07-19 | 593656 | 2

 Psychologist | 5189 | 1999-05-04 | 397431 | 1

 Psychologist | 5729 | 1965-03-26 | 339319 | 2

 Software Developer | 2513 | 1996-09-22 | 920003 | 1

 Software Developer | 5927 | 2001-03-12 | 633294 | 2

 Software Developer | 9125 | 1971-10-06 | 198953 | 3

 Software Developer | 16097 | 1968-09-02 | 748371 | 4

 Software Developer | 23137 | 1988-12-07 | 92578 | 5

 Software Developer | 24495 | 1989-04-16 | 149371 | 6

 Software Developer | 24548 | 1994-09-21 | 743788 | 7

 Software Developer | 33744 | 2005-12-07 | 735003 | 8

 Software Developer | 9684 | 1970-05-20 | 246000 | 9

 Software Developer | 24278 | 2001-11-14 | 122882 | 10

 Software Developer | 27122 | 1994-02-05 | 810044 | 11

 Stock Broker | 5950 | 1965-01-20 | 752120 | 1

 Stock Broker | 12517 | 2003-06-13 | 380102 | 2

 Stock Broker | 33010 | 1984-05-07 | 384463 | 3

 Stock Broker | 46196 | 1972-11-28 | 497049 | 4

 Stock Broker | 8710 | 2005-02-11 | 79387 | 5

 Writer | 3149 | 1998-11-17 | 643972 | 1

 Writer | 17124 | 1965-01-18 | 444747 | 2

-161-

 SQL Functions

 Writer | 20100 | 1994-08-13 | 106097 | 3

 Writer | 23317 | 2003-05-27 | 511750 | 4

 Writer | 42845 | 1967-10-23 | 433483 | 5

 Writer | 47560 | 1997-04-23 | 515647 | 6

(39 rows)

See Also

RANK (page 157)

Using SQL for Analytics in the Programmer's Guide

STDDEV [Analytic]

Note: The non-standard function STDDEV() is provided for compatibility with other databases.

It is semantically identical to STDDEV_SAMP() (page 163).

Computes the statistical sample standard deviation of the current row with respect to the group

within a window. The STDDEV_SAMP() return value is the same as the square root of the variance

defined for the VAR_SAMP() function:

STDDEV(expression) = SQRT(VAR_SAMP(expression))

When VAR_SAMP() returns null, this function returns null.

Behavior Type

Immutable

Syntax

STDDEV (expression) OVER (

... [window_partition_clause (page 121)]

... [window_order_clause (page 123)]

... [window_frame_clause (page 125)])

Parameters

expression Any NUMERIC data type (page 92) or any non-numeric data

type that can be implicitly converted to a numeric data type.
The function returns the same data type as the numeric data
type of the argument.

OVER(...) See Analytic Functions. (page 120)

Example

The following example returns the standard deviations of salaries in the employee dimension table
by job title Assistant Director:

=> SELECT employee_last_name, annual_salary,

 STDDEV(annual_salary) OVER (ORDER BY hire_date) as "stddev"

 FROM employee_dimension

 WHERE job_title = 'Assistant Director';

 employee_last_name | annual_salary | stddev

--------------------+---------------+------------------

-162-

SQL Reference Manual

 Goldberg | 61859 | NaN

 Miller | 79582 | 12532.0534829692

 Goldberg | 74236 | 9090.97147357388

 Campbell | 66426 | 7909.9541665339

 Moore | 66630 | 7068.30282316761

 Nguyen | 53530 | 9154.14713486005

 Harris | 74115 | 8773.54346886142

 Lang | 59981 | 8609.60471031374

 Farmer | 60597 | 8335.41158418579

 Nguyen | 78941 | 8812.87941405456

 Smith | 55018 | 9179.7672390773

...

See Also

STDDEV (page 113) and STDDEV_SAMP (page 115) aggregate functions

STDDEV_SAMP (page 163) analytic function

Using SQL Analytics in the Programmer's Guide

STDDEV_POP [Analytic]

Computes the statistical population standard deviation and returns the square root of the

population variance within a window. The STDDEV_POP() return value is the same as the square

root of the VAR_POP() function:

STDDEV_POP(expression) = SQRT(VAR_POP(expression))

When VAR_POP returns null, this function returns null.

Behavior Type

Immutable

Syntax

STDDEV_POP (expression) OVER (

... [window_partition_clause (page 121)]

... [window_order_clause (page 123)]

... [window_frame_clause (page 125)])

Parameters

expression Any NUMERIC data type (page 92) or any non-numeric

data type that can be implicitly converted to a numeric
data type. The function returns the same data type as
the numeric data type of the argument.

OVER(...) See Analytic Functions. (page 120)

Examples

The following example returns the population standard deviations of salaries in the employee
dimension table by job title Assistant Director:

-163-

 SQL Functions

=> SELECT employee_last_name, annual_salary,

 STDDEV_POP(annual_salary) OVER (ORDER BY hire_date) as "stddev_pop"

 FROM employee_dimension WHERE job_title = 'Assistant Director';

 employee_last_name | annual_salary | stddev_pop

--------------------+---------------+------------------

 Goldberg | 61859 | 0

 Miller | 79582 | 8861.5

 Goldberg | 74236 | 7422.74712548456

 Campbell | 66426 | 6850.22125098891

 Moore | 66630 | 6322.08223926257

 Nguyen | 53530 | 8356.55480080699

 Harris | 74115 | 8122.72288970008

 Lang | 59981 | 8053.54776538731

 Farmer | 60597 | 7858.70140687825

 Nguyen | 78941 | 8360.63150784682

See Also

STDDEV_POP (page 114) aggregate functions

Using SQL Analytics in the Programmer's Guide

STDDEV_SAMP [Analytic]

Computes the statistical sample standard deviation of the current row with respect to the group

within a window. The STDDEV_SAMP() return value is the same as the square root of the variance

defined for the VAR_SAMP() function:

STDDEV(expression) = SQRT(VAR_SAMP(expression))

When VAR_SAMP() returns null, this function returns null.

Behavior Type

Immutable

Syntax

STDDEV_SAMP (expression) OVER (

... [window_partition_clause (page 121)]

... [window_order_clause (page 123)]

... [window_frame_clause (page 125)])

Parameters

expression Any NUMERIC data type (page 92) or any non-numeric data

type that can be implicitly converted to a numeric data type.
The function returns the same data type as the numeric data
type of the argument..

OVER(...) See Analytic Functions. (page 120)

Notes

STDDEV_SAMP() is semantically identical to the non-standard function, STDDEV() (page 113).

-164-

SQL Reference Manual

Examples

The following example returns the sample standard deviations of salaries in the employee

dimension table by job title Assistant Director:

=> SELECT employee_last_name, annual_salary,

 STDDEV(annual_salary) OVER (ORDER BY hire_date) as "stddev_samp"

 FROM employee_dimension WHERE job_title = 'Assistant Director';

 employee_last_name | annual_salary | stddev_samp

--------------------+---------------+------------------

 Goldberg | 61859 | NaN

 Miller | 79582 | 12532.0534829692

 Goldberg | 74236 | 9090.97147357388

 Campbell | 66426 | 7909.9541665339

 Moore | 66630 | 7068.30282316761

 Nguyen | 53530 | 9154.14713486005

 Harris | 74115 | 8773.54346886142

 Lang | 59981 | 8609.60471031374

 Farmer | 60597 | 8335.41158418579

 Nguyen | 78941 | 8812.87941405456

...

See Also

Analytic Functions (page 120)

STDDEV (page 161) analytic function

STDDEV (page 113) and STDDEV_SAMP (page 115) aggregate functions

Using SQL Analytics in the Programmer's Guide

SUM [Analytic]

Computes the sum of an expression over a group of rows within a window. It returns a DOUBLE

PRECISION value for a floating-point expression. Otherwise, the return value is the same as the

expression data type.

Behavior Type

Immutable

Syntax

SUM (expression) OVER (

... [window_partition_clause (page 121)]

... [window_order_clause (page 123)]

... [window_frame_clause (page 125)])

 Parameters

expression Any NUMERIC data type (page 92) or any non-numeric data

type that can be implicitly converted to a numeric data type.
The function returns the same data type as the numeric data
type of the argument.

-165-

 SQL Functions

OVER(...) See Analytic Functions. (page 120)

Notes

 If you encounter data overflow when using SUM(), use SUM_FLOAT() (page 117) which

converts data to a floating point.

 SUM() returns the sum of values of an expression.

Examples

The following query returns the cumulative sum all of the returns made to stores in January:

=> SELECT calendar_month_name AS month, transaction_type, sales_quantity,

 SUM(sales_quantity)

 OVER (PARTITION BY calendar_month_name ORDER BY date_dimension.date_key) AS

SUM

 FROM store.store_sales_fact JOIN date_dimension

 USING(date_key) WHERE calendar_month_name IN ('January')

 AND transaction_type= 'return';

 month | transaction_type | sales_quantity | SUM

---------+------------------+----------------+------

 January | return | 4 | 2338

 January | return | 3 | 2338

 January | return | 1 | 2338

 January | return | 5 | 2338

 January | return | 8 | 2338

 January | return | 3 | 2338

 January | return | 5 | 2338

 January | return | 10 | 2338

 January | return | 9 | 2338

 January | return | 10 | 2338

(10 rows)

See Also

SUM (page 116) aggregate function

Numeric Data Types (page 92)

Using SQL Analytics in the Programmer's Guide

VAR_POP [Analytic]

Returns the statistical population variance of a non-null set of numbers (nulls are ignored) in a
group within a window. Results are calculated by the sum of squares of the difference of
expression from the mean of expression, divided by the number of rows remaining:

(SUM(expression*expression) - SUM(expression)*SUM(expression) /

 COUNT(expression)) / COUNT(expression)

Behavior Type

Immutable

-166-

SQL Reference Manual

Syntax

VAR_POP (expression) OVER (

... [window_partition_clause (page 121)]

... [window_order_clause (page 123)]

... [window_frame_clause (page 125)])

Parameters

expression Any NUMERIC data type (page 92) or any non-numeric data

type that can be implicitly converted to a numeric data type.
The function returns the same data type as the numeric data
type of the argument

OVER(...) See Analytic Functions. (page 120)

Examples

The following example calculates the cumulative population in the store orders fact table of sales
in December 2007:

=> SELECT date_ordered,

 VAR_POP(SUM(total_order_cost))

 OVER (ORDER BY date_ordered) "var_pop"

 FROM store.store_orders_fact s

 WHERE date_ordered BETWEEN '2007-12-01' AND '2007-12-31'

 GROUP BY s.date_ordered;

 date_ordered | var_pop

--------------+------------------

 2007-12-01 | 0

 2007-12-02 | 1129564881

 2007-12-03 | 1206008121.55542

 2007-12-04 | 26353624176.1875

 2007-12-05 | 21315288023.4402

 2007-12-06 | 21619271028.3333

 2007-12-07 | 19867030477.6328

 2007-12-08 | 19197735288.5

 2007-12-09 | 19100157155.2097

 2007-12-10 | 19369222968.0896

(10 rows)

See Also

VAR_POP (page 117) aggregate function

Using SQL Analytics in the Programmer's Guide

VAR_SAMP [Analytic]

Returns the sample variance of a non-null set of numbers (nulls in the set are ignored) for each
row of the group within a window. Results are calculated by the sum of squares of the difference of
expression from the mean of expression, divided by the number of rows remaining minus 1:

(SUM(expression*expression) - SUM(expression)*SUM(expression) /

-167-

 SQL Functions

 COUNT(expression)) / (COUNT(expression) - 1)

Behavior Type

Immutable

Syntax

VAR_SAMP (expression) OVER (

... [window_partition_clause (page 121)]

... [window_order_clause (page 123)]

... [window_frame_clause (page 125)])

Parameters

expression Any NUMERIC data type (page 92) or any non-numeric data

type that can be implicitly converted to a numeric data type.
The function returns the same data type as the numeric data
type of the argument

OVER(...) See Analytic Functions. (page 120)

Notes

 VAR_SAMP() returns the sample variance of a set of numbers after it discards the nulls in the

set.

 If the function is applied to an empty set, then it returns null.

 This function is similar to VARIANCE(), except that given an input set of one element,

VARIANCE() returns 0 and VAR_SAMP() returns null.

Examples

The following example calculates the sample variance in the store orders fact table of sales in
December 2007:

=> SELECT date_ordered,

 VAR_SAMP(SUM(total_order_cost))

 OVER (ORDER BY date_ordered) "var_samp"

 FROM store.store_orders_fact s

 WHERE date_ordered BETWEEN '2007-12-01' AND '2007-12-31'

 GROUP BY s.date_ordered;

 date_ordered | var_samp

--------------+------------------

 2007-12-01 | NaN

 2007-12-02 | 2259129762

 2007-12-03 | 1809012182.33301

 2007-12-04 | 35138165568.25

 2007-12-05 | 26644110029.3003

 2007-12-06 | 25943125234

 2007-12-07 | 23178202223.9048

 2007-12-08 | 21940268901.1431

 2007-12-09 | 21487676799.6108

 2007-12-10 | 21521358853.4331

(10 rows)

-168-

SQL Reference Manual

See Also

VARIANCE (page 168) analytic function

VAR_SAMP (page 118) aggregate function

Using SQL Analytics in the Programmer's Guide

VARIANCE [Analytic]

Note: The non-standard function VARIANCE() is provided for compatibility with other

databases. It is semantically identical to VAR_SAMP() (page 166).

Returns the sample variance of a non-null set of numbers (nulls in the set are ignored) for each
row of the group within a window. Results are calculated by the sum of squares of the difference of
expression from the mean of expression, divided by the number of rows remaining minus 1:

(SUM(expression*expression) - SUM(expression)*SUM(expression) /

 COUNT(expression)) / (COUNT(expression) - 1)

Behavior Type

Immutable

Syntax

VAR_SAMP (expression) OVER (

... [window_partition_clause (page 121)]

... [window_order_clause (page 123)]

... [window_frame_clause (page 125)])

Parameters

expression Any NUMERIC data type (page 92) or any non-numeric
data type that can be implicitly converted to a numeric data
type. The function returns the same data type as the
numeric data type of the argument.

OVER(...) See Analytic Functions. (page 120)

Notes

 VARIANCE() returns the variance of expression.

 The variance of expression is calculated as follows:

 0 if the number of rows in expression = 1

 VAR_SAMP() if the number of rows in expression > 1

Examples

The following example calculates the cumulative variance in the store orders fact table of sales in
December 2007:

=> SELECT date_ordered,

-169-

 SQL Functions

 VARIANCE(SUM(total_order_cost))

 OVER (ORDER BY date_ordered) "variance"

 FROM store.store_orders_fact s

 WHERE date_ordered BETWEEN '2007-12-01' AND '2007-12-31'

 GROUP BY s.date_ordered;

 date_ordered | variance

--------------+------------------

 2007-12-01 | NaN

 2007-12-02 | 2259129762

 2007-12-03 | 1809012182.33301

 2007-12-04 | 35138165568.25

 2007-12-05 | 26644110029.3003

 2007-12-06 | 25943125234

 2007-12-07 | 23178202223.9048

 2007-12-08 | 21940268901.1431

 2007-12-09 | 21487676799.6108

 2007-12-10 | 21521358853.4331

(10 rows)

See Also

VAR_SAMP (page 166) analytic function

VARIANCE (page 119) and VAR_SAMP (page 118) aggregate functions

Using SQL Analytics in the Programmer's Guide

Performance Optimization for Analytic Sort Computation

Vertica stores data in projections that is sorted in a specific way. All columns are stored in ASC

(ascending) order, but the placement of nulls depends on the column's data type.

The analytic ORDER BY (window_order_clause) and the SQL ORDER BY clause also perform

slightly different sort operations:

 The analytic window_order_clause sorts data that is used by the analytic function as either

ascending (ASC) or descending (DESC) and specifies where null values appear in the sorted

result as either NULLS FIRST or NULLS LAST. The following is the default sort order:

 ASC + NULLS LAST. Null values are placed at the end of the sorted result

 DESC + NULLS FIRST. Null values are placed at the beginning of the sorted result

 The SQL ORDER BY clause specifies only ascending or descending order; however, the

following is the default for null placement in Vertica:

 NUMERIC, INTEGER, DATE, TIME, TIMESTAMP, and INTERVAL columns. NULLS

FIRST (null values are stored at the beginning of a sorted projection).

 FLOAT, STRING, and BOOLEAN columns. NULLS LAST (null values are stored at the end

of a sorted projection).

 No matter what the data type, if you specify NULLS AUTO, Vertica chooses the most

efficient placement of nulls (for example, either NULLS FIRST or NULLS LAST) based on

your query.

-170-

SQL Reference Manual

If you do not care about null placement in queries that involve analytics computation, or if you

know that columns contain no null values, specify NULLS AUTO, and Vertica chooses the

placement that gives the fastest performance. Otherwise you can specify NULLS FIRST or NULLS

LAST.

You can also carefully formulate queries so Vertica can avoid sorting the data and can process the
query more quickly, as illustrated by the following example.

Example

In the following example, Vertica sorts inputs from table t on column x, as specified in the

OVER(ORDER BY) clause. Then it evaluates RANK():

=> CREATE TABLE t (

 x FLOAT,

 y FLOAT);

=> CREATE PROJECTION t_p (x, y) AS SELECT * FROM t

 ORDER BY x, y UNSEGMENTED ALL NODES;

=> SELECT x, RANK() OVER (ORDER BY x) FROM t;

In the above SELECT statement, Vertica can eliminate the ORDER BY clause and run the query

quickly because column x is a FLOAT data type; thus, the projection sort order matches the

analytic default ordering (ASC + NULLS LAST). Vertica can also avoid having to sort the data when

the underlying projection is already sorted.

Assume, however, that column x had been defined as INTEGER. Vertica cannot avoid sorting the

data because the projection sort order for INTEGER data types (ASC + NULLS FIRST) does not

match default analytic ordering (ASC + NULLS LAST). To help Vertica eliminate the sort, specify

the placement of nulls to match default ordering:

=> SELECT x, RANK() OVER (ORDER BY x NULLS FIRST) FROM t;

If column x is defined as a STRING, the following query would eliminate the sort:

=> SELECT x, RANK() OVER (ORDER BY x NULLS LAST) FROM t;

Note that omitting NULLS LAST in the above query still eliminates the sort because ASC + NULLS

LAST is the default sort specification for both the analytic ORDER BY clause and for string-related

columns in Vertica.

Data Types and their Default Sorting

The following tables summarizes the data types supported by Vertica, as well as the default
placement of null values in projections. The Size column is shown in uncompressed bytes.

Type Size Description NULL Sorting

Binary types

BINARY 1 to 65000 Fixed-length binary string NULLS LAST

VARBINARY 1 to 65000 Variable-length binary string NULLS LAST

BYTEA 1 to 65000 Variable-length binary string (synonym
for VARBINARY)

NULLS LAST

-171-

 SQL Functions

RAW 1 to 65000 Variable-length binary string (synonym
for VARBINARY)

NULLS LAST

Boolean types

BOOLEAN 1 True or False or NULL NULLS LAST

Character types

CHAR 1 to 65000 Fixed-length character string NULLS LAST

VARCHAR 1 to 65000 Variable-length character string NULLS LAST

Date/time types

DATE 8 Represents a month, day, and year NULLS FIRST

DATETIME 8 Represents a date and time with or
without timezone (synonym for

TIMESTAMP)

NULLS FIRST

SMALLDATETIME 8 Represents a date and time with or
without timezone (synonym for

TIMESTAMP)

NULLS FIRST

TIME 8 Represents a time of day without
timezone

NULLS FIRST

TIME WITH

TIMEZONE

8 Represents a time of day with timezone NULLS FIRST

TIMESTAMP 8 Represents a date and time without
timezone

NULLS FIRST

TIMESTAMP WITH

TIMEZONE

8 Represents a date and time with
timezone

NULLS FIRST

INTERVAL 8 Measures the difference between two
points in time

NULLS FIRST

Approximate numeric types

DOUBLE PRECISION 8 Signed 64-bit IEEE floating point
number, requiring 8 bytes of storage

NULLS LAST

FLOAT 8 Signed 64-bit IEEE floating point
number, requiring 8 bytes of storage

NULLS LAST

FLOAT(n) 8 Signed 64-bit IEEE floating point
number, requiring 8 bytes of storage

NULLS LAST

FLOAT8 8 Signed 64-bit IEEE floating point
number, requiring 8 bytes of storage

NULLS LAST

REAL 8 Signed 64-bit IEEE floating point
number, requiring 8 bytes of storage

NULLS LAST

Exact numeric types

-172-

SQL Reference Manual

INTEGER 8 Signed 64-bit integer, requiring 8 bytes
of storage

NULLS FIRST

INT 8 Signed 64-bit integer, requiring 8 bytes
of storage

NULLS FIRST

BIGINT 8 Signed 64-bit integer, requiring 8 bytes
of storage

NULLS FIRST

INT8 8 Signed 64-bit integer, requiring 8 bytes
of storage

NULLS FIRST

SMALLINT 8 Signed 64-bit integer, requiring 8 bytes
of storage

NULLS FIRST

TINYINT 8 Signed 64-bit integer, requiring 8 bytes
of storage

NULLS FIRST

DECIMAL 8+ 8 bytes for the first 18 digits of
precision, plus 8 bytes for each
additional 19 digits

NULLS FIRST

NUMERIC 8+ 8 bytes for the first 18 digits of
precision, plus 8 bytes for each
additional 19 digits

NULLS FIRST

NUMBER 8+ 8 bytes for the first 18 digits of
precision, plus 8 bytes for each
additional 19 digits

NULLS FIRST

MONEY 8+ 8 bytes for the first 18 digits of
precision, plus 8 bytes for each
additional 19 digits

NULLS FIRST

See Also

Using SQL Analytics in the Programmer's Guide

Boolean Functions

BIT_AND

Takes the bitwise AND of all non-null input values. If the input parameter is NULL, the return value

is also NULL.

Behavior Type

Immutable

Syntax

BIT_AND (expression)

Parameters

expression The [BINARY |VARBINARY] input value to be evaluated.

BIT_AND() operates on VARBINARY types explicitly and

-173-

 SQL Functions

on BINARY types implicitly through casts (page 104).

Notes

 The function returns the same value as the argument data type.

 For each bit compared, if all bits are 1, the function returns 1; otherwise it returns 0.

 If the columns are different lengths, the return values are treated as though they are all equal in
length and are right-extended with zero bytes. For example, given a group containing the hex

values 'ff', null, and 'f', the function ignores the null value and extends the value 'f'

to 'f0'..

Example

This examples uses the following schema, which creates table t with a single column of

VARBINARY data type:

=> CREATE TABLE t (

 c VARBINARY(2));

=> INSERT INTO t values(HEX_TO_BINARY('0xFF00'));

=> INSERT INTO t values(HEX_TO_BINARY('0xFFFF'));

=> INSERT INTO t values(HEX_TO_BINARY('0xF00F'));

Query table t to see column c output:

=> SELECT TO_HEX(c) FROM t;

 TO_HEX

 ff00

 ffff

 f00f

(3 rows)

Query table t to get the AND value for column c:

SELECT TO_HEX(BIT_AND(c)) FROM t;

 TO_HEX

 f000

(1 row)

The function is applied pairwise to all values in the group, resulting in f000, which is determined

as follows:

1 ff00 (record 1) is compared with ffff (record 2), which results in ff00.

2 The result from the previous comparison is compared with f00f (record 3), which results in

f000.

See Also

Binary Data Types (page 61)

BIT_OR

Takes the bitwise OR of all non-null input values. If the input parameter is NULL, the return value is

also NULL.

-174-

SQL Reference Manual

Behavior Type

Immutable

Syntax

BIT_OR (expression)

Parameters

expression The [BINARY |VARBINARY] input value to be evaluated. BIT_OR()

operates on VARBINARY types explicitly and on BINARY types implicitly

through casts (page 104).

Notes

 The function returns the same value as the argument data type.

 For each bit compared, if any bit is 1, the function returns 1; otherwise it returns 0.

 If the columns are different lengths, the return values are treated as though they are all equal in
length and are right-extended with zero bytes. For example, given a group containing the hex

values 'ff', null, and 'f', the function ignores the null value and extends the value 'f'

to 'f0'.

Example

This examples uses the following schema, which creates table t with a single column of

VARBINARY data type:

=> CREATE TABLE t (

 c VARBINARY(2));

=> INSERT INTO t values(HEX_TO_BINARY('0xFF00'));

=> INSERT INTO t values(HEX_TO_BINARY('0xFFFF'));

=> INSERT INTO t values(HEX_TO_BINARY('0xF00F'));

Query table t to see column c output:

=> SELECT TO_HEX(c) FROM t;

 TO_HEX

 ff00

 ffff

 f00f

(3 rows)

Query table t to get the OR value for column c:

SELECT TO_HEX(BIT_OR(c)) FROM t;

 TO_HEX

 ffff

(1 row)

The function is applied pairwise to all values in the group, resulting in ffff, which is determined

as follows:

1 ff00 (record 1) is compared with ffff, which results in ffff.

-175-

 SQL Functions

2 The ff00 result from the previous comparison is compared with f00f (record 3), which results

in ffff.

See Also

Binary Data Types (page 61)

BIT_XOR

Takes the bitwise XOR of all non-null input values. If the input parameter is NULL, the return value

is also NULL.

Behavior Type

Immutable

Syntax

BIT_XOR (expression)

Parameters

expression The [BINARY |VARBINARY] input value to be evaluated.

BIT_XOR() operates on VARBINARY types explicitly and on

BINARY types implicitly through casts (page 104).

Notes

 The function returns the same value as the argument data type.

 For each bit compared, if there are an odd number of arguments with set bits, the function
returns 1; otherwise it returns 0.

 If the columns are different lengths, the return values are treated as though they are all equal in
length and are right-extended with zero bytes. For example, given a group containing the hex

values 'ff', null, and 'f', the function ignores the null value and extends the value 'f'

to 'f0'.

Example

First create a sample table and projections with binary columns:

This examples uses the following schema, which creates table t with a single column of

VARBINARY data type:

=> CREATE TABLE t (

 c VARBINARY(2));

=> INSERT INTO t values(HEX_TO_BINARY('0xFF00'));

=> INSERT INTO t values(HEX_TO_BINARY('0xFFFF'));

=> INSERT INTO t values(HEX_TO_BINARY('0xF00F'));

Query table t to see column c output:

=> SELECT TO_HEX(c) FROM t;

 TO_HEX

 ff00

-176-

SQL Reference Manual

 ffff

 f00f

(3 rows)

Query table t to get the XOR value for column c:

SELECT TO_HEX(BIT_XOR(c)) FROM t;

 TO_HEX

 f0f0

(1 row)

See Also

Binary Data Types (page 61)

Date/Time Functions
Date and time functions perform conversion, extraction, or manipulation operations on date and
time data types and can return date and time information.

Usage

Functions that take TIME or TIMESTAMP inputs come in two variants:

 TIME WITH TIME ZONE or TIMESTAMP WITH TIME ZONE

TIME WITHOUT TIME ZONE or TIMESTAMP WITHOUT TIME ZONE For brevity, these variants are

not shown separately.

The + and * operators come in commutative pairs; for example, both DATE + INTEGER and

INTEGER + DATE. We show only one of each such pair.

Daylight Savings Time Considerations

When adding an INTERVAL value to (or subtracting an INTERVAL value from) a TIMESTAMP

WITH TIME ZONE value, the days component advances (or decrements) the date of the

TIMESTAMP WITH TIME ZONE by the indicated number of days. Across daylight saving time

changes (with the session time zone set to a time zone that recognizes DST), this means

INTERVAL '1 day' does not necessarily equal INTERVAL '24 hours'.

For example, with the session time zone set to CST7CDT:

TIMESTAMP WITH TIME ZONE '2005-04-02 12:00-07' + INTERVAL '1 day'

produces

TIMESTAMP WITH TIME ZONE '2005-04-03 12:00-06'

Adding INTERVAL '24 hours' to the same initial TIMESTAMP WITH TIME ZONE produces

TIMESTAMP WITH TIME ZONE '2005-04-03 13:00-06',

as there is a change in daylight saving time at 2005-04-03 02:00 in time zone CST7CDT.

-177-

 SQL Functions

Date/Time Functions in Transactions

CURRENT_TIMESTAMP() and related functions return the start time of the current transaction;

their values do not change during the transaction. The intent is to allow a single transaction to
have a consistent notion of the "current" time, so that multiple modifications within the same

transaction bear the same timestamp. However, TIMEOFDAY() returns the wall-clock time and

advances during transactions.

See Also

Template Patterns for Date/Time Formatting (page 219)

ADD_MONTHS

Takes a DATE, TIMESTAMP, or TIMESTAMPTZ argument and a number of months and returns a
date. TIMESTAMPTZ arguments are implicitly cast to TIMESTAMP.

Behavior Type

Immutable if called with DATE or TIMESTAMP but stable with TIMESTAMPTZ in that its results
can change based on TIMEZONE settings

Syntax

ADD_MONTHS (d , n);

Parameters

d Is the incoming DATE, TIMESTAMP, or TIMESTAMPZ. If the start date
falls on the last day of the month, or if the resulting month has fewer days
than the given day of the month, then the result is the last day of the
resulting month. Otherwise, the result has the same start day.

n Can be any INTEGER.

Examples

The following example's results include a leap year:

SELECT ADD_MONTHS('31-Jan-08', 1) "Months";

 Months

 2008-02-29

(1 row)

The next example adds four months to January and returns a date in May:

SELECT ADD_MONTHS('31-Jan-08', 4) "Months";

 Months

 2008-05-31

(1 row)

This example subtracts 4 months from January, returning a date in September:

SELECT ADD_MONTHS('31-Jan-08', -4) "Months";

-178-

SQL Reference Manual

 Months

 2007-09-30

(1 row)

Because the following example specifies NULL, the result set is empty:

SELECT ADD_MONTHS('31-Jan-03', NULL) "Months";

 Months

(1 row)

This example provides no date argument, so even though the number of months specified is 1, the
result set is empty:

SELECT ADD_MONTHS(NULL, 1) "Months";

 Months

(1 row)

In this example, the date field defaults to a timestamp, so the PST is ignored. Notice that even
though it is already the next day in Pacific time, the result falls on the same date in New York (two
years later):

SET TIME ZONE 'America/New_York';

SELECT ADD_MONTHS('2008-02-29 23:30 PST', 24);

 add_months

 2010-02-28

(1 row)

This example specifies a timestamp with time zone, so the PST is taken into account:

SET TIME ZONE 'America/New_York';

SELECT ADD_MONTHS('2008-02-29 23:30 PST'::TIMESTAMPTZ, 24);

 add_months

 2010-03-01

(1 row)

AGE_IN_MONTHS

Returns an INTEGER value representing the difference in months between two TIMESTAMP,
DATE or TIMESTAMPTZ values.

Behavior Type

Stable if second argument is omitted or if either argument is TIMESTAMPTZ. Immutable
otherwise.

Syntax

AGE_IN_MONTHS (expression1 [, expression2])

-179-

 SQL Functions

Parameters

expression1 specifies the beginning of the period.

expression2 specifies the end of the period. The default is the CURRENT_DATE
(page 181).

Notes

The inputs can be TIMESTAMP, TIMESTAMPTZ, or DATE.

Examples

The following example returns the age in months of a person born on March 2, 1972 on the date
June 21, 1990, with a time elapse of 18 years, 3 months, and 19 days:

SELECT AGE_IN_MONTHS(TIMESTAMP '1990-06-21', TIMESTAMP '1972-03-02');

 AGE_IN_MONTHS

 219

(1 row)

The next example shows the age in months of the same person (born March 2, 1972) as of March
16, 2010:

SELECT AGE_IN_MONTHS(TIMESTAMP 'March 16, 2010', TIMESTAMP '1972-03-02');

 AGE_IN_MONTHS

 456

(1 row)

This example returns the age in months of a person born on November 21, 1939:

SELECT AGE_IN_MONTHS(TIMESTAMP '1939-11-21');

 AGE_IN_MONTHS

 844

(1 row)

In the above form, the result changes as time goes by.

See Also

AGE_IN_YEARS (page 179)

INTERVAL (page 70)

AGE_IN_YEARS

Returns an INTEGER value representing the difference in years between two TIMESTAMP,
DATE or TIMESTAMPTZ values.

Behavior Type

Stable if second argument is omitted or if either argument is TIMESTAMPTZ. Immutable
otherwise.

-180-

SQL Reference Manual

Syntax

AGE_IN_YEARS (expression1 [, expression2])

Parameters

expression1 specifies the beginning of the period.

expression2 specifies the end of the period. The default is the CURRENT_DATE
(page 181).

Notes

 The AGE_IN_YEARS() function was previously called AGE. AGE() is not supported.

 Inputs can be TIMESTAMP, TIMESTAMPTZ, or DATE.

Examples

The following example returns the age in years of a person born on March 2, 1972 on the date
June 21, 1990, with a time elapse of 18 years, 3 months, and 19 days:

SELECT AGE_IN_YEARS(TIMESTAMP '1990-06-21', TIMESTAMP '1972-03-02');

 AGE_IN_YEARS

 18

(1 row)

The next example shows the age in years of the same person (born March 2, 1972) as of February
24, 2009:

SELECT AGE_IN_YEARS(TIMESTAMP '2009-02-24', TIMESTAMP '1972-03-02');

 AGE_IN_YEARS

 36

(1 row)

This example returns the age in years of a person born on November 21, 1939:

SELECT AGE_IN_YEARS(TIMESTAMP '1939-11-21');

 AGE_IN_YEARS

 70

(1 row)

See Also

AGE_IN_MONTHS (page 178)

INTERVAL (page 70)

CLOCK_TIMESTAMP

Returns a value of type TIMESTAMP WITH TIMEZONE representing the current system-clock
time.

-181-

 SQL Functions

Behavior Type

Volatile

Syntax

CLOCK_TIMESTAMP()

Notes

This function uses the date and time supplied by the operating system on the server to which you
are connected, which should be the same across all servers. The value changes each time you
call it.

Examples

The following command returns the current time on your system:

SELECT CLOCK_TIMESTAMP() "Current Time";

 Current Time

 2010-09-23 11:41:23.33772-04

(1 row)

Each time you call the function, you get a different result. The difference in this example is in
microseconds:

SELECT CLOCK_TIMESTAMP() "Time 1", CLOCK_TIMESTAMP() "Time 2";

 Time 1 | Time 2

-------------------------------+-------------------------------

 2010-09-23 11:41:55.369201-04 | 2010-09-23 11:41:55.369202-04

(1 row)

See Also

STATEMENT_TIMESTAMP (page 204)

TRANSACTION_TIMESTAMP (page 210)

CURRENT_DATE

Returns the date (date-type value) on which the current transaction started.

Behavior Type

Stable

Syntax

CURRENT_DATE

Notes

The CURRENT_DATE function does not require parentheses.

Examples

SELECT CURRENT_DATE;

 ?column?

-182-

SQL Reference Manual

 2010-09-23

(1 row)

CURRENT_TIME

Returns a value of type TIME WITH TIMEZONE representing the time of day.

Behavior Type

Stable

Syntax

CURRENT_TIME [(precision)]

Parameters

precision (INTEGER) causes the result to be rounded to the specified number
of fractional digits in the seconds field.

Notes

 This function returns the start time of the current transaction; the value does not change during
the transaction. The intent is to allow a single transaction to have a consistent notion of the
current time, so that multiple modifications within the same transaction bear the same
timestamp.

 The CURRENT_TIME function does not require parentheses.

Examples

SELECT CURRENT_TIME "Current Time";

 Current Time

 12:45:12.186089-05

(1 row)

CURRENT_TIMESTAMP

Returns a value of type TIMESTAMP WITH TIME ZONE representing the start of the current
transaction.

Behavior Type

Stable

Syntax

CURRENT_TIMESTAMP [(precision)]

Parameters

precision (INTEGER) causes the result to be rounded to the specified number
of fractional digits in the seconds field. Range of INTEGER is 0-6.

-183-

 SQL Functions

Notes

This function returns the start time of the current transaction; the value does not change during the
transaction. The intent is to allow a single transaction to have a consistent notion of the "current"
time, so that multiple modifications within the same transaction bear the same timestamp.

Examples

SELECT CURRENT_TIMESTAMP;

 ?column?

 2010-09-23 11:37:22.354823-04

(1 row)

SELECT CURRENT_TIMESTAMP(2);

 ?column?

 2010-09-23 11:37:22.35-04

(1 row)

DATE_PART

Is modeled on the traditional Ingres equivalent to the SQL-standard function EXTRACT.Internally
DATE_PART is used by the EXTRACT function.

Behavior Type

Stable when source is of type TIMESTAMPTZ, Immutable otherwise.

Syntax

DATE_PART (field , source)

Parameters

field Is a single-quoted string value that specifies the field to extract.

Note: The field parameter values are the same for the EXTRACT (page 193) function.

source Is a date/time (page 68) expression

Field Values

CENTURY

The century number.

SELECT EXTRACT(CENTURY FROM TIMESTAMP '2000-12-16 12:21:13');

Result: 20

SELECT EXTRACT(CENTURY FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 21

The first century starts at 0001-01-01 00:00:00 AD. This definition applies to all
Gregorian calendar countries. There is no century number 0, you go from -1 to
1.

DAY The day (of the month) field (1 - 31).

SELECT EXTRACT(DAY FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 16

SELECT EXTRACT(DAY FROM DATE '2001-02-16');

-184-

SQL Reference Manual

Result: 16

DECADE The year field divided by 10.

SELECT EXTRACT(DECADE FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 200

SELECT EXTRACT(DECADE FROM DATE '2001-02-16');

Result: 200

DOQ The day within the current quarter.

SELECT EXTRACT(DOQ FROM CURRENT_DATE);

Result: 89

The result is calculated as follows: Current date = June 28, current quarter = 2
(April, May, June). 30 (April) + 31 (May) + 28 (June current day) = 89.

DOQ recognizes leap year days.

DOW The day of the week (0 - 6; Sunday is 0).

SELECT EXTRACT(DOW FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 5

SELECT EXTRACT(DOW FROM DATE '2001-02-16');

Result: 5

Note that EXTRACT's day of the week numbering is different from that of the

TO_CHAR function.

DOY The day of the year (1 - 365/366)

SELECT EXTRACT(DOY FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 47

SELECT EXTRACT(DOY FROM DATE '2001-02-16');

Result: 5

EPOCH For DATE and TIMESTAMP values, the number of seconds since 1970-01-01

00:00:00-00 (can be negative); for INTERVAL values, the total number of

seconds in the interval.

SELECT EXTRACT(EPOCH FROM TIMESTAMP WITH TIME ZONE '2001-02-16

20:38:40-08');

Result: 982384720

SELECT EXTRACT(EPOCH FROM INTERVAL '5 days 3 hours');

Result: 442800

Here is how you can convert an epoch value back to a timestamp:

SELECT TIMESTAMP WITH TIME ZONE 'epoch' + 982384720 * INTERVAL '1 second';

HOUR The hour field (0 - 23).

SELECT EXTRACT(HOUR FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 20

SELECT EXTRACT(HOUR FROM TIME '13:45:59');

Result: 13

ISODOW The ISO day of the week (1 - 7; Monday is 1).

SELECT EXTRACT(ISODOW FROM DATE '2010-09-27');

Result: 1

ISOYEAR The ISO year, which is 52 or 53 weeks (Monday - Sunday).

SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-01');

Result: 2005

SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-02');

Result: 2006

SELECT EXTRACT(ISOYEAR FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 2001

-185-

 SQL Functions

MICROSECONDS The seconds field, including fractional parts, multiplied by 1,000,000. This
includes full seconds.

SELECT EXTRACT(MICROSECONDS FROM TIME '17:12:28.5');

Result: 28500000

MILLENNIUM The millennium number.

SELECT EXTRACT(MILLENNIUM FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 3

Years in the 1900s are in the second millennium. The third millennium starts
January 1, 2001.

MILLISECONDS The seconds field, including fractional parts, multiplied by 1000. Note that this
includes full seconds.

SELECT EXTRACT(MILLISECONDS FROM TIME '17:12:28.5');

Result: 28500

MINUTE The minutes field (0 - 59).

SELECT EXTRACT(MINUTE FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 38

SELECT EXTRACT(MINUTE FROM TIME '13:45:59');

Result: 45

MONTH For timestamp values, the number of the month within the year (1 - 12) ; for

interval values the number of months, modulo 12 (0 - 11).

SELECT EXTRACT(MONTH FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 2

SELECT EXTRACT(MONTH FROM INTERVAL '2 years 3 months');

Result: 3

SELECT EXTRACT(MONTH FROM INTERVAL '2 years 13 months');

Result: 1

QUARTER The quarter of the year (1 - 4) that the day is in (for timestamp values only).

SELECT EXTRACT(QUARTER FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 1

SECOND The seconds field, including fractional parts (0 - 59) (60 if leap seconds are
implemented by the operating system).

SELECT EXTRACT(SECOND FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 40

SELECT EXTRACT(SECOND FROM TIME '17:12:28.5');

Result: 28.5

TIME ZONE The time zone offset from UTC, measured in seconds. Positive values
correspond to time zones east of UTC, negative values to zones west of UTC.

TIMEZONE_HOUR The hour component of the time zone offset.

TIMEZONE_MINUTE The minute component of the time zone offset.

WEEK The number of the week of the year that the day is in. By definition, the
ISO-8601 week starts on Monday, and the first week of a year contains
January 4 of that year. In other words, the first Thursday of a year is in week 1
of that year.

Because of this, it is possible for early January dates to be part of the 52nd or

53rd week of the previous year. For example, 2005-01-01 is part of the 53rd

week of year 2004, and 2006-01-01 is part of the 52nd week of year 2005.

SELECT EXTRACT(WEEK FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 7

SELECT EXTRACT(WEEK FROM DATE '2001-02-16');

Result: 7

YEAR The year field. Keep in mind there is no 0 AD, so subtract BC years from AD

-186-

SQL Reference Manual

years with care.

SELECT EXTRACT(YEAR FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 2001

Examples

The following example extracts the day value from the input parameters:

SELECT DATE_PART('day', TIMESTAMP '2009-02-24 20:38:40') "Day";

 Day

 24

(1 row)

The following example extracts the month value from the input parameters:

SELECT DATE_PART('month', TIMESTAMP '2009-02-24 20:38:40') "Month";

 Month

 2

(1 row)

The following example extracts the year value from the input parameters:

SELECT DATE_PART('year', TIMESTAMP '2009-02-24 20:38:40') "Year";

 Year

 2009

(1 row)

The following example extracts the hours from the input parameters:

SELECT DATE_PART('hour', TIMESTAMP '2009-02-24 20:38:40') "Hour";

 Hour

 20

(1 row)

The following example extracts the minutes from the input parameters:

SELECT DATE_PART('minutes', TIMESTAMP '2009-02-24 20:38:40') "Minutes";

 Minutes

 38

(1 row)

The following example extracts the seconds from the input parameters:

SELECT DATE_PART('seconds', TIMESTAMP '2009-02-24 20:38:40') "Seconds";

 Seconds

 40

(1 row)

The following example extracts the day of quarter (DOQ) from the input parameters:

SELECT DATE_PART('DOQ', TIMESTAMP '2009-02-24 20:38:40') "DOQ";

 DOQ

 55

-187-

 SQL Functions

(1 row)

SELECT DATE_PART('day', INTERVAL '29 days 23 hours');

 date_part

 29

(1 row)

Notice what happens to the above query if you add an hour:

SELECT DATE_PART('day', INTERVAL '29 days 24 hours');

 date_part

 30

(1 row)

The following example returns 0 because an interval in hours is up to 24 only:

SELECT DATE_PART('hour', INTERVAL '24 hours 45 minutes');

 date_part

 0

(1 row)

See Also

EXTRACT (page 193)

DATE_TRUNC

Is conceptually similar to the TRUNC (page 245) function for numbers. The return value is of type
TIMESTAMP or INTERVAL with all fields that are less significant than the selected one set to zero
(or one, for day and month).

Behavior Type

Stable when source is of type TIMESTAMPTZ, Immutable otherwise.

Syntax

DATE_TRUNC (field , source)

Parameters

field Is a string constant that selects the precision to which truncate the
input value. Valid values for field are:

century milliseconds

day minute

decade month

hour second

microseconds week

millennium year

source Is a value expression of type TIMESTAMP or INTERVAL.

-188-

SQL Reference Manual

Values of type DATE and TIME are cast automatically, to

TIMESTAMP or INTERVAL, respectively.

Examples

The following example returns the hour and truncates the minutes and seconds:

SELECT DATE_TRUNC('hour', TIMESTAMP '2009-02-24 13:38:40') AS hour;

 hour

 2009-02-24 13:00:00

(1 row)

The following example returns the year and defaults month and day to January 1, truncating the
rest of the string:

SELECT DATE_TRUNC('year', TIMESTAMP '2009-02-24 13:38:40') AS year;

 year

 2009-01-01 00:00:00

(1 row)

The following example returns the year and month and defaults day of month to 1, truncating the
rest of the string:

SELECT DATE_TRUNC('month', TIMESTAMP '2009-02-24 13:38:40') AS year;

 year

 2009-02-01 00:00:00

(1 row)

DATEDIFF

Returns the difference between two date or time values, based on the specified start and end
arguments.

Behavior Type

Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Syntax 1

DATEDIFF (datepart , startdate , enddate);

Syntax 2

DATEDIFF (datepart , starttime , endtime);

-189-

 SQL Functions

Parameters

datepart Returns the number of specified datepart boundaries between the
specified startdate and enddate.

Can be an unquoted identifier, a quoted string, or an expression in
parentheses, which evaluates to the datepart as a character string.

The following table lists the valid datepart arguments.

datepart

abbreviation

year yy, yyyy

quarter qq, q

month mm, m

day dd, d, dy, dayofyear, y

week wk, ww

hour hh

minute mi, n

second ss, s

millisecond ms

microsecond mcs, us

startdate Is the start date for the calculation and is an expression that returns a
TIMESTAMP (page 87), DATE (page 69), or TIMESTAMPTZ value.

The startdate value is not included in the count.

enddate Is the end date for the calculation and is an expression that returns a
TIMESTAMP (page 87), DATE (page 69), or TIMESTAMPTZ value.

The enddate value is included in the count.

starttime Is the start time for the calculation and is an expression that returns
an INTERVAL (page 70) or TIME (page 85) data type.

 The starttime value is not included in the count.

 Year, quarter, or month dateparts are not allowed.

endtime Is the end time for the calculation and is an expression that returns
an INTERVAL (page 70) or TIME (page 85) data type.

 The endtime value is included in the count.

 Year, quarter, or month dateparts are not allowed.

Notes

 DATEDIFF() is an immutable function with a default type of TIMESTAMP. It also takes DATE.
If TIMESTAMPTZ is specified, the function is stable.

 Vertica accepts statements written in any of the following forms:

DATEDIFF(year, s, e);

DATEDIFF('year', s, e);

-190-

SQL Reference Manual

If you use an expression, the expression must be enclosed in parentheses:

DATEDIFF((expression), s, e);

 Starting arguments are not included in the count, but end arguments are included.

The datepart boundaries

DATEDIFF calculates results according to ticks—or boundaries—within the date range or time
range. Results are calculated based on the specified datepart. Let's examine the following
statement and its results:

SELECT DATEDIFF('year', TO_DATE('01-01-2005','MM-DD-YYYY'),

TO_DATE('12-31-2008','MM-DD-YYYY'));

 datediff

 3

(1 row)

In the above example, we specified a datepart of year, a startdate of January 1, 2005 and an
enddate of December 31, 2008. DATEDIFF returns 3 by counting the year intervals as follows:

 [1] January 1, 2006 + [2] January 1, 2007 + [3] January 1, 2008 = 3

The function returns 3, and not 4, because startdate (January 1, 2005) is not counted in the
calculation. DATEDIFF also ignores the months between January 1, 2008 and December 31,
2008 because the datepart specified is year and only the start of each year is counted.

Sometimes the enddate occurs earlier in the ending year than the startdate in the starting year.
For example, assume a datepart of year, a startdate of August 15, 2005, and an enddate of
January 1, 2009. In this scenario, less than three years have elapsed, but DATEDIFF counts the
same way it did in the previous example, returning 3 because it returns the number of January 1s
between the limits:

 [1] January 1, 2006 + [2] January 1, 2007 + [3] January 1, 2008 = 3

In the following query, Vertica recognizes the full year 2005 as the starting year and 2009 as the
ending year.

SELECT DATEDIFF('year', TO_DATE('08-15-2005','MM-DD-YYYY'),

TO_DATE('01-01-2009','MM-DD-YYYY'));

The count occurs as follows:

 [1] January 1, 2006 + [2] January 1, 2007 + [3] January 1, 2008 + [4] January 1,

2009 = 4

Even though August 15 has not yet occurred in the enddate, the function counts the entire enddate
year as one tick or boundary because of the year datepart.

Examples

Year: In this example, the startdate and enddate are adjacent. The difference between the dates
is one time boundary (second) of its datepart, so the result set is 1.

SELECT DATEDIFF('year', TIMESTAMP '2008-12-31 23:59:59',

 '2009-01-01 00:00:00');

 datediff

 1

-191-

 SQL Functions

(1 row)

Quarters start on January, April, July, and October.

In the following example, the result is 0 because the difference from January to February in the
same calendar year does not span a quarter:

SELECT DATEDIFF('qq', TO_DATE('01-01-1995','MM-DD-YYYY'),

 TO_DATE('02-02-1995','MM-DD-YYYY'));

 datediff

 0

(1 row)

The next example, however, returns 8 quarters because the difference spans two full years. The
extra month is ignored:

SELECT DATEDIFF('quarter', TO_DATE('01-01-1993','MM-DD-YYYY'),

 TO_DATE('02-02-1995','MM-DD-YYYY'));

 datediff

 8

(1 row)

Months are based on real calendar months.

The following statement returns 1 because there is month difference between January and
February in the same calendar year:

SELECT DATEDIFF('mm', TO_DATE('01-01-2005','MM-DD-YYYY'),

 TO_DATE('02-02-2005','MM-DD-YYYY'));

 datediff

 1

(1 row)

The next example returns a negative value of 1:

SELECT DATEDIFF('month', TO_DATE('02-02-1995','MM-DD-YYYY'),

 TO_DATE('01-01-1995','MM-DD-YYYY'));

 datediff

 -1

(1 row)

And this third example returns 23 because there are 23 months difference between

SELECT DATEDIFF('m', TO_DATE('02-02-1993','MM-DD-YYYY'),

 TO_DATE('01-01-1995','MM-DD-YYYY'));

 datediff

 23

(1 row)

Weeks start on Sunday at midnight.

The first example returns 0 because, even though the week starts on a Sunday, it is not a full
calendar week:

SELECT DATEDIFF('ww', TO_DATE('02-22-2009','MM-DD-YYYY'),

-192-

SQL Reference Manual

 TO_DATE('02-28-2009','MM-DD-YYYY'));

 datediff

 0

(1 row)

The following example returns 1 (week); January 1, 2000 fell on a Saturday.

SELECT DATEDIFF('week', TO_DATE('01-01-2000','MM-DD-YYYY'),

 TO_DATE('01-02-2000','MM-DD-YYYY'));

 datediff

 1

(1 row)

In the next example, DATEDIFF() counts the weeks between January 1, 1995 and February 2,
1995 and returns 4 (weeks):

SELECT DATEDIFF('wk', TO_DATE('01-01-1995','MM-DD-YYYY'),

 TO_DATE('02-02-1995','MM-DD-YYYY'));

 datediff

 4

(1 row)

The next example returns a difference of 100 weeks:

SELECT DATEDIFF('ww', TO_DATE('02-02-2006','MM-DD-YYYY'),

 TO_DATE('01-01-2008','MM-DD-YYYY'));

 datediff

 100

(1 row)

Days are based on real calendar days.

The first example returns 31, the full number of days in the month of July 2008.

SELECT DATEDIFF('day', 'July 1, 2008', 'Aug 1, 2008'::date);

 datediff

 31

(1 row)

Just over two years of days:

SELECT DATEDIFF('d', TO_TIMESTAMP('01-01-1993','MM-DD-YYYY'),

 TO_TIMESTAMP('02-02-1995','MM-DD-YYYY'));

 datediff

 762

(1 row)

Hours, minutes, and seconds are based on clock time.

The first example counts backwards from March 2 to February 14 and returns -384 hours:

SELECT DATEDIFF('hour', TO_DATE('03-02-2009','MM-DD-YYYY'),

 TO_DATE('02-14-2009','MM-DD-YYYY'));

 datediff

-193-

 SQL Functions

 -384

(1 row)

Another hours example:

SELECT DATEDIFF('hh', TO_TIMESTAMP('01-01-1993','MM-DD-YYYY'),

 TO_TIMESTAMP('02-02-1995','MM-DD-YYYY'));

 datediff

 18288

(1 row)

This example counts the minutes backwards:

SELECT DATEDIFF('mi', TO_TIMESTAMP('01-01-1993 03:00:45','MM-DD-YYYY HH:MI:SS'),

 TO_TIMESTAMP('01-01-1993 01:30:21',' MM-DD-YYYY HH:MI:SS'));

 datediff

 -90

(1 row)

And this example counts the minutes forward:

SELECT DATEDIFF('minute', TO_DATE('01-01-1993','MM-DD-YYYY'),

 TO_DATE('02-02-1995','MM-DD-YYYY'));

 datediff

 1097280

(1 row)

In the following example, the query counts the difference in seconds, beginning at a start time of
4:44 and ending at 5:55 with an interval of 2 days:

SELECT DATEDIFF('ss', TIME '04:44:42.315786',

 INTERVAL '2 05:55:52.963558');

 datediff

 177070

(1 row)

See Also

Date/Time Expressions (page 47)

EXTRACT

Retrieves subfields such as year or hour from date/time values and returns values of type
DOUBLE PRECISION (page 94). EXTRACT is primarily intended for computational processing,
rather than for formatting date/time values for display.

Internally EXTRACT uses the DATE_PART function.

Behavior Type

Stable when source is of type TIMESTAMPTZ, Immutable otherwise.

-194-

SQL Reference Manual

Syntax

EXTRACT (field FROM source)

Parameters

field Is an identifier or string that selects what field to extract from the source value.

Note: The field parameter is the same for the DATE_PART() (page 183)

function.

source Is an expression of type DATE, TIMESTAMP, TIME, or INTERVAL.

Note: Expressions of type DATE are cast to TIMESTAMP.

Field Values

CENTURY

The century number.

SELECT EXTRACT(CENTURY FROM TIMESTAMP '2000-12-16 12:21:13');

Result: 20

SELECT EXTRACT(CENTURY FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 21

The first century starts at 0001-01-01 00:00:00 AD. This definition applies to all
Gregorian calendar countries. There is no century number 0, you go from -1 to
1.

DAY The day (of the month) field (1 - 31).

SELECT EXTRACT(DAY FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 16

SELECT EXTRACT(DAY FROM DATE '2001-02-16');

Result: 16

DECADE The year field divided by 10.

SELECT EXTRACT(DECADE FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 200

SELECT EXTRACT(DECADE FROM DATE '2001-02-16');

Result: 200

DOQ The day within the current quarter.

SELECT EXTRACT(DOQ FROM CURRENT_DATE);

Result: 89

The result is calculated as follows: Current date = June 28, current quarter = 2
(April, May, June). 30 (April) + 31 (May) + 28 (June current day) = 89.

DOQ recognizes leap year days.

DOW The day of the week (0 - 6; Sunday is 0).

SELECT EXTRACT(DOW FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 5

SELECT EXTRACT(DOW FROM DATE '2001-02-16');

Result: 5

Note that EXTRACT's day of the week numbering is different from that of the

TO_CHAR function.

DOY The day of the year (1 - 365/366)

SELECT EXTRACT(DOY FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 47

SELECT EXTRACT(DOY FROM DATE '2001-02-16');

Result: 5

-195-

 SQL Functions

EPOCH For DATE and TIMESTAMP values, the number of seconds since 1970-01-01

00:00:00-00 (can be negative); for INTERVAL values, the total number of

seconds in the interval.

SELECT EXTRACT(EPOCH FROM TIMESTAMP WITH TIME ZONE '2001-02-16

20:38:40-08');

Result: 982384720

SELECT EXTRACT(EPOCH FROM INTERVAL '5 days 3 hours');

Result: 442800

Here is how you can convert an epoch value back to a timestamp:

SELECT TIMESTAMP WITH TIME ZONE 'epoch' + 982384720 * INTERVAL '1 second';

HOUR The hour field (0 - 23).

SELECT EXTRACT(HOUR FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 20

SELECT EXTRACT(HOUR FROM TIME '13:45:59');

Result: 13

ISODOW The ISO day of the week (1 - 7; Monday is 1).

SELECT EXTRACT(ISODOW FROM DATE '2010-09-27');

Result: 1

ISOYEAR The ISO year, which is 52 or 53 weeks (Monday - Sunday).

SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-01');

Result: 2005

SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-02');

Result: 2006

SELECT EXTRACT(ISOYEAR FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 2001

MICROSECONDS The seconds field, including fractional parts, multiplied by 1,000,000. This
includes full seconds.

SELECT EXTRACT(MICROSECONDS FROM TIME '17:12:28.5');

Result: 28500000

MILLENNIUM The millennium number.

SELECT EXTRACT(MILLENNIUM FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 3

Years in the 1900s are in the second millennium. The third millennium starts
January 1, 2001.

MILLISECONDS The seconds field, including fractional parts, multiplied by 1000. Note that this
includes full seconds.

SELECT EXTRACT(MILLISECONDS FROM TIME '17:12:28.5');

Result: 28500

MINUTE The minutes field (0 - 59).

SELECT EXTRACT(MINUTE FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 38

SELECT EXTRACT(MINUTE FROM TIME '13:45:59');

Result: 45

MONTH For timestamp values, the number of the month within the year (1 - 12) ; for

interval values the number of months, modulo 12 (0 - 11).

SELECT EXTRACT(MONTH FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 2

SELECT EXTRACT(MONTH FROM INTERVAL '2 years 3 months');

Result: 3

SELECT EXTRACT(MONTH FROM INTERVAL '2 years 13 months');

Result: 1

QUARTER The quarter of the year (1 - 4) that the day is in (for timestamp values only).

SELECT EXTRACT(QUARTER FROM TIMESTAMP '2001-02-16 20:38:40');

-196-

SQL Reference Manual

Result: 1

SECOND The seconds field, including fractional parts (0 - 59) (60 if leap seconds are
implemented by the operating system).

SELECT EXTRACT(SECOND FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 40

SELECT EXTRACT(SECOND FROM TIME '17:12:28.5');

Result: 28.5

TIME ZONE The time zone offset from UTC, measured in seconds. Positive values
correspond to time zones east of UTC, negative values to zones west of UTC.

TIMEZONE_HOUR The hour component of the time zone offset.

TIMEZONE_MINUTE The minute component of the time zone offset.

WEEK The number of the week of the year that the day is in. By definition, the
ISO-8601 week starts on Monday, and the first week of a year contains
January 4 of that year. In other words, the first Thursday of a year is in week 1
of that year.

Because of this, it is possible for early January dates to be part of the 52nd or

53rd week of the previous year. For example, 2005-01-01 is part of the 53rd

week of year 2004, and 2006-01-01 is part of the 52nd week of year 2005.

SELECT EXTRACT(WEEK FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 7

SELECT EXTRACT(WEEK FROM DATE '2001-02-16');

Result: 7

YEAR The year field. Keep in mind there is no 0 AD, so subtract BC years from AD

years with care.

SELECT EXTRACT(YEAR FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 2001

Examples

=> SELECT EXTRACT (DAY FROM DATE '2008-12-25');

date_part

 25

(1 row)

=> SELECT EXTRACT (MONTH FROM DATE '2008-12-25');

date_part

 12

(1 row

SELECT EXTRACT(DOQ FROM CURRENT_DATE);

 date_part

 89

(1 row)

Remember that internally EXTRACT() uses the DATE_PART() function:

=> SELECT EXTRACT(EPOCH FROM AGE_IN_YEARS(TIMESTAMP '2009-02-24',

 TIMESTAMP '1972-03-02') :: INTERVAL year);

 date_part

 1136073600

-197-

 SQL Functions

(1 row)

In the above example, AGE_IN_YEARS is 36. The UNIX epoch uses 365.25 days per year:

=> SELECT 1136073600.0/36/(24*60*60);

 ?column?

 365.25

(1 row)

See Also

DATE_PART (page 183)

GETDATE

Returns the current system date and time as a TIMESTAMP value.

Behavior Type

Stable

Syntax

GETDATE();

Notes

 GETDATE is a stable function that requires parentheses but accepts no arguments.

 This function uses the date and time supplied by the operating system on the server to which
you are connected, which is the same across all servers.

 GETDATE internally converts CLOCK_TIMESTAMP() from TIMESTAMPTZ to TIMESTAMP.

 This function is identical to SYSDATE (page 204)().

Example

SELECT GETDATE();

 getdate

 2009-02-18 16:39:58.628483

(1 row)

See Also

Date/Time Expressions (page 47)

GETUTCDATE

Returns the current system date and time as a TIMESTAMP value relative to UTC.

Behavior Type

Stable

Syntax

GETUTCDATE();

-198-

SQL Reference Manual

Notes

 GETUTCDATE is a stable function that requires parentheses but accepts no arguments.

 This function uses the date and time supplied by the operating system on the server to which
you are connected, which is the same across all servers.

 GETUTCDATE is internally converted to CLOCK_TIMESTAMP (page 180)() at TIME ZONE
'UTC'.

Example

SELECT GETUTCDATE();

 getutcdate

 2009-02-18 16:39:58.628483

(1 row)

See Also

Date/Time Expressions (page 47)

ISFINITE

Tests for the special TIMESTAMP constant INFINITY and returns a value of type BOOLEAN.

Behavior Type

Immutable

Syntax

ISFINITE (timestamp)

Parameters

timestamp Is an expression of type TIMESTAMP

Examples

SELECT ISFINITE(TIMESTAMP '2009-02-16 21:28:30');

 isfinite

 t

(1 row)

SELECT ISFINITE(TIMESTAMP 'INFINITY');

 isfinite

 f

(1 row)

-199-

 SQL Functions

LAST_DAY

Returns the last day of the month based on a TIMESTAMP. The TIMESTAMP can be supplied as
a DATE or a TIMESTAMPTZ data type.

Behavior Type

Immutable, unless called with TIMESTAMPTZ, in which case it is Stable.

Syntax

LAST_DAY (date);

Examples

The following example returns the last day of the month, February, as 29 because 2008 was a
leap year:

SELECT LAST_DAY('2008-02-28 23:30 PST') "Last";

 Last

 2008-02-29

(1 row)

The following example returns the last day of the month in March, after converting the string value
to the specified DATE type:

SELECT LAST_DAY('2003/03/15') "Last";

 Last

 2003-03-31

(1 row)

The following example returns the last day of February in the specified year (not a leap year):

SELECT LAST_DAY('2003/02/03') "Last";

 Last

 2003-02-28

(1 row)

LOCALTIME

Returns a value of type TIME representing the time of day.

Behavior Type

Stable

Syntax

LOCALTIME [(precision)]

Parameters

precision Causes the result to be rounded to the specified number
of fractional digits in the seconds field.

-200-

SQL Reference Manual

Notes

This function returns the start time of the current transaction; the value does not change during the
transaction. The intent is to allow a single transaction to have a consistent notion of the "current"
time, so that multiple modifications within the same transaction bear the same timestamp.

Examples

SELECT LOCALTIME;

 time

 16:16:06.790771

(1 row)

LOCALTIMESTAMP

Returns a value of type TIMESTAMP representing today's date and time of day.

Behavior Type

Stable

Syntax

LOCALTIMESTAMP [(precision)]

Parameters

precision Causes the result to be rounded to the specified number of fractional
digits in the seconds field.

Notes

This function returns the start time of the current transaction; the value does not change during the
transaction. The intent is to allow a single transaction to have a consistent notion of the "current"
time, so that multiple modifications within the same transaction bear the same timestamp.

Examples

SELECT LOCALTIMESTAMP;

 timestamp

 2009-02-24 14:47:48.5951

(1 row)

MONTHS_BETWEEN

Returns the number of months between date1 and date2 as a FLOAT8. where the input
arguments can be of TIMESTAMP, DATE, or TIMESTAMPTZ type.

Behavior Type

Immutable for TIMESTAMP and Date, Stable for TIMESTAMPTZ

-201-

 SQL Functions

Syntax

MONTHS_BETWEEN (date1 , date2);

Parameters

date1, date2 If date1 is later than date2, then the result is positive. If date1 is earlier
than date2, then the result is negative.

If date1 and date2 are either the same days of the month or both are
the last days of their respective month, then the result is always an
integer. Otherwise MONTHS_BETWEEN returns a FLOAT8 result
based on a 31-day month, which considers the difference between
date1 and date2.

Examples

Note the following result is an integral number of days because the dates are on the same day of
the month:

SELECT MONTHS_BETWEEN('2009-03-07 16:00'::TIMESTAMP, '2009-04-07

15:00'::TIMESTAMP);

 months_between

 -1

(1 row)

The result from the following example returns an integral number of days because the days fall on
the last day of their respective months:

SELECT MONTHS_BETWEEN('29Feb2000', '30Sep2000') "Months";

 Months

 -7

(1 row)

In this example, and in the example that immediately follows it, MONTHS_BETWEEN() returns the

number of months between date1 and date2 as a fraction because the days do not fall on the
same day or on the last day of their respective months:

SELECT MONTHS_BETWEEN(TO_DATE('02-02-1995','MM-DD-YYYY'),

 TO_DATE('01-01-1995','MM-DD-YYYY')) "Months";

 Months

 1.03225806451613

(1 row)

SELECT MONTHS_BETWEEN(TO_DATE ('2003/01/01', 'yyyy/mm/dd'),

 TO_DATE ('2003/03/14', 'yyyy/mm/dd')) "Months";

 Months

 -2.41935483870968

(1 row)

The following two examples use the same date1 and date2 strings, but they are cast to a different
data types (TIMESTAMP and TIMESTAMPTZ). The result set is the same for both statements:

SELECT MONTHS_BETWEEN('2008-04-01'::timestamp, '2008-02-29'::timestamp);

-202-

SQL Reference Manual

 months_between

 1.09677419354839

(1 row)

SELECT MONTHS_BETWEEN('2008-04-01'::timestamptz, '2008-02-29'::timestamptz);

 months_between

 1.09677419354839

(1 row)

The following two examples show alternate inputs:

SELECT MONTHS_BETWEEN('2008-04-01'::date, '2008-02-29'::timestamp);

 months_between

 1.09677419354839

(1 row)

SELECT MONTHS_BETWEEN('2008-02-29'::timestamptz, '2008-04-01'::date);

 months_between

 -1.09677419354839

(1 row)

NOW [Date/Time]

Returns a value of type TIMESTAMP WITH TIME ZONE representing the start of the current
transaction. NOW is equivalent to CURRENT_TIMESTAMP (page 182) except that it does not
accept a precision parameter.

Behavior Type

Stable

Syntax

NOW()

Notes

This function returns the start time of the current transaction; the value does not change during the
transaction. The intent is to allow a single transaction to have a consistent notion of the "current"
time, so that multiple modifications within the same transaction bear the same timestamp.

Examples

SELECT NOW();

 NOW

 2010-04-01 15:31:12.144584-04

(1 row)

See Also

CURRENT_TIMESTAMP (page 182)

-203-

 SQL Functions

OVERLAPS

Returns true when two time periods overlap, false when they do not overlap.

Behavior Type

Stable when TIMESTAMP and TIMESTAMPTZ are both used, or when TIMESTAMPTZ is used
with INTERVAL, Immutable otherwise.

Syntax

(start, end) OVERLAPS (start, end)

(start, interval) OVERLAPS (start, interval)

Parameters

start Is a DATE, TIME, or TIME STAMP value that specifies the
beginning of a time period.

end Is a DATE, TIME, or TIME STAMP value that specifies the end of a
time period.

interval Is a value that specifies the length of the time period.

Examples

The first command returns true for an overlap in date range of 2007-02-16 – 2007-12-21 with
2007-10-30 – 2008-10-30.

SELECT (DATE '2007-02-16', DATE '2007-12-21')

 OVERLAPS (DATE '2007-10-30', DATE '2008-10-30');

 overlaps

 t

(1 row)

The next command returns false for an overlap in date range of 2007-02-16 – 2007-12-21 with
2008-10-30 – 2008-10-30.

SELECT (DATE '2007-02-16', DATE '2007-12-21')

 OVERLAPS (DATE '2008-10-30', DATE '2008-10-30');

 overlaps

 f

(1 row)

The next command returns false for an overlap in date range of 2007-02-16, 22 hours ago with
2007-10-30, 22 hours ago.

SELECT (DATE '2007-02-16', INTERVAL '1 12:59:10')

 OVERLAPS (DATE '2007-10-30', INTERVAL '1 12:59:10');

 overlaps

 f

(1 row)

-204-

SQL Reference Manual

STATEMENT_TIMESTAMP

Is similar to TRANSACTION_TIMESTAMP (page 210). It returns a value of type TIMESTAMP
WITH TIME ZONE representing the start of the current statement.

Behavior Type

Stable

Syntax

STATEMENT_TIMESTAMP()

Notes

This function returns the start time of the current statement; the value does not change during the
statement. The intent is to allow a single statement to have a consistent notion of the "current"
time, so that multiple modifications within the same statement bear the same timestamp.

Examples

SELECT STATEMENT_TIMESTAMP();

 STATEMENT_TIMESTAMP

 2010-04-01 15:40:42.223736-04

(1 row)

See Also

CLOCK_TIMESTAMP (page 180)

TRANSACTION_TIMESTAMP (page 210)

SYSDATE

Returns the current system date and time as a TIMESTAMP value.

Behavior Type

Stable

Syntax

SYSDATE();

Notes

 SYSDATE is a stable function (called once per statement) that requires no arguments.
Parentheses are optional.

 This function uses the date and time supplied by the operating system on the server to which
you are connected, which must be the same across all servers.

 In implementation, SYSDATE converts CLOCK_TIMESTAMP (page 180) from
TIMESTAMPTZ to TIMESTAMP.

 This function is identical to GETDATE (page 197).

-205-

 SQL Functions

Examples

SELECT SYSDATE();

 sysdate

 2010-04-01 15:41:17.087173

(1 row)

SELECT SYSDATE;

 sysdate

 2010-04-01 15:41:17.087173

(1 row)

See Also

Date/Time Expressions (page 47)

TIME_SLICE

Aggregates data by different fixed-time intervals and returns a rounded-up input TIMESTAMP
value to a value that corresponds with the start or end of the time slice interval.

Given an input TIMESTAMP value, such as '2000-10-28 00:00:01', the start time of a 3-second
time slice interval is '2000-10-28 00:00:00', and the end time of the same time slice is '2000-10-28
00:00:03'.

Behavior Type

Immutable

Syntax

TIME_SLICE(expression, slice_length,

 [time_unit = 'SECOND'],

 [start_or_end = 'START'])

Parameters

expression Is evaluated on each row.

Can be either a column of type TIMESTAMP or a (string) constant that can
be parsed into a TIMESTAMP value, such as '2004-10-19 10:23:54'.

slice_length Is the length of the slice specified in integers. Input must be a positive integer.

time_unit Is the time unit of the slice with a default of SECOND.

Domain of possible values: { HOUR, MINUTE, SECOND, MILLISECOND,
MICROSECOND }.

start_or_end Indicates whether the returned value corresponds to the start or end time of
the time slice interval. The default is START.

Domain of possible values: { START, END }.

-206-

SQL Reference Manual

Notes

 The returned value's data type is TIMESTAMP.

 The corresponding SQL data type for TIMESTAMP is TIMESTAMP WITHOUT TIME ZONE.
Vertica supports TIMESTAMP for TIME_SLICE instead of DATE and TIME data types.

 TIME_SLICE exhibits the following behavior around nulls:

 The system returns an error when any one of slice_length, time_unit, or start_or_end
parameters is null.

 When slice_length, time_unit, and start_or_end contain legal values, and expression is
null, the system returns a NULL value, instead of an error.

Usage

The following command returns the (default) start time of a 3-second time slice:

SELECT TIME_SLICE('2009-09-19 00:00:01', 3);

 time_slice

 2009-09-19 00:00:00

(1 row)

The following command returns the end time of a 3-second time slice:

SELECT TIME_SLICE('2009-09-19 00:00:01', 3, 'SECOND', 'END');

 time_slice

 2009-09-19 00:00:03

(1 row)

This command returns results in milliseconds, using a 3-second time slice:

SELECT TIME_SLICE('2009-09-19 00:00:01', 3, 'ms');

 time_slice

 2009-09-19 00:00:00.999

(1 row)

This command returns results in microseconds, using a 9-second time slice:

SELECT TIME_SLICE('2009-09-19 00:00:01', 3, 'us');

 time_slice

 2009-09-19 00:00:00.999999

(1 row)

The next example uses a 3-second interval with an input value of '00:00:01'. To focus specifically
on seconds, the example omits date, though all values are implied as being part of the timestamp

with a given input of '00:00:01':

 '00:00:00' is the start of the 3-second time slice

 '00:00:03' is the end of the 3-second time slice.

-207-

 SQL Functions

 '00:00:03' is also the start of the second 3-second time slice. In time slice boundaries, the end
value of a time slice does not belong to that time slice; it starts the next one.

When the time slice interval is not a factor of 60 seconds, such as a given slice length of 9 in the
following example, the slice does not always start or end on 00 seconds:

SELECT TIME_SLICE('2009-02-14 20:13:01', 9);

 time_slice

 2009-02-14 20:12:54

(1 row)

This is expected behavior, as the following properties are true for all time slices:

 Equal in length

 Consecutive (no gaps between them)

 Non-overlapping

To force the above example ('2009-02-14 20:13:01') to start at '2009-02-14 20:13:00', adjust the
output timestamp values so that the remainder of 54 counts up to 60:

SELECT TIME_SLICE('2009-02-14 20:13:01', 9)+'6 seconds'::INTERVAL AS time;

 time

 2009-02-14 20:13:00

(1 row)

Alternatively, you could use a different slice length, which is divisible by 60, such as 5:

SELECT TIME_SLICE('2009-02-14 20:13:01', 5);

 time_slice

 2009-02-14 20:13:00

(1 row)

A TIMESTAMPZ value is implicitly cast to TIMESTAMP. For example, the following two
statements have the same effect.

-208-

SQL Reference Manual

SELECT TIME_SLICE('2009-09-23 11:12:01'::timestamptz, 3);

 TIME_SLICE

 2009-09-23 11:12:00

(1 row)

SELECT TIME_SLICE('2009-09-23 11:12:01'::timestamptz::timestamp, 3);

 TIME_SLICE

 2009-09-23 11:12:00

(1 row)

Examples

You can use the SQL analytic functions FIRST_VALUE and LAST_VALUE to find the first/last
price within each time slice group (set of rows belonging to the same time slice). This structure
could be useful if you want to sample input data by choosing one row from each time slice group.

SELECT date_key, transaction_time, sales_dollar_amount,

TIME_SLICE(DATE '2000-01-01' + date_key + transaction_time, 3),

FIRST_VALUE(sales_dollar_amount)

OVER (PARTITION BY TIME_SLICE(DATE '2000-01-01' + date_key + transaction_time, 3)

 ORDER BY DATE '2000-01-01' + date_key + transaction_time) AS first_value

FROM store.store_sales_fact

LIMIT 20;
 date_key | transaction_time | sales_dollar_amount | time_slice | first_value

----------+------------------+---------------------+---------------------+-------------

 1 | 00:41:16 | 164 | 2000-01-02 00:41:15 | 164

 1 | 00:41:33 | 310 | 2000-01-02 00:41:33 | 310

 1 | 15:32:51 | 271 | 2000-01-02 15:32:51 | 271

 1 | 15:33:15 | 419 | 2000-01-02 15:33:15 | 419

 1 | 15:33:44 | 193 | 2000-01-02 15:33:42 | 193

 1 | 16:36:29 | 466 | 2000-01-02 16:36:27 | 466

 1 | 16:36:44 | 250 | 2000-01-02 16:36:42 | 250

 2 | 03:11:28 | 39 | 2000-01-03 03:11:27 | 39

 3 | 03:55:15 | 375 | 2000-01-04 03:55:15 | 375

 3 | 11:58:05 | 369 | 2000-01-04 11:58:03 | 369

 3 | 11:58:24 | 174 | 2000-01-04 11:58:24 | 174

 3 | 11:58:52 | 449 | 2000-01-04 11:58:51 | 449

 3 | 19:01:21 | 201 | 2000-01-04 19:01:21 | 201

 3 | 22:15:05 | 156 | 2000-01-04 22:15:03 | 156

 4 | 13:36:57 | -125 | 2000-01-05 13:36:57 | -125

 4 | 13:37:24 | -251 | 2000-01-05 13:37:24 | -251

 4 | 13:37:54 | 353 | 2000-01-05 13:37:54 | 353

 4 | 13:38:04 | 426 | 2000-01-05 13:38:03 | 426

 4 | 13:38:31 | 209 | 2000-01-05 13:38:30 | 209

 5 | 10:21:24 | 488 | 2000-01-06 10:21:24 | 488

(20 rows)

Notice how TIME_SLICE rounds the transaction time to the 3-second slice length.

The following example returns the last trading price (the last row ordered by TickTime) in each
3-second time slice partition:

SELECT DISTINCT TIME_SLICE(TickTime, 3), LAST_VALUE(price)

OVER (PARTITION BY TIME_SLICE(TickTime, 3)

ORDER BY TickTime ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING);

While the above example is the most intuitive way to express the query, Vertica does not currently
support the windowing clause and ROWS BETWEEN UNBOUNDED PRECEDING AND
UNBOUNDED FOLLOWING.

-209-

 SQL Functions

Note: If you omit the windowing clause from an analytic clause, LAST_VALUE defaults to
RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW. Results can seem
non-intuitive, because instead of returning the value from the bottom of the current partition, the
function returns the bottom of the window, which continues to change along with the current
input row that is being processed.

You can rewrite the query so Vertica supports it. For example, below FIRST_VALUE is evaluated
once for each input record and the data is sorted by ascending values. Use SELECT DISTINCT to
remove the duplicates and return only one output record per TIME_SLICE:

SELECT DISTINCT TIME_SLICE(TickTime, 3), FIRST_VALUE(price)

OVER (PARTITION BY TIME_SLICE(TickTime, 3)

ORDER BY TickTime ASC)

FROM tick_store;

 TIME_SLICE | ?column?

---------------------+----------

 2009-09-21 00:00:06 | 20.00

 2009-09-21 00:00:09 | 30.00

 2009-09-21 00:00:00 | 10.00

(3 rows)

The information output by the above query can also return MIN, MAX, and AVG of the trading
prices within each time slice. Note that the following example is shown for illustration purposes
only, as Vertica currently supports simple SQL aggregates only.

SELECT DISTINCT TIME_SLICE(TickTime, 3),

FIRST_VALUE(Price) OVER (PARTITION BY TIME_SLICE(TickTime, 3)

ORDER BY TickTime ASC),

 MIN(price) OVER (PARTITION BY TIME_SLICE(TickTime, 3)),

 MAX(price) OVER (PARTITION BY TIME_SLICE(TickTime, 3)),

 AVG(price) OVER (PARTITION BY TIME_SLICE(TickTime, 3))

FROM tick_store;

Rewrite query as follows:

SELECT fact.ts, fstvalP, minP, maxP, avgP

FROM

 (SELECT DISTINCT TIME_SLICE(TickTime, 3) ts,

 FIRST_VALUE(Price) OVER (PARTITION BY TIME_SLICE(TickTime, 3)

 ORDER BY TickTime ASC) fstvalP

 FROM tick_store) fact

JOIN

 (SELECT TIME_SLICE(TickTime, 3) ts,

 MIN(Price) minP, MAX(Price) maxP, AVG(Price) avgP

 FROM tick_store

GROUP BY TIME_SLICE(TickTime, 3)) dim

ON fact.ts=dim.ts;

 ts | fstvalP | minP | maxP | avgP

---------------------+---------+-------+-------+-------

 2009-09-21 00:00:00 | 10.00 | 10.00 | 11.10 | 10.55

 2009-09-21 00:00:06 | 20.00 | 20.00 | 21.10 | 20.55

 2009-09-21 00:00:09 | 30.00 | 30.00 | 31.10 | 30.55

(3 rows)

-210-

SQL Reference Manual

The query first sort the records within each time slice by TickTime. It next picks the subset of
records with the largest TickTime value in that slice, and then it evaluates the minimum price on

that subset. If no multiple records exist with the same ts value in the input, the output is

deterministic. Otherwise, "finding the last value within each slice" is inherently nondeterministic.

See Also

Aggregate Functions (page 107)

FIRST_VALUE (page 137), LAST_VALUE (page 143), TIMESERIES Clause (page 623),
TS_FIRST_VALUE (page 314), and TS_LAST_VALUE (page 316)

Using Time Series Analytics and Using SQL Analytics in the Programmer's Guide

Using Time Zones with Vertica in the Administrator's Guide

TIMEOFDAY

Returns a text string representing the time of day.

Behavior Type

Volatile

Syntax

TIMEOFDAY()

Notes

TIMEOFDAY() returns the wall-clock time and advances during transactions.

Examples

SELECT TIMEOFDAY();

 TIMEOFDAY

 Thu Apr 01 15:42:04.483766 2010 EDT

(1 row)

TRANSACTION_TIMESTAMP

Returns a value of type TIMESTAMP WITH TIME ZONE representing the start of the current
transaction. TRANSACTION_TIMESTAMP is equivalent to CURRENT_TIMESTAMP (page 182)
except that it does not accept a precision parameter.

Behavior Type

Stable

-211-

 SQL Functions

Syntax

TRANSACTION_TIMESTAMP()

Notes

This function returns the start time of the current transaction; the value does not change during the
transaction. The intent is to allow a single transaction to have a consistent notion of the "current"
time, so that multiple modifications within the same transaction bear the same timestamp.

Examples

SELECT TRANSACTION_TIMESTAMP();

 TRANSACTION_TIMESTAMP

 2010-04-01 15:31:12.144584-04

(1 row)

See Also

CLOCK_TIMESTAMP (page 180) and STATEMENT_TIMESTAMP (page 204)

-212-

 212

Formatting Functions
Formatting functions provide a powerful tool set for converting various data types (DATE/TIME,
INTEGER, FLOATING POINT) to formatted strings and for converting from formatted strings to
specific data types.

These functions all follow a common calling convention:

 The first argument is the value to be formatted.

 The second argument is a template that defines the output or input format.

Exception: The TO_TIMESTAMP function can take a single double precision argument.

TO_BITSTRING

Returns a VARCHAR that represents the given VARBINARY value in bitstring format

Behavior Type

Immutable

Syntax

TO_BITSTRING (expression)

Parameters

expression (VARCHAR) is the string to return.

Notes

VARCHAR TO_BITSTRING(VARBINARY) converts data from binary type to character type
(where the character representation is the bitstring format). This function is the inverse of
BITSTRING_TO_BINARY:

TO_BITSTRING(BITSTRING_TO_BINARY(x)) = x)

BITSTRING_TO_BINARY(TO_BITSTRING(x)) = x)

Examples

SELECT TO_BITSTRING('ab'::BINARY(2));

 to_bitstring

 0110000101100010

(1 row)

SELECT TO_BITSTRING(HEX_TO_BINARY('0x10'));

to_bitstring

00010000

(1 row)

-213-

 SQL Functions

SELECT TO_BITSTRING(HEX_TO_BINARY('0xF0'));

to_bitstring

11110000

(1 row)

See Also

BITCOUNT (page 261) and BITSTRING_TO_BINARY (page 261)

TO_CHAR

Converts various date/time and numeric values into text strings.

Behavior Type

Stable

Syntax

TO_CHAR (expression [, pattern])

Parameters

expression (TIMESTAMP, INTERVAL, INTEGER, DOUBLE PRECISION)
specifies the value to convert.

pattern [Optional] (CHAR or VARCHAR) specifies an output pattern string
using the Template Patterns for Date/Time Formatting (page
219) and and/or Template Patterns for Numeric Formatting
(page 221).

Notes

 TO_CHAR(any) casts any type, except BINARY/VARBINARY, to VARCHAR.

The following example returns an error if you attempt to cast TO_CHAR to a binary data type:

=> SELECT TO_CHAR('abc'::VARBINARY);

ERROR: cannot cast type varbinary to varchar

 Ordinary text is allowed in to_char templates and is output literally. You can put a substring in
double quotes to force it to be interpreted as literal text even if it contains pattern key words.

For example, in '"Hello Year "YYYY', the YYYY is replaced by the year data, but the

single Y in Year is not.

 The TO_CHAR function's day-of-the-week numbering (see the 'D' template pattern (page

219)) is different from that of the EXTRACT (page 193) function.

 Given an INTERVAL type, TO_CHAR formats HH and HH12 as hours in a single day, while
HH24 can output hours exceeding a single day, for example, >24.

 To use a double quote character in the output, precede it with a double backslash. This is
necessary because the backslash already has a special meaning in a string constant. For

example: '\\"YYYY Month\\"'

 TO_CHAR does not support the use of V combined with a decimal point. For example: 99.9V99

is not allowed.

-214-

SQL Reference Manual

Examples

 Expression Result

SELECT TO_CHAR(CURRENT_TIMESTAMP,

'Day, DD HH12:MI:SS');

'Tuesday , 06 05:39:

18'

SELECT TO_CHAR(CURRENT_TIMESTAMP,

'FMDay, FMDD HH12:MI:SS');

'Tuesday, 6 05:39:18'

SELECT TO_CHAR(-0.1, '99.99'); ' -.10'

SELECT TO_CHAR(-0.1, 'FM9.99'); '-.1'

SELECT TO_CHAR(0.1, '0.9'); ' 0.1'

SELECT TO_CHAR(12, '9990999.9'); ' 0012.0'

SELECT TO_CHAR(12, 'FM9990999.9'); '0012.'

SELECT TO_CHAR(485, '999'); ' 485'

SELECT TO_CHAR(-485, '999'); '-485'

SELECT TO_CHAR(485, '9 9 9'); ' 4 8 5'

SELECT TO_CHAR(1485, '9,999'); ' 1,485'

SELECT TO_CHAR(1485, '9G999'); ' 1 485'

SELECT TO_CHAR(148.5, '999.999'); ' 148.500'

SELECT TO_CHAR(148.5, 'FM999.999'); '148.5'

SELECT TO_CHAR(148.5, 'FM999.990'); '148.500'

SELECT TO_CHAR(148.5, '999D999'); ' 148,500'

SELECT TO_CHAR(3148.5, '9G999D999'); ' 3 148,500'

SELECT TO_CHAR(-485, '999S'); '485-'

SELECT TO_CHAR(-485, '999MI'); '485-'

SELECT TO_CHAR(485, '999MI'); '485 '

SELECT TO_CHAR(485, 'FM999MI'); '485'

SELECT TO_CHAR(485, 'PL999'); '+485'

SELECT TO_CHAR(485, 'SG999'); '+485'

SELECT TO_CHAR(-485, 'SG999'); '-485'

SELECT TO_CHAR(-485, '9SG99'); '4-85'

SELECT TO_CHAR(-485, '999PR'); '<485>'

SELECT TO_CHAR(485, 'L999'); 'DM 485

SELECT TO_CHAR(485, 'RN'); ' CDLXXXV'

SELECT TO_CHAR(485, 'FMRN'); 'CDLXXXV'

SELECT TO_CHAR(5.2, 'FMRN'); 'V'

SELECT TO_CHAR(482, '999th'); ' 482nd'

SELECT TO_CHAR(485, '"Good number:"999'); 'Good number: 485'

SELECT TO_CHAR(485.8, '"Pre:"999" Post:" .999'); 'Pre: 485 Post: .800'

SELECT TO_CHAR(12, '99V999'); ' 12000'

SELECT TO_CHAR(12.4, '99V999'); ' 12400'

SELECT TO_CHAR(12.45, '99V9'); ' 125'

SELECT TO_CHAR(-1234.567); -1234.567

SELECT TO_CHAR('1999-12-25'::DATE); 1999-12-25

SELECT TO_CHAR('1999-12-25 11:31'::TIMESTAMP); 1999-12-25 11:31:00

SELECT TO_CHAR('1999-12-25 11:31 EST'::TIMESTAMPTZ); 1999-12-25 11:31:00-05

SELECT TO_CHAR('3 days 1000.333 secs'::INTERVAL); 3 days 00:16:40.333

-215-

 SQL Functions

TO_DATE

Converts a string value to a DATE type.

Behavior Type

Stable

Syntax

TO_DATE (expression , pattern)

Parameters

expression (CHAR or VARCHAR) specifies the value to convert

pattern (CHAR or VARCHAR) specifies an output pattern string using the
Template Patterns for Date/Time Formatting (page 219) and/or
Template Patterns for Numeric Formatting (page 221).

Notes

 To use a double quote character in the output, precede it with a double backslash. This is
necessary because the backslash already has a special meaning in a string constant. For

example: '\\"YYYY Month\\"'

 TO_TIMESTAMP and TO_DATE skip multiple blank spaces in the input string if the FX option
is not used. FX must be specified as the first item in the template. For example:

 For example TO_TIMESTAMP('2000 JUN', 'YYYY MON') is correct.

 TO_TIMESTAMP('2000 JUN', 'FXYYYY MON') returns an error, because

TO_TIMESTAMP expects one space only.

 The YYYY conversion from string to TIMESTAMP or DATE has a restriction if you use a year
with more than four digits. You must use a non-digit character or template after YYYY,
otherwise the year is always interpreted as four digits. For example (with the year 20000):

TO_DATE('200001131', 'YYYYMMDD') is interpreted as a four-digit year

Instead, use a non-digit separator after the year, such as TO_DATE('20000-1131',

'YYYY-MMDD') or TO_DATE('20000Nov31', 'YYYYMonDD').

 In conversions from string to TIMESTAMP or DATE, the CC field is ignored if there is a YYY,
YYYY or Y,YYY field. If CC is used with YY or Y then the year is computed as (CC-1)*100+YY.

Examples

SELECT TO_DATE('13 Feb 2000', 'DD Mon YYYY');

 to_date

 2000-02-13

(1 row)

See Also

Template Pattern Modifiers for Date/Time Formatting (page 220)

-216-

SQL Reference Manual

TO_HEX

Returns a VARCHAR or VARBINARY representing the hexadecimal equivalent of a number.

Behavior Type

Immutable

Syntax

TO_HEX (number)

Parameters

number (INTEGER) is the number to convert to hexadecimal

Notes

VARCHAR TO_HEX(INTEGER) and VARCHAR TO_HEX(VARBINARY) are similar. The function
converts data from binary type to character type (where the character representation is in
hexadecimal format). This function is the inverse of HEX_TO_BINARY.

TO_HEX(HEX_TO_BINARY(x)) = x).

HEX_TO_BINARY(TO_HEX(x)) = x).

Examples

SELECT TO_HEX(123456789);

 to_hex

 75bcd15

(1 row)

For VARBINARY inputs, the returned value is not preceded by "0x". For example:

SELECT TO_HEX('ab'::binary(2));

 to_hex

 6162

(1 row)

TO_TIMESTAMP

Converts a string value or a UNIX/POSIX epoch value to a TIMESTAMP WITH TIME ZONE type.

Behavior Type

Immutable if single argument form, Stable otherwise.

Syntax

TO_TIMESTAMP (expression, pattern)

TO_TIMESTAMP (unix-epoch)

-217-

 SQL Functions

Parameters

expression (CHAR or VARCHAR) is the string to convert

pattern (CHAR or VARCHAR) specifies an output pattern string using the
Template Patterns for Date/Time Formatting (page 219) and/or
Template Patterns for Numeric Formatting (page 221).

unix-epoch (DOUBLE PRECISION) specifies some number of seconds
elapsed since midnight UTC of January 1, 1970, not counting leap

seconds. INTEGER values are implicitly cast to DOUBLE

PRECISION.

Notes

 For more information about UNIX/POSIX time, see Wikipedia
http://en.wikipedia.org/wiki/Unix_time.

 Millisecond (MS) and microsecond (US) values in a conversion from string to TIMESTAMP are
used as part of the seconds after the decimal point. For example TO_TIMESTAMP('12:3',
'SS:MS') is not 3 milliseconds, but 300, because the conversion counts it as 12 + 0.3 seconds.
This means for the format SS:MS, the input values 12:3, 12:30, and 12:300 specify the same
number of milliseconds. To get three milliseconds, use 12:003, which the conversion counts as
12 + 0.003 = 12.003 seconds.

Here is a more complex example: TO_TIMESTAMP('15:12:02.020.001230',
'HH:MI:SS.MS.US') is 15 hours, 12 minutes, and 2 seconds + 20 milliseconds + 1230
microseconds = 2.021230 seconds.

 To use a double quote character in the output, precede it with a double backslash. This is
necessary because the backslash already has a special meaning in a string constant. For

example: '\\"YYYY Month\\"'

 TO_TIMESTAMP and TO_DATE skip multiple blank spaces in the input string if the FX option
is not used. FX must be specified as the first item in the template. For example:

 For example TO_TIMESTAMP('2000 JUN', 'YYYY MON') is correct.

 TO_TIMESTAMP('2000 JUN', 'FXYYYY MON') returns an error, because

TO_TIMESTAMP expects one space only.

 The YYYY conversion from string to TIMESTAMP or DATE has a restriction if you use a year
with more than four digits. You must use a non-digit character or template after YYYY,
otherwise the year is always interpreted as four digits. For example (with the year 20000):

TO_DATE('200001131', 'YYYYMMDD') is interpreted as a four-digit year

Instead, use a non-digit separator after the year, such as TO_DATE('20000-1131',

'YYYY-MMDD') or TO_DATE('20000Nov31', 'YYYYMonDD').

 In conversions from string to TIMESTAMP or DATE, the CC field is ignored if there is a YYY,
YYYY or Y,YYY field. If CC is used with YY or Y then the year is computed as (CC-1)*100+YY.

Examples

SELECT TO_TIMESTAMP('13 Feb 2009', 'DD Mon YYYY');

 to_timestamp

http://en.wikipedia.org/wiki/Unix_time

-218-

SQL Reference Manual

 2009-02-13 00:00:00-05

(1 row)

SELECT TO_TIMESTAMP(200120400);

 to_timestamp

 1976-05-05 01:00:00-04

(1 row)

See Also

Template Pattern Modifiers for Date/Time Formatting (page 220)

TO_NUMBER

Converts a string value to DOUBLE PRECISION.

Behavior Type

Stable

Syntax

TO_NUMBER (expression, [pattern])

Parameters

expression (CHAR or VARCHAR) specifies the string to convert.

pattern (CHAR or VARCHAR) Optional parameter specifies an output
pattern string using the Template Patterns for Date/Time
Formatting (page 219) and/or Template Patterns for Numeric
Formatting (page 221). If omitted, function returns a floating point.

Notes

To use a double quote character in the output, precede it with a double backslash. This is
necessary because the backslash already has a special meaning in a string constant. For

example: '\\"YYYY Month\\"'

Examples

SELECT TO_CHAR(2009, 'rn'), TO_NUMBER('mmix', 'rn');

 to_char | to_number

-----------------+-----------

 mmix | 2009

(1 row)

It the pattern parameter is omitted, the function returns a floating point.

SELECT TO_NUMBER('-123.456e-01');

 to_number

 -12.3456

-219-

 SQL Functions

Template Patterns for Date/Time Formatting

In an output template string (for TO_CHAR), there are certain patterns that are recognized and

replaced with appropriately-formatted data from the value to be formatted. Any text that is not a
template pattern is copied verbatim. Similarly, in an input template string (for anything other than

TO_CHAR), template patterns identify the parts of the input data string to be looked at and the

values to be found there.

Note: Vertica uses the ISO 8601:2004 style for date/time fields in Vertica *.log files. For

example,
2008-09-16 14:40:59.123 TM Moveout:0x2aaaac002180 [Txn] <INFO>

Certain modifiers can be applied to any template pattern to alter its behavior as described in
Template Pattern Modifiers for Date/Time Formatting (page 220).

Pattern Description

HH Hour of day (00-23)

HH12 Hour of day (01-12)

HH24 Hour of day (00-23)

MI Minute (00-59)

SS Second (00-59)

MS Millisecond (000-999)

US Microsecond (000000-999999)

SSSS Seconds past midnight (0-86399)

AM or A.M. or PM or P.M. Meridian indicator (uppercase)

am or a.m. or pm or p.m. Meridian indicator (lowercase)

Y,YYY Year (4 and more digits) with comma

YYYY Year (4 and more digits)

YYY Last 3 digits of year

YY Last 2 digits of year

Y Last digit of year

IYYY ISO year (4 and more digits)

IYY Last 3 digits of ISO year

IY Last 2 digits of ISO year

I Last digits of ISO year

BC or B.C. or AD or A.D. Era indicator (uppercase)

bc or b.c. or ad or a.d. Era indicator (lowercase)

MONTH Full uppercase month name (blank-padded to 9 chars)

-220-

SQL Reference Manual

Month Full mixed-case month name (blank-padded to 9 chars)

month Full lowercase month name (blank-padded to 9 chars)

MON Abbreviated uppercase month name (3 chars)

Mon Abbreviated mixed-case month name (3 chars)

mon Abbreviated lowercase month name (3 chars)

MM Month number (01-12)

DAY Full uppercase day name (blank-padded to 9 chars)

Day Full mixed-case day name (blank-padded to 9 chars)

day full lowercase day name (blank-padded to 9 chars)

DY Abbreviated uppercase day name (3 chars)

Dy Abbreviated mixed-case day name (3 chars)

dy Abbreviated lowercase day name (3 chars)

DDD Day of year (001-366)

DD Day of year (001-366)

D Day of week (1-7; Sunday is 1)

W Week of month (1-5) (The first week starts on the first day of the
month.)

WW Week number of year (1-53) (The first week starts on the first day of
the year.)

IW ISO week number of year (The first Thursday of the new year is in
week 1.)

CC Century (2 digits)

J Julian Day (days since January 1, 4712 BC)

Q Quarter

RM Month in Roman numerals (I-XII; I=January) (uppercase)

rm Month in Roman numerals (i-xii; i=January) (lowercase)

TZ Time-zone name (uppercase)

tz Time-zone name (lowercase)

Template Pattern Modifiers for Date/Time Formatting

Certain modifiers can be applied to any template pattern to alter its behavior. For example,

FMMonth is the Month pattern with the FM modifier.

Modifier Description

AM Time is before 12:00

-221-

 SQL Functions

AT Ignored

JULIAN, JD, J Next field is Julian Day

FM prefix Fill mode (suppress padding blanks and zeros)

For example: FMMonth

FX prefix Fixed format global option (see usage notes)

For example: FX Month DD Day

ON Ignored

PM Time is on or after 12:00

T Next field is time

TH suffix Uppercase ordinal number suffix

For example: DDTH

th suffix Lowercase ordinal number suffix

For example: DDth

TM prefix Translation mode (print localized day and month names based on

lc_messages). For example: TMMonth

Notes

The FM modifier suppresses leading zeros and trailing blanks that would otherwise be added to
make the output of a pattern be fixed width.

Template Patterns for Numeric Formatting

Pattern Description

9 Value with the specified number of digits

0 Value with leading zeros

. (period) Decimal point

, (comma) Group (thousand) separator

PR Negative value in angle brackets

S Sign anchored to number (uses locale)

L Currency symbol (uses locale)

D Decimal point (uses locale)

G Group separator (uses locale)

MI Minus sign in specified position (if number < 0)

PL Plus sign in specified position (if number > 0)

SG Plus/minus sign in specified position

RN Roman numeral (input between 1 and 3999)

-222-

SQL Reference Manual

TH or th Ordinal number suffix

V Shift specified number of digits (see notes)

EEEE Scientific notation (not implemented yet)

Usage

 A sign formatted using SG, PL, or MI is not anchored to the number; for example:

 TO_CHAR(-12, 'S9999') produces ' -12'

 TO_CHAR(-12, 'MI9999') produces '- 12'

 9 results in a value with the same number of digits as there are 9s. If a digit is not available it
outputs a space.

 TH does not convert values less than zero and does not convert fractional numbers.

 V effectively multiplies the input values by 10^n, where n is the number of digits following V.
TO_CHAR does not support the use of V combined with a decimal point. For example:
99.9V99 is not allowed.

IP Conversion Functions
IP functions perform conversion, calculation, and manipulation operations on IP, network, and
subnet addresses.

INET_ATON

Returns an integer that represents the value of the address in host byte order, given the
dotted-quad representation of a network address as a string.

Behavior Type

Immutable

Syntax

INET_ATON (expression)

Parameters

expression (VARCHAR) is the string to convert.

Notes

The following syntax converts an IPv4 address represented as the string A to an integer I.

INET_ATON trims any spaces from the right of A, calls the Linux function inet_pton
http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html, and converts
the result from network byte order to host byte order using ntohl
http://opengroup.org/onlinepubs/007908775/xns/ntohl.html.

http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html
http://opengroup.org/onlinepubs/007908775/xns/ntohl.html

-223-

 SQL Functions

INET_ATON(VARCHAR A) -> INT8 I

If A is NULL, too long, or inet_pton returns an error, the result is NULL.

Examples

The generated number is always in host byte order. In the following example, the number is
calculated as 209×256^3 + 207×256^2 + 224×256 + 40.

SELECT INET_ATON('209.207.224.40');

 inet_aton

 3520061480

(1 row)

SELECT INET_ATON('1.2.3.4');

 inet_aton

 16909060

(1 row)

SELECT TO_HEX(INET_ATON('1.2.3.4'));

 to_hex

 1020304

(1 row)

See Also

INET_NTOA (page 223)

INET_NTOA

Returns the dotted-quad representation of the address as a VARCHAR, given a network address
as an integer in network byte order.

Behavior Type

Immutable

Syntax

INET_NTOA (expression)

Parameters

expression (INTEGER) is the network address to convert.

Notes

The following syntax converts an IPv4 address represented as integer I to a string A.

INET_NTOA converts I from host byte order to network byte order using htonl
http://opengroup.org/onlinepubs/007908775/xns/htonl.html, and calls the Linux function
inet_ntop http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html.

INET_NTOA(INT8 I) -> VARCHAR A

http://opengroup.org/onlinepubs/007908775/xns/htonl.html
http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html

-224-

SQL Reference Manual

If I is NULL, greater than 2^32 or negative, the result is NULL.

Examples

SELECT INET_NTOA(16909060);

 inet_ntoa

 1.2.3.4

(1 row)

SELECT INET_NTOA(03021962);

 inet_ntoa

 0.46.28.138

(1 row)

See Also

INET_ATON (page 222)

V6_ATON

Converts an IPv6 address represented as a character string to a binary string.

Behavior Type

Immutable

Syntax

V6_ATON (expression)

Parameters

expression (VARCHAR) is the string to convert.

Notes

The following syntax converts an IPv6 address represented as the character string A to a binary
string B.

V6_ATON trims any spaces from the right of A and calls the Linux function inet_pton
http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html.

V6_ATON(VARCHAR A) -> VARBINARY(16) B

If A has no colons it is prepended with '::ffff:'. If A is NULL, too long, or if inet_pton returns an error,
the result is NULL.

Examples

SELECT V6_ATON('2001:DB8::8:800:200C:417A');

 v6_aton

--

 \001\015\270\000\000\000\000\000\010\010\000 \014Az

(1 row)

SELECT TO_HEX(V6_ATON('2001:DB8::8:800:200C:417A'));

http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html

-225-

 SQL Functions

 to_hex

 20010db80000000000080800200c417a

(1 row)

SELECT V6_ATON('1.2.3.4');

 v6_aton

--

 \000\000\000\000\000\000\000\000\000\000\377\377\001\002\003\004

(1 row)

SELECT V6_ATON('::1.2.3.4');

 v6_aton

--

 \000\000\000\000\000\000\000\000\000\000\000\000\001\002\003\004

(1 row)

See Also

V6_NTOA (page 225)

V6_NTOA

Converts an IPv6 address represented as varbinary to a character string.

Behavior Type

Immutable

Syntax

V6_NTOA (expression)

Parameters

expression (VARBINARY) is the binary string to convert.

Notes

The following syntax converts an IPv6 address represented as VARBINARY B to a string A.

V6_NTOA right-pads B to 16 bytes with zeros, if necessary, and calls the Linux function inet_ntop
http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html.

V6_NTOA(VARBINARY B) -> VARCHAR A

If B is NULL or longer than 16 bytes, the result is NULL.

http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html

-226-

SQL Reference Manual

Vertica automatically converts the form '::ffff:1.2.3.4' to '1.2.3.4'.

Examples

SELECT V6_NTOA(' \001\015\270\000\000\000\000\000\010\010\000 \014Az');

 v6_ntoa

 2001:db8::8:800:200c:417a

(1 row)

SELECT V6_NTOA(V6_ATON('1.2.3.4'));

 v6_ntoa

 1.2.3.4

(1 row)

SELECT V6_NTOA(V6_ATON('::1.2.3.4'));

 v6_ntoa

 ::1.2.3.4

(1 row)

See Also

N6_ATON (page 224)

V6_SUBNETA

Calculates a subnet address in CIDR (Classless Inter-Domain Routing) format from a binary or
alphanumeric IPv6 address.

Behavior Type

Immutable

Syntax

V6_SUBNETA (expression1, expression2)

Parameters

expression1 (VARBINARY or VARCHAR) is the string to calculate.

expression2 (INTEGER) is the size of the subnet.

Notes

The following syntax calculates a subnet address in CIDR format from a binary or varchar IPv6
address.

V6_SUBNETA masks a binary IPv6 address B so that the N leftmost bits form a subnet address,
while the remaining rightmost bits are cleared. It then converts to an alphanumeric IPv6 address,
appending a slash and N.

V6_SUBNETA(BINARY B, INT8 N) -> VARCHAR C

The following syntax calculates a subnet address in CIDR format from an alphanumeric IPv6
address.

-227-

 SQL Functions

V6_SUBNETA(VARCHAR A, INT8 N) -> V6_SUBNETA(V6_ATON(A), N) -> VARCHAR C

Examples

SELECT V6_SUBNETA(V6_ATON('2001:db8::8:800:200c:417a'), 28);

 v6_subneta

 2001:db0::/28

(1 row)

See Also

V6_SUBNETN (page 227)

V6_SUBNETN

Calculates a subnet address in CIDR (Classless Inter-Domain Routing) format from a varbinary or
alphanumeric IPv6 address.

Behavior Type

Immutable

Syntax

V6_SUBNETN (expression1, expression2)

Parameters

expression1 (VARBINARY or VARCHAR or INTEGER) is the string
to calculate.

expression2 (INTEGER) is the size of the subnet.

Notes

The following syntax masks a BINARY IPv6 address B so that the N left-most bits of S form a
subnet address, while the remaining right-most bits are cleared.

V6_SUBNETN right-pads B to 16 bytes with zeros, if necessary and masks B, preserving its N-bit
subnet prefix.

V6_SUBNETN(VARBINARY B, INT8 N) -> VARBINARY(16) S

If B is NULL or longer than 16 bytes, or if N is not between 0 and 128 inclusive, the result is NULL.

S = [B]/N in Classless Inter-Domain Routing
http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing notation (CIDR notation).

The following syntax masks an alphanumeric IPv6 address A so that the N leftmost bits form a
subnet address, while the remaining rightmost bits are cleared.

V6_SUBNETN(VARCHAR A, INT8 N) -> V6_SUBNETN(V6_ATON(A), N) -> VARBINARY(16) S

Example

SELECT V6_SUBNETN(V6_ATON('2001:db8::8:800:200c:417a'), 28);

http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

-228-

SQL Reference Manual

 v6_subnetn

 \001\015\260\000\000\000\000\000\000\000\000\000\000\000\000

See Also

V6_SUBNETA (page 226)

V6_TYPE

Characterizes a binary or alphanumeric IPv6 address B as an integer type.

Behavior Type

Immutable

Syntax

V6_TYPE (expression)

Parameters

expression (VARBINARY or VARCHAR) is the type to convert.

Notes

V6_TYPE(VARBINARY B) returns INT8 T.

V6_TYPE(VARCHAR A) -> V6_TYPE(V6_ATON(A)) -> INT8 T

The IPv6 types are defined in the Network Working Group's IP Version 6 Addressing
Architecture memo http://www.ietf.org/rfc/rfc4291.txt.

 GLOBAL = 0 Global unicast addresses

 LINKLOCAL = 1 Link-Local unicast (and Private-Use) addresses

 LOOPBACK = 2 Loopback

 UNSPECIFIED = 3 Unspecified

 MULTICAST = 4 Multicast

IPv4-mapped and IPv4-compatible IPv6 addresses are also interpreted, as specified in IPv4
Global Unicast Address Assignments
http://www.iana.org/assignments/ipv4-address-space.

 For IPv4, Private-Use is grouped with Link-Local.

 If B is VARBINARY, it is right-padded to 16 bytes with zeros, if necessary.

 If B is NULL or longer than 16 bytes, the result is NULL.

Details

 IPv4 (either kind):

 0.0.0.0/8 UNSPECIFIED

 10.0.0.0/8 LINKLOCAL

 127.0.0.0/8 LOOPBACK

 169.254.0.0/16 LINKLOCAL

 172.16.0.0/12 LINKLOCAL

http://www.ietf.org/rfc/rfc4291.txt
http://www.iana.org/assignments/ipv4-address-space

-229-

 SQL Functions

 192.168.0.0/16 LINKLOCAL

 224.0.0.0/4 MULTICAST

 others GLOBAL

 IPv6:

 ::0/128 UNSPECIFIED

 ::1/128 LOOPBACK

 fe80::/10 LINKLOCAL

 ff00::/8 MULTICAST

 others GLOBAL

Examples

SELECT V6_TYPE(V6_ATON('192.168.2.10'));

 v6_type

 1

(1 row)

SELECT V6_TYPE(V6_ATON('2001:db8::8:800:200c:417a'));

 v6_type

 0

(1 row)

See Also

INET_ATON (page 222)

IP Version 6 Addressing Architecture http://www.ietf.org/rfc/rfc4291.txt

IPv4 Global Unicast Address Assignments
http://www.iana.org/assignments/ipv4-address-space

Mathematical Functions
Some of these functions are provided in multiple forms with different argument types. Except
where noted, any given form of a function returns the same data type as its argument. The

functions working with DOUBLE PRECISION (page 94) data could vary in accuracy and behavior in

boundary cases depending on the host system.

See Also

Template Patterns for Numeric Formatting (page 220)

ABS

Returns the absolute value of the argument. The return value has the same data type as the
argument..

Behavior Type

Immutable

http://www.ietf.org/rfc/rfc4291.txt
http://www.iana.org/assignments/ipv4-address-space

-230-

SQL Reference Manual

Syntax

ABS (expression)

Parameters

expression Is a value of type INTEGER or DOUBLE PRECISION

Examples

SELECT ABS(-28.7);

 abs

 28.7

(1 row)

ACOS

Returns a DOUBLE PRECISION value representing the trigonometric inverse cosine of the
argument.

Behavior Type

Immutable

Syntax

ACOS (expression)

Parameters

expression Is a value of type DOUBLE PRECISION

Example

SELECT ACOS (1);

 acos

 0

(1 row)

ASIN

Returns a DOUBLE PRECISION value representing the trigonometric inverse sine of the
argument.

Behavior Type

Immutable

Syntax

ASIN (expression)

-231-

 SQL Functions

Parameters

expression Is a value of type DOUBLE PRECISION

Example

SELECT ASIN(1);

 asin

 1.5707963267949

(1 row)

ATAN

Returns a DOUBLE PRECISION value representing the trigonometric inverse tangent of the
argument.

Behavior Type

Immutable

Syntax

ATAN (expression)

Parameters

expression Is a value of type DOUBLE PRECISION

Example

SELECT ATAN(1);

 atan

 0.785398163397448

(1 row)

ATAN2

Returns a DOUBLE PRECISION value representing the trigonometric inverse tangent of the
arithmetic dividend of the arguments.

Behavior Type

Immutable

Syntax

ATAN2 (quotient, divisor)

Parameters

quotient Is an expression of type DOUBLE PRECISION representing the quotient

divisor Is an expression of type DOUBLE PRECISION representing the divisor

-232-

SQL Reference Manual

Example

SELECT ATAN2(2,1);

 atan2

 1.10714871779409

(1 row)

CBRT

Returns the cube root of the argument. The return value has the type DOUBLE PRECISION.

Behavior Type

Immutable

Syntax

CBRT (expression)

Parameters

expression Is a value of type DOUBLE PRECISION

Examples

SELECT CBRT(27.0);

 cbrt

 3

(1 row)

CEILING (CEIL)

Rounds the returned value up to the next whole number. Any expression that contains even a
slight decimal is rounded up.

Behavior Type

Immutable

Syntax

CEILING (expression)

CEIL (expression)

Parameters

expression Is a value of type INTEGER or DOUBLE PRECISION

Notes

CEILING is the opposite of FLOOR (page 235), which rounds the returned value down:

=> SELECT CEIL(48.01) AS ceiling, FLOOR(48.01) AS floor; ceiling | floor

-233-

 SQL Functions

---------+-------

 49 | 48

(1 row)

Examples

=> SELECT CEIL(-42.8);

 CEIL

 -42

(1 row)

SELECT CEIL(48.01);

 CEIL

 49

(1 row)

COS

Returns a DOUBLE PRECISION value representing the trigonometric cosine of the argument.

Behavior Type

Immutable

Syntax

COS (expression)

Parameters

expression Is a value of type DOUBLE PRECISION

Example

SELECT COS(-1);

 cos

 0.54030230586814

(1 row)

COT

Returns a DOUBLE PRECISION value representing the trigonometric cotangent of the argument.

Behavior Type

Immutable

Syntax

COT (expression)

-234-

SQL Reference Manual

Parameters

expression Is a value of type DOUBLE PRECISION

Example

SELECT COT(1);

 cot

 0.642092615934331

(1 row)

DEGREES

Converts an expression from radians to degrees. The return value has the type DOUBLE
PRECISION.

Behavior Type

Immutable

Syntax

DEGREES (expression)

Parameters

expression Is a value of type DOUBLE PRECISION

Examples

SELECT DEGREES(0.5);

 degrees

 28.6478897565412

(1 row)

EXP

Returns the exponential function, e to the power of a number. The return value has the same data
type as the argument.

Behavior Type

Immutable

Syntax

EXP (exponent)

Parameters

exponent Is an expression of type INTEGER or DOUBLE PRECISION

-235-

 SQL Functions

Example

SELECT EXP(1.0);

 exp

 2.71828182845905

(1 row)

FLOOR

Rounds the returned value down to the next whole number. Any expression that contains even a
slight decimal is rounded down.

Behavior Type

Immutable

Syntax

FLOOR (expression)

Parameters

expression Is an expression of type INTEGER or DOUBLE PRECISION.

Notes

FLOOR is the opposite of CEILING (page 232), which rounds the returned value up:

=> SELECT FLOOR(48.01) AS floor, CEIL(48.01) AS ceiling; floor | ceiling

-------+---------

 48 | 49

(1 row)

Examples

=> SELECT FLOOR((TIMESTAMP '2005-01-17 10:00' - TIMESTAMP '2005-01-01') / INTERVAL '7');

 floor

 2

(1 row)

=> SELECT FLOOR(-42.8);

 floor

 -43

(1 row)

=> SELECT FLOOR(42.8);

 floor

 42

(1 row)

Although the following example looks like an INTEGER, the number on the left is 2^49 as an
INTEGER, but the number on the right is a FLOAT:

-236-

SQL Reference Manual

=> SELECT 1<<49, FLOOR(1 << 49);

 ?column? | floor

-----------------+-----------------

 562949953421312 | 562949953421312

(1 row)

Compare the above example to:

=> SELECT 1<<50, FLOOR(1 << 50);

 ?column? | floor

------------------+----------------------

 1125899906842624 | 1.12589990684262e+15

(1 row)

HASH

Calculates a hash value over its arguments, producing a value in the range 0 <= x < 263 (two to the
sixty-third power or 2^63).

Behavior Type

Immutable

Syntax

HASH (expression [,...])

Parameters

expression Is an expression of any data type. For the purpose of hash segmentation,
each expression is a column reference (see "Column References" on
page 45).

Notes

 The HASH() function is used to provide projection segmentation over a set of nodes in a
cluster and takes up to 32 arguments, usually column names, and selects a specific node for
each row based on the values of the columns for that row. HASH (Col1, Col2).

 If your data is fairly regular and you want more even distribution than you get with HASH,
consider using MODULARHASH (page 239)() for project segmentation.

Examples

SELECT HASH(product_price, product_cost)

FROM product_dimension

WHERE product_price = '11';

 hash

 4157497907121511878

 1799398249227328285

 3250220637492749639

(3 rows)

See Also

MODULARHASH (page 239)

-237-

 SQL Functions

LN

Returns the natural logarithm of the argument. The return data type is the same as the argument.

Behavior Type

Immutable

Syntax

LN (expression)

Parameters

expression Is an expression of type INTEGER or DOUBLE PRECISION

Examples

SELECT LN(2);

 ln

 0.693147180559945

(1 row)

LOG

Returns the logarithm to the specified base of the argument. The return data type is the same as
the argument.

Behavior Type

Immutable

Syntax

LOG ([base,] expression)

Parameters

base Specifies the base (default is base 10)

expression Is an expression of type INTEGER or DOUBLE PRECISION

Examples

SELECT LOG(2.0, 64);

 log

 6

(1 row)

SELECT LOG(100);

 log

 2

(1 row)

-238-

SQL Reference Manual

MOD

Returns the remainder of a division operation. MOD is also called modulo.

Behavior Type

Immutable

Syntax

MOD(expression1, expression2)

Parameters

expression1 Specifies the dividend (INTEGER, NUMERIC, or FLOAT)

expression2 Specifies the divisor (type same as dividend)

Notes

When computing mod(N,M), the following rules apply:

 If either N or M is the null value, then the result is the null value.

 If M is zero, then an exception condition is raised: data exception — division by zero.

 Otherwise, the result is the unique exact numeric value R with scale 0 (zero) such that all of the
following are true:

 R has the same sign as N.

 The absolute value of R is less than the absolute value of M.

 N = M * K + R for some exact numeric value K with scale 0 (zero).

Examples

SELECT MOD(9,4);

 mod

 1

(1 row)

SELECT MOD(10,3);

 mod

 1

(1 row)

SELECT MOD(-10,3);

 mod

 -1

(1 row)

SELECT MOD(-10,-3);

 mod

 -1

(1 row)

SELECT MOD(10,-3);

-239-

 SQL Functions

 mod

 1

(1 row)

MOD(<float>, 0) gives an error:

=> SELECT MOD(6.2,0);

ERROR: numeric division by zero

MODULARHASH

Calculates a hash value over its arguments for the purpose of projection segmentation. In all other
uses, returns 0.

If you can hash segment your data using a column with a regular pattern, such as a sequential
unique identifier, MODULARHASH distributes the data more evenly than HASH, which distributes
data using a normal statistical distribution.

Behavior Type

Immutable

Syntax

MODULARHASH (expression [,...])

Parameters

expression Is a column reference (see "Column References" on page 45) of any
data type.

Notes

The MODULARHASH() function takes up to 32 arguments, usually column names, and selects a
specific node for each row based on the values of the columns for that row.

Examples

CREATE PROJECTION fact_ts_2 (f_price, f_cid, f_tid, f_cost, f_date)

AS (SELECT price, cid, tid, cost, dwdate

 FROM fact)

 SEGMENTED BY MODULARHASH(dwdate)

 ALL NODES OFFSET 2;

See Also

HASH (page 236)

PI

Returns the constant pi (, the ratio of any circle's circumference to its diameter in Euclidean
geometry The return type is DOUBLE PRECISION.

Behavior Type

Immutable

-240-

SQL Reference Manual

Syntax

PI()

Examples

SELECT PI();

 pi

 3.14159265358979

(1 row)

POWER

Returns a DOUBLE PRECISION value representing one number raised to the power of another
number.

Behavior Type

Immutable

Syntax

POWER (expression1, expression2)

Parameters

expression1 Is an expression of type DOUBLE PRECISION that represents the
base

expression2 Is an expression of type DOUBLE PRECISION that represents the
exponent

Examples

SELECT POWER(9.0, 3.0);

 power

 729

(1 row)

RADIANS

Returns a DOUBLE PRECISION value representing an angle expressed in degrees converted to
radians.

Behavior Type

Immutable

Syntax

RADIANS (expression)

-241-

 SQL Functions

Parameters

expression Is an expression of type DOUBLE PRECISION representing
degrees

Examples

SELECT RADIANS(45);

 radians

 0.785398163397448

(1 row)

RANDOM

Returns a uniformly-distributed random number x, where 0 <= x < 1.

Behavior Type

Volatile

Syntax

RANDOM()

Parameters

RANDOM has no arguments. Its result is a FLOAT8 data type (also called DOUBLE
PRECISION (page 94)).

Notes

Typical pseudo-random generators accept a seed, which is set to generate a reproducible
pseudo-random sequence. Vertica, however, distributes SQL processing over a cluster of nodes,
where each node generates its own independent random sequence.

Results depending on RANDOM are not reproducible because the work might be divided
differently across nodes. Therefore, Vertica automatically generates truly random seeds for each
node each time a request is executed and does not provide a mechanism for forcing a specific
seed.

Examples

In the following example, the result is a float, which is >= 0 and < 1.0:

SELECT RANDOM();

 random

 0.211625560652465

(1 row)

-242-

SQL Reference Manual

RANDOMINT

Returns a uniformly-distributed integer I, where 0 <= I < N, where N <= MAX_INT8. That is,
RANDOMINT(N) returns one of the N integers from 0 through N-1.

Behavior Type

Volatile

Syntax

RANDOMINT (N)

Example

In the following example, the result is an INT8, which is >= 0 and < N. In this case, INT8 is
randomly chosen from the set {0,1,2,3,4}.

SELECT RANDOMINT(5);

randomint

 3

(1 row)

ROUND

Rounds a value to a specified number of decimal places, retaining the original scale and precision.
Fractions greater than or equal to .5 are rounded up. Fractions less than .5 are rounded down
(truncated).

Behavior Type

Immutable

Syntax

ROUND (expression [, decimal-places])

Parameters

expression Is an expression of type NUMERIC.

decimal-places If positive, specifies the number of decimal places to display to the right of the
decimal point; if negative, specifies the number of decimal places to display to the
left of the decimal point.

Notes

NUMERIC ROUND() returns NUMERIC, retaining the original scale and precision:

=> SELECT ROUND(3.5);

 ROUND

 4.0

(1 row)

-243-

 SQL Functions

The internal floating point representation used to compute the ROUND function causes the
fraction to be evaluated as 3.5, which is rounded up.

Examples

SELECT ROUND(2.0, 1.0) FROM dual;

 round

 2

(1 row)

SELECT ROUND(12.345, 2.0);

 round

 12.35

(1 row)

SELECT ROUND(3.444444444444444);

 ROUND

 3.000000000000000

(1 row)

SELECT ROUND(3.14159, 3);

 ROUND

 3.14200

(1 row)

SELECT ROUND(1234567, -3);

 round

 1235000

(1 row)

SELECT ROUND(3.4999, -1);

 ROUND

 .0000

(1 row)

SELECT employee_last_name, ROUND(annual_salary,4) FROM

employee_dimension;

 employee_last_name | ROUND

--------------------+--------

 Li | 1880

 Rodriguez | 1704

 Goldberg | 2282

 Meyer | 1628

 Pavlov | 3168

 McNulty | 1516

 Dobisz | 3006

 Pavlov | 2142

 Goldberg | 2268

 Pavlov | 1918

 Robinson | 2366

 ...

-244-

SQL Reference Manual

SIGN

Returns a DOUBLE PRECISION value of -1, 0, or 1 representing the arithmetic sign of the
argument.

Behavior Type

Immutable

Syntax

SIGN (expression)

Parameters

expression Is an expression of type DOUBLE PRECISION

Examples

SELECT SIGN(-8.4);

 sign

 -1

(1 row)

SIN

Returns a DOUBLE PRECISION value representing the trigonometric sine of the argument.

Behavior Type

Immutable

Syntax

SIN (expression)

Parameters

expression Is an expression of type DOUBLE PRECISION

Example

SELECT SIN(30 * 2 * 3.14159 / 360);

 sin

 0.499999616987256

(1 row)

SQRT

Returns a DOUBLE PRECISION value representing the arithmetic square root of the argument.

-245-

 SQL Functions

Behavior Type

Immutable

Syntax

SQRT (expression)

Parameters

expression Is an expression of type DOUBLE PRECISION

Examples

SELECT SQRT(2);

 sqrt

 1.4142135623731

(1 row)

TAN

Returns a DOUBLE PRECISION value representing the trigonometric tangent of the argument.

Behavior Type

Immutable

Syntax

TAN (expression)

Parameters

expression Is an expression of type DOUBLE PRECISION

Example

SELECT TAN(30);

 tan

 -6.40533119664628

(1 row)

TRUNC

Returns a value representing the argument fully truncated (toward zero) or truncated to a specific
number of decimal places, retaining the original scale and precision.

Behavior Type

Immutable

Syntax

TRUNC (expression [, places]

-246-

SQL Reference Manual

Parameters

expression Is an expression of type INTEGER or DOUBLE PRECISION that
represents the number to truncate

places Is an expression of type INTEGER that specifies the number of
decimal places to return

Notes

NUMERIC TRUNC() returns NUMERIC, retaining the original scale and precision:

=> SELECT TRUNC(3.5);

 TRUNC

 3.0

(1 row)

Examples

=>SELECT TRUNC(42.8);

 TRUNC

 42.0

(1 row)

=>SELECT TRUNC(42.4382, 2);

 TRUNC

 42.4300

(1 row)

WIDTH_BUCKET

Constructs equiwidth histograms, in which the histogram range is divided into intervals (buckets)
of identical sizes. In addition, values below the low bucket return 0, and values above the high
bucket return bucket_count +1. Returns an integer value.

Behavior Type

Immutable

Syntax

WIDTH_BUCKET (expression, hist_min, hist_max, bucket_count)

Parameters

expression Is the expression for which the histogram is created. This
expression must evaluate to a numeric or datetime value or to
a value that can be implicitly converted to a numeric or
datetime value. If expression evaluates to null, then the
expression returns null.

-247-

 SQL Functions

hist_min Is an expression that resolves to the low boundary of bucket 1.
Must also evaluate to numeric or datetime values and cannot
evaluate to null.

hist_max Is an expression that resolves to the high boundary of bucket
bucket_count. Must also evaluate to a numeric or datetime
value and cannot evaluate to null.

bucket_count Is an expression that resolves to a constant, indicating the
number of buckets. This expression always evaluates to a
positive INTEGER.

Notes

 WIDTH_BUCKET divides a data set into buckets of equal width. For example, Age = 0-20,
20-40, 40-60, 60-80. This is known as an equiwidth histogram.

 When using WIDTH_BUCKET pay attention to the minimum and maximum boundary values.
Each bucket contains values equal to or greater than the base value of that bucket, so that age
ranges of 0-20, 20-40, and so on, are actually 0-19.99 and 20-39.999.

 WIDTH_BUCKET accepts the following data types: (FLOAT and/or INT), (TIMESTAMP and/or
DATE and/or TIMESTAMPTZ), or (INTERVAL and/or TIME).

Examples

The following example returns five possible values and has three buckets: 0 [Up to 100), 1
[100-300), 2 [300-500), 3 [500-700), and 4 [700 and up):

SELECT product_description, product_cost,

WIDTH_BUCKET(product_cost, 100, 700, 3);

The following example creates a nine-bucket histogram on the annual_income column for
customers in Connecticut who are female doctors. The results return the bucket number to an
―Income‖ column, divided into eleven buckets, including an underflow and an overflow. Note that if
customers had an annual incomes greater than the maximum value, they would be assigned to an
overflow bucket, 10:

SELECT customer_name, annual_income,

WIDTH_BUCKET (annual_income, 100000, 1000000, 9) AS "Income"

FROM public.customer_dimension WHERE customer_state='CT'

AND title='Dr.' AND customer_gender='Female' AND household_id < '1000'

ORDER BY "Income";

In the following result set, the reason there is a bucket 0 is because buckets are numbered from 1

to bucket_count. Anything less than the given value of hist_min goes in bucket 0, and anything

greater than the given value of hist_max goes in the bucket bucket_count+1. In this

example, bucket 9 is empty, and there is no overflow. The value 12,283 is less than 100,000, so it
goes into the underflow bucket.

 customer_name | annual_income | Income

--------------------+---------------+--------

 Joanna A. Nguyen | 12283 | 0

 Amy I. Nguyen | 109806 | 1

 Juanita L. Taylor | 219002 | 2

 Carla E. Brown | 240872 | 2

-248-

SQL Reference Manual

 Kim U. Overstreet | 284011 | 2

 Tiffany N. Reyes | 323213 | 3

 Rebecca V. Martin | 324493 | 3

 Betty . Roy | 476055 | 4

 Midori B. Young | 462587 | 4

 Martha T. Brown | 687810 | 6

 Julie D. Miller | 616509 | 6

 Julie Y. Nielson | 894910 | 8

 Sarah B. Weaver | 896260 | 8

 Jessica C. Nielson | 861066 | 8

(14 rows)

See Also

NTILE (page 150)

NULL-handling Functions
NULL-handling functions take arguments of any type, and their return type is based on their
argument types.

COALESCE

Returns the value of the first non-null expression in the list. If all expressions evaluate to null, then
the COALESCE function returns null.

Behavior Type

Immutable

Syntax

COALESCE (expression1, expression2);

COALESCE (expression1, expression2, ... expression-n);

Parameters

 COALESCE (expression1, expression2) is equivalent to the following CASE

expression:

CASE WHEN expression1 IS NOT NULL THEN expression1 ELSE expression2 END;

 COALESCE (expression1, expression2, ... expression-n), for n >= 3, is

equivalent to the following CASE expression:

CASE WHEN expression1 IS NOT NULL THEN expression1

ELSE COALESCE (expression2, . . . , expression-n) END;

Notes

COALESCE is an ANSI standard function (SQL-92).

Example

SELECT product_description, COALESCE(lowest_competitor_price,

 highest_competitor_price, average_competitor_price) AS price

FROM product_dimension;

-249-

 SQL Functions

 product_description | price

------------------------------------+-------

 Brand #54109 kidney beans | 264

 Brand #53364 veal | 139

 Brand #50720 ice cream sandwiches | 127

 Brand #48820 coffee cake | 174

 Brand #48151 halibut | 353

 Brand #47165 canned olives | 250

 Brand #39509 lamb | 306

 Brand #36228 tuna | 245

 Brand #34156 blueberry muffins | 183

 Brand #31207 clams | 163

(10 rows)

See Also

Case Expressions (page 44)

ISNULL (page 249)

ISNULL

Returns the value of the first non-null expression in the list.

ISNULL is an alias of NVL (page 251).

Behavior Type

Immutable

Syntax

ISNULL (expression1 , expression2);

Parameters

 If expression1 is null, then ISNULL returns expression2.

 If expression1 is not null, then ISNULL returns expression1.

Notes

 COALESCE (page 248) is the more standard, more general function.

 ISNULL is equivalent to COALESCE except that ISNULL is called with only two arguments.

 ISNULL(a,b) is different from x IS NULL.

 The arguments can have any data type supported by Vertica.

 Implementation is equivalent to the CASE expression. For example:

CASE WHEN expression1 IS NULL THEN expression2 ELSE expression1 END;

 The following statement returns the value 140:

SELECT ISNULL(NULL, 140) FROM employee_dimension;

 The following statement returns the value 60:

SELECT ISNULL(60, 90) FROM employee_dimension;

-250-

SQL Reference Manual

Examples

SELECT product_description, product_price, ISNULL(product_cost, 0.0) AS cost FROM

product_dimension;

 product_description | product_price | cost

--------------------------------+---------------+------

 Brand #59957 wheat bread | 405 | 207

 Brand #59052 blueberry muffins | 211 | 140

 Brand #59004 english muffins | 399 | 240

 Brand #53222 wheat bread | 323 | 94

 Brand #52951 croissants | 367 | 121

 Brand #50658 croissants | 100 | 94

 Brand #49398 white bread | 318 | 25

 Brand #46099 wheat bread | 242 | 3

 Brand #45283 wheat bread | 111 | 105

 Brand #43503 jelly donuts | 259 | 19

(10 rows)

See Also

Case Expressions (page 44)

COALESCE (page 248)

NVL (page 251)

NULLIF

Compares two expressions. If the expressions are not equal, the function returns the first
expression (expression1). If the expressions are equal, the function returns null.

Behavior Type

Immutable

Syntax

NULLIF(expression1, expression2)

Parameters

expression1 Is a value of any data type.

expression2 Must have the same data type as expr1 or a type that can be
implicitly cast to match expression1. The result has the same
type as expression1.

Examples

The following series of statements illustrates one simple use of the NULLIF function.

Creates a single-column table t and insert some values:

CREATE TABLE t (x TIMESTAMPTZ);

INSERT INTO t VALUES('2009-09-04 09:14:00-04');

INSERT INTO t VALUES('2010-09-04 09:14:00-04');

-251-

 SQL Functions

Issue a select statement:

SELECT x, NULLIF(x, '2009-09-04 09:14:00 EDT') FROM t;

 x | nullif

------------------------+------------------------

 2009-09-04 09:14:00-04 |

 2010-09-04 09:14:00-04 | 2010-09-04 09:14:00-04

SELECT NULLIF(1, 2);

 NULLIF

 1

(1 row)

SELECT NULLIF(1, 1);

 NULLIF

(1 row)

SELECT NULLIF(20.45, 50.80);

 NULLIF

 20.45

(1 row)

NVL

Returns the value of the first non-null expression in the list.

Behavior Type

Immutable

Syntax

NVL (expression1 , expression2);

Parameters

 If expression1 is null, then NVL returns expression2.

 If expression1 is not null, then NVL returns expression1.

Notes

 COALESCE (page 248) is the more standard, more general function.

 NVL is equivalent to COALESCE except that NVL is called with only two arguments.

 The arguments can have any data type supported by Vertica.

 Implementation is equivalent to the CASE expression:

CASE WHEN expression1 IS NULL THEN expression2 ELSE expression1 END;

Examples

expression1 is not null, so NVL returns expression1:

SELECT NVL('fast', 'database');

-252-

SQL Reference Manual

 nvl

 fast

(1 row)

expression1 is null, so NVL returns expression2:

SELECT NVL(null, 'database');

 nvl

 database

(1 row)

expression2 is null, so NVL returns expression1:

SELECT NVL('fast', null);

 nvl

 fast

(1 row)

In the following example, expression1 (title) contains nulls, so NVL returns expression2 and
substitutes 'Withheld' for the unknown values:

SELECT customer_name,

 NVL(title, 'Withheld') as title

FROM customer_dimension

ORDER BY title;

 customer_name | title

------------------------+-------

 Alexander I. Lang | Dr.

 Steve S. Harris | Dr.

 Daniel R. King | Dr.

 Luigi I. Sanchez | Dr.

 Duncan U. Carcetti | Dr.

 Meghan K. Li | Dr.

 Laura B. Perkins | Dr.

 Samantha V. Robinson | Dr.

 Joseph P. Wilson | Mr.

 Kevin R. Miller | Mr.

 Lauren D. Nguyen | Mrs.

 Emily E. Goldberg | Mrs.

 Darlene K. Harris | Ms.

 Meghan J. Farmer | Ms.

 Bettercare | Withheld

 Ameristar | Withheld

 Initech | Withheld

(17 rows)

See Also

Case Expressions (page 44)

COALESCE (page 248)

ISNULL (page 249)

NVL2 (page 253)

-253-

 SQL Functions

NVL2

Takes three arguments. If the first argument is not NULL, it returns the second argument,
otherwise it returns the third argument. The data types of the second and third arguments are
implicitly cast to a common type if they don't agree, similar to COALESCE (page 248).

Behavior Type

Immutable

Syntax

NVL2 (expression1 , expression2 , expression3);

Parameters

 If expression1 is not null, then NVL2 returns expression2.

 If expression1 is null, then NVL2 returns expression3.

Notes

Arguments two and three can have any data type supported by Vertica.

Implementation is equivalent to the CASE expression:

 CASE WHEN expression1 IS NOT NULL THEN expression2 ELSE expression3 END;

Examples

In this example, expression1 is not null, so NVL2 returns expression2:

SELECT NVL2('very', 'fast', 'database');

 nvl2

 fast

(1 row)

In this example, expression1 is null, so NVL2 returns expression3:

SELECT NVL2(null, 'fast', 'database');

 nvl2

 database

(1 row)

In the following example, expression1 (title) contains nulls, so NVL2 returns expression3
('Withheld') and also substitutes the non-null values with the expression 'Known':

SELECT customer_name,

 NVL2(title, 'Known', 'Withheld') as title

FROM customer_dimension

ORDER BY title;

 customer_name | title

------------------------+-------

 Alexander I. Lang | Known

 Steve S. Harris | Known

 Daniel R. King | Known

-254-

SQL Reference Manual

 Luigi I. Sanchez | Known

 Duncan U. Carcetti | Known

 Meghan K. Li | Known

 Laura B. Perkins | Known

 Samantha V. Robinson | Known

 Joseph P. Wilson | Known

 Kevin R. Miller | Known

 Lauren D. Nguyen | Known

 Emily E. Goldberg | Known

 Darlene K. Harris | Known

 Meghan J. Farmer | Known

 Bettercare | Withheld

 Ameristar | Withheld

 Initech | Withheld

(17 rows)

See Also

Case Expressions (page 44)

COALESCE (page 248)

NVL (page 248)

Sequence Functions
The sequence functions provide simple, multiuser-safe methods for obtaining successive
sequence values from sequence objects.

NEXTVAL

Advances the return of a new sequence value. A positive value is incremented for ascending
sequences and a negative value is decremented for descending sequences.

Behavior Type

Volatile

Syntax

<sequence_name>.NEXTVAL

NEXTVAL('sequence_name')

Parameters

sequence_name Identifies the sequence for which to determine the next value.

Notes

 NEXTVAL is used in INSERT, COPY, and SELECT statements to create unique values.

 The first time NEXTVAL is called, it generates the starting number for the sequence.
Thereafter, it increments this number.

-255-

 SQL Functions

 While executing a SQL statement, if NEXTVAL is called on two different nodes, each node
creates and maintains its own cache of values per session. Thus, you need a Global Catalog
Lock (X) to obtain a cache of values from a sequence.

 NEXTVAL is evaluated on a per-row basis. Thus, in the following example, both calls to
NEXTVAL yield same result:

SELECT NEXTVAL('seq1'), NEXTVAL('seq1') FROM vendor_key;

Examples

The following example creates an ascending sequence called my_seq, starting at 101:

CREATE SEQUENCE sequential START 101;

The following command generates the first number in the sequence:

SELECT NEXTVAL('my_seq');

 nextval

 101

(1 row)

The following command generates the next number in the sequence:

SELECT NEXTVAL('my_seq');

 nextval

 102

(1 row)

The following example shows how to use NEXTVAL in a table SELECT statement. Notice that the

nextval column incremented by (1) again:

SELECT NEXTVAL('my_seq'), lname FROM customer;

 nextval | lname

---------+-------

 103 | Carr

(1 row)

See Also

ALTER SEQUENCE (page 485)

CREATE SEQUENCE (page 540)

CURRVAL (page 255)

DROP SEQUENCE (page 587)

Using Sequences and Sequence Privileges in the Administrator's Guide

CURRVAL

For a sequence generator, returns the LAST value across all nodes returned by a previous
invocation of NEXTVAL (page 254) in the same session. If there were no calls to NEXTVAL, an
error is returned.

-256-

SQL Reference Manual

Behavior Type

Volatile

Syntax

<sequence_name>.CURRVAL

Parameters

sequence_name Identifies the sequence for which to return the current value.

Notes

NEXTVAL is executed before anything else. Therefore, the following statement succeeds even
though CURRVAL appears before NEXTVAL in the statement:

SELECT CURRVAL('seq1'), NEXTVAL('seq1') FROM vendor_key;

Examples

The following example creates an ascending sequence called sequential, starting at 101:

CREATE SEQUENCE seq2 START 101;

You cannot call CURRVAL until after you have initiated the sequence with NEXTVAL or the
system returns an error:

SELECT CURRVAL('seq2');

ERROR: Sequence seq2 has not been accessed in the session

Use the NEXTVAL function to generate the first number for this sequence:

SELECT NEXTVAL('seq2');

 nextval

 101

(1 row)

Now you can use CURRVAL to return the current number from this sequence:

SELECT CURRVAL('seq2');

 currval

 101

(1 row)

The following command shows how to use CURRVAL in a SELECT statement:

CREATE TABLE customer3 (

 lname VARCHAR(25),

 fname VARCHAR(25),

 membership_card INTEGER,

 ID INTEGER

);

INSERT INTO customer3 VALUES ('Brown' ,'Sabra', 072753, CURRVAL('my_seq'));

SELECT CURRVAL('seq2'), lname FROM customer3;

 CURRVAL | lname

---------+-------

-257-

 SQL Functions

 101 | Brown

(1 row)

See Also

ALTER SEQUENCE (page 485)

CREATE SEQUENCE (page 540)

DROP SEQUENCE (page 587)

NEXTVAL (page 254)

Using Sequences and Sequence Privileges in the Administrator's Guide

LAST_INSERT_ID

Returns the last value of a column whose value is automatically incremented through the
AUTO_INCREMENT or IDENTITY column-constraint (page 556).

Behavior Type

Volatile

Syntax

LAST_INSERT_ID()

Notes

 This function works only with auto-increment and identity columns. See column-constraints
(page 556) for the CREATE TABLE (page 546) statement.

 LAST_INSERT_ID does not work with sequence generators created through the CREATE
SEQUENCE (page 540) statement.

Examples

Create a sample table called customer4. Notice that the IDENTITY column has a seed of 2,

which specifies the value for the first row loaded into the table, and an increment of 2, which
specifies the value that is added to identity value of the previous row.

CREATE TABLE customer4(

 ID IDENTITY(2,2),

 lname VARCHAR(25),

 fname VARCHAR(25),

 membership_card INTEGER

);

INSERT INTO customer4(lname, fname, membership_card)

VALUES ('Gupta', 'Saleem', 475987);

Query the table you just created:

SELECT * FROM customer4;

 ID | lname | fname | membership_card

----+-------+--------+-----------------

 2 | Gupta | Saleem | 475987

(1 row)

-258-

SQL Reference Manual

Insert some additional values:

INSERT INTO customer4(lname, fname, membership_card)

VALUES ('Lee', 'Chen', 598742);

Call the LAST_INSERT_ID function:

SELECT LAST_INSERT_ID();

last_insert_id

 4

(1 row)

Query the table again:

SELECT * FROM customer4;

 ID | lname | fname | membership_card

----+-------+--------+-----------------

 2 | Gupta | Saleem | 475987

 4 | Lee | Chen | 598742

(2 rows)

Add another row:

INSERT INTO customer4(lname, fname, membership_card)

VALUES ('Davis', 'Bill', 469543);

Call the LAST_INSERT_ID function:

SELECT LAST_INSERT_ID();

 LAST_INSERT_ID

 6

(1 row)

Query the table again:

SELECT * FROM customer4;

 ID | lname | fname | membership_card

----+-------+--------+-----------------

 2 | Gupta | Saleem | 475987

 4 | Lee | Chen | 598742

 6 | Davis | Bill | 469543

(3 rows)

See Also

ALTER SEQUENCE (page 485)

CREATE SEQUENCE (page 540)

DROP SEQUENCE (page 587)

Using Sequences and Sequence Privileges in the Administrator's Guide

-259-

 259

String Functions
String functions perform conversion, extraction, or manipulation operations on strings, or return
information about strings.

This section describes functions and operators for examining and manipulating string values.
Strings in this context include values of the types CHAR, VARCHAR, BINARY, and VARBINARY.

Unless otherwise noted, all of the functions listed in this section work on all four data types. As
opposed to some other SQL implementations, Vertica keeps CHAR strings unpadded internally,
padding them only on final output. So converting a CHAR(3) 'ab' to VARCHAR(5) results in a
VARCHAR of length 2, not one with length 3 including a trailing space.

Some of the functions described here also work on data of non-string types by converting that data
to a string representation first. Some functions work only on character strings, while others work
only on binary strings. Many work for both. BINARY and VARBINARY functions ignore multibyte
UTF-8 character boundaries.

Non-binary character string functions handle normalized multibyte UTF-8 characters, as specified
by the Unicode Consortium. Unless otherwise specified, those character string functions for which
it matters can optionally specify whether VARCHAR arguments should be interpreted as octet
(byte) sequences, or as (locale-aware) sequences of UTF-8 characters. This is accomplished by
adding "USING OCTETS" or "USING CHARACTERS" (default) as a parameter to the function.

Some character string functions are stable because in general UTF-8 case-conversion, searching
and sorting can be locale dependent. Thus, LOWER is stable, while LOWERB is immutable. The
USING OCTETS clause converts these functions into their "B" forms, so they become immutable.
If the locale is set to collation=binary, which is the default, all string functions — except
CHAR_LENGTH/CHARACTER_LENGTH, LENGTH, SUBSTR, and OVERLAY — are converted
to their "B" forms and so are immutable.

BINARY implicitly converts to VARBINARY, so functions that take VARBINARY arguments work
with BINARY.

ASCII

Converts the first octet of a VARCHAR to an INTEGER.

Behavior Type

Immutable

Syntax

ASCII (expression)

Parameters

expression (VARCHAR) is the string to convert.

-260-

SQL Reference Manual

Notes

 ASCII is the opposite of the CHR (page 264) function.

 ASCII operates on UTF-8 characters, not only on single-byte ASCII characters. It continues to
get the same results for the ASCII subset of UTF-8.

Examples

Expression Result

SELECT ASCII('A'); 65

SELECT ASCII('ab'); 97

SELECT ASCII(null);

SELECT ASCII('');

BIT_LENGTH

Returns the length of the string expression in bits (bytes * 8) as an INTEGER.

Behavior Type

Immutable

Syntax

BIT_LENGTH (expression)

Parameters

expression (CHAR or VARCHAR or BINARY or VARBINARY) is
the string to convert.

Notes

BIT_LENGTH applies to the contents of VARCHAR and VARBINARY fields.

Examples

Expression Result

SELECT BIT_LENGTH('abc'::varbinary); 24

SELECT BIT_LENGTH('abc'::binary); 8

SELECT BIT_LENGTH(''::varbinary); 0

SELECT BIT_LENGTH(''::binary); 8

SELECT BIT_LENGTH(null::varbinary);

SELECT BIT_LENGTH(null::binary);

SELECT BIT_LENGTH(VARCHAR 'abc'); 24

SELECT BIT_LENGTH(CHAR 'abc'); 24

SELECT BIT_LENGTH(CHAR(6) 'abc'); 48

-261-

 SQL Functions

SELECT BIT_LENGTH(VARCHAR(6) 'abc'); 24

SELECT BIT_LENGTH(BINARY(6) 'abc'); 48

SELECT BIT_LENGTH(BINARY 'abc'); 24

SELECT BIT_LENGTH(VARBINARY 'abc'); 24

SELECT BIT_LENGTH(VARBINARY(6) 'abc'); 24

See Also

CHARACTER_LENGTH (page 263), LENGTH (page 279), OCTET_LENGTH (page 283)

BITCOUNT

Returns the number of one-bits (sometimes referred to as set-bits) in the given VARBINARY
value. This is also referred to as the population count.

Behavior Type

Immutable

Syntax

BITCOUNT (expression)

Parameters

expression (BINARY or VARBINARY) is the string to return.

Examples

SELECT BITCOUNT(HEX_TO_BINARY('0x10'));

 bitcount

 1

(1 row)

SELECT BITCOUNT(HEX_TO_BINARY('0xF0'));

 bitcount

 4

(1 row)

SELECT BITCOUNT(HEX_TO_BINARY('0xAB'))

 bitcount

 5

(1 row)

BITSTRING_TO_BINARY

Translates the given VARCHAR bitstring representation into a VARBINARY value.

Behavior Type

Immutable

-262-

SQL Reference Manual

Syntax

BITSTRING_TO_BINARY (expression)

Parameters

expression (VARCHAR) is the string to return.

Notes

VARBINARY BITSTRING_TO_BINARY(VARCHAR) converts data from character type (in
bitstring format) to binary type. This function is the inverse of TO_BITSTRING.

BITSTRING_TO_BINARY(TO_BITSTRING(x)) = x

TO_BITSTRING(BITSTRING_TO_BINARY(x)) = x

Examples

If there are an odd number of characters in the hex value, then the first character is treated as the
low nibble of the first (furthest to the left) byte.

SELECT BITSTRING_TO_BINARY('0110000101100010');

 bitstring_to_binary

 ab

(1 row)

If an invalid bitstring is supplied, the system returns an error:

SELECT BITSTRING_TO_BINARY('010102010');

ERROR: invalid bitstring "010102010"

BTRIM

Removes the longest string consisting only of specified characters from the start and end of a
string.

Behavior Type

Immutable

Syntax

BTRIM (expression [, characters-to-remove])

Parameters

expression (CHAR or VARCHAR) is the string to modify

characters-to-remove (CHAR or VARCHAR) specifies the characters to
remove. The default is the space character.

Examples

SELECT BTRIM('xyxtrimyyx', 'xy');

 btrim

-263-

 SQL Functions

 trim

(1 row)

See Also

LTRIM (page 281), RTRIM (page 292), TRIM (page 301)

CHARACTER_LENGTH

Returns an INTEGER value representing the number of characters or octets in a string. It strips
the padding from CHAR expressions but not from VARCHAR expressions.

Behavior Type

Immutable if USING OCTETS, stable otherwise.

Syntax

[CHAR_LENGTH | CHARACTER_LENGTH] (expression ,

... [USING { CHARACTERS | OCTETS }])

Parameters

expression (CHAR or VARCHAR) is the string to measure

USING CHARACTERS | OCTETS Determines whether the character length is expressed in
characters (the default) or octets.

Notes

CHARACTER_LENGTH is identical to LENGTH (page 279). See BIT_LENGTH (page 260) and
OCTET_LENGTH (page 283) for similar functions.

Examples

SELECT CHAR_LENGTH('1234 '::CHAR(10), USING OCTETS);

 char_length

 4

(1 row)

SELECT CHAR_LENGTH('1234 '::VARCHAR(10));

 char_length

 6

(1 row)

SELECT CHAR_LENGTH(NULL::CHAR(10)) IS NULL;

 ?column?

 t

(1 row)

-264-

SQL Reference Manual

CHR

Converts the first octet of an INTEGER to a VARCHAR.

Behavior Type

Immutable

Syntax

CHR (expression)

Parameters

expression (INTEGER) is the string to convert and is masked to a single
octet.

Notes

 CHR is the opposite of the ASCII (page 259) function.

 CHR operates on UTF-8 characters, not only on single-byte ASCII characters. It continues to
get the same results for the ASCII subset of UTF-8.

Examples

Expression Result

SELECT CHR(65); A

SELECT CHR(65+32); a

SELECT CHR(null);

DECODE

Compares expression to each search value one by one. If expression is equal to a search, the
function returns the corresponding result. If no match is found, the function returns default. If
default is omitted, the function returns null.

Behavior Type

Immutable

Syntax

DECODE (expression, search, result [, search, result]

...[, default]);

Parameters

expression Is the value to compare.

search Is the value compared against expression.

result Is the value returned, if expression is equal to search.

-265-

 SQL Functions

default Is optional. If no matches are found, DECODE returns default. If
default is omitted, then DECODE returns NULL (if no matches are
found).

Notes

DECODE is similar to the IF-THEN-ELSE and CASE (page 44) expression:

CASE expression

WHEN search THEN result

[WHEN search THEN result]

[ELSE default];

The arguments can have any data type supported by Vertica. The result types of individual results
are promoted to the least common type that can be used to represent all of them. This leads to a
character string type, an exact numeric type, an approximate numeric type, or a DATETIME type,
where all the various result arguments must be of the same type grouping.

Examples

The following example converts numeric values in the weight column from the product_dimension
table to descriptive values in the output.

SELECT product_description, DECODE(weight,

 2, 'Light',

 50, 'Medium',

 71, 'Heavy',

 99, 'Call for help',

 'N/A')

FROM product_dimension

WHERE category_description = 'Food'

AND department_description = 'Canned Goods'

AND sku_number BETWEEN 'SKU-#49750' AND 'SKU-#49999'

LIMIT 15;

 product_description | case

-----------------------------------+---------------

 Brand #499 canned corn | N/A

 Brand #49900 fruit cocktail | Medium

 Brand #49837 canned tomatoes | Heavy

 Brand #49782 canned peaches | N/A

 Brand #49805 chicken noodle soup | N/A

 Brand #49944 canned chicken broth | N/A

 Brand #49819 canned chili | N/A

 Brand #49848 baked beans | N/A

 Brand #49989 minestrone soup | N/A

 Brand #49778 canned peaches | N/A

 Brand #49770 canned peaches | N/A

 Brand #4977 fruit cocktail | N/A

 Brand #49933 canned olives | N/A

 Brand #49750 canned olives | Call for help

 Brand #49777 canned tomatoes | N/A

(15 rows)

-266-

SQL Reference Manual

GREATEST

Returns the largest value in a list of expressions.

Behavior Type

Stable

Syntax

GREATEST (expression1, expression2, ... expression-n);

Parameters

expression1, expression2, and expression-n are the expressions to be evaluated.

Notes

 Works for all data types, and implicitly casts similar types. See Examples.

 A NULL value in any one of the expressions returns NULL.

 Depends on the collation setting of the locale.

Examples

This example returns 9 as the greatest in the list of expressions:

SELECT GREATEST(7, 5, 9);

 greatest

 9

(1 row)

Note that putting quotes around the integer expressions returns the same result as the first
example:

SELECT GREATEST('7', '5', '9');

 greatest

 9

(1 row)

The next example returns FLOAT 1.5 as the greatest because the integer is implicitly cast to float:

SELECT GREATEST(1, 1.5);

 greatest

 1.5

(1 row)

The following example returns 'vertica' as the greatest:

SELECT GREATEST('vertica', 'analytic', 'database');

 greatest

 vertica

(1 row)

Notice this next command returns NULL:

-267-

 SQL Functions

SELECT GREATEST('vertica', 'analytic', 'database', null);

 greatest

(1 row)

And one more:

SELECT GREATEST('sit', 'site', 'sight');

 greatest

 site

(1 row)

See Also

LEAST (page 275)

GREATESTB

Returns its greatest argument, using binary ordering, not UTF-8 character ordering.

Behavior Type

Immutable

Syntax

GREATESTB (expression1, expression2, ... expression-n);

Parameters

expression1, expression2, and expression-n are the expressions to be evaluated.

Notes

 Works for all data types, and implicitly casts similar types. See Examples.

 A NULL value in any one of the expressions returns NULL.

 Depends on the collation setting of the locale.

Examples

The following command selects straße as the greatest in the series of inputs:

SELECT GREATESTB('straße', 'strasse');

 GREATESTB

 straße

(1 row)

This example returns 9 as the greatest in the list of expressions:

SELECT GREATESTB(7, 5, 9);

 GREATESTB

 9

(1 row)

-268-

SQL Reference Manual

Note that putting quotes around the integer expressions returns the same result as the first
example:

 GREATESTB

 9

(1 row)

The next example returns FLOAT 1.5 as the greatest because the integer is implicitly cast to float:

SELECT GREATESTB(1, 1.5);

 GREATESTB

 1.5

(1 row)

The following example returns 'vertica' as the greatest:

SELECT GREATESTB('vertica', 'analytic', 'database');

 GREATESTB

 vertica

(1 row)

Notice this next command returns NULL:

SELECT GREATESTB('vertica', 'analytic', 'database', null);

 GREATESTB

(1 row)

And one more:

SELECT GREATESTB('sit', 'site', 'sight');

 GREATESTB

 site

(1 row)

See Also

LEASTB (page 277)

HEX_TO_BINARY

Translates the given VARCHAR hexadecimal representation into a VARBINARY value.

Behavior Type

Immutable

Syntax

HEX_TO_BINARY ([0x] expression)

-269-

 SQL Functions

Parameters

expression (BINARY or VARBINARY) is the string to translate.

0x Is optional prefix

Notes

VARBINARY HEX_TO_BINARY(VARCHAR) converts data from character type in hexadecimal
format to binary type. This function is the inverse of TO_HEX (page 216).

HEX_TO_BINARY(TO_HEX(x)) = x)

TO_HEX(HEX_TO_BINARY(x)) = x)

If there are an odd number of characters in the hexadecimal value, the first character is treated as
the low nibble of the first (furthest to the left) byte.

Examples

If the given string begins with "0x" the prefix is ignored. For example:

SELECT HEX_TO_BINARY('0x6162') AS hex1, HEX_TO_BINARY('6162') AS hex2;

 hex1 | hex2

------+------

 ab | ab

(1 row)

If an invalid hex value is given, Vertica returns an ―invalid binary representation" error; for
example:

SELECT HEX_TO_BINARY('0xffgf');

ERROR: invalid hex string "0xffgf"

See Also

TO_HEX (page 216)

INET_ATON

Returns an integer that represents the value of the address in host byte order, given the
dotted-quad representation of a network address as a string.

Behavior Type

Immutable

Syntax

INET_ATON (expression)

Parameters

expression (VARCHAR) is the string to convert.

-270-

SQL Reference Manual

Notes

The following syntax converts an IPv4 address represented as the string A to an integer I.

INET_ATON trims any spaces from the right of A, calls the Linux function inet_pton
http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html, and converts
the result from network byte order to host byte order using ntohl
http://opengroup.org/onlinepubs/007908775/xns/ntohl.html.

INET_ATON(VARCHAR A) -> INT8 I

If A is NULL, too long, or inet_pton returns an error, the result is NULL.

Examples

The generated number is always in host byte order. In the following example, the number is
calculated as 209×256^3 + 207×256^2 + 224×256 + 40.

SELECT INET_ATON('209.207.224.40');

 inet_aton

 3520061480

(1 row)

SELECT INET_ATON('1.2.3.4');

 inet_aton

 16909060

(1 row)

SELECT TO_HEX(INET_ATON('1.2.3.4'));

 to_hex

 1020304

(1 row)

See Also

INET_NTOA (page 223)

INET_NTOA

Returns the dotted-quad representation of the address as a VARCHAR, given a network address
as an integer in network byte order.

Behavior Type

Immutable

Syntax

INET_NTOA (expression)

Parameters

expression (INTEGER) is the network address to convert.

http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html
http://opengroup.org/onlinepubs/007908775/xns/ntohl.html

-271-

 SQL Functions

Notes

The following syntax converts an IPv4 address represented as integer I to a string A.

INET_NTOA converts I from host byte order to network byte order using htonl
http://opengroup.org/onlinepubs/007908775/xns/htonl.html, and calls the Linux function
inet_ntop http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html.

INET_NTOA(INT8 I) -> VARCHAR A

If I is NULL, greater than 2^32 or negative, the result is NULL.

Examples

SELECT INET_NTOA(16909060);

 inet_ntoa

 1.2.3.4

(1 row)

SELECT INET_NTOA(03021962);

 inet_ntoa

 0.46.28.138

(1 row)

See Also

INET_ATON (page 222)

INITCAP

Capitalizes first letter of each alphanumeric word and puts the rest in lowercase.

Behavior Type

Stable

Syntax

INITCAP (expression)

Parameters

expression (VARCHAR) is the string to format.

Notes

 Depends on collation setting of the locale.

 INITCAP is restricted to 32750 octet inputs, since it is possible for the UTF-8 representation of
result to double in size.

Examples

Expression Result

http://opengroup.org/onlinepubs/007908775/xns/htonl.html
http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html

-272-

SQL Reference Manual

SELECT INITCAP('high speed database'); High Speed Database

SELECT INITCAP('LINUX TUTORIAL'); Linux Tutorial

SELECT INITCAP('abc DEF 123aVC 124Btd,lAsT'); Abc Def 123Avc

124Btd,Last

SELECT INITCAP('');

SELECT INITCAP(null);

INITCAPB

Capitalizes first letter of each alphanumeric word and puts the rest in lowercase.

Behavior Type

Immutable

Syntax

INITCAPB (expression)

Parameters

expression (VARCHAR) is the string to format.

Notes

Depends on collation setting of the locale.

Examples

Expression Result

SELECT INITCAPB('étudiant'); éTudiant

SELECT INITCAPB('high speed database'); High Speed Database

SELECT INITCAPB('LINUX TUTORIAL'); Linux Tutorial

SELECT INITCAPB('abc DEF 123aVC 124Btd,lAsT'); Abc Def 123Avc

124Btd,Last

SELECT INITCAPB('');

SELECT INITCAPB(null);

INSTR

Searches string for substring and returns an integer indicating the position of the character in
string that is the first character of this occurrence. The return value is based on the character
position of the identified character.

Behavior Type

Stable

Syntax

INSTR (string , substring [, position [, occurrence]])

-273-

 SQL Functions

Parameters

string (CHAR or VARCHAR, or BINARY or VARBINARY) Is the text
expression to search.

substring (CHAR or VARCHAR, or BINARY or VARBINARY) Is the string to
search for.

position Is a nonzero integer indicating the character of string where Vertica
begins the search. If position is negative, then Vertica counts
backward from the end of string and then searches backward from
the resulting position. The first character of string occupies the
default position 1, and position cannot be 0.

occurrence Is an integer indicating which occurrence of string Vertica searches.
The value of occurrence must be positive (greater than 0), and the
default is 1.

Notes

Both position and occurrence must be of types that can resolve to an integer. The default values of
both parameters are 1, meaning Vertica begins searching at the first character of string for the first
occurrence of substring. The return value is relative to the beginning of string, regardless of the
value of position, and is expressed in characters.

If the search is unsuccessful (that is, if substring does not appear occurrence times after the
position character of string, then the return value is 0.

Examples

The first example searches forward in string ‗abc‘ for substring ‗b‘. The search returns the position
in ‗abc‘ where ‗b‘ occurs, or position 2. Because no position parameters are given, the default
search starts at ‗a‘, position 1.

SELECT INSTR('abc', 'b');

INSTR

 2

(1 row)

The following three examples use character position to search backward to find the position of a
substring.

Note: Although it seems intuitive that the function returns a negative integer, the position of n
occurrence is read left to right in the sting, even though the search happens in reverse (from the
end — or right side — of the string).

In the first example, the function counts backward one character from the end of the string, starting
with character ‗c‘. The function then searches backward for the first occurrence of ‗a‘, which it finds
it in the first position in the search string.

SELECT INSTR('abc', 'a', -1);

 INSTR

 1

-274-

SQL Reference Manual

(1 row)

In the second example, the function counts backward one byte from the end of the string, starting
with character ‗c‘. The function then searches backward for the first occurrence of ‗a‘, which it finds
it in the first position in the search string.

SELECT INSTR(VARBINARY 'abc', VARBINARY 'a', -1);

 INSTR

 1

(1 row)

In the third example, the function counts backward one character from the end of the string,
starting with character ‗b‘, and searches backward for substring ‗bc‘, which it finds in the second
position of the search string.

SELECT INSTR('abcb', 'bc', -1);

 INSTR

 2

(1 row)

In the fourth example, the function counts backward one character from the end of the string,
starting with character ‗b‘, and searches backward for substring ‗bcef‘, which it does not find. The
result is 0.

SELECT INSTR('abcb', 'bcef', -1);

INSTR

 0

(1 row)

In the fifth example, the function counts backward one byte from the end of the string, starting with
character ‗b‘, and searches backward for substring ‗bcef‘, which it does not find. The result is 0.

SELECT INSTR(VARBINARY 'abcb', VARBINARY 'bcef', -1);

 INSTR

 0

(1 row)

INSTRB

Searches string for substring and returns an integer indicating the octet position within string that
is the first occurrence. The return value is based on the octet position of the identified byte.

Behavior Type

Immutable

Syntax

INSTRB (string , substring [, position [, occurrence]])

Parameters

string Is the text expression to search.

-275-

 SQL Functions

substring Is the string to search for.

position Is a nonzero integer indicating the character of string where Vertica
begins the search. If position is negative, then Vertica counts
backward from the end of string and then searches backward from
the resulting position. The first byte of string occupies the default
position 1, and position cannot be 0.

occurrence Is an integer indicating which occurrence of string Vertica searches.
The value of occurrence must be positive (greater than 0), and the
default is 1.

Notes

Both position and occurrence must be of types that can resolve to an integer. The default values of
both parameters are 1, meaning Vertica begins searching at the first byte of string for the first
occurrence of substring. The return value is relative to the beginning of string, regardless of the
value of position, and is expressed in octets.

If the search is unsuccessful (that is, if substring does not appear occurrence times after the
position character of string, then the return value is 0.

Examples

SELECT INSTRB('straße', 'ß');

 INSTRB

 5

(1 row)

See Also

INSTR (page 272)

LEAST

Returns the smallest value in a list of expressions.

Behavior Type

Stable

Syntax

LEAST (expression1, expression2, ... expression-n);

Parameters

expression1, expression2, and expression-n are the expressions to be evaluated.

Notes

 Works for all data types, and implicitly casts similar types. See Examples below.

 A NULL value in any one of the expressions returns NULL.

-276-

SQL Reference Manual

Examples

This example returns 5 as the least:

SELECT LEAST(7, 5, 9);

 least

 5

(1 row)

Note that putting quotes around the integer expressions returns the same result as the first
example:

SELECT LEAST('7', '5', '9');

 least

 5

(1 row)

In the above example, the values are being compared as strings, so '10' would be less than '2'.

The next example returns 1.5, as INTEGER 2 is implicitly cast to FLOAT:

SELECT LEAST(2, 1.5);

 least

 1.5

(1 row)

The following example returns 'analytic' as the least:

SELECT LEAST('vertica', 'analytic', 'database');

 least

 analytic

(1 row)

Notice this next command returns NULL:

SELECT LEAST('vertica', 'analytic', 'database', null);

 least

(1 row)

And one more:

SELECT LEAST('sit', 'site', 'sight');

 least

 sight

(1 row)

See Also

GREATEST (page 266)

-277-

 SQL Functions

LEASTB

Returns the function's least argument, using binary ordering, not UTF-8 character ordering.

Behavior Type

Immutable

Syntax

LEASTB (expression1, expression2, ... expression-n);

Parameters

expression1, expression2, and expression-n are the expressions to be evaluated.

Notes

 Works for all data types, and implicitly casts similar types. See Examples below.

 A NULL value in any one of the expressions returns NULL.

Examples

The following command selects strasse as the least in the series of inputs:

SELECT LEASTB('straße', 'strasse');

 LEASTB

 strasse

(1 row)

This example returns 5 as the least:

SELECT LEASTB(7, 5, 9);

 LEASTB

 5

(1 row)

Note that putting quotes around the integer expressions returns the same result as the first
example:

SELECT LEASTB('7', '5', '9');

 LEASTB

 5

(1 row)

In the above example, the values are being compared as strings, so '10' would be less than '2'.

The next example returns 1.5, as INTEGER 2 is implicitly cast to FLOAT:

SELECT LEASTB(2, 1.5);

 LEASTB

 1.5

(1 row)

The following example returns 'analytic' as the least in the series of inputs:

-278-

SQL Reference Manual

SELECT LEASTB('vertica', 'analytic', 'database');

 LEASTB

 analytic

(1 row)

Notice this next command returns NULL:

SELECT LEASTB('vertica', 'analytic', 'database', null);

 LEASTB

(1 row)

See Also

GREATESTB (page 267)

LEFT

Returns the specified characters from the left side of a string.

Behavior Type

Immutable

Syntax

LEFT (string , length)

Parameters

string (CHAR or VARCHAR) is the string to return.

length Is an INTEGER value that specifies the count of characters to
return.

Examples

SELECT LEFT('vertica', 3);

 left

 ver

(1 row)

SELECT LEFT('straße', 5);

 LEFT

 straß

(1 row)

See Also

SUBSTR (page 296)

-279-

 SQL Functions

LENGTH

Takes one argument as an input and returns returns an INTEGER value representing the number
of characters in a string.

Behavior Type

Immutable

Syntax

LENGTH (expression)

Parameters

expression (CHAR or VARCHAR or BINARY or VARBINARY) is the string to
measure

Notes

 LENGTH strips the padding from CHAR expressions but not from VARCHAR expressions.

 LENGTH is identical to CHARACTER_LENGTH (page 263) for CHAR and VARCHAR. For
binary types, it is identical to octet length. See BIT_LENGTH (page 260) and
OCTET_LENGTH (page 283) for similar functions.

Examples

Expression Result

SELECT LENGTH('1234 '::CHAR(10)); 4

SELECT LENGTH('1234 '::VARCHAR(10)); 6

SELECT LENGTH('1234 '::BINARY(10)); 10

SELECT LENGTH('1234 '::VARBINARY(10)); 6

SELECT LENGTH(NULL::CHAR(10)) IS NULL; t

LOWER

Returns a VARCHAR value containing the argument converted to lowercase letters.

Behavior Type

Stable

Syntax

LOWER (expression)

Parameters

expression (CHAR or VARCHAR) is the string to convert

-280-

SQL Reference Manual

Notes

LOWER is restricted to 32750 octet inputs, since it is possible for the UTF-8 representation of
result to double in size.

Examples

SELECT LOWER('AbCdEfG');

 lower

 abcdefg

(1 row)

SELECT LOWER('The Cat In The Hat');

 lower

 the cat in the hat

(1 row)

SELECT LOWER('ÉTUDIANT');

 LOWER

 Étudiant

(1 row)

LOWERB

Returns a character string with each ASCII character converted to lowercase; multibyte UTF-8
characters are not converted.

Behavior Type

Immutable

Syntax

LOWERB (expression)

Parameters

expression (CHAR or VARCHAR) is the string to convert

Examples

In the following example, the multibyte UTF-8 character É is not converted to
lowercase:

SELECT LOWERB('ÉTUDIANT');

 LOWERB

 Étudiant

(1 row)

SELECT LOWERB('AbCdEfG');

 LOWERB

-281-

 SQL Functions

 abcdefg

(1 row)

SELECT LOWERB('The Vertica Database');

 LOWERB

 the vertica database

(1 row)

LPAD

Returns a VARCHAR value representing a string of a specific length filled on the left with specific
characters.

Behavior Type

Immutable

Syntax

LPAD (expression , length [, fill])

Parameters

expression (CHAR OR VARCHAR) specifies the string to fill

length (INTEGER) specifies the number of characters to return

fill (CHAR OR VARCHAR) specifies the repeating string of characters with
which to fill the output string. The default is the space character.

Examples

SELECT LPAD('database', 15, 'xzy');

 lpad

 xzyxzyxdatabase

(1 row)

If the string is already longer than the specified length it is truncated on the right:

SELECT LPAD('establishment', 10, 'abc');

 lpad

 establishm

(1 row)

LTRIM

Returns a VARCHAR value representing a string with leading blanks removed from the left side
(beginning).

Behavior Type

Immutable

-282-

SQL Reference Manual

Syntax

LTRIM (expression [, characters])

Parameters

expression (CHAR or VARCHAR) is the string to trim

characters (CHAR or VARCHAR) specifies the characters to remove from
the left side of expression. The default is the space character.

Examples

SELECT LTRIM('zzzyyyyyyxxxxxxxxtrim', 'xyz');

 ltrim

 trim

(1 row)

See Also

BTRIM (page 262), RTRIM (page 292), TRIM (page 301)

MD5

Calculates the MD5 hash of string, returning the result as a VARCHAR string in hexadecimal.

Behavior Type

Immutable

Syntax

MD5 (string)

Parameters

string Is the argument string.

Examples

SELECT MD5('123');

 md5

 202cb962ac59075b964b07152d234b70

(1 row)

SELECT MD5('Vertica'::bytea);

 md5

 fc45b815747d8236f9f6fdb9c2c3f676

(1 row)

-283-

 SQL Functions

OCTET_LENGTH

Returns the length of the input string expression in octets.

Behavior Type

Immutable

Syntax

OCTET_LENGTH (expression)

Parameters

expression (CHAR or VARCHAR or BINARY or VARBINARY) is the
string to measure.

Notes

 If the data type of expression is a CHAR, VARCHAR or VARBINARY, the result is the same as
the actual length of expression in octets. For CHAR, the length does not include any trailing
spaces.

 If the data type of expression is BINARY, the result is the same as the fixed-length of
expression.

 If the value of expression is NULL, the result is NULL.

Examples

Expression Result

SELECT OCTET_LENGTH(CHAR(10) '1234 '); 4

SELECT OCTET_LENGTH(CHAR(10) '1234'); 4

SELECT OCTET_LENGTH(CHAR(10) ' 1234'); 6

SELECT OCTET_LENGTH(VARCHAR(10) '1234 '); 6

SELECT OCTET_LENGTH(VARCHAR(10) '1234 '); 5

SELECT OCTET_LENGTH(VARCHAR(10) '1234'); 4

SELECT OCTET_LENGTH(VARCHAR(10) ' 1234'); 7

SELECT OCTET_LENGTH('abc'::VARBINARY); 3

SELECT OCTET_LENGTH(VARBINARY 'abc'); 3

SELECT OCTET_LENGTH(VARBINARY 'abc '); 5

SELECT OCTET_LENGTH(BINARY(6) 'abc'); 6

SELECT OCTET_LENGTH(VARBINARY ''); 0

SELECT OCTET_LENGTH(''::BINARY); 1

SELECT OCTET_LENGTH(null::VARBINARY);

SELECT OCTET_LENGTH(null::BINARY);

See Also

BIT_LENGTH (page 260), CHARACTER_LENGTH (page 263), LENGTH (page 279)

-284-

SQL Reference Manual

OVERLAY

Returns a VARCHAR value representing a string having had a substring replaced by another
string.

Behavior Type

Immutable if using OCTETS, Stable otherwise

Syntax

OVERLAY (expression1 PLACING expression2 FROM position

... [FOR extent]

... [USING { CHARACTERS | OCTETS }])

Parameters

expression1 (CHAR or VARCHAR) is the string to process

expression2 (CHAR or VARCHAR) is the substring to overlay

position (INTEGER) is the character or octet position (counting from one)
at which to begin the overlay

extent (INTEGER) specifies the number of characters or octets to
replace with the overlay

USING CHARACTERS | OCTETS Determines whether OVERLAY uses characters (the default) or
octets

Examples

SELECT OVERLAY('123456789' PLACING 'xxx' FROM 2);

 overlay

 1xxx56789

(1 row)

SELECT OVERLAY('123456789' PLACING 'XXX' FROM 2 USING OCTETS);

 overlay

 1XXX56789

(1 row)

SELECT OVERLAY('123456789' PLACING 'xxx' FROM 2 FOR 4);

 overlay

 1xxx6789

(1 row)

SELECT OVERLAY('123456789' PLACING 'xxx' FROM 2 FOR 5);

 overlay

 1xxx789

(1 row)

SELECT OVERLAY('123456789' PLACING 'xxx' FROM 2 FOR 6);

 overlay

 1xxx89

(1 row)

-285-

 SQL Functions

OVERLAYB

Returns an octet value representing a string having had a substring replaced by another string.

Behavior Type

Immutable

Syntax

OVERLAYB (expression1, expression2, position [, extent])

Parameters

expression1 (CHAR or VARCHAR) is the string to process

expression2 (CHAR or VARCHAR) is the substring to overlay

position (INTEGER) is the octet position (counting from one) at which to begin the
overlay

extent (INTEGER) specifies the number of octets to replace with the overlay

Notes

This function treats the multibyte character string as a string of octets (bytes) and use octet
numbers as incoming and outgoing position specifiers and lengths. The strings themselves are
type VARCHAR, but they treated as if each byte was a separate character.

Examples

SELECT OVERLAYB('123456789', 'ééé', 2);

 OVERLAYB

 1ééé89

(1 row)

SELECT OVERLAYB('123456789', 'ßßß', 2);

 OVERLAYB

 1ßßß89

(1 row)

SELECT OVERLAYB('123456789', 'xxx', 2);

 OVERLAYB

 1xxx56789

(1 row)

SELECT OVERLAYB('123456789', 'xxx', 2, 4);

 OVERLAYB

 1xxx6789

(1 row)

SELECT OVERLAYB('123456789', 'xxx', 2, 5);

 OVERLAYB

 1xxx789

-286-

SQL Reference Manual

(1 row)

SELECT OVERLAYB('123456789', 'xxx', 2, 6);

 OVERLAYB

 1xxx89

(1 row)

POSITION

Returns an INTEGER value representing the character location of a specified substring with a
string (counting from one).

Behavior Type

Immutable if USING OCTETS, stable otherwise

Syntax 1

POSITION (substring IN string [USING { CHARACTERS | OCTETS }])

Parameters

substring (CHAR or VARCHAR) is the substring to locate

string (CHAR or VARCHAR) is the string in which to locate the
substring

USING CHARACTERS | OCTETS Determines whether the position is reported by using
characters (the default) or octets.

Syntax 2

POSITION (substring IN string)

Parameters

substring (VARBINARY) is the substring to locate

string (VARBINARY) is the string in which to locate the substring

Notes

 When the string and substring are CHAR or VARCHAR, the return value is based on either the
character or octet position of the substring.

 When the string and substring are VARBINARY, the return value is always based on the octet
position of the substring.

 The string and substring must be consistent. Do not mix VARBINARY with CHAR or
VARCHAR.

Examples

SELECT POSITION('é' IN 'étudiant' USING CHARACTERS);

 position

-287-

 SQL Functions

 1

(1 row)

SELECT POSITION('ß' IN 'straße' USING OCTETS);

 position

 5

(1 row)

SELECT POSITION('c' IN 'abcd' USING CHARACTERS);

 position

 3

(1 row)

SELECT POSITION(VARBINARY '456' IN VARBINARY '123456789');

 position

 4

(1 row)

POSITIONB

Returns an INTEGER value representing the octet location of a specified substring with a string
(counting from one).

Behavior Type

Immutable

Syntax

POSITIONB (string, substring)

Parameters

string (CHAR or VARCHAR) is the string in which to locate the substring

substring (CHAR or VARCHAR) is the substring to locate

Examples

SELECT POSITIONB('straße', 'ße');

 POSITIONB

 5

(1 row)

SELECT POSITIONB('étudiant', 'é');

 position

 1

(1 row)

-288-

SQL Reference Manual

QUOTE_IDENT

Returns the given string, suitably quoted, to be used as an identifier (page 15) in a SQL statement
string. Quotes are added only if necessary; that is, if the string contains non-identifier characters,

is a SQL keyword (page 12), such as '1time', 'Next week' and 'Select'. Embedded

double quotes are doubled.

Behavior Type

Immutable

Syntax

QUOTE_IDENT(string)

Parameters

string Is the argument string.

Notes

 SQL identifiers, such as table and column names, are stored as created, and references to
them are resolved using case-insensitive compares. Thus, you do not need to double-quote
mixed-case identifiers.

 Vertica quotes all currently-reserved keywords, even those not currently being used.

Examples

Quoted identifiers are case-insensitive, and Vertica does not supply the quotes:

SELECT QUOTE_IDENT('VErtIcA');

 QUOTE_IDENT

 VErtIcA

(1 row)

SELECT QUOTE_IDENT('Vertica database');

 QUOTE_IDENT

 "Vertica database"

(1 row)

Embedded double quotes are doubled:

SELECT QUOTE_IDENT('Vertica "!" database');

 QUOTE_IDENT

 "Vertica ""!"" database"

(1 row)

The following example uses the SQL keyword, SELECT; results are double quoted:

 SELECT QUOTE_IDENT('select');

 QUOTE_IDENT

-289-

 SQL Functions

 "select"

(1 row)

QUOTE_LITERAL

Returns the given string, suitably quoted, to be used as a string literal in a SQL statement string.
Embedded single quotes and backslashes are doubled.

Behavior Type

Immutable

Syntax

QUOTE_LITERAL (string)

Parameters

string Is the argument string.

Notes

Vertica recognizes two consecutive single quotes within a string literal as one single quote

character. For example, 'You''re here!'. This is the SQL standard representation and is

preferred over the form, 'You\'re here!', as backslashes are not parsed as before.

Examples

SELECT QUOTE_LITERAL('You''re here!');

 QUOTE_LITERAL

 'You''re here!'

(1 row)

SELECT QUOTE_LITERAL('You\'re here!');

WARNING: nonstandard use of \' in a string literal at character 22

HINT: Use '' to write quotes in strings, or use the escape string syntax (E'\'').

See Also

String Literals (Character) (page 23)

REPEAT

Returns a VARCHAR or VARBINARY value that repeats the given value COUNT times, given a
value and a count this function.

If the return value is truncated the given value might not be repeated count times, and the last
occurrence of the given value might be truncated.

Behavior Type

Immutable

-290-

SQL Reference Manual

Syntax

REPEAT (string , repetitions)

Parameters

string (CHAR or VARCHAR or BINARY or VARBINARY) is the string
to repeat

repetitions (INTEGER) is the number of times to repeat the string

Notes

If the repetitions field depends on the contents of a column (is not a constant), then the repeat
operator maximum length is 65000 bytes. You can add a cast of the repeat to cast the result
down to a size big enough for your purposes (reflects the actual maximum size) so you can do
other things with the result.

Examples

The following example repeats 'vmart' three times:

SELECT REPEAT ('vmart', 3);

 repeat

 vmartvmartvmart

(1 row)

If you run the following example, you get an error message:

SELECT '123456' || REPEAT('a', colx);

ERROR: Operator || may give a 65006-byte Varchar result; the limit is 65000 bytes.

If you know that colx can never be greater than 3, the solution is to add a cast (::VARCHAR(3)):

SELECT '123456' || REPEAT('a', colx)::VARCHAR(3);

If colx is greater than 3, the repeat is truncated to exactly three (3) a's.

REPLACE

Replaces all occurrences of characters in a string with another set of characters.

Behavior Type

Immutable

Syntax

REPLACE (string , target , replacement)

Parameters

string (CHAR OR VARCHAR) is the string to which to perform the replacement

target (CHAR OR VARCHAR) is the string to replace

replacement (CHAR OR VARCHAR) is the string with which to replace the target

-291-

 SQL Functions

Examples

SELECT REPLACE('Documentation%20Library', '%20', ' ');

 replace

 Documentation Library

(1 row)

SELECT REPLACE('This & That', '&', 'and');

 replace

 This and That

(1 row)

SELECT REPLACE('straße', 'ß', 'ss');

 REPLACE

 strasse

(1 row)

RIGHT

Returns the specified characters from the right side of a string.

Behavior Type

Immutable

Syntax

RIGHT (string , length)

Parameters

string (CHAR or VARCHAR) is the string to return.

length Is an INTEGER value that specifies the count of characters to
return.

Examples

The following command returns the last three characters of the string 'vertica':

SELECT RIGHT('vertica', 3);

 right

 ica

(1 row)

The following command returns the last two characters of the string 'straße':

SELECT RIGHT('straße', 2);

 RIGHT

 ße

(1 row)

-292-

SQL Reference Manual

See Also

SUBSTR (page 296)

RPAD

Returns a VARCHAR value representing a string of a specific length filled on the right with specific
characters.

Behavior Type

Immutable

Syntax

RPAD (expression , length [, fill])

Parameters

expression (CHAR OR VARCHAR) specifies the string to fill

length (INTEGER) specifies the number of characters to return

fill (CHAR OR VARCHAR) specifies the repeating string of characters with
which to fill the output string. The default is the space character.

Examples

SELECT RPAD('database', 15, 'xzy');

 rpad

 databasexzyxzyx

(1 row)

If the string is already longer than the specified length it is truncated on the right:

SELECT RPAD('database', 6, 'xzy');

 rpad

 databa

(1 row)

RTRIM

Returns a VARCHAR value representing a string with trailing blanks removed from the right side
(end).

Behavior Type

Immutable

Syntax

RTRIM (expression [, characters])

-293-

 SQL Functions

Parameters

expression (CHAR or VARCHAR) is the string to trim

characters (CHAR or VARCHAR) specifies the characters to remove from
the right side of expression. The default is the space character.

Examples

SELECT RTRIM('trimzzzyyyyyyxxxxxxxx', 'xyz');

 ltrim

 trim

(1 row)

See Also

BTRIM (page 262), LTRIM (page 281), TRIM (page 301)

SPLIT_PART

Splits string on the delimiter and returns the location of the beginning of the given field (counting
from one).

Behavior Type

Stable

Syntax

SPLIT_PART (string , delimiter , field)

Parameters

string Is the argument string.

delimiter Is the given delimiter.

field (INTEGER) is the number of the part to return.

Note

Use this with the character form of the subfield.

Examples

The specified integer of 2 returns the second string, or def.

SELECT SPLIT_PART('abc~@~def~@~ghi', '~@~', 2);

 split_part

 def

(1 row)

Here, we specify 3, which returns the third string, or 789.

-294-

SQL Reference Manual

SELECT SPLIT_PART('123~|~456~|~789', '~|~', 3);

 split_part

 789

(1 row)

Note that the tildes are for readability only. Omitting them returns the same results:

SELECT SPLIT_PART('123|456|789', '|', 3);

 split_part

 789

(1 row)

See what happens if you specify an integer that exceeds the number of strings: No results.

SELECT SPLIT_PART('123|456|789', '|', 4);

 split_part

(1 row)

The above result is not null, it is the empty string.

SELECT SPLIT_PART('123|456|789', '|', 4) IS NULL;

 ?column?

 f

(1 row)

If SPLIT_PART had returned NULL, LENGTH would have returned null.

SELECT LENGTH (SPLIT_PART('123|456|789', '|', 4));

 length

 0

(1 row)

SPLIT_PARTB

Splits string on the delimiter and returns the location of the beginning of the given field (counting
from one).

Behavior Type

Immutable

Syntax

SPLIT_PARTB (string , delimiter , field)

Parameters

string Is the argument string.

delimiter Is the given delimiter.

field (INTEGER) is the number of the part to return.

-295-

 SQL Functions

Note

Use this function with the character form of the subfield.

Examples

The specified integer of 3 returns the third string, or soupçon.

SELECT SPLIT_PARTB('straße~@~café~@~soupçon', '~@~', 3);

 SPLIT_PARTB

 soupçon

(1 row)

Note that the tildes are for readability only. Omitting them returns the same results:

SELECT SPLIT_PARTB('straße @ café @ soupçon', '@', 3);

 SPLIT_PARTB

 soupçon

(1 row)

See what happens if you specify an integer that exceeds the number of strings: No results.

 SELECT SPLIT_PARTB('straße @ café @ soupçon', '@', 4);

 SPLIT_PARTB

(1 row)

The above result is not null, it is the empty string.

SELECT SPLIT_PARTB('straße @ café @ soupçon', '@', 4) IS NULL;

 ?column?

 f

(1 row)

STRPOS

Returns an INTEGER value representing the character location of a specified substring within a
string (counting from one).

Behavior Type

Stable

Syntax

STRPOS (string , substring)

Parameters

string (CHAR or VARCHAR) is the string in which to locate the substring

substring (CHAR or VARCHAR) is the substring to locate

-296-

SQL Reference Manual

Notes

STRPOS is identical to POSITION (page 286) except for the order of the arguments.

Examples

SELECT STRPOS('abcd','c');

 strpos

 3

(1 row)

STRPOSB

Returns an INTEGER value representing the character location of a specified substring within a
string (counting from one).

Behavior Type

Immutable

Syntax

STRPOSB (string , substring)

Parameters

string (CHAR or VARCHAR) is the string in which to locate the substring

substring (CHAR or VARCHAR) is the substring to locate

Notes

STRPOSB is identical to POSITIONB (page 287) except for the order of the arguments.

Examples

SELECT STRPOSB('straße', 'ße');

 STRPOSB

 5

(1 row)

SELECT STRPOSB('étudiant', 'é');

 position

 1

(1 row)

SUBSTR

Returns a VARCHAR value representing a substring of a specified string.

-297-

 SQL Functions

Behavior Type

Immutable

Syntax

SUBSTR (string , position [, extent])

Parameters

string (CHAR or VARCHAR or BINARY or VARBINARY) is the string from
which to extract a substring.

position (INTEGER) is the starting position of the substring (counting from one
by characters).

extent (INTEGER) is the length of the substring to extract (in characters).
The default is the end of the string.

Notes

SUBSTR performs the same function as SUBSTRING (page 298). The only difference is the
syntax allowed.

Examples

SELECT SUBSTR('123456789', 3, 2);

 substr

 34

(1 row)

SELECT SUBSTR('123456789', 3);

 substr

 3456789

(1 row)

SELECT SUBSTR(TO_BITSTRING(HEX_TO_BINARY('0x10')), 2, 2);

 substr

 00

(1 row)

SELECT SUBSTR(TO_HEX(10010), 2, 2);

 substr

 71

(1 row)

SUBSTRB

Returns an octet value representing the substring of a specified string.

Behavior Type

Immutable

-298-

SQL Reference Manual

Syntax

SUBSTRB (string , position [, extent])

Parameters

string (CHAR or VARCHAR or BINARY or VARBINARY) is the string from
which to extract a substring.

position (INTEGER) is the starting position of the substring (counting from one
in octets).

extent (INTEGER) is the length of the substring to extract (in octets). The
default is the end of the string.

Notes

This function treats the multibyte character string as a string of octets (bytes) and use octet
numbers as incoming and outgoing position specifiers and lengths. The strings themselves are
type VARCHAR, but they treated as if each octet was a separate character.

Examples

 SELECT SUBSTRB('soupçon', 5);

 SUBSTRB

 çon

(1 row)

 SELECT SUBSTRB('soupçon', 5, 2);

 SUBSTRB

 ç

(1 row)

SUBSTRING

Returns a value representing a substring of the specified string at the given position, given a value,
a position, and an optional length.

Behavior Type

Immutable if USING OCTETS, stable otherwise.

Syntax

SUBSTRING (string , position [, length]

... [USING {CHARACTERS | OCTETS }])

SUBSTRING (string FROM position [FOR length]

... [USING { CHARACTERS | OCTETS }])

Parameters

string (CHAR or VARCHAR or BINARY or VARBINARY) is the string
from which to extract a substring

-299-

 SQL Functions

position (INTEGER) is the starting position of the substring (counting from
one by either characters or octets). (The default is characters.) If
position is greater than the length of the given value, an empty
value is returned.

length (INTEGER) is the length of the substring to extract in either
characters or octets. (The default is characters.) The default is the
end of the string.If a length is given the result is at most that many
bytes. The maximum length is the length of the given value less
the given position. If no length is given or if the given length is
greater than the maximum length then the length is set to the
maximum length.

USING CHARACTERS |OCTETS Determines whether the value is expressed in characters (the
default) or octets.

Notes

Neither length nor position can be negative, and the position cannot be zero because it is one
based. If these forms are violated, the system returns an error:

SELECT SUBSTRING('ab'::binary(2), -1, 2);

ERROR: negative or zero substring start position not allowed

Examples

 SELECT SUBSTRING('soupçon', 5, 2 USING CHARACTERS);

 substring

 ço

(1 row)

 SELECT SUBSTRING('soupçon', 5, 2 USING OCTETS);

 substrb

 ç

(1 row)

TO_BITSTRING

Returns a VARCHAR that represents the given VARBINARY value in bitstring format

Behavior Type

Immutable

Syntax

TO_BITSTRING (expression)

Parameters

expression (VARCHAR) is the string to return.

-300-

SQL Reference Manual

Notes

VARCHAR TO_BITSTRING(VARBINARY) converts data from binary type to character type
(where the character representation is the bitstring format). This function is the inverse of
BITSTRING_TO_BINARY:

TO_BITSTRING(BITSTRING_TO_BINARY(x)) = x)

BITSTRING_TO_BINARY(TO_BITSTRING(x)) = x)

Examples

SELECT TO_BITSTRING('ab'::BINARY(2));

 to_bitstring

 0110000101100010

(1 row)

SELECT TO_BITSTRING(HEX_TO_BINARY('0x10'));

to_bitstring

00010000

(1 row)

SELECT TO_BITSTRING(HEX_TO_BINARY('0xF0'));

to_bitstring

11110000

(1 row)

See Also

BITCOUNT (page 261) and BITSTRING_TO_BINARY (page 261)

TO_HEX

Returns a VARCHAR or VARBINARY representing the hexadecimal equivalent of a number.

Behavior Type

Immutable

Syntax

TO_HEX (number)

Parameters

number (INTEGER) is the number to convert to hexadecimal

Notes

VARCHAR TO_HEX(INTEGER) and VARCHAR TO_HEX(VARBINARY) are similar. The function
converts data from binary type to character type (where the character representation is in
hexadecimal format). This function is the inverse of HEX_TO_BINARY.

TO_HEX(HEX_TO_BINARY(x)) = x).

HEX_TO_BINARY(TO_HEX(x)) = x).

-301-

 SQL Functions

Examples

SELECT TO_HEX(123456789);

 to_hex

 75bcd15

(1 row)

For VARBINARY inputs, the returned value is not preceded by "0x". For example:

SELECT TO_HEX('ab'::binary(2));

 to_hex

 6162

(1 row)

TRANSLATE

Replaces individual characters in string_to_replace with other characters.

Behavior Type

Immutable

Syntax

TRANSLATE (string_to_replace , from_string , to_string);

Parameters

string_to_replace Is the string to be translated.

from_string Contains characters that should be replaced in
string_to_replace.

to_string Any character in string_to_replace that matches a character
in from_string is replaced by the corresponding character in
to_string.

Example

SELECT TRANSLATE('straße', 'ß', 'ss');

 TRANSLATE

 strase

(1 row)

TRIM

Combines the BTRIM, LTRIM, and RTRIM functions into a single function.

-302-

SQL Reference Manual

Behavior Type

Immutable

Syntax

TRIM ([[LEADING | TRAILING | BOTH] characters FROM] expression)

Parameters

LEADING Removes the specified characters from the left side of the string

TRAILING Removes the specified characters from the right side of the string

BOTH Removes the specified characters from both sides of the string (default)

characters (CHAR or VARCHAR) specifies the characters to remove from expression.
The default is the space character.

expression (CHAR or VARCHAR) is the string to trim

Examples

SELECT '-' || TRIM(LEADING 'x' FROM 'xxdatabasexx') || '-';

 ?column?

 -databasexx-

(1 row)

SELECT '-' || TRIM(TRAILING 'x' FROM 'xxdatabasexx') || '-';

 ?column?

 -xxdatabase-

(1 row)

SELECT '-' || TRIM(BOTH 'x' FROM 'xxdatabasexx') || '-';

 ?column?

 -database-

(1 row)

SELECT '-' || TRIM('x' FROM 'xxdatabasexx') || '-';

 ?column?

 -database-

(1 row)

SELECT '-' || TRIM(LEADING FROM ' database ') || '-';

 ?column?

 -database -

(1 row)

SELECT '-' || TRIM(' database ') || '-';

 ?column?

 -database-

(1 row)

See Also

BTRIM (page 262)

-303-

 SQL Functions

LTRIM (page 281)

RTRIM (page 292)

UPPER

Returns a VARCHAR value containing the argument converted to uppercase letters.

Behavior Type

Stable

Syntax

UPPER (expression)

Parameters

expression (CHAR or VARCHAR) is the string to convert

Notes

UPPER is restricted to 32750 octet inputs, since it is possible for the UTF-8 representation of
result to double in size.

Examples

SELECT UPPER('AbCdEfG');

 upper

 ABCDEFG

(1 row)

SELECT UPPER('étudiant');

 UPPER

 éTUDIANT

(1 row)

UPPERB

Returns a character string with each ASCII character converted to uppercase; multibyte UTF-8
characters are not converted.

Behavior Type

Immutable

Syntax

UPPERB (expression)

Parameters

expression (CHAR or VARCHAR) is the string to convert

-304-

SQL Reference Manual

Examples

In the following example, the multibyte UTF-8 character é is not converted to uppercase:

SELECT UPPERB('étudiant');

 UPPERB

 éTUDIANT

(1 row)

SELECT UPPERB('AbCdEfG');

 UPPERB

 ABCDEFG

(1 row)

SELECT UPPERB('The Vertica Database');

 UPPERB

 THE VERTICA DATABASE

(1 row)

V6_ATON

Converts an IPv6 address represented as a character string to a binary string.

Behavior Type

Immutable

Syntax

V6_ATON (expression)

Parameters

expression (VARCHAR) is the string to convert.

Notes

The following syntax converts an IPv6 address represented as the character string A to a binary
string B.

V6_ATON trims any spaces from the right of A and calls the Linux function inet_pton
http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html.

V6_ATON(VARCHAR A) -> VARBINARY(16) B

If A has no colons it is prepended with '::ffff:'. If A is NULL, too long, or if inet_pton returns an error,
the result is NULL.

Examples

SELECT V6_ATON('2001:DB8::8:800:200C:417A');

 v6_aton

http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html

-305-

 SQL Functions

--

 \001\015\270\000\000\000\000\000\010\010\000 \014Az

(1 row)

SELECT TO_HEX(V6_ATON('2001:DB8::8:800:200C:417A'));

 to_hex

 20010db80000000000080800200c417a

(1 row)

SELECT V6_ATON('1.2.3.4');

 v6_aton

--

 \000\000\000\000\000\000\000\000\000\000\377\377\001\002\003\004

(1 row)

SELECT V6_ATON('::1.2.3.4');

 v6_aton

--

 \000\000\000\000\000\000\000\000\000\000\000\000\001\002\003\004

(1 row)

See Also

V6_NTOA (page 225)

V6_NTOA

Converts an IPv6 address represented as varbinary to a character string.

Behavior Type

Immutable

Syntax

V6_NTOA (expression)

Parameters

expression (VARBINARY) is the binary string to convert.

Notes

The following syntax converts an IPv6 address represented as VARBINARY B to a string A.

V6_NTOA right-pads B to 16 bytes with zeros, if necessary, and calls the Linux function inet_ntop
http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html.

http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html

-306-

SQL Reference Manual

V6_NTOA(VARBINARY B) -> VARCHAR A

If B is NULL or longer than 16 bytes, the result is NULL.

Vertica automatically converts the form '::ffff:1.2.3.4' to '1.2.3.4'.

Examples

SELECT V6_NTOA(' \001\015\270\000\000\000\000\000\010\010\000 \014Az');

 v6_ntoa

 2001:db8::8:800:200c:417a

(1 row)

SELECT V6_NTOA(V6_ATON('1.2.3.4'));

 v6_ntoa

 1.2.3.4

(1 row)

SELECT V6_NTOA(V6_ATON('::1.2.3.4'));

 v6_ntoa

 ::1.2.3.4

(1 row)

See Also

N6_ATON (page 224)

V6_SUBNETA

Calculates a subnet address in CIDR (Classless Inter-Domain Routing) format from a binary or
alphanumeric IPv6 address.

Behavior Type

Immutable

Syntax

V6_SUBNETA (expression1, expression2)

Parameters

expression1 (VARBINARY or VARCHAR) is the string to calculate.

expression2 (INTEGER) is the size of the subnet.

Notes

The following syntax calculates a subnet address in CIDR format from a binary or varchar IPv6
address.

V6_SUBNETA masks a binary IPv6 address B so that the N leftmost bits form a subnet address,
while the remaining rightmost bits are cleared. It then converts to an alphanumeric IPv6 address,
appending a slash and N.

-307-

 SQL Functions

V6_SUBNETA(BINARY B, INT8 N) -> VARCHAR C

The following syntax calculates a subnet address in CIDR format from an alphanumeric IPv6
address.

V6_SUBNETA(VARCHAR A, INT8 N) -> V6_SUBNETA(V6_ATON(A), N) -> VARCHAR C

Examples

SELECT V6_SUBNETA(V6_ATON('2001:db8::8:800:200c:417a'), 28);

 v6_subneta

 2001:db0::/28

(1 row)

See Also

V6_SUBNETN (page 227)

V6_SUBNETN

Calculates a subnet address in CIDR (Classless Inter-Domain Routing) format from a varbinary or
alphanumeric IPv6 address.

Behavior Type

Immutable

Syntax

V6_SUBNETN (expression1, expression2)

Parameters

expression1 (VARBINARY or VARCHAR or INTEGER) is the string
to calculate.

expression2 (INTEGER) is the size of the subnet.

Notes

The following syntax masks a BINARY IPv6 address B so that the N left-most bits of S form a
subnet address, while the remaining right-most bits are cleared.

V6_SUBNETN right-pads B to 16 bytes with zeros, if necessary and masks B, preserving its N-bit
subnet prefix.

V6_SUBNETN(VARBINARY B, INT8 N) -> VARBINARY(16) S

If B is NULL or longer than 16 bytes, or if N is not between 0 and 128 inclusive, the result is NULL.

S = [B]/N in Classless Inter-Domain Routing
http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing notation (CIDR notation).

The following syntax masks an alphanumeric IPv6 address A so that the N leftmost bits form a
subnet address, while the remaining rightmost bits are cleared.

V6_SUBNETN(VARCHAR A, INT8 N) -> V6_SUBNETN(V6_ATON(A), N) -> VARBINARY(16) S

http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

-308-

SQL Reference Manual

Example

SELECT V6_SUBNETN(V6_ATON('2001:db8::8:800:200c:417a'), 28);

 v6_subnetn

 \001\015\260\000\000\000\000\000\000\000\000\000\000\000\000

See Also

V6_SUBNETA (page 226)

V6_TYPE

Characterizes a binary or alphanumeric IPv6 address B as an integer type.

Behavior Type

Immutable

Syntax

V6_TYPE (expression)

Parameters

expression (VARBINARY or VARCHAR) is the type to convert.

Notes

V6_TYPE(VARBINARY B) returns INT8 T.

V6_TYPE(VARCHAR A) -> V6_TYPE(V6_ATON(A)) -> INT8 T

The IPv6 types are defined in the Network Working Group's IP Version 6 Addressing
Architecture memo http://www.ietf.org/rfc/rfc4291.txt.

 GLOBAL = 0 Global unicast addresses

 LINKLOCAL = 1 Link-Local unicast (and Private-Use) addresses

 LOOPBACK = 2 Loopback

 UNSPECIFIED = 3 Unspecified

 MULTICAST = 4 Multicast

IPv4-mapped and IPv4-compatible IPv6 addresses are also interpreted, as specified in IPv4
Global Unicast Address Assignments
http://www.iana.org/assignments/ipv4-address-space.

 For IPv4, Private-Use is grouped with Link-Local.

 If B is VARBINARY, it is right-padded to 16 bytes with zeros, if necessary.

 If B is NULL or longer than 16 bytes, the result is NULL.

Details

 IPv4 (either kind):

 0.0.0.0/8 UNSPECIFIED

 10.0.0.0/8 LINKLOCAL

http://www.ietf.org/rfc/rfc4291.txt
http://www.iana.org/assignments/ipv4-address-space

-309-

 SQL Functions

 127.0.0.0/8 LOOPBACK

 169.254.0.0/16 LINKLOCAL

 172.16.0.0/12 LINKLOCAL

 192.168.0.0/16 LINKLOCAL

 224.0.0.0/4 MULTICAST

 others GLOBAL

 IPv6:

 ::0/128 UNSPECIFIED

 ::1/128 LOOPBACK

 fe80::/10 LINKLOCAL

 ff00::/8 MULTICAST

 others GLOBAL

Examples

SELECT V6_TYPE(V6_ATON('192.168.2.10'));

 v6_type

 1

(1 row)

SELECT V6_TYPE(V6_ATON('2001:db8::8:800:200c:417a'));

 v6_type

 0

(1 row)

See Also

INET_ATON (page 222)

IP Version 6 Addressing Architecture http://www.ietf.org/rfc/rfc4291.txt

IPv4 Global Unicast Address Assignments
http://www.iana.org/assignments/ipv4-address-space

http://www.ietf.org/rfc/rfc4291.txt
http://www.iana.org/assignments/ipv4-address-space

-310-

 310

System Information Functions
These functions provide system information regarding user sessions. The superuser has
unrestricted access to all system information, but users can view only information about their own,
current sessions.

CURRENT_DATABASE

Returns a VARCHAR value containing the name of the database to which you are connected.

Behavior Type

Immutable

Syntax

CURRENT_DATABASE()

Notes

The CURRENT_DATABASE function does not require parentheses.

Examples

SELECT CURRENT_DATABASE();

 current_database

 vmartschema

(1 row)

The following command returns the same results without the parentheses:

SELECT CURRENT_DATABASE;

 current_database

 vmartschema

(1 row)

CURRENT_SCHEMA

Shows the resolved name of $User.

Behavior Type

Stable

Syntax

CURRENT_SCHEMA()

Notes

If the search path for USER1 is: $USER, COMMON, PUBLIC:

SELECT CURRENT_SCHEMA() returns the following output if schema USER1 exists:

-311-

 SQL Functions

USER1

If schema USER1 does not exist, it returns the following output:

COMMON

Example

SELECT CURRENT_SCHEMA();

 current_schema

 public

(1 row)

CURRENT_USER

Returns a VARCHAR containing the name of the user who initiated the current database
connection.

Behavior Type

Stable

Syntax

CURRENT_USER()

Notes

 The CURRENT_USER function does not require parentheses.

 This function is useful for permission checking and is equivalent to SESSION_USER (page
312) and USER (page 313).

Examples

SELECT CURRENT_USER();

 current_user

 dbadmin

(1 row)

The following command returns the same results without the parentheses:

SELECT CURRENT_USER;

 current_user

 dbadmin

(1 row)

HAS_TABLE_PRIVILEGE

Returns a true/false value indicating whether a user can access a table in a particular way.

Behavior Type

Stable

-312-

SQL Reference Manual

Syntax

HAS_TABLE_PRIVILEGE ([user,] table , privilege)

Parameters

user Specifies the name or OID of a database user. The default is the CURRENT_USER
(page 311).

table Specifies the name or OID of a table in the logical schema.

privilege  SELECT Allows the user to SELECT from any column of the specified table.

 INSERT Allows the user to INSERT records into the specified table and to

use the COPY (page 497) command to load the table.

 UPDATE Allows the user to UPDATE records in the specified table.

 DELETE Allows the user to delete a row from the specified table.

 REFERENCES Allows the user to create a foreign key constraint (privileges

required on both the referencing and referenced tables).

Examples

SELECT HAS_TABLE_PRIVILEGE('store.store_dimension', 'SELECT');

 has_table_privilege

 t

(1 row)

SELECT HAS_TABLE_PRIVILEGE('release', 'store.store_dimension',

'INSERT');

 has_table_privilege

 t

(1 row)

SELECT HAS_TABLE_PRIVILEGE('store.store_dimension', 'UPDATE');

 has_table_privilege

 t

(1 row)

SELECT HAS_TABLE_PRIVILEGE('store.store_dimension', 'REFERENCES');

 has_table_privilege

 t

(1 row)

SELECT HAS_TABLE_PRIVILEGE(45035996273711159, 45035996273711160,

'select');

 has_table_privilege

t

(1 row)

SESSION_USER

Returns a VARCHAR containing the name of the user who initiated the current database session.

-313-

 SQL Functions

Behavior Type

Stable

Syntax

SESSION_USER()

Notes

 The SESSION_USER function does not require parentheses.

 Is equivalent to CURRENT_USER (page 311) and USER (page 313).

Examples

SELECT SESSION_USER();

 session_user

 dbadmin

(1 row)

The following command returns the same results without the parentheses:

SELECT SESSION_USER;

 session_user

 dbadmin

(1 row)

USER

Returns a VARCHAR containing the name of the user who initiated the current database
connection.

Behavior Type

Stable

Syntax

USER()

Notes

 The USER function does not require parentheses.

 Is equivalent to CURRENT_USER (page 311).

Examples

SELECT USER();

 current_user

 dbadmin

(1 row)

The following command returns the same results without the parentheses:

SELECT USER;

-314-

SQL Reference Manual

 current_user

 dbadmin

(1 row)

VERSION

Returns a VARCHAR containing a Vertica node's version information.

Behavior Type

Stable

Syntax

VERSION()

Examples

SELECT VERSION();

 VERSION

--

 Vertica Analytic Database v4.0.12-20100513010203

(1 row)

The parentheses are required. If you omit them, the system returns an error:

SELECT VERSION;

ERROR: column "version" does not exist

Timeseries Aggregate (TSA) Functions
Time series functions evaluate the values of a given set of variables over time and group those
values into a window for analysis and aggregation.

One output row is produced per time slice—or per partition per time slice—if partition expressions
are present.

See Also

TIMESERIES Clause (page 623)

CONDITIONAL_CHANGE_EVENT (page 129) and CONDITIONAL_TRUE_EVENT (page 130)

Using Time Series Analytics in the Programmer's Guide

TS_FIRST_VALUE

Processes the data that belongs to each time slice. A time series aggregate (TSA) function,
TS_FIRST_VALUE returns the value at the start of the time slice, where an interpolation scheme
is applied if the timeslice is missing, in which case the value is determined by the values
corresponding to the previous (and next) timeslices based on the interpolation scheme of const
(linear). There is one value per time slice per partition.

-315-

 SQL Functions

Behavior Type

Immutable

Syntax

TS_FIRST_VALUE (expression [IGNORE NULLS]

... [, { 'CONST' | 'LINEAR' }])

Parameters

expression Is the argument expression on which to aggregate and interpolate.

expression is data type INTEGER or FLOAT.

IGNORE NULLS The IGNORE NULLS behavior changes depending on a CONST
or LINEAR interpolation scheme. See When Time Series Data
Contains Nulls in the Programmer's Guide for details.

'CONST' | 'LINEAR' Optionally specifies the interpolation value as either constant or
linear. The default is constant. If omitted, Vertica defaults to
CONST, but you can also specify CONST.

Notes

 The function returns one output row per time slice or one output row per partition per time slice
if partition expressions are specified.

 Multiple time series aggregate functions can exists in the same query. They share the same
gap-filling policy as defined by the TIMESERIES clause (page 623); however, each time
series aggregate function can specify its own interpolation policy. For example:

SELECT slice_time, symbol,

 TS_FIRST_VALUE(bid, 'const') fv_c,

 TS_FIRST_VALUE(bid, 'linear') fv_l,

 TS_LAST_VALUE(bid, 'const') lv_c

FROM TickStore

TIMESERIES slice_time AS '3 seconds' OVER(PARTITION BY symbol ORDER BY ts);

 You must use an ORDER BY clause with a timestamp column.

Example

For detailed examples, see Gap Filling and Interpolation and When Time Series Data Contains
Nulls in the Programmer's Guide.

See Also

TIMESERIES Clause (page 623) and TS_LAST_VALUE (page 316)

Using Time Series Analytics in the Programmer's Guide

-316-

SQL Reference Manual

TS_LAST_VALUE

Processes the data that belongs to each time slice. A time series aggregate (TSA) function,
TS_LAST_VALUE returns the value at the end of the time slice, where an interpolation scheme is
applied if the timeslice is missing, in which case the value is determined by the values
corresponding to the previous (and next) timeslices based on the interpolation scheme of const
(linear). There is one value per time slice per partition.

Behavior Type

Immutable

Syntax

TS_LAST_VALUE (expression [IGNORE NULLS]

... [, { 'CONST' | 'LINEAR' }])

Parameters

expression Is the argument expression on which to aggregate and
interpolate.

expression is data type INTEGER or FLOAT.

IGNORE NULLS The IGNORE NULLS behavior changes depending on a
CONST or LINEAR interpolation scheme. See When Time
Series Data Contains Nulls in the Programmer's Guide for
details.

'CONST' | 'LINEAR' Optionally specifies the interpolation value as either constant or
linear. The default is constant. If omitted, Vertica defaults to
CONST, but you can also specify CONST.

Notes

 The function returns one output row per time slice or one output row per partition per time slice
if partition expressions are specified.

 Multiple time series aggregate functions can exists in the same query. They share the same
gap-filling policy as defined by the TIMESERIES clause (page 623); however, each time
series aggregate function can specify its own interpolation policy. For example:

SELECT slice_time, symbol,

 TS_FIRST_VALUE(bid, 'const') fv_c,

 TS_FIRST_VALUE(bid, 'linear') fv_l,

 TS_LAST_VALUE(bid, 'const') lv_c

FROM TickStore

TIMESERIES slice_time AS 3 seconds OVER(PARTITION BY symbol ORDER BY ts);

 If you use the window_order_clause, you can order by a TIMESTAMP column only, not, for
example, an by an INTEGER column.

-317-

 SQL Functions

Example

For detailed examples, see Gap Filling and Interpolation and When Time Series Data Contains
Nulls in the Programmer's Guide.

See Also

TIMESERIES Clause (page 623) and TS_FIRST_VALUE (page 314)

Using Time Series Analytics in the Programmer's Guide

-318-

 318

Vertica Functions
The functions in this section are used to query or change the internal state of Vertica and are not
part of the SQL standard. Since these meta-functions access internal data structures, they cannot

be called in DML, DDL, or SELECT queries.

The behavior type of Vertica built-in functions is immutable.

Alphabetical List of Vertica Functions

This section contains all Vertica-specific functions, listed alphabetically, as in previous releases.
Each function is also grouped into the appropriate category; for example:

 Catalog management functions (page 395)

 Constraint management functions (page 401)

 Database management functions (page 411)

 Epoch management functions (page 418)

 Partition management functions (page 424)

 Projection management functions (page 432)

 Purge functions (page 440)

 Regular expression functions (page 442)

 Session management functions (page 455)

 Statistic management functions (page 465)

 Storage management functions (page 469)

 Tuple Mover functions (page 475)

ADD_LOCATION

Adds a location to store data.

Syntax

ADD_LOCATION (path , [node , usage_string])

Parameters

path Specifies where the storage location is mounted.

Path must be an empty directory with write permissions for user,
group, or all.

node Is the Vertica node where the location is available.

If this parameter is omitted, node defaults to the initiator.

usage_string Is one of the following:

 DATA: Only data is stored in the location.

 TEMP: Only temporary files that are created during loads or
queries are stored in the location.

 DATA,TEMP: Both types of files are stored in the location.

-319-

 SQL Functions

If this parameter is omitted, the default is DATA,TEMP.

Notes

 By default, the location is used to store both data and temporary files.

 Locations can be added from any node to any node.

 Either node and usage_string must both be specified or neither of them specified.

 Information about storage locations is visible V_MONITOR.DISK_STORAGE (page 699).

 A storage location annotation called CATALOG indicates the location is used to store the
catalog and is visible in V_MONITOR.DISK_STORAGE. However, no new locations can be
added, as CATALOG locations and existing CATALOG annotations cannot be removed.

Example

This example adds a location that stores data and temporary files:

SELECT ADD_LOCATION('/secondVerticaStorageLocation/');

This example adds a location to store data only:

SELECT ADD_LOCATION('/secondVerticaStorageLocation/' , 'node2' , 'DATA');

See Also

ALTER_LOCATION_USE (page 320)

RETIRE_LOCATION (page 388)

-320-

SQL Reference Manual

ADVANCE_EPOCH

Manually closes the current epoch and begins a new epoch.

Syntax

ADVANCE_EPOCH ([integer])

Parameters

integer Specifies the number of epochs to advance.

If the EpochAdvancementMode parameter is set to DML (the
default), the number of epochs to advance defaults to zero (0). If
the EpochAdvancementMode is set to AdvanceEpochInterval,
the number of epochs to advance defaults to one(1). Note that the
AdvanceEpochInterval parameter is ignored by default.

See Configuration Parameters in the Administrator's Guide for
more information about the EpochAdvancementMode parameter.

Note

This function is primarily maintained for backward compatibility with earlier versions of Vertica that
advance epochs based on the ADVANCEEPOCHINTERVAL.

Example

The following command increments the epoch number by 1:

=> SELECT ADVANCE_EPOCH(1);

See Also

ALTER PROJECTION (page 479)

ALTER_LOCATION_USE

Alters the type of files stored in the specified storage location.

Syntax

ALTER_LOCATION_USE (path , [node] , usage_string)

Parameters

path Specifies where the storage location is mounted.

node [Optional] Is the Vertica node where the location is
available.

If this parameter is omitted, node defaults to the initiator.

usage_string Is one of the following:

 DATA: Only data is stored in the location.

 TEMP: Only temporary files that are created
during loads or queries are stored in the location.

 DATA,TEMP: Both types of files are stored in the
location.

-321-

 SQL Functions

Notes

 Altering the type of files stored in a particular location is useful if you create additional storage
locations and you want to isolate execution engine temporary files from data files.

 After modifying the location's use, at least one location must remain for storing data and temp
files. These files can be stored in the same storage location or separate storage locations.

 When a storage location is altered, it stores only the type of information indicated from that
point forward. For example:

 If you modify a storage location that previously stored both temp and data files so that it
only stores temp files, the data is eventually merged out through the ATM. You can also
merge it out manually.

 If you modify a storage location that previously stored both temp and data files so that it
only stores data files, all currently running statements that use these temp files, such as
queries and loads, continue to run. Subsequent statements will no longer use this location.

Example

The following example alters the storage location on node3 to store data only:

=> SELECT ALTER_LOCATION_USE ('/thirdVerticaStorageLocation/' , 'node3' ,

'DATA');

See Also

ADD_LOCATION (page 318)

RETIRE_LOCATION (page 388)

Modifying Storage Locations in the Administrator's Guide

ANALYZE_CONSTRAINTS

Analyzes and reports on constraint violations within the current schema search path.

You can check for constraint violations by passing an empty argument (which returns violations on
all tables within the current schema), by passing a single table argument, or by passing two
arguments containing a table name and a column or list of columns.

Syntax

ANALYZE_CONSTRAINTS [('')

... | (schema.table)

... | [(schema.table , column)]

Parameters

('') Analyzes and reports on all tables within the current schema search path.

table Analyzes and reports on all constraints referring to the specified table.

column Analyzes and reports on all constraints referring to specified table that contains
the specified columns.

-322-

SQL Reference Manual

Notes

 ANALYZE_CONSTRAINTS(), takes locks in the same way that SELECT * FROM t1 holds a

lock on table t1. See LOCKS (page 712) for additional information.

 Use COPY (page 497) with NO COMMIT keywords to incorporate detection of constraint
violations into the load process. Vertica checks for constraint violations when queries are run,
not when data is loaded. To avoid constraint violations, load data without committing it and
then perform a post-load check of your data using the ANALYZE_CONSTRAINTS function. If
the function finds constraint violations, you can roll back the load because you have not
committed it.

 ANALYZE_CONSTRAINTS() fails if the database cannot perform constraint checks, such as
when the system is out of resources. Vertica returns an error that identifies the specific
condition that caused the failure.

 When ANALYZE_CONSTRAINTS finds violations, such as when you insert a duplicate value
into a primary key, you can correct errors using the following functions. Effects last until the
end of the session only:

 SELECT DISABLE_DUPLICATE_KEY_ERROR (page 336)

 SELECT REENABLE_DUPLICATE_KEY_ERROR (page 373)

 If you specify the wrong table, the system returns an error message:

SELECT ANALYZE_CONSTRAINTS('abc');

ERROR: 'abc' is not a table in the current search path

 If you issue the function using incorrect syntax, the system returns an error message with a
hint:

ANALYZE ALL CONSTRAINT;

Or

ANALYZE CONSTRAINT abc;

ERROR: ANALYZE CONSTRAINT is not supported.

HINT: You may consider using analyze_constraints().

 ANALYZE_CONSTRAINTS returns an error if run from a non-default locale; for example:

=> \locale LEN

INFO: Canonical locale: 'en'

INFO: English

INFO: Standard collation: 'LEN'

=> SELECT ANALYZE_CONSTRAINTS('t1');

ERROR: ANALYZE_CONSTRAINTS is currently not supported in non-default

locales

HINT: Set the locale in this session to en_US@collation=binary using

the

command "\locale en_US@collation=binary"

Return Values

ANALYZE_CONSTRAINTS() returns results in a structured set (see table below) that lists the
schema name, table name, column name, constraint name, constraint type, and the column
values that caused the violation.

If the result set is empty, then no constraint violations exist; for example:

-323-

 SQL Functions

SELECT ANALYZE_CONSTRAINTS ('public.product_dimension', 'product_key');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

(0 rows)

The following result set, on the other hand, shows a primary key violation, along with the value that

caused the violation ('10'):

SELECT ANALYZE_CONSTRAINTS ('');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 store t1 c1 pk_t1 PRIMARY ('10')

(1 row)

The result set columns are described in further detail in the following table:

Column Name Data Type Description

Schema Name VARCHAR The name of the schema.

Table Name VARCHAR The name of the table, if specified.

Column Names VARCHAR Names of columns containing constraints. Multiple columns
are in a comma-separated list:

store_key,

store_key, date_key,

Constraint Name VARCHAR The given name of the primary key, foreign key, unique, or not
null constraint, if specified.

Constraint Type VARCHAR Identified by one of the following strings: 'PRIMARY KEY',
'FOREIGN KEY', 'UNIQUE', or 'NOT NULL'.

Column Values VARCHAR Value of the constraint column, in the same order in which

Column Names contains the value of that column in the

violating row.

When interpreted as SQL, the value of this column forms a list

of values of the same type as the columns in Column Names;

for example:

('1'),

('1', 'z')

Examples

Given the following inputs, Vertica returns one row, indicating one violation, because the same
primary key value (10) was inserted into table t1 twice:

CREATE TABLE t1(c1 INT);

ALTER TABLE t1 ADD CONSTRAINT pk_t1 PRIMARY KEY (c1);

CREATE PROJECTION t1_p (c1) AS SELECT * FROM t1 UNSEGMENTED ALL NODES;

INSERT INTO t1 values (10);

INSERT INTO t1 values (10); --Duplicate primary key value

SELECT ANALYZE_CONSTRAINTS('t1');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public t1 c1 pk_t1 PRIMARY ('10')

(1 row)

If the second INSERT statement above had contained any different value, the result would have
been 0 rows (no violations).

-324-

SQL Reference Manual

In this example, create a table that contains 3 integer columns, one a unique key and one a
primary key:

CREATE TABLE fact_1(

 f INTEGER,

 f_UK INTEGER UNIQUE,

 f_PK INTEGER PRIMARY KEY

);

Try issuing a command that refers to a nonexistent column:

SELECT ANALYZE_CONSTRAINTS('f_BB', 'f2');

ERROR: 'f_BB' is not a table name in the current search path

Insert some values into table fact_1 and commit the changes:

INSERT INTO fact_1 values (1, 1, 1);

COMMIT;

Now issue the ANALYZE_CONSTRAINTS command on table fact_1. No constraint violations

are expected and none are found:

SELECT ANALYZE_CONSTRAINTS('fact_1');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

(0 rows)

Now insert duplicate unique and primary key values and run ANALYZE_CONSTRAINTS on table

fact_1 again. The system shows two violations: one against the primary key and one against the

unique key:

INSERT INTO fact_1 VALUES (1, 1, 1);

COMMIT;

SELECT ANALYZE_CONSTRAINTS('fact_1');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public | fact_1 | f_pk | - | PRIMARY | ('1')

 public | fact_1 | f_uk | - | UNIQUE | ('1')

(2 rows)

The following command looks for constraint validation on only the unique key in table fact_1:

SELECT ANALYZE_CONSTRAINTS('fact_1', 'f_UK');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public | fact_1 | f_uk | C_UNIQUE | UNIQUE | ('1')

(1 row)

The following example shows that you can specify the same column more than once; the function,
however, returns the violation once only:

SELECT ANALYZE_CONSTRAINTS('fact_1', 'f_PK, F_PK');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public | fact_1 | f_pk | C_PRIMARY | PRIMARY | ('1')

(1 row)

The following example creates a new dimension table, dim_1, and inserts a foreign key and

different (character) data types:

CREATE TABLE dim_1 (b VARCHAR(3), b_PK VARCHAR(4), b_FK INTEGER REFERENCES fact_1(f_PK));

Alter the table to create a multicolumn unique key and multicolumn foreign key and create
superprojections:

ALTER TABLE dim_1 ADD CONSTRAINT dim_1_multiuk PRIMARY KEY (b, b_PK);

-325-

 SQL Functions

The following command inserts a missing foreign key (0) in table dim_1 and commits the

changes:

INSERT INTO dim_1 VALUES ('r1', 'Xpk1', 0);

COMMIT;

Checking for constraints on table dim_1 detects a foreign key violation:

SELECT ANALYZE_CONSTRAINTS('dim_1');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public | dim_1 | b_fk | C_FOREIGN | FOREIGN | ('0')

(1 row)

Now add a duplicate value into the unique key and commit the changes:

INSERT INTO dim_1 values ('r2', 'Xpk1', 1);

INSERT INTO dim_1 values ('r1', 'Xpk1', 1);

COMMIT;

Checking for constraint violations on table dim_1 detects the duplicate unique key error:

SELECT ANALYZE_CONSTRAINTS('dim_1');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+----------------

 public | dim_1 | b, b_pk | dim_1_multiuk | PRIMARY | ('r1', 'Xpk1')

 public | dim_1 | b_fk | C_FOREIGN | FOREIGN | ('0')

(2 rows)

Now create a table with multicolumn foreign key and create the superprojections:

CREATE TABLE dim_2(z_fk1 VARCHAR(3), z_fk2 VARCHAR(4));

ALTER TABLE dim_2 ADD CONSTRAINT dim_2_multifk FOREIGN KEY (z_fk1, z_fk2) REFERENCES dim_1(b, b_PK);

Now insert a foreign key that matches a foreign key in table dim_1 and commit the changes:

INSERT INTO dim_2 VALUES ('r1', 'Xpk1');

COMMIT;

Checking for constraints on table dim_2 detects no violations:

SELECT ANALYZE_CONSTRAINTS('dim_2');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

(0 rows)

Add a value that does not match and commit the change:

INSERT INTO dim_2 values ('r1', 'NONE');

COMMIT;

Checking for constraints on table dim_2 detects a foreign key violation:

SELECT ANALYZE_CONSTRAINTS('dim_2');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+----------------

 public | dim_2 | z_fk1, z_fk2 | dim_2_multifk | FOREIGN | ('r1', 'NONE')

(1 row)

Now analyze all constraints on all tables:

SELECT ANALYZE_CONSTRAINTS('');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public | dim_1 | b, b_pk | dim_1_multiuk | PRIMARY | ('r1', 'Xpk1')

 public | dim_1 | b_fk | C_FOREIGN | FOREIGN | ('0')

 public | dim_2 | z_fk1, z_fk2 | dim_2_multifk | FOREIGN | ('r1', 'NONE')

 public | fact_1 | f_pk | C_PRIMARY | PRIMARY | ('1')

 public | fact_1 | f_uk | C_UNIQUE | UNIQUE | ('1')

-326-

SQL Reference Manual

(5 rows)

To quickly clean up your database, issue the following command:

DROP TABLE fact_1 cascade;

DROP TABLE dim_1 cascade;

DROP TABLE dim_2 cascade;

To learn how to remove violating rows, see the DISABLE_DUPLICATE_KEY_ERROR (page
336) function.

See Also

Adding Constraints in the Administrator's Guide

COPY (page 497)

ALTER TABLE (page 488)

CREATE TABLE (page 546)

-327-

 SQL Functions

ANALYZE_STATISTICS

Collects and aggregates data samples and storage information as a background process from all
nodes on which a projection is stored, then writes statistics into the catalog so that the statistics
can be used by the query optimizer. Without these statistics, the query optimizer would assume
uniform distribution of data values and equal storage usage for all projections.

Syntax

ANALYZE_STATISTICS { ('')

... | ('[schema.]table')

... | ('projection') }

... | ('column-name')

Return Value

 0 - For success.

 1 - For failure. Refer to vertica.log for details.

Parameters

'' Empty string. Collects statistics for all projections.

[schema.]table Specifies the name of the table and optional schema. When
using more than one schema, specify the schema that contains
the projection.

Collects statistics for all projections of the specified table.

projection Specifies the name of the projection.

Collects statistics for the specified projection as well as all the
projections with the same anchor table.

column-name Specifies the name of a single table column.

Collects statistics for the specified column as well as all the
projections with the same anchor table.

Notes

Issuing the command against very large tables/projections could return results more slowly. To
return results more quickly, you could issue the command against a single column.

Example

The examples use the Vmart example database.

The following command computes statistics on all projections in the database and returns 0
(success):

=> SELECT ANALYZE_STATISTICS ('');

 analyze_statistics

 0

(1 row)

-328-

SQL Reference Manual

The following command computes statistics on the shipping_dimension table and returns 0

(success):

=> SELECT ANALYZE_STATISTICS ('shipping_dimension');

 analyze_statistics

 0

(1 row)

The following command computes statistics on one of the shipping_dimension table's

projections and returns 0 (success):

=> SELECT ANALYZE_STATISTICS('shipping_dimension_site02'); analyze_statistics

 0

(1 row)

The following command computes statistics on the shipping_dimension table's

shipping_key column for all projections and returns 0 (success):

=> SELECT ANALYZE_STATISTICS('shipping_dimension.shipping_key');

analyze_statistics

 0

(1 row)

For use cases, see Collecting Statistics in the Administrator's Guide

See Also

DROP_STATISTICS (page 343)

EXPORT_STATISTICS (page 353)

IMPORT_STATISTICS (page 362)

CLEAR_QUERY_REPOSITORY

Triggers Vertica to clear query data from the query repository immediately.

Syntax

CLEAR_QUERY_REPOSITORY()

Notes

Before using this function:

1 Note the value of the QueryRepoRetentionTime parameter.

2 Set the QueryRepoRetentionTime parameter to zero (0). (See Configuring Query Repository
in the Troubleshooting Guide.)

=> SELECT SET_CONFIG_PARAMETER('QueryRepoRetentionTime','0');

Once you have cleared the query repository, set the QueryRepoRetentionTime parameter back to
the original value (before you changed it to zero). The default value is 100.

-329-

 SQL Functions

Example

SELECT CLEAR_QUERY_REPOSITORY();

 CLEAR_QUERY_REPOSITORY

 Query Repository Cleaned

(1 row)

See Also

Collecting Query Information in the Troubleshooting Guide

Configuration Parameters in the Administrator's Guide

CLEAR_PROJECTION_REFRESHES

Triggers Vertica to clear information about refresh operations for projections immediately.

Syntax

CLEAR_PROJECTION_REFRESHES()

Notes

Information about a refresh operation—whether successful or unsuccessful—is maintained in the
PROJECTION_REFRESHES (page 717) system table until either the
CLEAR_PROJECTION_REFRESHES (page 329)() function is executed or the storage quota for

the table is exceeded. The PROJECTION_REFRESHES.IS_EXECUTING column returns a

boolean value that indicates whether the refresh is currently running (t) or occurred in the past (f).

Example

To immediately purge projection refresh history, use the CLEAR_PROJECTION_REFRESHES()
function:

=> SELECT CLEAR_PROJECTION_REFRESHES();

 CLEAR_PROJECTION_REFRESHES

 CLEAR

(1 row)

Only the rows where the PROJECTION_REFRESHES.IS_EXECUTING column equals false are

cleared.

See Also

PROJECTION_REFRESHES (page 717)

REFRESH (page 373)

START_REFRESH (page 394)

Clearing PROJECTION_REFRESHES History in the Administrator's Guide

-330-

SQL Reference Manual

CLEAR_RESOURCE_REJECTIONS

Clears the content of the RESOURCE_REJECTIONS (page 735) and
DISK_RESOURCE_REJECTIONS (page 698) system tables. Normally, these tables are only
cleared during a node restart. This function lets you clear the tables whenever you need. For
example, you may want to clear the tables after having resolved a disk space issue that caused
disk resource rejections.

CLOSE_SESSION

Interrupts the specified external session and rolls back the current transaction, if any, and closes
the socket.

Syntax

CLOSE_SESSION (sessionid)

Parameters

sessionid A string that specifies the session to close. This identifier is unique
within the cluster at any point in time but can be reused when the
session closes.

Notes

 Closing of the session is processed asynchronously. It could take some time for the session to
be closed. Check the SESSIONS (page 741) table for the status.

 Database shutdown is prevented if new sessions connect after the CLOSE_SESSION()
command is invoked (and before the database is actually shut down. See Controlling
Sessions below.

Messages

The following are the messages you could encounter:

 For a badly formatted sessionID

close_session | Session close command sent. Check SESSIONS for progress.

Error: invalid Session ID format

 For an incorrect sessionID parameter

Error: Invalid session ID or statement key

Examples

User session opened. RECORD 2 shows the user session running COPY DIRECT statement.

vmartdb=> SELECT * FROM sessions;

-[RECORD 1]--------------+---

node_name | v_vmartdb_node0001

user_name | dbadmin

client_hostname | 127.0.0.1:52110

client_pid | 4554

login_timestamp | 2011-01-03 14:05:40.252625-05

session_id | stress04-4325:0x14

client_label |

transaction_start | 2011-01-03 14:05:44.325781

-331-

 SQL Functions

transaction_id | 45035996273728326

transaction_description | user dbadmin (SELECT * FROM sessions;)

statement_start | 2011-01-03 15:36:13.896288

statement_id | 10

last_statement_duration_us | 14978

current_statement | select * from sessions;

ssl_state | None

authentication_method | Trust

-[RECORD 2]--------------+---

node_name | v_vmartdb_node0002

user_name | dbadmin

client_hostname | 127.0.0.1:57174

client_pid | 30117

login_timestamp | 2011-01-03 15:33:00.842021-05

session_id | stress05-27944:0xc1a

client_label |

transaction_start | 2011-01-03 15:34:46.538102

transaction_id | -1

transaction_description | user dbadmin (COPY ClickStream_Fact FROM

 '/data/clickstream/1g/ClickStream_Fact.tbl'

 DELIMITER '|' NULL '\\n' DIRECT;)

statement_start | 2011-01-03 15:34:46.538862

statement_id |

last_statement_duration_us | 26250

current_statement | COPY ClickStream_Fact FROM '/data/clickstream

 /1g/ClickStream_Fact.tbl' DELIMITER '|' NULL

 '\\n' DIRECT;

ssl_state | None

authentication_method | Trust

Close user session stress05-27944:0xc1a

vmartdb=> \x

Expanded display is off.

vmartdb=> SELECT CLOSE_SESSION('stress05-27944:0xc1a');

 CLOSE_SESSION

--

 Session close command sent. Check v_monitor.sessions for progress.

(1 row)

Query the sessions table again for current status, and you can see that the second session has
been closed:

=> SELECT * FROM SESSIONS;

-[RECORD 1]--------------+--

node_name | v_vmartdb_node0001

user_name | dbadmin

client_hostname | 127.0.0.1:52110

client_pid | 4554

login_timestamp | 2011-01-03 14:05:40.252625-05

session_id | stress04-4325:0x14

client_label |

transaction_start | 2011-01-03 14:05:44.325781

transaction_id | 45035996273728326

transaction_description | user dbadmin (select * from SESSIONS;)

statement_start | 2011-01-03 16:12:07.841298

-332-

SQL Reference Manual

statement_id | 20

last_statement_duration_us | 2099

current_statement | SELECT * FROM SESSIONS;

ssl_state | None

authentication_method | Trust

Controlling Sessions

The database administrator must be able to disallow new incoming connections in order to shut
down the database. On a busy system, database shutdown is prevented if new sessions connect
after the CLOSE_SESSION or CLOSE_ALL_SESSIONS() command is invoked — and before the
database actually shuts down.

One option is for the administrator to issue the SHUTDOWN('true') command, which forces the

database to shut down and disallow new connections. See SHUTDOWN (page 393) in the SQL
Reference Manual.

Another option is to modify the MaxClientSessions parameter from its original value to 0, in

order to prevent new non-dbadmin users from connecting to the database.

1 Determine the original value for the MaxClientSessions parameter by querying the

V_MONITOR.CONFIGURATIONS_PARAMETERS (page 693) system table:

=> SELECT CURRENT_VALUE FROM CONFIGURATION_PARAMETERS WHERE

parameter_name='MaxClientSessions';

 CURRENT_VALUE

 50

(1 row)

2 Set the MaxClientSessions parameter to 0 to prevent new non-dbadmin connections:

=> SELECT SET_CONFIG_PARAMETER('MaxClientSessions', 0);

Note: The previous command allows up to five administrators to log in.

3 Issue the CLOSE_ALL_SESSIONS() command to remove existing sessions:

=> SELECT CLOSE_ALL_SESSIONS();

4 Query the SESSIONS table:

=> SELECT * FROM SESSIONS;

When the session no longer appears in the SESSIONS table, disconnect and run the Stop

Database command.

5 Restart the database.

6 Restore the MaxClientSessions parameter to its original value:

=> SELECT SET_CONFIG_PARAMETER('MaxClientSessions', 50);

See Also

CLOSE_ALL_SESSIONS (page 333), CONFIGURATION_PARAMETERS (page 693),
SESSIONS (page 741), SHUTDOWN (page 393)

-333-

 SQL Functions

Managing Sessions and Configuration Parameters in the Administrator's Guide

Shutdown Problems in the Troubleshooting Guide

CLOSE_ALL_SESSIONS

Closes all external sessions except the one issuing the CLOSE_ALL_SESSIONS functions.

Syntax

CLOSE_ALL_SESSIONS()

Notes

Closing of the sessions is processed asynchronously. It might take some time for the session to be
closed. Check the SESSIONS (page 741) table for the status.

Database shutdown is prevented if new sessions connect after the CLOSE_SESSION or
CLOSE_ALL_SESSIONS() command is invoked (and before the database is actually shut down).
See Controlling Sessions below.

Message

close_all_sessions | Close all sessions command sent.

Check SESSIONS for progress.

Examples

Two user sessions opened, each on a different node:

vmartdb=> SELECT * FROM sessions;

-[RECORD 1

]--------------+--

node_name | v_vmartdb_node0001

user_name | dbadmin

client_hostname | 127.0.0.1:52110

client_pid | 4554

login_timestamp | 2011-01-03 14:05:40.252625-05

session_id | stress04-4325:0x14

client_label |

transaction_start | 2011-01-03 14:05:44.325781

transaction_id | 45035996273728326

transaction_description | user dbadmin (select * from sessions;)

statement_start | 2011-01-03 15:36:13.896288

statement_id | 10

last_statement_duration_us | 14978

current_statement | select * from sessions;

ssl_state | None

authentication_method | Trust

-[RECORD 2

]--------------+--

node_name | v_vmartdb_node0002

user_name | dbadmin

client_hostname | 127.0.0.1:57174

client_pid | 30117

login_timestamp | 2011-01-03 15:33:00.842021-05

session_id | stress05-27944:0xc1a

-334-

SQL Reference Manual

client_label |

transaction_start | 2011-01-03 15:34:46.538102

transaction_id | -1

transaction_description | user dbadmin (COPY Mart_Fact FROM

'/data/mart_Fact.tbl'

 DELIMITER '|' NULL '\\n';)

statement_start | 2011-01-03 15:34:46.538862

statement_id |

last_statement_duration_us | 26250

current_statement | COPY Mart_Fact FROM '/data/Mart_Fact.tbl' DELIMITER

'|'

 NULL '\\n';

ssl_state | None

authentication_method | Trust

-[RECORD 3

]--------------+--

node_name | v_vmartdb_node0003

user_name | dbadmin

client_hostname | 127.0.0.1:56367

client_pid | 1191

login_timestamp | 2011-01-03 15:31:44.939302-05

session_id | stress06-25663:0xbec

client_label |

transaction_start | 2011-01-03 15:34:51.05939

transaction_id | 54043195528458775

transaction_description | user dbadmin (COPY Mart_Fact FROM

'/data/Mart_Fact.tbl'

 DELIMITER '|' NULL '\\n' DIRECT;)

statement_start | 2011-01-03 15:35:46.436748

statement_id |

last_statement_duration_us | 1591403

current_statement | COPY Mart_Fact FROM '/data/Mart_Fact.tbl' DELIMITER

'|'

 NULL '\\n' DIRECT;

ssl_state | None

authentication_method | Trust

Close all sessions:

vmartdb=> \x

Expanded display is off.

vmartdb=> SELECT CLOSE_ALL_SESSIONS();

 CLOSE_ALL_SESSIONS

 Close all sessions command sent. Check v_monitor.sessions for progress.

(1 row)

Sessions contents after issuing the CLOSE_ALL_SESSIONS() command:

=> SELECT * FROM SESSIONS;

-[RECORD 1]--------------+--

node_name | v_vmartdb_node0001

user_name | dbadmin

client_hostname | 127.0.0.1:52110

client_pid | 4554

-335-

 SQL Functions

login_timestamp | 2011-01-03 14:05:40.252625-05

session_id | stress04-4325:0x14

client_label |

transaction_start | 2011-01-03 14:05:44.325781

transaction_id | 45035996273728326

transaction_description | user dbadmin (SELECT * FROM sessions;)

statement_start | 2011-01-03 16:19:56.720071

statement_id | 25

last_statement_duration_us | 15605

current_statement | SELECT * FROM SESSIONS;

ssl_state | None

authentication_method | Trust

Controlling Sessions

The database administrator must be able to disallow new incoming connections in order to shut
down the database. On a busy system, database shutdown is prevented if new sessions connect
after the CLOSE_SESSION or CLOSE_ALL_SESSIONS() command is invoked — and before the
database actually shuts down.

One option is for the administrator to issue the SHUTDOWN('true') command, which forces the

database to shut down and disallow new connections. See SHUTDOWN (page 393) in the SQL
Reference Manual.

Another option is to modify the MaxClientSessions parameter from its original value to 0, in

order to prevent new non-dbadmin users from connecting to the database.

1 Determine the original value for the MaxClientSessions parameter by querying the

V_MONITOR.CONFIGURATIONS_PARAMETERS (page 693) system table:

=> SELECT CURRENT_VALUE FROM CONFIGURATION_PARAMETERS WHERE

parameter_name='MaxClientSessions';

 CURRENT_VALUE

 50

(1 row)

2 Set the MaxClientSessions parameter to 0 to prevent new non-dbadmin connections:

=> SELECT SET_CONFIG_PARAMETER('MaxClientSessions', 0);

Note: The previous command allows up to five administrators to log in.

3 Issue the CLOSE_ALL_SESSIONS() command to remove existing sessions:

=> SELECT CLOSE_ALL_SESSIONS();

4 Query the SESSIONS table:

=> SELECT * FROM SESSIONS;

When the session no longer appears in the SESSIONS table, disconnect and run the Stop

Database command.

5 Restart the database.

6 Restore the MaxClientSessions parameter to its original value:

=> SELECT SET_CONFIG_PARAMETER('MaxClientSessions', 50);

-336-

SQL Reference Manual

See Also

CLOSE_SESSION (page 330), CONFIGURATION_PARAMETERS (page 693), SESSIONS
(page 741), SHUTDOWN (page 393)

Managing Sessions and Configuration Parameters in the Administrator's Guide

Shutdown Problems in the Troubleshooting Guide

CURRENT_SCHEMA

Shows the resolved name of $User.

Behavior Type

Stable

Syntax

CURRENT_SCHEMA()

Notes

If the search path for USER1 is: $USER, COMMON, PUBLIC:

SELECT CURRENT_SCHEMA() returns the following output if schema USER1 exists:

USER1

If schema USER1 does not exist, it returns the following output:

COMMON

Example

SELECT CURRENT_SCHEMA();

 current_schema

 public

(1 row)

DISABLE_DUPLICATE_KEY_ERROR

Disables error messaging when Vertica finds duplicate PRIMARY KEY/UNIQUE KEY values at
run time. Queries execute as though no constraints are defined on the schema. Effects are
session scoped.

CAUTION: When called, DISABLE_DUPLICATE_KEY_ERROR() suppresses data integrity
checking and can lead to incorrect query results. Use this function only after you insert
duplicate primary keys into a dimension table in the presence of a prejoin projection. Then
correct the violations and turn integrity checking back on with
REENABLE_DUPLICATE_KEY_ERROR (page 373)().

Syntax

DISABLE_DUPLICATE_KEY_ERROR();

-337-

 SQL Functions

Notes

The following series of commands create a table named dim and the corresponding projection:

CREATE TABLE dim (pk INTEGER PRIMARY KEY, x INTEGER);

CREATE PROJECTION dim_p (pk, x) AS SELECT * FROM dim ORDER BY x UNSEGMENTED ALL

NODES;

The next two statements create a table named fact and the pre-join projection that joins fact to

dim.

CREATE TABLE fact(fk INTEGER REFERENCES dim(pk));

CREATE PROJECTION prejoin_p (fk, pk, x) AS SELECT * FROM fact, dim WHERE pk=fk ORDER

BY x;

The following statements load values into table dim. Notice the last statement inserts a duplicate

primary key value of 1:

INSERT INTO dim values (1,1);

INSERT INTO dim values (2,2);

INSERT INTO dim values (1,2); --Constraint violation

COMMIT;

Table dim now contains duplicate primary key values, but you cannot delete the violating row

because of the presence of the pre-join projection. Any attempt to delete the record results in the
following error message:

ROLLBACK: Duplicate primary key detected in FK-PK join Hash-Join (x dim_p), value

1

In order to remove the constraint violation (pk=1), use the following sequence of commands,

which puts the database back into the state just before the duplicate primary key was added.

To remove the violation:

1 First save the original dim rows that match the duplicated primary key.

CREATE TEMP TABLE dim_temp(pk integer, x integer);

INSERT INTO dim_temp SELECT * FROM dim WHERE pk=1 AND x=1; -- original

dim row

2 Temporarily disable error messaging on duplicate constraint values:

SELECT DISABLE_DUPLICATE_KEY_ERROR();

Caution: Remember that issuing this command suppresses the enforcement of data integrity
checking.

3 Remove the the original row that contains duplicate values:

DELETE FROM dim WHERE pk=1;

4 Allow the database to resume data integrity checking:

SELECT REENABLE_DUPLICATE_KEY_ERROR();

5 Reinsert the original values back into the dimension table:

INSERT INTO dim SELECT * from dim_temp;

COMMIT;

6 Validate your dimension and fact tables.

-338-

SQL Reference Manual

If you receive the following error message, it means that the duplicate records you want to delete
are not identical. That is, the records contain values that differ in at least one column that is not a
primary key; for example, (1,1) and (1,2).

ROLLBACK: Delete: could not find a data row to delete (data integrity violation?)

The difference between this message and the rollback message in the previous example is that a
fact row contains a foreign key that matches the duplicated primary key, which has been inserted.
Thus, a row with values from the fact and dimension table is now in the prejoin projection. In order
for the DELETE statement (Step 3 in the following example) to complete successfully, extra
predicates are required to identify the original dimension table values (the values that are in the
prejoin).

This example is nearly identical to the previous example, except that an additional INSERT
statement joins the fact table to the dimension table by a primary key value of 1:

INSERT INTO dim values (1,1);

INSERT INTO dim values (2,2);

INSERT INTO fact values (1); -- New insert statement joins fact with dim on
primary key value=1

INSERT INTO dim values (1,2); -- Duplicate primary key value=1

COMMIT;

To remove the violation:

1 First save the original dim and fact rows that match the duplicated primary key:

CREATE TEMP TABLE dim_temp(pk integer, x integer);

CREATE TEMP TABLE fact_temp(fk integer);

INSERT INTO dim_temp SELECT * FROM dim WHERE pk=1 AND x=1; -- original

dim row

INSERT INTO fact_temp SELECT * FROM fact WHERE fk=1;

2 Temporarily suppresses the enforcement of data integrity checking:

SELECT DISABLE_DUPLICATE_KEY_ERROR();

3 Remove the duplicate primary keys. These steps implicitly remove all fact rows with the
matching foreign key, as well.

a) Remove the the original row that contains duplicate values:

DELETE FROM dim WHERE pk=1 AND x=1;

Note: The extra predicate (x=1) specifies removal of the original (1,1) row, rather than the

newly inserted (1,2) values that caused the violation.

b) Remove all remaining rows:

DELETE FROM dim WHERE pk=1;

4 Turn on integrity checking:

SELECT REENABLE_DUPLICATE_KEY_ERROR();

5 Reinsert the original values back into the fact and dimension table:

INSERT INTO dim SELECT * from dim_temp;

INSERT INTO fact SELECT * from fact_temp;

COMMIT;

6 Validate your dimension and fact tables.

-339-

 SQL Functions

See Also

ANALYZE_CONSTRAINTS (page 321)

REENABLE_DUPLICATE_KEY_ERROR (page 373)

DISPLAY_LICENSE

Returns license information.

Syntax

DISPLAY_LICENSE()

Examples

SELECT DISPLAY_LICENSE();

 display_license

 Vertica Systems, Inc.

2007-08-03

Perpetual

0

500GB

(1 row)

DO_TM_TASK

Runs a Tuple Mover operation (moveout) on one or more projections defined on the specified
table. You do not need to stop the Tuple Mover to run this function.

Syntax

DO_TM_TASK ('task' [, '[schema.]table' | 'projection'])

Parameters

task Is one of the following tuple mover operations:

 'moveout' — Moves out all projections on the

specified table (if a particular projection is not
specified).

 'analyze_row_count' — Automatically collects

the number of rows in a projection every 60 seconds
and aggregates row counts calculated during loads.

[schema.]table Runs a tuple mover operation for all projections within the
specified table. When using more than one schema, specify
the schema that contains the table with the projections you
want to affect.

-340-

SQL Reference Manual

projection If projection is not passed as an argument, all projections in
the system are used. If projection is specified,
DO_TM_TASK looks for a projection of that name and, if
found, uses it; if a named projection is not found, the function
looks for a table with that name and, if found, moves out all
projections on that table.

Notes

DO_TM_TASK() is useful because you can move out all projections from a table or database

without having to name each projection individually.

Examples

The following example performs a moveout of all projections for table t1:

=> SELECT DO_TM_TASK('moveout', 't1');

The following example performs a moveout for projections t1_p:

=> SELECT DO_TM_TASK('moveout', 't1_p')

See Also

COLUMN_STORAGE (page 691)

DROP_PARTITION (page 341)

DUMP_PARTITION_KEYS (page 346)

DUMP_PROJECTION_PARTITION_KEYS (page 347)

DUMP_TABLE_PARTITION_KEYS (page 348)

PARTITION_PROJECTION (page 368)

Partitioning Tables in the Administrator's Guide

Collecting Statistics in the Administrator's Guide

DROP_LOCATION

Removes the specified storage location.

Syntax

DROP_LOCATION ('path' , 'site')

Parameters

path Specifies where the storage location to drop is mounted.

site Is the Vertica site where the location is available.

-341-

 SQL Functions

Notes

 Dropping a storage location is a permanent operation and cannot be undone. Therefore,
Vertica recommends that you retire a storage location before dropping it. This allows you to
verify that you actually want to drop a storage location before doing so. Additionally, you can
easily restore a retired storage location.

 Dropping storage locations is limited to locations that contain only temp files.

 If a location used to store data and you modified it to store only temp files, the location might
still contain data files. If the storage location contains data files, Vertica does not allow you to
drop it. You can manually merge out all the data in this location, wait for the ATM to mergeout
the data files automatically, or you can drop partitions. Deleting data files does not work.

Example

The following example drops a storage location on node3 that was used to store temp files:

=> SELECT DROP_LOCATION('/secondVerticaStorageLocation/' , 'node3');

See Also

 RETIRE_LOCATION (page 388) in this SQL Reference Manual

 Dropping Storage Locations and Retiring Storage Locations in the Administrator's Guide

DROP_PARTITION

Forces the partition of projections (if needed) and then drops the specified partition.

Syntax

DROP_PARTITION [(table_name) , (partition_value)]

Parameters

table-name Specifies the name of the table.

Note: The specified table_name argument cannot be used as a
dimension table in a pre-joined projection and cannot contain
projections that are not up to date (have not been refreshed)

partition_value Must be specified as a string (within quotes) for all data types; for

example: DROP_PARTITION('trade', '2006');

Notes and Restrictions

In general, if a ROS container has data that belongs to n+1 partitions and you want to drop a
specific partition, the DROP_PARTITION operation:

1 Forces the partition of data into two containers where

 one container holds the data that belongs to the partition that is to be dropped

 another container holds the remaining n partitions

2 Drops the specified partition.

-342-

SQL Reference Manual

You can also use the MERGE_PARTITIONS (page 367) function to merges ROS containers that
have data belonging to partitions in a specified partition key range; for example,

[partitionKeyFrom, partitionKeyTo].

DROP_PARTITION forces a moveout if there is data in the WOS (WOS is not partition aware).

DROP_PARTITION acquires an exclusive lock on the table to prevent DELETE | UPDATE |
INSERT | COPY statements from affecting the table, as well as any SELECT statements issued at
SERIALIZABLE isolation level.

Users must be the table owner to drop a partition. They must have MODIFY (INSERT | UPDATE
| DELETE) permissions in order to:

 Partition a projection/table

 Merge partitions

 Run mergeout, moveout or purge operations on a projection

DROP_PARTITION operations cannot be performed on tables with projections that are not up to
date (have not been refreshed).

Examples

Using the example schema in Defining Partitions, the following command explicitly drops the 2006

partition key from table trade:

 SELECT DROP_PARTITION('trade', 2006);

 DROP_PARTITION

 Partition dropped

(1 row)

Here, the partition key is specified:

SELECT DROP_PARTITION('trade', EXTRACT('year' FROM '2006-01-01'::date));

 DROP_PARTITION

 Partition dropped

(1 row)

The following example creates a table called dates and partitions the table by year:

CREATE TABLE dates (

 year INTEGER NOT NULL,

 month VARCHAR(8) NOT NULL)

PARTITION BY year * 12 + month;

The following statement drops the partition using a constant for Oct 2007 (2007*12 + 10 = 24094):

 SELECT DROP_PARTITION('dates', '24094');

 DROP_PARTITION

 Partition dropped

(1 row)

Alternatively, the expression can be placed in line: SELECT DROP_PARTITION('dates',
2007*12 + 10);

-343-

 SQL Functions

See Also

ADVANCE EPOCH (page 320)

ALTER PROJECTION (page 479)

COLUMN_STORAGE (page 691)

CREATE TABLE (page 546)

DO_TM_TASK (page 339)

DUMP_PARTITION_KEYS (page 346)

DUMP_PROJECTION_PARTITION_KEYS (page 347)

DUMP_TABLE_PARTITION_KEYS (page 348)

MERGE_PARTITIONS (page 367)

PARTITION_PROJECTION (page 368)

PARTITION_TABLE (page 369)

PROJECTIONS (page 673)

Dropping Partitions in the Administrator's Guide

DROP_STATISTICS

Removes statistics for the specified projection(s).

Syntax

DROP_STATISTICS { ('') | ('[schema.]table') | ('projection') }

Return Value

 0 - For success.

 1 - For failure. Refer to vertica.log for details.

Parameters

'' Empty string. Drops statistics for all projections.

[schema.]table Drops statistics for all projections within the specified table. When
using more than one schema, specify the schema that contains
the table with the projections you want to delete.

projection Drops statistics for the specified projection.

Notes

Once dropped, statistics can be time consuming to regenerate.

Example

The following example drops statistics for all projections in the database and returns 0 (success):

-344-

SQL Reference Manual

=> SELECT DROP_STATISTICS ('');

 drop_statistics

 0

(1 row)

The following command drops statistics for the shipping_dimension table and returns 0 (success):

=> SELECT DROP_STATISTICS ('shipping_dimension');

 drop_statistics

 0

(1 row)

The following command drops statistics for one of the shipping_dimension table's projections and
returns 0 (success):

=> SELECT DROP_STATISTICS('shipping_dimension_site02'); drop_statistics

 0

(1 row)

For use cases, see Collecting Statistics in the Administrator's Guide

See Also

ANALYZE_STATISTICS (page 327)

EXPORT_STATISTICS (page 353)

IMPORT_STATISTICS (page 362)

-345-

 345

DUMP_CATALOG

Returns an internal representation of the Vertica catalog. This function is used for diagnostic
purposes.

Syntax

DUMP_CATALOG()

Notes

To obtain an internal representation of the Vertica catalog for diagnosis, run the query:

SELECT DUMP_CATALOG();

The output is written to the specified file:

\o /tmp/catalog.txt

SELECT DUMP_CATALOG();

\o

Send the output to Technical Support (on page 1).

-346-

 346

DUMP_LOCKTABLE

Returns information about deadlocked clients and the resources they are waiting for.

Syntax

DUMP_LOCKTABLE()

Notes

Use DUMP_LOCKTABLE if Vertica becomes unresponsive:

1 Open an additional vsql connection.

2 Execute the query:

SELECT DUMP_LOCKTABLE();

The output is written to vsql. See Monitoring the Log Files.

3 Copy the output and send it to Technical Support (on page 1).

You can also see who is connected using the following command:

SELECT * FROM SESSIONS;

Close all sessions using the following command:

SELECT CLOSE_ALL_SESSIONS();

Close a single session using the following command:

How to close a single session:

SELECT CLOSE_SESSION('session_id');

You get the session_id value from the V_MONITOR.SESSIONS (page 741) system table.

See Also

CLOSE_ALL_SESSIONS (page 333)

CLOSE_SESSION (page 330)

LOCKS (page 712)

V_MONITOR.SESSIONS (page 741)

DUMP_PARTITION_KEYS

Dumps the partition keys of all projections in the system.

Syntax

DUMP_PARTITION_KEYS()

Example

SELECT DUMP_PARTITION_KEYS();

See Also

DO_TM_TASK (page 339)

-347-

 SQL Functions

DROP_PARTITION (page 341)

DUMP_PROJECTION_PARTITION_KEYS (page 347)

DUMP_TABLE_PARTITION_KEYS (page 348)

PARTITIONS (page 716) system table

PARTITION_PROJECTION (page 368)

PARTITION_TABLE (page 369)

Partitioning Tables in the Administrator's Guide

DUMP_PROJECTION_PARTITION_KEYS

Dumps the partition keys of the specified projection.

Syntax

DUMP_PROJECTION_PARTITION_KEYS('projection_name')

Parameters

projection_name Specifies the name of the projection.

Example

The following example creates a simple table called states and partitions the data by state:

CREATE TABLE states (

 year INTEGER NOT NULL,

 state VARCHAR NOT NULL)

PARTITION BY state;

CREATE PROJECTION states_p (state, year) AS SELECT * FROM states

ORDER BY state, year UNSEGMENTED ALL NODES;

Now drop the partition key of the specified projection:

SELECT DUMP_PROJECTION_PARTITION_KEYS('states_p_node0001');

 Partition keys on node helios_node0001

 Projection 'states_p_node0001'

 No of partition keys: 1

 Partition keys on node helios_node0002

 ...

(1 row)

See Also

DO_TM_TASK (page 339)

DROP_PARTITION (page 341)

DUMP_PARTITION_KEYS (page 346)

DUMP_TABLE_PARTITION_KEYS (page 348)

PARTITION_PROJECTION (page 368)

-348-

SQL Reference Manual

PARTITION_TABLE (page 369)

PROJECTIONS (page 673) system table

Partitioning Tables in the Administrator's Guide

DUMP_TABLE_PARTITION_KEYS

Dumps the partition keys of all projections anchored on the specified table.

Syntax

DUMP_TABLE_PARTITION_KEYS ('table_name')

Parameters

table_name Specifies the name of the table.

Example

The following example creates a simple table called states and partitions the data by state:

CREATE TABLE states (

 year INTEGER NOT NULL,

 state VARCHAR NOT NULL)

PARTITION BY state;

CREATE PROJECTION states_p (state, year) AS SELECT * FROM states

ORDER BY state, year UNSEGMENTED ALL NODES;

Now drop the partition keys of all projections anchored on table states:

SELECT DUMP_TABLE_PARTITION_KEYS('states');

 Partition keys on helios_node0001

 Projection 'states_p_node0004'

 No of partition keys: 1

 Projection 'states_p_node0003'

 No of partition keys: 1

 Projection 'states_p_node0002'

 No of partition keys: 1

 Projection 'states_p_node0001'

 No of partition keys: 1

 Partition keys on helios_node0002

...

(1 row)

See Also

DO_TM_TASK (page 339)

DROP_PARTITION (page 341)

DUMP_PARTITION_KEYS (page 347)

DUMP_PROJECTION_PARTITION_KEYS (page 348)

PARTITION_PROJECTION (page 368)

PARTITION_TABLE (page 369)

-349-

 SQL Functions

Partitioning Tables in the Administrator's Guide

EVALUATE_DELETE_PERFORMANCE

Evaluates projections for potential DELETE (page 580) performance issues. If there are issues
found, a warning message is displayed. For steps you can take to resolve delete and update
performance issues, see Optimizing Deletes and Updates for Performance in the Administrator's
Guide. This function uses data sampling to determine whether there are any issues with a
projection. Therefore, it does not generate false-positives warnings, but it can miss some cases
where there are performance issues.

Note: Optimizing for delete performance is the same as optimizing for update performance. So,
you can use this function to help optimize a projection for updates as well as deletes.

Syntax

EVALUATE_DELETE_PERFORMANCE ('target')

Parameters

target The name of a projection or table. If you supply the name of a projection,
only that projection is evaluated for DELETE performance issues. If you
supply the name of a table, then all of the projections anchored to the
table will be evaluated for issues.

If you do not provide a projection or table name,
EVALUATE_DELETE_PERFORMANCE examines all of the projections
that you can access for DELETE performance issues. Depending on the
size you your database, this may take a long time.

Note: When evaluating multiple projections, EVALUATE_DELETE_PERFORMANCE reports
up to ten projections that have issues, and refers you to a table that contains the full list of
issues it has found.

Example

The following example demonstrates how you can use EVALUATE_DELETE_PERFORMANCE
to evaluate your projections for slow DELETE performance.

=> create table example (A int, B int,C int);

CREATE TABLE

=> create projection one_sort (A,B,C) as (select A,B,B from example) order by A;

CREATE PROJECTION

=> create projection two_sort (A,B,C) as (select A,B,C from example) order by A,B;

CREATE PROJECTION

=> select evaluate_delete_performance('one_sort');

 evaluate_delete_performance

 No projection delete performance concerns found.

(1 row)

=> select evaluate_delete_performance('two_sort');

 evaluate_delete_performance

 No projection delete performance concerns found.

(1 row)

-350-

SQL Reference Manual

The previous example showed that there was no structural issues with the projection that would
cause poor DELETE performance. However, the data contained within the projection can create
potential delete issues if the sorted columns do not uniquely identify a row or small number of
rows. In the following example, Perl is used to populate the table with data using a nested series of
loops. The inner loop populates column C, the middle loop populates column B, and the outer loop
populates column A. The result is column A is contains only three distinct values (0, 1, and 2),
while column B slowly varies between 20 and 0 and column C changes in each row.
EVALUATE_DELETE_PERFORMANCE is run against the projections again to see if the data
within the projections causes any potential DELETE performance issues.

=> \! perl -e 'for ($i=0; $i<3; $i++) { for ($j=0; $j<21; $j++) { for ($k=0; $k<19; $k++) { printf

"%d,%d,%d\n", $i,$j,$k;}}}' | /opt/vertica/bin/vsql -c "copy example from stdin delimiter ',' direct;"

Password:

=> select * from example;

 A | B | C

 0 | 20 | 18

 0 | 20 | 17

 0 | 20 | 16

 0 | 20 | 15

 0 | 20 | 14

 0 | 20 | 13

 0 | 20 | 12

 0 | 20 | 11

 0 | 20 | 10

 0 | 20 | 9

 0 | 20 | 8

 0 | 20 | 7

 0 | 20 | 6

 0 | 20 | 5

 0 | 20 | 4

 0 | 20 | 3

 0 | 20 | 2

 0 | 20 | 1

 0 | 20 | 0

 0 | 19 | 18

 1157 rows omitted

 2 | 1 | 0

 2 | 0 | 18

 2 | 0 | 17

 2 | 0 | 16

 2 | 0 | 15

 2 | 0 | 14

 2 | 0 | 13

 2 | 0 | 12

 2 | 0 | 11

 2 | 0 | 10

 2 | 0 | 9

 2 | 0 | 8

 2 | 0 | 7

 2 | 0 | 6

 2 | 0 | 5

 2 | 0 | 4

 2 | 0 | 3

 2 | 0 | 2

 2 | 0 | 1

 2 | 0 | 0

=> SELECT COUNT (*) FROM example;

 COUNT

 1197

-351-

 SQL Functions

(1 row)

=> SELECT COUNT (DISTINCT A) FROM example;

 COUNT

 3

(1 row)

=> select evaluate_delete_performance('one_sort');

 evaluate_delete_performance

 Projection exhibits delete performance concerns.

(1 row)

release=> select evaluate_delete_performance('two_sort');

 evaluate_delete_performance

 No projection delete performance concerns found.

(1 row)

The one_sort projection has potential delete issues since it only sorts on column A which has few
distinct values. This means that each value in the sort column corresponds to many rows in the
projection, which negatively impacts DELETE performance. Since the two_sort projection is
sorted on columns A and B, each distinct combination of values in the two sort columns identify
just a few rows, allowing deletes to be performed faster.

Not supplying a projection name results in all of the projections you can access being evaluated
for DELETE performance issues.

=> select evaluate_delete_performance();

 evaluate_delete_performance

 The following projection exhibits delete performance concerns:

 "public"."one_sort"

See v_internal.comments for more details.

(1 row)

EXPORT_CATALOG

Generates a SQL script that can be used to recreate a physical schema design in its current state
on a different cluster.

Syntax

EXPORT_CATALOG ([destination] , [type])

Parameters

destination Specifies the path and name of the SQL output file. An
empty string (' '), which is the default, dumps the script to
standard output. A user who is not a DBA can only specify
an empty string.

type Determines what is exported:

 design — Exports schemas, tables, constraints,
views, and projections to which the user has access.
This is the default value.

 design_all — Exports all the design objects plus
system objects created in Database Designer (for

-352-

SQL Reference Manual

example, design contexts and their tables). The
objects that are exported are only the ones to which
the user has access.

 tables— Exports all tables, constraints, and
projections for those tables for which the user has
permissions. See also EXPORT_TABLES (page
354).

Notes

 Exporting a design is useful for quickly moving a design to another cluster.

 The script generated by this function:

 Creates only the non-virtual objects for which the user has access.

 Automatically runs MARK_DESIGN_KSAFE() with the correct K-Safety value to ensure the
design copy has the same same K-Safety value as the original design.

 Exports catalog objects in their Oid order.

 Use the design_all parameter when adding a node to a cluster. See Modifying Database
Designs for Updated Nodes.

 If a projection is created with no sort order, Vertica implicitly assigns a sort order based on the
SELECT columns in the projection definition. The sort order is explicitly defined in the exported
script.

Restrictions

The export script Vertica generates is portable as long as all the projections were generated using
UNSEGMENTED ALL NODES or SEGMENTED ALL NODES. Projections might not exist on ALL
NODES for the following reasons:

 A projection was dropped from a node.

 A projection was created only on a subset of nodes.

 An additional node was added since the projection set was created and the design wasn't
extended through Database Designer deployment.

Example

The following example exports the design to standard output:

SELECT EXPORT_CATALOG(' ','DESIGN');

EXPORT_OBJECTS

Generates a SQL script that can be used to recreate catalog objects on a different cluster.

Syntax

EXPORT_OBJECTS([destination] , [scope] , [bool_value])

Parameters

destination Specifies the path and name of the SQL output file. An empty string (' '),
which is the default, dumps the script to standard output. A user who is not a
DBA can only specify an empty string.

-353-

 SQL Functions

scope Determines the set of catalog objects to be exported where scope is one of
the following:

 an empty string (' ')—exports all non-virtual objects to which the user
has access, including constraints. (Note that constraints are not
objects which can be passed as individual arguments.) This is the
default if no scope is specified.

 a comma-delimited list of items in which each item can be one of the
following:

 —'<schema>.<obj>'—matches the named object. The named object can
be a table, projection, or view.

 —'<obj>'—matches the named object within the current search path.
The named object can be a schema, table, projection, or view. If the
named object is a schema, Vertica exports all non-virtual objects to
which the user has access within that schema. If a schema and table
both have the same name, the schema takes precedence.

EXPORT_OBJECTS returns an error if:

 an explicitly-specified object does not exist.

 the user has no access to the specified object.

bool-value

Determi nes if the s tatistics ar e reg enerated befor e l oading them i nto the design context

Use one of the following:

 true—incorporates a MAKE_DESIGN_KSAFE statement with the
correct K-Safety value for the database at the end of the output
script.

 false—omits the MAKE_DESIGN_KSAFE statement from the script.

Adding the MAKE_DESIGN_KSAFE statement is useful if you are planning
to import the script into a new database and you want the new database to
inherit the K-Safety value from the original database.

By default, this parameter is true.

Notes

 The script generated by this function:

 Creates only the non-virtual objects for which the user has access.

 Exports catalog objects in their Oid order.

 None of the parameters for EXPORT_OBJECTS accepts a NULL value as input.

Example

The following example exports the all the non-virtual objects to which the user has access to
standard output. It does not incorporates the MAKE_DESIGN_KSAFE statement at the end of the
file.

SELECT EXPORT_OBJECTS(' ',' ',false);

EXPORT_STATISTICS

Generates an XML file that contains statistics for the database.

-354-

SQL Reference Manual

Syntax

EXPORT_STATISTICS (filename)

Parameters

filename Specifies the path and name of the XML output file. An
empty string dumps the script to console.

Notes

 Before you export statistics for the database, be sure to run ANALYZE_STATISTICS (page
327) to collect and aggregate data samples and storage information. If you do not use
ANALYZE_STATISTICS, Database Designer produce a suboptimal projection similar to those
created for temporary designs.

 For use cases, see Collecting Statistics in the Administrator's Guide

See Also

ANALYZE_STATISTICS (page 327)

DROP_STATISTICS (page 343)

IMPORT_STATISTICS (page 362)

EXPORT_TABLES

Generates a SQL script that can be used to recreate a logical schema (schemas, tables,
constraints, and views) on a different cluster.

Syntax

EXPORT_TABLES ([destination] , [scope])

Parameters

destination Specifies the path and name of the SQL output file. An
empty string (' '), which is the default, dumps the script to
standard output. A user who is not a DBA can only specify
an empty string.

-355-

 SQL Functions

scope Determines the tables to be exported where scope is one of
the following:

 an empty string (' ')—exports all non-virtual objects
to which the user has access, including constraints.
(Note that constraints are not objects which can be
passed as individual arguments.) This is the default
if no scope is specified.

 a comma-delimited list of items in which each item
can be one of the following:

 —'<schema>.<obj>'—matches the named object. The
named object can be a table or view.

 —'<obj>'--matches the named object within the
current search path. The named object can be a
schema, table, or view. If the named object is a
schema, Vertica exports all non-virtual objects to
which the user has access within that schema. If a
schema and table both have the same name, the
schema takes precedence.

EXPORT_TABLES returns an error if:

 an explicitly-specified object does not exist.

 The user has no access to the specified object.

Notes

 The script generated by this function:

 Creates only the non-virtual objects for which the user has access.

 Exports catalog objects in their Oid order.

 If projections are specified in the scope parameter, they are ignored.

 None of the parameters for EXPORT_TABLES accepts a NULL value as input.

Example

The following example exports the store.store_orders_fact table to standard output:

=> SELECT EXPORT_TABLES(' ','store.store_orders_fact');

GET_AHM_EPOCH

Returns the number of the epoch in which the Ancient History Mark is located. Data deleted up to
and including the AHM epoch can be purged from physical storage.

Syntax

GET_AHM_EPOCH()

Note: The AHM epoch is 0 (zero) by default (purge is disabled).

Examples

SELECT GET_AHM_EPOCH();

 get_ahm_epoch

-356-

SQL Reference Manual

 Current AHM epoch: 0

(1 row)

GET_AHM_TIME

Returns a TIMESTAMP value representing the Ancient History Mark. Data deleted up to and
including the AHM epoch can be purged from physical storage.

Syntax

GET_AHM_TIME()

Examples

SELECT GET_AHM_TIME();

 GET_AHM_TIME

 Current AHM Time: 2010-05-13 12:48:10.532332-04

(1 row)

See Also

SET DATESTYLE (page 634) for information about valid TIMESTAMP (page 87) values.

GET_CURRENT_EPOCH

Returns the number of the current epoch. The epoch into which data (COPY, INSERT, UPDATE,
and DELETE operations) is currently being written. The current epoch advances automatically
every three minutes.

Syntax

GET_CURRENT_EPOCH()

Examples

SELECT GET_CURRENT_EPOCH();

 GET_CURRENT_EPOCH

 683

(1 row)

GET_LAST_GOOD_EPOCH

Returns the number of the last good epoch. A term used in manual recovery, LGE (Last Good
Epoch) refers to the most recent epoch that can be recovered.

Syntax

GET_LAST_GOOD_EPOCH()

Examples

SELECT GET_LAST_GOOD_EPOCH();

 GET_LAST_GOOD_EPOCH

 682

(1 row)

-357-

 SQL Functions

GET_NUM_ACCEPTED_ROWS

Returns the number of rows loaded into the database for the last completed load for the current
session.

Syntax

GET_NUM_ACCEPTED_ROWS();

Notes

 Only loads from STDIN or a single file on the initiator are supported. This function cannot be
called for multi-node loads.

 Information is not available for a load that is currently running. Check the system table
LOAD_STREAMS (page 710) for its status.

 Data regarding loads does not persist, and is dropped when a new load is initiated.

 GET_NUM_ACCEPTED_ROWS is a meta-function, Do not use it as a value in an INSERT
query.

GET_NUM_REJECTED_ROWS

Returns the number of rows that were rejected during the last completed load for the current
session.

Syntax

GET_NUM_REJECTED_ROWS();

Notes

 Only loads from STDIN or a single file on the initiator are supported. This function cannot be
called for multi-node loads.

 Information is not available for a load that is currently running. Check the system table
LOAD_STREAMS (page 710) for its status.

 Data regarding loads does not persist, and is dropped when a new load is initiated.

 GET_NUM_REJECTED_ROWS is a meta-function, Do not use it as a value in an INSERT
query.

GET_PROJECTION_STATUS

Returns information relevant to the status of a projection.

Syntax

GET_PROJECTION_STATUS ([schema-name.]projection);

Parameters

[schema-name.]projection Is the name of the projection for which to display status. When
using more than one schema, specify the schema that contains
the projection.

-358-

SQL Reference Manual

Description

GET_PROJECTION_STATUS returns information relevant to the status of a projection:

 The current K-Safety status of the database

 The number of nodes in the database

 Whether the projection is segmented

 The number and names of buddy projections

 Whether the projection is safe

 Whether the projection is up-to-date

 Whether statistics have been computed for the projection

Notes

 You can use GET_PROJECTION_STATUS to monitor the progress of a projection data
refresh. See ALTER PROJECTION (page 479).

 When using GET_PROJECTION_STATUS or GET_PROJECTIONS you must provide the

name and node (for example, ABC_NODE01) instead of just ABC.

 To view a list of the nodes in a database, use the View Database Command in the
Administration Tools.

Examples

=> SELECT GET_PROJECTION_STATUS('public.customer_dimension_site01');

 GET_PROJECTION_STATUS

 Current system K is 1.

of Nodes: 4.

public.customer_dimension_site01 [Segmented: No] [Seg Cols:] [K: 3]

[public.customer_dimension_site04, public.customer_dimension_site03,

public.customer_dimension_site02] [Safe: Yes] [UptoDate: Yes][Stats: Yes]

See Also

ALTER PROJECTION (page 479)

GET_PROJECTIONS (page 358)

GET_PROJECTIONS, GET_TABLE_PROJECTIONS

Note: This function was formerly named GET_TABLE_PROJECTIONS(). Vertica still supports
the former function name.

Returns information relevant to the status of a table:

 The current K-Safety status of the database

 The number of sites (nodes) in the database

 The number of projections for which the specified table is the anchor table

 For each projection:

 The projection's buddy projections

 Whether the projection is segmented

-359-

 SQL Functions

 Whether the projection is safe

 Whether the projection is up-to-date

Syntax

GET_PROJECTIONS ([schema-name.]table)

Parameters

[schema-name.]table Is the name of the table for which to list projections. When
using more than one schema, specify the schema that
contains the table.

Notes

 You can use GET_PROJECTIONS to monitor the progress of a projection data refresh. See
ALTER PROJECTION (page 479).

 When using GET_PROJECTIONS or GET_PROJECTION_STATUS for replicated projections
created using the ALL NODES syntax, you must provide the name and node (for example,

ABC_NODE01 instead of just ABC).

 To view a list of the nodes in a database, use the View Database Command in the
Administration Tools.

Examples

The following example gets information about the store_dimension table in the VMart schema:

=> SELECT GET_PROJECTIONS('store.store_dimension');

--

Current system K is 1.

of Nodes: 4.

Table store.store_dimension has 4 projections.

Projection Name: [Segmented] [Seg Cols] [# of Buddies] [Buddy Projections] [Safe] [UptoDate]

--

store.store_dimension_node0004 [Segmented: No] [Seg Cols:] [K: 3] [store.store_dimension_node0003,

store.store_dimension_node0002, store.store_dimension_node0001] [Safe: Yes] [UptoDate: Yes][Stats:

Yes]

store.store_dimension_node0003 [Segmented: No] [Seg Cols:] [K: 3] [store.store_dimension_node0004,

store.store_dimension_node0002, store.store_dimension_node0001] [Safe: Yes] [UptoDate: Yes][Stats:

Yes]

store.store_dimension_node0002 [Segmented: No] [Seg Cols:] [K: 3] [store.store_dimension_node0004,

store.store_dimension_node0003, store.store_dimension_node0001] [Safe: Yes] [UptoDate: Yes][Stats:

Yes]

store.store_dimension_node0001 [Segmented: No] [Seg Cols:] [K: 3] [store.store_dimension_node0004,

store.store_dimension_node0003, store.store_dimension_node0002] [Safe: Yes] [UptoDate: Yes][Stats:

Yes]

(1 row)

See Also

ALTER PROJECTION (page 479)

GET_PROJECTION_STATUS (page 357)

INTERRUPT_STATEMENT

Interrupts the specified statement (within an external session), rolls back the current transaction,
and writes a success or failure message to the log file.

-360-

SQL Reference Manual

Syntax

INTERRUPT_STATEMENT(session_id , statement_id)

Parameters

session_id Specifies the session to interrupt. This identifier is unique within
the cluster at any point in time.

statement_id Specifies the statement to interrupt

Notes

 Only statements run by external sessions can be interrupted.

 Sessions can be interrupted during statement execution.

 If the statement_id is valid, the statement is interruptible. The command is successfully sent
and returns a success message. Otherwise the system returns an error.

Messages

The following list describes messages you might encounter and their meaning:

 Statement interrupt sent. Check SESSIONS for progress.

This message indicates success.

 Session <id> could not be successfully interrupted: session not found.

The session ID argument to the interrupt command does not match a running session.

 Session <id> could not be successfully interrupted: statement not found.

The statement ID does not (or no longer) matches the ID of a running statement (if any).

 No interruptible statement running

The statement is DDL or otherwise non-interruptible.

 Internal (system) sessions cannot be interrupted.

The session is internal, and only statements run by external sessions can be interrupted.

Examples

Two user sessions are open. RECORD 1 shows user session running SELECT FROM SESSION,

and RECORD 2 shows user session running COPY DIRECT:

=> SELECT * FROM SESSIONS;

-[RECORD 1

]--------------+--

node_name | v_vmartdb_node0001

user_name | dbadmin

client_hostname | 127.0.0.1:52110

client_pid | 4554

login_timestamp | 2011-01-03 14:05:40.252625-05

session_id | stress04-4325:0x14

client_label |

transaction_start | 2011-01-03 14:05:44.325781

transaction_id | 45035996273728326

transaction_description | user dbadmin (select * from sessions;)

-361-

 SQL Functions

statement_start | 2011-01-03 15:36:13.896288

statement_id | 10

last_statement_duration_us | 14978

current_statement | select * from sessions;

ssl_state | None

authentication_method | Trust

-[RECORD 2

]--------------+--

node_name | v_vmartdb_node0003

user_name | dbadmin

client_hostname | 127.0.0.1:56367

client_pid | 1191

login_timestamp | 2011-01-03 15:31:44.939302-05

session_id | stress06-25663:0xbec

client_label |

transaction_start | 2011-01-03 15:34:51.05939

transaction_id | 54043195528458775

transaction_description | user dbadmin (COPY Mart_Fact FROM

'/data/Mart_Fact.tbl'

 DELIMITER '|' NULL '\\n' DIRECT;)

statement_start | 2011-01-03 15:35:46.436748

statement_id | 5

last_statement_duration_us | 1591403

current_statement | COPY Mart_Fact FROM '/data/Mart_Fact.tbl' DELIMITER

'|'

 NULL '\\n' DIRECT;

ssl_state | None

authentication_method | Trust

Interrupt the COPY DIRECT statement running in stress06-25663:0xbec:

vmartkp=> \x

Expanded display is off.

vmartkp=> SELECT INTERRUPT_STATEMENT('stress06-25663:0x1537', 5);

 interrupt_statement

--

 Statement interrupt sent. Check v_monitor.sessions for progress.

(1 row)

Verify that the interrupted statement is no longer active by looking at the current_statement
column in the SESSIONS system table. This column becomes blank when the statement has
been interrupted:

=> SELECT * FROM SESSIONS;

-[RECORD 1

]--------------+--

node_name | v_vmartdb_node0001

user_name | dbadmin

client_hostname | 127.0.0.1:52110

client_pid | 4554

login_timestamp | 2011-01-03 14:05:40.252625-05

session_id | stress04-4325:0x14

client_label |

transaction_start | 2011-01-03 14:05:44.325781

transaction_id | 45035996273728326

-362-

SQL Reference Manual

transaction_description | user dbadmin (select * from sessions;)

statement_start | 2011-01-03 15:36:13.896288

statement_id | 10

last_statement_duration_us | 14978

current_statement | select * from sessions;

ssl_state | None

authentication_method | Trust

-[RECORD 2

]--------------+--

node_name | v_vmartdb_node0003

user_name | dbadmin

client_hostname | 127.0.0.1:56367

client_pid | 1191

login_timestamp | 2011-01-03 15:31:44.939302-05

session_id | stress06-25663:0xbec

client_label |

transaction_start | 2011-01-03 15:34:51.05939

transaction_id | 54043195528458775

transaction_description | user dbadmin (COPY Mart_Fact FROM

'/data/Mart_Fact.tbl'

 DELIMITER '|' NULL '\\n' DIRECT;)

statement_start | 2011-01-03 15:35:46.436748

statement_id | 5

last_statement_duration_us | 1591403

current_statement |

ssl_state | None

authentication_method | Trust

See Also

SESSIONS (page 741)

Managing Sessions and Configuration Parameters in the Administrator's Guide

IMPORT_STATISTICS

Imports statistics from the XML file generated by the EXPORT_STATISTICS command.

Syntax

IMPORT_STATISTICS (filename)

Parameters

filename Specifies the path and name of the XML input file (which is
the output of EXPORT_STATISTICS function).

Notes

 Imported statistics override existing statistics for all projections on the specified table.

 For use cases, see Collecting Statistics in the Administrator's Guide

See Also

ANALYZE_STATISTICS (page 327)

-363-

 SQL Functions

DROP_STATISTICS (page 343)

EXPORT_STATISTICS (page 353)

ISUTF8

Tests whether a string is a valid UTF-8 string. Returns true if the string conforms to UTF-8
standards, and false otherwise. This function is useful to test strings for UTF-8 compliance before
passing them to one of the regular expression functions, such as REGEXP_LIKE (page 379),
which expect UTF-8 characters by default.

Syntax

ISUTF8(string);

Parameters

string The string to test for UTF-8 compliance.

Examples

=> SELECT ISUTF8(E'\xC2\xBF'); -- UTF-8 INVERTED QUESTION MARK

 ISUTF8

 t

(1 row)

=> SELECT ISUTF8(E'\xC2\xC0'); -- UNDEFINED UTF-8 CHARACTER

 ISUTF8

 f

(1 row)

MAKE_AHM_NOW

Sets the Ancient History Mark (AHM) to the greatest allowable value, and lets you drop any
projections that existed before the issue occurred.

Caution: This function is intended for use by Administrators only.

Syntax

MAKE_AHM_NOW ([true])

Parameters

true [Optional] Allows AHM to advance when nodes are down.

Note: If the AHM is advanced after the last good epoch of

the failed nodes, those nodes must recover all data from
scratch. Use with care.

-364-

SQL Reference Manual

Notes

 The MAKE_AHM_NOW function performs the following operations:

 Advances the epoch.

 Performs a moveout operation on all projections.

 Sets the AHM to LGE — at least to the current epoch at the time MAKE_AHM_NOW() was
issued.

 All history is lost and you cannot perform historical queries prior to the current epoch.

Example

=> SELECT MAKE_AHM_NOW();

 MAKE_AHM_NOW

 AHM set (New AHM Epoch: 683)

(1 row)

The following command allows the AHM to advance, even though node 2 is down:

=> SELECT MAKE_AHM_NOW(true);

WARNING: Received no response from v_vmartdb_node0002 in get cluster LGE

WARNING: Received no response from v_vmartdb_node0002 in get cluster LGE

WARNING: Received no response from v_vmartdb_node0002 in set AHM

 MAKE_AHM_NOW

 AHM set (New AHM Epoch: 684)

(1 row)

See Also

DROP PROJECTION (page 585)

MARK_DESIGN_KSAFE (page 365)

SET_AHM_EPOCH (page 389)

SET_AHM_TIME (page 391)

-365-

 365

MARK_DESIGN_KSAFE

Enables or disables high availability in your environment, in case of a failure. Before enabling
recovery, MARK_DESIGN_KSAFE queries the catalog to determine whether a cluster's physical
schema design meets the following requirements:

 Dimension tables are replicated on all nodes.

 Fact table superprojections are segmented with each segment on a different node.

 Each fact table projection has at least one buddy projection for K-Safety=1 (or two buddy
projections for K-Safety=2).

Buddy projections are also segmented across database nodes, but the distribution is modified
so that segments that contain the same data are distributed to different nodes. See High
Availability Through Projections in the Concepts Guide.

Note: Projections are considered to be buddies if they contain the same columns and have the
same segmentation. They can have different sort orders.

MARK_DESIGN_KSAFE does not change the physical schema in any way.

Syntax

SELECT MARK_DESIGN_KSAFE (k)

Parameters

k 2 enables high availability if the schema design meets requirements for
K-Safety=2

1 enables high availability if the schema design meets requirements for
K-Safety=1

0 disables high availability

If you specify a k value of one (1) or two (2), Vertica returns one of the following messages.

Success:

 Marked design n-safe

Failure:

 The schema does not meet requirements for K=n.

 Fact table projection projection-name

 has insufficient "buddy" projections.

n in the message is 1 or 2 and represents the k value.

Notes

 The database's internal recovery state persists across database restarts but it is not checked
at startup time.

 If a database has automatic recovery enabled, you must temporarily disable automatic
recovery before creating a new table.

 When one node fails on a system marked K-safe=1, the remaining nodes are available for
DML operations.

-366-

SQL Reference Manual

Examples

=> SELECT MARK_DESIGN_KSAFE(1);

 mark_design_ksafe

 Marked design 1-safe

(1 row)

If the physical schema design is not K-Safe, messages indicate which projections do not have a
buddy:

=> SELECT MARK_DESIGN_KSAFE(1);

The given K value is not correct; the schema is 0-safe

Projection pp1 has 0 buddies, which is smaller that the given K of 1

Projection pp2 has 0 buddies, which is smaller that the given K of 1

.

.

.

(1 row)

See Also

SYSTEM (page 751)

High Availability and Recovery in the Concepts Guide

SQL System Tables (Monitoring APIs) (page 660) topic in the Administrator's Guide

Using Identically Segmented Projections in the Programmer's Guide

Failure Recovery in the Troubleshooting Guide

MEASURE_LOCATION_PERFORMANCE

Measures disk performance for the location specified.

Syntax

MEASURE_LOCATION_PERFORMANCE (path , node)

Parameters

path Specifies where the storage location to measure is mounted.

node Is the Vertica node where the location to be measured is
available..

Notes

 If you intend to create a tiered disk architecture in which projections, columns, and partitions
are stored on different disks based on predicted or measured access patterns, you need to
measure storage location performance for each location in which data is stored. You do not
need to measure storage location performance for temp data storage locations because
temporary files are stored based on available space.

 This method of measuring storage location performance applies only to configured clusters. If
you want to measure a disk before configuring a cluster see Measuring Location Performance.

-367-

 SQL Functions

 Storage location performance equates to the amount of time it takes to read a fixed amount of
data from the disk. This read time equates to the disk throughput in MB per second plus the
time it takes to seek data based on the number of seeks per second, as follows:

Read Time (seconds) = 1/Throughput (MB/second) + 1/Latency (seeks/second)

Therefore, a disk is faster than another disk if its Read Time is smaller.

Example

The following example measures the performance of a storage location on node2:

=> SELECT MEASURE_LOCATION_PERFORMANCE('/secondVerticaStorageLocation/' ,

'node2');

WARNING: measure_location_performance can take a long time. Please check logs for

progress

 measure_location_performance

--

 Throughput : 122 MB/sec. Latency : 140 seeks/sec

See Also

ADD_LOCATION (page 318)

ALTER_LOCATION_USE (page 320)

RETIRE_LOCATION (page 388)

Measuring Location Performance in the Administrator's Guide

MERGE_PARTITIONS

Merges ROS containers that have data belonging to partitions in a specified partition key range: [

partitionKeyFrom, partitionKeyTo] .

Syntax

MERGE_PARTITIONS [(table_name) ,

... (partition_key_from) , (partition_key_to)]

 Parameters

table_name Specifies the name of the table

partition_key_from Specifies the start point of the partition

partition_key_to Specifies the end point of the partition

Notes

 Partitioning functions take immutable functions only, in order that the same information be
available across all nodes.

 The edge values are included in the range, and partition_key_from must be less than or

equal to partition_key_to.

-368-

SQL Reference Manual

 Inclusion of partitions in the range is based on the application of less than(<)/greater than(>)
operators of the corresponding data type.

Note: No restrictions are placed on a partition key's data type.

 If partition_key_from is the same as partition_key_to, all ROS containers of the

partition key are merged into one ROS.

Users must be the table owner to drop a partition. They must have MODIFY (INSERT | UPDATE
| DELETE) permissions in order to:

 Partition a projection/table

 Merge partitions

 Run mergeout, moveout or purge operations on a projection

Examples

=> SELECT MERGE_PARTITIONS('T1', '200', '400');

=> SELECT MERGE_PARTITIONS('T1', '800', '800');

=> SELECT MERGE_PARTITIONS('T1', 'CA', 'MA');

=> SELECT MERGE_PARTITIONS('T1', 'false', 'true');

=> SELECT MERGE_PARTITIONS('T1', '06/06/2008', '06/07/2008');

=> SELECT MERGE_PARTITIONS('T1', '02:01:10', '04:20:40');

=> SELECT MERGE_PARTITIONS('T1', '06/06/2008 02:01:10', '06/07/2008 02:01:10');

=> SELECT MERGE_PARTITIONS('T1', '8 hours', '1 day 4 hours 20 seconds');

PARTITION_PROJECTION

Forces a split of ROS containers of the specified projection.

Syntax

PARTITION_PROJECTION (projection_name)

Parameters

projection_name Specifies the name of the projection.

Notes

Partitioning expressions take immutable functions only, in order that the same information be
available across all nodes.

PARTITION_PROJECTION() is similar to PARTITION_TABLE (page 369)(), except that

PARTITION_PROJECTION works only on the specified projection, instead of the table.

Vertica internal operations (mergeout, refresh, and recovery) maintain partition separation except
in certain cases:

 Recovery of a projection when the buddy projection from which the partition is recovering is
identically sorted. If the projection is undergoing a full rebuild, it is recovered one ROS
container at a time. The projection ends up with a storage layout identical to its buddy and is,
therefore, properly segmented.

-369-

 SQL Functions

Note: In the case of a partial rebuild, all recovered data goes into a single ROS container and
must be partitioned manually.

 Manual tuple mover operations often output a single storage container, combining any existing

partitions; for example, after executing any of the PURGE() operations.

Users must be the table owner to drop a partition. They must have MODIFY (INSERT | UPDATE
| DELETE) permissions in order to:

 Partition a projection/table

 Merge partitions

 Run mergeout, moveout or purge operations on a projection

PARTITION_PROJECTION() purges data while partitioning ROS containers if deletes were

applied before the AHM epoch.

Example

The following command forces a split of ROS containers on the states_p_node01 projection:

=> SELECT PARTITION_PROJECTION ('states_p_node01');

 partition_projection

 Projection partitioned

(1 row)

See Also

DO_TM_TASK (page 339)

DROP_PARTITION (page 341)

DUMP_PARTITION_KEYS (page 346)

DUMP_PROJECTION_PARTITION_KEYS (page 347)

DUMP_TABLE_PARTITION_KEYS (page 348)

PARTITION_TABLE (page 369)

Partitioning Tables in the Administrator's Guide

PARTITION_TABLE

Forces the system to break up any ROS containers that contain multiple distinct values of the
partitioning expression. Only ROS containers with more than one distinct value participate in the
split.

Syntax

PARTITION_TABLE ('table_name')

Parameters

table_name Specifies the name of the table.

-370-

SQL Reference Manual

Notes

PARTITION_TABLE is similar to PARTITION_PROJECTION (page 368), except that
PARTITION_TABLE works on the specified table.

Vertica internal operations (mergeout, refresh, and recovery) maintain partition separation except
in certain cases:

 Recovery of a projection when the buddy projection from which the partition is recovering is
identically sorted. If the projection is undergoing a full rebuild, it is recovered one ROS
container at a time. The projection ends up with a storage layout identical to its buddy and is,
therefore, properly segmented.

Note: In the case of a partial rebuild, all recovered data goes into a single ROS container and
must be partitioned manually.

 Manual tuple mover operations often output a single storage container, combining any existing

partitions; for example, after executing any of the PURGE() operations.

Users must be the table owner to drop a partition. They must have MODIFY (INSERT | UPDATE
| DELETE) permissions in order to:

 Partition a projection/table

 Merge partitions

 Run mergeout, moveout or purge operations on a projection

Partitioning functions take immutable functions only, in order that the same information be
available across all nodes.

Example

The following example creates a simple table called states and partitions data by state.

=> CREATE TABLE states (

 year INTEGER NOT NULL,

 state VARCHAR NOT NULL)

 PARTITION BY state;

=> CREATE PROJECTION states_p (state, year) AS

 SELECT * FROM states

 ORDER BY state, year UNSEGMENTED ALL NODES;

Now issue the command to partition table states:

=> SELECT PARTITION_TABLE('states');

 PARTITION_TABLE

partition operation for projection 'states_p_node0004'

partition operation for projection 'states_p_node0003'

partition operation for projection 'states_p_node0002'

partition operation for projection 'states_p_node0001'

(1 row)

-371-

 SQL Functions

See Also

DO_TM_TASK (page 339)

DROP_PARTITION (page 341)

DUMP_PARTITION_KEYS (page 346)

DUMP_PROJECTION_PARTITION_KEYS (page 347)

DUMP_TABLE_PARTITION_KEYS (page 348)

PARTITION_PROJECTION (page 368)

Partitioning Tables in the Administrator's Guide

PURGE

Purges all projections in the physical schema. Permanently removes deleted data from physical
storage so that the disk space can be reused. You can purge historical data up to and including the
epoch in which the Ancient History Mark is contained.

Syntax

PURGE()

Notes

 PURGE() was formerly named PURGE_ALL_PROJECTIONS. Vertica supports both function
calls.

 Manual tuple mover operations, such as the PURGE() operations, often output a single
storage container, combining any existing partitions. For example, if PURGE() is used on a
non-partitioned table, all ROS containers are combined into a single container. Non-partitioned
tables cannot be re-partitioned into multiple ROS containers. A purge operation on a
partitioned table also results in a single ROS.

 To re-partition the data into multiple ROS containers, use the PARTITION_TABLE (page
369)() function.

Caution: PURGE could temporarily take up significant disk space while the data is being
purged.

See Also

MERGE_PARTITIONS (page 367)

PARTITION_TABLE (page 369)

PURGE_PROJECTION (page 372)

PURGE_TABLE (page 372)

STORAGE_CONTAINERS (page 743)

Purging Deleted Data in the Administrator's Guide

-372-

SQL Reference Manual

PURGE_PROJECTION

Purges the specified projection. Permanently removes deleted data from physical storage so that
the disk space can be reused. You can purge historical data up to and including the epoch in which
the Ancient History Mark is contained.

Caution: PURGE_PROJECTION could temporarily take up significant disk space while the
data is being purged.

Syntax

PURGE_PROJECTION ([schema-name.]projection_name)

Parameters

projection_name Is the name of a specific projection. When using more than one
schema, specify the schema that contains the projection.

Notes

See PURGE (page 371) for notes about the outcome of purge operations.

See Also

MERGE_PARTITIONS (page 367)

PURGE_TABLE (page 372)

STORAGE_CONTAINERS (page 743)

Purging Deleted Data in the Administrator's Guide

PURGE_TABLE

Note: This function was formerly named PURGE_TABLE_PROJECTIONS(). Vertica still
supports the former function name.

Purges all projections of the specified table. Permanently removes deleted data from physical
storage so that the disk space can be reused. You can purge historical data up to and including the
epoch in which the Ancient History Mark is contained.

Syntax

PURGE_TABLE ([schema_name.]table_name)

Parameters

[schema_name.]table_name Is the name of a specific table in the optionally-specified logical
schema.

When using more than one schema, specify the schema that
contains the projection.

Caution: PURGE_TABLE could temporarily take up significant disk space while the data is
being purged.

-373-

 SQL Functions

Example

The following example purges all projections for the store sales fact table located in the Vmart
schema:

=> SELECT PURGE_TABLE('store.store_sales_fact');

See Also

PURGE (page 371) for notes about the outcome of purge operations.

MERGE_PARTITIONS (page 367)

PURGE_TABLE (page 372)

STORAGE_CONTAINERS (page 743)

Purging Deleted Data in the Administrator's Guide

REENABLE_DUPLICATE_KEY_ERROR

Restores the default behavior of error reporting by reversing the effects of
DISABLE_DUPLICATE_KEY_ERROR. Effects are session scoped.

Syntax

REENABLE_DUPLICATE_KEY_ERROR();

Examples

For examples and usage see DISABLE_DUPLICATE_KEY_ERROR (page 336).

See Also

ANALYZE_CONSTRAINTS (page 321)

REFRESH

Performs a synchronous, optionally-targeted refresh of a specified table's projections.

Information about a refresh operation—whether successful or unsuccessful—is maintained in the
PROJECTION_REFRESHES (page 717) system table until either the
CLEAR_PROJECTION_REFRESHES (page 329)() function is executed or the storage quota for

the table is exceeded. The PROJECTION_REFRESHES.IS_EXECUTING column returns a

boolean value that indicates whether the refresh is currently running (t) or occurred in the past (f).

Syntax

REFRESH ([schema_name.]table_name [, ...])

Parameters

[schema_name.]table_name In the optionally-specified schema, table_name is the name

of a specific table that contains the projections to be refreshed.

When using more than one schema, specify the schema that
contains the table.

-374-

SQL Reference Manual

Returns

Column Name Description

Projection Name The name of the projection that is targeted for refresh.

Anchor Table The name of the projection's associated anchor table.

Status The status of the projection:

 Queued — Indicates that a projection is queued for
refresh.

 Refreshing — Indicates that a refresh for a projection is
in process.

 Refreshed — Indicates that a refresh for a projection
has successfully completed.

 Failed — Indicates that a refresh for a projection did not
successfully complete.

Refresh Method The method used to refresh the projection:

 Buddy – Uses the contents of a buddy to refresh the
projection. This method maintains historical data. This
enables the projection to be used for historical queries.

 Scratch – Refreshes the projection without using a
buddy. This method does not generate historical data.
This means that the projection cannot participate in
historical queries from any point before the projection
was refreshed.

Error Count The number of times a refresh failed for the projection.

Duration (sec) The length of time that the projection refresh ran in seconds.

Notes

 Unlike START_REFRESH(), which runs in the background, REFRESH() runs in the
foreground of the caller's session.

 The REFRESH() function refreshes only the projections in the specified table.

 If you run REFRESH() without arguments, it refreshes all non up-to-date projections. If the
function returns a header string with no results, then no projections needed refreshing.

Example

The following command refreshes the projections in tables t1 and t2:

=> SELECT REFRESH('t1, t2');

refresh
--

 Refresh completed with the following outcomes:
Projection Name: [Anchor Table] [Status] [Refresh Method] [Error Count] [Duration (sec)]

--

"public"."t1_p": [t1] [refreshed] [scratch] [0] [0]

"public"."t2_p": [t2] [refreshed] [scratch] [0] [0]

This next command shows that only the projection on table t was refreshed:

-375-

 SQL Functions

=> SELECT REFRESH('allow, public.deny, t');"

refresh
--

 Refresh completed with the following outcomes:
Projection Name: [Anchor Table] [Status] [Refresh Method] [Error Count] [Duration (sec)]

--

"n/a"."n/a": [n/a] [failed: insufficient permissions on table "allow"] [] [1] [0]

"n/a"."n/a": [n/a] [failed: insufficient permissions on table "public.deny"] [] [1] [0]

"public"."t_p1": [t] [refreshed] [scratch] [0] [0]

See Also

CLEAR_PROJECTION_REFRESHES (page 329)

PROJECTION_REFRESHES (page 717)

START_REFRESH (page 394)

Clearing PROJECTION_REFRESHES History in the Administrator's Guide

REGEXP_COUNT

Returns the number times a regular expression matches a string.

Syntax

REGEXP_COUNT(string, pattern [, position [, regexp_modifier]])

Parameters

string The string to be searched for matches.

pattern The regular expression to search for within the string.
The syntax of the regular expression is compatible with
the Perl 5 regular expression syntax. See the Perl
Regular Expressions Documentation
(http://perldoc.perl.org/perlre.html) for details.

position The number of characters from the start of the string
where the function should start searching for matches.
The default value, 1, means to start searching for a match
at the first (leftmost) character. Setting this parameter to
a value greater than 1 starts searching for a match to the
pattern that many characters into the string.

http://perldoc.perl.org/perlre.html

-376-

SQL Reference Manual

regexp_modifier A string containing one or more single-character flags
that change how the regular expression is matched
against the string:

b Treat strings as binary octets rather than
UTF-8 characters.

c Forces the match to be case sensitive (the
default).

i Forces the match to be case insensitive.

m Treats the string being matched as multiple

lines. With this modifier, the start of line (^)

and end of line ($) regular expression

operators match line breaks (\n) within the

string. Ordinarily, these operators only match
the start and end of the string.

n Allows the single character regular

expression operator (.) to match a newline

(\n). Normally, the . operator will match any

character except a newline.

x Allows you to document your regular
expressions. It causes all unescaped space
characters and comments in the regular
expression to be ignored. Comments start
with a hash character (#) and end with a
newline. All spaces in the regular expression
that you want to be matched in strings must
be escaped with a backslash (\) character.

Notes

This function operates on UTF-8 strings using the default locale, even if the locale has been set to
something else.

If you are porting a regular expression query from an Oracle database, remember that Oracle
considers a zero-length string to be equivalent to NULL, while Vertica does not.

Examples

Count the number of occurrences of the substring "an" in the string "A man, a plan, a canal,
Panama."

=> SELECT REGEXP_COUNT('a man, a plan, a canal: Panama', 'an');

 REGEXP_COUNT

 4

(1 row)

Find the number of occurrences of the substring "an" in the string "a man, a plan, a canal:
Panama" starting with the fifth character.

=> SELECT REGEXP_COUNT('a man, a plan, a canal: Panama', 'an',5);

-377-

 SQL Functions

 REGEXP_COUNT

 3

(1 row)

Find the number of occurrences of a substring containing a lower-case character followed by "an."
In the first example, the query does not have a modifier. In the second example, the "i" query
modifier is used to force the regular expression to ignore case.

=> SELECT REGEXP_COUNT('a man, a plan, a canal: Panama', '[a-z]an');

 REGEXP_COUNT

 3

(1 row)

=> SELECT REGEXP_COUNT('a man, a plan, a canal: Panama', '[a-z]an', 1, 'i');

 REGEXP_COUNT

 4

REGEXP_INSTR

Returns the starting or ending position in a string where a regular expression matches. This
function returns 0 if no match for the regular expression is found in the string.

Syntax

REGEXP_INSTR(string, pattern [, position [, occurrence [, return_position [,

regexp_modifier]]]])

Parameters

string The string to search for the pattern.

pattern The regular expression to search for within the string.
The syntax of the regular expression is compatible with
the Perl 5 regular expression syntax. See the Perl
Regular Expressions Documentation
(http://perldoc.perl.org/perlre.html) for details.

position The number of characters from the start of the string
where the function should start searching for matches.
The default value, 1, means to start searching for a match
at the first (leftmost) character. Setting this parameter to
a value greater than 1 starts searching for a match to the
pattern that many characters into the string.

occurrence Controls which occurrence of a match between the string
and the pattern is returned. With the default value (1), the
function returns the position of the first substring that
matches the pattern. You can use this parameter to find
the position of additional matches between the string and
the pattern. For example, set this parameter to 3 to find
the position of the third substring that matched the
pattern.

return_position Sets the position within the string that is returned. When

http://perldoc.perl.org/perlre.html

-378-

SQL Reference Manual

set to the default value (0), this function returns the
position in the string of the first character of the substring
that matched the pattern. If you set this value to 1, the
function returns the position of the first character after the
end of the matching substring.

regexp_modifier A string containing one or more single-character flags
that change how the regular expression is matched
against the string:

b Treat strings as binary octets rather than
UTF-8 characters.

c Forces the match to be case sensitive (the
default).

i Forces the match to be case insensitive.

m Treats the string being matched as multiple

lines. With this modifier, the start of line (^)

and end of line ($) regular expression

operators match line breaks (\n) within the

string. Ordinarily, these operators only match
the start and end of the string.

n Allows the single character regular

expression operator (.) to match a newline

(\n). Normally, the . operator will match any

character except a newline.

x Allows you to document your regular
expressions. It causes all unescaped space
characters and comments in the regular
expression to be ignored. Comments start
with a hash character (#) and end with a
newline. All spaces in the regular expression
that you want to be matched in strings must
be escaped with a backslash (\) character.

Notes

This function operates on UTF-8 strings using the default locale, even if the locale has been set to
something else.

If you are porting a regular expression query from an Oracle database, remember that Oracle
considers a zero-length string to be equivalent to NULL, while Vertica does not.

Examples

Find the first occurrence of a sequence of letters starting with the letter e and ending with the letter
y in the phrase "easy come, easy go."

=> SELECT REGEXP_INSTR('easy come, easy go','e\w*y');

 REGEXP_INSTR

 1

-379-

 SQL Functions

(1 row)

Find the first occurrence of a sequence of letters starting with the letter e and ending with the letter
y starting at the second character in the string "easy come, easy go."

=> SELECT REGEXP_INSTR('easy come, easy go','e\w*y',2);

 REGEXP_INSTR

 12

(1 row)

Find the second sequence of letters starting with the letter e and ending with the letter y in the
string "easy come, easy go" starting at the first character.

=> SELECT REGEXP_INSTR('easy come, easy go','e\w*y',1,2);

 REGEXP_INSTR

 12

(1 row)

Find the position of the first character after the first whitespace in the string "easy come, easy go."

=> SELECT REGEXP_INSTR('easy come, easy go','\s',1,1,1);

 REGEXP_INSTR

 6

(1 row)

REGEXP_LIKE

Returns true if the string matches the regular expression. This function is similar to the
LIKE-predicate (page 55), except that it uses regular expressions rather than simple wildcard
character matching.

Syntax

REGEXP_LIKE(string, pattern [, modifiers])

Parameters

string The string to match against the regular expression.

pattern A string containing the regular expression to match against the
string. The syntax of the regular expression is compatible with
the Perl 5 regular expression syntax. See the Perl Regular
Expressions Documentation
(http://perldoc.perl.org/perlre.html) for details.

modifiers A string containing one or more single-character flags that
change how the regular expression is matched against the
string:

b Treat strings as binary octets rather than UTF-8
characters.

c Forces the match to be case sensitive (the
default).

http://perldoc.perl.org/perlre.html

-380-

SQL Reference Manual

i Forces the match to be case insensitive.

m Treats the string being matched as multiple

lines. With this modifier, the start of line (^) and

end of line ($) regular expression operators

match line breaks (\n) within the string.

Ordinarily, these operators only match the start
and end of the string.

n Allows the single character regular expression

operator (.) to match a newline (\n).

Normally, the . operator will match any

character except a newline.

x Allows you to document your regular
expressions. It causes all unescaped space
characters and comments in the regular
expression to be ignored. Comments start with
a hash character (#) and end with a newline.
All spaces in the regular expression that you
want to be matched in strings must be escaped
with a backslash (\) character.

Notes

This function operates on UTF-8 strings using the default locale, even if the locale has been set to
something else.

If you are porting a regular expression query from an Oracle database, remember that Oracle
considers a zero-length string to be equivalent to NULL, while Vertica does not.

Examples

This example creates a table containing several strings to demonstrate regular expressions.

=> create table t (v varchar);

CREATE TABLE

=> create projection t1 as select * from t;

CREATE PROJECTION

=> COPY t FROM stdin;

Enter data to be copied followed by a newline.

End with a backslash and a period on a line by itself.

>> aaa

>> Aaa

>> abc

>> abc1

>> 123

>> \.

=> SELECT * FROM t;

 v

 aaa

 Aaa

 abc

-381-

 SQL Functions

 abc1

 123

(5 rows)

Select all records in the table that contain the letter "a."

=> SELECT v FROM t WHERE REGEXP_LIKE(v,'a');

 v

 Aaa

 aaa

 abc

 abc1

(4 rows)

Select all of the rows in the table that start with the letter "a."

=> SELECT v FROM t WHERE REGEXP_LIKE(v,'^a');

 v

 aaa

 abc

 abc1

(3 rows)

Select all rows that contain the substring "aa."

=> SELECT v FROM t WHERE REGEXP_LIKE(v,'aa');

 v

 Aaa

 aaa

(2 rows)

Select all rows that contain a digit.

=> SELECT v FROM t WHERE REGEXP_LIKE(v,'\d');

 v

 123

 abc1

(2 rows)

Select all rows that contain the substring "aaa."

=> SELECT v FROM t WHERE REGEXP_LIKE(v,'aaa');

 v

 aaa

(1 row)

Select all rows that contain the substring "aaa" using case insensitive matching.

=> SELECT v FROM t WHERE REGEXP_LIKE(v,'aaa', 'i');

-382-

SQL Reference Manual

 v

 Aaa

 aaa

(2 rows)

Select rows that contain the substring "a b c."

=> SELECT v FROM t WHERE REGEXP_LIKE(v,'a b c');

 v

(0 rows)

Select rows that contain the substring "a b c" ignoring space within the regular expression.

=> SELECT v FROM t WHERE REGEXP_LIKE(v,'a b c','x');

 v

 abc

 abc1

(2 rows)

Add multi-line rows to demonstrate using the "m" modifier.

=> COPY t FROM stdin RECORD TERMINATOR '!';

Enter data to be copied followed by a newline.

End with a backslash and a period on a line by itself.

>> Record 1 line 1

>> Record 1 line 2

>> Record 1 line 3!

>> Record 2 line 1

>> Record 2 line 2

>> Record 2 line 3!

>> \.

Select rows that start with the substring "Record" and end with the substring "line 2."

=> SELECT v from t WHERE REGEXP_LIKE(v,'^Record.*line 2$'); v

(0 rows)

Select rows that start with the substring "Record" and end with the substring "line 2," treating
multiple lines as separate strings.

=> SELECT v from t WHERE REGEXP_LIKE(v,'^Record.*line 2$','m'); v

--

Record 2 line 1

Record 2 line 2

Record 2 line 3

 Record 1 line 1

Record 1 line 2

Record 1 line 3

(2 rows)

-383-

 SQL Functions

REGEXP_REPLACE

Replace all occurrences of a substring that match a regular expression with another substring. It is
similar to the REPLACE (page 290) function, except it uses a regular expression to select the
substring to be replaced.

Syntax

REGEXP_REPLACE(string, target [, replacement [, position [, occurrence [,

regexp_modifiers]]]])

Parameters

string The string whose to be searched and replaced.

target The regular expression to search for within the string.
The syntax of the regular expression is compatible with
the Perl 5 regular expression syntax. See the Perl
Regular Expressions Documentation
(http://perldoc.perl.org/perlre.html) for details.

replacement The string to replace matched substrings. If not supplied,
the matched substrings are deleted. This string can
contain backreferences for substrings captured by the
regular expression. The first captured substring is

inserted into the replacement string using \1, the second

\2, and so on.

position The number of characters from the start of the string
where the function should start searching for matches.
The default value, 1, means to start searching for a match
at the first (leftmost) character. Setting this parameter to
a value greater than 1 starts searching for a match to the
pattern that many characters into the string.

occurrence Controls which occurrence of a match between the string
and the pattern is replaced. With the default value (0), the
function replaces all matching substrings with the
replacement string. For any value above zero, the
function replaces just a single occurrence. For example,
set this parameter to 3 to replace the third substring that
matched the pattern.

regexp_modifier A string containing one or more single-character flags
that change how the regular expression is matched
against the string:

b Treat strings as binary octets rather than
UTF-8 characters.

c Forces the match to be case sensitive (the
default).

i Forces the match to be case insensitive.

http://perldoc.perl.org/perlre.html

-384-

SQL Reference Manual

m Treats the string being matched as multiple

lines. With this modifier, the start of line (^)

and end of line ($) regular expression

operators match line breaks (\n) within the

string. Ordinarily, these operators only match
the start and end of the string.

n Allows the single character regular

expression operator (.) to match a newline

(\n). Normally, the . operator will match any

character except a newline.

x Allows you to document your regular
expressions. It causes all unescaped space
characters and comments in the regular
expression to be ignored. Comments start
with a hash character (#) and end with a
newline. All spaces in the regular expression
that you want to be matched in strings must
be escaped with a backslash (\) character.

Notes

This function operates on UTF-8 strings using the default locale, even if the locale has been set to
something else.

If you are porting a regular expression query from an Oracle database, remember that Oracle
considers a zero-length string to be equivalent to NULL, while Vertica does not.

Examples

Find groups of "word characters" (letters, numbers and underscore) ending with "thy" in the string
"healthy, wealthy, and wise" and replace them with nothing.

=> SELECT REGEXP_REPLACE('healthy, wealthy, and wise','\w+thy');

 REGEXP_REPLACE

 , , and wise

(1 row)

Find groups of word characters ending with "thy" and replace with the string "something."

=> SELECT REGEXP_REPLACE('healthy, wealthy, and wise','\w+thy', 'something');

 REGEXP_REPLACE

 something, something, and wise

(1 row)

Find groups of word characters ending with "thy" and replace with the string "something" starting
at the third character in the string.

=> SELECT REGEXP_REPLACE('healthy, wealthy, and wise','\w+thy', 'something', 3);

 REGEXP_REPLACE

-385-

 SQL Functions

 hesomething, something, and wise

(1 row)

Replace the second group of word characters ending with "thy" with the string "something."

=> SELECT REGEXP_REPLACE('healthy, wealthy, and wise','\w+thy', 'something', 1,

2);

 REGEXP_REPLACE

 healthy, something, and wise

(1 row)

Find groups of word characters ending with "thy" capturing the letters before the "thy", and replace
with the captured letters plus the letters "ish."

=> SELECT REGEXP_REPLACE('healthy, wealthy, and wise','(\w+)thy', '\1ish');

 REGEXP_REPLACE

 healish, wealish, and wise

(1 row)

Create a table to demonstrate replacing strings in a query.

=> CREATE TABLE customers (name varchar(50), phone varchar(11));

CREATE TABLE

=> CREATE PROJECTION customers1 AS SELECT * FROM customers;

CREATE PROJECTION

=> COPY customers FROM stdin;

Enter data to be copied followed by a newline.

End with a backslash and a period on a line by itself.

>> Able, Adam|17815551234

>> Baker,Bob|18005551111

>> Chu,Cindy|16175559876

>> Dodd,Dinara|15083452121

>> \.

Query the customers, using REGEXP_REPLACE to format the phone numbers.

=> SELECT name, REGEXP_REPLACE(phone, '(\d)(\d{3})(\d{3})(\d{4})', '\1-(\2)

\3-\4') as phone FROM customers;

 name | phone

-------------+------------------

 Able, Adam | 1-(781) 555-1234

 Baker,Bob | 1-(800) 555-1111

 Chu,Cindy | 1-(617) 555-9876

 Dodd,Dinara | 1-(508) 345-2121

(4 rows)

-386-

SQL Reference Manual

REGEXP_SUBSTR

Returns the substring that matches a regular expression within a string. If no matches are found,
this function returns NULL. This is different than an empty string, which can be returned by this
function if the regular expression matches a zero-length string.

Syntax

REGEXP_SUBSTR(string, pattern [, position [, occurrence [, regexp_modifier]]])

Parameters

string The string to search for the pattern.

pattern The regular expression to find the substring to be extracted.
The syntax of the regular expression is compatible with the
Perl 5 regular expression syntax. See the Perl Regular
Expressions Documentation
(http://perldoc.perl.org/perlre.html) for details.

position The character in the string where the search for a match
should start. The default value, 1, starts the search at the
beginning of the string. If you supply a value larger than 1
for this parameter, the function will start searching that
many characters into the string.

occurrence Controls which matching substring is returned by the
function. When given the default value (1), the function will
return the first matching substring it finds in the string. By
setting this value to a number greater than 1, this function
will return subsequent matching substrings. For example,
setting this parameter to 3 will return the third substring that
matches the regular expression within the string.

regexp_modifier A string containing one or more single-character flags that
change how the regular expression is matched against the
string:

b Treat strings as binary octets rather than UTF-8
characters.

c Forces the match to be case sensitive (the
default).

i Forces the match to be case insensitive.

m Treats the string being matched as multiple

lines. With this modifier, the start of line (^) and

end of line ($) regular expression operators

match line breaks (\n) within the string.

Ordinarily, these operators only match the start
and end of the string.

n Allows the single character regular expression

operator (.) to match a newline (\n).

Normally, the . operator will match any

character except a newline.

http://perldoc.perl.org/perlre.html

-387-

 SQL Functions

x Allows you to document your regular
expressions. It causes all unescaped space
characters and comments in the regular
expression to be ignored. Comments start with
a hash character (#) and end with a newline.
All spaces in the regular expression that you
want to be matched in strings must be escaped
with a backslash (\) character.

Notes

This function operates on UTF-8 strings using the default locale, even if the locale has been set to
something else.

If you are porting a regular expression query from an Oracle database, remember that Oracle
considers a zero-length string to be equivalent to NULL, while Vertica does not.

Examples

Select the first substring of letters that end with "thy."

=> SELECT REGEXP_SUBSTR('healthy, wealthy, and wise','\w+thy');

 REGEXP_SUBSTR

 healthy

(1 row)

Select the first substring of letters that ends with "thy" starting at the second character in the string.

=> SELECT REGEXP_SUBSTR('healthy, wealthy, and wise','\w+thy',2);

 REGEXP_SUBSTR

 ealthy

(1 row)

Select the second substring of letters that ends with "thy."

=> SELECT REGEXP_SUBSTR('healthy, wealthy, and wise','\w+thy',1,2);

 REGEXP_SUBSTR

 wealthy

(1 row)

RESTORE_LOCATION

Restores the retired location specified.

Syntax

RESTORE_LOCATION (path , node)

-388-

SQL Reference Manual

Parameters

path Specifies where the retired storage location is mounted.

node Is the Vertica node where the retired location is available.

Notes

Once restored, Vertica re-ranks the storage locations and use the restored location to process
queries as determined by its rank.

Example

The following example restores the retired storage location on node3:

=> SELECT RESTORE_LOCATION ('/thirdVerticaStorageLocation/' , 'node3');

See Also

ADD_LOCATION (page 318)

RETIRE_LOCATION (page 388)

Modifying Storage Locations in the Administrator's Guide

RETIRE_LOCATION

Makes the specified storage location inactive.

Syntax

RETIRE_LOCATION ('path' , 'site')

Parameters

path Specifies where the storage location to retire is mounted.

site Is the Vertica site where the location is available.

Notes

 Before retiring a location, be sure that at least one location remains for storing data and temp
files. Data and temp files can be stored in either one storage location or separate storage
locations.

 Once retired, no new data can be stored on the location unless the location is restored through
the RESTORE_LOCATION (page 387) function.

 If the storage location stored data, the data is not moved. Instead, it is removed through one or
more mergeouts. Therefore, the location cannot be dropped.

 If the storage site was used to store only temp files, it can be dropped. See Dropping Storage
Locations in the Administrators Guide and the DROP_LOCATION (page 340) function.

Example

=> SELECT RETIRE_LOCATION ('/secondVerticaStorageLocation/' , 'node2');

-389-

 SQL Functions

See Also

ADD_LOCATION (page 318)

RESTORE_LOCATION (page 387)

Retiring Storage Locations in the Administrator's Guide

SAVE_QUERY_REPOSITORY

Triggers Vertica to save query data to the query repository immediately.

Syntax

SAVE_QUERY_REPOSITORY()

Notes

 Vertica saves data based on the established query repository configuration parameters. For
example, it will use the value of the QueryRepoRetentionTime parameter to determine the
maximum number of days worth of queries to save. (See Configuring Query Repository in the
Troubleshooting Guide.)

 Before you can save a query repository, you have to enable it:

SELECT SET_CONFIG_PARAMETER('QueryRepositoryEnabled',1);

Example

=> SELECT SAVE_QUERY_REPOSITORY();

 SAVE_QUERY_REPOSITORY

 Query Repository Saved

(1 row)

See Also

Collecting Query Information in the Troubleshooting Guide

SET_AHM_EPOCH

Sets the Ancient History Mark (AHM) to the specified epoch. This function allows deleted data up
to and including the AHM epoch to be purged from physical storage.

SET_AHM_EPOCH is normally used for testing purposes. Consider SET_AHM_TIME (page 391)
instead, which is easier to use.

Syntax

SET_AHM_EPOCH (epoch, [true])

Parameters

epoch Specifies one of the following:

 The number of the epoch in which to set the AHM

 Zero (0) (the default) disables purge (page 371)

-390-

SQL Reference Manual

true Optionally allows the AHM to advance when nodes are down.

Note: If the AHM is advanced after the last good epoch of the failed

nodes, those nodes must recover all data from scratch. Use with care.

Notes

If you use SET_AHM_EPOCH , the number of the specified epoch must be:

 Greater than the current AHM epoch

 Less than the current epoch

 Less than or equal to the cluster last good epoch (the minimum of the last good epochs of the
individual nodes in the cluster)

 Less than or equal to the cluster refresh epoch (the minimum of the refresh epochs of the
individual nodes in the cluster)

Use the SYSTEM (page 751) table to see current values of various epochs related to the AHM; for
example:

=> SELECT * from SYSTEM;

-[RECORD 1]------------+---------------------------

current_timestamp | 2009-08-11 17:09:54.651413

current_epoch | 1512

ahm_epoch | 961

last_good_epoch | 1510

refresh_epoch | -1

designed_fault_tolerance | 1

node_count | 4

node_down_count | 0

current_fault_tolerance | 1

catalog_revision_number | 1590

wos_used_bytes | 0

wos_row_count | 0

ros_used_bytes | 41490783

ros_row_count | 1298104

total_used_bytes | 41490783

total_row_count | 1298104

All nodes must be up. You cannot use SET_AHM_EPOCH when any node in the cluster is down,
except by using the optional true parameter.

When a node is down and you issue SELECT MAKE_AHM_NOW(), the following error is printed to

the vertica.log:

Some nodes were excluded from setAHM. If their LGE is before the AHM they will perform full recovery.

Examples

The following command sets the AHM to a specified epoch of 12:

=> SELECT SET_AHM_EPOCH(12);

The following command sets the AHM to a specified epoch of 2 and allows the AHM to advance
despite a failed node:

=> SELECT SET_AHM_EPOCH(2, true);

-391-

 SQL Functions

See Also

MAKE_AHM_NOW (page 363)

SET_AHM_TIME (page 391)

SYSTEM (page 751)

SET_AHM_TIME

Sets the Ancient History Mark (AHM) to the epoch corresponding to the specified time on the
initiator node. This function allows historical data up to and including the AHM epoch to be purged
from physical storage.

Syntax

SET_AHM_TIME (time , [true])

Parameters

time Is a TIMESTAMP (page 87) value that is automatically converted
to the appropriate epoch number.

true [Optional] Allows the AHM to advance when nodes are down.

Note: If the AHM is advanced after the last good epoch of the

failed nodes, those nodes must recover all data from scratch.

Notes

 SET_AHM_TIME returns a TIMESTAMP WITH TIME ZONE value representing the end point
of the AHM epoch.

 You cannot change the AHM when any node in the cluster is down, except by using the
optional true parameter.

 When a node is down and you issue SELECT MAKE_AHM_NOW(), the following error is printed

to the vertica.log:

Some nodes were excluded from setAHM. If their LGE is before the AHM they

will perform full recovery.

Examples

Epochs depend on a configured epoch advancement interval. If an epoch includes a three-minute
range of time, the purge operation is accurate only to within minus three minutes of the specified
timestamp:

=> SELECT SET_AHM_TIME('2008-02-27 18:13');

 set_ahm_time

 AHM set to '2008-02-27 18:11:50-05'

(1 row)

Note: The -05 part of the output string is a time zone value, an offset in hours from UTC
(Universal Coordinated Time, traditionally known as Greenwich Mean Time, or GMT).

-392-

SQL Reference Manual

In the above example, the actual AHM epoch ends at 18:11:50, roughly one minute before the
specified timestamp. This is because SET_AHM_TIME selects the epoch that ends at or before
the specified timestamp. It does not select the epoch that ends after the specified timestamp
because that would purge data deleted as much as three minutes after the AHM.

For example, using only hours and minutes, suppose that epoch 9000 runs from 08:50 to 11:50

and epoch 9001 runs from 11:50 to 15:50. SET_AHM_TIME('11:51') chooses epoch 9000

because it ends roughly one minute before the specified timestamp.

In the next example, if given an environment variable set as date =`date`; the following

command fails if a node is down:

=> SELECT SET_AHM_TIME('$date');

In order to force the AHM to advance, issue the following command instead:

=> SELECT SET_AHM_TIME('$date', true);

See Also

MAKE_AHM_NOW (page 363)

SET_AHM_EPOCH (page 389) for a description of the range of valid epoch numbers.

SET DATESTYLE (page 634) for information about specifying a TIMESTAMP (page 87) value.

SET_LOCATION_PERFORMANCE

Sets disk performance for the location specified.

Syntax

SET_LOCATION_PERFORMANCE (path , node , throughput , average_latency)

Parameters

node Is the Vertica node where the location to be set is
available.

If this parameter is omitted, node defaults to the initiator.

path Specifies where the storage location to set is mounted.

throughput Specifies the throughput for the location, which must be 1
or more.

average_latency Specifies the average latency for the location. The
average_latency must be 1 or more.

Notes

To obtain the throughput and average latency for the location, run the
MEASURE_LOCATION_PERFORMANCE (page 366) function before you attempt to set the
location's performance.

-393-

 SQL Functions

Example

The following example sets the performance of a storage location on node2 to a throughput of 122
megabytes per second and a latency of 140 seeks per second.

=> SELECT MEASURE_LOCATION_PERFORMANCE('node2','/secondVerticaStorageLocation/','122','140');

See Also

ADD_LOCATION (page 318)

MEASURE_LOCATION_PERFORMANCE (page 366)

Measuring Location Performance and Setting Location Performance in the Administrator's Guide

SHUTDOWN

Forces a database to shut down, even if there are users connected.

Syntax

SHUTDOWN (['false' | 'true'])

Parameters

false [Default] Returns a message if users are connected. Has the same effect
as supplying no parameters.

true Performs a moveout operation and forces the database to shut down,
disallowing further connections.

Notes

 Quotes around the true or false arguments are optional.

 Issuing the shutdown command without arguments or with the default (false) argument returns
a message if users are connected, and the shutdown fails. If no users are connected, the
database performs a moveout operation and shuts down.

 Issuing the SHUTDOWN('true') command forces the database to shut down whether users

are connected or not.

 You can check the status of the shutdown operation in the vertica.log file:

2010-03-09 16:51:52.625 unknown:0x7fc6d6d2e700 [Init] <INFO> Shutdown

complete. Exiting.

 As an alternative to SHUTDOWN(), you can also temporarily set MaxClientSessions to 0 and
then use CLOSE_ALL_SESSIONS(). New client connections cannot connect unless they
connect using the dbadmin account. See CLOSE_ALL_SESSIONS (page 333) for details.

Examples

The following command attempts to shut down the database. Because users are connected, the
command fails:

=> SELECT SHUTDOWN('false');

NOTICE: Cannot shut down while users are connected

 SHUTDOWN

-394-

SQL Reference Manual

 Shutdown: aborting shutdown

(1 row)

Note that SHUTDOWN() and SHUTDOWN('false') perform the same operation:

=> SELECT SHUTDOWN();

NOTICE: Cannot shut down while users are connected

 SHUTDOWN

 Shutdown: aborting shutdown

(1 row)

Using the 'true' parameter forces the database to shut down, even though clients might be

connected:

=> SELECT SHUTDOWN('true');

 SHUTDOWN

 Shutdown: moveout complete

(1 row)

See Also

SESSIONS (page 741)

START_REFRESH

Transfers data to projections that are not able to participate in query execution due to missing or
out-of-date data.

Syntax

START_REFRESH()

Notes

 When a design is deployed through the Database Designer, it is automatically refreshed. See
Deploying Designs in the Administrator's Guide.

 All nodes must be up in order to start a refresh.

 START_REFRESH() has no effect if a refresh is already running.

 A refresh is run asynchronously.

 Shutting down the database ends the refresh.

 To view the progress of the refresh, see the PROJECTION_REFRESHES (page 717) and
PROJECTIONS (page 673) system tables.

 If a projection is updated from scratch, the data stored in the projection represents the table
columns as of the epoch in which the refresh commits. As a result, the query optimizer might
not choose the new projection for AT EPOCH queries that request historical data at epochs
older than the refresh epoch of the projection. Projections refreshed from buddies retain
history and can be used to answer historical queries.

Vertica internal operations (mergeout, refresh, and recovery) maintain partition separation except
in certain cases:

-395-

 SQL Functions

 Recovery of a projection when the buddy projection from which the partition is recovering is
identically sorted. If the projection is undergoing a full rebuild, it is recovered one ROS
container at a time. The projection ends up with a storage layout identical to its buddy and is,
therefore, properly segmented.

Note: In the case of a partial rebuild, all recovered data goes into a single ROS container and
must be partitioned manually.

 Manual tuple mover operations often output a single storage container, combining any existing

partitions; for example, after executing any of the PURGE() operations.

Example

The following command starts the refresh operation:

=> SELECT START_REFRESH();

 start_refresh

--

 Starting refresh background process.

See Also

CLEAR_PROJECTION_REFRESHES (page 329)

MARK_DESIGN_KSAFE (page 365)

PROJECTION_REFRESHES (page 717)

PROJECTIONS (page 673)

Clearing PROJECTION_REFRESHES History in the Administrator's Guide

Catalog Management Functions

This section contains catalog management functions specific to Vertica.

-396-

 396

DUMP_CATALOG

Returns an internal representation of the Vertica catalog. This function is used for diagnostic
purposes.

Syntax

DUMP_CATALOG()

Notes

To obtain an internal representation of the Vertica catalog for diagnosis, run the query:

SELECT DUMP_CATALOG();

The output is written to the specified file:

\o /tmp/catalog.txt

SELECT DUMP_CATALOG();

\o

Send the output to Technical Support (on page 1).

EXPORT_CATALOG

Generates a SQL script that can be used to recreate a physical schema design in its current state
on a different cluster.

Syntax

EXPORT_CATALOG ([destination] , [type])

Parameters

destination Specifies the path and name of the SQL output file. An
empty string (' '), which is the default, dumps the script to
standard output. A user who is not a DBA can only specify
an empty string.

type Determines what is exported:

 design — Exports schemas, tables, constraints,
views, and projections to which the user has access.
This is the default value.

 design_all — Exports all the design objects plus
system objects created in Database Designer (for
example, design contexts and their tables). The
objects that are exported are only the ones to which
the user has access.

 tables— Exports all tables, constraints, and
projections for those tables for which the user has
permissions. See also EXPORT_TABLES (page
354).

Notes

 Exporting a design is useful for quickly moving a design to another cluster.

-397-

 SQL Functions

 The script generated by this function:

 Creates only the non-virtual objects for which the user has access.

 Automatically runs MARK_DESIGN_KSAFE() with the correct K-Safety value to ensure the
design copy has the same same K-Safety value as the original design.

 Exports catalog objects in their Oid order.

 Use the design_all parameter when adding a node to a cluster. See Modifying Database
Designs for Updated Nodes.

 If a projection is created with no sort order, Vertica implicitly assigns a sort order based on the
SELECT columns in the projection definition. The sort order is explicitly defined in the exported
script.

Restrictions

The export script Vertica generates is portable as long as all the projections were generated using
UNSEGMENTED ALL NODES or SEGMENTED ALL NODES. Projections might not exist on ALL
NODES for the following reasons:

 A projection was dropped from a node.

 A projection was created only on a subset of nodes.

 An additional node was added since the projection set was created and the design wasn't
extended through Database Designer deployment.

Example

The following example exports the design to standard output:

SELECT EXPORT_CATALOG(' ','DESIGN');

EXPORT_OBJECTS

Generates a SQL script that can be used to recreate catalog objects on a different cluster.

Syntax

EXPORT_OBJECTS([destination] , [scope] , [bool_value])

Parameters

destination Specifies the path and name of the SQL output file. An empty string (' '),
which is the default, dumps the script to standard output. A user who is not a
DBA can only specify an empty string.

-398-

SQL Reference Manual

scope Determines the set of catalog objects to be exported where scope is one of
the following:

 an empty string (' ')—exports all non-virtual objects to which the user
has access, including constraints. (Note that constraints are not
objects which can be passed as individual arguments.) This is the
default if no scope is specified.

 a comma-delimited list of items in which each item can be one of the
following:

 —'<schema>.<obj>'—matches the named object. The named object can
be a table, projection, or view.

 —'<obj>'—matches the named object within the current search path.
The named object can be a schema, table, projection, or view. If the
named object is a schema, Vertica exports all non-virtual objects to
which the user has access within that schema. If a schema and table
both have the same name, the schema takes precedence.

EXPORT_OBJECTS returns an error if:

 an explicitly-specified object does not exist.

 the user has no access to the specified object.

bool-value

Determi nes if the s tatistics ar e reg enerated befor e l oading them i nto the design context

Use one of the following:

 true—incorporates a MAKE_DESIGN_KSAFE statement with the
correct K-Safety value for the database at the end of the output
script.

 false—omits the MAKE_DESIGN_KSAFE statement from the script.

Adding the MAKE_DESIGN_KSAFE statement is useful if you are planning
to import the script into a new database and you want the new database to
inherit the K-Safety value from the original database.

By default, this parameter is true.

Notes

 The script generated by this function:

 Creates only the non-virtual objects for which the user has access.

 Exports catalog objects in their Oid order.

 None of the parameters for EXPORT_OBJECTS accepts a NULL value as input.

Example

The following example exports the all the non-virtual objects to which the user has access to
standard output. It does not incorporates the MAKE_DESIGN_KSAFE statement at the end of the
file.

SELECT EXPORT_OBJECTS(' ',' ',false);

INSTALL_LICENSE

SELECT INSTALL_LICENSE(<FILENAME>) installs the license key in the global catalog.

description

-399-

 SQL Functions

Syntax

INSTALL_LICENSE('filename')

Parameters

filename specifies the absolute pathname of a valid license file.

Notes

See Managing Your License Key in the Administrator's Guide for more information about license
keys.

Examples

SELECT INSTALL_LICENSE('/tmp/vlicense.txt');

-400-

 400

MARK_DESIGN_KSAFE

Enables or disables high availability in your environment, in case of a failure. Before enabling
recovery, MARK_DESIGN_KSAFE queries the catalog to determine whether a cluster's physical
schema design meets the following requirements:

 Dimension tables are replicated on all nodes.

 Fact table superprojections are segmented with each segment on a different node.

 Each fact table projection has at least one buddy projection for K-Safety=1 (or two buddy
projections for K-Safety=2).

Buddy projections are also segmented across database nodes, but the distribution is modified
so that segments that contain the same data are distributed to different nodes. See High
Availability Through Projections in the Concepts Guide.

Note: Projections are considered to be buddies if they contain the same columns and have the
same segmentation. They can have different sort orders.

MARK_DESIGN_KSAFE does not change the physical schema in any way.

Syntax

SELECT MARK_DESIGN_KSAFE (k)

Parameters

k 2 enables high availability if the schema design meets requirements for
K-Safety=2

1 enables high availability if the schema design meets requirements for
K-Safety=1

0 disables high availability

If you specify a k value of one (1) or two (2), Vertica returns one of the following messages.

Success:

 Marked design n-safe

Failure:

 The schema does not meet requirements for K=n.

 Fact table projection projection-name

 has insufficient "buddy" projections.

n in the message is 1 or 2 and represents the k value.

Notes

 The database's internal recovery state persists across database restarts but it is not checked
at startup time.

 If a database has automatic recovery enabled, you must temporarily disable automatic
recovery before creating a new table.

 When one node fails on a system marked K-safe=1, the remaining nodes are available for
DML operations.

-401-

 SQL Functions

Examples

=> SELECT MARK_DESIGN_KSAFE(1);

 mark_design_ksafe

 Marked design 1-safe

(1 row)

If the physical schema design is not K-Safe, messages indicate which projections do not have a
buddy:

=> SELECT MARK_DESIGN_KSAFE(1);

The given K value is not correct; the schema is 0-safe

Projection pp1 has 0 buddies, which is smaller that the given K of 1

Projection pp2 has 0 buddies, which is smaller that the given K of 1

.

.

.

(1 row)

See Also

SYSTEM (page 751)

High Availability and Recovery in the Concepts Guide

SQL System Tables (Monitoring APIs) (page 660) topic in the Administrator's Guide

Using Identically Segmented Projections in the Programmer's Guide

Failure Recovery in the Troubleshooting Guide

Constraint Management Functions

This section contains constraint management functions specific to Vertica.

ANALYZE_CONSTRAINTS

Analyzes and reports on constraint violations within the current schema search path.

You can check for constraint violations by passing an empty argument (which returns violations on
all tables within the current schema), by passing a single table argument, or by passing two
arguments containing a table name and a column or list of columns.

Syntax

ANALYZE_CONSTRAINTS [('')

... | (schema.table)

... | [(schema.table , column)]

Parameters

('') Analyzes and reports on all tables within the current schema search path.

table Analyzes and reports on all constraints referring to the specified table.

-402-

SQL Reference Manual

column Analyzes and reports on all constraints referring to specified table that contains
the specified columns.

Notes

 ANALYZE_CONSTRAINTS(), takes locks in the same way that SELECT * FROM t1 holds a

lock on table t1. See LOCKS (page 712) for additional information.

 Use COPY (page 497) with NO COMMIT keywords to incorporate detection of constraint
violations into the load process. Vertica checks for constraint violations when queries are run,
not when data is loaded. To avoid constraint violations, load data without committing it and
then perform a post-load check of your data using the ANALYZE_CONSTRAINTS function. If
the function finds constraint violations, you can roll back the load because you have not
committed it.

 ANALYZE_CONSTRAINTS() fails if the database cannot perform constraint checks, such as
when the system is out of resources. Vertica returns an error that identifies the specific
condition that caused the failure.

 When ANALYZE_CONSTRAINTS finds violations, such as when you insert a duplicate value
into a primary key, you can correct errors using the following functions. Effects last until the
end of the session only:

 SELECT DISABLE_DUPLICATE_KEY_ERROR (page 336)

 SELECT REENABLE_DUPLICATE_KEY_ERROR (page 373)

 If you specify the wrong table, the system returns an error message:

SELECT ANALYZE_CONSTRAINTS('abc');

ERROR: 'abc' is not a table in the current search path

 If you issue the function using incorrect syntax, the system returns an error message with a
hint:

ANALYZE ALL CONSTRAINT;

Or

ANALYZE CONSTRAINT abc;

ERROR: ANALYZE CONSTRAINT is not supported.

HINT: You may consider using analyze_constraints().

 ANALYZE_CONSTRAINTS returns an error if run from a non-default locale; for example:

=> \locale LEN

INFO: Canonical locale: 'en'

INFO: English

INFO: Standard collation: 'LEN'

=> SELECT ANALYZE_CONSTRAINTS('t1');

ERROR: ANALYZE_CONSTRAINTS is currently not supported in non-default

locales

HINT: Set the locale in this session to en_US@collation=binary using

the

command "\locale en_US@collation=binary"

-403-

 SQL Functions

Return Values

ANALYZE_CONSTRAINTS() returns results in a structured set (see table below) that lists the
schema name, table name, column name, constraint name, constraint type, and the column
values that caused the violation.

If the result set is empty, then no constraint violations exist; for example:

SELECT ANALYZE_CONSTRAINTS ('public.product_dimension', 'product_key');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

(0 rows)

The following result set, on the other hand, shows a primary key violation, along with the value that

caused the violation ('10'):

SELECT ANALYZE_CONSTRAINTS ('');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 store t1 c1 pk_t1 PRIMARY ('10')

(1 row)

The result set columns are described in further detail in the following table:

Column Name Data Type Description

Schema Name VARCHAR The name of the schema.

Table Name VARCHAR The name of the table, if specified.

Column Names VARCHAR Names of columns containing constraints. Multiple columns
are in a comma-separated list:

store_key,

store_key, date_key,

Constraint Name VARCHAR The given name of the primary key, foreign key, unique, or not
null constraint, if specified.

Constraint Type VARCHAR Identified by one of the following strings: 'PRIMARY KEY',
'FOREIGN KEY', 'UNIQUE', or 'NOT NULL'.

Column Values VARCHAR Value of the constraint column, in the same order in which

Column Names contains the value of that column in the

violating row.

When interpreted as SQL, the value of this column forms a list

of values of the same type as the columns in Column Names;

for example:

('1'),

('1', 'z')

Examples

Given the following inputs, Vertica returns one row, indicating one violation, because the same
primary key value (10) was inserted into table t1 twice:

CREATE TABLE t1(c1 INT);

ALTER TABLE t1 ADD CONSTRAINT pk_t1 PRIMARY KEY (c1);

CREATE PROJECTION t1_p (c1) AS SELECT * FROM t1 UNSEGMENTED ALL NODES;

-404-

SQL Reference Manual

INSERT INTO t1 values (10);

INSERT INTO t1 values (10); --Duplicate primary key value

SELECT ANALYZE_CONSTRAINTS('t1');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public t1 c1 pk_t1 PRIMARY ('10')

(1 row)

If the second INSERT statement above had contained any different value, the result would have
been 0 rows (no violations).

In this example, create a table that contains 3 integer columns, one a unique key and one a
primary key:

CREATE TABLE fact_1(

 f INTEGER,

 f_UK INTEGER UNIQUE,

 f_PK INTEGER PRIMARY KEY

);

Try issuing a command that refers to a nonexistent column:

SELECT ANALYZE_CONSTRAINTS('f_BB', 'f2');

ERROR: 'f_BB' is not a table name in the current search path

Insert some values into table fact_1 and commit the changes:

INSERT INTO fact_1 values (1, 1, 1);

COMMIT;

Now issue the ANALYZE_CONSTRAINTS command on table fact_1. No constraint violations

are expected and none are found:

SELECT ANALYZE_CONSTRAINTS('fact_1');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

(0 rows)

Now insert duplicate unique and primary key values and run ANALYZE_CONSTRAINTS on table

fact_1 again. The system shows two violations: one against the primary key and one against the

unique key:

INSERT INTO fact_1 VALUES (1, 1, 1);

COMMIT;

SELECT ANALYZE_CONSTRAINTS('fact_1');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public | fact_1 | f_pk | - | PRIMARY | ('1')

 public | fact_1 | f_uk | - | UNIQUE | ('1')

(2 rows)

The following command looks for constraint validation on only the unique key in table fact_1:

SELECT ANALYZE_CONSTRAINTS('fact_1', 'f_UK');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public | fact_1 | f_uk | C_UNIQUE | UNIQUE | ('1')

(1 row)

The following example shows that you can specify the same column more than once; the function,
however, returns the violation once only:

SELECT ANALYZE_CONSTRAINTS('fact_1', 'f_PK, F_PK');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public | fact_1 | f_pk | C_PRIMARY | PRIMARY | ('1')

(1 row)

-405-

 SQL Functions

The following example creates a new dimension table, dim_1, and inserts a foreign key and

different (character) data types:

CREATE TABLE dim_1 (b VARCHAR(3), b_PK VARCHAR(4), b_FK INTEGER REFERENCES fact_1(f_PK));

Alter the table to create a multicolumn unique key and multicolumn foreign key and create
superprojections:

ALTER TABLE dim_1 ADD CONSTRAINT dim_1_multiuk PRIMARY KEY (b, b_PK);

The following command inserts a missing foreign key (0) in table dim_1 and commits the

changes:

INSERT INTO dim_1 VALUES ('r1', 'Xpk1', 0);

COMMIT;

Checking for constraints on table dim_1 detects a foreign key violation:

SELECT ANALYZE_CONSTRAINTS('dim_1');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public | dim_1 | b_fk | C_FOREIGN | FOREIGN | ('0')

(1 row)

Now add a duplicate value into the unique key and commit the changes:

INSERT INTO dim_1 values ('r2', 'Xpk1', 1);

INSERT INTO dim_1 values ('r1', 'Xpk1', 1);

COMMIT;

Checking for constraint violations on table dim_1 detects the duplicate unique key error:

SELECT ANALYZE_CONSTRAINTS('dim_1');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+----------------

 public | dim_1 | b, b_pk | dim_1_multiuk | PRIMARY | ('r1', 'Xpk1')

 public | dim_1 | b_fk | C_FOREIGN | FOREIGN | ('0')

(2 rows)

Now create a table with multicolumn foreign key and create the superprojections:

CREATE TABLE dim_2(z_fk1 VARCHAR(3), z_fk2 VARCHAR(4));

ALTER TABLE dim_2 ADD CONSTRAINT dim_2_multifk FOREIGN KEY (z_fk1, z_fk2) REFERENCES dim_1(b, b_PK);

Now insert a foreign key that matches a foreign key in table dim_1 and commit the changes:

INSERT INTO dim_2 VALUES ('r1', 'Xpk1');

COMMIT;

Checking for constraints on table dim_2 detects no violations:

SELECT ANALYZE_CONSTRAINTS('dim_2');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

(0 rows)

Add a value that does not match and commit the change:

INSERT INTO dim_2 values ('r1', 'NONE');

COMMIT;

Checking for constraints on table dim_2 detects a foreign key violation:

SELECT ANALYZE_CONSTRAINTS('dim_2');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+----------------

 public | dim_2 | z_fk1, z_fk2 | dim_2_multifk | FOREIGN | ('r1', 'NONE')

(1 row)

-406-

SQL Reference Manual

Now analyze all constraints on all tables:

SELECT ANALYZE_CONSTRAINTS('');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public | dim_1 | b, b_pk | dim_1_multiuk | PRIMARY | ('r1', 'Xpk1')

 public | dim_1 | b_fk | C_FOREIGN | FOREIGN | ('0')

 public | dim_2 | z_fk1, z_fk2 | dim_2_multifk | FOREIGN | ('r1', 'NONE')

 public | fact_1 | f_pk | C_PRIMARY | PRIMARY | ('1')

 public | fact_1 | f_uk | C_UNIQUE | UNIQUE | ('1')

(5 rows)

To quickly clean up your database, issue the following command:

DROP TABLE fact_1 cascade;

DROP TABLE dim_1 cascade;

DROP TABLE dim_2 cascade;

To learn how to remove violating rows, see the DISABLE_DUPLICATE_KEY_ERROR (page
336) function.

See Also

Adding Constraints in the Administrator's Guide

COPY (page 497)

ALTER TABLE (page 488)

CREATE TABLE (page 546)

DISABLE_DUPLICATE_KEY_ERROR

Disables error messaging when Vertica finds duplicate PRIMARY KEY/UNIQUE KEY values at
run time. Queries execute as though no constraints are defined on the schema. Effects are
session scoped.

CAUTION: When called, DISABLE_DUPLICATE_KEY_ERROR() suppresses data integrity
checking and can lead to incorrect query results. Use this function only after you insert
duplicate primary keys into a dimension table in the presence of a prejoin projection. Then
correct the violations and turn integrity checking back on with
REENABLE_DUPLICATE_KEY_ERROR (page 373)().

Syntax

DISABLE_DUPLICATE_KEY_ERROR();

Notes

The following series of commands create a table named dim and the corresponding projection:

CREATE TABLE dim (pk INTEGER PRIMARY KEY, x INTEGER);

CREATE PROJECTION dim_p (pk, x) AS SELECT * FROM dim ORDER BY x UNSEGMENTED ALL

NODES;

-407-

 SQL Functions

The next two statements create a table named fact and the pre-join projection that joins fact to

dim.

CREATE TABLE fact(fk INTEGER REFERENCES dim(pk));

CREATE PROJECTION prejoin_p (fk, pk, x) AS SELECT * FROM fact, dim WHERE pk=fk ORDER

BY x;

The following statements load values into table dim. Notice the last statement inserts a duplicate

primary key value of 1:

INSERT INTO dim values (1,1);

INSERT INTO dim values (2,2);

INSERT INTO dim values (1,2); --Constraint violation

COMMIT;

Table dim now contains duplicate primary key values, but you cannot delete the violating row

because of the presence of the pre-join projection. Any attempt to delete the record results in the
following error message:

ROLLBACK: Duplicate primary key detected in FK-PK join Hash-Join (x dim_p), value

1

In order to remove the constraint violation (pk=1), use the following sequence of commands,

which puts the database back into the state just before the duplicate primary key was added.

To remove the violation:

1 First save the original dim rows that match the duplicated primary key.

CREATE TEMP TABLE dim_temp(pk integer, x integer);

INSERT INTO dim_temp SELECT * FROM dim WHERE pk=1 AND x=1; -- original

dim row

2 Temporarily disable error messaging on duplicate constraint values:

SELECT DISABLE_DUPLICATE_KEY_ERROR();

Caution: Remember that issuing this command suppresses the enforcement of data integrity
checking.

3 Remove the the original row that contains duplicate values:

DELETE FROM dim WHERE pk=1;

4 Allow the database to resume data integrity checking:

SELECT REENABLE_DUPLICATE_KEY_ERROR();

5 Reinsert the original values back into the dimension table:

INSERT INTO dim SELECT * from dim_temp;

COMMIT;

6 Validate your dimension and fact tables.

If you receive the following error message, it means that the duplicate records you want to delete
are not identical. That is, the records contain values that differ in at least one column that is not a
primary key; for example, (1,1) and (1,2).

ROLLBACK: Delete: could not find a data row to delete (data integrity violation?)

-408-

SQL Reference Manual

The difference between this message and the rollback message in the previous example is that a
fact row contains a foreign key that matches the duplicated primary key, which has been inserted.
Thus, a row with values from the fact and dimension table is now in the prejoin projection. In order
for the DELETE statement (Step 3 in the following example) to complete successfully, extra
predicates are required to identify the original dimension table values (the values that are in the
prejoin).

This example is nearly identical to the previous example, except that an additional INSERT
statement joins the fact table to the dimension table by a primary key value of 1:

INSERT INTO dim values (1,1);

INSERT INTO dim values (2,2);

INSERT INTO fact values (1); -- New insert statement joins fact with dim on
primary key value=1

INSERT INTO dim values (1,2); -- Duplicate primary key value=1

COMMIT;

To remove the violation:

1 First save the original dim and fact rows that match the duplicated primary key:

CREATE TEMP TABLE dim_temp(pk integer, x integer);

CREATE TEMP TABLE fact_temp(fk integer);

INSERT INTO dim_temp SELECT * FROM dim WHERE pk=1 AND x=1; -- original

dim row

INSERT INTO fact_temp SELECT * FROM fact WHERE fk=1;

2 Temporarily suppresses the enforcement of data integrity checking:

SELECT DISABLE_DUPLICATE_KEY_ERROR();

3 Remove the duplicate primary keys. These steps implicitly remove all fact rows with the
matching foreign key, as well.

a) Remove the the original row that contains duplicate values:

DELETE FROM dim WHERE pk=1 AND x=1;

Note: The extra predicate (x=1) specifies removal of the original (1,1) row, rather than the

newly inserted (1,2) values that caused the violation.

b) Remove all remaining rows:

DELETE FROM dim WHERE pk=1;

4 Turn on integrity checking:

SELECT REENABLE_DUPLICATE_KEY_ERROR();

5 Reinsert the original values back into the fact and dimension table:

INSERT INTO dim SELECT * from dim_temp;

INSERT INTO fact SELECT * from fact_temp;

COMMIT;

6 Validate your dimension and fact tables.

See Also

ANALYZE_CONSTRAINTS (page 321)

-409-

 SQL Functions

REENABLE_DUPLICATE_KEY_ERROR (page 373)

LAST_INSERT_ID

Returns the last value of a column whose value is automatically incremented through the
AUTO_INCREMENT or IDENTITY column-constraint (page 556).

Behavior Type

Volatile

Syntax

LAST_INSERT_ID()

Notes

 This function works only with auto-increment and identity columns. See column-constraints
(page 556) for the CREATE TABLE (page 546) statement.

 LAST_INSERT_ID does not work with sequence generators created through the CREATE
SEQUENCE (page 540) statement.

Examples

Create a sample table called customer4. Notice that the IDENTITY column has a seed of 2,

which specifies the value for the first row loaded into the table, and an increment of 2, which
specifies the value that is added to identity value of the previous row.

CREATE TABLE customer4(

 ID IDENTITY(2,2),

 lname VARCHAR(25),

 fname VARCHAR(25),

 membership_card INTEGER

);

INSERT INTO customer4(lname, fname, membership_card)

VALUES ('Gupta', 'Saleem', 475987);

Query the table you just created:

SELECT * FROM customer4;

 ID | lname | fname | membership_card

----+-------+--------+-----------------

 2 | Gupta | Saleem | 475987

(1 row)

Insert some additional values:

INSERT INTO customer4(lname, fname, membership_card)

VALUES ('Lee', 'Chen', 598742);

Call the LAST_INSERT_ID function:

SELECT LAST_INSERT_ID();

last_insert_id

 4

(1 row)

Query the table again:

-410-

SQL Reference Manual

SELECT * FROM customer4;

 ID | lname | fname | membership_card

----+-------+--------+-----------------

 2 | Gupta | Saleem | 475987

 4 | Lee | Chen | 598742

(2 rows)

Add another row:

INSERT INTO customer4(lname, fname, membership_card)

VALUES ('Davis', 'Bill', 469543);

Call the LAST_INSERT_ID function:

SELECT LAST_INSERT_ID();

 LAST_INSERT_ID

 6

(1 row)

Query the table again:

SELECT * FROM customer4;

 ID | lname | fname | membership_card

----+-------+--------+-----------------

 2 | Gupta | Saleem | 475987

 4 | Lee | Chen | 598742

 6 | Davis | Bill | 469543

(3 rows)

See Also

ALTER SEQUENCE (page 485)

CREATE SEQUENCE (page 540)

DROP SEQUENCE (page 587)

Using Sequences and Sequence Privileges in the Administrator's Guide

REENABLE_DUPLICATE_KEY_ERROR

Restores the default behavior of error reporting by reversing the effects of
DISABLE_DUPLICATE_KEY_ERROR. Effects are session scoped.

Syntax

REENABLE_DUPLICATE_KEY_ERROR();

Examples

For examples and usage see DISABLE_DUPLICATE_KEY_ERROR (page 336).

See Also

ANALYZE_CONSTRAINTS (page 321)

-411-

 SQL Functions

Database Management Functions

This section contains the database management functions specific to Vertica.

CLEAR_QUERY_REPOSITORY

Triggers Vertica to clear query data from the query repository immediately.

Syntax

CLEAR_QUERY_REPOSITORY()

Notes

Before using this function:

1 Note the value of the QueryRepoRetentionTime parameter.

2 Set the QueryRepoRetentionTime parameter to zero (0). (See Configuring Query Repository
in the Troubleshooting Guide.)

=> SELECT SET_CONFIG_PARAMETER('QueryRepoRetentionTime','0');

Once you have cleared the query repository, set the QueryRepoRetentionTime parameter back to
the original value (before you changed it to zero). The default value is 100.

Example

SELECT CLEAR_QUERY_REPOSITORY();

 CLEAR_QUERY_REPOSITORY

 Query Repository Cleaned

(1 row)

See Also

Collecting Query Information in the Troubleshooting Guide

Configuration Parameters in the Administrator's Guide

CLEAR_RESOURCE_REJECTIONS

Clears the content of the RESOURCE_REJECTIONS (page 735) and
DISK_RESOURCE_REJECTIONS (page 698) system tables. Normally, these tables are only
cleared during a node restart. This function lets you clear the tables whenever you need. For
example, you may want to clear the tables after having resolved a disk space issue that caused
disk resource rejections.

DISPLAY_LICENSE

Returns license information.

Syntax

DISPLAY_LICENSE()

Examples

SELECT DISPLAY_LICENSE();

-412-

SQL Reference Manual

 display_license

 Vertica Systems, Inc.

2007-08-03

Perpetual

0

500GB

(1 row)

-413-

 413

DUMP_LOCKTABLE

Returns information about deadlocked clients and the resources they are waiting for.

Syntax

DUMP_LOCKTABLE()

Notes

Use DUMP_LOCKTABLE if Vertica becomes unresponsive:

1 Open an additional vsql connection.

2 Execute the query:

SELECT DUMP_LOCKTABLE();

The output is written to vsql. See Monitoring the Log Files.

3 Copy the output and send it to Technical Support (on page 1).

You can also see who is connected using the following command:

SELECT * FROM SESSIONS;

Close all sessions using the following command:

SELECT CLOSE_ALL_SESSIONS();

Close a single session using the following command:

How to close a single session:

SELECT CLOSE_SESSION('session_id');

You get the session_id value from the V_MONITOR.SESSIONS (page 741) system table.

See Also

CLOSE_ALL_SESSIONS (page 333)

CLOSE_SESSION (page 330)

LOCKS (page 712)

V_MONITOR.SESSIONS (page 741)

DUMP_PARTITION_KEYS

Dumps the partition keys of all projections in the system.

Syntax

DUMP_PARTITION_KEYS()

Example

SELECT DUMP_PARTITION_KEYS();

See Also

DO_TM_TASK (page 339)

-414-

SQL Reference Manual

DROP_PARTITION (page 341)

DUMP_PROJECTION_PARTITION_KEYS (page 347)

DUMP_TABLE_PARTITION_KEYS (page 348)

PARTITIONS (page 716) system table

PARTITION_PROJECTION (page 368)

PARTITION_TABLE (page 369)

Partitioning Tables in the Administrator's Guide

EXPORT_TABLES

Generates a SQL script that can be used to recreate a logical schema (schemas, tables,
constraints, and views) on a different cluster.

Syntax

EXPORT_TABLES ([destination] , [scope])

Parameters

destination Specifies the path and name of the SQL output file. An
empty string (' '), which is the default, dumps the script to
standard output. A user who is not a DBA can only specify
an empty string.

scope Determines the tables to be exported where scope is one of
the following:

 an empty string (' ')—exports all non-virtual objects
to which the user has access, including constraints.
(Note that constraints are not objects which can be
passed as individual arguments.) This is the default
if no scope is specified.

 a comma-delimited list of items in which each item
can be one of the following:

 —'<schema>.<obj>'—matches the named object. The
named object can be a table or view.

 —'<obj>'--matches the named object within the
current search path. The named object can be a
schema, table, or view. If the named object is a
schema, Vertica exports all non-virtual objects to
which the user has access within that schema. If a
schema and table both have the same name, the
schema takes precedence.

EXPORT_TABLES returns an error if:

 an explicitly-specified object does not exist.

 The user has no access to the specified object.

-415-

 SQL Functions

Notes

 The script generated by this function:

 Creates only the non-virtual objects for which the user has access.

 Exports catalog objects in their Oid order.

 If projections are specified in the scope parameter, they are ignored.

 None of the parameters for EXPORT_TABLES accepts a NULL value as input.

Example

The following example exports the store.store_orders_fact table to standard output:

=> SELECT EXPORT_TABLES(' ','store.store_orders_fact');

SAVE_QUERY_REPOSITORY

Triggers Vertica to save query data to the query repository immediately.

Syntax

SAVE_QUERY_REPOSITORY()

Notes

 Vertica saves data based on the established query repository configuration parameters. For
example, it will use the value of the QueryRepoRetentionTime parameter to determine the
maximum number of days worth of queries to save. (See Configuring Query Repository in the
Troubleshooting Guide.)

 Before you can save a query repository, you have to enable it:

SELECT SET_CONFIG_PARAMETER('QueryRepositoryEnabled',1);

Example

=> SELECT SAVE_QUERY_REPOSITORY();

 SAVE_QUERY_REPOSITORY

 Query Repository Saved

(1 row)

See Also

Collecting Query Information in the Troubleshooting Guide

SET_CONFIG_PARAMETER

Use SET_CONFIG_PARAMETER to set a configuration parameter.

Note: Vertica is designed to operate with minimal configuration changes. Use this function
sparingly and carefully follow any documented guidelines for that parameter.

Syntax

SELECT SET_CONFIG_PARAMETER('parameter', value)

-416-

SQL Reference Manual

Parameters

parameter Specifies the name of the parameter value being set

value  Specifies the value of the parameter. Data type is
variable.

Notes

 The syntax of value will vary depending upon the parameter and its expected data type. For
strings, it must be enclosed in single quotes, for integers, it is unquoted. See Configuration
Parameters for a list of parameters, their function and examples of usage.

 Caution: If a node is down when this function is issued, the changes will only be done on the
UP nodes. You must re-issue the function after the node is recovered in order for the changes
to take effect there. Alternatively, use the Administration Tools to copy the files - See
Distributing Configuration Files to the New Host.

-417-

 417

SET_LOGLEVEL

Use SET_LOGLEVEL to set the logging level in the Vertica database log files.

Syntax

SELECT SET_LOGLEVEL(n)

Parameters

n Logging Level Description

0 DISABLE No logging

1 CRITICAL Errors requiring database recovery

2 WARNING Errors indicating problems of lesser magnitude

3 INFO Informational messages

4 DEBUG Debugging messages

5 TRACE Verbose debugging messages

6 TIMING Verbose debugging messages

SHUTDOWN

Forces a database to shut down, even if there are users connected.

Syntax

SHUTDOWN (['false' | 'true'])

Parameters

false [Default] Returns a message if users are connected. Has the same effect
as supplying no parameters.

true Performs a moveout operation and forces the database to shut down,
disallowing further connections.

Notes

 Quotes around the true or false arguments are optional.

 Issuing the shutdown command without arguments or with the default (false) argument returns
a message if users are connected, and the shutdown fails. If no users are connected, the
database performs a moveout operation and shuts down.

 Issuing the SHUTDOWN('true') command forces the database to shut down whether users

are connected or not.

 You can check the status of the shutdown operation in the vertica.log file:

2010-03-09 16:51:52.625 unknown:0x7fc6d6d2e700 [Init] <INFO> Shutdown

complete. Exiting.

-418-

SQL Reference Manual

 As an alternative to SHUTDOWN(), you can also temporarily set MaxClientSessions to 0 and
then use CLOSE_ALL_SESSIONS(). New client connections cannot connect unless they
connect using the dbadmin account. See CLOSE_ALL_SESSIONS (page 333) for details.

Examples

The following command attempts to shut down the database. Because users are connected, the
command fails:

=> SELECT SHUTDOWN('false');

NOTICE: Cannot shut down while users are connected

 SHUTDOWN

 Shutdown: aborting shutdown

(1 row)

Note that SHUTDOWN() and SHUTDOWN('false') perform the same operation:

=> SELECT SHUTDOWN();

NOTICE: Cannot shut down while users are connected

 SHUTDOWN

 Shutdown: aborting shutdown

(1 row)

Using the 'true' parameter forces the database to shut down, even though clients might be

connected:

=> SELECT SHUTDOWN('true');

 SHUTDOWN

 Shutdown: moveout complete

(1 row)

See Also

SESSIONS (page 741)

Epoch Management Functions

This section contains the epoch management functions specific to Vertica.

-419-

 SQL Functions

ADVANCE_EPOCH

Manually closes the current epoch and begins a new epoch.

Syntax

ADVANCE_EPOCH ([integer])

Parameters

integer Specifies the number of epochs to advance.

If the EpochAdvancementMode parameter is set to DML (the
default), the number of epochs to advance defaults to zero (0). If
the EpochAdvancementMode is set to AdvanceEpochInterval,
the number of epochs to advance defaults to one(1). Note that the
AdvanceEpochInterval parameter is ignored by default.

See Configuration Parameters in the Administrator's Guide for
more information about the EpochAdvancementMode parameter.

Note

This function is primarily maintained for backward compatibility with earlier versions of Vertica that
advance epochs based on the ADVANCEEPOCHINTERVAL.

Example

The following command increments the epoch number by 1:

=> SELECT ADVANCE_EPOCH(1);

See Also

ALTER PROJECTION (page 479)

GET_AHM_EPOCH

Returns the number of the epoch in which the Ancient History Mark is located. Data deleted up to
and including the AHM epoch can be purged from physical storage.

Syntax

GET_AHM_EPOCH()

Note: The AHM epoch is 0 (zero) by default (purge is disabled).

Examples

SELECT GET_AHM_EPOCH();

 get_ahm_epoch

 Current AHM epoch: 0

(1 row)

GET_AHM_TIME

Returns a TIMESTAMP value representing the Ancient History Mark. Data deleted up to and
including the AHM epoch can be purged from physical storage.

-420-

SQL Reference Manual

Syntax

GET_AHM_TIME()

Examples

SELECT GET_AHM_TIME();

 GET_AHM_TIME

 Current AHM Time: 2010-05-13 12:48:10.532332-04

(1 row)

See Also

SET DATESTYLE (page 634) for information about valid TIMESTAMP (page 87) values.

GET_CURRENT_EPOCH

Returns the number of the current epoch. The epoch into which data (COPY, INSERT, UPDATE,
and DELETE operations) is currently being written. The current epoch advances automatically
every three minutes.

Syntax

GET_CURRENT_EPOCH()

Examples

SELECT GET_CURRENT_EPOCH();

 GET_CURRENT_EPOCH

 683

(1 row)

GET_LAST_GOOD_EPOCH

Returns the number of the last good epoch. A term used in manual recovery, LGE (Last Good
Epoch) refers to the most recent epoch that can be recovered.

Syntax

GET_LAST_GOOD_EPOCH()

Examples

SELECT GET_LAST_GOOD_EPOCH();

 GET_LAST_GOOD_EPOCH

 682

(1 row)

MAKE_AHM_NOW

Sets the Ancient History Mark (AHM) to the greatest allowable value, and lets you drop any
projections that existed before the issue occurred.

Caution: This function is intended for use by Administrators only.

-421-

 SQL Functions

Syntax

MAKE_AHM_NOW ([true])

Parameters

true [Optional] Allows AHM to advance when nodes are down.

Note: If the AHM is advanced after the last good epoch of

the failed nodes, those nodes must recover all data from
scratch. Use with care.

Notes

 The MAKE_AHM_NOW function performs the following operations:

 Advances the epoch.

 Performs a moveout operation on all projections.

 Sets the AHM to LGE — at least to the current epoch at the time MAKE_AHM_NOW() was
issued.

 All history is lost and you cannot perform historical queries prior to the current epoch.

Example

=> SELECT MAKE_AHM_NOW();

 MAKE_AHM_NOW

 AHM set (New AHM Epoch: 683)

(1 row)

The following command allows the AHM to advance, even though node 2 is down:

=> SELECT MAKE_AHM_NOW(true);

WARNING: Received no response from v_vmartdb_node0002 in get cluster LGE

WARNING: Received no response from v_vmartdb_node0002 in get cluster LGE

WARNING: Received no response from v_vmartdb_node0002 in set AHM

 MAKE_AHM_NOW

 AHM set (New AHM Epoch: 684)

(1 row)

See Also

DROP PROJECTION (page 585)

MARK_DESIGN_KSAFE (page 365)

SET_AHM_EPOCH (page 389)

SET_AHM_TIME (page 391)

SET_AHM_EPOCH

Sets the Ancient History Mark (AHM) to the specified epoch. This function allows deleted data up
to and including the AHM epoch to be purged from physical storage.

-422-

SQL Reference Manual

SET_AHM_EPOCH is normally used for testing purposes. Consider SET_AHM_TIME (page 391)
instead, which is easier to use.

Syntax

SET_AHM_EPOCH (epoch, [true])

Parameters

epoch Specifies one of the following:

 The number of the epoch in which to set the AHM

 Zero (0) (the default) disables purge (page 371)

true Optionally allows the AHM to advance when nodes are down.

Note: If the AHM is advanced after the last good epoch of the failed

nodes, those nodes must recover all data from scratch. Use with care.

Notes

If you use SET_AHM_EPOCH , the number of the specified epoch must be:

 Greater than the current AHM epoch

 Less than the current epoch

 Less than or equal to the cluster last good epoch (the minimum of the last good epochs of the
individual nodes in the cluster)

 Less than or equal to the cluster refresh epoch (the minimum of the refresh epochs of the
individual nodes in the cluster)

Use the SYSTEM (page 751) table to see current values of various epochs related to the AHM; for
example:

=> SELECT * from SYSTEM;

-[RECORD 1]------------+---------------------------

current_timestamp | 2009-08-11 17:09:54.651413

current_epoch | 1512

ahm_epoch | 961

last_good_epoch | 1510

refresh_epoch | -1

designed_fault_tolerance | 1

node_count | 4

node_down_count | 0

current_fault_tolerance | 1

catalog_revision_number | 1590

wos_used_bytes | 0

wos_row_count | 0

ros_used_bytes | 41490783

ros_row_count | 1298104

total_used_bytes | 41490783

total_row_count | 1298104

All nodes must be up. You cannot use SET_AHM_EPOCH when any node in the cluster is down,
except by using the optional true parameter.

-423-

 SQL Functions

When a node is down and you issue SELECT MAKE_AHM_NOW(), the following error is printed to

the vertica.log:

Some nodes were excluded from setAHM. If their LGE is before the AHM they will perform full recovery.

Examples

The following command sets the AHM to a specified epoch of 12:

=> SELECT SET_AHM_EPOCH(12);

The following command sets the AHM to a specified epoch of 2 and allows the AHM to advance
despite a failed node:

=> SELECT SET_AHM_EPOCH(2, true);

See Also

MAKE_AHM_NOW (page 363)

SET_AHM_TIME (page 391)

SYSTEM (page 751)

SET_AHM_TIME

Sets the Ancient History Mark (AHM) to the epoch corresponding to the specified time on the
initiator node. This function allows historical data up to and including the AHM epoch to be purged
from physical storage.

Syntax

SET_AHM_TIME (time , [true])

Parameters

time Is a TIMESTAMP (page 87) value that is automatically converted
to the appropriate epoch number.

true [Optional] Allows the AHM to advance when nodes are down.

Note: If the AHM is advanced after the last good epoch of the

failed nodes, those nodes must recover all data from scratch.

Notes

 SET_AHM_TIME returns a TIMESTAMP WITH TIME ZONE value representing the end point
of the AHM epoch.

 You cannot change the AHM when any node in the cluster is down, except by using the
optional true parameter.

 When a node is down and you issue SELECT MAKE_AHM_NOW(), the following error is printed

to the vertica.log:

Some nodes were excluded from setAHM. If their LGE is before the AHM they

will perform full recovery.

-424-

SQL Reference Manual

Examples

Epochs depend on a configured epoch advancement interval. If an epoch includes a three-minute
range of time, the purge operation is accurate only to within minus three minutes of the specified
timestamp:

=> SELECT SET_AHM_TIME('2008-02-27 18:13');

 set_ahm_time

 AHM set to '2008-02-27 18:11:50-05'

(1 row)

Note: The -05 part of the output string is a time zone value, an offset in hours from UTC
(Universal Coordinated Time, traditionally known as Greenwich Mean Time, or GMT).

In the above example, the actual AHM epoch ends at 18:11:50, roughly one minute before the
specified timestamp. This is because SET_AHM_TIME selects the epoch that ends at or before
the specified timestamp. It does not select the epoch that ends after the specified timestamp
because that would purge data deleted as much as three minutes after the AHM.

For example, using only hours and minutes, suppose that epoch 9000 runs from 08:50 to 11:50

and epoch 9001 runs from 11:50 to 15:50. SET_AHM_TIME('11:51') chooses epoch 9000

because it ends roughly one minute before the specified timestamp.

In the next example, if given an environment variable set as date =`date`; the following

command fails if a node is down:

=> SELECT SET_AHM_TIME('$date');

In order to force the AHM to advance, issue the following command instead:

=> SELECT SET_AHM_TIME('$date', true);

See Also

MAKE_AHM_NOW (page 363)

SET_AHM_EPOCH (page 389) for a description of the range of valid epoch numbers.

SET DATESTYLE (page 634) for information about specifying a TIMESTAMP (page 87) value.

Partition Management Functions

This section contains partition management functions specific to Vertica.

DROP_PARTITION

Forces the partition of projections (if needed) and then drops the specified partition.

Syntax

DROP_PARTITION [(table_name) , (partition_value)]

Parameters

table-name Specifies the name of the table.

Note: The specified table_name argument cannot be used as a

-425-

 SQL Functions

dimension table in a pre-joined projection and cannot contain
projections that are not up to date (have not been refreshed)

partition_value Must be specified as a string (within quotes) for all data types; for

example: DROP_PARTITION('trade', '2006');

Notes and Restrictions

In general, if a ROS container has data that belongs to n+1 partitions and you want to drop a
specific partition, the DROP_PARTITION operation:

1 Forces the partition of data into two containers where

 one container holds the data that belongs to the partition that is to be dropped

 another container holds the remaining n partitions

2 Drops the specified partition.

You can also use the MERGE_PARTITIONS (page 367) function to merges ROS containers that
have data belonging to partitions in a specified partition key range; for example,

[partitionKeyFrom, partitionKeyTo].

DROP_PARTITION forces a moveout if there is data in the WOS (WOS is not partition aware).

DROP_PARTITION acquires an exclusive lock on the table to prevent DELETE | UPDATE |
INSERT | COPY statements from affecting the table, as well as any SELECT statements issued at
SERIALIZABLE isolation level.

Users must be the table owner to drop a partition. They must have MODIFY (INSERT | UPDATE
| DELETE) permissions in order to:

 Partition a projection/table

 Merge partitions

 Run mergeout, moveout or purge operations on a projection

DROP_PARTITION operations cannot be performed on tables with projections that are not up to
date (have not been refreshed).

Examples

Using the example schema in Defining Partitions, the following command explicitly drops the 2006

partition key from table trade:

 SELECT DROP_PARTITION('trade', 2006);

 DROP_PARTITION

 Partition dropped

(1 row)

Here, the partition key is specified:

SELECT DROP_PARTITION('trade', EXTRACT('year' FROM '2006-01-01'::date));

 DROP_PARTITION

 Partition dropped

(1 row)

-426-

SQL Reference Manual

The following example creates a table called dates and partitions the table by year:

CREATE TABLE dates (

 year INTEGER NOT NULL,

 month VARCHAR(8) NOT NULL)

PARTITION BY year * 12 + month;

The following statement drops the partition using a constant for Oct 2007 (2007*12 + 10 = 24094):

 SELECT DROP_PARTITION('dates', '24094');

 DROP_PARTITION

 Partition dropped

(1 row)

Alternatively, the expression can be placed in line: SELECT DROP_PARTITION('dates',
2007*12 + 10);

See Also

ADVANCE EPOCH (page 320)

ALTER PROJECTION (page 479)

COLUMN_STORAGE (page 691)

CREATE TABLE (page 546)

DO_TM_TASK (page 339)

DUMP_PARTITION_KEYS (page 346)

DUMP_PROJECTION_PARTITION_KEYS (page 347)

DUMP_TABLE_PARTITION_KEYS (page 348)

MERGE_PARTITIONS (page 367)

PARTITION_PROJECTION (page 368)

PARTITION_TABLE (page 369)

PROJECTIONS (page 673)

Dropping Partitions in the Administrator's Guide

DUMP_PROJECTION_PARTITION_KEYS

Dumps the partition keys of the specified projection.

Syntax

DUMP_PROJECTION_PARTITION_KEYS('projection_name')

Parameters

projection_name Specifies the name of the projection.

-427-

 SQL Functions

Example

The following example creates a simple table called states and partitions the data by state:

CREATE TABLE states (

 year INTEGER NOT NULL,

 state VARCHAR NOT NULL)

PARTITION BY state;

CREATE PROJECTION states_p (state, year) AS SELECT * FROM states

ORDER BY state, year UNSEGMENTED ALL NODES;

Now drop the partition key of the specified projection:

SELECT DUMP_PROJECTION_PARTITION_KEYS('states_p_node0001');

 Partition keys on node helios_node0001

 Projection 'states_p_node0001'

 No of partition keys: 1

 Partition keys on node helios_node0002

 ...

(1 row)

See Also

DO_TM_TASK (page 339)

DROP_PARTITION (page 341)

DUMP_PARTITION_KEYS (page 346)

DUMP_TABLE_PARTITION_KEYS (page 348)

PARTITION_PROJECTION (page 368)

PARTITION_TABLE (page 369)

PROJECTIONS (page 673) system table

Partitioning Tables in the Administrator's Guide

DUMP_TABLE_PARTITION_KEYS

Dumps the partition keys of all projections anchored on the specified table.

Syntax

DUMP_TABLE_PARTITION_KEYS ('table_name')

Parameters

table_name Specifies the name of the table.

Example

The following example creates a simple table called states and partitions the data by state:

CREATE TABLE states (

 year INTEGER NOT NULL,

-428-

SQL Reference Manual

 state VARCHAR NOT NULL)

PARTITION BY state;

CREATE PROJECTION states_p (state, year) AS SELECT * FROM states

ORDER BY state, year UNSEGMENTED ALL NODES;

Now drop the partition keys of all projections anchored on table states:

SELECT DUMP_TABLE_PARTITION_KEYS('states');

 Partition keys on helios_node0001

 Projection 'states_p_node0004'

 No of partition keys: 1

 Projection 'states_p_node0003'

 No of partition keys: 1

 Projection 'states_p_node0002'

 No of partition keys: 1

 Projection 'states_p_node0001'

 No of partition keys: 1

 Partition keys on helios_node0002

...

(1 row)

See Also

DO_TM_TASK (page 339)

DROP_PARTITION (page 341)

DUMP_PARTITION_KEYS (page 347)

DUMP_PROJECTION_PARTITION_KEYS (page 348)

PARTITION_PROJECTION (page 368)

PARTITION_TABLE (page 369)

Partitioning Tables in the Administrator's Guide

MERGE_PARTITIONS

Merges ROS containers that have data belonging to partitions in a specified partition key range: [

partitionKeyFrom, partitionKeyTo] .

Syntax

MERGE_PARTITIONS [(table_name) ,

... (partition_key_from) , (partition_key_to)]

 Parameters

table_name Specifies the name of the table

partition_key_from Specifies the start point of the partition

partition_key_to Specifies the end point of the partition

-429-

 SQL Functions

Notes

 Partitioning functions take immutable functions only, in order that the same information be
available across all nodes.

 The edge values are included in the range, and partition_key_from must be less than or

equal to partition_key_to.

 Inclusion of partitions in the range is based on the application of less than(<)/greater than(>)
operators of the corresponding data type.

Note: No restrictions are placed on a partition key's data type.

 If partition_key_from is the same as partition_key_to, all ROS containers of the

partition key are merged into one ROS.

Users must be the table owner to drop a partition. They must have MODIFY (INSERT | UPDATE
| DELETE) permissions in order to:

 Partition a projection/table

 Merge partitions

 Run mergeout, moveout or purge operations on a projection

Examples

=> SELECT MERGE_PARTITIONS('T1', '200', '400');

=> SELECT MERGE_PARTITIONS('T1', '800', '800');

=> SELECT MERGE_PARTITIONS('T1', 'CA', 'MA');

=> SELECT MERGE_PARTITIONS('T1', 'false', 'true');

=> SELECT MERGE_PARTITIONS('T1', '06/06/2008', '06/07/2008');

=> SELECT MERGE_PARTITIONS('T1', '02:01:10', '04:20:40');

=> SELECT MERGE_PARTITIONS('T1', '06/06/2008 02:01:10', '06/07/2008 02:01:10');

=> SELECT MERGE_PARTITIONS('T1', '8 hours', '1 day 4 hours 20 seconds');

PARTITION_PROJECTION

Forces a split of ROS containers of the specified projection.

Syntax

PARTITION_PROJECTION (projection_name)

Parameters

projection_name Specifies the name of the projection.

Notes

Partitioning expressions take immutable functions only, in order that the same information be
available across all nodes.

PARTITION_PROJECTION() is similar to PARTITION_TABLE (page 369)(), except that

PARTITION_PROJECTION works only on the specified projection, instead of the table.

-430-

SQL Reference Manual

Vertica internal operations (mergeout, refresh, and recovery) maintain partition separation except
in certain cases:

 Recovery of a projection when the buddy projection from which the partition is recovering is
identically sorted. If the projection is undergoing a full rebuild, it is recovered one ROS
container at a time. The projection ends up with a storage layout identical to its buddy and is,
therefore, properly segmented.

Note: In the case of a partial rebuild, all recovered data goes into a single ROS container and
must be partitioned manually.

 Manual tuple mover operations often output a single storage container, combining any existing

partitions; for example, after executing any of the PURGE() operations.

Users must be the table owner to drop a partition. They must have MODIFY (INSERT | UPDATE
| DELETE) permissions in order to:

 Partition a projection/table

 Merge partitions

 Run mergeout, moveout or purge operations on a projection

PARTITION_PROJECTION() purges data while partitioning ROS containers if deletes were

applied before the AHM epoch.

Example

The following command forces a split of ROS containers on the states_p_node01 projection:

=> SELECT PARTITION_PROJECTION ('states_p_node01');

 partition_projection

 Projection partitioned

(1 row)

See Also

DO_TM_TASK (page 339)

DROP_PARTITION (page 341)

DUMP_PARTITION_KEYS (page 346)

DUMP_PROJECTION_PARTITION_KEYS (page 347)

DUMP_TABLE_PARTITION_KEYS (page 348)

PARTITION_TABLE (page 369)

Partitioning Tables in the Administrator's Guide

PARTITION_TABLE

Forces the system to break up any ROS containers that contain multiple distinct values of the
partitioning expression. Only ROS containers with more than one distinct value participate in the
split.

-431-

 SQL Functions

Syntax

PARTITION_TABLE ('table_name')

Parameters

table_name Specifies the name of the table.

Notes

PARTITION_TABLE is similar to PARTITION_PROJECTION (page 368), except that
PARTITION_TABLE works on the specified table.

Vertica internal operations (mergeout, refresh, and recovery) maintain partition separation except
in certain cases:

 Recovery of a projection when the buddy projection from which the partition is recovering is
identically sorted. If the projection is undergoing a full rebuild, it is recovered one ROS
container at a time. The projection ends up with a storage layout identical to its buddy and is,
therefore, properly segmented.

Note: In the case of a partial rebuild, all recovered data goes into a single ROS container and
must be partitioned manually.

 Manual tuple mover operations often output a single storage container, combining any existing

partitions; for example, after executing any of the PURGE() operations.

Users must be the table owner to drop a partition. They must have MODIFY (INSERT | UPDATE
| DELETE) permissions in order to:

 Partition a projection/table

 Merge partitions

 Run mergeout, moveout or purge operations on a projection

Partitioning functions take immutable functions only, in order that the same information be
available across all nodes.

Example

The following example creates a simple table called states and partitions data by state.

=> CREATE TABLE states (

 year INTEGER NOT NULL,

 state VARCHAR NOT NULL)

 PARTITION BY state;

=> CREATE PROJECTION states_p (state, year) AS

 SELECT * FROM states

 ORDER BY state, year UNSEGMENTED ALL NODES;

Now issue the command to partition table states:

=> SELECT PARTITION_TABLE('states');

 PARTITION_TABLE

partition operation for projection 'states_p_node0004'

-432-

SQL Reference Manual

partition operation for projection 'states_p_node0003'

partition operation for projection 'states_p_node0002'

partition operation for projection 'states_p_node0001'

(1 row)

See Also

DO_TM_TASK (page 339)

DROP_PARTITION (page 341)

DUMP_PARTITION_KEYS (page 346)

DUMP_PROJECTION_PARTITION_KEYS (page 347)

DUMP_TABLE_PARTITION_KEYS (page 348)

PARTITION_PROJECTION (page 368)

Partitioning Tables in the Administrator's Guide

Projection Management Functions

This section contains projection management functions specific to Vertica.

EVALUATE_DELETE_PERFORMANCE

Evaluates projections for potential DELETE (page 580) performance issues. If there are issues
found, a warning message is displayed. For steps you can take to resolve delete and update
performance issues, see Optimizing Deletes and Updates for Performance in the Administrator's
Guide. This function uses data sampling to determine whether there are any issues with a
projection. Therefore, it does not generate false-positives warnings, but it can miss some cases
where there are performance issues.

Note: Optimizing for delete performance is the same as optimizing for update performance. So,
you can use this function to help optimize a projection for updates as well as deletes.

Syntax

EVALUATE_DELETE_PERFORMANCE ('target')

Parameters

target The name of a projection or table. If you supply the name of a projection,
only that projection is evaluated for DELETE performance issues. If you
supply the name of a table, then all of the projections anchored to the
table will be evaluated for issues.

If you do not provide a projection or table name,
EVALUATE_DELETE_PERFORMANCE examines all of the projections
that you can access for DELETE performance issues. Depending on the
size you your database, this may take a long time.

Note: When evaluating multiple projections, EVALUATE_DELETE_PERFORMANCE reports
up to ten projections that have issues, and refers you to a table that contains the full list of
issues it has found.

-433-

 SQL Functions

Example

The following example demonstrates how you can use EVALUATE_DELETE_PERFORMANCE
to evaluate your projections for slow DELETE performance.

=> create table example (A int, B int,C int);

CREATE TABLE

=> create projection one_sort (A,B,C) as (select A,B,B from example) order by A;

CREATE PROJECTION

=> create projection two_sort (A,B,C) as (select A,B,C from example) order by A,B;

CREATE PROJECTION

=> select evaluate_delete_performance('one_sort');

 evaluate_delete_performance

 No projection delete performance concerns found.

(1 row)

=> select evaluate_delete_performance('two_sort');

 evaluate_delete_performance

 No projection delete performance concerns found.

(1 row)

The previous example showed that there was no structural issues with the projection that would
cause poor DELETE performance. However, the data contained within the projection can create
potential delete issues if the sorted columns do not uniquely identify a row or small number of
rows. In the following example, Perl is used to populate the table with data using a nested series of
loops. The inner loop populates column C, the middle loop populates column B, and the outer loop
populates column A. The result is column A is contains only three distinct values (0, 1, and 2),
while column B slowly varies between 20 and 0 and column C changes in each row.
EVALUATE_DELETE_PERFORMANCE is run against the projections again to see if the data
within the projections causes any potential DELETE performance issues.

=> \! perl -e 'for ($i=0; $i<3; $i++) { for ($j=0; $j<21; $j++) { for ($k=0; $k<19; $k++) { printf

"%d,%d,%d\n", $i,$j,$k;}}}' | /opt/vertica/bin/vsql -c "copy example from stdin delimiter ',' direct;"

Password:

=> select * from example;

 A | B | C

 0 | 20 | 18

 0 | 20 | 17

 0 | 20 | 16

 0 | 20 | 15

 0 | 20 | 14

 0 | 20 | 13

 0 | 20 | 12

 0 | 20 | 11

 0 | 20 | 10

 0 | 20 | 9

 0 | 20 | 8

 0 | 20 | 7

 0 | 20 | 6

 0 | 20 | 5

 0 | 20 | 4

 0 | 20 | 3

 0 | 20 | 2

 0 | 20 | 1

 0 | 20 | 0

 0 | 19 | 18

 1157 rows omitted

 2 | 1 | 0

 2 | 0 | 18

 2 | 0 | 17

 2 | 0 | 16

-434-

SQL Reference Manual

 2 | 0 | 15

 2 | 0 | 14

 2 | 0 | 13

 2 | 0 | 12

 2 | 0 | 11

 2 | 0 | 10

 2 | 0 | 9

 2 | 0 | 8

 2 | 0 | 7

 2 | 0 | 6

 2 | 0 | 5

 2 | 0 | 4

 2 | 0 | 3

 2 | 0 | 2

 2 | 0 | 1

 2 | 0 | 0

=> SELECT COUNT (*) FROM example;

 COUNT

 1197

(1 row)

=> SELECT COUNT (DISTINCT A) FROM example;

 COUNT

 3

(1 row)

=> select evaluate_delete_performance('one_sort');

 evaluate_delete_performance

 Projection exhibits delete performance concerns.

(1 row)

release=> select evaluate_delete_performance('two_sort');

 evaluate_delete_performance

 No projection delete performance concerns found.

(1 row)

The one_sort projection has potential delete issues since it only sorts on column A which has few
distinct values. This means that each value in the sort column corresponds to many rows in the
projection, which negatively impacts DELETE performance. Since the two_sort projection is
sorted on columns A and B, each distinct combination of values in the two sort columns identify
just a few rows, allowing deletes to be performed faster.

Not supplying a projection name results in all of the projections you can access being evaluated
for DELETE performance issues.

=> select evaluate_delete_performance();

 evaluate_delete_performance

 The following projection exhibits delete performance concerns:

 "public"."one_sort"

See v_internal.comments for more details.

(1 row)

GET_PROJECTION_STATUS

Returns information relevant to the status of a projection.

-435-

 SQL Functions

Syntax

GET_PROJECTION_STATUS ([schema-name.]projection);

Parameters

[schema-name.]projection Is the name of the projection for which to display status. When
using more than one schema, specify the schema that contains
the projection.

Description

GET_PROJECTION_STATUS returns information relevant to the status of a projection:

 The current K-Safety status of the database

 The number of nodes in the database

 Whether the projection is segmented

 The number and names of buddy projections

 Whether the projection is safe

 Whether the projection is up-to-date

 Whether statistics have been computed for the projection

Notes

 You can use GET_PROJECTION_STATUS to monitor the progress of a projection data
refresh. See ALTER PROJECTION (page 479).

 When using GET_PROJECTION_STATUS or GET_PROJECTIONS you must provide the

name and node (for example, ABC_NODE01) instead of just ABC.

 To view a list of the nodes in a database, use the View Database Command in the
Administration Tools.

Examples

=> SELECT GET_PROJECTION_STATUS('public.customer_dimension_site01');

 GET_PROJECTION_STATUS

 Current system K is 1.

of Nodes: 4.

public.customer_dimension_site01 [Segmented: No] [Seg Cols:] [K: 3]

[public.customer_dimension_site04, public.customer_dimension_site03,

public.customer_dimension_site02] [Safe: Yes] [UptoDate: Yes][Stats: Yes]

See Also

ALTER PROJECTION (page 479)

GET_PROJECTIONS (page 358)

GET_PROJECTIONS, GET_TABLE_PROJECTIONS

Note: This function was formerly named GET_TABLE_PROJECTIONS(). Vertica still supports
the former function name.

Returns information relevant to the status of a table:

-436-

SQL Reference Manual

 The current K-Safety status of the database

 The number of sites (nodes) in the database

 The number of projections for which the specified table is the anchor table

 For each projection:

 The projection's buddy projections

 Whether the projection is segmented

 Whether the projection is safe

 Whether the projection is up-to-date

Syntax

GET_PROJECTIONS ([schema-name.]table)

Parameters

[schema-name.]table Is the name of the table for which to list projections. When
using more than one schema, specify the schema that
contains the table.

Notes

 You can use GET_PROJECTIONS to monitor the progress of a projection data refresh. See
ALTER PROJECTION (page 479).

 When using GET_PROJECTIONS or GET_PROJECTION_STATUS for replicated projections
created using the ALL NODES syntax, you must provide the name and node (for example,

ABC_NODE01 instead of just ABC).

 To view a list of the nodes in a database, use the View Database Command in the
Administration Tools.

Examples

The following example gets information about the store_dimension table in the VMart schema:

=> SELECT GET_PROJECTIONS('store.store_dimension');

--

Current system K is 1.

of Nodes: 4.

Table store.store_dimension has 4 projections.

Projection Name: [Segmented] [Seg Cols] [# of Buddies] [Buddy Projections] [Safe] [UptoDate]

--

store.store_dimension_node0004 [Segmented: No] [Seg Cols:] [K: 3] [store.store_dimension_node0003,

store.store_dimension_node0002, store.store_dimension_node0001] [Safe: Yes] [UptoDate: Yes][Stats:

Yes]

store.store_dimension_node0003 [Segmented: No] [Seg Cols:] [K: 3] [store.store_dimension_node0004,

store.store_dimension_node0002, store.store_dimension_node0001] [Safe: Yes] [UptoDate: Yes][Stats:

Yes]

store.store_dimension_node0002 [Segmented: No] [Seg Cols:] [K: 3] [store.store_dimension_node0004,

store.store_dimension_node0003, store.store_dimension_node0001] [Safe: Yes] [UptoDate: Yes][Stats:

Yes]

store.store_dimension_node0001 [Segmented: No] [Seg Cols:] [K: 3] [store.store_dimension_node0004,

store.store_dimension_node0003, store.store_dimension_node0002] [Safe: Yes] [UptoDate: Yes][Stats:

Yes]

(1 row)

-437-

 SQL Functions

See Also

ALTER PROJECTION (page 479)

GET_PROJECTION_STATUS (page 357)

REFRESH

Performs a synchronous, optionally-targeted refresh of a specified table's projections.

Information about a refresh operation—whether successful or unsuccessful—is maintained in the
PROJECTION_REFRESHES (page 717) system table until either the
CLEAR_PROJECTION_REFRESHES (page 329)() function is executed or the storage quota for

the table is exceeded. The PROJECTION_REFRESHES.IS_EXECUTING column returns a

boolean value that indicates whether the refresh is currently running (t) or occurred in the past (f).

Syntax

REFRESH ([schema_name.]table_name [, ...])

Parameters

[schema_name.]table_name In the optionally-specified schema, table_name is the name

of a specific table that contains the projections to be refreshed.

When using more than one schema, specify the schema that
contains the table.

Returns

Column Name Description

Projection Name The name of the projection that is targeted for refresh.

Anchor Table The name of the projection's associated anchor table.

Status The status of the projection:

 Queued — Indicates that a projection is queued for
refresh.

 Refreshing — Indicates that a refresh for a projection is
in process.

 Refreshed — Indicates that a refresh for a projection
has successfully completed.

 Failed — Indicates that a refresh for a projection did not
successfully complete.

Refresh Method The method used to refresh the projection:

 Buddy – Uses the contents of a buddy to refresh the
projection. This method maintains historical data. This
enables the projection to be used for historical queries.

 Scratch – Refreshes the projection without using a
buddy. This method does not generate historical data.
This means that the projection cannot participate in
historical queries from any point before the projection

-438-

SQL Reference Manual

was refreshed.

Error Count The number of times a refresh failed for the projection.

Duration (sec) The length of time that the projection refresh ran in seconds.

Notes

 Unlike START_REFRESH(), which runs in the background, REFRESH() runs in the
foreground of the caller's session.

 The REFRESH() function refreshes only the projections in the specified table.

 If you run REFRESH() without arguments, it refreshes all non up-to-date projections. If the
function returns a header string with no results, then no projections needed refreshing.

Example

The following command refreshes the projections in tables t1 and t2:

=> SELECT REFRESH('t1, t2');

refresh
--

 Refresh completed with the following outcomes:
Projection Name: [Anchor Table] [Status] [Refresh Method] [Error Count] [Duration (sec)]

--

"public"."t1_p": [t1] [refreshed] [scratch] [0] [0]

"public"."t2_p": [t2] [refreshed] [scratch] [0] [0]

This next command shows that only the projection on table t was refreshed:

=> SELECT REFRESH('allow, public.deny, t');"

refresh
--

 Refresh completed with the following outcomes:
Projection Name: [Anchor Table] [Status] [Refresh Method] [Error Count] [Duration (sec)]

--

"n/a"."n/a": [n/a] [failed: insufficient permissions on table "allow"] [] [1] [0]

"n/a"."n/a": [n/a] [failed: insufficient permissions on table "public.deny"] [] [1] [0]

"public"."t_p1": [t] [refreshed] [scratch] [0] [0]

See Also

CLEAR_PROJECTION_REFRESHES (page 329)

PROJECTION_REFRESHES (page 717)

START_REFRESH (page 394)

Clearing PROJECTION_REFRESHES History in the Administrator's Guide

START_REFRESH

Transfers data to projections that are not able to participate in query execution due to missing or
out-of-date data.

Syntax

START_REFRESH()

-439-

 SQL Functions

Notes

 When a design is deployed through the Database Designer, it is automatically refreshed. See
Deploying Designs in the Administrator's Guide.

 All nodes must be up in order to start a refresh.

 START_REFRESH() has no effect if a refresh is already running.

 A refresh is run asynchronously.

 Shutting down the database ends the refresh.

 To view the progress of the refresh, see the PROJECTION_REFRESHES (page 717) and
PROJECTIONS (page 673) system tables.

 If a projection is updated from scratch, the data stored in the projection represents the table
columns as of the epoch in which the refresh commits. As a result, the query optimizer might
not choose the new projection for AT EPOCH queries that request historical data at epochs
older than the refresh epoch of the projection. Projections refreshed from buddies retain
history and can be used to answer historical queries.

Vertica internal operations (mergeout, refresh, and recovery) maintain partition separation except
in certain cases:

 Recovery of a projection when the buddy projection from which the partition is recovering is
identically sorted. If the projection is undergoing a full rebuild, it is recovered one ROS
container at a time. The projection ends up with a storage layout identical to its buddy and is,
therefore, properly segmented.

Note: In the case of a partial rebuild, all recovered data goes into a single ROS container and
must be partitioned manually.

 Manual tuple mover operations often output a single storage container, combining any existing

partitions; for example, after executing any of the PURGE() operations.

Example

The following command starts the refresh operation:

=> SELECT START_REFRESH();

 start_refresh

--

 Starting refresh background process.

See Also

CLEAR_PROJECTION_REFRESHES (page 329)

MARK_DESIGN_KSAFE (page 365)

PROJECTION_REFRESHES (page 717)

PROJECTIONS (page 673)

Clearing PROJECTION_REFRESHES History in the Administrator's Guide

-440-

SQL Reference Manual

Purge Functions

This section contains purge functions specific to Vertica.

PURGE

Purges all projections in the physical schema. Permanently removes deleted data from physical
storage so that the disk space can be reused. You can purge historical data up to and including the
epoch in which the Ancient History Mark is contained.

Syntax

PURGE()

Notes

 PURGE() was formerly named PURGE_ALL_PROJECTIONS. Vertica supports both function
calls.

 Manual tuple mover operations, such as the PURGE() operations, often output a single
storage container, combining any existing partitions. For example, if PURGE() is used on a
non-partitioned table, all ROS containers are combined into a single container. Non-partitioned
tables cannot be re-partitioned into multiple ROS containers. A purge operation on a
partitioned table also results in a single ROS.

 To re-partition the data into multiple ROS containers, use the PARTITION_TABLE (page
369)() function.

Caution: PURGE could temporarily take up significant disk space while the data is being
purged.

See Also

MERGE_PARTITIONS (page 367)

PARTITION_TABLE (page 369)

PURGE_PROJECTION (page 372)

PURGE_TABLE (page 372)

STORAGE_CONTAINERS (page 743)

Purging Deleted Data in the Administrator's Guide

PURGE_PROJECTION

Purges the specified projection. Permanently removes deleted data from physical storage so that
the disk space can be reused. You can purge historical data up to and including the epoch in which
the Ancient History Mark is contained.

Caution: PURGE_PROJECTION could temporarily take up significant disk space while the
data is being purged.

Syntax

PURGE_PROJECTION ([schema-name.]projection_name)

-441-

 SQL Functions

Parameters

projection_name Is the name of a specific projection. When using more than one
schema, specify the schema that contains the projection.

Notes

See PURGE (page 371) for notes about the outcome of purge operations.

See Also

MERGE_PARTITIONS (page 367)

PURGE_TABLE (page 372)

STORAGE_CONTAINERS (page 743)

Purging Deleted Data in the Administrator's Guide

PURGE_TABLE

Note: This function was formerly named PURGE_TABLE_PROJECTIONS(). Vertica still
supports the former function name.

Purges all projections of the specified table. Permanently removes deleted data from physical
storage so that the disk space can be reused. You can purge historical data up to and including the
epoch in which the Ancient History Mark is contained.

Syntax

PURGE_TABLE ([schema_name.]table_name)

Parameters

[schema_name.]table_name Is the name of a specific table in the optionally-specified logical
schema.

When using more than one schema, specify the schema that
contains the projection.

Caution: PURGE_TABLE could temporarily take up significant disk space while the data is
being purged.

Example

The following example purges all projections for the store sales fact table located in the Vmart
schema:

=> SELECT PURGE_TABLE('store.store_sales_fact');

See Also

PURGE (page 371) for notes about the outcome of purge operations.

MERGE_PARTITIONS (page 367)

-442-

SQL Reference Manual

PURGE_TABLE (page 372)

STORAGE_CONTAINERS (page 743)

Purging Deleted Data in the Administrator's Guide

Regular Expression Functions

A regular expression lets you perform pattern matching on strings of characters. The regular
expression syntax allows you to very precisely define the pattern used to match strings, giving you
much greater control than the wildcard matching used in the LIKE (page 55) predicate. Vertica's
regular expression functions let you perform tasks such as determining if a string value matches a
pattern, extracting a portion of a string that matches a pattern, or counting the number of times a
string matches a pattern.

Vertica uses the Perl Compatible Regular Expression library http://www.pcre.org/ (PCRE) to
evaluate regular expressions. As its name implies, PCRE's regular expression syntax is
compatible with the syntax used by the Perl 5 programming language. You can read PCRE's
documentation on its regular expression syntax
http://vcs.pcre.org/viewvc/code/trunk/doc/html/pcrepattern.html?view=co. However, you
may find the Perl Regular Expressions Documentation (http://perldoc.perl.org/perlre.html)
to be a better introduction, especially if you are unfamiliar with regular expressions.

Note: The regular expression functions operate on UTF-8 strings by default. You may want to
use the ISUTF8 (page 363) function to ensure the strings you want to pass to the regular
expression functions are actually valid UTF-8 strings.

ISUTF8

Tests whether a string is a valid UTF-8 string. Returns true if the string conforms to UTF-8
standards, and false otherwise. This function is useful to test strings for UTF-8 compliance before
passing them to one of the regular expression functions, such as REGEXP_LIKE (page 379),
which expect UTF-8 characters by default.

Syntax

ISUTF8(string);

Parameters

string The string to test for UTF-8 compliance.

Examples

=> SELECT ISUTF8(E'\xC2\xBF'); -- UTF-8 INVERTED QUESTION MARK

 ISUTF8

 t

(1 row)

=> SELECT ISUTF8(E'\xC2\xC0'); -- UNDEFINED UTF-8 CHARACTER

 ISUTF8

 f

http://www.pcre.org/
http://vcs.pcre.org/viewvc/code/trunk/doc/html/pcrepattern.html?view=co
http://perldoc.perl.org/perlre.html

-443-

 SQL Functions

(1 row)

REGEXP_COUNT

Returns the number times a regular expression matches a string.

Syntax

REGEXP_COUNT(string, pattern [, position [, regexp_modifier]])

Parameters

string The string to be searched for matches.

pattern The regular expression to search for within the string.
The syntax of the regular expression is compatible with
the Perl 5 regular expression syntax. See the Perl
Regular Expressions Documentation
(http://perldoc.perl.org/perlre.html) for details.

position The number of characters from the start of the string
where the function should start searching for matches.
The default value, 1, means to start searching for a match
at the first (leftmost) character. Setting this parameter to
a value greater than 1 starts searching for a match to the
pattern that many characters into the string.

regexp_modifier A string containing one or more single-character flags
that change how the regular expression is matched
against the string:

b Treat strings as binary octets rather than
UTF-8 characters.

c Forces the match to be case sensitive (the
default).

i Forces the match to be case insensitive.

m Treats the string being matched as multiple

lines. With this modifier, the start of line (^)

and end of line ($) regular expression

operators match line breaks (\n) within the

string. Ordinarily, these operators only match
the start and end of the string.

n Allows the single character regular

expression operator (.) to match a newline

(\n). Normally, the . operator will match any

character except a newline.

http://perldoc.perl.org/perlre.html

-444-

SQL Reference Manual

x Allows you to document your regular
expressions. It causes all unescaped space
characters and comments in the regular
expression to be ignored. Comments start
with a hash character (#) and end with a
newline. All spaces in the regular expression
that you want to be matched in strings must
be escaped with a backslash (\) character.

Notes

This function operates on UTF-8 strings using the default locale, even if the locale has been set to
something else.

If you are porting a regular expression query from an Oracle database, remember that Oracle
considers a zero-length string to be equivalent to NULL, while Vertica does not.

Examples

Count the number of occurrences of the substring "an" in the string "A man, a plan, a canal,
Panama."

=> SELECT REGEXP_COUNT('a man, a plan, a canal: Panama', 'an');

 REGEXP_COUNT

 4

(1 row)

Find the number of occurrences of the substring "an" in the string "a man, a plan, a canal:
Panama" starting with the fifth character.

=> SELECT REGEXP_COUNT('a man, a plan, a canal: Panama', 'an',5);

 REGEXP_COUNT

 3

(1 row)

Find the number of occurrences of a substring containing a lower-case character followed by "an."
In the first example, the query does not have a modifier. In the second example, the "i" query
modifier is used to force the regular expression to ignore case.

=> SELECT REGEXP_COUNT('a man, a plan, a canal: Panama', '[a-z]an');

-445-

 SQL Functions

 REGEXP_COUNT

 3

(1 row)

=> SELECT REGEXP_COUNT('a man, a plan, a canal: Panama', '[a-z]an', 1, 'i');

 REGEXP_COUNT

 4

REGEXP_INSTR

Returns the starting or ending position in a string where a regular expression matches. This
function returns 0 if no match for the regular expression is found in the string.

Syntax

REGEXP_INSTR(string, pattern [, position [, occurrence [, return_position [,

regexp_modifier]]]])

Parameters

string The string to search for the pattern.

pattern The regular expression to search for within the string.
The syntax of the regular expression is compatible with
the Perl 5 regular expression syntax. See the Perl
Regular Expressions Documentation
(http://perldoc.perl.org/perlre.html) for details.

position The number of characters from the start of the string
where the function should start searching for matches.
The default value, 1, means to start searching for a match
at the first (leftmost) character. Setting this parameter to
a value greater than 1 starts searching for a match to the
pattern that many characters into the string.

occurrence Controls which occurrence of a match between the string
and the pattern is returned. With the default value (1), the
function returns the position of the first substring that
matches the pattern. You can use this parameter to find
the position of additional matches between the string and
the pattern. For example, set this parameter to 3 to find
the position of the third substring that matched the
pattern.

return_position Sets the position within the string that is returned. When
set to the default value (0), this function returns the
position in the string of the first character of the substring
that matched the pattern. If you set this value to 1, the
function returns the position of the first character after the
end of the matching substring.

regexp_modifier A string containing one or more single-character flags
that change how the regular expression is matched
against the string:

http://perldoc.perl.org/perlre.html

-446-

SQL Reference Manual

b Treat strings as binary octets rather than
UTF-8 characters.

c Forces the match to be case sensitive (the
default).

i Forces the match to be case insensitive.

m Treats the string being matched as multiple

lines. With this modifier, the start of line (^)

and end of line ($) regular expression

operators match line breaks (\n) within the

string. Ordinarily, these operators only match
the start and end of the string.

n Allows the single character regular

expression operator (.) to match a newline

(\n). Normally, the . operator will match any

character except a newline.

x Allows you to document your regular
expressions. It causes all unescaped space
characters and comments in the regular
expression to be ignored. Comments start
with a hash character (#) and end with a
newline. All spaces in the regular expression
that you want to be matched in strings must
be escaped with a backslash (\) character.

Notes

This function operates on UTF-8 strings using the default locale, even if the locale has been set to
something else.

If you are porting a regular expression query from an Oracle database, remember that Oracle
considers a zero-length string to be equivalent to NULL, while Vertica does not.

Examples

Find the first occurrence of a sequence of letters starting with the letter e and ending with the letter
y in the phrase "easy come, easy go."

=> SELECT REGEXP_INSTR('easy come, easy go','e\w*y');

 REGEXP_INSTR

 1

(1 row)

Find the first occurrence of a sequence of letters starting with the letter e and ending with the letter
y starting at the second character in the string "easy come, easy go."

=> SELECT REGEXP_INSTR('easy come, easy go','e\w*y',2);

 REGEXP_INSTR

 12

-447-

 SQL Functions

(1 row)

Find the second sequence of letters starting with the letter e and ending with the letter y in the
string "easy come, easy go" starting at the first character.

=> SELECT REGEXP_INSTR('easy come, easy go','e\w*y',1,2);

 REGEXP_INSTR

 12

(1 row)

Find the position of the first character after the first whitespace in the string "easy come, easy go."

=> SELECT REGEXP_INSTR('easy come, easy go','\s',1,1,1);

 REGEXP_INSTR

 6

(1 row)

REGEXP_LIKE

Returns true if the string matches the regular expression. This function is similar to the
LIKE-predicate (page 55), except that it uses regular expressions rather than simple wildcard
character matching.

Syntax

REGEXP_LIKE(string, pattern [, modifiers])

Parameters

string The string to match against the regular expression.

pattern A string containing the regular expression to match against the
string. The syntax of the regular expression is compatible with
the Perl 5 regular expression syntax. See the Perl Regular
Expressions Documentation
(http://perldoc.perl.org/perlre.html) for details.

modifiers A string containing one or more single-character flags that
change how the regular expression is matched against the
string:

b Treat strings as binary octets rather than UTF-8
characters.

c Forces the match to be case sensitive (the
default).

i Forces the match to be case insensitive.

m Treats the string being matched as multiple

lines. With this modifier, the start of line (^) and

end of line ($) regular expression operators

match line breaks (\n) within the string.

Ordinarily, these operators only match the start
and end of the string.

http://perldoc.perl.org/perlre.html

-448-

SQL Reference Manual

n Allows the single character regular expression

operator (.) to match a newline (\n).

Normally, the . operator will match any

character except a newline.

x Allows you to document your regular
expressions. It causes all unescaped space
characters and comments in the regular
expression to be ignored. Comments start with
a hash character (#) and end with a newline.
All spaces in the regular expression that you
want to be matched in strings must be escaped
with a backslash (\) character.

Notes

This function operates on UTF-8 strings using the default locale, even if the locale has been set to
something else.

If you are porting a regular expression query from an Oracle database, remember that Oracle
considers a zero-length string to be equivalent to NULL, while Vertica does not.

Examples

This example creates a table containing several strings to demonstrate regular expressions.

=> create table t (v varchar);

CREATE TABLE

=> create projection t1 as select * from t;

CREATE PROJECTION

=> COPY t FROM stdin;

Enter data to be copied followed by a newline.

End with a backslash and a period on a line by itself.

>> aaa

>> Aaa

>> abc

>> abc1

>> 123

>> \.

=> SELECT * FROM t;

 v

 aaa

 Aaa

 abc

 abc1

 123

(5 rows)

Select all records in the table that contain the letter "a."

=> SELECT v FROM t WHERE REGEXP_LIKE(v,'a');

 v

-449-

 SQL Functions

 Aaa

 aaa

 abc

 abc1

(4 rows)

Select all of the rows in the table that start with the letter "a."

=> SELECT v FROM t WHERE REGEXP_LIKE(v,'^a');

 v

 aaa

 abc

 abc1

(3 rows)

Select all rows that contain the substring "aa."

=> SELECT v FROM t WHERE REGEXP_LIKE(v,'aa');

 v

 Aaa

 aaa

(2 rows)

Select all rows that contain a digit.

=> SELECT v FROM t WHERE REGEXP_LIKE(v,'\d');

 v

 123

 abc1

(2 rows)

Select all rows that contain the substring "aaa."

=> SELECT v FROM t WHERE REGEXP_LIKE(v,'aaa');

 v

 aaa

(1 row)

Select all rows that contain the substring "aaa" using case insensitive matching.

=> SELECT v FROM t WHERE REGEXP_LIKE(v,'aaa', 'i');

 v

 Aaa

 aaa

(2 rows)

Select rows that contain the substring "a b c."

-450-

SQL Reference Manual

=> SELECT v FROM t WHERE REGEXP_LIKE(v,'a b c');

 v

(0 rows)

Select rows that contain the substring "a b c" ignoring space within the regular expression.

=> SELECT v FROM t WHERE REGEXP_LIKE(v,'a b c','x');

 v

 abc

 abc1

(2 rows)

Add multi-line rows to demonstrate using the "m" modifier.

=> COPY t FROM stdin RECORD TERMINATOR '!';

Enter data to be copied followed by a newline.

End with a backslash and a period on a line by itself.

>> Record 1 line 1

>> Record 1 line 2

>> Record 1 line 3!

>> Record 2 line 1

>> Record 2 line 2

>> Record 2 line 3!

>> \.

Select rows that start with the substring "Record" and end with the substring "line 2."

=> SELECT v from t WHERE REGEXP_LIKE(v,'^Record.*line 2$'); v

(0 rows)

Select rows that start with the substring "Record" and end with the substring "line 2," treating
multiple lines as separate strings.

=> SELECT v from t WHERE REGEXP_LIKE(v,'^Record.*line 2$','m'); v

--

Record 2 line 1

Record 2 line 2

Record 2 line 3

 Record 1 line 1

Record 1 line 2

Record 1 line 3

(2 rows)

REGEXP_REPLACE

Replace all occurrences of a substring that match a regular expression with another substring. It is
similar to the REPLACE (page 290) function, except it uses a regular expression to select the
substring to be replaced.

-451-

 SQL Functions

Syntax

REGEXP_REPLACE(string, target [, replacement [, position [, occurrence [,

regexp_modifiers]]]])

Parameters

string The string whose to be searched and replaced.

target The regular expression to search for within the string.
The syntax of the regular expression is compatible with
the Perl 5 regular expression syntax. See the Perl
Regular Expressions Documentation
(http://perldoc.perl.org/perlre.html) for details.

replacement The string to replace matched substrings. If not supplied,
the matched substrings are deleted. This string can
contain backreferences for substrings captured by the
regular expression. The first captured substring is

inserted into the replacement string using \1, the second

\2, and so on.

position The number of characters from the start of the string
where the function should start searching for matches.
The default value, 1, means to start searching for a match
at the first (leftmost) character. Setting this parameter to
a value greater than 1 starts searching for a match to the
pattern that many characters into the string.

occurrence Controls which occurrence of a match between the string
and the pattern is replaced. With the default value (0), the
function replaces all matching substrings with the
replacement string. For any value above zero, the
function replaces just a single occurrence. For example,
set this parameter to 3 to replace the third substring that
matched the pattern.

regexp_modifier A string containing one or more single-character flags
that change how the regular expression is matched
against the string:

b Treat strings as binary octets rather than
UTF-8 characters.

c Forces the match to be case sensitive (the
default).

i Forces the match to be case insensitive.

m Treats the string being matched as multiple

lines. With this modifier, the start of line (^)

and end of line ($) regular expression

operators match line breaks (\n) within the

string. Ordinarily, these operators only match
the start and end of the string.

http://perldoc.perl.org/perlre.html

-452-

SQL Reference Manual

n Allows the single character regular

expression operator (.) to match a newline

(\n). Normally, the . operator will match any

character except a newline.

x Allows you to document your regular
expressions. It causes all unescaped space
characters and comments in the regular
expression to be ignored. Comments start
with a hash character (#) and end with a
newline. All spaces in the regular expression
that you want to be matched in strings must
be escaped with a backslash (\) character.

Notes

This function operates on UTF-8 strings using the default locale, even if the locale has been set to
something else.

If you are porting a regular expression query from an Oracle database, remember that Oracle
considers a zero-length string to be equivalent to NULL, while Vertica does not.

Examples

Find groups of "word characters" (letters, numbers and underscore) ending with "thy" in the string
"healthy, wealthy, and wise" and replace them with nothing.

=> SELECT REGEXP_REPLACE('healthy, wealthy, and wise','\w+thy');

 REGEXP_REPLACE

 , , and wise

(1 row)

Find groups of word characters ending with "thy" and replace with the string "something."

=> SELECT REGEXP_REPLACE('healthy, wealthy, and wise','\w+thy', 'something');

 REGEXP_REPLACE

 something, something, and wise

(1 row)

Find groups of word characters ending with "thy" and replace with the string "something" starting
at the third character in the string.

=> SELECT REGEXP_REPLACE('healthy, wealthy, and wise','\w+thy', 'something', 3);

 REGEXP_REPLACE

 hesomething, something, and wise

(1 row)

Replace the second group of word characters ending with "thy" with the string "something."

-453-

 SQL Functions

=> SELECT REGEXP_REPLACE('healthy, wealthy, and wise','\w+thy', 'something', 1,

2);

 REGEXP_REPLACE

 healthy, something, and wise

(1 row)

Find groups of word characters ending with "thy" capturing the letters before the "thy", and replace
with the captured letters plus the letters "ish."

=> SELECT REGEXP_REPLACE('healthy, wealthy, and wise','(\w+)thy', '\1ish');

 REGEXP_REPLACE

 healish, wealish, and wise

(1 row)

Create a table to demonstrate replacing strings in a query.

=> CREATE TABLE customers (name varchar(50), phone varchar(11));

CREATE TABLE

=> CREATE PROJECTION customers1 AS SELECT * FROM customers;

CREATE PROJECTION

=> COPY customers FROM stdin;

Enter data to be copied followed by a newline.

End with a backslash and a period on a line by itself.

>> Able, Adam|17815551234

>> Baker,Bob|18005551111

>> Chu,Cindy|16175559876

>> Dodd,Dinara|15083452121

>> \.

Query the customers, using REGEXP_REPLACE to format the phone numbers.

=> SELECT name, REGEXP_REPLACE(phone, '(\d)(\d{3})(\d{3})(\d{4})', '\1-(\2)

\3-\4') as phone FROM customers;

 name | phone

-------------+------------------

 Able, Adam | 1-(781) 555-1234

 Baker,Bob | 1-(800) 555-1111

 Chu,Cindy | 1-(617) 555-9876

 Dodd,Dinara | 1-(508) 345-2121

(4 rows)

REGEXP_SUBSTR

Returns the substring that matches a regular expression within a string. If no matches are found,
this function returns NULL. This is different than an empty string, which can be returned by this
function if the regular expression matches a zero-length string.

-454-

SQL Reference Manual

Syntax

REGEXP_SUBSTR(string, pattern [, position [, occurrence [, regexp_modifier]]])

Parameters

string The string to search for the pattern.

pattern The regular expression to find the substring to be extracted.
The syntax of the regular expression is compatible with the
Perl 5 regular expression syntax. See the Perl Regular
Expressions Documentation
(http://perldoc.perl.org/perlre.html) for details.

position The character in the string where the search for a match
should start. The default value, 1, starts the search at the
beginning of the string. If you supply a value larger than 1
for this parameter, the function will start searching that
many characters into the string.

occurrence Controls which matching substring is returned by the
function. When given the default value (1), the function will
return the first matching substring it finds in the string. By
setting this value to a number greater than 1, this function
will return subsequent matching substrings. For example,
setting this parameter to 3 will return the third substring that
matches the regular expression within the string.

regexp_modifier A string containing one or more single-character flags that
change how the regular expression is matched against the
string:

b Treat strings as binary octets rather than UTF-8
characters.

c Forces the match to be case sensitive (the
default).

i Forces the match to be case insensitive.

m Treats the string being matched as multiple

lines. With this modifier, the start of line (^) and

end of line ($) regular expression operators

match line breaks (\n) within the string.

Ordinarily, these operators only match the start
and end of the string.

n Allows the single character regular expression

operator (.) to match a newline (\n).

Normally, the . operator will match any

character except a newline.

http://perldoc.perl.org/perlre.html

-455-

 SQL Functions

x Allows you to document your regular
expressions. It causes all unescaped space
characters and comments in the regular
expression to be ignored. Comments start with
a hash character (#) and end with a newline.
All spaces in the regular expression that you
want to be matched in strings must be escaped
with a backslash (\) character.

Notes

This function operates on UTF-8 strings using the default locale, even if the locale has been set to
something else.

If you are porting a regular expression query from an Oracle database, remember that Oracle
considers a zero-length string to be equivalent to NULL, while Vertica does not.

Examples

Select the first substring of letters that end with "thy."

=> SELECT REGEXP_SUBSTR('healthy, wealthy, and wise','\w+thy');

 REGEXP_SUBSTR

 healthy

(1 row)

Select the first substring of letters that ends with "thy" starting at the second character in the string.

=> SELECT REGEXP_SUBSTR('healthy, wealthy, and wise','\w+thy',2);

 REGEXP_SUBSTR

 ealthy

(1 row)

Select the second substring of letters that ends with "thy."

=> SELECT REGEXP_SUBSTR('healthy, wealthy, and wise','\w+thy',1,2);

 REGEXP_SUBSTR

 wealthy

(1 row)

Session Management Functions

This section contains session management functions specific to Vertica.

CLOSE_ALL_SESSIONS

Closes all external sessions except the one issuing the CLOSE_ALL_SESSIONS functions.

-456-

SQL Reference Manual

Syntax

CLOSE_ALL_SESSIONS()

Notes

Closing of the sessions is processed asynchronously. It might take some time for the session to be
closed. Check the SESSIONS (page 741) table for the status.

Database shutdown is prevented if new sessions connect after the CLOSE_SESSION or
CLOSE_ALL_SESSIONS() command is invoked (and before the database is actually shut down).
See Controlling Sessions below.

Message

close_all_sessions | Close all sessions command sent.

Check SESSIONS for progress.

Examples

Two user sessions opened, each on a different node:

vmartdb=> SELECT * FROM sessions;

-[RECORD 1

]--------------+--

node_name | v_vmartdb_node0001

user_name | dbadmin

client_hostname | 127.0.0.1:52110

client_pid | 4554

login_timestamp | 2011-01-03 14:05:40.252625-05

session_id | stress04-4325:0x14

client_label |

transaction_start | 2011-01-03 14:05:44.325781

transaction_id | 45035996273728326

transaction_description | user dbadmin (select * from sessions;)

statement_start | 2011-01-03 15:36:13.896288

statement_id | 10

last_statement_duration_us | 14978

current_statement | select * from sessions;

ssl_state | None

authentication_method | Trust

-[RECORD 2

]--------------+--

node_name | v_vmartdb_node0002

user_name | dbadmin

client_hostname | 127.0.0.1:57174

client_pid | 30117

login_timestamp | 2011-01-03 15:33:00.842021-05

session_id | stress05-27944:0xc1a

client_label |

transaction_start | 2011-01-03 15:34:46.538102

transaction_id | -1

transaction_description | user dbadmin (COPY Mart_Fact FROM

'/data/mart_Fact.tbl'

 DELIMITER '|' NULL '\\n';)

statement_start | 2011-01-03 15:34:46.538862

-457-

 SQL Functions

statement_id |

last_statement_duration_us | 26250

current_statement | COPY Mart_Fact FROM '/data/Mart_Fact.tbl' DELIMITER

'|'

 NULL '\\n';

ssl_state | None

authentication_method | Trust

-[RECORD 3

]--------------+--

node_name | v_vmartdb_node0003

user_name | dbadmin

client_hostname | 127.0.0.1:56367

client_pid | 1191

login_timestamp | 2011-01-03 15:31:44.939302-05

session_id | stress06-25663:0xbec

client_label |

transaction_start | 2011-01-03 15:34:51.05939

transaction_id | 54043195528458775

transaction_description | user dbadmin (COPY Mart_Fact FROM

'/data/Mart_Fact.tbl'

 DELIMITER '|' NULL '\\n' DIRECT;)

statement_start | 2011-01-03 15:35:46.436748

statement_id |

last_statement_duration_us | 1591403

current_statement | COPY Mart_Fact FROM '/data/Mart_Fact.tbl' DELIMITER

'|'

 NULL '\\n' DIRECT;

ssl_state | None

authentication_method | Trust

Close all sessions:

vmartdb=> \x

Expanded display is off.

vmartdb=> SELECT CLOSE_ALL_SESSIONS();

 CLOSE_ALL_SESSIONS

 Close all sessions command sent. Check v_monitor.sessions for progress.

(1 row)

Sessions contents after issuing the CLOSE_ALL_SESSIONS() command:

=> SELECT * FROM SESSIONS;

-[RECORD 1]--------------+--

node_name | v_vmartdb_node0001

user_name | dbadmin

client_hostname | 127.0.0.1:52110

client_pid | 4554

login_timestamp | 2011-01-03 14:05:40.252625-05

session_id | stress04-4325:0x14

client_label |

transaction_start | 2011-01-03 14:05:44.325781

transaction_id | 45035996273728326

transaction_description | user dbadmin (SELECT * FROM sessions;)

statement_start | 2011-01-03 16:19:56.720071

-458-

SQL Reference Manual

statement_id | 25

last_statement_duration_us | 15605

current_statement | SELECT * FROM SESSIONS;

ssl_state | None

authentication_method | Trust

Controlling Sessions

The database administrator must be able to disallow new incoming connections in order to shut
down the database. On a busy system, database shutdown is prevented if new sessions connect
after the CLOSE_SESSION or CLOSE_ALL_SESSIONS() command is invoked — and before the
database actually shuts down.

One option is for the administrator to issue the SHUTDOWN('true') command, which forces the

database to shut down and disallow new connections. See SHUTDOWN (page 393) in the SQL
Reference Manual.

Another option is to modify the MaxClientSessions parameter from its original value to 0, in

order to prevent new non-dbadmin users from connecting to the database.

1 Determine the original value for the MaxClientSessions parameter by querying the

V_MONITOR.CONFIGURATIONS_PARAMETERS (page 693) system table:

=> SELECT CURRENT_VALUE FROM CONFIGURATION_PARAMETERS WHERE

parameter_name='MaxClientSessions';

 CURRENT_VALUE

 50

(1 row)

2 Set the MaxClientSessions parameter to 0 to prevent new non-dbadmin connections:

=> SELECT SET_CONFIG_PARAMETER('MaxClientSessions', 0);

Note: The previous command allows up to five administrators to log in.

3 Issue the CLOSE_ALL_SESSIONS() command to remove existing sessions:

=> SELECT CLOSE_ALL_SESSIONS();

4 Query the SESSIONS table:

=> SELECT * FROM SESSIONS;

When the session no longer appears in the SESSIONS table, disconnect and run the Stop

Database command.

5 Restart the database.

6 Restore the MaxClientSessions parameter to its original value:

=> SELECT SET_CONFIG_PARAMETER('MaxClientSessions', 50);

See Also

CLOSE_SESSION (page 330), CONFIGURATION_PARAMETERS (page 693), SESSIONS
(page 741), SHUTDOWN (page 393)

Managing Sessions and Configuration Parameters in the Administrator's Guide

-459-

 SQL Functions

Shutdown Problems in the Troubleshooting Guide

CLOSE_SESSION

Interrupts the specified external session and rolls back the current transaction, if any, and closes
the socket.

Syntax

CLOSE_SESSION (sessionid)

Parameters

sessionid A string that specifies the session to close. This identifier is unique
within the cluster at any point in time but can be reused when the
session closes.

Notes

 Closing of the session is processed asynchronously. It could take some time for the session to
be closed. Check the SESSIONS (page 741) table for the status.

 Database shutdown is prevented if new sessions connect after the CLOSE_SESSION()
command is invoked (and before the database is actually shut down. See Controlling
Sessions below.

Messages

The following are the messages you could encounter:

 For a badly formatted sessionID

close_session | Session close command sent. Check SESSIONS for progress.

Error: invalid Session ID format

 For an incorrect sessionID parameter

Error: Invalid session ID or statement key

Examples

User session opened. RECORD 2 shows the user session running COPY DIRECT statement.

vmartdb=> SELECT * FROM sessions;

-[RECORD 1]--------------+---

node_name | v_vmartdb_node0001

user_name | dbadmin

client_hostname | 127.0.0.1:52110

client_pid | 4554

login_timestamp | 2011-01-03 14:05:40.252625-05

session_id | stress04-4325:0x14

client_label |

transaction_start | 2011-01-03 14:05:44.325781

transaction_id | 45035996273728326

transaction_description | user dbadmin (SELECT * FROM sessions;)

statement_start | 2011-01-03 15:36:13.896288

statement_id | 10

last_statement_duration_us | 14978

current_statement | select * from sessions;

-460-

SQL Reference Manual

ssl_state | None

authentication_method | Trust

-[RECORD 2]--------------+---

node_name | v_vmartdb_node0002

user_name | dbadmin

client_hostname | 127.0.0.1:57174

client_pid | 30117

login_timestamp | 2011-01-03 15:33:00.842021-05

session_id | stress05-27944:0xc1a

client_label |

transaction_start | 2011-01-03 15:34:46.538102

transaction_id | -1

transaction_description | user dbadmin (COPY ClickStream_Fact FROM

 '/data/clickstream/1g/ClickStream_Fact.tbl'

 DELIMITER '|' NULL '\\n' DIRECT;)

statement_start | 2011-01-03 15:34:46.538862

statement_id |

last_statement_duration_us | 26250

current_statement | COPY ClickStream_Fact FROM '/data/clickstream

 /1g/ClickStream_Fact.tbl' DELIMITER '|' NULL

 '\\n' DIRECT;

ssl_state | None

authentication_method | Trust

Close user session stress05-27944:0xc1a

vmartdb=> \x

Expanded display is off.

vmartdb=> SELECT CLOSE_SESSION('stress05-27944:0xc1a');

 CLOSE_SESSION

--

 Session close command sent. Check v_monitor.sessions for progress.

(1 row)

Query the sessions table again for current status, and you can see that the second session has
been closed:

=> SELECT * FROM SESSIONS;

-[RECORD 1]--------------+--

node_name | v_vmartdb_node0001

user_name | dbadmin

client_hostname | 127.0.0.1:52110

client_pid | 4554

login_timestamp | 2011-01-03 14:05:40.252625-05

session_id | stress04-4325:0x14

client_label |

transaction_start | 2011-01-03 14:05:44.325781

transaction_id | 45035996273728326

transaction_description | user dbadmin (select * from SESSIONS;)

statement_start | 2011-01-03 16:12:07.841298

statement_id | 20

last_statement_duration_us | 2099

current_statement | SELECT * FROM SESSIONS;

ssl_state | None

authentication_method | Trust

-461-

 SQL Functions

Controlling Sessions

The database administrator must be able to disallow new incoming connections in order to shut
down the database. On a busy system, database shutdown is prevented if new sessions connect
after the CLOSE_SESSION or CLOSE_ALL_SESSIONS() command is invoked — and before the
database actually shuts down.

One option is for the administrator to issue the SHUTDOWN('true') command, which forces the

database to shut down and disallow new connections. See SHUTDOWN (page 393) in the SQL
Reference Manual.

Another option is to modify the MaxClientSessions parameter from its original value to 0, in

order to prevent new non-dbadmin users from connecting to the database.

1 Determine the original value for the MaxClientSessions parameter by querying the

V_MONITOR.CONFIGURATIONS_PARAMETERS (page 693) system table:

=> SELECT CURRENT_VALUE FROM CONFIGURATION_PARAMETERS WHERE

parameter_name='MaxClientSessions';

 CURRENT_VALUE

 50

(1 row)

2 Set the MaxClientSessions parameter to 0 to prevent new non-dbadmin connections:

=> SELECT SET_CONFIG_PARAMETER('MaxClientSessions', 0);

Note: The previous command allows up to five administrators to log in.

3 Issue the CLOSE_ALL_SESSIONS() command to remove existing sessions:

=> SELECT CLOSE_ALL_SESSIONS();

4 Query the SESSIONS table:

=> SELECT * FROM SESSIONS;

When the session no longer appears in the SESSIONS table, disconnect and run the Stop

Database command.

5 Restart the database.

6 Restore the MaxClientSessions parameter to its original value:

=> SELECT SET_CONFIG_PARAMETER('MaxClientSessions', 50);

See Also

CLOSE_ALL_SESSIONS (page 333), CONFIGURATION_PARAMETERS (page 693),
SESSIONS (page 741), SHUTDOWN (page 393)

Managing Sessions and Configuration Parameters in the Administrator's Guide

Shutdown Problems in the Troubleshooting Guide

-462-

SQL Reference Manual

GET_NUM_ACCEPTED_ROWS

Returns the number of rows loaded into the database for the last completed load for the current
session.

Syntax

GET_NUM_ACCEPTED_ROWS();

Notes

 Only loads from STDIN or a single file on the initiator are supported. This function cannot be
called for multi-node loads.

 Information is not available for a load that is currently running. Check the system table
LOAD_STREAMS (page 710) for its status.

 Data regarding loads does not persist, and is dropped when a new load is initiated.

 GET_NUM_ACCEPTED_ROWS is a meta-function, Do not use it as a value in an INSERT
query.

GET_NUM_REJECTED_ROWS

Returns the number of rows that were rejected during the last completed load for the current
session.

Syntax

GET_NUM_REJECTED_ROWS();

Notes

 Only loads from STDIN or a single file on the initiator are supported. This function cannot be
called for multi-node loads.

 Information is not available for a load that is currently running. Check the system table
LOAD_STREAMS (page 710) for its status.

 Data regarding loads does not persist, and is dropped when a new load is initiated.

 GET_NUM_REJECTED_ROWS is a meta-function, Do not use it as a value in an INSERT
query.

INTERRUPT_STATEMENT

Interrupts the specified statement (within an external session), rolls back the current transaction,
and writes a success or failure message to the log file.

Syntax

INTERRUPT_STATEMENT(session_id , statement_id)

Parameters

session_id Specifies the session to interrupt. This identifier is unique within
the cluster at any point in time.

statement_id Specifies the statement to interrupt

-463-

 SQL Functions

Notes

 Only statements run by external sessions can be interrupted.

 Sessions can be interrupted during statement execution.

 If the statement_id is valid, the statement is interruptible. The command is successfully sent
and returns a success message. Otherwise the system returns an error.

Messages

The following list describes messages you might encounter and their meaning:

 Statement interrupt sent. Check SESSIONS for progress.

This message indicates success.

 Session <id> could not be successfully interrupted: session not found.

The session ID argument to the interrupt command does not match a running session.

 Session <id> could not be successfully interrupted: statement not found.

The statement ID does not (or no longer) matches the ID of a running statement (if any).

 No interruptible statement running

The statement is DDL or otherwise non-interruptible.

 Internal (system) sessions cannot be interrupted.

The session is internal, and only statements run by external sessions can be interrupted.

Examples

Two user sessions are open. RECORD 1 shows user session running SELECT FROM SESSION,

and RECORD 2 shows user session running COPY DIRECT:

=> SELECT * FROM SESSIONS;

-[RECORD 1

]--------------+--

node_name | v_vmartdb_node0001

user_name | dbadmin

client_hostname | 127.0.0.1:52110

client_pid | 4554

login_timestamp | 2011-01-03 14:05:40.252625-05

session_id | stress04-4325:0x14

client_label |

transaction_start | 2011-01-03 14:05:44.325781

transaction_id | 45035996273728326

transaction_description | user dbadmin (select * from sessions;)

statement_start | 2011-01-03 15:36:13.896288

statement_id | 10

last_statement_duration_us | 14978

current_statement | select * from sessions;

ssl_state | None

authentication_method | Trust

-[RECORD 2

]--------------+--

node_name | v_vmartdb_node0003

-464-

SQL Reference Manual

user_name | dbadmin

client_hostname | 127.0.0.1:56367

client_pid | 1191

login_timestamp | 2011-01-03 15:31:44.939302-05

session_id | stress06-25663:0xbec

client_label |

transaction_start | 2011-01-03 15:34:51.05939

transaction_id | 54043195528458775

transaction_description | user dbadmin (COPY Mart_Fact FROM

'/data/Mart_Fact.tbl'

 DELIMITER '|' NULL '\\n' DIRECT;)

statement_start | 2011-01-03 15:35:46.436748

statement_id | 5

last_statement_duration_us | 1591403

current_statement | COPY Mart_Fact FROM '/data/Mart_Fact.tbl' DELIMITER

'|'

 NULL '\\n' DIRECT;

ssl_state | None

authentication_method | Trust

Interrupt the COPY DIRECT statement running in stress06-25663:0xbec:

vmartkp=> \x

Expanded display is off.

vmartkp=> SELECT INTERRUPT_STATEMENT('stress06-25663:0x1537', 5);

 interrupt_statement

--

 Statement interrupt sent. Check v_monitor.sessions for progress.

(1 row)

Verify that the interrupted statement is no longer active by looking at the current_statement
column in the SESSIONS system table. This column becomes blank when the statement has
been interrupted:

=> SELECT * FROM SESSIONS;

-[RECORD 1

]--------------+--

node_name | v_vmartdb_node0001

user_name | dbadmin

client_hostname | 127.0.0.1:52110

client_pid | 4554

login_timestamp | 2011-01-03 14:05:40.252625-05

session_id | stress04-4325:0x14

client_label |

transaction_start | 2011-01-03 14:05:44.325781

transaction_id | 45035996273728326

transaction_description | user dbadmin (select * from sessions;)

statement_start | 2011-01-03 15:36:13.896288

statement_id | 10

last_statement_duration_us | 14978

current_statement | select * from sessions;

ssl_state | None

authentication_method | Trust

-[RECORD 2

]--------------+--

-465-

 SQL Functions

node_name | v_vmartdb_node0003

user_name | dbadmin

client_hostname | 127.0.0.1:56367

client_pid | 1191

login_timestamp | 2011-01-03 15:31:44.939302-05

session_id | stress06-25663:0xbec

client_label |

transaction_start | 2011-01-03 15:34:51.05939

transaction_id | 54043195528458775

transaction_description | user dbadmin (COPY Mart_Fact FROM

'/data/Mart_Fact.tbl'

 DELIMITER '|' NULL '\\n' DIRECT;)

statement_start | 2011-01-03 15:35:46.436748

statement_id | 5

last_statement_duration_us | 1591403

current_statement |

ssl_state | None

authentication_method | Trust

See Also

SESSIONS (page 741)

Managing Sessions and Configuration Parameters in the Administrator's Guide

Statistic Management Functions

This section contains statistic management functions specific to Vertica.

-466-

SQL Reference Manual

ANALYZE_STATISTICS

Collects and aggregates data samples and storage information as a background process from all
nodes on which a projection is stored, then writes statistics into the catalog so that the statistics
can be used by the query optimizer. Without these statistics, the query optimizer would assume
uniform distribution of data values and equal storage usage for all projections.

Syntax

ANALYZE_STATISTICS { ('')

... | ('[schema.]table')

... | ('projection') }

... | ('column-name')

Return Value

 0 - For success.

 1 - For failure. Refer to vertica.log for details.

Parameters

'' Empty string. Collects statistics for all projections.

[schema.]table Specifies the name of the table and optional schema. When
using more than one schema, specify the schema that contains
the projection.

Collects statistics for all projections of the specified table.

projection Specifies the name of the projection.

Collects statistics for the specified projection as well as all the
projections with the same anchor table.

column-name Specifies the name of a single table column.

Collects statistics for the specified column as well as all the
projections with the same anchor table.

Notes

Issuing the command against very large tables/projections could return results more slowly. To
return results more quickly, you could issue the command against a single column.

Example

The examples use the Vmart example database.

The following command computes statistics on all projections in the database and returns 0
(success):

=> SELECT ANALYZE_STATISTICS ('');

 analyze_statistics

 0

(1 row)

-467-

 SQL Functions

The following command computes statistics on the shipping_dimension table and returns 0

(success):

=> SELECT ANALYZE_STATISTICS ('shipping_dimension');

 analyze_statistics

 0

(1 row)

The following command computes statistics on one of the shipping_dimension table's

projections and returns 0 (success):

=> SELECT ANALYZE_STATISTICS('shipping_dimension_site02'); analyze_statistics

 0

(1 row)

The following command computes statistics on the shipping_dimension table's

shipping_key column for all projections and returns 0 (success):

=> SELECT ANALYZE_STATISTICS('shipping_dimension.shipping_key');

analyze_statistics

 0

(1 row)

For use cases, see Collecting Statistics in the Administrator's Guide

See Also

DROP_STATISTICS (page 343)

EXPORT_STATISTICS (page 353)

IMPORT_STATISTICS (page 362)

DROP_STATISTICS

Removes statistics for the specified projection(s).

Syntax

DROP_STATISTICS { ('') | ('[schema.]table') | ('projection') }

Return Value

 0 - For success.

 1 - For failure. Refer to vertica.log for details.

Parameters

'' Empty string. Drops statistics for all projections.

[schema.]table Drops statistics for all projections within the specified table. When
using more than one schema, specify the schema that contains
the table with the projections you want to delete.

-468-

SQL Reference Manual

projection Drops statistics for the specified projection.

Notes

Once dropped, statistics can be time consuming to regenerate.

Example

The following example drops statistics for all projections in the database and returns 0 (success):

=> SELECT DROP_STATISTICS ('');

 drop_statistics

 0

(1 row)

The following command drops statistics for the shipping_dimension table and returns 0 (success):

=> SELECT DROP_STATISTICS ('shipping_dimension');

 drop_statistics

 0

(1 row)

The following command drops statistics for one of the shipping_dimension table's projections and
returns 0 (success):

=> SELECT DROP_STATISTICS('shipping_dimension_site02'); drop_statistics

 0

(1 row)

For use cases, see Collecting Statistics in the Administrator's Guide

See Also

ANALYZE_STATISTICS (page 327)

EXPORT_STATISTICS (page 353)

IMPORT_STATISTICS (page 362)

EXPORT_STATISTICS

Generates an XML file that contains statistics for the database.

Syntax

EXPORT_STATISTICS (filename)

Parameters

filename Specifies the path and name of the XML output file. An
empty string dumps the script to console.

-469-

 SQL Functions

Notes

 Before you export statistics for the database, be sure to run ANALYZE_STATISTICS (page
327) to collect and aggregate data samples and storage information. If you do not use
ANALYZE_STATISTICS, Database Designer produce a suboptimal projection similar to those
created for temporary designs.

 For use cases, see Collecting Statistics in the Administrator's Guide

See Also

ANALYZE_STATISTICS (page 327)

DROP_STATISTICS (page 343)

IMPORT_STATISTICS (page 362)

IMPORT_STATISTICS

Imports statistics from the XML file generated by the EXPORT_STATISTICS command.

Syntax

IMPORT_STATISTICS (filename)

Parameters

filename Specifies the path and name of the XML input file (which is
the output of EXPORT_STATISTICS function).

Notes

 Imported statistics override existing statistics for all projections on the specified table.

 For use cases, see Collecting Statistics in the Administrator's Guide

See Also

ANALYZE_STATISTICS (page 327)

DROP_STATISTICS (page 343)

EXPORT_STATISTICS (page 353)

Storage Management Functions

This section contains storage management functions specific to Vertica.

ADD_LOCATION

Adds a location to store data.

Syntax

ADD_LOCATION (path , [node , usage_string])

-470-

SQL Reference Manual

Parameters

path Specifies where the storage location is mounted.

Path must be an empty directory with write permissions for user,
group, or all.

node Is the Vertica node where the location is available.

If this parameter is omitted, node defaults to the initiator.

usage_string Is one of the following:

 DATA: Only data is stored in the location.

 TEMP: Only temporary files that are created during loads or
queries are stored in the location.

 DATA,TEMP: Both types of files are stored in the location.

If this parameter is omitted, the default is DATA,TEMP.

Notes

 By default, the location is used to store both data and temporary files.

 Locations can be added from any node to any node.

 Either node and usage_string must both be specified or neither of them specified.

 Information about storage locations is visible V_MONITOR.DISK_STORAGE (page 699).

 A storage location annotation called CATALOG indicates the location is used to store the
catalog and is visible in V_MONITOR.DISK_STORAGE. However, no new locations can be
added, as CATALOG locations and existing CATALOG annotations cannot be removed.

Example

This example adds a location that stores data and temporary files:

SELECT ADD_LOCATION('/secondVerticaStorageLocation/');

This example adds a location to store data only:

SELECT ADD_LOCATION('/secondVerticaStorageLocation/' , 'node2' , 'DATA');

See Also

ALTER_LOCATION_USE (page 320)

RETIRE_LOCATION (page 388)

ALTER_LOCATION_USE

Alters the type of files stored in the specified storage location.

Syntax

ALTER_LOCATION_USE (path , [node] , usage_string)

Parameters

path Specifies where the storage location is mounted.

-471-

 SQL Functions

node [Optional] Is the Vertica node where the location is
available.

If this parameter is omitted, node defaults to the initiator.

usage_string Is one of the following:

 DATA: Only data is stored in the location.

 TEMP: Only temporary files that are created
during loads or queries are stored in the location.

 DATA,TEMP: Both types of files are stored in the
location.

Notes

 Altering the type of files stored in a particular location is useful if you create additional storage
locations and you want to isolate execution engine temporary files from data files.

 After modifying the location's use, at least one location must remain for storing data and temp
files. These files can be stored in the same storage location or separate storage locations.

 When a storage location is altered, it stores only the type of information indicated from that
point forward. For example:

 If you modify a storage location that previously stored both temp and data files so that it
only stores temp files, the data is eventually merged out through the ATM. You can also
merge it out manually.

 If you modify a storage location that previously stored both temp and data files so that it
only stores data files, all currently running statements that use these temp files, such as
queries and loads, continue to run. Subsequent statements will no longer use this location.

Example

The following example alters the storage location on node3 to store data only:

=> SELECT ALTER_LOCATION_USE ('/thirdVerticaStorageLocation/' , 'node3' ,

'DATA');

See Also

ADD_LOCATION (page 318)

RETIRE_LOCATION (page 388)

Modifying Storage Locations in the Administrator's Guide

DROP_LOCATION

Removes the specified storage location.

Syntax

DROP_LOCATION ('path' , 'site')

Parameters

path Specifies where the storage location to drop is mounted.

-472-

SQL Reference Manual

site Is the Vertica site where the location is available.

Notes

 Dropping a storage location is a permanent operation and cannot be undone. Therefore,
Vertica recommends that you retire a storage location before dropping it. This allows you to
verify that you actually want to drop a storage location before doing so. Additionally, you can
easily restore a retired storage location.

 Dropping storage locations is limited to locations that contain only temp files.

 If a location used to store data and you modified it to store only temp files, the location might
still contain data files. If the storage location contains data files, Vertica does not allow you to
drop it. You can manually merge out all the data in this location, wait for the ATM to mergeout
the data files automatically, or you can drop partitions. Deleting data files does not work.

Example

The following example drops a storage location on node3 that was used to store temp files:

=> SELECT DROP_LOCATION('/secondVerticaStorageLocation/' , 'node3');

See Also

 RETIRE_LOCATION (page 388) in this SQL Reference Manual

 Dropping Storage Locations and Retiring Storage Locations in the Administrator's Guide

MEASURE_LOCATION_PERFORMANCE

Measures disk performance for the location specified.

Syntax

MEASURE_LOCATION_PERFORMANCE (path , node)

Parameters

path Specifies where the storage location to measure is mounted.

node Is the Vertica node where the location to be measured is
available..

Notes

 If you intend to create a tiered disk architecture in which projections, columns, and partitions
are stored on different disks based on predicted or measured access patterns, you need to
measure storage location performance for each location in which data is stored. You do not
need to measure storage location performance for temp data storage locations because
temporary files are stored based on available space.

 This method of measuring storage location performance applies only to configured clusters. If
you want to measure a disk before configuring a cluster see Measuring Location Performance.

 Storage location performance equates to the amount of time it takes to read a fixed amount of
data from the disk. This read time equates to the disk throughput in MB per second plus the
time it takes to seek data based on the number of seeks per second, as follows:

-473-

 SQL Functions

Read Time (seconds) = 1/Throughput (MB/second) + 1/Latency (seeks/second)

Therefore, a disk is faster than another disk if its Read Time is smaller.

Example

The following example measures the performance of a storage location on node2:

=> SELECT MEASURE_LOCATION_PERFORMANCE('/secondVerticaStorageLocation/' ,

'node2');

WARNING: measure_location_performance can take a long time. Please check logs for

progress

 measure_location_performance

--

 Throughput : 122 MB/sec. Latency : 140 seeks/sec

See Also

ADD_LOCATION (page 318)

ALTER_LOCATION_USE (page 320)

RETIRE_LOCATION (page 388)

Measuring Location Performance in the Administrator's Guide

RESTORE_LOCATION

Restores the retired location specified.

Syntax

RESTORE_LOCATION (path , node)

Parameters

path Specifies where the retired storage location is mounted.

node Is the Vertica node where the retired location is available.

Notes

Once restored, Vertica re-ranks the storage locations and use the restored location to process
queries as determined by its rank.

Example

The following example restores the retired storage location on node3:

=> SELECT RESTORE_LOCATION ('/thirdVerticaStorageLocation/' , 'node3');

See Also

ADD_LOCATION (page 318)

RETIRE_LOCATION (page 388)

-474-

SQL Reference Manual

Modifying Storage Locations in the Administrator's Guide

RETIRE_LOCATION

Makes the specified storage location inactive.

Syntax

RETIRE_LOCATION ('path' , 'site')

Parameters

path Specifies where the storage location to retire is mounted.

site Is the Vertica site where the location is available.

Notes

 Before retiring a location, be sure that at least one location remains for storing data and temp
files. Data and temp files can be stored in either one storage location or separate storage
locations.

 Once retired, no new data can be stored on the location unless the location is restored through
the RESTORE_LOCATION (page 387) function.

 If the storage location stored data, the data is not moved. Instead, it is removed through one or
more mergeouts. Therefore, the location cannot be dropped.

 If the storage site was used to store only temp files, it can be dropped. See Dropping Storage
Locations in the Administrators Guide and the DROP_LOCATION (page 340) function.

Example

=> SELECT RETIRE_LOCATION ('/secondVerticaStorageLocation/' , 'node2');

See Also

ADD_LOCATION (page 318)

RESTORE_LOCATION (page 387)

Retiring Storage Locations in the Administrator's Guide

SET_LOCATION_PERFORMANCE

Sets disk performance for the location specified.

Syntax

SET_LOCATION_PERFORMANCE (path , node , throughput , average_latency)

Parameters

node Is the Vertica node where the location to be set is
available.

If this parameter is omitted, node defaults to the initiator.

path Specifies where the storage location to set is mounted.

-475-

 SQL Functions

throughput Specifies the throughput for the location, which must be 1
or more.

average_latency Specifies the average latency for the location. The
average_latency must be 1 or more.

Notes

To obtain the throughput and average latency for the location, run the
MEASURE_LOCATION_PERFORMANCE (page 366) function before you attempt to set the
location's performance.

Example

The following example sets the performance of a storage location on node2 to a throughput of 122
megabytes per second and a latency of 140 seeks per second.

=> SELECT MEASURE_LOCATION_PERFORMANCE('node2','/secondVerticaStorageLocation/','122','140');

See Also

ADD_LOCATION (page 318)

MEASURE_LOCATION_PERFORMANCE (page 366)

Measuring Location Performance and Setting Location Performance in the Administrator's Guide

Tuple Mover Functions

This section contains tuple mover functions specific to Vertica.

DO_TM_TASK

Runs a Tuple Mover operation (moveout) on one or more projections defined on the specified
table. You do not need to stop the Tuple Mover to run this function.

Syntax

DO_TM_TASK ('task' [, '[schema.]table' | 'projection'])

Parameters

task Is one of the following tuple mover operations:

 'moveout' — Moves out all projections on the

specified table (if a particular projection is not
specified).

 'analyze_row_count' — Automatically collects

the number of rows in a projection every 60 seconds
and aggregates row counts calculated during loads.

[schema.]table Runs a tuple mover operation for all projections within the
specified table. When using more than one schema, specify
the schema that contains the table with the projections you
want to affect.

-476-

SQL Reference Manual

projection If projection is not passed as an argument, all projections in
the system are used. If projection is specified,
DO_TM_TASK looks for a projection of that name and, if
found, uses it; if a named projection is not found, the function
looks for a table with that name and, if found, moves out all
projections on that table.

Notes

DO_TM_TASK() is useful because you can move out all projections from a table or database

without having to name each projection individually.

Examples

The following example performs a moveout of all projections for table t1:

=> SELECT DO_TM_TASK('moveout', 't1');

The following example performs a moveout for projections t1_p:

=> SELECT DO_TM_TASK('moveout', 't1_p')

See Also

COLUMN_STORAGE (page 691)

DROP_PARTITION (page 341)

DUMP_PARTITION_KEYS (page 346)

DUMP_PROJECTION_PARTITION_KEYS (page 347)

DUMP_TABLE_PARTITION_KEYS (page 348)

PARTITION_PROJECTION (page 368)

Partitioning Tables in the Administrator's Guide

Collecting Statistics in the Administrator's Guide

-477-

SQL Statements

The primary structure of a SQL query is its statement. Multiple statements are separated by
semicolons; for example:

CREATE TABLE fact (..., date_col date NOT NULL, ...);

CREATE TABLE fact(..., state VARCHAR NOT NULL, ...);

ALTER FUNCTION
Alters a SQL Macro by providing a new function or different schema name.

Syntax 1

ALTER FUNCTION

... [schema_name.]function-name ([[argname] argtype [, ...]])

... RENAME TO new_name

Syntax 2

ALTER FUNCTION

... [schema_name.]function-name ([[argname] argtype [, ...]])

... SET SCHEMA new_schema

Parameters

[schema-name.]function-name Specifies a name for the SQL Macro (function body) to alter.

argname Specifies the name of the argument.

argtype Specifies the data type for argument that is passed to the
function. Argument types must match Vertica type names.
See SQL Data Types (page 60).

new_name Specifies the new name of the function

new_schema Specifies the new schema name where the function resides.

Notes

Before you can alter a function, you must specify the argument type because there could be
several functions that share the same name with different argument types.

Permissions

Only the superuser or owner can alter the function.

Example

This example creates a SQL Macro called zeroifnull that accepts an INTEGER argument and

returns an INTEGER result.

=> CREATE FUNCTION zeroifnull(x INT) RETURN INT

 AS BEGIN

 RETURN (CASE WHEN (x IS NOT NULL) THEN x ELSE 0 END);

-478-

SQL Reference Manual

 END;

This next command renames the zeroifnull function to zerowhennull:

=> ALTER FUNCTION zeroifnull(x INT) RENAME TO zerowhennull;

ALTER FUNCTION

This command moves the renamed function to a new schema called macros:

=> ALTER FUNCTION zerowhennull(x INT) SET SCHEMA macros;

ALTER FUNCTION

See Also

CREATE FUNCTION (page 515)

DROP FUNCTION (page 582)

GRANT (Function) (page 596)

REVOKE (Function) (page 607)

V_CATALOG.USER_FUNCTIONS (page 683)

Using SQL Macros in the Programmer's Guide

-479-

 SQL Statements

ALTER PROJECTION RENAME
Initiates a rename operation on the specified projection:

Syntax

ALTER PROJECTION projection-name RENAME TO new-projection-name

Parameters

projection-name Specifies the projection to change.

new-projection-name Specifies the new projection name.

Notes

The projection must exist before it can be renamed.

ALTER PROFILE
Changes a profile. Only the database superuser can alter a profile.

Syntax

ALTER PROFILE name LIMIT

... [PASSWORD_LIFE_TIME {life-limit | DEFAULT | UNLIMITED}]

... [PASSWORD_GRACE_TIME {grace_period | DEFAULT | UNLIMITED}]

... [FAILED_LOGIN_ATTEMPTS {login-limit | DEFAULT | UNLIMITED}]

... [PASSWORD_LOCK_TIME {lock-period | DEFAULT | UNLIMITED}]

... [PASSWORD_REUSE_MAX {reuse-limit | DEFAULT | UNLIMITED}]

... [PASSWORD_REUSE_TIME {reuse-period | DEFAULT | UNLIMITED}]

... [PASSWORD_MAX_LENGTH {max-length | DEFAULT | UNLIMITED}]

... [PASSWORD_MIN_LENGTH {min-length | DEFAULT | UNLIMITED}]

... [PASSWORD_MIN_LETTERS {min-letters | DEFAULT | UNLIMITED}]

... [PASSWORD_MIN_UPPERCASE_LETTERS {min-cap-letters | DEFAULT | UNLIMITED}]

... [PASSWORD_MIN_LOWERCASE_LETTERS {min-lower-letters | DEFAULT | UNLIMITED}]

... [PASSWORD_MIN_DIGITS {min-digits | DEFAULT | UNLIMITED}]

... [PASSWORD_MIN_SYMBOLS {min-symbols | DEFAULT | UNLIMITED}]

Note: For all parameters, the special value DEFAULT means the parameter is inherited from
the DEFAULT profile.

Parameters

Parameter Name Description Meaning of UNLIMITED value

name The name of the profile to create N/A

PASSWORD_LIFE_TIME life-limit Integer number of days a
password remains valid. After
the time elapses, the user must
change the password (or will be
warned that their password has
expired if

 Passwords never expire.

-480-

SQL Reference Manual

PASSWORD_GRACE_TIME is
set to a value other than zero or
UNLIMITED).

PASSWORD_GRACE_TIME

grace-period

Integer number of days the
users are allowed to login (while
being issued a warning
message) after their passwords
are older than the
PASSWORD_LIFE_TIME. After
this period expires, users are
forced to change their
passwords on login if they have
not done so after their password
expired.

No grace period (the same as
zero)

FAILED_LOGIN_ATTEMPTS

login-limit

The number of consecutive
failed login attempts that result
in a user's account being locked.

Accounts are never locked, no
matter how many failed login
attempts are made.

PASSWORD_LOCK_TIME lock-period Integer value setting the number
of days an account is locked
after the user's account was
locked by having too many failed
login attempts. After the
PASSWORD_LOCK_TIME has
expired, the account is
automatically unlocked.

Accounts locked because of too
many failed login attempts are
never automatically unlocked.
They must be manually
unlocked by the database
superuser.

PASSWORD_REUSE_MAX reuse-limit The number of password
changes that need to occur
before the current password can
be reused.

Users are not required to
change passwords a certain
number of times before reusing
an old password.

PASSWORD_REUSE_TIME

reuse-period

The integer number of days that
must pass after a password has
been set before the before it can
be reused.

Password reuse is not limited by
time.

PASSWORD_MAX_LENGTH max-length The maximum number of
characters allowed in a
password. Value must be in the
range of 8 to 100.

Passwords are limited to 100
characters.

PASSWORD_MIN_LENGTH min-length The minimum number of
characters required in a
password. Valid range is 0 to

max-length.

Equal to max-length.

PASSWORD_MIN_LETTERS

min-of-letters

Minimum number of letters (a-z
and A-Z) that must be in a
password. Valid ranged is 0 to

max-length.

0 (no minimum).

PASSWORD_MIN_UPPERCASE_LETTERS

min-cap-letters

Minimum number of capital
letters (A-Z) that must be in a
password. Valid range is is 0 to

0 (no minimum).

-481-

 SQL Statements

max-length.

PASSWORD_MIN_LOWERCASE_LETTERS

min-lower-letters

Minimum number of lowercase
letters (a-z) that must be in a
password. Valid range is is 0 to

max-length.

0 (no minimum).

PASSWORD_MIN_DIGITS min-digits Minimum number of digits (0-9)
that must be in a password.
Valid range is is 0 to

max-length.

0 (no minimum).

PASSWORD_MIN_SYMBOLS

min-symbols

Minimum number of symbols
(any printable non-letter and
non-digit character, such as $, #,
@, and so on) that must be in a
password. Valid range is is 0 to

max-length.

0 (no minimum).

Note: Only the profile settings for how many failed login attempts trigger account locking and
how long accounts are locked have an effect on external password authentication methods
such as LDAP or Kerberos. All password complexity, reuse, and lifetime settings only have an
effect on passwords managed by Vertica.

ALTER PROFILE RENAME
Rename an existing profile.

Syntax

ALTER PROFILE name RENAME TO newname;

Parameters

name The current name of the profile.

newname The new name for the profile.

ALTER RESOURCE POOL
Modifies a resource pool.

Syntax

ALTER RESOURCE POOL pool-name MEMORYSIZE 'sizeUnits'

... [MAXMEMORYSIZE 'sizeUnits' | NONE]

... [PRIORITY integer]

... [QUEUETIMEOUT integer | NONE]

... [PLANNEDCONCURRENCY integer]

... [SINGLEINITIATOR bool]

... [MAXCONCURRENCY integer | NONE]

-482-

SQL Reference Manual

Parameters

pool-name Specifies the name of the resource pool to alter.

MEMORYSIZE 'sizeUnits' [Default 0%] Amount of memory allocated to the resource pool. See

also MAXMEMORYSIZE parameter.

Units can be one of the following:

 % percentage of total memory available to the Resource
Manager. (In this case size must be 0-100).

 K Kilobytes

 M Megabytes

 G Gigabytes

 T Terabytes

Note: The MEMORYSIZE parameter refers to memory allocated to this

pool per node and not across the whole cluster. The default of 0%
means that the pool has no memory allocated to it and must

exclusively borrow from the GENERAL pool (page 534).

MAXMEMORYSIZE

'sizeUnits' | NONE

[Default unlimited] Maximum size the resource pool could grow by

borrowing memory from the GENERAL pool. See Built-in Pools (page

534) for a discussion on how resource pools interact with the GENERAL

pool.

Units can be one of the following:

 % percentage of total memory available to the Resource
Manager. (In this case, size must be 0-100). This notation has

special meaning for the GENERAL pool, described in Notes

below.

 K Kilobytes

 M Megabytes

 G Gigabytes

 T Terabytes

If MAXMEMORYSIZE NONE is specified, there is no upper limit.

Notes:

The MAXMEMORYSIZE parameter refers to the maximum memory

borrowed by this pool per node and not across the whole cluster.

The default of unlimited means that the pool can borrow as much

memory from GENERAL pool as is available.

When set as a percentage (%) value, GENERAL.MAXMEMORYSIZE

governs the total amount of RAM that the Resource Manager can use
for queries, regardless of whether the parameter is set to a percent or
to a specific value (for example, '10G'). The default setting is 95%.

The MAXMEMORYSIZE of the WOSDATA and SYSDATA pools cannot be

changed as long as any of their memory is in use. For example, in

order to change the MAXMEMORYSIZE of the WOSDATA pool, you need

to disable any trickle loading jobs and wait until the WOS is empty

before you can change the MAXMEMORYSIZE.

-483-

 SQL Statements

PRIORITY [Default 0] An integer that represents priority of queries in this pool,

when they compete for resources in the GENERAL pool. Higher

numbers denote higher priority.

QUEUETIMEOUT [Default 300 seconds] An integer, in seconds, that represents the
maximum amount of time the request is allowed to wait for resources
to become available before being rejected.

If set to NONE, the request can be queued for an unlimited amount of
time. .

PLANNEDCONCURRENCY [Default: Max(4,Min(total available memory/2GB,#cores))]

An integer that represents number of concurrent queries that are
normally expected to be running against the resource pool. This is not
a hard limit and is used when apportioning memory in the pool to
various requests.

Note: This is a cluster wide maximum and NOT a per-node limit.

SINGLEINITIATOR [Default false] A boolean that indicates whether all requests using this
pool are issued against the same initiator node or whether multiple
initiator nodes can be used; for instance in a round robin configuration.

Note: Vertica recommends distributing requests evenly across all

nodes and leaving this parameter unchanged.

MAXCONCURRENCY [Default unlimited] An integer that represents the maximum number of
concurrent execution slots available to the resource pool. If

MAXCONCURRENCY NONE is specified, there is no limit.

Note: This is a cluster wide maximum and NOT a per-node limit.

Notes

 The resource pool must exist before you can issue the ALTER RESOURCE POOL (page 481)

command.

 Resource pool names are subject to the same rules as Vertica identifiers (page 15). Built-in
pool (page 534) names cannot be used for user-defined pools.

 New resource pools can be created or altered without shutting down the system. The only

exception is that changes to GENERAL.MAXMEMORYSIZE take effect only on a node restart.

When a new pool is created (or its size altered), MEMORYSIZE amount of memory is taken out

of the GENERAL pool. If the GENERAL pool does not currently have sufficient memory to create

the pool due to existing queries being processed, a request is made to the system to create a
pool as soon as resources become available. The pool is in operation as soon as the specified
amount of memory becomes available. You can monitor whether the ALTER has been

completed in the V_MONITOR.RESOURCE_POOL_STATUS (page 676) system table.

 If the GENERAL.MAXMEMORYSIZE parameter is modified while a node is down, and that node

is restarted, the restarted node sees the new setting whereas other nodes continue to see the
old setting until they are restarted. Vertica recommends that you do not change this parameter
unless absolutely necessary.

-484-

SQL Reference Manual

 Under normal operation, MEMORYSIZE is required to be less than MAXMEMORYSIZE and an

error is returned during CREATE/ALTER operations if this size limit is violated. However, under

some circumstances where the node specification changes by addition/removal of memory, or
if the database is moved to a different cluster, this invariant could be violated. In this case,

MAXMEMORYSIZE is reduced to MEMORYSIZE.

 If two pools have the same PRIORITY, their requests are allowed to borrow from the GENERAL

pool in order of arrival.

See Guidelines for Setting Pool Parameters in the Administrator's Guide for details about setting
these parameters.

See Also

CREATE RESOURCE POOL (page 531)

CREATE USER (page 576)

DROP RESOURCE POOL (page 586)

RESOURCE_POOL_STATUS (page 730)

SET SESSION RESOURCE POOL (page 643)

SET SESSION MEMORYCAP (page 642)

Managing Workloads in the Administrator's Guide

ALTER SCHEMA
Renames one or more existing schemas.

Syntax

ALTER SCHEMA schema-name [, ...] {

... RENAME TO new-schema-name [, ...] }

Parameters

schema-name Specifies the name of one or more schemas to rename.

RENAME TO Specifies one or more new schema names.

The lists of schemas to rename and the new schema names are parsed from left to
right and matched accordingly using one-to-one correspondence.

When renaming schemas, be sure to follow these standards:

 The number of schemas to rename must match the number of new schema
names supplied.

 The new schema names must not already exist.

The RENAME TO parameter is applied atomically. Either all the schemas are
renamed or none of the schemas are renamed. If, for example, the number of
schemas to rename does not match the number of new names supplied, none of
the schemas are renamed.

Note: Renaming a schema that is referenced by a view will cause the view to fail

unless another schema is created to replace it.

-485-

 SQL Statements

Notes

 Only the superuser or schema owner can use the ALTER SCHEMA command.

 Renaming schemas does not affect existing prejoin projections because prejoin projections
refer to schemas by the schemas' unique numeric IDs (OIDs), and the OIDs for schemas are
not changed by ALTER SCHEMA.

Tip

Renaming schemas is useful for swapping schemas without actually moving data. To facilitate the
swap, enter a non-existent, temporary placeholder schema. The following example uses the
temporary schema temps to facilitate swapping schema S1 with schema S2. In this example, S1 is
renamed to temps. Then S2 is renamed to S1. Finally, temps is renamed to S2.

ALTER SCHEMA S1, S2, temps

 RENAME TO temps, S1, S2;

Examples

The following example renames schema S1 to S3 and schema S2 to S4:

ALTER SCHEMA S1, S2

 RENAME TO S3, S4;

See Also

CREATE SCHEMA (page 539) and DROP SCHEMA (page 586)

ALTER SEQUENCE
Changes the sequence attributes.

Syntax1

ALTER SEQUENCE [schema-name.]sequence-name

... [INCREMENT [BY] increment]

... [MINVALUE minvalue | NO MINVALUE]

... [MAXVALUE maxvalue | NO MAXVALUE]

... [START [WITH] start]

... [RESTART [[WITH] restart]]

... [CACHE cache]

... [CYCLE | NO CYCLE]

Syntax 2

ALTER SEQUENCE [schema-name.]name RENAME TO new-name

Syntax 3

ALTER SEQUENCE [schema-name.]name SET SCHEMA new-schema-name

Parameters

sequence-name The name (optionally schema-qualified) of the sequence to be
altered. The name must be unique among sequences, tables,

-486-

SQL Reference Manual

projections, and views.

increment Modifies the value, which is added to the current sequence value
to create a new value. A positive value makes an ascending
sequence, a negative one a descending sequence.

MINVALUE | NO MINVALUE Modifies the minimum value a sequence can generate. If you
change this value and the current value falls outside of the
range, the current value is changed to the minimum value if
increment is greater than zero or the maximum value if
increment is smaller than 0.

MAXVALUE | NO MAXVALUE Modifies the maximum value for the sequence. If you change
this value and the current value falls outside of the range, the
current value is changed to the minimum value if increment is
greater than zero or the maximum value if increment is smaller
than 0.

start Allows the sequence to begin anywhere.

restart Changes the current value of the sequence. The specified value
is returned by the next call of NEXTVAL.

cache Modifies how many sequence numbers are preallocated and
stored in memory for faster access. The default is 250,000 with a
minimum value of 1 (only one value can be generated at a time,
for example, no cache).

CYCLE | NO CYCLE Allows you you to switch between CYCLE and NO CYCLE.

The CYCLE option allows the sequence to wrap around when
the maxvalue or minvalue is reached by an ascending or
descending sequence respectively. If the limit is reached, the
next number generated is the minvalue or maxvalue,
respectively.

If NO CYCLE is specified, any calls to NEXTVAL after the
sequence has reached its maximum/minimum value, return an
error. The default is NO CYCLE.

RENAME TO new-name Renames a sequence within the same schema. To move a
sequence, see SET SCHEMA below.

SET SCHEMA new-schema-name Moves a sequence between schemas.

Notes

 You must own the sequence or be the superuser to use ALTER SEQUENCE.

 To change a sequence's schema, you must also have CREATE privilege on the new schema.

 Any parameters not specifically set in the ALTER SEQUENCE command retain their prior
settings.

Examples

The following example modifies an ascending sequence called sequential to start at 105:

ALTER SEQUENCE sequential RESTART WITH 105;

The following example moves a sequence from one schema to another:

-487-

 SQL Statements

ALTER SEQUENCE [public.]sequence SET SCHEMA vmart;

The following example renames a sequence in the Vmart schema:

ALTER SEQUENCE [vmart.]sequence RENAME TO serial;

See Also

CREATE SEQUENCE (page 540)

CURRVAL (page 255)

DROP SEQUENCE (page 587)

GRANT (Sequence) (page 599)

NEXTVAL (page 254)

Using Sequences and Sequence Privileges in the Administrator's Guide

-488-

 488

ALTER TABLE
Modifies an existing table.

Syntax1

ALTER TABLE [schema-name.]table-name {

... ADD COLUMN column-definition

... | ADD table-constraint (on page 492)

... | ALTER COLUMN column-name [SET DEFAULT default-expression]

... | [DROP DEFAULT]

... | DROP CONSTRAINT constraint-name [RESTRICT | CASCADE]

... | RENAME [COLUMN] column TO new-column

... | SET SCHEMA new-schema-name [CASCADE | RESTRICT] }

Syntax2

ALTER TABLE [schema-name.]table-name [, ...]

... RENAME [TO] new-table-name [, ...]

Parameters

[schema-name.]table-name Specifies the name of the table to be altered. When using more than one
schema, specify the schema that contains the table.

ALTER TABLE can be used in conjunction with SET SCHEMA to move only

one table between schemas at a time.

When using ALTER TABLE to rename one or more tables, you can specify

a comma-delimited list of table names to rename.

ADD COLUMN

column-definition
Adds a new column defined by column-definition to a table and to all

superprojections of the table. The column definition cannot contain
restraints. Columns cannot be added to tables that have out-of-date
superprojections with up-to-date buddies.

When a new column is added:

 A unique projection column name is generated in each
superprojection.

 The default value is inserted for existing rows. For example, if

CURRENT_TIMESTAMP is the default expression, all rows have

the current timestamp.

Tip: When adding a column, only expressions that can be folded into a

constant can be specified as a default column expression. This means

that all system information functions (except CURRENT_DATABASE())

cannot be specified. Other functions that cannot be used are

CURRENT_USER, SESSION_USER, and certain formatting functions such

as TO_DATE and TO_TIMESTAMP.

Volatile functions cannot be specified through ADD COLUMN. Use ALTER

COLUMN to specify volatile functions. (Volatile functions change with every

invocation.)

Notes:

 Columns added to a table that is referenced by a view do not

-489-

 SQL Statements

appear in the result set of the view even if the view uses the wild
card (*) to represent all columns in the table. Recreate the view to
incorporate the column.

ADD Adds a table-constraint (on page 492) to a table that does not have any
associated projections.

Note: Adding a table constraint has no effect on views that reference the

table.

ALTER COLUMN Alters an existing column within the specified table to change or drop a
default expression.

Tip: You cannot specify a volatile function in its default column

expression. To work around this, add the column and fill it with NULLS.
Then, alter the column to specify the volatile function. For example:

ALTER TABLE tbl ADD COLUMN newcol float;

ALTER TABLE tbl ALTER COLUMN newcol SET DEFAULT random();

DROP CONSTRAINT

Drops the specified table-constraint from the table.

Note: Dropping a table constraint has no effect on views that reference

the table.

[RESTRICT | CASCADE] Use the CASCADE keyword to drop a constraint upon which something

else depends. For example, a FOREIGN KEY constraint depends on a
UNIQUE or PRIMARY KEY constraint on the referenced columns.

-490-

SQL Reference Manual

RENAME [TO] RENAME can be used to rename one or more tables. In either case, the
key word changes the name of the table or tables to the specified name or
names.

To rename two or more tables simultaneously, use a comma-delimited
list. The lists of tables to rename and the new table names are parsed
from left to right and matched accordingly using one-to-one
correspondence.

When renaming tables, be sure to follow these standards:

 Do not specify the schema-name as part of the table specification
after the RENAME TO clause. The schema-name is specified
only after the ALTER TABLE clause because this statement
applies to only one schema.

 The following example renames tables T1 and T2 in the S1 schema to
U1 and U2 respectively.

=> ALTER TABLE S1.T1, S1.T2 RENAME TO U1, U2;

 The following example generates a syntax error:

=> ALTER TABLE S1.T1, S1.T2 RENAME TO S1.U1,

S1.U2;

 The number of tables to rename must match the number of new
table names supplied.

 The new table names must not already exist.

The RENAME TO parameter is applied atomically. Either all the tables are

renamed or none of the tables are renamed. If, for example, the number of
tables to rename does not match the number of new names supplied,
none of the tables are renamed.

Note: Renaming a table that is referenced by a view causes the view to

fail unless another table is created to replace it.

RENAME [COLUMN] Renames the specified column within the table.

Note: If a column that is referenced by a view is renamed, the column

does not appear in the result set of the view even if the view uses the wild
card (*) to represent all columns in the table. Recreate the view to
incorporate the column's new name.

SET SCHEMA Moves the table to the specified schema. By default, SET SCHEMA is set to

CASCADE. This means that all the projections that are anchored on this

table are automatically moved to the new schema regardless of the
schema in which they reside. To move only projections that are anchored

on this table and that reside in the same schema, use the RESTRICT key

word.

If the name of the table or any of the projections that you want to move
already exists in the new schema, the statement rolls back and the tables
and projections are not moved. In the new schema, rename the table or
projections that conflict with the ones that you want to move and then
rerun the statement.

Notes: Although this is likely to occur infrequently, Vertica supports

moving system tables to system schemas if necessary. This might occur
to support designs created through Database Designer.

Temporary tables cannot be moved between schemas.

-491-

 SQL Statements

SET SCHEMA supports moving only one table between schemas at a time.

Notes

 To use the ALTER TABLE statement, the user must either be a superuser or be the table owner

and have CREATE privilege on the affected schema. If you use SET SCHEMA, you must also

have CREATE privilege on the schema to which you want to move the table.

 With the exception of performing a table rename, one operation can be performed at a time in

an ALTER TABLE command; for example, to add multiple columns, issue consecutive ALTER

TABLE ADD COLUMN commands.

 You cannot add a column constraint using the ALTER TABLE command:

=> ALTER TABLE t1 ADD COLUMN c INT NOT NULL;

 ROLLBACK: ALTER TABLE does not support ADD COLUMN with other clauses

 The following clauses cannot be used with any other clauses. They are exclusive:

 RENAME [TO]

 RENAME COLUMN

 SET SCHEMA

 ADD COLUMN

 The ADD constraints and DROP constraints clauses can be used together.

 Adding a column to a table does not affect the K-safety of the physical schema design.

 You cannot use ALTER TABLE ... ADD COLUMN on a temporary table.

 Vertica allows adding 1600 columns to a table.

 Renaming tables does not affect existing prejoin projections because prejoin projections refer
to tables by the tables' unique numeric IDs (OIDs), and the OIDs for tables are not changed by
ALTER TABLE.

Tip

Renaming tables is useful for swapping tables within the same schema without actually moving
data. It cannot be used to swap tables across schemas. To enable the swap, use a non-existent,
temporary placeholder table. The following example uses the temporary table temps to facilitate
swapping table T1 with table T2. In this example, T1 is renamed to temps. Then T2 is renamed to
T1. Finally, temps is renamed to T2.

-492-

SQL Reference Manual

=> ALTER TABLE T1, T2, temps RENAME TO temps, T1, T2;

Examples

The following example drops the default expression specified for the Discontinued_flag column.

=> ALTER TABLE Retail.Product_Dimension

 ALTER COLUMN Discontinued_flag DROP DEFAULT;

The following example renames a column in the Retail.Product_Dimension table from
Product_description to Item_description:

=> ALTER TABLE Retail.Product_Dimension

 RENAME COLUMN Product_description TO Item_description;

The following example moves table T1 from schema S1 to schema S2. SET SCHEMA defaults to
CASCADE so all the projections that are anchored on table T1 are automatically moved to
schema S2 regardless of the schema in which they reside

=> ALTER TABLE S1.T1 SET SCHEMA S2;

table-constraint

Adds a join constraint to the metadata of a table. See Adding Constraints in the Administrator's
Guide.

Syntax

[CONSTRAINT constraint_name]

... { PRIMARY KEY (column [, ...])

... | FOREIGN KEY (column [, ...])

... REFERENCES table

... | UNIQUE (column [, ...])

Parameters

CONSTRAINT constraint-name Optionally assigns a name to the constraint. Vertica
recommends that you name all constraints.

PRIMARY KEY (column [, ...]) Adds a referential integrity constraint defining one or more
NOT NULL numeric columns as the primary key.

FOREIGN KEY (column [, ...]) Adds a referential integrity constraint defining one or more
NOT NULL numeric columns as a foreign key.

REFERENCES table Specifies the table to which the FOREIGN KEY constraint

applies. If column is omitted, the default is the primary key
of table.

UNIQUE (column [, ...]) Ensures that the data contained in a column or a group of
columns is unique with respect to all the rows in the table.

Notes

 A foreign key constraint can be specified solely by a reference to the table that contains the
primary key. The columns in the referenced table do not need to be explicitly specified; for
example:

-493-

 SQL Statements

CREATE TABLE fact(c1 INTEGER PRIMARY KEY);

CREATE TABLE dim (c1 INTEGER REFERENCES fact);

 Define PRIMARY KEY and FOREIGN KEY constraints in all tables that participate in inner
joins. See Adding Constraints.

 Adding constraint to a table that is referenced in a view does not affect the view.

Examples

CORRELATION (Product_Description) DETERMINES (Category_Description)

The Retail Sales Example Database described in the Getting Started Guide contains a table
Product_Dimension in which products have descriptions and categories. For example, the
description "Seafood Product 1" exists only in the "Seafood" category. You can define several
similar correlations between columns in the Product Dimension table.

-494-

 494

ALTER USER
Changes a database user account.

Syntax

ALTER USER name

... [ACCOUNT { LOCK | UNLOCK }]

... [IDENTIFIED BY 'password' [REPLACE 'old-password']]

... [MEMORYCAP { 'memory-limit' | NONE }]

... [PASSWORD EXPIRE]

... [PROFILE { profile-name | DEFAULT }]

... [RESOURCE POOL pool-name]

... [RUNTIMECAP { 'time-limit' | NONE }]

... [TEMPSPACECAP { 'space-limit' | NONE }]

Parameters

name Specifies the name of the user to alter; names that contain
special characters must be double-quoted.

ACCOUNT LOCK | UNLOCK Locks or unlocks the user's account. Users cannot log in if
their account is locked. Accounts can be locked either
explicitly by the superuser, or if the user has more failed login
attempts than is allowed by their profile.

IDENTIFIED BY 'password'

[REPLACE 'old_password']

Sets the user's password to password. Non-superusers can

only their own passwords and must supply the REPLACE
parameter along with their old password. The superuser can
change any user's password without supplying the REPLACE
parameter.

PASSWORD EXPIRE Expires the user's password. Vertica will force the user to
change passwords during his or her next login.

Note: PASSWORD EXPIRE has no effect when using

external password authentication methods such as LDAP or
Kerberos.

PROFILE profile-name | DEFAULT Sets the user's profile to profile-name. Using the value
DEFAULT sets the user's profile to the default profile.

MEMORYCAP 'memory-limit' | NONE Limits the amount of memory that the user's requests can
use. This value is a number representing the amount of
space, followed by a unit (for example, '10G'). The unit can be
one of the following:

 % percentage of total memory available to the
Resource Manager. (In this case value of the size
size must be 0-100)

 K Kilobytes

 M Megabytes

 G Gigabytes

 T Terabytes

-495-

 SQL Statements

Setting this value to NONE means the user has no limits on

memory use.

RESOURCE POOL pool-name Sets the name of the default resource pool for the user.

RUNTIMECAP 'time-limit' | NONE Sets the maximum amount of time any of the user's queries
can execute. time-limit is an interval, such as '1 minute' or
'100 seconds' (see Interval Values (page 29) for details).
This value cannot exceed one year. Setting this value to
NONE means there is no time limit on the user's queries.

TEMPSPACECAP 'space-limit' |

 NONE

Limits the amount of temporary file storage the user's
requests can use. This parameter's value has the same

format as the MEMORYCAP value.

Notes

 Users can alter some of their own settings. They can set their default RESOURCE POOL to
any pool on which they have been granted usage privileges. They can also change their
password. They must supply their old password to do so.

 Only a superuser can alter another user.

 Attempting to switch users to using a resource pool on which they have not been granted
access results in an error (even for the superuser).

 ALTER USER does not affect current sessions.

See Also

CREATE USER (page 576)

Managing Workloads in the Administrator's Guide

-496-

 496

COMMIT
Ends the current transaction and makes all changes that occurred during the transaction
permanent and visible to other users.

Syntax

COMMIT [WORK | TRANSACTION]

Parameters

WORK | TRANSACTION Have no effect; they are optional keywords for readability.

-497-

 497

COPY
Bulk loads data from one or more files or pipes on a cluster host into a Vertica database. (See
LCOPY (page 604) to load from a data file on a client system using ODBC.)

COPY can load data in one of three formats:

 Text with delimiters (the default format)

 Native binary using the NATIVE keyword

 Native varchar using the NATIVE VARCHAR keyword

See Advanced Formats for Loading Data in the Administrator's Guide for details of using native
binary or varchar.

COPY has many options that give you flexibility when importing your data. For example it can:

 Read data compressed using GZIP or BZIP as well as uncompressed data.

 Insert data into the WOS (memory) or directly into the ROS (disk).

 Set certain parameters (such as the delimiters and quote characters) for the entire copy
operation, or for specific columns.

 Transform data before inserting it into the database.

Note: You must connect as the database superuser to copy from a file. Any user with INSERT

privileges can copy data from the STDIN pipe.

Syntax

COPY [schema-name.]table

[([column-as-expression] / column

...[FILLER datatype]

...[FORMAT 'format']

...[ENCLOSED BY 'char']

...[ESCAPE AS 'char']

...[NULL [AS] 'string']

...[DELIMITER [AS] 'char']

...[COLUMN OPTION (column ... FORMAT 'format' ... [,...])]

...[,...])]

FROM { STDIN

...[BZIP | GZIP | UNCOMPRESSED] | 'pathToData' [ON nodename]

...[BZIP | GZIP | UNCOMPRESSED] [, ...] }

...[NATIVE | NATIVE VARCHAR]

...[WITH]

...[DELIMITER [AS] 'char']

...[TRAILING NULLCOLS]

...[NULL [AS] 'string']

...[ESCAPE AS 'char']

...[ENCLOSED BY 'char' [AND 'char']]

...[RECORD TERMINATOR 'string']

...[SKIP integer]

...[REJECTMAX integer]

...[EXCEPTIONS 'path' [ON nodename] [, ...]]

...[REJECTED DATA 'path' [ON nodename] [, ...]]

-498-

SQL Reference Manual

...[ENFORCELENGTH]

...[ABORT ON ERROR]

...[AUTO | DIRECT | TRICKLE]

...[STREAM NAME 'streamName']

...[NO COMMIT]

Parameters
[schema-name.]table Specifies the name of a schema table (not a projection). Vertica loads the

data into all projections that include columns from the schema table.

When using more than one schema, specify the schema that contains the
table.

column-as-expression Specifies the target column, for which you want to compute values, as an
expression. This is used to transform data when it is loaded into the target
database. Transforming data is useful for computing values to be inserted
into a column in the target database from other columns in the source. (See
Transforming Data During Loads in the Administrator's Guide.)

Transformation requirements:

 The COPY statement must contain at least one parsed column, which

can be a filler column. (See Ignoring Columns and Fields in the Load
File in the Administrator's Guide for more information about using
fillers.)

 For parsed columns, specify only raw data in the source.

 The return data type of the expression must be coercible to that of
the target column. Parameter (parsed columns) are also coerced to
match the expression.

 When there are computed columns, all parsed columns in the

expression must be listed in the COPY statement.

Transformation restrictions:

 Computed columns cannot be used in COPY expressions.

 Raw data cannot be specified in the source for computed columns.

 COPY expressions may contain only constants.

 FORMAT cannot be specified for a computed column.

Transformation usage:

 If nulls are specified in the raw data for parsed columns in the
source, evaluation follows the same rules as for expressions within
SQL statements.

 Parsed and computed columns can be interspersed in the COPY

statement.

 Multiple columns can be specified in a COPY expression.

 Multiple COPY expressions can refer to the same parsed column.

 A COPY expression can be as simple as a single column and can be

as complex as a case expression with multiple columns.

 COPY expressions can be specified for columns of all supported data

types.

 COPY expressions can use most Vertica-supported SQL functions,

-499-

 SQL Statements

operators, constants, NULLs, and comments, as follows: date/time
(page 176) functions, formatting (page 212) functions, numeric
(page 229) functions, string (page 259) functions, null-handling
(page 248) functions, and system information (page 310)
functions.

 COPY expressions cannot use SQL meta functions (Vertica-specific

(page 318)), analytic (page 120) functions, and aggregate (page
107) functions.

column Restricts the load to one or more specified columns in the table. If no
columns are specified, all columns are loaded by default.

Table columns that are not in the column list are given their default values. If

no default value is defined for a column, COPY inserts NULL.

There is no implicit casting during parsing, so mismatched data types cause

the COPY operation to roll back and the row to be rejected. For parsed

columns, specify only raw data in the source.

Tip: If you leave this parameter blank to load all the columns in the table, you

can use the optional parameter COLUMN OPTION to specify parsing options

for specific columns.

Note: The data file must contain the same number of columns as the COPY

command's column list. For example, in a table T1 with nine columns (C1

through C9), the following command would load the three columns of data in

each record to columns C1, C6, and C9, respectively:

=> COPY T1 (C1, C6, C9);

FILLER Instructs Vertica not to load a column and the fields it contains into the
destination table. This is useful for omitting columns that you do not want to
transfer into a table.

Transforms data from a source column and then loads the transformed data
to a destination table without loading the original, untransformed source
column (parsed column). (See Transforming Data During Loads in the
Administrator's Guide.)

Filler requirements:

 The data type of the filler column must be specified.

 The name of the filler column must be unique across the source file
and target table.

 The filler column must be a parsed column, not a computed column.

Filler restrictions:

 The source columns in a COPY statement cannot consist of only filler

columns.

 Target table columns cannot be specified as filler whether they
appear in the column list or not.

Filler usage:

 Expressions can contain filler columns.

 There is no restriction on the number of filler columns that can be

used in a COPY statement — other than at least one column must not

be a filler column.

 A data file can consist of only filler columns. This means that all data
in a data file can be loaded into filler columns and then transformed

-500-

SQL Reference Manual

and loaded into table columns.

 All parser parameters can be specified for filler columns.

 All statement level parser parameters apply to filler columns.

FORMAT Is specified for date/time (page 68), and binary (page 61) data types.

Supported date/time formats are the same as those accepted by the
TO_DATE (page 215) function. For example:

=> TO_DATE('05 Dec 2000', 'DD Mon YYYY')

If you specify invalid format strings, the COPY operation returns an error. See

the following links for supported formats:

 Template Patterns for Date/Time Formatting (page 219)

 Template Pattern Modifiers for Date/Time Formatting (page 220)

 Loading Data into Binary Data Types

See Loading Data into Binary Data Types to learn more about using the
date/time and binary data types..

Note: the FORMAT keyword significantly improves performance for loading

DATE data types.

pathToData Specifies the absolute path of the file containing the data, which can be from
multiple input sources.

Path can optionally contain wildcards to match more than one file. The file or
files must be accessible to the host on which the COPY statement runs.

You can use variables to construct the pathname as described in Using Load
Scripts.

The supported patterns for wildcards are specified in the Linux Manual
Page GLOB(7), Globbing pathnames
http://man-wiki.net/index.php/7:glob.

nodename Is optional. If omitted, operations default to the query's initiator node.

Note: Nodename cannot be specified with STDIN because STDIN is read

http://man-wiki.net/index.php/7:glob

-501-

 SQL Statements

on the initiator node only.

STDIN Reads from the client a standard input instead of a file. STDIN takes one

input source only and is read on the initiator node. To load multiple input
sources, use pathToData.

BZIP|GZIP|UNCOMPRESSED Input files can be of any format. If wildcards are used, then all qualifying input

files must be of the same format. UNCOMPRESSED is the default.

Notes:

 When using concatenated BZIP or GZIP files, be sure that each
source file is terminated with a record terminator before you
concatenate them.

 Concatenated BZIP and GZIP files are not supported for NATIVE

(binary) and NATIVE VARCHAR formats.

WITH, AS For readability and have no effect.

NATIVE Specifies that the data is in a binary-format file. Loading data through a
binary-format file is often faster than normal text mode, because it does not
require the use and processing of delimiters. This saves the database the
extra work of converting integers, dates, and timestamps from text to their
native storage format. Binary format data files can be bigger than their text
equivalents, however, you can reduce the space usage by compressing

binary data using GZIP or BZIP.

Notes:

 Native binary format loading can be used when developing plug-ins
to ETL applications, as well as by batch inserts issued from ODBC
and JDBC.

 Binary-format files must meet exacting specifications, as per
Creating Native-Format Files to Load Data in the Administrator's
Guide.

 You cannot mix Binary and ASCII source files in the same COPY
statement.

 Concatenated BZIP and GZIP files are not supported for NATIVE

(binary).

See Advanced Formats For Loading Data in the Administrator's Guide.

NATIVE VARCHAR Uses a similar file format to NATIVE (binary), but all fields are represented

as strings in CHAR or VARCHAR. Conversion to the actual table data type is

done on the database server; thus, NATIVE VARCHAR does not provide the

same efficiency as NATIVE; however, NATIVE VARCHAR provides the

convenience of not having to use delimiters or escape special characters,
such as quotes, which can make working with client applications easier.

Note: Concatenated BZIP and GZIP files are not supported for NATIVE

VARCHAR formats.

See Advanced Formats For Loading Data in the Administrator's Guide.

COLUMN OPTION A parsing option that allows a subset of columns to be specified through the
table column list. For example, you can specify that a particular column has

its own delimiter, enclosed by, null as 'NULL' expression, and so on. You

don't have to specify all the column names in the COPY column list, which can

be especially useful for large tables with lots of columns.

-502-

SQL Reference Manual

Note: You cannot specify the format of a column not accounted for in the

table column list.

DELIMITER Is the single ASCII character that separates columns within each record of a

file. You can choose any ASCII value in the range E'\001' to E'\177'

inclusive (any ASCII character except NULL: E'\000'). The default in

Vertica is a vertical bar (|).

Note: A comma (,) is the delimiter commonly used in CSV data files.

If the delimiter character appears in string of data values, use the ESCAPE AS

character (\ by default) to indicate that it is a literal. See Loading Data into

Character Data Types.

To specify a non-printing character, use either the extended string syntax (

E'...') or, if StandardConformingStrings is enabled, a Unicode

string literal (U&'...'). For example, to specify tab as the delimiter, you

could use either E'\t' or U&'\0009'.

TRAILING NULLCOLS Specifies that if Vertica encounters a short record , the missing columns are

inserted with NULLs.

Note: Vertica verifies that there is no NOT NULL constraint on a column

before inserting a NULL. If a NOT NULL constraint exists on the column,

Vertica returns an error and rolls back the statement.

ESCAPE AS Sets the escape character that prevents the following character from being
interpreted as one of the special characters defined by the COPY command
(the record terminator, delimiter, enclosed by, and the escape characters).
When any of these special characters are preceded by the escape character,
the COPY command ignores their special meaning and copies them into the
database literally. Whether or not the character following the escape
character is one of these special characters, the escape character is always
removed from the input. If you want the escape character value to be
inserting into your database, you must escape it. For example, if you leave

the escape character as the default backslash (\) character, you need to use

two backslashes (\\) anyplace in your input where you want a backslash to

appear in the loaded data. The alternative (and perhaps easier) method is
use ESCAPE AS to change the escape character to a value that does not
appear in your input data.

The default value for the escape character is backslash (\). You can set the

escape character to be any ASCII value in the range E'\001' to E'\177'

inclusive (any ASCII character except NULL: E'\000').

Note: The data read in by the COPY command is not interpreted as string

literals (page 19), and therefore does not follow the same escape rules as
SQL statements (including the arguments to the COPY command). Only the
characters defined by ESCAPE AS, DELIMITER, ENCLOSED BY, and
RECORD TERMINATOR are treated as special values in the data read by
the COPY command.

ENCLOSED BY Sets the quote character and allows delimiter characters to be embedded in

string values. You can choose any ASCII value in the range E'\001' to

E'\177' inclusive (any ASCII character except NULL: E'\000'). By

default, ENCLOSED BY has no value, meaning data is not enclosed by any

-503-

 SQL Statements

sort of quote character.

Given the following input (with the default | DELIMITER) :

"vertica | value"

The default is:

 Column 1 contains "vertica

 Column 1 contains value"

Notice the double quotes (") before vertica and after value.

When you enable ENCLOSED BY, you can specify an ASCII character to

enclose data. All ASCII characters are allowed except for a space. Double
quote is the most commonly used quotation character.

The following indicates that data in the input to COPY is within double quotes:

ENCLOSED BY '"'

Using the following sample input, columns are distributed as follows:

"1", "vertica,value", ",", "'"

 Column 1 contains 1

 Column 2 contains vertica,value

 Column 3 contains ,

 Column 4 contains '

You could also write the above example using any ASCII character of your
choosing:

~1~, ~vertica,value~, ~,~, ~'~

You can use single quote as the quote character, but you must escape it by
using either the extended string syntax, a Unicode literal string if

StandardConformingStrings is enabled, or by using four single

quotes:

ENCLOSED BY E'\''

ENCLOSED BY U&'\0027'

ENCLOSED BY ''''

Using any of the above means the following input is properly parsed:

'1', 'vertica,value', ',', '\''

See String Literals (Character) (page 23) for an explanation of the string

literal formats you can use to specify the ENCLOSED BY parameter.

Use the ESCAPE AS character to embed the ENCLOSED BY delimiter within

character string values. For example, using the default ESCAPE AS character

(\) and double quote as the ENCLOSED BY character, the following input

returns "vertica"

"\"vertica\""

NULL The string that represents a null value. It can contain any ASCII values in the

range E'\001' to E'\177' inclusive (any ASCII character except NULL:

E'\000'). The default is an empty string ('').

When NULL is an empty string (''), use quotes to insert an empty string

instead of a NULL. For example, using NULL " ENCLOSED BY '"',

 1||3 — Inserts a NULL in the second columns.

 1|""|3 — Inserts an empty string instead of a NULL in the second

columns.

-504-

SQL Reference Manual

To input an empty or literal string, use quotes (ENCLOSED BY); for example:

NULL ''

NULL 'literal'

The null string is case-insensitive and must be the only value between the
delimiters. For example, if the null string is NULL and the delimiter is the

vertical bar (|):

|NULL| indicates a null value.

| NULL | does not indicate a null value.

When you use the COPY command in a script, you must substitute a

double-backslash for each null string that includes a backslash. For example,
the scripts used to load the example databases contain:

COPY ... NULL E'\\n' ...

RECORD TERMINATOR Specifies the literal character string that indicates the end of a data file
record. If you do not specify a value, then Vertica attempts to determine the

correct line ending, accepting either just a linefeed (E'\n') common on

UNIX systems, or a carriage return and linefeed (E'\r\n') common on

Windows platforms. If you specify a RECORD TERMINATOR, you must be sure

the input file matches, otherwise you may get inconsistent data loads.

To specify non-printing characters as the RECORD TERMINATOR, use either

the extended string syntax or Unicode string literals. The following table lists
some common record terminator characters. See String Literals (page 23)
for an explanation of the literal string formats.

Extended
String
Syntax

Unicode
Literal String

Description ASCII
Decimal

E'\a' U&'\0007' Bell 7

E'\b' U&'\0008' Backspace 8

E'\t' U&'\0009' Horizontal

tab

9

E'\n' U&'\000a' Linefeed 10

E'\v' U&'\000b' Vertical tab 11

E'\f' U&'\000c' Formfeed 12

E'\r' U&'\000d' Carriage

return

13

E'\\' U&'\005c' Backslash 92

Note: The record terminator cannot be the same as DELIMITER, NULL,

ESCAPE or ENCLOSED BY.

SKIP Skips the first 'n' records in each file in a load, which is useful if you want to
omit table header information.

-505-

 SQL Statements

REJECTMAX Sets an upper limit on the number of logical records to be rejected before a
load fails. A rejection is data that could not be parsed into the corresponding
data type during a bulk load. (It does not refer to referential constraints.)

The limit on the number of logical records to be rejected is one less than the

value specified for REJECTMAX. When the number of rejected records

becomes equal to the value specified for REJECTMAX, the load fails and the

failed records are placed into the reject file. If not specified or if value is 0,

REJECTMAX allows an unlimited number of rejections.

Note: Vertica does not accumulate rejected records across files or nodes

while the data is loading. If one file exceeds the maximum reject number, the
entire load fails.

EXCEPTIONS Specifies the filename or absolute path in which to write messages indicating
the input line number and the reason for each rejected data record. The
default path is:

<Catalog dir>/CopyErrorLogs/<tablename>-<filename of

source>-copy-from-exceptions

<Catalog dir> represents the directory in which the database catalog files

are stored, and <tablename>-<filename of source> are the names of

the table and data file. If copying from STDIN, the <filename of source>

is STDIN.

Note: Filename is required because of multiple input files. Also, long table

names combined with long data file names can exceed the operating
system's maximum length (typically 255 characters). To work around this
limitation, specify a path for the exceptions file that is different from the

default path; for example, \tmp\<shorter-file-name>.

If exceptions files are not specified:

 If there is one data source file (pathToData or STDIN), all information

is stored as one file in the default directory.

 If there are multiple data files, all information is stored as separate
files, one for each data file in default directory.

If exception files are specified:

 If there is one data file, path is treated as a file with all information
stored in this file. If path is not a file, then the system returns an error.

 If there are multiple data files, path is treated as a directory with all
information stored in separate files, one for each data file in this
directory. If path is not a directory, then the system returns an error.

 Exceptions files are not shipped to the initiator node.

 Only one path per node is accepted. If more than one is provided,
Vertica returns an error.

 The format for the EXCEPTIONS file is:

 COPY: Input record <num> in <pathofinputfile> has been

rejected (<reason>). Please see <pathtorejectfile>,

record <recordnum> for the rejected record.

REJECTED DATA Specifies the filename or absolute path in which to write rejected rows. This
file can then be edited to resolve problems and reloaded. The default path is:

<Catalog dir>/CopyErrorLogs/<tablename>-<filename of

source>-copy-from-data

-506-

SQL Reference Manual

<Catalog dir> represents the directory in which the database catalog files

are stored, and <tablename>-<filename of source> are the names of

the table and data file. If copying from STDIN, the <filename of source> is

STDIN.

Notes: Filename is required because of multiple input files. Also, long table

names combined with long data file names can exceed the operating
system's maximum length (typically 255 characters). To work around this
limitation, specify a path for the rejected data file that is different from the

default path; for example, \tmp\<shorter-file-name>.

If rejected data files are not specified:

 If there is one data source file (pathToData or STDIN), all information

is stored as one file in the default directory.

 If there are multiple data files, all information is stored as separate
files, one for each data file in default directory.

If rejected data files are specified:

 If there is one data file, path is treated as a file with all information
stored in this file. If path is not a file, then the system returns an error.

 If there are multiple data files, path is treated as a directory, with all
information stored in separate files, one for each data file in this
directory. If path is not a directory, then the system returns an error.

 Rejected data files are not shipped to the initiator node.

 Only one path per node is accepted. If more than one is provided,
Vertica returns an error.

ENFORCELENGTH Rejects rows that do not fit into the target table instead of truncating them.
This can occur with column types of char, varchar, binary, and varbinary.

For example, if 'abc' is loaded into VARCHAR(2) it is automatically

truncated to 'ab' and loaded. Using ENFORCELENGTH causes the 'abc' to

be rejected.

Note: COPY has a hard 65K character limit on the length of NATIVE and

NATIVE VARCHAR data. If it encounters a value that is longer than this

length, it always rejects the row, even if ENFORCELENGTH is disabled.

ABORT ON ERROR Stops the COPY command if a row is rejected and rolls back the command.

No data is loaded.

AUTO | DIRECT | TRICKLE Specifies how data is loaded into the database.

 AUTO (the default) loads data into the WOS (Write Optimized Store)

until it is full, then it loads directly into ROS (Read Optimized Store)
containers.

 DIRECT bypasses the WOS and loads data into ROS containers.

This option is best suited when you are loading large amounts of

data (100MB or more) at a time. Using DIRECT for many loads of

smaller data sets results in many ROS containers, which have to be
combined later.

 TRICKLE loads data only into the WOS. If the WOS becomes full, an

error occurs and the entire data load is rolled back. This option is

more efficient than AUTO when loading data into partitioned tables.

Use this option only when you have a finely-tuned load and moveout
process so you can be sure there is room in the WOS for the data

-507-

 SQL Statements

you are loading.

STREAM NAME Is the optional identifier that names a stream, which could be useful for
quickly identifying a particular load.

STREAM NAME appears in the stream column of the LOAD_STREAMS (page

710) table.

By default, Vertica names streams by table and file name. For example, if
you have two files (f1, f2) in Table A, stream names would appear as A-f1,
A-f2, etc.

Use the following statement to name a stream:

=> COPY <mytable> FROM <myfile> DELIMITER '|' DIRECT STREAM

NAME 'My stream name';

NO COMMIT Use COPY with the NO COMMIT key words to prevent the current transaction

from committing automatically (default behavior for all but temporary tables).

This option is useful for executing multiple COPY commands in a single

transaction. For example, all the rows in the following sequence commit in
the same transaction.

=> COPY... NO COMMIT;

=> COPY... NO COMMIT;

=> COPY... NO COMMIT;

=> COMMIT;

NO COMMIT can be combined with any other existing COPY option, and all the

usual transaction semantics apply.

If there is a transaction in progress initiated by a statement other than COPY

(for example, INSERT), COPY... NO COMMIT adds rows to the same

transaction as the earlier statements. The previous statements are NOT
committed.

Tip: Use the NO COMMIT keywords to incorporate detection of constraint

violations into the load process. Vertica checks for violations when queries
are run, not when data is loaded. To avoid constraint violations, load data
without committing it and then perform a post-load check of your data using
the ANALYZE_CONSTRAINTS (page 321) function. If the function finds
constraint violations, you can easily roll back the load because you have not
committed it.

COPY Formats

The following COPY options are available when loading all data formats (delimited text, NATIVE

(binary) and NATIVE VARCHAR):

 COLUMN OPTION

 DIRECT

 ENFORCELENGTH

 EXCEPTIONS

 FILLER

-508-

SQL Reference Manual

 REJECTED DATA

 ABORT ON ERROR

 STREAM NAME

 SKIP

 REJECTMAX

 STORAGE

 STDIN

 BZIP|GZIP|UNCOMPRESSED

NO COMMIT The following option is available when loading data in delimited text or NATIVE

VARCHAR format:

FORMAT The following options are only available when loading delimited text:

 NULL

 DELIMITER

 ENCLOSED BY

 ESCAPE AS

 TRAILING NULLCOLS

 RECORD TERMINATOR

Notes
 The data read in by the COPY command is not interpreted as string literals (page 19), and

therefore does not follow the same escape rules as SQL statements (including the arguments
to the COPY command). Only the characters defined by ESCAPE AS, DELIMITER,
ENCLOSED BY, and RECORD TERMINATOR are treated as special values in the data read
by the COPY command.

 To prevent excessive resource usage, COPY is limited to loading 50 files per node at a time.

 The COPY command automatically commits itself and any current transaction unless NO

COMMIT is specified and unless the tables are temp tables. Vertica recommends that you

COMMIT (page 496) or ROLLBACK (page 614) the current transaction before you use COPY.

 You cannot use the same character in both the DELIMITER and NULL strings.

 NULL values are not allowed for columns with primary key or foreign key referential integrity
constraints.

 String data in load files is considered to be all characters between the specified delimiters. Do
not enclose character strings in quotes. In other words, quote characters are treated as
ordinary data.

 Invalid input is defined as:

 Missing columns (too few columns in an input line).

 Extra columns (too many columns in an input line).

 Empty columns for INTEGER or DATE/TIME data types. COPY does not use the default
data values defined by the CREATE TABLE (page 546) command.

-509-

 SQL Statements

 Incorrect representation of data type. For example, non-numeric data in an INTEGER
column is invalid.

 Empty values (two consecutive delimiters) are accepted as valid input data for CHAR and

VARCHAR data types. Empty columns are stored as an empty string (''), which is not

equivalent to a null string.

 When an empty line is encountered during load, it is neither inserted nor rejected. However,
the record number is incremented. Bear this in mind when you evaluate lists of rejected
records. If you return a list of rejected records and one empty row was encountered during
load, the position of rejected records is bumped up one position.

 Canceling a COPY statement rolls back all rows loaded by that statement.

 If you are using JDBC, Vertica recommends that you use use the following value for the
RECORD TERMINATOR:

System.getProperty("line.separator")

 Named pipes are supported. Naming conventions have the same rules as file names on the
given file system. Permissions are open, write, and close.

 The following parameters can be specified on either a statement or on a per-column basis:
DELIMITER, ENCLOSED BY, ESCAPE AS, and NULL. The same rules apply whether the
parameter is specified at the statement or column level. Column-level parameters override
statement-level parameters. If no column-level parameter is specified, the statement-level
parameter is used. If neither a column-level nor statement-level parameter is specified, the
default is used.

Examples

Basic Examples

The following examples specify FORMAT, DELIMITER, NULL and ENCLOSED BY strings.

=> COPY public.customer_dimension (customer_since FORMAT 'YYYY')

 DELIMITER ','

 NULL AS 'null'

 ENCLOSED BY '"'

=> COPY store.store_dimension

 FROM :input_file

 DELIMITER '|'

 NULL ''

 RECORD TERMINATOR E'\f'

=> COPY a

 FROM stdin

 DELIMITER ','

 NULL E'\\\N'

 DIRECT;

Changing the Escape Character

If you input contains backslash characters (\) that you want to be read as data rather than as
escape sequences, you can change the escape character to some other character that does not
appear in your input (such as a control character):

=> COPY mytable FROM '/data/input.txt' ESCAPE AS E('\001');

-510-

SQL Reference Manual

Loading Comma Separated Values

If you have a file containing comma-separated values that are terminated by line feeds, you can
use the following command:

=> COPY mytable FROM STDIN DELIMITER ',' RECORD TERMINATOR E'\n';

Specifying Quote Characters for a Single Column

The following example sets a single column to be enclosed by double quotes, rather than the
entire row.

=> COPY Retail.Dim (Dno, Dname ENCLOSED BY '"', Dstore)

 FROM '/home/dbadmin/dim3.txt'

 EXCEPTIONS '/home/dbadmin/exp.txt'

 DELIMITER ',';

This example properly reads data such as:

123,"Smith, John",9832

Loading Binary Data Through Delimiters

In the following example create a table that loads a different binary format for each column and

insert the same value, the byte sequence {0x61,0x62,0x63,0x64,0x65}.

=> CREATE TABLE t(

 oct VARBINARY(5),

 hex VARBINARY(5),

 bitstring VARBINARY(5));

Create the projection:

=> CREATE PROJECTION t_p(oct, hex, bitstring) AS SELECT * FROM t;

Issue the COPY command. Note that the copy is from STDIN, not a file.

=> COPY t (oct FORMAT 'octal',

 hex FORMAT 'hex',

 bitstring FORMAT 'bitstring')

 FROM STDIN DELIMITER ',';

Enter the data to be copied, and end it with a backslash and a period on a line by itself:

>> 141142143144145,0x6162636465,0110000101100010011000110110010001100101

>> \.

Now query table t to see the inputs:

=> SELECT * FROM t;

oct | hex | bitstring

-------+-------+-----------

abcde | abcde | abcde

(1 row)

For more information, see Loading Data into Binary Data Types.

Using Compressed Data and Named Pipes

The following command creates the named pipe, pipe1:

-511-

 SQL Statements

\! mkfifo pipe1

\set dir `pwd`/

\set file '''':dir'pipe1'''

The following sequence copies an uncompressed file from the named pipe:

\! cat pf1.dat > pipe1 &

COPY fact FROM :file delimiter '|';

SELECT * FROM fact;

COMMIT;

The following statement copies a GZIP file from named pipe and uncompresses it:

\! gzip pf1.dat

\! cat pf1.dat.gz > pipe1 &

COPY fact FROM :file ON site01 GZIP delimiter '|';

SELECT * FROM fact;

COMMIT;

\!gunzip pf1.dat.gz

The following COPY command copies a BZIP file from named pipe and then uncompresses it:

\!bzip2 pf1.dat

\! cat pf1.dat.bz2 > pipe1 &

COPY fact FROM :file ON site01 BZIP delimiter '|';

SELECT * FROM fact;

COMMIT;

bunzip2 pf1.dat.bz2

User-specified Exceptions and Rejected Data

\set dir `pwd`/data/

\set remote_dir /scratch_b/qa/tmp_ms/

Reject/Exception files NOT specified. The inputs are multiple files, and exceptions and rejection
files go to the default directory on each node:

\set file1 '''':dir'C1_fact.dat'''

\set file2 '''':dir'C2_fact.dat'''

\set file3 '''':remote_dir'C3_fact.dat'''

\set file4 '''':remote_dir'C4_fact.dat'''

COPY fact FROM :file1 ON site01,

 :file2 ON site01,

 :file3 ON site02,

 :file4 ON site02

DELIMITER '|';

Reject/Exception files SPECIFIED. Input is a single file on the initiator, and the exceptions and
rejected data are file names instead of directories:

\set except_s1 '''':dir'exceptions'''

\set reject_s1 '''':dir'rejections'''

COPY fact FROM :file1 ON site01

DELIMITER '|'

REJECTED DATA :reject_s1 ON site01

EXCEPTIONS :except_s1 ON site01;

Reject/Exception files SPECIFIED. A single file is on remote node:

-512-

SQL Reference Manual

\set except_s2 '''':remote_dir'exceptions'''

\set reject_s2 '''':remote_dir'rejections'''

COPY fact FROM :file1 ON site02

DELIMITER '|'

REJECTED DATA :reject_s2 ON site02

EXCEPTIONS :except_s2 ON site02;

Reject/Exception files SPECIFIED. Multiple data files on multiple nodes, with rejected data and
exceptions referring to the directory on which the files reside:

\set except_s1 '''':dir''''

\set reject_s1 '''':dir''''

\set except_s2 '''':remote_dir''''

\set reject_s2 '''':remote_dir''''

COPY fact FROM :file1 ON site01,

 :file2 ON site01,

 :file3 ON site02,

 :file4 ON site02

DELIMITER '|'

REJECTED DATA :reject_s1 ON site01, :reject_s2 ON site02

EXCEPTIONS :except_s1 ON site01, :except_s2 ON site02;

Loading NULL values

You can specify NULL values by entering fields in a data file without content. For example, given

the default delimiter (|) and default NULL (empty string), the following inputs:

| | 1

| 2 | 3

4 | | 5

6 | |

are inserted into the table as follows:

(null, null, 1)

(null, 2, 3)

(4, null, 5)

(6, null, null)

If NULL is set as a literal ('null'), the following inputs:

null | null | 1

null | 2 | 3

 4 | null | 5

 6 | null | null

are inserted into the table as follows:

(null, null, 1)

(null, 2, 3)

(4, null, 5)

(6, null, null)

Using Trailing NULL Columns

The following illustrates how trailing null columns handles a short record:

-513-

 SQL Statements

=> CREATE TABLE z (

 a INT,

 b INT,

 c INT);

Insert some values:

=> INSERT INTO z VALUES (1, 2, 3);

Query table z to see the inputs:

=> SELECT * FROM z;

 a | b | c

---+---+---

 1 | 2 | 3

(1 row)

Now insert data using the STDIN keyword:

=> COPY z FROM STDIN TRAILING NULLCOLS;

>> 4 | 5 | 6

>> 7 | 8

>> \.

=> SELECT * FROM z;

 a | b | c

---+---+---

 1 | 2 | 3

 4 | 5 | 6

 7 | 8 |

(3 rows)

The following example shows what happens when you try to use a trailing null column on a column
that contains a NOT NULL constraint:

=> CREATE TABLE n (

 a INT,

 b INT NOT NULL,

 c INT);

=> INSERT INTO n VALUES (1, 2, 3);

=> SELECT * FROM n;

 a | b | c

---+---+---

 1 | 2 | 3

(1 row)

=> COPY n FROM STDIN trailing nullcols abort on error;

>> 4 | 5 | 6

>> 7 | 8

>> 9

>> \.

 ERROR: COPY: Input record 3 has been rejected (Cannot set trailing column to

 NULL as column 2 (b) is NOT NULL)

=> SELECT * FROM n;

 a | b | c

---+---+---

 1 | 2 | 3

(1 row)

-514-

SQL Reference Manual

Transforming Data

The following example derives and loads values for the year, month, and day columns in the target
database based on the timestamp column in the source database. It also loads the parsed
column, timestamp, from the source database to the target database.

=> CREATE TABLE t (

 year VARCHAR(10),

 month VARCHAR(10),

 day VARCHAR(10),

 k TIMESTAMP);

=> CREATE PROJECTION tp (

 year,

 month,

 day,

 k)

 AS SELECT * FROM t;

=> COPY t (year AS TO_CHAR(k, 'YYYY'),

 month AS TO_CHAR(k, 'Month'),

 day AS TO_CHAR(k, 'DD'),

 k FORMAT 'YYYY-MM-DD') FROM STDIN NO COMMIT;

>> 2009-06-17

>> 1979-06-30

>> 2007-11-26

>> \.

=> SELECT * FROM t;

 year | month | day | k

------+-----------+-----+---------------------

 2009 | June | 17 | 2009-06-17 00:00:00

 1979 | June | 30 | 1979-06-30 00:00:00

 2007 | November | 26 | 2007-11-26 00:00:00

(3 rows)

Ignoring Columns and Fields in the Load File

The following example derives and loads the value for the TIMESTAMP column in the target

database from the year, month, and day columns in the source input. The year, month, and day

columns are not loaded because the FILLER keyword skips them.

=> CREATE TABLE t (k TIMESTAMP);

=> CREATE PROJECTION tp (k) AS SELECT * FROM t;

=> COPY t(year FILLER VARCHAR(10),

 month FILLER VARCHAR(10),

 day FILLER VARCHAR(10),

 k AS TO_DATE(YEAR || MONTH || DAY, 'YYYYMMDD'))

 FROM STDIN NO COMMIT;

>> 2009|06|17

>> 1979|06|30

>> 2007|11|26

>> \.

=> SELECT * FROM t;

 k

-515-

 SQL Statements

 2009-06-17 00:00:00

 1979-06-30 00:00:00

 2007-11-26 00:00:00

(3 rows)

Specifying Parsing Options for a Column

First create a simple table.

=> CREATE TABLE t(

 pk INT,

 col1 VARCHAR(10),

 col2 VARCHAR(10),

 col3 VARCHAR(10),

 col4 TIMESTAMP);

Now use the COLUMN OPTION parameter to change the col1 default delimiter to a tilde (~).

=> COPY t COLUMN OPTION(col1 DELIMITER '~') FROM STDIN NO COMMIT;

>> 1|ee~gg|yy|1999-12-12

>> \.

=> SELECT * FROM t;

 pk | col1 | col2 | col3 | col4

----+------+------+------+---------------------

 1 | ee | gg | yy | 1999-12-12 00:00:00

(1 row)

See Also

LCOPY (page 604)

SQL Data Types (page 60)

ANALYZE_CONSTRAINTS (page 321)

Loading and Modifying Data in the Administrator's Guide

CREATE FUNCTION
Lets you store SQL expressions as functions in Vertica for use in queries. Called SQL Macros,
these functions are useful for executing complex queries or combining Vertica built-in functions.
You simply call the function name you assigned.

Syntax

CREATE [OR REPLACE] FUNCTION

... [schema-name.]function-name ([argname argtype [, ...]])

... RETURN rettype

... AS

... BEGIN

...... RETURN expression;

... END;

-516-

SQL Reference Manual

Parameters

[schema-name.] [Optional] Specifies the name of a schema.

function-name Specifies a name for the function (SQL Macro) to create. If
the function name is schema-qualified, the function is created
in the specified schema.

argname Specifies the name of the argument.

argtype Specifies the data type for argument that is passed to the
function. Argument types must match Vertica type names.
See SQL Data Types (page 60).

rettype Specifies the data type to be returned by the function.

RETURN expression; Specifies the SQL Macro (function body), which must be in
the form of ‗RETURN expression.‘ expression can contain
built-in functions, operators, and argument names specified

in the CREATE FUNCTION statement.

A semicolon at the end of the expression is required.

Note: Only one RETURN expression is allowed in the

CREATE FUNCTION definition. FROM, WHERE, GROUP BY,

ORDER BY, LIMIT, aggregation, analytics and meta function

are not allowed.

Notes

 A SQL Macro can be used anywhere in a query where an ordinary SQL expression can be
used, except in the table partition clause or the projection segmentation clause.

 SQL Macros are flattened in all cases, including DDL. See Flattening FROM Clause
Subqueries and Views in the Programmer's Guide.

 You can create views (page 578) on the queries that use SQL Macros and then query the
views. When you create a view, a SQL Macro replaces a call to the user-defined function with
the function body in a view definition. Therefore, when the body of the user-defined function is
replaced, the view should also be replaced.

 If you want to change the body of a SQL Macro, use the CREATE OR REPLACE syntax. The

command replaces the function with the new definition. If you change only the argument name
or argument type, the system maintains both versions under the same function name. See
Examples section below.

 If multiple SQL Macros with same name and argument type are in the search path, the first
match is used when the function is called.

 The strictness and volatility (stable, immutable, or volatile) of a SQL Macro are automatically
inferred from the function's definition. Vertica then performs constant folding optimization,
when possible, and determines the correctness of usage, such as where an immutable
function is expected but a volatile function is provided.

 You can return a list of all SQL Macro functions by querying the system table

V_CATALOG.USER_FUNCTIONS (page 683) and executing the vsql meta-command \df.

Users see only the functions on which they have EXECUTE privileges.

-517-

 SQL Statements

Permissions

 To create a SQL Macro, a user must have CREATE privileges on the schema.

 To use a SQL Macro the user must have USAGE privileges on the schema and EXECUTE
privileges on the defined function. See GRANT (Function) (page 596) and REVOKE
(Function) (page 607).

 Only the superuser or the SQL Macro owner can drop (page 582) or alter (page 477) a SQL
Macro.

Example

This example creates a SQL Macro called zeroifnull that accepts an INTEGER argument and

returns an INTEGER result.

=> CREATE FUNCTION zeroifnull(x INT) RETURN INT

 AS BEGIN

 RETURN (CASE WHEN (x IS NOT NULL) THEN x ELSE 0 END);

 END;

You can use the new SQL Macro (zeroifnull) any place where you can use an ordinary SQL

expression. For example, create a simple table:

=> CREATE TABLE tabwnulls(col1 INT);

=> INSERT INTO tabwnulls VALUES(1);

=> INSERT INTO tabwnulls VALUES(NULL);

=> INSERT INTO tabwnulls VALUES(0);

=> SELECT * FROM tabwnulls;

 a

 1

 0

(3 rows)

Use the zeroifnull function in a SELECT statement, where the function calls column a from

table tabwnulls:

=> SELECT zeroifnull(col1) FROM tabwnulls;

 zeroifnull

 1

 0

 0

(3 rows)

Use the zeroifnull function in the GROUP BY clause:

=> SELECT COUNT(*) FROM tabwnulls GROUP BY zeroifnull(col1); count

 2

 1

(2 rows)

If you want to change a SQL Macro's body, use the CREATE OR REPLACE syntax. The following

command modifies the CASE expression:

=> CREATE OR REPLACE FUNCTION zeroifnull(x INT) RETURN INT

-518-

SQL Reference Manual

 AS BEGIN

 RETURN (CASE WHEN (x IS NULL) THEN 0 ELSE x END);

 END;

To see how this information is stored in the Vertica catalog, see Viewing Information About SQL
Macros in the <SQL_PROGRAMMERS_GUIDE>.

See Also

ALTER FUNCTION (page 477)

DROP FUNCTION (page 582)

GRANT (Function) (page 596)

REVOKE (Function) (page 607)

V_CATALOG.USER_FUNCTIONS (page 683)

Using SQL Macros in the Programmer's Guide

CREATE PROCEDURE
Adds an external procedure to Vertica.

Syntax

CREATE PROCEDURE [schema-name.]procedure-name (

... [argname] argtype [,...]])

... AS 'exec-name'

... LANGUAGE language-name

... USER 'OS-user'

Parameters

[schema-name.] [Optional] Specifies the name of a schema.

procedure-name Specifies a name for the external procedure. If the procedure-name is
schema-qualified, the procedure is created in the specified schema.

argname Provides a cue to procedure callers.

argtype Specifies the data type for argument(s) that are passed to the
procedure. Argument types must match Vertica type names. See
SQL Data Types (page 60).

AS Specifies the executable program in the procedures directory.

LANGUAGE Specifies the language used, This parameter must be set to
EXTERNAL.

USER Specifies the user executed as. The user is the owner of the file. The
user cannot be root.

Note: The external program must allow execute privileges for this

user.

-519-

 SQL Statements

Notes

 A procedure file must be owned by the database administrator (OS account) or by a user in the
same group as the administrator. (The procedure file owner cannot be root.) The procedure file
must also have the set UID attribute enabled, and allow read and execute permission for the
group.

 Only the database superuser can create procedures.

 By default, only the database superuser can execute procedures. However, the superuser can
grant the right to execute procedures to other users. See GRANT (Procedure) (page 597).

Example

This example illustrates how to create a procedure named helloplanet for the helloplanet.sh
external procedure file. This file accepts one varchar argument.

Sample file:

#!/bin/bash

echo "hello planet argument: $1" >> /tmp/myprocedure.log

exit 0

Issue the following SQL to create the procedure:

CREATE PROCEDURE helloplanet(arg1 varchar) as 'helloplanet.sh' language

'external' USER 'release';

See Also

DROP PROCEDURE (page 583)

CREATE PROFILE
Creates a profile that controls password requirements for users. Only the database superuser can
create or alter a profile.

Syntax

CREATE PROFILE name LIMIT

... [PASSWORD_LIFE_TIME {life-limit | DEFAULT | UNLIMITED}]

... [PASSWORD_GRACE_TIME {grace_period | DEFAULT | UNLIMITED}]

... [FAILED_LOGIN_ATTEMPTS {login-limit | DEFAULT | UNLIMITED}]

... [PASSWORD_LOCK_TIME {lock-period | DEFAULT | UNLIMITED}]

... [PASSWORD_REUSE_MAX {reuse-limit | DEFAULT | UNLIMITED}]

... [PASSWORD_REUSE_TIME {reuse-period | DEFAULT | UNLIMITED}]

... [PASSWORD_MAX_LENGTH {max-length | DEFAULT | UNLIMITED}]

... [PASSWORD_MIN_LENGTH {min-length | DEFAULT | UNLIMITED}]

... [PASSWORD_MIN_LETTERS {min-letters | DEFAULT | UNLIMITED}]

... [PASSWORD_MIN_UPPERCASE_LETTERS {min-cap-letters | DEFAULT | UNLIMITED}]

... [PASSWORD_MIN_LOWERCASE_LETTERS {min-lower-letters | DEFAULT | UNLIMITED}]

... [PASSWORD_MIN_DIGITS {min-digits | DEFAULT | UNLIMITED}]

-520-

SQL Reference Manual

Note: For all parameters, the special DEFAULT value means that the parameter's value is
inherited from the DEFAULT profile. Any changes to the parameter in the DEFAULT profile is
reflected by all of the profiles that inherit that parameter. Any parameter not specified in the
CREATE PROFILE command is set to DEFAULT.

ParametersParameter Name Description Meaning of UNLIMITED value

name The name of the profile to create N/A

PASSWORD_LIFE_TIME life-limit Integer number of days a
password remains valid. After
the time elapses, the user must
change the password (or will be
warned that their password has
expired if
PASSWORD_GRACE_TIME is
set to a value other than zero or
UNLIMITED).

 Passwords never expire.

PASSWORD_GRACE_TIME

grace-period

Integer number of days the
users are allowed to login (while
being issued a warning
message) after their passwords
are older than the
PASSWORD_LIFE_TIME. After
this period expires, users are
forced to change their
passwords on login if they have
not done so after their password
expired.

No grace period (the same as
zero)

FAILED_LOGIN_ATTEMPTS

login-limit

The number of consecutive
failed login attempts that result
in a user's account being locked.

Accounts are never locked, no
matter how many failed login
attempts are made.

PASSWORD_LOCK_TIME lock-period Integer value setting the number
of days an account is locked
after the user's account was
locked by having too many failed
login attempts. After the
PASSWORD_LOCK_TIME has
expired, the account is
automatically unlocked.

Accounts locked because of too
many failed login attempts are
never automatically unlocked.
They must be manually
unlocked by the database
superuser.

PASSWORD_REUSE_MAX reuse-limit The number of password
changes that need to occur
before the current password can
be reused.

Users are not required to
change passwords a certain
number of times before reusing
an old password.

PASSWORD_REUSE_TIME

reuse-period

The integer number of days that
must pass after a password has
been set before the before it can
be reused.

Password reuse is not limited by
time.

PASSWORD_MAX_LENGTH max-length The maximum number of Passwords are limited to 100

-521-

 SQL Statements

characters allowed in a
password. Value must be in the
range of 8 to 100.

characters.

PASSWORD_MIN_LENGTH min-length The minimum number of
characters required in a
password. Valid range is 0 to

max-length.

Equal to max-length.

PASSWORD_MIN_LETTERS

min-of-letters

Minimum number of letters (a-z
and A-Z) that must be in a
password. Valid ranged is 0 to

max-length.

0 (no minimum).

PASSWORD_MIN_UPPERCASE_LETTERS

min-cap-letters

Minimum number of capital
letters (A-Z) that must be in a
password. Valid range is is 0 to

max-length.

0 (no minimum).

PASSWORD_MIN_LOWERCASE_LETTERS

min-lower-letters

Minimum number of lowercase
letters (a-z) that must be in a
password. Valid range is is 0 to

max-length.

0 (no minimum).

PASSWORD_MIN_DIGITS min-digits Minimum number of digits (0-9)
that must be in a password.
Valid range is is 0 to

max-length.

0 (no minimum).

PASSWORD_MIN_SYMBOLS

min-symbols

Minimum number of symbols
(any printable non-letter and
non-digit character, such as $, #,
@, and so on) that must be in a
password. Valid range is is 0 to

max-length.

0 (no minimum).

Note: Only the profile settings for how many failed login attempts trigger account locking and
how long accounts are locked have an effect on external password authentication methods
such as LDAP or Kerberos. All password complexity, reuse, and lifetime settings only have an
effect on passwords managed by Vertica.

-522-

SQL Reference Manual

CREATE PROJECTION
Creates metadata for a projection in the Vertica catalog.

Syntax

CREATE PROJECTION [schema-name.]projection-name (

... projection-column [ENCODING encoding-type (on page 526)]

... [ACCESSRANK integer] [, ...]

... [GROUPED(projection-column-reference [,...])])

AS SELECT table-column [, ...] FROM table-reference [, ...]

... [WHERE join-predicate (on page 54) [AND join-predicate] ...

... [ORDER BY table-column [, ...]]

... [hash-segmentation-clause (on page 528) | range-segmentation-clause (on page

529)

... | UNSEGMENTED { NODE node | ALL NODES }]

... [KSAFE [k-num]]

Parameters

[schema-name.] [Optional] Specifies the name of a schema.

projection-name Specifies the name of the projection to be created. If the
projection-name is schema-qualified, the projection is created in the
specified schema. Otherwise, the projection is created in the same
schema as the anchor table.

projection-column Specifies the name of a column in the projection. The data type is
inferred from the corresponding column in the schema table (based on
ordinal position).

If projection columns are not explicitly named, they are inferred from
the column names for the table specified in the SELECT statement.
The following example automatically uses store and transaction as the
projection column names for sales_p:

=> CREATE TABLE sales(store INTEGER, transaction INTEGER);

=> CREATE PROJECTION sales_p AS SELECT * FROM sales KSAFE 1;

Note that you cannot specify specific encodings on projection columns
using this method.

Different projection-column names can be used to distinguish multiple
columns of the same name from different tables so that no aliases are
needed.

ENCODING encoding-type [Optional] Specifies the type of encoding (see "encoding-type" on
page 526) to use on the column. By default, the encoding-type is auto.

Caution: Using the NONE keyword for strings could negatively affect

the behavior of string columns.

ACCESSRANK integer [Optional] Overrides the default access rank for a column. This
is useful if you want to increase or decrease the speed at which
a column is accessed. See Creating and Configuring Storage
Locations and Prioritizing Column Access Speed in the
Administrator's Guide.

-523-

 SQL Statements

GROUPED Groups two or more columns into a single disk file. This minimizes file
I/O for work loads that:

 Read a large percentage of the columns in a table.

 Perform single row look-ups.

 Query against many small columns.

 Frequently update data in these columns.

If you have data that is always accessed together and it is not used in
predicates, you can increase query performance by grouping these
columns. Once grouped, queries can no longer independently retrieve
from disk all records for an individual column independent of the other
columns within the group.

Note: RLE compression is reduced when a RLE column is
grouped with one or more non-RLE columns.

When grouping columns you can:

 Group some of the columns:

 (a, GROUPED(b, c), d)

 Group all of the columns:

 (GROUPED(a, b, c, d))

 Create multiple groupings in the same projection:

 (GROUPED(a, b), GROUPED(c, d))

Note: Vertica performs dynamic column-grouping. For example, to

provide better read and write efficiency for small loads, Vertica ignores
any projection-defined column grouping (or lack thereof) and groups all
columns together by default.

SELECT table-column Specifies a list of schema table columns corresponding (in ordinal
position) to the projection columns.

table-reference Specifies a list of schema tables containing the columns to include in
the projection in the form:

table-name [AS] alias [(column-alias

[, ...])] [, ...]]

WHERE join-predicate Specifies foreign-key = primary-key equijoins between the fact table
and dimension tables. Foreign key columns must be NOT NULL. No
other predicates are allowed.

ORDER BY table-column [Optional] Specifies which columns to sort. Because all projection
columns are sorted in ascending order in physical storage, CREATE
PROJECTION does not allow you to specify ascending or descending.

Note: If you do not specify the sort order, Vertica uses the order in

which columns are specified in the column list as the sort order for the
projection.

hash-segmentation-clause [Optional] Allows you to segment a projection based on a built-in hash
function that provides even distribution of data across nodes, resulting
in optimal query execution. See hash-segmentation-clause (on page
528).

range-segmentation-clause [Optional] Allows you to segment a projection based on a known range
of values stored in a specific column chosen to provide even

-524-

SQL Reference Manual

distribution of data across a set of nodes, resulting in optimal query
execution. See range-segmentation-clause (on page 529).

UNSEGMENTED

{ NODE node | ALL NODES }

[Optional] Allows you to specify that the projection be unsegmented, as
follows:

 NODE node—Creates the unsegmented projection on the
specified node only. Dimension table projections must be
UNSEGMENTED.

 ALL NODES—Creates a separate unsegmented projection on
each node (automatic replication). To perform distributed
query execution, Vertica requires an exact, unsegmented
copy of each dimension table superprojection on each node.

KSAFE [k-num] Specifies the K-Safety level of the projection. This integer determines
how many replicated or segmented buddy projections are created.

The value must be greater than or equal to the current K-Safety level of
the database and less than the total number of nodes. If KSAFE or its
value are not specified, the projection might not be K-Safe.

This example creates a superprojection for a database with a K-Safety
of one (1):

K-SAFE 1

Note: KSAFE cannot be used with range segmentation.

Unsegmented Projection Naming

CREATE PROJECTION ... UNSEGMENTED takes a snapshot of the nodes defined at execution time

to generate a node list in a predictable order. Thus, replicated projections have the name:

projection-name_node-name

For example, if the nodes are named NODE01, NODE02, and NODE03 then the following

command creates projections named ABC_NODE01, ABC_NODE02, and ABC_NODE03:

=> CREATE PROJECTION ABC ... UNSEGMENTED ALL NODES;

This naming convention could affect functions that provide information about projections, for
example, GET_PROJECTIONS (page 358) or GET_PROJECTION_STATUS (page 357), where

you must provide the name ABC_NODE01 instead of just ABC. To view a list of the nodes in a

database, use the View Database command in the Administration Tools.

Notes

 If there is a naming conflict with existing catalog objects (projections), the CREATE
PROJECTION statement fails.

 Vertica recommends that you use multiple projection syntax for K-safe clusters.

 CREATE PROJECTION does not load data into physical storage. If the tables over which the
projection is defined already contain data you must issue START_REFRESH (page 394) to
bring the projection up-to-date. This process could take a long time, depending on how much
data is in the tables. Once a projection is up-to-date, it is updated as part of INSERT, UPDATE,
DELETE or COPY statements.

 If no segmentation is specified, the default is UNSEGMENTED on the node where the
CREATE PROJECTION was run.

-525-

 SQL Statements

 A projection is not refreshed until after a buddy projection is created. After the CREATE

PROJECTION is run, if you run SELECT START_REFRESH() the following message displays:

Starting refresh background process

However, the refresh does not begin until after a buddy projection is created. You can monitor

the refresh operation by examining the vertica.log file or view the final status of the

projection refresh by using SELECT get_projections('table-name;). For example:

=> SELECT get_projections('customer_dimension'); get_projections

--

Current system K is 1.

of Nodes: 4.

Table public.customer_dimension has 4 projections.

Projection Name: [Segmented] [Seg Cols] [# of Buddies] [Buddy

Projections] [Safe] [UptoDate]

--

public.customer_dimension_node0004 [Segmented: No] [Seg Cols:] [K: 3]

[public.customer_dimension_node0003,

public.customer_dimension_node0002,

public.customer_dimension_node0001] [Safe: Yes] [UptoDate:

Yes][Stats: Yes]

public.customer_dimension_node0003 [Segmented: No] [Seg Cols:] [K: 3]

[public.customer_dimension_node0004,

public.customer_dimension_node0002,

public.customer_dimension_node0001] [Safe: Yes] [UptoDate:

Yes][Stats: Yes]

public.customer_dimension_node0002 [Segmented: No] [Seg Cols:] [K: 3]

[public.customer_dimension_node0004,

public.customer_dimension_node0003,

public.customer_dimension_node0001] [Safe: Yes] [UptoDate:

Yes][Stats: Yes]

public.customer_dimension_node0001 [Segmented: No] [Seg Cols:] [K: 3]

[public.customer_dimension_node0004,

public.customer_dimension_node0003,

public.customer_dimension_node0002] [Safe: Yes] [UptoDate:

Yes][Stats: Yes]

(1 row)

Vertica internal operations (mergeout, refresh, and recovery) maintain partition separation except
in certain cases:

 Recovery of a projection when the buddy projection from which the partition is recovering is
identically sorted. If the projection is undergoing a full rebuild, it is recovered one ROS
container at a time. The projection ends up with a storage layout identical to its buddy and is,
therefore, properly segmented.

Note: In the case of a partial rebuild, all recovered data goes into a single ROS container and
must be partitioned manually.

 Manual tuple mover operations often output a single storage container, combining any existing

partitions; for example, after executing any of the PURGE() operations.

-526-

SQL Reference Manual

Example

The following example groups the highly correlated columns bid and ask. However, the stock
column is stored separately.

=> CREATE TABLE trades (stock CHAR(5), bid INT, ask INT);

=> CREATE PROJECTION tradeproj (stock ENCODING RLE, GROUPED(bid ENCODING DELTAVAL,

ask))

 AS (SELECT * FROM trades) KSAFE 1;

encoding-type

Vertica supports the following encoding and compression types:

ENCODING AUTO (default)

For CHAR/VARCHAR, BOOLEAN, BINARY/VARBINARY, and FLOAT columns,
Lempel-Ziv-Oberhumer-based (LZO) compression is used. For INTEGER,
DATE/TIME/TIMESTAMP, and INTERVAL types, the compression scheme is based on the delta
between consecutive column values.

Encoding Auto is ideal for sorted, many-valued columns such as primary keys. It is also suitable
for general purpose applications for which no other encoding or compression scheme is
applicable. Therefore, it serves as the default if no encoding/compression is specified.

The CPU requirements for this type are relatively small. In the worst case, data might expand by
eight percent (8%) for LZO and twenty percent (20%) for integer data.

ENCODING DELTAVAL

For INTEGER and DATE/TIME/TIMESTAMP/INTERVAL columns, data is recorded as a
difference from the smallest value in the data block. This encoding has no effect on other data
types.

Encoding Deltaval is best used for many-valued, unsorted integer or integer-based columns. The
CPU requirements for this type are small, and the data never expands.

ENCODING RLE

Run Length Encoding (RLE) replaces sequences (runs) of identical values with a single pair that
contains the value and number of occurrences. Therefore, it is best used for low cardinality
columns that are present in the ORDER BY clause of a projection.

The Vertica execution engine processes RLE encoding run-by-run and the Vertica optimizer gives
it preference. Use it only when the run length is large, such as when low-cardinality columns are
sorted.

The storage for RLE and AUTO encoding of CHAR/VARCHAR and BINARY/VARBINARY is
always the same.

-527-

 SQL Statements

ENCODING BLOCK_DICT

For each block of storage, Vertica compiles distinct column values into a dictionary and then
stores the dictionary and a list of indexes to represent the data block.

BLOCK_DICT is ideal for few-valued, unsorted columns in which saving space is more important
than encoding speed. Certain kinds of data, such as stock prices, are typically few-valued within a
localized area once the data is sorted, such as by stock symbol and timestamp, and are good
candidates for BLOCK_DICT. Long CHAR/VARCHAR columns are not good candidates for
BLOCK_DICT encoding.

CHAR and VARCHAR columns that contain 0x00 or 0xFF characters should not be encoded with
BLOCK_DICT. Also, BINARY/VARBINARY columns do not support BLOCK_DICT encoding.

The encoding CPU for BLOCK_DICT is significantly higher than for default encoding schemes.
The maximum data expansion is eight percent (8%).

ENCODING BLOCKDICT_COMP

This encoding type is similar to BLOCK_DICT except that dictionary indexes are entropy coded.
This encoding type requires significantly more CPU time to encode and decode and has a poorer
worst-case performance. However, use of this type can lead to space savings if the distribution of
values is extremely skewed.

ENCODING DELTARANGE_COMP

This compression scheme is primarily used for floating point data, and it stores each value as a
delta from the previous one.

This scheme is ideal for many-valued FLOAT columns that are either sorted or confined to a
range. Do not use this scheme for unsorted columns that contain NULL values, as the storage cost
for representing a NULL value is high. This scheme has a high cost for both compression and
decompression.

To determine if DELTARANGE_COMP is suitable for a particular set of data, compare it to other
schemes. Be sure to use the same sort order as the projection, and select sample data that will be
stored consecutively in the database.

ENCODING COMMONDELTA_COMP

This compression scheme builds a dictionary of all the deltas in the block and then stores indexes
into the delta dictionary using entropy coding.

This scheme is ideal for sorted FLOAT and INTEGER-based
(DATE/TIME/TIMESTAMP/INTERVAL) data columns with predictable sequences and only the
occasional sequence breaks, such as timestamps recorded at periodic intervals or primary keys.
For example, the following sequence compresses well: 300, 600, 900, 1200, 1500, 600, 1200,
1800, 2400. The following sequence does not compress well: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55.

If the delta distribution is excellent, columns can be sorted in less than one bit per row. However,
this scheme is very CPU intensive. If you use this scheme on data with arbitrary deltas, it can lead
to significant data expansion.

-528-

SQL Reference Manual

ENCODING NONE

Do not specify this value. It is obsolete and exists only for backwards compatibility. The result of
ENCODING NONE is the same as ENCODING AUTO except when applied to CHAR and
VARCHAR columns. Using ENCODING NONE on these columns increases space usage,
increases processing time, and leads to problems if 0x00 or 0xFF characters are present in the
data.

hash-segmentation-clause

Allows you to segment a projection based on a built-in hash function that provides even
distribution of data across some or all of the nodes in a cluster, resulting in optimal query
execution.

Note: Hash segmentation is the preferred method of segmentation. The Database Designer
uses hash segmentation by default.

Syntax

SEGMENTED BY expression

 [ALL NODES [OFFSET offset] | NODES node [,...]]

Parameters

SEGMENTED BY expression Can be a general SQL expression, but there is no reason to use anything
other than the built-in HASH (page 236) or MODULARHASH (page 239)
functions with table columns as arguments.

Choose columns that have a large number of unique data values and
acceptable skew in their data distribution. Primary key columns that meet
the criteria could be an excellent choice for hash segmentation.

ALL NODES Automatically distributes the data evenly across all nodes at the time the

CREATE PROJECTION statement is run. The ordering of the nodes is fixed.

OFFSET offset Is an integer that specifies the node within the ordered sequence on which
to start the segmentation distribution, relative to 0. See example below.

NODES node [,...] Specifies a subset of the nodes in the cluster over which to distribute the
data. You can use a specific node only once in any projection. For a list of
the nodes in a database, use the View Database command in the
Administration Tools.

Notes

 Omitting an OFFSET clause is equivalent to OFFSET 0.

 CREATE PROJECTION accepts the deprecated syntax SITES node for compatibility with

previous releases.

 Table column names must be used in the expression, not the new projection column names

 If you want to use a different SEGMENTED BY expression, the following restrictions apply:

 All leaf expressions must be either constants or column-references (see "Column
References" on page 45) to a column in the SELECT list of the CREATE PROJECTION
command.

-529-

 SQL Statements

 Aggregate functions are not allowed.

 The expression must return the same value over the life of the database.

 The expression must return non-negative INTEGER values in the range 0 <= x < 263 (two to
the sixty-third power or 2^63), and values are generally distributed uniformly over that
range.

 If expression produces a value outside the expected range (a negative value for example),
no error occurs, and the row is added to the first segment of the projection.

Examples

=> CREATE PROJECTION ... SEGMENTED BY HASH(C1,C2) ALL NODES;

=> CREATE PROJECTION ... SEGMENTED BY HASH(C1,C2) ALL NODES OFFSET 1;

The example produces two hash-segmented buddy projections that form part of a K-Safe design.
The projections can use different sort orders.

=> CREATE PROJECTION fact_ts_2 (

 f_price,

 f_cid,

 f_tid,

 f_cost,

 f_date) AS (

 SELECT price, cid, tid, cost, dwdate FROM fact)

SEGMENTED BY ModularHash(dwdate) ALL NODES OFFSET 2;

See Also

HASH (page 236) and MODULARHASH (page 239)

range-segmentation-clause

Allows you to segment a projection based on a known range of values stored in a specific column
chosen to provide even distribution of data across a set of nodes, resulting in optimal query
execution.

Note: Vertica Systems, Inc. recommends that you use hash segmentation, instead of range
segmentation.

Syntax

SEGMENTED BY expression

 NODE node VALUES LESS THAN value

 ...

 NODE node VALUES LESS THAN MAXVALUE

Parameters (Range Segmentation)

SEGMENTED BY expression Is a single column reference (see "Column References" on page 45) to a
column in the SELECT list of the CREATE PROJECTION statement.
Choose a column that has:

 INTEGER or FLOAT data type

 A known range of data values

 An even distribution of data values

 A large number of unique data values

-530-

SQL Reference Manual

Avoid columns that:

 Are foreign keys

 Are used in query predicates

 Have a date/time data type

 Have correlations with other columns due to functional
dependencies.

Note: Segmenting on DATE/TIME data types is valid but guaranteed to

produce temporal skew in the data distribution and is not recommended. If
you choose this option, do not use TIME or TIMETZ because their range is
only 24 hours.

NODE node Is a symbolic name for a node. You can use a specific node only once in any

projection. For a list of the nodes in a database, use SELECT * FROM

NODE_RESOURCES.

VALUES LESS THAN value Specifies that this segment can contain a range of data values less than the
specified value, except that segments cannot overlap. In other words, the
minimum value of the range is determined by the value of the previous
segment (if any).

MAXVALUE Specifies a sub-range with no upper limit. In other words, it represents a
value greater than the maximum value that can exist in the data. The
maximum value depends on the data type of the segmentation column.

Notes

 The SEGMENTED BY expression syntax allows a general SQL expression but there is no

reason to use anything other than a single column reference (see "Column References" on
page 45) for range segmentation. If you want to use a different expression, the following
restrictions apply:

 All leaf expressions must be either constants or column-references (see "Column
References" on page 45) to a column in the SELECT list of the CREATE PROJECTION
command

 Aggregate functions are not allowed

 The expression must return the same value over the life of the database.

 During INSERT or COPY to a segmented projection, if expression produces a value outside
the expected range (a negative value for example), no error occurs, and the row is added to a
segment of the projection.

 CREATE PROJECTION with range segmentation accepts the deprecated syntax SITE node

for compatibility with previous releases.

 CREATE PROJECTION with range segmentation allows the SEGMENTED BY expression to be

a single column-reference to a column in the projection-column list for compatibility with
previous releases. This syntax is considered to be a deprecated feature and causes a warning
message. See DEPRECATED syntax in the Troubleshooting Guide.

See Also

NODE_RESOURCES (page 714)

-531-

 SQL Statements

CREATE RESOURCE POOL
Creates a resource pool.

Syntax

CREATE RESOURCE POOL pool-name MEMORYSIZE 'sizeUnits'

... [MAXMEMORYSIZE 'sizeUnits' | NONE]

... [PRIORITY n]

... [QUEUETIMEOUT n | NONE]

... [PLANNEDCONCURRENCY n]

... [SINGLEINITIATOR bool]

... [MAXCONCURRENCY n | NONE]

Parameters

pool-name Specifies the name of the resource pool to create.

MEMORYSIZE 'sizeUnits' [Default 0%] Amount of memory allocated to the resource pool.
See also MAXMEMORYSIZE parameter.

Units can be one of the following:

 % percentage of total memory available to the
Resource Manager. (In this case, size must be 0-100.).

 K Kilobytes

 M Megabytes

 G Gigabytes

 T Terabytes

Note: This parameter refers to memory allocated to this pool

per node and not across the whole cluster.

The default of 0% means that the pool has no memory allocated

to it and must exclusively borrow from the GENERAL pool.

MAXMEMORYSIZE

'sizeUnits' | NONE

[Default unlimited] Maximum size the resource pool could grow

by borrowing memory from the GENERAL pool. See Built-in

Pools (page 534) for a discussion on how resource pools

interact with the GENERAL pool.

Units can be one of the following:

 % percentage of total memory available to the
Resource Manager. (In this case, size must be 0-100).

This notation has special meaning for the GENERAL

pool, described in Notes below.

 K Kilobytes

 M Megabytes

 G Gigabytes

 T Terabytes

If MAXMEMORYSIZE NONE is specified, there is no upper limit.

Notes:

The MAXMEMORYSIZE parameter refers to the maximum

-532-

SQL Reference Manual

memory borrowed by this pool per node and not across the
whole cluster.

The default of unlimited means that the pool can borrow as

much memory from GENERAL pool as is available.

When set as a percentage (%) value,

GENERAL.MAXMEMORYSIZE governs the total amount of RAM

that the Resource Manager can use for queries, regardless of
whether the parameter is set to a percent or to a specific value
(for example, '10G'). The default setting is 95%.

PRIORITY [Default 0] An integer that represents priority of queries in this

pool, when they compete for resources in the GENERAL pool.

Higher numbers denote higher priority.

QUEUETIMEOUT [Default 300 seconds] An integer, in seconds, that represents
the maximum amount of time the request is allowed to wait for
resources to become available before being rejected. If set to

NONE, the request can be queued for an unlimited amount of

time.

PLANNEDCONCURRENCY [Default: Max (4, Min (total available memory / 2GB, #cores))
]

An integer that represents number of concurrent queries that
are normally expected to be running against the resource pool.
This is not a hard limit and is used when apportioning memory
in the pool to various requests.

Notes:

 This is a cluster-wide maximum and not a per-node
limit.

 If you created or upgraded your database in 4.0 or 4.1,

the PLANNEDCONCURRENCY setting on the GENERAL

pool defaults to a too-small value for machines with
large numbers of cores. To adjust to a more
appropriate value:

 => ALTER RESOURCE POOL general

PLANNEDCONCURRENCY

 <#cores>;

 You only need to set this parameter if you created a
database before 4.1, patchset 1.

SINGLEINITIATOR [Default false] A boolean that indicates whether all requests
using this pool are issued against the same initiator node or
whether multiple initiator nodes can be used; for instance in a
round-robin configuration.

Note: Vertica recommends that you distribute requests evenly

across all nodes and leave this parameter unchanged.

MAXCONCURRENCY [Default unlimited] An integer that represents the maximum
number of concurrent execution slots available to the resource

pool. If MAXCONCURRENCY NONE is specified, there is no limit.

Note: This is a cluster-wide maximum and not a per-node limit.

-533-

 SQL Statements

Notes

 Resource pool names are subject to the same rules as Vertica identifiers (page 15). Built-in
pool (page 534) names cannot be used for user-defined pools.

 New resource pools can be created or altered without shutting down the system.

 When a new pool is created (or its size altered), MEMORYSIZE amount of memory is taken out

of the GENERAL pool (page 534). If the GENERAL pool does not currently have sufficient

memory to create the pool due to existing queries being processed, a request is made to the
system to create a pool as soon as resources become available. The pool is created
immediately and memory is moved to the pool as it becomes available. Such memory
movement has higher priority than any query.

The pool is in operation as soon as the specified amount of memory becomes available. You
can monitor whether the ALTER has been completed in the

V_MONITOR.RESOURCE_POOL_STATUS (page 676) system table.

 Under normal operation, MEMORYSIZE is required to be less than MAXMEMORYSIZE and an

error is returned during CREATE/ALTER operations if this size limit is violated. However,
under some circumstances where the node specification changes by addition/removal of
memory, or if the database is moved to a different cluster, this invariant could be violated. In

this case, MAXMEMORYSIZE is increased to MEMORYSIZE.

 If two pools have the same PRIORITY, their requests are allowed to borrow from the GENERAL

pool in order of arrival.

See Guidelines for Setting Pool Parameters in the Administrator's Guide for details about setting
these parameters.

Example

The following command creates a resource pool with MEMORYSIZE of 110MB to ensure that the

CEO query has adequate memory reserved for it:

=> CREATE RESOURCE POOL ceo_pool MEMORYSIZE '110M' PRIORITY 10;

\pset expanded

Expanded display is on.

SELECT * FROM resource_pools WHERE name = 'ceo_pool';

-[RECORD 1]-------+-------------

name | ceo_pool

is_internal | f

memorysize | 110M

maxmemorysize |

priority | 10

queuetimeout | 300

plannedconcurrency | 4

maxconcurrency |

singleinitiator | f

Assuming the CEO report user already exists, associate this user with the above resource pool

using ALTER USER statement.

=> ALTER USER ceo_user RESOURCE POOL ceo_pool;

Issue the following command to confirm that the ceo_user is associated with the ceo_pool:

-534-

SQL Reference Manual

=> SELECT * FROM users WHERE user_name ='ceo_user';

-[RECORD 1]-+------------------

user_id | 45035996273713548

user_name | ceo_user

is_super_user | f

resource_pool | ceo_pool

memory_cap_kb | unlimited

See Also

ALTER RESOURCE POOL (page 481)

CREATE USER (page 576)

DROP RESOURCE POOL (page 586)

SET SESSION RESOURCE POOL (page 643)

SET SESSION MEMORYCAP (page 642)

Managing Workloads in the Administrator's Guide

Built-in Pools

Vertica is preconfigured to have several built-in pools for various system tasks. The built-in pools
can be reconfigured to suit your usage. The following sections describe the purpose of built-in
pools and the default settings.

Built-in Pool Settings

GENERAL A special, catch-all pool used to answer requests that have no specific resource pool
associated with them. Any memory left over after memory has been allocated to all

other pools is automatically allocated to the GENERAL pool. The MEMORYSIZE

parameter of the GENERAL pool is undefined (variable), however, the GENERAL pool

must be at least 1GB in size and cannot be smaller than 25% of the memory in the
system.

The MAXMEMORYSIZE parameter of the GENERAL pool has special meaning; when set

as a % value it represents the percent of total physical RAM on the machine that the
Resource Manager can use for queries. By default it is set to 95%. The

GENERAL.MAXMEMORYSIZE governs the total amount of RAM that the Resource

Manager can use for queries, regardless of whether it is set to a percent or to a specific
value (for example, '10GB')

Any user-defined pool can ―borrow‖ memory from the GENERAL pool to satisfy requests

that need extra memory until the MAXMEMORYSIZE parameter of that pool is reached. If

the pool is configured to have MEMORYSIZE equal to MAXMEMORYSIZE it cannot

borrow any memory from the GENERAL pool and is said to be a standalone resource

pool. When multiple pools request memory from the GENERAL pool, they are granted

access to general pool memory according to their priority setting. In this manner, the

GENERAL pool provides some elasticity to account for point-in-time deviations from

normal usage of individual resource pools.

SYSQUERY Is used to answer queries against system monitoring and catalog tables (page 660).

SYSDATA Is used to reserve memory for results of queries against system monitoring and

-535-

 SQL Statements

catalog tables (page 660).

WOSDATA Is used by the Write Optimized Store (WOS). Loads to the WOS automatically spill to
the ROS once they exceed a certain amount of WOS usage; the

PLANNEDCONCURRENCY parameter of the WOS is used to determine this spill

threshold. For instance, if PLANNEDCONCURRENCY of the WOSDATA pool is set to 4,

then a load spills to the ROS once it has occupied one quarter of the WOS.

See Scenario: Tuning for Continuous Load and Query in the Administrator's Guide.

TM Is memory used by the Tuple Mover(TM). The MAXCONCURRENCY parameter can be

used to allow more than one concurrent TM operation to occur at the same time.

See Scenario: Tuning Tuple Mover Pool Settings in the Administrator's Guide.

RECOVERY Is used by queries issued when recovering another node of the database. The

MAXCONCURRENCY parameter is used to determine how many concurrent recovery

threads to use. The PLANNEDCONCURRENCY parameter (by default set to twice the

MAXCONCURRENCY) can be used to tune how to apportion memory to the recovery

queries.

See Scenario: Tuning for Recovery in the Administrator's Guide.

REFRESH Is used by queries issued by the PROJECTION_REFRESHES (page 717) operations.
Refresh currently does not use multiple concurrent threads; thus, changes to the

MAXCONCURRENCY values have no effect.

See Scenario: Tuning for Refresh in the Administrator's Guide.

DBD Is used by the Database Designer to control resource usage by its internal processing.

This pool is configured to have a QUEUETIMEOUT of 0 seconds. This is done because

the Database Designer is a resource intensive process, and in a system under severe
memory pressure, the Database Designer excuses itself from running (instead of being
queued and adding to the existing contention) and notifies the user to run it when the
system is quieter. Vertica recommends that you do not reconfigure this pool.

Upgrade from Vertica 3.5

For a database being upgraded from 3.5, Vertica automatically translates most existing parameter
values into the new resource pool settings.

Note: The following 3.5 parameters are not automatically translated to new settings in 4.0:

QueriesPerNode, TotalQueries, InitiationTokensPerQuery,

InitiationTokensPerLoad, LocalInitiationTokens, and

LocalSysInitiationTokens.

The PLANNEDCONCURRENCY and MAXCONCURRENCY parameters of the resource pools must be

manually tuned per Guidelines for Setting Pool Parameters in the Administrator's Guide. On first
database startup after an upgrade to 4.0, if Vertica detects that any of the above parameters have
been changed from their defaults in 3.5, it returns the following notifications, indicating that these
parameters must be tuned manually:

 Due to significant changes in resource management and query execution, the configuration

settings QueriesPerNode, TotalQueries, LoadsPerNode, and TotalLoads have been

deprecated. See Workload Management in the Administrator's Guide for advice on resource
tuning.

-536-

SQL Reference Manual

 Due to significant changes in resource management, the configuration settings

InitiationTokensPerQuery, InitiationTokensPerLoad,

LocalInitiationTokens, LocalSysInitiationTokens have been deprecated. See

Workload Management in the Administrator's Guide for advice on limiting the number of
concurrent queries.

Built-in Pool Configuration

The following tables show the default values of the configuration settings for the built-in pools for a
new database and for a database upgraded from 3.5.

Note: Some of the parameter values of built-in pools have special restrictions, which are noted
in the tables.

GENERAL

Setting Value

MEMORYSIZE N/A (cannot be set)

MAXMEMORYSIZE Default: 95% of Total RAM on the node.

3.5 upgrade: Set as a % value based on MaxResourceUsagePct

parameter.

Restrictions:

 Cannot be less than 1GB.

 Cannot be less than 25% of RAM.

 Setting to 100% generates warnings that swapping could result.

PRIORITY 0

QUEUETIMEOUT 300

3.5 Upgrade: Resource Timeout parameter

PLANNEDCONCURRENCY Min(2*#cores,TotalLoads) if TotalLoads is set, otherwise Min(2*#cores,
#nodes * LoadsPerNode)

3.5 Upgrade: Max (default above, LPN+2) where LPN is the

LoadsPerNode parameter if set or TotalLoads/# nodes if set.

Notes:

 QueriesPerNode or TotalQueries are not used in the default

calculation. See Best Practices For Workload Management in the
Administrator's Guide for guidance on how to tune.

 The PLANNEDCONCURRENCY setting on the GENERAL pool

defaults to a too-small value for machines with large numbers of
cores. To adjust to a more appropriate value:

 => ALTER RESOURCE POOL general PLANNEDCONCURRENCY

<#cores>;

See Guidelines for Setting Pool Parameters in the Administrator's Guide

MAXCONCURRENCY Unlimited

-537-

 SQL Statements

Restrictions: Setting to 0 generates warnings that no system queries may
be able to run in the system.

SINGLEINITIATOR False

SYSQUERY

Setting Value

MEMORYSIZE 64M

3.5 Upgrade: SysWOSSizeMB

Restrictions: Setting to <20M generates warnings because it could prevent
system queries from running and make problem diagnosis difficult.

MAXMEMORYSIZE Unlimited

PRIORITY 20

QUEUETIMEOUT 300

3.5 Upgrade: Resource Timeout parameter

PLANNEDCONCURRENCY See GENERAL

MAXCONCURRENCY Unlimited

Restrictions: Setting to 0 generates warnings that no system queries may be
able to run in the system.

SINGLEINITIATOR False

SYSDATA

Setting Value

MEMORYSIZE 100m

3.5 Upgrade: Sysmemsizemb

MAXMEMORYSIZE 10%

Restriction: Setting To <4m generates warnings that no system queries may
be able to run in the system.

PRIORITY N/A (cannot be set)

QUEUETIMEOUT N/A (cannot be set)

PLANNEDCONCURRENCY N/A (cannot be set)

MAXCONCURRENCY N/A (cannot be set)

SINGLEINITIATOR N/A (cannot be set)

WOSDATA

Setting Value

MEMORYSIZE 0%

-538-

SQL Reference Manual

3.5 Upgrade: If ReserveWOSMemory is set, then MaxWOSMemPct, else 0%

MAXMEMORYSIZE 25% or 2GB, whichever is less. (25% for databases created before 4.1
Patchset 1.)

3.5 Upgrade: MaxWOSMemPct

PRIORITY N/A (cannot be set)

QUEUETIMEOUT N/A (cannot be set)

PLANNEDCONCURRENCY 2*#nodes

3.5 Upgrade: TotalLoads, if set or LoadsPerNode*#nodes

MAXCONCURRENCY N/A (cannot be set)

SINGLEINITIATOR N/A (cannot be set)

TM

Setting Value

MEMORYSIZE 100M

MAXMEMORYSIZE Unlimited

PRIORITY 10

QUEUETIMEOUT 300

3.5 Upgrade: Resource Timeout parameter

PLANNEDCONCURRENCY 1

MAXCONCURRENCY 2

Restrictions: Cannot set to 0 or NONE(unlimited)

SINGLEINITIATOR True

REFRESH

Setting Value

MEMORYSIZE 0%

MAXMEMORYSIZE Unlimited

PRIORITY -10

QUEUETIMEOUT 300

3.5 Upgrade: Resource Timeout parameter

PLANNEDCONCURRENCY 4

MAXCONCURRENCY Unlimited

Restrictions: cannot set to 0

SINGLEINITIATOR True

-539-

 SQL Statements

RECOVERY

Setting Value

MEMORYSIZE 0%

MAXMEMORYSIZE Unlimited

Restrictions: Cannot set to < 25%.

PRIORITY 15

QUEUETIMEOUT 300

3.5 Upgrade: Resource Timeout parameter

PLANNEDCONCURRENCY Twice MAXCONCURRENCY

MAXCONCURRENCY (# of cores / 2) + 1

3.5 Upgrade: RecoverThreadCount

Restrictions: Cannot set to 0 or NONE (unlimited)

SINGLEINITIATOR True

DBD

Setting Value

MEMORYSIZE 0%

MAXMEMORYSIZE Unlimited

PRIORITY 0

QUEUETIMEOUT 0

PLANNEDCONCURRENCY See GENERAL

MAXCONCURRENCY Unlimited

SINGLEINITIATOR False

CREATE SCHEMA
Defines a new schema.

Syntax

CREATE SCHEMA schemaname [AUTHORIZATION user-name]

-540-

SQL Reference Manual

Parameters

schemaname Specifies the name of the schema to create. The schema name must
be distinct from all other schemas within the database. If the schema
name is not provided, the user name is used as the schema name.

AUTHORIZATION user-name Assigns ownership of the schema to a user. If a user name is not
provided, the user who creates the schema is assigned ownership.
Only a Superuser is allowed to create a schema that is owned by a
different user.

Notes

 To create a schema, the user must either be a superuser or have CREATE privilege for the
database. See GRANT (Database) (page 595).

 Optionally, CREATE SCHEMA could include the following sub-statements to create tables
within the schema:

 CREATE TABLE (page 546)

 GRANT

 With the following exceptions, these sub-statements are treated as if they have been entered
as individual commands after the CREATE SCHEMA statement has completed:

 If the AUTHORIZATION statement is used, all tables are owned by the specified user.

 The CREATE SCHEMA statement and all its associated sub-statements are completed as
one transaction. If any of the statements fail, the entire CREATE SCHEMA statement is
rolled back.

Examples

The following example creates a schema named s1 with no objects.

=> CREATE SCHEMA s1;

The following series of commands create a schema named s1 with a table named t1 and grants

Fred and Aniket access to all existing tables and ALL privileges on table t1:

=> CREATE SCHEMA s1;

=> CREATE TABLE t1 (c INT);

=> GRANT USAGE ON SCHEMA s1 TO Fred, Aniket;

=> GRANT ALL ON TABLE t1 TO Fred, Aniket;

See Also

ALTER SCHEMA (page 484)

SET SEARCH_PATH (page 639)

DROP SCHEMA (page 586)

CREATE SEQUENCE
Defines a new sequence number generator.

-541-

 SQL Statements

Syntax

CREATE SEQUENCE [schema-name.]sequence_name

... [INCREMENT [BY] increment]

... [MINVALUE minvalue | NO MINVALUE]

... [MAXVALUE maxvalue | NO MAXVALUE]

... [START [WITH] start]

... [CACHE cache]

... [CYCLE | NO CYCLE]

Parameters

sequence_name The name (optionally schema-qualified) of the sequence to be created. The
name must be unique among sequences, tables, projections, and views.

increment Specifies which value is added to the current sequence value to create a
new value. A positive value makes an ascending sequence; a negative
value makes a descending sequence. The default value is 1.

minvalue | NO MINVALUE Determines the minimum value a sequence can generate. If this clause is
not supplied or NO MINVALUE is specified, then defaults are used. The
defaults are 1 and -263-1 for ascending and descending sequences,
respectively.

maxvalue | NO MAXVALUE Determines the maximum value for the sequence. If this clause is not
supplied or NO MAXVALUE is specified, then default values are used. The
defaults are 263-1 and -1 for ascending and descending sequences,
respectively.

start Allows the sequence to begin anywhere. The default starting value is
minvalue for ascending sequences and maxvalue for descending
sequences.

cache Specifies how many sequence numbers are pre-allocated and stored in
memory for faster access. The default is 250,000 with a minimum value is 1
(only one value can be generated at a time, for example, no cache).

Notes:

 When the CACHE clause is specified, each session has its own
cache on each Vertica node.

 Sequences that specify a small cache size could cause a
performance degradation.

CYCLE | NO CYCLE Allows the sequence to wrap around when the maxvalue or minvalue is
reached by an ascending or descending sequence, respectively. If the limit
is reached, the next number generated is the minvalue or maxvalue,

respectively. If NO CYCLE is specified, any calls to NEXTVAL (page 254)

after the sequence has reached its maximum/minimum value return an
error. NO CYCLE is the default.

 Notes

 Consider using sequences or auto-incrementing columns for primary key columns, which
guarantees uniqueness and avoids the constraint enforcement problem and associated
overhead. For more information see Using Sequences in the Administrator's Guide.

-542-

SQL Reference Manual

 If a schema name is given, the sequence is created in the specified schema. Otherwise it is
created in the current schema. The sequence name must be distinct from the name of any
other sequence, table, index, or view in the same schema.

 You must have CREATE privileges on the schema in which you want to create a sequence.

 After a sequence is created, use the functions NEXTVAL (page 254) and CURRVAL (page
255) to operate on the sequence. A cache is created when NEXTVAL is called.

 You cannot use NEXTVAL or CURRVAL to act on a sequence in a SELECT statement:

 in a WHERE clause

 in a GROUP BY or ORDER BY clause

 in a DISTINCT clause

 along with a UNION, INTERSECT or MINUS

 in a subquery

 Additionally, you cannot use NEXTVAL or CURRVAL to act on a sequence in:

 a subquery of UPDATE or DELETE

 a view

 You can work around some of these restrictions by using subqueries. For example, to use
sequences with a DISTINCT clause:

SELECT t.col1, shift_allocation_seq.nextval

FROM (

 SELECT DISTINCT col1 FROM av_temp1) t;

 If you want to generate, for example, only even numbers, specify INCREMENT BY 2 and use
a start value of 2.

 Use DROP SEQUENCE (page 587) to remove a sequence; however, you cannot drop a
sequence upon which other objects depends.

 DROP SEQUENCE ... CASCADE is not supported. Sequences used in a default expression of
a column cannot be dropped until all references to the sequence are removed from the default
expression.

Cache Operation

 In each session, every node maintains its own cache of the sequence state, so you need a
Global Catalog Lock(X) to obtain a cache of values from a sequence.

 Regardless of the number of calls to NEXTVAL and CURRVAL, sequences are incremented
one time per row. This means multiple calls to NEXTVAL within the same row return the same
value. If joins are used, a sequence is incremented one time for the final composite row.

 It is possible for one session to allocate a cache and use it slowly while another statement
requests and loads many values. Therefore, the values returned from NEXTVAL in one
statement could be distant from the values returned in another statement.

 If a disconnect occurs, any remaining values that have not been returned through NEXTVAL
are lost.

 If a statement fails after NEXTVAL is called and the cache is incremented, the new cache
value is not rolled back.

 When the cache runs out of sequence numbers, it automatically obtains more from the Global
Catalog.

-543-

 SQL Statements

 Because large cache sizes can create gaps in the sequence, you might decide to specify a
smaller cache. Note that smaller cache sizes can result in a performance degradation.

Examples

The following example creates an ascending sequence called sequential, starting at 101:

=> CREATE SEQUENCE my_seq START 101;

After a sequence is created, use the sequence functions NEXTVAL (page 254) and CURRVAL
(page 255) to operate on the sequence. These functions provide simple, multiuser-safe methods
for obtaining successive sequence values from sequence objects.

Note:

CURRVAL returns a sequence's most recent value, so if you run CURRVAL before
NEXTVAL, the system returns an error:

ERROR: Sequence my_seq has not been accessed in the session

NEXTVAL must be called at least one time in a session to provide a value for
CURRVAL. A cache is created when NEXTVAL is called.

The following command generates the first number for this sequence:

=> SELECT NEXTVAL('my_seq');

 nextval

 101

(1 row)

The following command returns the current value of this sequence. Since no other operations
have been performed on the newly-created sequence, the function returns the expected value of
101:

=> SELECT CURRVAL('my_seq');

 currval

 101

(1 row)

The following command increments the value for this sequence by one (1):

=> SELECT NEXTVAL('my_seq');

 nextval

 102

(1 row)

Calling the CURRVAL again function returns only the current value:

=> SELECT CURRVAL('my_seq');

 currval

 102

(1 row)

-544-

SQL Reference Manual

The following example shows how to use the my_sequence sequence in an INSERT statement.

=> CREATE TABLE customer (

 lname VARCHAR(25),

 fname VARCHAR(25),

 membership_card INTEGER,

 ID INTEGER

);

=> INSERT INTO customer VALUES ('Hawkins' ,'John', 072753, NEXTVAL('my_seq'));

Now query the table you just created. Notice that the ID column has been incremented 1 value to
103:

=> SELECT * FROM customer;

 lname | fname | membership_card | ID

---------+-------+-----------------+-----

 Hawkins | John | 72753 | 103

(1 row)

The following example shows how to use a sequence as the default value for an INSERT
command:

=> CREATE TABLE customer2(

 ID INTEGER DEFAULT NEXTVAL('my_seq'),

 lname VARCHAR(25),

 fname VARCHAR(25),

 membership_card INTEGER

);

=> INSERT INTO customer2 VALUES (default,'Carr', 'Mary', 87432);

Now query the table you just created. The ID column has been incremented by (1) again to 104:

=> SELECT * FROM customer2;

 ID | lname | fname | membership_card

-----+-------+-------+-----------------

 104 | Carr | Mary | 87432

(1 row)

The following example shows how to use NEXTVAL in a SELECT statement:

=> SELECT NEXTVAL('my_seq'), lname FROM customer2;

 NEXTVAL | lname

---------+-------

 105 | Carr

(1 row)

As you can see, each time NEXTVAL is called, the value increments by 1.

The following example shows how to use CURRVAL in a SELECT statement:

=> SELECT CURRVAL('my_seq'), lname FROM customer2;

 CURRVAL | lname

---------+-------

 105 | Carr

(1 row)

The value doesn't change above because the CURRVAL function returns only the current value.

-545-

 SQL Statements

See Also

ALTER SEQUENCE (page 485)

CREATE TABLE column-constraint (page 556)

CURRVAL (page 255)

DROP SEQUENCE (page 587)

GRANT (Sequence) (page 599)

NEXTVAL (page 254)

Using Sequences and Sequence Privileges in the Administrator's Guide

-546-

 546

CREATE TABLE
Creates a table in the logical schema.

Note: A default superprojection is automatically created for the table. See "Superprojection
Creation" within this topic for details about how it is implemented.

Syntax

CREATE TABLE [schema-name.]table-name

... { (column-definition (see "column-definition (table)" on page 552) [, ...

])

... | [column-name-list (see "column-name-list (table)" on page 553)] AS [[AT

EPOCH LATEST]

... | [AT TIME 'timestamp']] query }

... [ORDER BY table-column [, ...]]

... [ENCODED BY column-definition [, ...]

... [hash-segmentation-clause (see "hash-segmentation-clause (table)" on page

561)

... | range-segmentation-clause (see "range-segmentation-clause (table)" on page

562)

... | UNSEGMENTED { NODE node | ALL NODES }]

... [KSAFE [k_num]]

... [PARTITION BY partition-clause]

Parameters

[schema-name.]table-name Table-name specifies the name of the table to be created.
Schema-name specifies the schema where the table is created.
If schema-name is omitted, the table is created in the first
schema listed in the current search_path. (page 639)

column-definition Defines one or more columns. See column-definition (see
"column-definition (table)" on page 552).

ORDER BY table-column [Optional] Specifies the sort order for the superprojection that is
automatically created for the table. If you do not specify the sort
order, Vertica uses the order in which columns are specified in
the column definition as the sort order for the projection. For
example:

ORDER BY col2, col1, col5

Note: Data is in ascending order only.

column-name-list Renames columns when creating a table from a query (CREATE
TABLE AS SELECT). See column-name-list (page 553).

-547-

 SQL Statements

AS query Creates a new table from the results of a query and fills it with
data from the query. For example:

CREATE TABLE promo AS SELECT ... ;

Column renaming is supported as part of the process:

CREATE TABLE promo (name, address, ...) AS SELECT

customer_name, customer_address ... ;

The query table-column must be followed by the FROM clause
to identify the table from which to copy the columns. See the
example at the bottom of this topic as well as the SELECT (page
617) statement.

If the query output has expressions other than simple columns
(for example, constants, functions, etc) then either an alias must
be specified for that expression, or all columns must be listed in
the column name list.

AT EPOCH LATEST | AT TIME

'timestamp'

Used with AS query to query historical data. You can specify AT
EPOCH LATEST to include data from the latest committed DML
transaction or specify a specific epoch based on its time stamp.

ENCODED BY column-definition [CREATE TABLE AS query Only]

This parameter is useful to specify the column encoding and/ or
the access rank for specific columns in the query when a
column-definition is not used to rename columns for the table to
be created. See column-definition (see "column-definition
(temp table)" on page 569) for examples.

If you rename table columns when creating a table from a query,
you can supply the encoding type and access rank in the column
name list instead.

hash-segmentation-clause [Optional] Allows you to segment the superprojection based on a
built-in hash function that provides even distribution of data
across nodes, resulting in optimal query execution. See
hash-segmentation-clause (see "hash-segmentation-clause
(table)" on page 561).

range-segmentation-clause [Optional] Allows you to segment the superprojection based on a
known range of values stored in a specific column chosen to
provide even distribution of data across a set of nodes, resulting
in optimal query execution. See range-segmentation-clause
(see "range-segmentation-clause (table)" on page 562).

UNSEGMENTED

{ NODE node | ALL NODES }

[Optional] Allows you to specify that the projection be
unsegmented, as follows:

 NODE node—Creates the unsegmented projection on
the specified node only. Dimension table projections
must be UNSEGMENTED.

 ALL NODES—Creates a separate unsegmented
projection on each node (automatic replication). To
perform distributed query execution, Vertica requires an
exact, unsegmented copy of each dimension table
superprojection on each node.

KSAFE [k] [Optional] Specifies the K-Safety level of the automatic

-548-

SQL Reference Manual

projection created for the table. The integer K determines how
many unsegmented or segmented buddy projections are
created. The value must be greater than or equal to the current
K-Safety level of the database and less than the total number of
nodes. If KSAFE or its value are not specified, the
superprojection is created at the current system K-Safety level.

For example:

K-SAFE 1

Note: When a hash-segmentation-clause is used with KSAFE,
Vertica automatically creates k_num+1 buddy projections to
meet the K-safety requirement.

PARTITION BY partition-clause [Not supported for queries (CREATE TABLE AS SELECT)]

 All leaf expressions must be either constants or columns
of the table.

 All other expressions must be functions and operators;
aggregate functions and queries are not permitted in the
expression.

 The partition-clause must calculate an idempotent value
from its arguments and must be not null.

 SQL functions used in the partitioning expression must
be immutable.

Automatic Projection Creation

To get your database up and running quickly, Vertica automatically creates a default projection for
each table created through the CREATE TABLE (page 546) and CREATE TEMPORARY TABLE
(page 564) statements. The timing of when the projection is created depends on how you use the
CREATE TABLE statement:

 If you create a table without providing the projection-related clauses, a superprojection is
automatically created for the table when an INSERT, COPY, or LCOPY command is issued to
load data into the table for the first time. The projection is created in the same schema as the
table. Once Vertica has created the projection, it loads the data.

 If you use CREATE TABLE AS SELECT to create a table from the results of a query, the table
is created first and a projection is created immediately after, using some of the properties of
the underlying SELECT query.

 (Advanced users only) If you use any of the following parameters, the default projection is
created immediately upon table creation using the specified properties:

 column-definition (page 552) (ENCODING encoding-type and ACCESSRANK integer)

 ORDER BY table-column

 hash-segmentation-clause (page 561)

 range-segmentation-clause (page 562)

 UNSEGMENTED { NODE node | ALL NODES }

 KSAFE

Note: Before you define a superprojection in the above manner, read Creating Custom
Designs in the Administrator's Guide.

-549-

 SQL Statements

Characteristics of Default Automatic Projections

A default projection has the following characteristics:

 It is a superprojection.

 It uses the default encoding-type (page 526) AUTO.

 If the table has one or more primary keys defined, the projection is sorted by these columns.
Otherwise, the projection is sorted in the same order as defined in the table column-definition
list.

 If the K-safety for the database is zero (K-Safety=0), the projection is unsegmented on the
initiator node. If K-Safety is greater than zero (K-Safety>0), the superprojection is replicated
(unsegmented) on all nodes. See Segmentation in the Concepts Guide.

 If the projection was created through the CREATE TABLE AS SELECT statement, the
projection uses the sort order, segmentation, and encoding specified for the columns in the
query table.

Default automatic projections let you get your database up and running quickly; however, they
might not necessarily provide the best performance. Vertica recommends that you start with these
projections and then use the Database Designer to optimize your database. The Database
Designer creates projections that optimize your database based on the characteristics of the data
and, optionally, the queries you use.

Partition Clauses

Creating a table with the partition clause causes all projections anchored on that table to be
partitioned according to the partitioning clause. For each partitioned projection, logically, there are
as many partitions as the number of unique values returned by the partitioned expression applied
over the rows of the projection.

Note: Due to the impact on the number of ROS containers, explicit and implicit upper limits are
imposed on the number of partitions a projection can have; these limits, however, are detected
during the course of operation, such as during COPY.

Creating a partitioned table does not necessarily force all data feeding into a table‘s projection to
be segregated immediately. Logically, the partition clause is applied after the segmented by
clause.

Partitioning specifies how data is organized at individual nodes in a cluster and after projection
data is segmented; only then is the data partitioned at each node based on the criteria in the
partitioning clause.

SQL functions used in the partitioning expression must be immutable, which means they return
the exact same value regardless of when it is invoked and independently of session or
environment settings, such as LOCALE. For example, the TO_CHAR function is dependent on
locale settings and cannot be used. RANDOM produces different values on each invocation and
cannot be used.

Data loaded with the COPY command is automatically partitioned according to the table's
PARTITION BY clause.

For more information, see "Restrictions on Partitioning Expressions" in Defining Partitions in the
Administrator's Guide

-550-

SQL Reference Manual

Notes

 If a database has had automatic recovery enabled, you must temporarily disable automatic
recovery in order to create a new table. In other words, you must:

SELECT MARK_DESIGN_KSAFE(0)

CREATE TABLE ...

CREATE PROJECTION ...

SELECT MARK_DESIGN_KSAFE(1)

 Canceling a CREATE TABLE statement can cause unpredictable results. Vertica Systems,
Inc. recommends that you allow the statement to finish, then use DROP TABLE (page 589).

Examples

The following example creates a table named Product_Dimension in the Retail schema. It also
creates a default superprojection when data is loaded:

=> CREATE TABLE Retail.Product_Dimension (

 Product_Key integer NOT NULL,

 Product_Description varchar(128),

 SKU_Number char(32) NOT NULL,

 Category_Description char(32),

 Department_Description char(32) NOT NULL,

 Package_Type_Description char(32),

 Package_Size char(32),

 Fat_Content integer,

 Diet_Type char(32),

 Weight integer,

 Weight_Units_of_Measure char(32),

 Shelf_Width integer,

 Shelf_Height integer,

 Shelf_Depth integer

);

The following example creates a table named Employee_Dimension and its associated
superprojection in the Public schema. Instead of using the sort order from the column definition,
the superprojection uses the sort order specified by the ORDER BY clause. The superprojection is
created at the same time as the table because the superprojection is actively defined as part of the
CREATE TABLE statement.

=> CREATE TABLE Public.Employee_Dimension (

 Employee_key integer PRIMARY KEY NOT NULL,

 Employee_gender varchar(8) ENCODING RLE,

 Employee_title varchar(8),

 Employee_first_name varchar(64),

 Employee_middle_initial varchar(8),

 Employee_last_name varchar(64),)

ORDER BY Employee_gender, Employee_last_name, Employee_first_name;

The following example creates a table called time and partitions the data by year. It also creates a
default superprojection when data is loaded:

=> CREATE TABLE time(..., date_col date NOT NULL, ...)

=> PARTITION BY extract('year' FROM date_col);

-551-

 SQL Statements

The following example creates a table named location and partitions the data by state. It also
creates a default superprojection when data is loaded:

=> CREATE TABLE location(..., state VARCHAR NOT NULL, ...)

=> PARTITION BY state;

The following table uses SELECT AS to create a table called promo and load data from columns in
the customer_dimension table in which the customer's annual_income is greater than 1,000,000.
The data is ordered by state and annual income.

=> CREATE TABLE promo

 AS SELECT

 customer_name,

 customer_address,

 customer_city,

 customer_state,

 annual_income

 FROM customer_dimension

 WHERE annual_income>1000000

 ORDER BY customer_state, annual_income;

The following table uses SELECT AS to create a table called promo and load data from the latest
committed DML transaction (AT EPOCH LATEST).

=> CREATE TABLE promo

 AS AT EPOCH LATEST SELECT

 customer_name,

 customer_address,

 customer_city,

 customer_state,

 annual_income

FROM customer_dimension;

See Also

Physical Schema in the Concepts Guide

COPY (page 497)

CREATE TEMPORARY TABLE (page 564)

DROP_PARTITION (page 341)

DROP PROJECTION (page 585)

DUMP_PARTITION_KEYS (page 346)

DUMP_PROJECTION_PARTITION_KEYS (page 347)

DUMP_TABLE_PARTITION_KEYS (page 348)

PARTITION_PROJECTION (page 368)

PARTITION_TABLE (page 369)

SELECT (page 617)

Partitioning Tables and Auto Partitioning in the Administrator's Guide

-552-

SQL Reference Manual

column-definition (table)

A column definition specifies the name, data type, and constraints to be applied to a column.

Syntax

column-name data-type {

... [column-constraint (on page 556) [...] | [table-constraint (on page 560)

] [,...]

... [ENCODING encoding-type]

... [ACCESSRANK integer]]

Parameters

column-name Specifies the name of a column to be created or added.

data-type Specifies one of the following data types:

BINARY (page 61)

BOOLEAN (page 65)

CHARACTER (page 66)

DATE/TIME (page 68)

NUMERIC (page 92)

column-constraint Specifies a column constraint (see "column-constraint" on page 556) to
apply to the column.

ENCODING encoding -type [Optional] Specifies the type of encoding (see "encoding-type" on page
526) to use on the column. By default, the encoding-type is auto.

Caution: Using the NONE keyword for strings could negatively affect the

behavior of string columns.

ACCESSRANK integer [Optional] Overrides the default access rank for a column. This is useful if
you want to increase or decrease the speed at which a column is
accessed. See Creating and Configuring Storage Locations and
Prioritizing Column Access Speed in the Administrator's Guide.

Example

The following example creates a table named Employee_Dimension and its associated
superprojection in the Public schema. Note that encoding-type RLE is specified for the
Employee_gender column definition:

=> CREATE TABLE Public.Employee_Dimension (

 Employee_key integer PRIMARY KEY NOT NULL,

 Employee_gender varchar(8) ENCODING RLE,

 Employee_title varchar(8),

 Employee_first_name varchar(64),

 Employee_middle_initial varchar(8),

 Employee_last_name varchar(64),

);

-553-

 SQL Statements

column-name-list (table)

Is used to rename columns when creating a table from a query (CREATE TABLE AS SELECT). It

can also be used to specify the encoding type (see "encoding-type" on page 526) and access
rank of the column.

Syntax

column-name-list

... [ENCODING encoding-type]

... [ACCESSRANK integer] [, ...]

... [GROUPED (projection-column-reference [,...])]

Parameters

column-name Specifies the new name for the column.

ENCODING

encoding-type

Specifies the type of encoding to use on the column. By default, the
encoding-type is auto. See encoding type (see "encoding-type" on page
526) for a complete list.

Caution: Using the NONE keyword for strings could negatively affect the

behavior of string columns.

ACCESSRANK integer Overrides the default access rank for a column. This is useful if you want to
increase or decrease the speed at which a column is accessed. See
Creating and Configuring Storage Locations and Prioritizing Column
Access Speed in the Administrator's Guide.

-554-

SQL Reference Manual

GROUPED Groups two or more columns into a single disk file. This minimizes
file I/O for work loads that:

 Read a large percentage of the columns in a table.

 Perform single row look-ups.

 Query against many small columns.

 Frequently update data in these columns.

If you have data that is always accessed together and it is not used
in predicates, you can increase query performance by grouping
these columns. Once grouped, queries can no longer independently
retrieve from disk all records for an individual column independent of
the other columns within the group.

Note: RLE compression is reduced when a RLE column is grouped
with one or more non-RLE columns.

When grouping columns you can:

 Group some of the columns:

 (a, GROUPED(b, c), d)

 Group all of the columns:

 (GROUPED(a, b, c, d))

 Create multiple groupings in the same projection:

 (GROUPED(a, b), GROUPED(c, d))

Note: Vertica performs dynamic column grouping. For example, to provide

better read and write efficiency for small loads, Vertica ignores any
projection-defined column grouping (or lack thereof) and groups all
columns together by default.

Notes if you are using a query:

Neither the data type nor column constraint can be specified for a column in the column-name-list.
These are derived by the columns in the query table identified in the FROM clause. If the query
output has expressions other than simple columns (for example, constants, functions, etc) then
either an alias must be specified for that expression, or all columns must be listed in the column
name list.

You can supply the encoding type and access rank in either the column-name-list or the column
list in the query, but not both.

The following statements are both allowed:

=> CREATE TABLE promo (state ENCODING RLE ACCESSRANK 1, zip ENCODING RLE, ...)

 AS SELECT * FROM customer_dimension

 ORDER BY customer_state, ... ;

=> CREATE TABLE promo

 AS SELECT * FROM customer_dimension

 ORDER BY customer_state

-555-

 SQL Statements

 ENCODED BY customer_state ENCODING RLE ACCESSRANK 1, customer_zip ENCODING RLE

...;

The following statement is not allowed because encoding is specified in both column-name-list
and ENCODED BY clause:

=> CREATE TABLE promo (state ENCODING RLE ACCESSRANK 1, zip ENCODING RLE, ...)

 AS SELECT * FROM customer_dimension

 ORDER BY customer_state

 ENCODED BY customer_state ENCODING RLE ACCESSRANK 1, customer_zip ENCODING RLE

...;

Example

The following example creates a table named employee_dimension and its associated

superprojection in the public schema. Note that encoding-type RLE is specified for the

employee_gender column definition:

=> CREATE TABLE public.employee_dimension (

 employee_key INTEGER PRIMARY KEY NOT NULL,

 employee_gender VARCHAR(8) ENCODING RLE,

 employee_title VARCHAR(8),

 employee_first_name VARCHAR(64),

 employee_middle_initial VARCHAR(8),

 employee_last_name VARCHAR(64)

);

Using the Vmart schema, the following example creates a table named promo from a query that

selects data from columns in the customer_dimension table. RLE encoding is specified for the

state column in the column name list.

=> CREATE TABLE promo (

 name,

 address,

 city,

 state ENCODING RLE, income)

 AS SELECT customer_name,

 customer_address,

 customer_city,

 customer_state,

 annual_income

FROM customer_dimension

WHERE annual_income > 1000000

ORDER BY customer_state, annual_income;

-556-

 556

column-constraint

Adds a referential integrity constraint to the metadata of a column. See Adding Constraints in the
Administrator's Guide.

Syntax

[CONSTRAINT constraint-name] {

...[NOT] NULL

...| PRIMARY KEY

...| REFERENCES table-name

...| UNIQUE

...[DEFAULT default]

...[AUTO_INCREMENT]

...[IDENTITY [(seed , increment, cache)]] }

Parameters

CONSTRAINT constraint-name Optionally assigns a name to the constraint. Vertica recommends that you
name all constraints.

NULL [Default] Specifies that the column is allowed to contain null values.

NOT NULL Specifies that the column must receive a value during INSERT and UPDATE
operations. If no DEFAULT value is specified and no value is provided, the
INSERT or UPDATE statement returns an error because no default value
exists.

PRIMARY KEY Adds a referential integrity constraint defining the column as the primary key.

REFERENCES Adds a referential integrity constraint defining the column as a foreign key.

If column is omitted, the default is the primary key of table.

table-name Specifies the table to which the REFERENCES constraint applies.

column-name Specifies the column to which the REFERENCES constraint applies. If
column is omitted, the default is the primary key of table-name.

UNIQUE Ensures that the data contained in a column or a group of columns is unique
with respect to all the rows in the table.

DEFAULT default Specifies a default data value for a column if the column is used in an
INSERT operation and no value is specified for the column. If there is no
value specified for the column and no default, the default is NULL.

Default value usage:

 A default value can be set for a column of any data type.

 The default value can be any variable-free expression, as long as it
matches the data type of the column.

 Variable-free expressions can contain constants, SQL functions,
null-handling functions, system information functions, string
functions, numeric functions, formatting functions, nested functions,
and all Vertica-supported operators

Default value restrictions:

-557-

 SQL Statements

 Expressions can contain only constant arguments.

 Subqueries and cross-references to other columns in the table are
not permitted in the expression.

 The return value of a default expression cannot be NULL.

 The return data type of the default expression after evaluation either
matches that of the column for which it is defined, or an implicit cast
between the two data types is possible. For example, a character
value cannot be cast to a numeric data type implicitly, but a number
data type can be cast to character data type implicitly.

 Default expressions, when evaluated, conform to the bounds for the
column.

 Volatile functions are not supported when adding columns to existing
tables. (A volatile function changes with every invocation.) For
example, RANDOM(), CURRVAL(), TIMEOFDAY(), and
SYSDATE() are not supported. See ALTER TABLE (page 488).

Note: Vertica attempts to check the validity of default expressions, but some

errors might not be caught until run time.

AUTO_INCREMENT Creates a column within the specified table that consists of values generated
by the database. These values cannot be modified.

The initial value of this column is 1 and it is incremented by 1 each time a row
is added.

Note: Vertica supports only one AUTO_INCREMENT or IDENTITY column

per table.

IDENTITY Creates an identity column within the specified table that consists of values
generated by the database. These values cannot be modified. Identify
columns can also be used as primary keys.

Notes

 AUTO_INCREMENT and IDENTITY are identical except that
IDENTITY takes extra arguments.

 IDENTITY arguments are optional.

 Vertica supports only one IDENTITY or one AUTO_INCREMENT
column per table.

seed When used with IDENTITY, specifies the value for the first row loaded into
the table. Default is 1.

increment When used with IDENTITY, specifies the value that is added to identity value
of the previous row. Default is 1.

cache When used with IDENTITY, specifies the number of unique numbers to be
preallocated and stored in memory for faster access. Default is 250,000 with
a minimum value of 1.

Note: The cache value can contain positive integers only.

-558-

SQL Reference Manual

Notes

 IDENTITY arguments are optional; however you cannot specify increment without a seed.
Thus, if you supply only one argument, the system assigns a seed value. Two values are seed
and increment, and three values are seed, increment, and cache. The following are all valid
examples:

=> CREATE TABLE t1(x IDENTITY(1,1,9), y INT);

=> CREATE TABLE t1(x IDENTITY(1,1), y INT);

=> CREATE TABLE t1(x IDENTITY(1), y INT);

 A FOREIGN KEY constraint can be specified solely by a REFERENCE to the table that
contains the PRIMARY KEY. The columns in the referenced table do not need to be explicitly
specified; for example:

CREATE TABLE fact(c1 INTEGER PRIMARY KEY NOT NULL);

CREATE TABLE dim (c1 INTEGER REFERENCES fact NOT NULL);

 Columns that are given PRIMARY and FOREIGN constraints must also be set NOT NULL.
Vertica automatically sets these columns to be NOT NULL if you do not do so explicitly.

 Vertica supports variable-free expressions in the column DEFAULT clause. See COPY (page
497) [Column as Expression].

 If you are using a CREATE TABLE AS SELECT statement, the column-constraint parameter
does not apply. Column constraints are set by the columns in the query table identified in the
FROM clause.

 An auto-increment or identity value is never rolled back even if a transaction that tries to insert
a value into a table is not committed.

Example

The following command creates the store_dimension table and sets the default column value

for Store_state to MA:

=> CREATE TABLE store_dimension (store_state CHAR (2) DEFAULT MA);

The following command creates the public.employee_dimension table and sets the default

column value for hire_date to current_date():

=> CREATE TABLE public.employee_dimension (hire_date DATE DEFAULT

current_date());

The following example uses the IDENTITY column-constraint to create a table with an ID column
that has an initial value of 1. It is incremented by 1 every time a row is inserted.

=> CREATE TABLE Premium_Customer(

 ID IDENTITY(1,1),

 lname VARCHAR(25),

 fname VARCHAR(25),

 store_membership_card INTEGER

);

=> INSERT INTO Premium_Customer (lname, fname, store_membership_card)

 VALUES ('Gupta', 'Saleem', 475987);

Confirm the row you added and see the ID value:

=> SELECT * FROM Premium_Customer;

-559-

 SQL Statements

 ID | lname | fname | store_membership_card

----+-------+--------+-----------------------

 1 | Gupta | Saleem | 475987

(1 row)

Now add another row:

=> INSERT INTO Premium_Customer (lname, fname, store_membership_card)

 VALUES ('Lee', 'Chen', 598742);

Calling the LAST_INSERT_ID function returns value 2 because you previously inserted a new
customer (Chen Lee), and this value is incremented each time a row is inserted:

=> SELECT LAST_INSERT_ID();

last_insert_id

 2

(1 row)

View all the ID values in the Premium_Customer table:

=> SELECT * FROM Premium_Customer;

 ID | lname | fname | store_membership_card

----+-------+--------+-----------------------

 1 | Gupta | Saleem | 475987

 2 | Lee | Chen | 598742

(2 rows)

The following example uses the AUTO_INCREMENT column-constraint to create a table with an
ID column that automatically increments every time a row is inserted.

=> CREATE TABLE Premium_Customer(

 ID AUTO_INCREMENT,

 lname VARCHAR(25),

 fname VARCHAR(25),

 store_membership_card INTEGER

);

=> INSERT INTO Premium_Customer (lname, fname, store_membership_card)

 VALUES ('Gupta', 'Saleem', 475987);

Confirm the row you added and see the ID value:

=> SELECT * FROM Premium_Customer;

 ID | lname | fname | store_membership_card

----+-------+--------+-----------------------

 1 | Gupta | Saleem | 475987

(1 row)

Now add two rows:

=> INSERT INTO Premium_Customer (lname, fname, store_membership_card)

 VALUES ('Lee', 'Chen', 598742);

=> INSERT INTO Premium_Customer (lname, fname, store_membership_card)

 VALUES ('Brown', 'John', 642159);

=> SELECT * FROM Premium_Customer;

 ID | lname | fname | store_membership_card

----+-------+--------+-----------------------

 1 | Gupta | Saleem | 475987

 2 | Lee | Chen | 598742

-560-

SQL Reference Manual

 3 | Brown | John | 642159

(3 rows)

This time the LAST_INSERT_ID returns a value of 3:

=> SELECT LAST_INSERT_ID();

 LAST_INSERT_ID

 3

(1 row)

For additional examples, see CREATE SEQUENCE (page 540).

table-constraint

Adds a join constraint to the metadata of a table. See Adding Constraints in the Administrator's
Guide.

Syntax

[CONSTRAINT constraint_name]

... [NOT] NULL

... { PRIMARY KEY (column [, ...])

... | FOREIGN KEY (column [, ...]) REFERENCES table

... | UNIQUE (column [, ...])

Parameters

CONSTRAINT Optionally assigns a name to the constraint. Vertica recommends that you name
all constraints.

NULL [Default] Specifies that the column is allowed to contain null values.

NOT NULL Specifies that the column must receive a value during INSERT and UPDATE
operations. If no DEFAULT value is specified and no value is provided, the
INSERT or UPDATE statement returns an error because no default value exists.

PRIMARY KEY Adds a referential integrity constraint defining one or more NOT NULL numeric
columns as the primary key.

FOREIGN KEY Adds a referential integrity constraint defining one or more NOT NULL numeric
columns as a foreign key.

REFERENCES Specifies the table to which the FOREIGN KEY constraint applies. If column is

omitted, the default is the primary key of table.

UNIQUE Ensures that the data contained in a column or a group of columns is unique with
respect to all the rows in the table.

Notes

 A foreign key constraint can be specified solely by a reference to the table that contains the
primary key. The columns in the referenced table do not need to be explicitly specified; for
example:

CREATE TABLE fact(c1 INTEGER PRIMARY KEY);

CREATE TABLE dim (c1 INTEGER REFERENCES fact);

-561-

 SQL Statements

 Define PRIMARY KEY and FOREIGN KEY constraints in all tables that participate in inner
joins. See Adding Join Constraints.

 Adding constraints to a table that is referenced in a view does not affect the view.

Examples

CORRELATION (Product_Description) DETERMINES (Category_Description)

The Retail Sales Example Database described in the Getting Started Guide contains a table
Product_Dimension in which products have descriptions and categories. For example, the
description "Seafood Product 1" exists only in the "Seafood" category. You can define several
similar correlations between columns in the Product Dimension table.

hash-segmentation-clause (table)

Hash segmentation allows you to segment a projection based on a built-in hash function that
provides even distribution of data across some or all of the nodes in a cluster, resulting in optimal
query execution.

Note: Hash segmentation is the preferred method of segmentation. The Database Designer
uses hash segmentation by default.

Syntax

SEGMENTED BY expression

 [ALL NODES | NODES node [,...]]

Parameters

SEGMENTED BY expression Can be a general SQL expression, but there is no reason to use anything
other than the built-in HASH (page 236) or MODULARHASH (page 239)
functions with table columns as arguments.

Choose columns that have a large number of unique data values and
acceptable skew in their data distribution. Primary key columns that meet
the criteria could be an excellent choice for hash segmentation.

ALL NODES Automatically distributes the data evenly across all nodes at the time the
projection is created. The ordering of the nodes is fixed.

NODES node [,...] Specifies a subset of the nodes in the cluster over which to distribute the
data. You can use a specific node only once in any projection. For a list of
the nodes in a database, use the View Database command in the
Administration Tools.

Notes

 Table column names must be used in the expression, not the projection column names.

 If you want to use a different SEGMENTED BY expression, the following restrictions apply:

 All leaf expressions must be either constants or column-references (see "Column
References" on page 45) to a column in the SELECT list of the CREATE PROJECTION
command

 Aggregate functions are not allowed

 The expression must return the same value over the life of the database.

-562-

SQL Reference Manual

 The expression must return non-negative INTEGER values in the range 0 <= x < 263 (two to
the sixty-third power or 2^63), and values are generally distributed uniformly over that
range.

 If expression produces a value outside the expected range (a negative value for example),
no error occurs, and the row is added to the first segment of the projection.

 When a hash-segmentation-clause is used with KSAFE [k_num], Vertica automatically creates
k_num+1 buddy projections to meet the K-safety requirement.

 The hash-segmentation-clause within the CREATE TABLE statement does not support the
OFFSET keyword, which is available in the CREATE PROJECTION command. The OFFSET
is set to zero (0).

Example

This example segments the default superprojection and its buddies for the
Public.Employee_Dimension table using HASH segmentation across all nodes based on the
Employee_key column:

=> CREATE TABLE Public.Employee_Dimension (

 Employee_key integer PRIMARY KEY NOT NULL,

 Employee_gender varchar(8) ENCODING RLE,

 Employee_title varchar(8),

 Employee_first_name varchar(64),

 Employee_middle_initial varchar(8),

 Employee_last_name varchar(64),

)

SEGMENTED BY HASH(Employee_key) ALL NODES;

See Also

HASH (page 236) and MODULARHASH (page 239)

range-segmentation-clause (table)

Range segmentation allows you to segment a projection based on a known range of values stored
in a specific column chosen to provide even distribution of data across a set of nodes, resulting in
optimal query execution.

Note: Vertica Systems, Inc. recommends that you use hash segmentation, instead of range
segmentation.

Syntax

SEGMENTED BY expression

 NODE node VALUES LESS THAN value

 ...

 NODE node VALUES LESS THAN MAXVALUE

Parameters (Range Segmentation)

SEGMENTED BY expression Is a single column reference (see "Column References" on page 45) to
a column in the column definition of the CREATE TABLE statement.
Choose a column that has:

 INTEGER or FLOAT data type

-563-

 SQL Statements

 A known range of data values

 An even distribution of data values

 A large number of unique data values

Avoid columns that:

 Are foreign keys

 Are used in query predicates

 Have a date/time data type

 Have correlations with other columns due to functional
dependencies.

Note: Segmenting on DATE/TIME data types is valid but guaranteed to

produce temporal skew in the data distribution and is not recommended. If
you choose this option, do not use TIME or TIMETZ because their range
is only 24 hours.

NODE node Is a symbolic name for a node. You can use a specific node only once in

any projection. For a list of the nodes in a database, use SELECT * FROM

NODE_RESOURCES.

VALUES LESS THAN value Specifies that this segment can contain a range of data values less than
the specified value, except that segments cannot overlap. In other words,
the minimum value of the range is determined by the value of the previous
segment (if any).

MAXVALUE Specifies a sub-range with no upper limit. In other words, it represents a
value greater than the maximum value that can exist in the data. The
maximum value depends on the data type of the segmentation column.

Notes

 The SEGMENTED BY expression syntax allows a general SQL expression but there is no

reason to use anything other than a single column reference (see "Column References" on
page 45) for range segmentation. If you want to use a different expression, the following
restrictions apply:

 All leaf expressions must be either constants or column-references to a column in the
SELECT list of the CREATE PROJECTION command

 Aggregate functions are not allowed

 The expression must return the same value over the life of the database.

 During INSERT or COPY to a segmented projection, if expression produces a value outside
the expected range (a negative value for example), no error occurs, and the row is added to a
segment of the projection.

See Also

NODE_RESOURCES (page 714)

-564-

 564

CREATE TEMPORARY TABLE
Creates a temporary table.

Note: A default superprojection is automatically created for the temporary table. See
"Superprojection Creation" within this topic for details about how it is implemented.

Syntax

CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP }]

... TABLE [schema-name].table-name {

... (column-definition (see "column-definition (temp table)" on page 569) [, ...

])

... | [column-name-list (see "column-name-list (temp table)" on page 570)] }

... [ON COMMIT { DELETE | PRESERVE } ROWS]

... [AS [AT EPOCH LATEST] | [AT TIME 'timestamp'] query]

... [[ORDER BY table-column [, ...]]

....[ENCODED BY column-definition [, ...]

....[hash-segmentation-clause (see "hash-segmentation-clause (temp table)" on

page 572) | range-segmentation-clause (see "range-segmentation-clause (temp

table)" on page 573)

....| UNSEGMENTED { NODE node | ALL NODES }]

....[KSAFE [k-num]]

....| [NO PROJECTION]]

Parameters

GLOBAL [Optional] Specifies that the table definition is visible to all sessions.
Temporary table data is visible only to the session that inserts the data
into the table.

Temporary tables in Vertica default to global.

LOCAL [Optional] Specifies that the table definition is visible only to the session
in which it is created.

Temporary tables in Vertica default to global.

TEMPORARY | TEMP Specifies that the table is a temporary table.

[schema-name].table-name Specifies the name of the temporary table to be created. For a global
temporary table, the user can specify the schema where the table is to
be created. If schema-name is omitted, the table is created in the first
schema listed in current search_path (page 639).

Schema-name is not supported for local temporary tables because they
are always created in a special schema.

column-definition Defines one or more columns. See column-definition (see
"column-definition (temp table)" on page 569).

column-name-list Renames columns when creating a temporary table from a query
(CREATE TEMPORARY TABLE AS SELECT). See column-name-list
(see "column-name-list (temp table)" on page 570).

ON COMMIT { PRESERVE |

 DELETE } ROWS

[Optional] Specifies whether data is transaction- or session-scoped:

 DELETE marks the temporary table for transaction-scoped

-565-

 SQL Statements

data. Vertica truncates the table (delete all its rows) after each
commit. DELETE ROWS is the default.

 PRESERVE marks the temporary table for session-scoped
data, which is preserved beyond the lifetime of a single
transaction. Vertica truncates the table (delete all its rows)
when you terminate a session.

AT EPOCH LATEST | AT TIME

'timestamp'

Used with AS query to query historical data. You can specify AT
EPOCH LATEST to include data from the latest committed DML
transaction or specify a specific epoch based on its time stamp.

AS query [Optional.] Creates a new table from the results of a query and fills it with
data from the query as long as ON COMMIT PRESERVE ROWS is
specified:

CREATE GLOBAL TEMP TABLE temp_table1 ON COMMIT PRESERVE

ROWS AS SELECT ...;

If ON COMMIT DELETE ROWS is specified, the temporary table is
created, but data is not inserted from the query:

CREATE GLOBAL TEMP TABLE temp_table1 ON COMMIT DELETE

ROWS AS SELECT ...;

Column renaming is supported as part of the process:

CREATE TEMP TABLE temp-table1 (name, address, ...) AS

SELECT customer_name, customer_address ... ;

ORDER BY table-column [Optional] Specifies the sort order for the superprojection that is
automatically created for the table. If you do not specify the sort order,
Vertica uses the order in which columns are specified in the column
definition as the sort order for the projection. For example:

ORDER BY col2, col1, col5

Note: Data is in ascending order only.

ENCODED BY column-definition [CREATE TEMPORARY TABLE AS query Only]

This parameter is useful to specify the column encoding and/ or the
access rank for specific columns in the query when a column-definition
is not used to rename columns for the table to be created. See
column-definition (see "column-definition (temp table)" on page
569) for examples.

If you rename table columns when creating a table from a query, you
can supply the encoding type and access rank in the column name list
instead.

hash-segmentation-clause [Optional] Allows you to segment the superprojection based on a built-in
hash function that provides even distribution of data across nodes,
resulting in optimal query execution. See hash-segmentation-clause
(see "hash-segmentation-clause (temp table)" on page 572).

range-segmentation-clause [Optional] Allows you to segment the superprojection based on a known
range of values stored in a specific column chosen to provide even
distribution of data across a set of nodes, resulting in optimal query
execution. See range-segmentation-clause (see
"range-segmentation-clause (temp table)" on page 573).

UNSEGMENTED

{ NODE node | ALL NODES }

[Optional] Allows you to specify that the projection be unsegmented, as
follows:

-566-

SQL Reference Manual

 NODE node—Creates the unsegmented projection on the
specified node only. Dimension table projections must be
UNSEGMENTED.

 ALL NODES—Creates a separate unsegmented projection on
each node (automatic replication). To perform distributed query
execution, Vertica requires an exact, unsegmented copy of
each dimension table superprojection on each node.

KSAFE [k-num] [Optional] Specifies the K-Safety level of the automatic projection
created for the table. The integer K determines how many unsegmented
or segmented buddy projections are created. The value must be greater
than or equal to the current K-Safety level of the database and less than
the total number of nodes. If KSAFE or its value are not specified, the
superprojection is created at the current system K-Safety level.

For example: K-SAFE 1

Note: When a hash-segmentation-clause is used with KSAFE, Vertica

automatically creates k_num+1 buddy projections to meet the K-safety
requirement.

NO PROJECTION [Optional] Prevents the automatic creation of a default superprojection
for the temporary table until data is loaded.

NO PROJECTION cannot be used with queries (CREATE TEMPORARY

TABLE AS SELECT), ORDER BY, ENCODED BY, KSAFE,

hash-segmentation clause (page 572), or
range-segmentation-clause (page 573).

A common use case for a temporary table is to divide complex query processing into multiple
steps. Typically, a reporting tool holds intermediate results while reports are generated (for
example, first get a result set, then query the result set, and so on). You can also write subqueries.

Note: The default is ON COMMIT DELETE ROWS, where data is discarded at the end of the

transaction or session.

Global Temporary Tables

Global temporary tables are created in the public schema, and they are visible to all users and
sessions. However, the contents (data) of a global table are private to the transaction or session in
which the data was inserted. Data is automatically removed when the transaction commits, rolls
back, or the session ends. This allows two users to use the same temporary table, concurrently,
but see only data specific to his or her own transactions for the duration of those transactions or
sessions.

The definition of a global temporary table persists in the database catalogs until explicitly removed
by using the DROP TABLE (page 589) statement.

Local Temporary Tables

A local temporary table is created in the V_TEMP_SCHEMA namespace and is transparently

inserted into the user's search path. It is visible only to the user who creates the table for the
duration of the session in which it is created. When the session ends, the table definition is
automatically dropped from the database catalogs.

-567-

 SQL Statements

Superprojection Creation

When you use the CREATE TEMPORARY TABLE command, the table is created first and the default

superprojection is created immediately after unless you specify NO PROJECTION.

A default projection has the following characteristics:

 It uses the default encoding-type AUTO.

 It is automatically unsegmented on the initiator node and pinned if you do not specify a
segmentation clause (hash-segmentation-clause (page 572), range-segmentation-clause

(page 573), or UNSEGMENTED).

 If the table has one or more primary keys defined, the projection is sorted by these columns.
Otherwise, the the projection is sorted in the same order as defined in the table
column-definition list.

 Temp tables are not recoverable, so the superprojection is not K-Safe (K-SAFE=0), and you

cannot make the table K-safe.

Advanced users can modify the default projection created through the CREATE TEMPORARY

TABLE statement by defining any or all of the following parameters:

 column-definition (page 569) (ENCODING encoding-type and ACCESSRANK integer)

 ORDER BY table-column

 hash-segmentation-clause (page 572)

 range-segmentation-clause (page 573)

 UNSEGMENTED { NODE node | ALL NODES }

 NO PROJECTION

Note: Before you define the superprojection in this manner, read Creating Custom Designs in
the Administrator's Guide.

Notes

 You cannot add projections to non-empty, session-scoped temporary tables (ON COMMIT
PRESERVE ROWS). Make sure that projections exist before you load data. See the
"Automatic Projection Creation" in the CREATE TABLE (page 546) statement.

 Although adding projections is allowed for tables with ON COMMIT DELETE ROWS specified, be

aware that you could lose all the data.

 The V_TEMP_SCHEMA namespace is automatically part of the search path. Thus, temporary

table names do not need to be preceded with the schema.

 Queries that involve temporary tables have the same restrictions on SQL support as queries
that do not use temporary tables.

 Prejoin projections that refer to both temporary and non-temporary tables are not supported.

 Single-node (pinned to the initiator node only) projections are supported.

 AT EPOCH LATEST queries that refer to session-scoped temporary tables work the same as

those for transaction-scoped temporary tables. Both return all committed and uncommitted
data regardless of epoch. For example, you can commit data from a temporary table in one
epoch, advance the epoch, and then commit data in a new epoch.

-568-

SQL Reference Manual

 Moveout and mergeout operations cannot be used on session-scoped temporary data.

 If you issue the TRUNCATE TABLE (page 651) statement on a temporary table, only
session-specific data is truncated with no affect on data in other sessions.

 The DELETE ... FROM TEMP TABLE syntax does not truncate data when the table was

created with PRESERVE; it marks rows for deletion. See DELETE (page 580) for additional

details.

 In general, session-scoped temporary table data is not visible using system (virtual) tables.

 Views are supported for temporary tables.

 ANALYZE_STATISTICS (page 327) is not supported for temporary tables.

 Table partitions are not supported for temporary tables.

 Temporary tables do not recover. If a node fails, queries that use the temporary table also fail.
Restart the session and populate the temporary table.

Examples

Session-scoped rows in a GLOBAL temporary table can be preserved for the whole session or for

the current transaction only. For example, in the first statement below, ON COMMIT DELETE ROWS

indicates that data be deleted at the end of the transaction.

=> CREATE GLOBAL TEMP TABLE temp_table1 (

 x NUMERIC,

 y NUMERIC)

 ON COMMIT DELETE ROWS;

By contrast, ON COMMIT PRESERVE ROWS indicates that data be preserved until the end of the
session.

=> CREATE GLOBAL TEMP TABLE temp_table2 (

 x NUMERIC,

 y NUMERIC)

 ON COMMIT PRESERVE ROWS;

The following example specifies that the superprojection created for the temp table use RLE
encoding for the y column:

=> CREATE LOCAL TEMP TABLE temp_table1 (

 x NUMERIC,

 y NUMERIC ENCODING RLE)

 ON COMMIT DELETE ROWS;

The following example specifies that the superprojection created for the temp table use the sort
order specified by the ORDER BY clause rather than the order of columns in the column list.

=> CREATE GLOBAL TEMP TABLE temp_table1 (

 x NUMERIC,

 y NUMERIC ENCODING RLE,

 b VARCHAR(8),

 z VARCHAR(8))

 ORDER BY z, x;

See Also

ALTER TABLE (page 488), CREATE TABLE (page 546), DELETE (page 580), DROP TABLE
(page 589)

-569-

 SQL Statements

Subqueries in the Programmer's Guide

Transactions in the Concepts Guide

column-definition (temp table)

A column definition specifies the name, data type, default, and other characteristics to be applied
to a column.

Syntax

column-name data-type [DEFAULT] [NULL | NOT NULL]

 [ENCODING encoding-type] [ACCESSRANK integer]]

Parameters

column-name Specifies the name of the temporary table to be created.

data-type Specifies one of the following data types:

 BINARY

 BOOLEAN

 CHARACTER

 DATE/TIME

 NUMERIC

DEFAULT default Specifies a default data value for a column if the column is used in an
INSERT operation and no value is specified for the column. If there is no
value specified for the column and no default, the default is NULL.

Default value usage:

 A default value can be set for a column of any data type.

 The default value can be any variable-free expression, as long as it
matches the data type of the column.

 Variable-free expressions can contain constants, SQL functions,
null-handling functions, system information functions, string
functions, numeric functions, formatting functions, nested
functions, and all Vertica-supported operators

Default value restrictions:

 Expressions can contain only constant arguments.

 Subqueries and cross-references to other columns in the table are
not permitted in the expression.

 The return value of a default expression cannot be NULL.

 The return data type of the default expression after evaluation
either matches that of the column for which it is defined, or an
implicit cast between the two data types is possible. For example,
a character value cannot be cast to a numeric data type implicitly,
but a number data type can be cast to character data type
implicitly.

 Default expressions, when evaluated, conform to the bounds for
the column.

 Volatile functions are not supported when adding columns to

-570-

SQL Reference Manual

existing tables. (A volatile function changes with every invocation.)
For example, RANDOM(), CURRVAL(), TIMEOFDAY(), and
SYSDATE() are not supported. See ALTER TABLE (page 488).

Note: Vertica attempts to check the validity of default expressions, but

some errors might not be caught until run time.

NULL [Default] Specifies that the column is allowed to contain null values.

NOT NULL Specifies that the column must receive a value during INSERT and
UPDATE operations. If no DEFAULT value is specified and no value is
provided, the INSERT or UPDATE statement returns an error because no
default value exists.

ENCODING encoding-type [Optional] Specifies the type of encoding (see "encoding-type" on page
526) to use on the column. By default, the encoding-type is auto.

Caution: Using the NONE keyword for strings could negatively affect the

behavior of string columns.

ACCESSRANK integer [Optional] Overrides the default access rank for a column. This is useful if
you want to increase or decrease the speed at which a column is
accessed. See Creating and Configuring Storage Locations and
Prioritizing Column Access Speed in the Administrator's Guide.

column-name-list (temp table)

A column name list is used to rename columns when creating a temporary table from a query
(CREATE TEMPORARY TABLE AS SELECT). It can also be used to specify the encoding type
(see "encoding-type" on page 526) and access rank of the column.

Syntax

column-name-list [ENCODING encoding-type] [ACCESSRANK integer] [, ...]

 [GROUPED(projection-column-reference [,...])]

Parameters

column-name-list Specifies the new name for the column.

ENCODING encoding-type [Optional] Specifies the type of encoding to use on the column. By default,
the encoding-type is auto. See encoding type (see "encoding-type" on
page 526) for a complete list.

Caution: Using the NONE keyword for strings could negatively affect the
behavior of string columns.

ACCESSRANK integer [Optional] Overrides the default access rank for a column. This is useful if
you want to increase or decrease the speed at which a column is
accessed. See Creating and Configuring Storage Locations and
Prioritizing Column Access Speed in the Administrator's Guide.

-571-

 SQL Statements

GROUPED Groups two or more columns into a single disk file. This minimizes file I/O
for work loads that:

 Read a large percentage of the columns in a table.

 Perform single row look-ups.

 Query against many small columns.

 Frequently update data in these columns.

If you have data that is always accessed together and it is not used in
predicates, you can increase query performance by grouping these
columns. Once grouped, queries can no longer independently retrieve from
disk all records for an individual column independent of the other columns
within the group.

Note: RLE compression is reduced when a RLE column is grouped with

one or more non-RLE columns.

When grouping columns you can:

 Group some of the columns:

 (a, GROUPED(b, c), d)

 Group all of the columns:

 (GROUPED(a, b, c, d))

 Create multiple groupings in the same projection:

 (GROUPED(a, b), GROUPED(c, d))

Note: Vertica performs dynamic column-grouping. For example, to

provide better read and write efficiency for small loads, Vertica ignores any
projection-defined column grouping (or lack thereof) and groups all
columns together by default.

Notes:

If you are using a CREATE TEMPORARY TABLE AS SELECT statement:

 The data-type cannot be specified for a column in the column name list. It is derived by the
column in the query table identified in the FROM clause

 You can supply the encoding type and access rank in either the column name list or the
column list in the query, but not both.

The following statements are both allowed:

=> CREATE TEMPORARY TABLE temp_table1 (state ENCODING RLE ACCESSRANK 1, zip

ENCODING RLE, ...)

 AS SELECT * FROM customer_dimension

 ORDER BY customer_state, ... ;

=> CREATE TEMPORARY TABLE temp_table1 AS SELECT * FROM customer_dimension

ORDER BY customer_state

 ENCODED BY customer_state ENCODING RLE ACCESSRANK 1, customer_zip ENCODING

RLE ...;

The following statement is not allowed:

=> CREATE TEMPORARY TABLE temp_table1 (state ENCODING RLE ACCESSRANK 1, zip

ENCODING RLE, ...)

 AS SELECT * FROM customer_dimension

 ORDER BY customer_state

-572-

SQL Reference Manual

 ENCODED BY customer_state ENCODING RLE ACCESSRANK 1, customer_zip ENCODING

RLE ...;

Example

The following example creates a temporary table named temp_table2 and its associated
superprojection. Note that encoding-type RLE is specified for the y column definition:

=> CREATE GLOBAL TEMP TABLE temp_table2 (

 x NUMERIC,

 y NUMERIC ENCODING RLE,

 b VARCHAR(8),

 z VARCHAR(8));

The following example creates a table named temp_table3 from a query that selects data from
columns in the customer_dimension table. RLE encoding is specified for the state column in the
column name list.

=> CREATE TABLE temp_table3 (name, address, city, state ENCODING RLE, income)

 AS SELECT

 customer_name,

 customer_address,

 customer_city,

 customer_state,

 annual_income

 FROM customer_dimension

 WHERE annual_income > 1000000

 ORDER BY customer_state, annual_income;

hash-segmentation-clause (temp table)

By default, the superprojection for the temp table is unsegmented on the initiator node (a pinned
projection). If you prefer, you can choose either hash-segmentation (preferred) or
range-segmentation if you have more than one node.

Hash segmentation allows you to segment a projection based on a built-in hash function that
provides even distribution of data across some or all of the nodes in a cluster, resulting in optimal
query execution. Projections created in this manner are not pinned.

Note: Hash segmentation is the preferred method of segmentation. The Database Designer
uses hash segmentation by default.

Syntax

SEGMENTED BY expression

 [ALL NODES | NODES node [,...]]

Parameters

SEGMENTED BY expression Can be a general SQL expression, but there is no reason to use anything
other than the built-in HASH (page 236) or MODULARHASH (page 239)
functions with table columns as arguments.

Choose columns that have a large number of unique data values and

-573-

 SQL Statements

acceptable skew in their data distribution. Primary key columns that meet
the criteria could be an excellent choice for hash segmentation.

ALL NODES Automatically distributes the data evenly across all nodes at the time the
projection is created. The ordering of the nodes is fixed.

NODES node [,...] Specifies a subset of the nodes in the cluster over which to distribute the
data. You can use a specific node only once in any projection. For a list of
the nodes in a database, use the View Database command in the
Administration Tools.

Notes

 Table column names must be used in the expression, not the projection column names.

 If you want to use a different SEGMENTED BY expression, the following restrictions apply:

 All leaf expressions must be either constants or column-references (see "Column
References" on page 45) to a column in the SELECT list of the CREATE PROJECTION
command

 Aggregate functions are not allowed

 The expression must return the same value over the life of the database.

 The expression must return non-negative INTEGER values in the range 0 <= x < 263 (two to
the sixty-third power or 2^63), and values are generally distributed uniformly over that
range.

 If expression produces a value outside the expected range (a negative value for example),
no error occurs, and the row is added to the first segment of the projection.

 The hash-segmentation-clause within the CREATE TEMP TABLE statement does not support
the OFFSET keyword, which is available in the CREATE PROJECTION command. The
OFFSET is set to zero (0).

Example

This example segments the default superprojection and its buddies using HASH segmentation
based on column 1 (C1).

=> CREATE TEMPORARY TABLE ... SEGMENTED BY HASH(C1) ALL NODES;

See Also

HASH (page 236) and MODULARHASH (page 239)

range-segmentation-clause (temp table)

By default, the superprojection for the temp table is unsegmented on the initiator node (a pinned
projection). If you prefer, you can choose either hash-segmentation (preferred) or
range-segmentation if you have more than one node.

Range segmentation allows you to segment a projection based on a known range of values stored
in a specific column chosen to provide even distribution of data across a set of nodes, resulting in
optimal query execution. Projections created in this manner are not pinned.

Note: Vertica Systems, Inc. recommends that you use hash segmentation, instead of range
segmentation.

-574-

SQL Reference Manual

Syntax

SEGMENTED BY expression

 NODE node VALUES LESS THAN value

 NODE node VALUES LESS THAN MAXVALUE

Parameters (Range Segmentation)

SEGMENTED BY expression Is a single column reference (see "Column References" on page 45) to a
column in the SELECT list of the CREATE PROJECTION statement. Choose
a column that has:

 INTEGER or FLOAT data type

 A known range of data values

 An even distribution of data values

 A large number of unique data values

Avoid columns that:

 Are foreign keys

 Are used in query predicates

 Have a date/time data type

 Have correlations with other columns due to functional
dependencies.

Note: Segmenting on DATE/TIME data types is valid but guaranteed to

produce temporal skew in the data distribution and is not recommended. If
you choose this option, do not use TIME or TIMETZ because their range is
only 24 hours.

NODE node Is a symbolic name for a node. You can use a specific node only once in any

projection. For a list of the nodes in a database, use SELECT * FROM

NODE_RESOURCES.

VALUES LESS THAN value Specifies that this segment can contain a range of data values less than the
specified value, except that segments cannot overlap. In other words, the
minimum value of the range is determined by the value of the previous
segment (if any).

MAXVALUE Specifies a sub-range with no upper limit. In other words, it represents a
value greater than the maximum value that can exist in the data. The
maximum value depends on the data type of the segmentation column.

Notes

 The SEGMENTED BY expression syntax allows a general SQL expression but there is no

reason to use anything other than a single column reference (see "Column References" on
page 45) for range segmentation. If you want to use a different expression, the following
restrictions apply:

 All leaf expressions must be either constants or column-references to a column in the
SELECT list of the CREATE PROJECTION command

 Aggregate functions are not allowed

 The expression must return the same value over the life of the database.

-575-

 SQL Statements

 During INSERT or COPY to a segmented projection, if expression produces a value outside
the expected range (a negative value for example), no error occurs, and the row is added to a
segment of the projection.

See Also

NODE_RESOURCES (page 714)

-576-

 576

CREATE USER
Adds a name to the list of authorized database users.

Syntax

CREATE USER name

... [ACCOUNT {LOCK | UNLOCK}]

... [IDENTIFIED BY 'password']

... [PASSWORD EXPIRE]

... [MEMORYCAP {'memory-limit' | NONE}]

... [PROFILE {profile | DEFAULT}]

... [RESOURCE POOL pool-name]

... [RUNTIMECAP {'time-limit' | NONE}]

... [TEMPSPACECAP {'space-limit' | NONE}]

Parameters

name Specifies the name of the user to create; names that contain
special characters must be double-quoted.

Tip: Vertica database user names are logically separate from

user names of the operating system in which the server runs. If all
the users of a particular server also have accounts on the server's
machine, it makes sense to assign database user names that
match their operating system user names. However, a server that
accepts remote connections could have many database users
who have no local operating system account, and in such cases
there need be no connection between database user names and
OS user names.

ACCOUNT LOCK | UNLOCK Locks or unlocks the account. Specifying LOCK prevents the user

from logging in. Specifying UNLOCK unlocks the account, allowing

the user to log in. In addition to manually locking an account, an
account can be locked when a user has more failed login
attempts that is allowed.

IDENTIFIED BY 'password' Sets the password for the user. If this parameter is omitted, then
the user does not have a password and is not prompted for one
when connecting. If a password is supplied, it must conform to the
password complexity policy set by the user's profile (either the
one specified in the PROFILE parameter, or the default profile if
the PROFILE parameter is omitted).

PASSWORD EXPIRE Expires the user's password immediately. The user will be forced
to change the password when he or she next logs in. The grace
period setting (if any) in the user's profile is overridden.

Note: PASSWORD EXPIRE has no effect when using external

password authentication methods such as LDAP or Kerberos.

MEMORYCAP 'memory-limit' | NONE Limits the amount of memory that the user's requests can use.
This value is a number representing the amount of space,
followed by a unit (for example, '10G'). The unit can be one of the
following:

-577-

 SQL Statements

 % percentage of total memory available to the Resource
Manager. (In this case value for the size must be 0-100)

 K Kilobytes

 M Megabytes

 G Gigabytes

 T Terabytes

Setting this value to NONE means the user's sessions have no

limits on memory use. This is the default value.

PROFILE profile | DEFAULT Assigns the user to the profile named profile. Profiles set the

user's password policy. See Profiles in the Administrator's Guide
for details. Using the value DEFAULT here assigns the user to the
default profile. If this parameter is omitted, the user is assigned to
the default profile.

RESOURCE POOL pool-name Sets the name of the resource pool from which to request the
user's resources. This command creates a usage grant for the
user on the resource pool unless the resource pool is publicly
usable.

RUNTIMECAP 'time-limit' | NONE Sets the maximum amount of time any of the user's queries can
execute. time-limit is an interval, such as '1 minute' or '100
seconds' (see Interval Values (page 29) for details). The
maximum duration allowed is one year. Setting this value to
NONE means there is no time limit on the user's queries.

TEMPSPACECAP 'space-limit' | NONE Limits the amount of temporary file storage the user's requests
can use. This parameter's value has the same format as the

MEMORYCAP value.

Notes

 Only a superuser can create a user.

 User names created with double-quotes are case sensitive. For example:

=> CREATE USER "FrEd1";

In the above example, the login name must be an exact match. If the user name was created
without double-quotes (for example, FRED1), then the user can log in as FRED1, FrEd1,
fred1, and so on.

Note: ALTER USER (page 494) and DROP USER (page 591) are case-insensitive.

 Newly-created users do not have access to schema PUBLIC by default. Make sure to GRANT
USAGE ON SCHEMA PUBLIC to all users you create.

 You can change a user password by using the ALTER USER statement. If you want to
configure a user to not have any password authentication, you can set the empty password ‗‘ in
CREATE or ALTER USER statements, or omit the IDENTIFIED BY parameter in CREATE
USER.

 By default, users have the right to create temporary tables in the database.

Examples

=> CREATE USER Fred;

=> GRANT USAGE ON SCHEMA PUBLIC to Fred;

-578-

SQL Reference Manual

See Also

ALTER USER (page 494) and DROP USER (page 591)

Managing Workloads in the Administrator's Guide

CREATE VIEW
Defines a new view.

Syntax

CREATE VIEW viewname [(column-name [, ...])] AS query]

Parameters

viewname Specifies the name of the view to create. The view name must be unique. Do not
use the same name as any table, view, or projection within the database. If the view
name is not provided, the user name is used as the view name.

column-name [Optional] Specifies the list of names to be used as column names for the view.
Columns are presented from left to right in the order given. If not specified, Vertica
automatically deduces the column names from the query.

query Specifies the query that the view executes. Vertica also uses the query to deduce
the list of names to be used as columns names for the view if they are not specified.

Use a SELECT (page 617) statement to specify the query.The SELECT statement
can refer to tables, temp tables, and other views.

Notes

Views are read only. You cannot perform insert, update, delete, or copy operations on a view.

When Vertica processes a query that contains a view, the view is treated as a subquery because
the view name is replaced by the view's defining query. The following example defines a view
(ship) and illustrates how a query that refers to the view is transformed.

View: CREATE VIEW ship AS SELECT * FROM public.shipping_dimension;

Original Query: SELECT * FROM ship;

Transformed query: SELECT * FROM (SELECT * FROM public.shipping_dimension)
AS ship;

Use the DROP VIEW (page 591) statement to drop a view. Only the specified view is dropped.
Vertica does not support CASCADE functionality for views, and it does not check for
dependencies. Dropping a view causes any view that references it to fail.

Restrictions

To create a view, the user must be a superuser or have the following privileges:

 CREATE on the schema in which the view is created.

 SELECT on all the tables and views referenced within the view's defining query.

-579-

 SQL Statements

 USAGE on all the schemas that contain the tables and views referenced within the view's
defining query.

Example

=> CREATE VIEW myview AS

 SELECT SUM(annual_income), customer_state

 FROM public.customer_dimension

 WHERE customer_key IN

 (SELECT customer_key

 FROM store.store_sales_fact)

 GROUP BY customer_state

 ORDER BY customer_state ASC;

The following example uses the myview view with a WHERE clause that limits the results to
combined salaries of greater than 2,000,000,000.

=> SELECT * FROM myview WHERE SUM > 2000000000;

 SUM | customer_state

-------------+----------------

 2723441590 | AZ

 29253817091 | CA

 4907216137 | CO

 3769455689 | CT

 3330524215 | FL

 4581840709 | IL

 3310667307 | IN

 2793284639 | MA

 5225333668 | MI

 2128169759 | NV

 2806150503 | PA

 2832710696 | TN

 14215397659 | TX

 2642551509 | UT

(14 rows)

See Also

SELECT (page 617)

DROP VIEW (page 591), GRANT (View) (page 602)

REVOKE (View) (page 612)

-580-

 580

DELETE
Marks tuples as no longer valid in the current epoch. DELETE does not delete data from disk

storage for base tables. By default, delete uses the WOS and if the WOS fills up overflows to the
ROS.

Syntax

DELETE [/*+ direct */] FROM [schema_name.]table WHERE clause (on page 622)

Parameters

/*+ direct */ Writes the data directly to disk (ROS) bypassing memory
(WOS).

Note: If you delete using the direct hint, you still need to

issue a COMMIT or ROLLBACK command to finish the
transaction.

[schema_name.] Specifies the name of an optional schema.

table Specifies the name of a base table or temporary table.

Notes

 Subqueries and joins are permitted in DELETE statements, which is useful for deleting values

in a table based on values that are stored in other tables. See Examples section below.

The delete operation deletes rows that satisfy the WHERE clause from the specified table. If the

WHERE clause is absent, all table rows are deleted. The result is a valid, even though the

statement leaves an empty table. On successful completion, a delete operation returns a
count, which represents the number of rows deleted. A count of 0 is not an error; it means that
no rows matched the condition.

 To remove all rows from a temporary table, use a DELETE statement with no WHERE clause.

In this special case, the rows are not stored in the system, which greatly improves

performance. The effect is similar to when a COMMIT is issued, in that all rows are removed,

but the columns, projections, and constraints are preserved, thus making it easy to re-populate
the table.

If you include a WHERE clause when performing delete operations on temporary tables,

DELETE behaves the same as for base tables, marking all delete vectors for storage, and you

lose any performance benefits.

DELETE FROM temp_table is the only way to truncate a temporary table without ending the

transaction.

 If the delete operation succeeds on temporary tables, you cannot roll back to a prior savepoint.

 DELETE marks records for deletion in the WOS.

 You cannot delete records from a projection.

 When using more than one schema, specify the schema that contains the table in your

DELETE statement.

-581-

 SQL Statements

 To use DELETE or UPDATE (page 656) commands with a WHERE clause, the user must have

both SELECT (page 617) and DELETE privileges on the table.

Examples

The following command truncates a temporary table called temp1:

=> DELETE FROM temp1;

The following command deletes all records from base table T where C1 = C2 - C1.

=> DELETE FROM T WHERE C1=C2-C1;

The following command deletes all records from the customer table in the retail schema where the
state attribute is in MA or NH:

=> DELETE FROM retail.customer WHERE state IN ('MA', 'NH');

The following series of commands illustrate the use of subqueries in DELETE statements; they all

use the following simple schema:

=> CREATE TABLE t (a INTEGER);

=> CREATE TABLE t2 (a INTEGER);

=> INSERT INTO t VALUES (1);

=> INSERT INTO t VALUES (2);

=> INSERT INTO t2 VALUES (1);

=> COMMIT;

The following command deletes the expected row from table t:

=> DELETE FROM t WHERE t.a IN (SELECT t2.a FROM t2);

 OUTPUT

 1

(1 row)

Notice that table t now has only one row,instead of two:

=> SELECT * FROM t;

 a

 2

(1 row)

To preserve the data for this example, issue the rollback command:

=> ROLLBACK;

The following command deletes the expected two rows:

=> DELETE FROM t WHERE EXISTS (SELECT * FROM t2);

 OUTPUT

 2

(1 row)

Now table t contains no rows:

=> SELECT * FROM t;

 a

(0 rows)

-582-

SQL Reference Manual

Roll back to the previous state and verify that you still have two rows:

=> ROLLBACK;

SELECT * FROM t;

 a

 1

 2

(2 rows)

The following command uses a correlated subquery to delete all rows in table t where t.a

matches a value of t2.a.

=> DELETE FROM t WHERE EXISTS (SELECT * FROM t2 WHERE t.a = t2.a);

 OUTPUT

 1

(1 row)

Query the table to verify the row was deleted:

=> SELECT * FROM t;

 a

 2

(1 row)

Roll back to the previous state and query the table again:

=> ROLLBACK;

=> SELECT * FROM t;

 a

 1

 2

(2 rows)

See Also

DROP TABLE (page 589) and TRUNCATE TABLE (page 651)

Deleting Data and Best Practices for DELETE and UPDATE in the Administrator's Guide

Subqueries in the Programmer's Guide

DROP FUNCTION
Drops a SQL Macro from the Vertica catalog.

Syntax

DROP FUNCTION [schema-name.]name [, ...]

... ([[argname] argtype [, ...]])

Parameters

[schema-name.] [Optional] Specifies the name of a schema.

When using more than one schema, specify the schema that contains

-583-

 SQL Statements

the function to drop.

name Specifies a name for the SQL Macro (function) to drop.

argname Specifies the name of the argument, typically a column name.

argtype Specifies the data type for argument(s) that are passed to the function.
Argument types must match Vertica type names. See SQL Data
Types (page 60).

Notes

 Before you can drop a function, you must specify the argument type because there could be
several functions that share the same name with different argument types.

 Vertica does not check for dependencies, so if you drop a SQL Macro where other objects
reference it (such as views or other SQL Macros), Vertica returns an error when those objects
are used and not when the function is dropped.

Permissions

Only the superuser or owner can drop the function.

Example

The following command drops the zerowhennull function in the macros schema:

=> DROP FUNCTION macros.zerowhennull(x INT);

DROP FUNCTION

See Also

ALTER FUNCTION (page 477)

CREATE FUNCTION (page 515)

GRANT (Function) (page 596)

REVOKE (Function) (page 607)

V_CATALOG.USER_FUNCTIONS (page 683)

Using SQL Macros in the Programmer's Guide

DROP PROCEDURE
Removes an external procedure from Vertica.

Syntax

DROP PROCEDURE [schema-name.]name ([argname] argtype [,...]])

Parameters

[schema-name.] [Optional] Specifies the name of a schema.

When using more than one schema, specify the schema that contains

-584-

SQL Reference Manual

the procedure to drop.

name Specifies the name of the procedure to be dropped.

argname The argument name or names used when creating the procedure.

argtype The argument type or types used when creating the procedure.

Note

 Only the database superuser can drop procedures.

 Only the reference to the procedure is removed. The external file remains in the
<database>/procedures directory on each node in the database.

Example

=> DROP PROCEDURE helloplanet(arg1 varchar);

See Also

CREATE PROCEDURE (page 518)

DROP PROFILE
Removes a profile from the database. Only the superuser can drop a profile.

Syntax

DROP PROFILE name [, ...] [CASCADE]

Parameters

name The name of one or more profiles (separated by commas) to be removed.

CASCADE Moves all users assigned to the profile or profiles being dropped to the DEFAULT

profile. If you do not include CASCADE in the DROP PROFILE command and a

targeted profile has users assigned to it, the command returns an error.

Note: You cannot drop the DEFAULT profile.

-585-

 SQL Statements

DROP PROJECTION
Marks a projection to be dropped from the catalog so it is unavailable to user queries.

Syntax

DROP PROJECTION { base-projname | projname-node [, ...] }

... [RESTRICT | CASCADE]

Parameters

base-projname Drops the base projection and all its replicated buddies on all nodes
simultaneously.

When using more than one schema, specify the schema that contains the
projection.

projname can be 'projname' or 'schema.projname'.

projname-node Drops only the specified projection on the specified node.

When using more than one schema, specify the schema that contains the
projection.

projname can be 'projname' or 'schema.projname'.

RESTRICT Drops the projection only if it does not contain any objects. RESTRICT is the
default.

CASCADE Drops the projection even if it contains one or more objects.

Notes

To prevent data loss and inconsistencies, tables must contain one superprojection, so DROP
PROJECTION fails if a projection is the table's only superprojection. In such cases, use the DROP
TABLE command.

To a drop all projections:

=> DROP PROJECTION prejoin_p;

To drop the projection on node 2:

=> DROP PROJECTION prejoin_p_site02;

Alternatively, you can issue a command like the following, which drops projections on a particular
schema:

=> DROP PROJECTION schema1.fact_proj_a, schema1.fact_proj_b;

If you want to drop a set of buddy projections, you could be prevented from dropping them
individually using a sequence of DROP PROJECTION statements due to K-Safety violations. See
MARK_DESIGN_KSAFE (page 365) for details.

See Also

CREATE PROJECTION (page 522), DROP TABLE (page 589), GET_PROJECTIONS (page
358), GET_PROJECTION_STATUS (page 357), and MARK_DESIGN_KSAFE (page 365)

-586-

SQL Reference Manual

Adding Nodes in the Administrator's Guide

DROP RESOURCE POOL
Drops a user-created resource pool. All memory allocated to the pool is returned back to the

GENERAL pool (page 534).

Any requests queued against the pool are transferred to the GENERAL pool according to the

priority of the pool compared to the GENERAL pool. If the pool‘s priority is higher than the GENERAL

pool, the requests are placed at the head of the queue; otherwise the requests are placed at the
end of the queue.

Any users who are using the pool are switched to use the GENERAL pool with a NOTICE:

NOTICE: Switched the following users to the General pool: username

DROP RESOURCE POOL returns an error if a user using the pool doesn't have permission to use

the GENERAL pool. Existing sessions are transferred to the GENERAL pool regardless of whether

the session's user has permission to use the GENERAL pool. This can result in additional user

privileges if the pool being dropped is more restrictive than the GENERAL pool. To prevent giving

users additional privileges, follow this procedure to drop restrictive pools:

1 Revoke the permissions on the pool (page 608) for all users.

2 Close any sessions that had permissions on the pool.

3 Drop the resource pool.

Syntax

DROP RESOURCE POOL pool-name

Parameters

pool-name Specifies the name of the resource pool to be dropped.

Example

The following command drops the resource pool that was created for the CEO:

=> DROP RESOURCE POOL ceo_pool;

See Also

ALTER RESOURCE POOL (page 481)

CREATE RESOURCE POOL (page 531)

Managing Workloads in the Administrator's Guide

DROP SCHEMA
Removes a schema from the database permanently. Be sure that you want to remove the schema
and all its objects before you drop it because DROP SCHEMA is an irreversible process.

-587-

 SQL Statements

Syntax

DROP SCHEMA name [, ...] [CASCADE | RESTRICT]

Parameters

name Specifies the name of the schema to drop.

CASCADE Drops the schema even if it contains one or more objects.

RESTRICT Drops the schema only if it does not contain any objects (the
default).

Restrictions

 By default, a schema cannot be dropped if it contains one or more objects. To force a drop, use
the CASCADE statement.

 The PUBLIC schema cannot be dropped.

 A schema can only be dropped by its owner or a superuser.

Notes

 A schema owner can drop a schema even if the owner does not own all the objects within the
schema. All the objects within the schema is also dropped.

 If a user is accessing any object within a schema that is in the process of being dropped, the
schema is not deleted until the transaction completes.

 Canceling a DROP SCHEMA statement can cause unpredictable results.

Examples

The following example drops schema S1 only if it doesn't contain any objects:

=> DROP SCHEMA S1;

The following example drops schema S1 whether or not it contains objects:

=> DROP SCHEMA S1 CASCADE;

DROP SEQUENCE
Removes the specified sequence number generator.

Syntax

DROP SEQUENCE [schema-name.]name [, ...]

Parameters

[schema-name.] [Optional] Specifies the name of a schema.

When using more than one schema, specify the schema that contains
the sequence to drop.

name Specifies the name of the sequence to drop.

-588-

SQL Reference Manual

Notes

 A sequence can only be dropped by its owner or by a superuser.

 For sequences mentioned in a table's default expression, the default expression fails the next
time you try to load data. Vertica does not check for these instances.

 The CASCADE keyword is not supported. Sequences used in a default expression of a
column cannot be dropped until all references to the sequence are removed from the default
expression.

Example

The following command drops the sequence named sequential.

=> DROP SEQUENCE sequential;

See Also

ALTER SEQUENCE (page 485)

CREATE SEQUENCE (page 540)

CURRVAL (page 255)

GRANT (Sequence) (page 599)

NEXTVAL (page 254)

Using Sequences and Sequence Privileges in the Administrator's Guide

-589-

 589

DROP TABLE
Removes a table and, optionally, its associated projections.

Syntax

DROP TABLE [schema-name.]table [, ...] [CASCADE]

Parameters

[schema-name.] [Optional] Specifies the name of a schema.

When using more than one schema, specify the schema that contains the
table to drop.

table Specifies the name of a schema table. When using more than one schema,
specify the schema that contains the table in the DROP TABLE statement.

CASCADE [Optional] Drops all projections that include the table.

If you try to drop an table that has associated projections, a message listing the projections
displays. For example:

=> DROP TABLE d1;

NOTICE: Constraint - depends on Table d1

NOTICE: Projection d1p1 depends on Table d1

NOTICE: Projection d1p2 depends on Table d1

NOTICE: Projection d1p3 depends on Table d1

NOTICE: Projection f1d1p1 depends on Table d1

NOTICE: Projection f1d1p2 depends on Table d1

NOTICE: Projection f1d1p3 depends on Table d1

ERROR: DROP failed due to dependencies: Cannot drop Table d1 because other objects

depend on it

HINT: Use DROP ... CASCADE to drop the dependent objects too.

=> DROP TABLE d1 CASCADE;

DROP TABLE

Notes

 The table owner, schema owner, or superuser can drop a table.

Note: The schema owner can drop a table but cannot truncate a table.

 Canceling a DROP TABLE statement can cause unpredictable results.

 Make sure that all other users have disconnected before using DROP TABLE.

 Views that reference a table that is dropped and then replaced by another table with the same
name continue to function and use the contents of the new table, as long as the new table
contains the same columns and column names.

 Use the multiple projection syntax in K-safe clusters.

See Also

DELETE (page 580)

DROP PROJECTION (page 585)

-590-

SQL Reference Manual

TRUNCATE TABLE (page 651)

Adding Nodes and Deleting Data in the Administrator's Guide

-591-

 591

DROP USER
Removes a name from the list of authorized database users.

Syntax

DROP USER name [, ...] [CASCADE]

Parameters

name Specifies the name or names of the user to drop.

CASCADE [Optional] Drops all user-defined objects created by the user dropped,
including schema, table and all views that reference the table, and the
table's associated projections.

Examples

DROP USER <name> fails if objects exist that were created by the user, such as schemas, tables

and their associated projections:

=> DROP USER user1;

 NOTICE: Table T_tbd1 depends on User user1

 ROLLBACK: DROP failed due to dependencies

 DETAIL: Cannot drop User user1 because other objects depend on it

 HINT: Use DROP ... CASCADE to drop the dependent objects too

DROP USER <name> CASCADE succeeds regardless of any pre-existing user-defined objects. The

statement forcibly drops all user-defined objects, such as schemas, tables and their associated
projections:

=> DROP USER user1 CASCADE;

Caution: Tables owned by the user being dropped cannot be recovered after you issue DROP

USER CASCADE.

DROP USER <username> succeeds if no user-defined objects exist (no schemas, tables or

projections defined by the user):

=> CREATE USER user2;

=> DROP USER user2;

DROP VIEW
Removes the specified view.

Syntax

DROP VIEW name [, ...]

-592-

SQL Reference Manual

Parameters

name Specifies the name of the view to drop.

Notes

 Only the specified view is dropped. Vertica does not support cascade functionality for views
and it does not check for dependencies. Dropping a view causes any view that references it to
fail.

 Views that reference a view or table that is dropped and then replaced by another view or table
with the same name continue to function using the contents of the new view or table if it
contains the same column names. If the column data type changes, the server coerces the old
data type to the new one, if possible. Otherwise, it returns an error.

Restrictions

To drop a view, the user must be either a superuser or the person who created the view.

Examples

=> DROP VIEW myview;

-593-

 593

EXPLAIN
Outputs the query plan.

Syntax

EXPLAIN { SELECT... | INSERT... | UPDATE... }

Output

Note: The EXPLAIN command is provided as a support feature and is not fully described here.
For information on how to interpret the output, contact Technical Support (on page 1).

 A compact human-readable representation of the query plan, laid out hierarchically. For
example:

Vertica QUERY PLAN DESCRIPTION:

 ID:1 Cost:2.7 Card:-1

 Projection: P0

 ID:2 Cost:0.1 Card:-1

 DS: Value Idx

 ProjCol:c_state, Table Oid.Attr#:25424.4

 Pred: Y Out: P

 ID:3 Cost:0.3 Card:-1

 DS: Position Filtered by ID:2

 ProjCol:c_gender, Table Oid.Attr#:25424.2

 Pred: Y Out: P

 ID:4 Cost:0.3 Card:-1

 DS: Position Filtered by ID:3

 ProjCol:c_name, Table Oid.Attr#:25424.3

 Pred: Y Out: P

 ID:5 Cost:1 Card:-1

 DS: Position Filtered by ID:4

 ProjCol:c_cid, Table Oid.Attr#:25424.1

 Pred: N Out: V

 ID:6 Cost:1 Card:-1

 DS: Position Filtered by ID:4

 ProjCol:c_state, Table Oid.Attr#:25424.4

 Pred: N Out: V

 A GraphViz format of the graph for display in a graphical format. Graphviz is a graph plotting
utility with layout algorithms, etc. You can obtain a Fedora Core 4 RPM for GraphViz from:

yum -y install graphviz

A example of a GraphViz graph for a Vertica plan:

digraph G {

graph [rankdir=BT]

0[label="Root"];

1[label="ValExpNode"];

2[label="VDS:DVIDX(P0.c_state)"];

3[label="PDS(P0.c_gender)"];

-594-

SQL Reference Manual

4[label="PDS(P0.c_name)"];

5[label="Copy"];

6[label="PDS(P0.c_cid)"];

7[label="PDS(P0.c_state)"];

1->0 [label="V"];

1->0 [label="V"];

2->3 [label="P"];

3->4 [label="P"];

4->5 [label="P"];

5->6 [label="P"];

5->7 [label="P"];

6->1 [label="P+V"];

7->1 [label="P+V"]; }

 To create a picture of the plan, copy the output above to a file, in this example /tmp/x.txt:

1. dot -Tps /tmp/x.txt > /tmp/x.ps

2. ggv x.ps [evince x.ps works if you don't have ggv]

3. Alternative: dot -Tps | ghostview - and paste in the digraph.

4. Alternative: generate jpg using -Tjpg.

5. To scale an image for printing (8.5"x11" in this example):

6. Portrait: dot -Tps -Gsize="7.5,10" -Gmargin="0.5" ...

7. Landscape: dot -Tps -Gsize="10,7.5" -Gmargin="0.5" -Grotate="90" ...

-595-

 SQL Statements

Example:

GraphViz Information

http://www.graphviz.org/Documentation.php (http://www.graphviz.org/Documentation.php)

GRANT (Database)
Grants the right to create schemas within the database to a user.

http://www.graphviz.org/Documentation.php
http://www.graphviz.org/Documentation.php

-596-

SQL Reference Manual

Syntax

GRANT {

... { CREATE [, ...]

... | { TEMPORARY | TEMP }

... | ALL [PRIVILEGES] } }

... ON DATABASE database-name [, ...]

... TO username [, ...]

... [WITH GRANT OPTION]

Parameters

CREATE Allows the user to create schemas within the specified
database.

TEMPORARY | TEMP Allows the user to create temp tables in the database.

Note: This privilege is provided by default with CREATE

USER (page 576).

ALL Applies to all privileges.

PRIVILEGES Is for SQL standard compatibility and is ignored.

database-name Identifies the database in which to grant the privilege.

username Grants the privilege to the specified user.

WITH GRANT OPTION Allows the recipient of the privilege to grant it to other users.

Notes

By default, only the superuser has the right to create a database schema.

Example

The following example grants Fred the right to create schemas on vmartdb.

=> GRANT CREATE ON DATABASE vmartdb TO Fred;

GRANT (Function)
Grants the EXECUTE privilege on a SQL Macro to a database user.

Syntax

GRANT EXECUTE

... ON FUNCTION [schema-name.]function-name [, ...]

... ([argname] argtype [,...]])

... TO { username | PUBLIC } [, ...]

-597-

 SQL Statements

Parameters

[schema-name.]function-name Specifies the SQL Macro on which to grant the EXECUTE

privilege. When using more than one schema, specify the
schema that contains the function.

argname Specifies the argument name(s).

argtype Specifies the argument data types(s).

username Grants the privilege to the specified user.

PUBLIC Grants the privilege to all users.

Permissions

 Only the superuser and owner can grant EXECUTE privilege on a SQL Macro.

 Additionally, users must have USAGE privileges on the schema that contains the function.

See GRANT (Schema) (page 599).

Example

The following command grants EXECUTE privileges to user Fred on the zeroifnull function:

=> GRANT EXECUTE ON FUNCTION zeroifnull (x INT) TO Fred;

See Also

REVOKE (Function) (page 607)

GRANT (Procedure)
Grants the execute privilege on a procedure to a database user.

Syntax

GRANT EXECUTE

... ON PROCEDURE [schema-name.]procedure-name [, ...]

... ([argname] argtype [,...]])

... TO { username | PUBLIC } [, ...]

Parameters

[schema-name.]procedure-name Specifies the procedure on which to grant the execute
privilege. When using more than one schema, specify the
schema that contains the procedure.

argname Specifies the argument name or names used when creating
the procedure.

argtype Specifies the argument types used when creating the
procedure.

username Grants the privilege to the specified user.

PUBLIC Grants the privilege to all users.

-598-

SQL Reference Manual

Notes

 Only the superuser can grant USAGE on a procedure.

 Additionally, users must have privileges on the schema that contains the procedure.

See Also

REVOKE (procedure) (page 608)

GRANT (Resource Pool)
Grants access privilege for a resource pool to a database user.

Syntax

GRANT USAGE

... ON RESOURCE POOL resource-pool

... TO { username | PUBLIC } [, ...]

Parameters

resource-pool Specifies the resource pool on which to grant the usage privilege.

username Grants the privilege to the specified user.

PUBLIC Grants the privilege to all users.

Notes

Once granted usage rights, users can switch to using the resource pool using ALTER USER
(page 494) (by passing their own username) or SET SESSION RESOURCE POOL (page 643).

See Also

REVOKE (Resource Pool) (page 608)

-599-

 599

GRANT (Schema)
Grants privileges on a schema to a database user.

Syntax

GRANT {

... { CREATE | USAGE } [, ...]

... | ALL [PRIVILEGES] }

... ON SCHEMA schemaname [, ...]

... TO { username | PUBLIC } [, ...]

... [WITH GRANT OPTION]

Parameters

CREATE Allows the user read access to the schema and the right to
create tables and views within the schema.

USAGE Allows the user access to the objects contained within the
schema. This allows the user to look up objects within the
schema. Note that the user must also be granted access to the
individual objects. See the GRANT TABLE (page 601) and
GRANT VIEW (page 602) statements.

ALL Applies to all privileges.

PRIVILEGES Is for SQL standard compatibility and is ignored.

schemaname Is the name of the schema for which privileges are being
granted.

username Grants the privilege to a specific user.

PUBLIC Grants the privilege to all users.

WITH GRANT OPTION Allows the recipient of the privilege to grant it to other users.

Notes

Newly-created users do not have access to schema PUBLIC by default. Make sure to grant
USAGE on schema PUBLIC to all users you create.

GRANT (Sequence)
Grants privileges on a sequence generator to a user.

Syntax

GRANT {

... { USAGE | SELECT | UPDATE }

... | ALL [PRIVILEGES] }

... ON SEQUENCE [schema-name.]sequence_name [, ...]

... TO { username | PUBLIC } [, ...]

... [WITH GRANT OPTION]

-600-

SQL Reference Manual

Parameters

USAGE Allows the user to use both the CURRVAL and NEXTVAL functions on
the specified sequence.

SELECT Allows the user to use the CURRVAL function on the specified
sequence.

UPDATE Allows the user to use the NEXTVAL function on the specified
sequence.

ALL Applies to all privileges.

PRIVILEGES Is for SQL standard compatibility and is ignored.

[schema-name.]

sequence_name

Specifies the sequence on which to grant the privileges. When using
more than one schema, specify the schema that contains the
sequence on which to grant privileges.

username Grants the privilege to the specified user.

PUBLIC Grants the privilege to all users.

WITH GRANT OPTION Allows the user to grant the same privileges to other users.

Notes

The user must also be granted USAGE on the schema that contains the sequence. See GRANT
(Schema) (page 599).

-601-

 601

GRANT (Table)
Grants privileges on a table to a user.

Syntax

GRANT { { SELECT | INSERT | UPDATE | DELETE | REFERENCES } [,...]

... | ALL [PRIVILEGES] }

... ON [TABLE] [schema-name.]tablename [, ...]

... TO { username | PUBLIC } [, ...]

... [WITH GRANT OPTION]

Parameters

SELECT Allows the user to SELECT from any column of the specified table.

INSERT Allows the user to INSERT tuples into the specified table and to
use the COPY (page 497) command to load the table.

Note: COPY FROM STDIN is allowed to any user granted the

INSERT privilege, while COPY FROM <file> is an admin-only
operation.

UPDATE Allows the user to UPDATE tuples in the specified table.

DELETE Allows DELETE of a row from the specified table.

REFERENCES Is necessary to have this privilege on both the referencing and
referenced tables in order to create a foreign key constraint.

ALL Applies to all privileges.

PRIVILEGES Is for SQL standard compatibility and is ignored.

[schema-name.]tablename Specifies the table on which to grant the privileges. When using
more than one schema, specify the schema that contains the table
on which to grant privileges.

username Grants the privilege to the specified user.

PUBLIC Grants the privilege to all users.

WITH GRANT OPTION Allows the user to grant the same privileges to other users.

Notes

 The user must also be granted USAGE on the schema that contains the table. See GRANT
(Schema) (page 599).

 To use the DELETE (page 580) or UPDATE (page 656) commands with a WHERE clause
(page 622), a user must have both SELECT and UPDATE and DELETE privileges on the
table.

 The user can be granted privileges on a global temporary table, but not a local temporary
table.

-602-

SQL Reference Manual

GRANT (View)
Grants privileges on a view to a database user.

Syntax

GRANT {

... { SELECT }

... | ALL [PRIVILEGES] }

... ON [schema-name.]viewname [, ...]

... TO { username | PUBLIC } [, ...]

... [WITH GRANT OPTION]

Parameters

SELECT Allows the user to perform SELECT operations on a view and
the resources referenced within it.

PRIVILEGES Is for SQL standard compatibility and is ignored.

ALL Applies to all privileges.

[schema-name.]viewname Specifies the view on which to grant the privileges. When using
more than one schema, specify the schema that contains the
view.

username Grants the privilege to the specified user.

PUBLIC Grants the privilege to all users.

WITH GRANT OPTION Allows the user to grant the same privileges to other users.

Notes

If userA wants to grant userB access to a view, userA must specify WITH GRANT OPTION on

the base table, in addition to the view, regardless of whether userB (grantee) has access to the

base table.

-603-

 603

INSERT
Inserts values into all projections of a table. By default, Insert first uses the WOS and if the WOS is
full then overflows to the ROS.

Note: If a table has no associated projections, Vertica creates a default superprojection for the
table in which to insert the data.

Syntax

INSERT [/*+ direct */]

... INTO [schema-name.]table

... [(column [, ...])]

... { DEFAULT VALUES

... | VALUES ({ expression | DEFAULT } [, ...])

... | SELECT... (page 617) }

Parameters

/*+ direct */ Writes the data directly to disk (ROS) bypassing memory (WOS).

Note: If you insert using the direct hint, you still need to issue a

COMMIT or ROLLBACK command to finish the transaction.

[schema-name.]table Specifies the name of a table in the schema. You cannot INSERT tuples
into a projection. When using more than one schema, specify the schema
that contains the table.

column Specifies a column of the table.

DEFAULT VALUES Fills all columns with their default values as specified in CREATE TABLE
(page 546).

VALUES Specifies a list of values to store in the corresponding columns. If no value
is supplied for a column, Vertica implicitly adds a DEFAULT value, if
present. Otherwise Vertica inserts a NULL value or, if the column is defined
as NOT NULL, returns an error.

expression Specifies a value to store in the corresponding column.

DEFAULT Stores the default value in the corresponding column.

SELECT... Specifies a query (SELECT (page 617) statement) that supplies the rows
to be inserted.

Notes

 An INSERT ... SELECT statement refers to tables in both its INSERT and SELECT clauses.
Isolation level applies only to the SELECT clauses and work just like an normal query.

 You can list the target columns in any order. If no list of column names is given at all, the
default is all the columns of the table in their declared order; or the first N column names, if
there are only N columns supplied by the VALUES clause or query. The values supplied by the
VALUES clause or query are associated with the explicit or implicit column list left-to-right.

 You must insert one complete tuple at a time.

-604-

SQL Reference Manual

 Do not use meta-functions in INSERT statements.

Examples

=> INSERT INTO FACT VALUES (101, 102, 103, 104);

=> INSERT INTO CUSTOMER VALUES (10, 'male', 'DPR', 'MA', 35);

=> INSERT INTO Retail.T1 (C0, C1) VALUES (1, 1001);

=> INSERT INTO films

 SELECT * FROM tmp_films

 WHERE date_prod < '2004-05-07';

LCOPY
Loads a data file from a client system into the database. This statement is nearly identical to the
COPY (page 497) statement with a few exceptions:

 It loads data from a client system, rather than a cluster host. This means LCOPY does not

support 'pathToData' ON nodename.

 It does not support the FORMAT parameter that COPY uses to specify the format of date/time
and binary data types.

 Instead of REJECTED DATA, LCOPY has a REJECTEDFILE parameter that takes the path of
a file on the client system where it should save a list of rejected data. The row numbers of
rejected rows are written to this file rather than the full content.

 The LCOPY command is only available via the ODBC interface. You cannot use it interactively
from vsql.

LCOPY converts the end of line sequence of the client platform into the standard end of line
sequence used in Vertica. On Windows platforms, the end of line sequence is \r\n (carriage return
character followed by a newline character) while on Linux platforms, the end of line sequence is
just \n (newline). The Vertica client driver converts these end of line sequences as it loads the
data.

For example, loading the following text file using LCOPY (with | set as the record terminator, and
the escaped characters \r and \n replaced by actual control characters) is interpreted differently
depending on the client system's platform:

1|2\r\n|3|

On a Windows platform, the \r\n is recognized as the end of line sequence, so the Vertica client
driver translates it into the standard end of line sequence (\n). The result is a single-column table
with the entries:

 a

 1

 2\n

 3

The \r is missing, since the \r\n sequence was translated to a single \n.

Using LCOPY from a Linux platform, only the \n is recognized as an end of line character, so the
resulting table is:

 a

 1

-605-

 SQL Statements

 2\r\n

 3

To avoid confusion, you should ensure that the text files you load using LCOPY use the native line
end sequence for your client's operating system.

Example

The following code loads the table TEST from the file C:\load.dat located on a system where

the code is run.

ODBCConnection<ODBCDriverConnect> test("VerticaSQL");

test.connect();

char *sql = "LCOPY test FROM 'C:\load.dat' REJECTEDFILE 'c:\rejects.log' DELIMITER

'|';";

ODBCStatement stm(test.conn);

stm.execute(sql);

PROFILE
Profiles a single SQL statement.

Syntax

PROFILE { SELECT ... }

Output

Writes a hint to stderr, as described in the example below.

Notes

To profile a single statement add the PROFILE keyword to the beginning of the statement:

=> PROFILE SELECT customer_name, annual_income

 FROM public.customer_dimension

 WHERE (customer_gender, annual_income) IN (

 SELECT customer_gender, MAX(annual_income)

 FROM public.customer_dimension

 GROUP BY customer_gender);

PROFILE < SELECT ...> saves profiling information for future analysis.

A hint is written to stderr (the standard error stream and default destination for error messages

and other diagnostic warnings, which are typically output to the screen) while the statement is
executing:

NOTICE: Statement is being profiled.

HINT: select * from v_monitor.execution_engine_profiles where

transaction_id=45035996273740886 and statement_id=10;

NOTICE: Initiator memory estimate for query:

[on pool general: 1418047 KB, minimum: 192290 KB]

NOTICE: Total memory required by query: [1418047 KB]

 customer_name | annual_income

--------------------+---------------

 Meghan U. Miller | 999960

 Michael T. Jackson | 999981

-606-

SQL Reference Manual

(2 rows)

Tip: Use the statement returned by the hint as a starting point for reviewing the query's profiling
data.

To see what counters are available, issue the following command:

=> SELECT DISTINCT(counter_name) FROM EXECUTION_ENGINE_PROFILES;

RELEASE SAVEPOINT
Destroys a savepoint without undoing the effects of commands executed after the savepoint was
established.

Syntax

RELEASE [SAVEPOINT] savepoint_name

Parameters

savepoint_name Specifies the name of the savepoint to
destroy.

Notes

Once destroyed, the savepoint is unavailable as a rollback point.

Example

The following example establishes and then destroys a savepoint called my_savepoint. The
values 101 and 102 are both inserted at commit.

=> INSERT INTO product_key VALUES (101);

=> SAVEPOINT my_savepoint;

=> INSERT INTO product_key VALUES (102);

=> RELEASE SAVEPOINT my_savepoint;

=> COMMIT;

See Also

SAVEPOINT (page 615) and ROLLBACK TO SAVEPOINT (page 614)

REVOKE (Database)
Revokes the right for the specified user to create schemas in the specified database.

Syntax

REVOKE [GRANT OPTION FOR]

... { CREATE | { TEMPORARY | TEMP } [,...] }

... | ALL [PRIVILEGES] }

... ON DATABASE database-name [, ...]

... FROM username [, ...]

-607-

 SQL Statements

Parameters

CREATE Revokes the right to create schemas in the specified database.

TEMPORARY | TEMP Revokes the right to create temp tables in the database.

Note: This privilege is provided by default with CREATE USER

(page 576).

ALL Applies to all privileges.

PRIVILEGES Is for SQL standard compatibility and is ignored.

database-name Identifies the database from which to revoke the privilege.

username Identifies the user from whom to revoke the privilege.

Example

The following example revokes Fred's right to create schemas on vmartdb:

=> REVOKE CREATE ON DATABASE vmartdb FROM Fred;

The following revokes Fred's right to create temporary tables in vmartdb:

=> REVOKE TEMPORARY ON DATABASE vmartdb FROM Fred;

REVOKE (Function)
Revokes the EXECUTE privilege on a SQL Macro to a database user.

Syntax

REVOKE EXECUTE

... ON FUNCTION [schema-name.]function-name [, ...]

... ([argname] argtype [,...]])

... FROM { username | PUBLIC } [, ...]

Parameters

[schema-name.]function-name Specifies the SQL Macro from which to revoke the EXECUTE

privilege. When using more than one schema, specify the
schema that contains the function.

argname Specifies the argument name or names.

argtype Specifies the argument data type or types.

username Revokes the privilege from the specified user.

PUBLIC Revokes the privilege from all users.

Permissions

Only the superuser and owner can revoke EXECUTE privilege on a SQL Macro.

-608-

SQL Reference Manual

Example

The following command revokes EXECUTE privileges from user Fred on the zeroifnull

function:

=> REVOKE EXECUTE ON FUNCTION zeroifnull (x INT) FROM Fred;

See Also

GRANT (Function) (page 596)

REVOKE (Procedure)
Revokes the execute privilege on a procedure from a user.

Syntax

REVOKE EXECUTE

... ON [schema-name.]procedure-name [, ...]

... ([argname] argtype [,...]])

... FROM { username | PUBLIC } [, ...]

Parameters

[schema-name.]procedure-name Specifies the procedure on which to revoke the execute
privilege. When using more than one schema, specify the
schema that contains the procedure.

argname Specifies the argument names used when creating the
procedure.

argtype Specifies the argtypes used when creating the procedure.

username Specifies the user from whom to revoke the privilege.

PUBLIC Revokes the privilege from all users.

Notes

Only the superuser can revoke USAGE on a procedure.

See Also

GRANT (Procedure) (page 597)

REVOKE (Resource Pool)
Revokes a user's access privilege to a resource pool.

Syntax

REVOKE USAGE

... ON RESOURCE POOL resource-pool

... FROM { username | PUBLIC } [, ...]

-609-

 SQL Statements

Parameters

resource-pool Specifies the resource pool from which to revoke the usage privilege.

username Revokes the privilege from the specified user.

PUBLIC Revokes the privilege from all users.

Notes

 Vertica checks resource pool permissions when a user initially switches to the pool, rather than
on each access. Revoking a user's permission to use a resource pool does not affect existing
sessions. You need to close the user's open sessions that are accessing the resource pool if
you want to prevent them from continuing to use the pool's resources.

 It is an error to revoke a user's access permissions for the resource pool to which they are
assigned (their default pool). You must first change the pool they are assigned to using ALTER
USER ... RESOURCE POOL (page 494) (potentially using GRANT USAGE ON RESOURCE
POOL (page 598) first to allow them to access the new pool) before revoking their access.

See Also

GRANT (Resource Pool) (page 598)

-610-

 610

REVOKE (Schema)
Revokes privileges on a schema from a user.

Note: In a database with trust authentication, the GRANT and REVOKE statements appear to
work as expected but have no actual effect on the security of the database.

Syntax

REVOKE [GRANT OPTION FOR] {

... { CREATE | USAGE } [,...]

... | ALL [PRIVILEGES] }

... ON SCHEMA schema-name [, ...]

... FROM { username | PUBLIC } [, ...]

Parameters

GRANT OPTION FOR Revokes the grant option for the privilege, not the privilege
itself. If omitted, revokes both the privilege and the grant
option.

CREATE Allows the user read access to the schema and the right to
create tables and views within the schema.

USAGE Allows the user access to the objects contained within the
schema. This allows the user to look up objects within the
schema. Note that the user must also be granted access to
the individual objects. See the GRANT TABLE (page 601)
and GRANT VIEW (page 602) statements.

ALL Applies to all privileges.

PRIVILEGES Is for SQL standard compatibility and is ignored.

schemaname Is the name of the schema for which privileges are being
granted.

username Grants the privilege to a specific user.

PUBLIC Grants the privilege to all users.

REVOKE (Sequence)
Revokes privileges on a sequence generator from a user.

Syntax

REVOKE [GRANT OPTION FOR]

... { { USAGE | SELECT | UPDATE }

... | ALL [PRIVILEGES] }

... ON SEQUENCE [schema-name.]sequence_name [, ...]

... FROM { username | PUBLIC } [, ...]

-611-

 SQL Statements

Parameters

USAGE Revokes the right to use both the CURRVAL and NEXTVAL
functions on the specified sequence.

SELECT Revokes the right to use the CURRVAL function on the
specified sequence.

UPDATE Revokes the right to use the NEXTVAL function on the
specified sequence.

ALL Applies to all privileges.

PRIVILEGES Is for SQL standard compatibility and is ignored.

[schema-name.]sequence_name Specifies the sequence from which to revoke privileges. When
using more than one schema, specify the schema that
contains the sequence from which to revoke privileges.

username Revokes the privilege from the specified user.

PUBLIC Revokes the privilege from all users.

-612-

 612

REVOKE (Table)
Revokes privileges on a table from a user.

Note: In a database with trust authentication, the GRANT and REVOKE statements appear to
work as expected but have no actual effect on the security of the database.

Syntax

REVOKE [GRANT OPTION FOR]

... { { SELECT | INSERT | UPDATE | DELETE | REFERENCES } [,...]

... | ALL [PRIVILEGES] }

... ON [TABLE] [schema-name.]tablename [, ...]

... FROM { username | PUBLIC } [, ...]

Parameters

GRANT OPTION FOR Revokes the grant option for the privilege, not the privilege itself. If
omitted, revokes both the privilege and the grant option.

SELECT Allows the user to SELECT from any column of the specified table.

INSERT Allows the user to INSERT tuples into the specified table and to
use the COPY (page 497) command to load the table.

Note: COPY FROM STDIN is allowed to any user granted the

INSERT privilege, while COPY FROM <file> is an admin-only
operation.

UPDATE Allows the user to UPDATE tuples in the specified table.

DELETE Allows DELETE of a row from the specified table.

REFERENCES Is necessary to have this privilege on both the referencing and
referenced tables in order to create a foreign key constraint.

ALL Applies to all privileges.

PRIVILEGES Is for SQL standard compatibility and is ignored.

[schema-name.]tablename Specifies the table on which to grant the privileges. When using
more than one schema, specify the schema that contains the table
on which to grant privileges.

username Grants the privilege to the specified user.

PUBLIC Grants the privilege to all users.

REVOKE (View)
Revokes privileges on a view from a user.

Note: In a database with trust authentication, the GRANT and REVOKE statements appear to
work as expected but have no actual effect on the security of the database.

-613-

 SQL Statements

Syntax

REVOKE [GRANT OPTION FOR]

... { { SELECT } }

... ON [VIEW] [schema-name.]viewname [, ...]

... FROM { username | PUBLIC } [, ...]

Parameters

GRANT OPTION FOR Revokes the grant option for the privilege, not the privilege itself. If
omitted, revokes both the privilege and the grant option.

SELECT Allows the user to perform SELECT operations on a view and the
resources referenced within it.

PRIVILEGES Is for SQL standard compatibility and is ignored.

[schema-name.]viewname Specifies the view on which to revoke the privileges. When using
more than one schema, specify the schema that contains the view.

username Revokes the privilege from the specified user.

PUBLIC Revokes the privilege from all users.

-614-

 614

ROLLBACK
Ends the current transaction and discards all changes that occurred during the transaction.

Syntax

ROLLBACK [WORK | TRANSACTION]

Parameters

WORK

TRANSACTION

Have no effect; they are optional keywords for readability.

Notes

When an operation is rolled back, any locks that are acquired by the operation are also rolled
back.

ROLLBACK TO SAVEPOINT
Rolls back all commands that have been entered within the transaction since the given savepoint
was established.

Syntax

ROLLBACK TO [SAVEPOINT] savepoint_name

Parameters

savepoint_name Specifies the name of the savepoint to roll back to.

Notes

 The savepoint remains valid and can be rolled back to again later if needed.

 When an operation is rolled back, any locks that are acquired by the operation are also rolled
back.

 ROLLBACK TO SAVEPOINT implicitly destroys all savepoints that were established after the
named savepoint.

Example

The following example rolls back the values 102 and 103 that were entered after the savepoint,
my_savepoint, was established. Only the values 101 and 104 are inserted at commit.

=> INSERT INTO product_key VALUES (101);

=> SAVEPOINT my_savepoint;

=> INSERT INTO product_key VALUES (102);

=> INSERT INTO product_key VALUES (103);

=> ROLLBACK TO SAVEPOINT my_savepoint;

=> INSERT INTO product_key VALUES (104);

=> COMMIT;

-615-

 SQL Statements

See Also

RELEASE SAVEPOINT (page 606) and SAVEPOINT (page 615)

SAVEPOINT
Creates a special mark, called a savepoint, inside a transaction. A savepoint allows all commands
that are executed after it was established to be rolled back, restoring the transaction to the state it
was in at the point in which the savepoint was established.

Tip: Savepoints are useful when creating nested transactions. For example, a savepoint could
be created at the beginning of a subroutine. That way, the result of the subroutine could be
rolled back if necessary.

Syntax

SAVEPOINT savepoint_name

Parameters

savepoint_name Specifies the name of the savepoint to create.

Notes

 Savepoints are local to a transaction and can only be established when inside a transaction
block.

 Multiple savepoints can be defined within a transaction.

 If a savepoint with the same name already exists, it is replaced with the new savepoint.

Example

The following example illustrates how a savepoint determines which values within a transaction
can be rolled back. The values 102 and 103 that were entered after the savepoint, my_savepoint,
was established are rolled back. Only the values 101 and 104 are inserted at commit.

=> INSERT INTO T1 (product_key) VALUES (101);

=> SAVEPOINT my_savepoint;

=> INSERT INTO T1 (product_key) VALUES (102);

=> INSERT INTO T1 (product_key) VALUES (103);

=> ROLLBACK TO SAVEPOINT my_savepoint;

=> INSERT INTO T1 (product_key) VALUES (104);

=> COMMIT;

=> SELECT product_key FROM T1;

--

101

104

(2 rows)

See Also

RELEASE SAVEPOINT (page 606) and ROLLBACK TO SAVEPOINT (page 614)

-616-

SQL Reference Manual

-617-

 617

SELECT
Retrieves a result set from one or more tables.

Syntax

[AT EPOCH LATEST] | [AT TIME 'timestamp']

SELECT [ALL | DISTINCT] (expression [, ...])]]

... *

... | expression [AS] output_name] [, ...]

... [INTO (page 618)]

... [FROM (page 620) [, ...]]

... [WHERE (page 622) condition]

... [TIMESERIES (page 623) slice_time]

... [GROUP BY (page 626) expression [, ...]]

... [HAVING (page 628) condition [, ...]]

... [WINDOW window_name AS (window_definition_clause) [,...]]

... [UNION (page 652)]

... [ORDER BY (page 629) expression [ASC | DESC] [,...]]

... [LIMIT (page 631) { count | ALL }]

... [OFFSET (page 632) start]

... [FOR UPDATE [OF table_name [, ...]]]

Parameters

AT EPOCH LATEST

Queries all data in the database up to but not including the current
epoch without holding a lock or blocking write operations. See

Snapshot Isolation for more information. AT EPOCH LATEST is

ignored when applied to temporary tables (all rows are returned).

By default, queries run under the READ COMMITTED isolation level,

which means:

 AT EPOCH LATEST includes data from the latest committed

DML transaction.

 Each epoch contains exactly one transaction—the one that
modified the data.

 The Tuple Mover can perform moveout and mergeout
operations on committed data immediately.

AT TIME 'timestamp' Queries all data in the database up to and including the epoch
representing the specified date and time without holding a lock or
blocking write operations. This is called a historical query. AT TIME is
ignored when applied to temporary tables (all rows are returned).

* Is equivalent to listing all columns of the tables in the FROM Clause.

Vertica recommends that you avoid using SELECT * for performance
reasons. An extremely large and wide result set can cause swapping.

DISTINCT Removes duplicate rows from the result set (or group).The DISTINCT

set quantifier must immediately follow the SELECT keyword. Only one

DISTINCT keyword can appear in the select list.

expression Forms the output rows of the SELECT statement. The expression can

contain:

-618-

SQL Reference Manual

 Column references (page 45) to columns computed in the

FROM clause

 Literals (page 17) (constants)

 Mathematical operators (page 39)

 String concatenation operators (page 41)

 Aggregate expressions (page 43)

 CASE expressions (page 44)

 SQL functions (page 106)

output_name Specifies a different name for an output column. This name is
primarily used to label the column for display. It can also be used to

refer to the column's value in ORDER BY and GROUP BY clauses, but

not in the WHERE or HAVING clauses.

FOR UPDATE Is most often used from READ COMMITTED isolation. When specified,

the SELECT statement takes an X lock on all tables in the query.

The FOR UPDATE keywords require update/delete permissions on the

tables involved and cannot be issued from a read-only transaction.

Note: Do not use FOR UPDATE on tables with unsegmented

projections.

Example

When multiple clients run transactions like in the following example query, deadlocks can occur if

FOR UPDATE is not used. Two transactions acquire an S lock, and when both attempt to upgrade

to an X lock, they encounter deadlocks:

=> SELECT balance FROM accounts WHERE account_id=3476 FOR UPDATE; ...

=> UPDATE accounts SET balance = balance+10 WHERE account_id=3476;

=> COMMIT;

See Also

LOCKS (page 712)

Analytic Functions (page 120)

Using SQL Analytics and Using Time Series Analytics in the Programmer's Guide

Subqueries and Joins in the Programmer's Guide

INTO Clause

Creates a new table from the results of a query and fills it with data from the query.

Syntax

INTO [{ GLOBAL | LOCAL } { TEMPORARY | TEMP }]

... [TABLE] table-name

... [ON COMMIT { PRESERVE | DELETE } ROWS]

-619-

 SQL Statements

Parameters

GLOBAL [Optional] Specifies that the table definition is visible to
all sessions.

LOCAL [Optional] Specifies that the table is visible only to the
user who creates it for the duration of the session. When
the session ends, the table definition is automatically
dropped from the database catalogs.

TABLE [Optional] Specifies that a table is to be created.

table-name Specifies the name of the table to be created.

ON COMMIT { PRESERVE | DELETE } ROWS [Optional] Specifies whether data is transaction- or
session-scoped:

 DELETE marks a temporary table for
transaction-scoped data. Vertica truncates the
table (delete all its rows) after each commit.
DELETE ROWS is the default.

 PRESERVE marks a temporary table for
session-scoped data, which is preserved
beyond the lifetime of a single transaction.
Vertica truncates the table (delete all its rows)
when you terminate a session.

Example

The following statement creates a table called newtable and fills it with the data from
customer_dimension:

=> SELECT * INTO newtable FROM customer_dimension;

The following statement creates a temporary table called newtable and fills it with the data from
customer_dimension:

=> SELECT * INTO temp TABLE newtable FROM customer_dimension;

The following example creates a local temporary table and inserts the contents from mytable into
it:

=> SELECT * INTO LOCAL TEMP TABLE ltt FROM mytable;

 WARNING: No rows are inserted into table "v_temp_schema"."ltt" because ON

COMMIT DELETE ROWS

 is the default for create temporary table

 HINT: Use "ON COMMIT PRESERVE ROWS" to preserve the data in temporary table

 CREATE TABLE

See Also

Creating Temporary Tables in the Administrator's Guide

-620-

 620

FROM Clause

Specifies one or more source tables from which to retrieve rows.

Syntax

FROM table-reference (on page 620) [, ...]

... [subquery] [AS] name ...

Parameters

table-reference Is a table-primary (on page 620) or a joined-table (on page
621).

Example

The following example returns all records from the customer_dimension table:

=> SELECT * FROM customer_dimension

table-reference

Syntax

table-primary (on page 620) | joined-table (on page 621)

Parameters

table-primary Specifies an optionally qualified table name with optional table
aliases, column aliases, and outer joins.

joined-table Specifies an outer join.

table-primary

Syntax

{ table-name [AS] alias

 [(column-alias [, ...])] [, ...]]

 | (joined-table (on page 621)) }

Parameters

table-name Specifies a table in the logical schema. Vertica selects a suitable
projection to use.

alias Specifies a temporary name to be used for references to the table.

column-alias Specifies a temporary name to be used for references to the
column.

joined-table Specifies an outer join.

-621-

 SQL Statements

joined-table

Syntax

table-reference join-type table-reference

ON join-predicate (on page 54)

Parameters

table-reference Is a table-primary (page 620) or another joined-table.

join-type Is one of the following:

INNER JOIN

LEFT [OUTER] JOIN

RIGHT [OUTER] JOIN

FULL [OUTER] JOIN

join-predicate An equi-join based on one or more columns in the joined
tables.

Notes

A query that uses INNER JOIN syntax in the FROM clause produces the same result set as a
query that uses the WHERE clause to state the join-predicate. See Joins in the Programmer's
Guide for more information.

-622-

 622

WHERE Clause

Eliminates rows from the result table that do not satisfy one or more predicates.

Syntax

WHERE boolean-expression

 [subquery] ...

Parameters

boolean-expression Is an expression that returns true or false. Only rows for which the
expression is true become part of the result set.

The boolean-expression can include Boolean operators (on page 36) and the following
elements:

 BETWEEN-predicate (on page 50)

 Boolean-predicate (on page 51)

 Column-value-predicate (on page 52)

 IN-predicate (on page 53)

 Join-predicate (on page 54)

 LIKE-predicate (on page 55)

 NULL-predicate (on page 59)

Notes

You can use parentheses to group expressions, predicates, and boolean operators. For example:

=> ... WHERE NOT (A=1 AND B=2) OR C=3;

Example

The following example returns the names of all customers in the Eastern region whose name
starts with 'Amer'. Without the WHERE clause filter, the query returns all customer names in the
customer_dimension table.

=> SELECT DISTINCT customer_name

 FROM customer_dimension

 WHERE customer_region = 'East'

 AND customer_name ILIKE 'Amer%';

 customer_name

 Americare

 Americom

 Americore

 Americorp

 Ameridata

 Amerigen

 Amerihope

 Amerimedia

 Amerishop

 Ameristar

-623-

 SQL Statements

 Ameritech

(11 rows)

TIMESERIES Clause

Provides gap-filling and interpolation (GFI) computation, an important component of time series
analytics computation. See Using Time Series Analytics in the Programmer's Guide for details and
examples.

Syntax

TIMESERIES slice_time AS 'length_and_time_unit_expression' OVER (

... [PARTITION BY expression [, ...]] ORDER BY time_expression)

... [ORDER BY table_column [, ...]]

Parameters

slice_time A time column produced by the TIMESERIES clause, which stores the time
slice start times generated from gap filling.

Note: This parameter is an alias, so you can use any name that an alias
would take.

'length_and_time_unit_

expression'

The length of time unit of time slice computation; for example,
TIMESERIES slice_time AS '3 seconds' ...

OVER() Specifies partitioning and ordering for the function. OVER() also specifies
that the time series function operates on a query result set (the rows that
are returned after the FROM, WHERE, GROUP BY, and HAVING clauses
have been evaluated).

PARTITION BY Partitions the data by expressions (column1 ..., column_n, slice_time).

expression Expressions on which to partition the data, where each partition is sorted
by time_expression. Gap filling and interpolation is performed on each
partition separately.

ORDER BY Sorts the data by time_expression.

time_expression An expression that computes the time information of the time series data.
The time_expression can be TIMESTAMP data type only.

Notes

If the window_partition_clause is not specified in TIMESERIES OVER(), for each defined

time slice, exactly one output record is produced; otherwise, one output record is produced per
partition per time slice. Interpolation is computed there.

Given a query block that contains a TIMESERIES clause, the following are the semantic phases of
execution (after evaluating the FROM and the optional WHERE clauses):

1 Compute time_expression.

2 Perform the same computation as the TIME_SLICE() function on each input record based on
the result of time_expression and 'length_and_time_unit_expression'.

1. Perform gap filling to generate time slices missing from the input.

-624-

SQL Reference Manual

2. Name the result of this computation as slice_time, which represents the generated ―time
series‖ column (alias) after gap filling.

3 Partition the data by expression, slice_time. For each partition, do step 4.

4 Sort the data by time_expression. Interpolation is computed here.

There is semantic overlap between the TIMESERIES clause and the TIME_SLICE (page 205)
function with the following key differences:

 Unlike TIME_SLICE, the time slice length and time unit expressed in
length_and_time_unit_expr must be constants in order that gaps in the time slices be
well-defined.

 TIMESERIES performs gap filling; the TIME_SLICE function does not.

 TIME_SLICE can return the start or end time of a time slice, depending on the value of its
fourth input parameter (start_or_end). TIMESERIES, on the other hand, always returns the
start time of each time slice. To output the end time of each time slice, you can write a SELECT
statement like the following:

SELECT slice_time + <slice_length>;

Restrictions

 When the TIMESERIES clause occurs in a SQL query block, only SELECT, FROM, WHERE,
and ORDER BY clauses can be used in that same query block. GROUP BY and HAVING
clauses are not allowed.

If a GROUP BY operation is needed before or after gap-filling and interpolation (GFI), use a
subquery and place the GROUP BY In the outer query. For example:

=> SELECT symbol, AVG(first_bid) as avg_bid FROM (SELECT symbol,

slice_time, TS_FIRST_VALUE(bid1) AS first_bid

 FROM Tickstore

 WHERE symbol IN ('MSFT', 'IBM')

 TIMESERIES slice_time AS '5 seconds' OVER (PARTITION BY symbol

ORDER BY ts)

) AS resultOfGFI

GROUP BY symbol;

 When the TIMESERIES clause is present in the SQL query block, only time series aggregate
functions (such as TS_FIRST_VALUE (page 314) and TS_LAST_VALUE (page 316)), the
slice_time column, PARTITION BY expressions, and TIME_SLICE (page 205) are allowed in
the SELECT list. For example, the following two queries would return a syntax error because
bid1 was not a PARTITION BY or GROUP BY column:

=> SELECT bid, symbol, TS_FIRST_VALUE(bid) FROM Tickstore

 TIMESERIES slice_time AS '5 seconds' OVER (PARTITION BY symbol ORDER

BY ts);

 ERROR: column "Tickstore.bid" must appear in the PARTITION BY list

of Timeseries clause or be used in a Timeseries Output function

=> SELECT bid, symbol, AVG(bid) FROM Tickstore GROUP BY symbol;

 ERROR: column "Tickstore.bid" must appear in the GROUP BY clause or

be used in an aggregate function

 If you use the analytic OVER(window_order_clause (page 123)), you can order the data by a
TIMESTAMP column only, not by, for example, an INTEGER column.

-625-

 SQL Statements

Examples

See Gap Filling and Interpolation (GFI) in the Programmer's Guide.

See Also

TIME_SLICE (page 205), TS_FIRST_VALUE (page 314), and TS_LAST_VALUE (page 316)

Using Time Series Analytics in the Programmer's Guide

-626-

 626

GROUP BY Clause

Divides a query result set into sets of rows that match an expression.

Syntax

GROUP BY expression [,...]

Parameters

expression Is any expression including constants and references to columns
(see "Column References" on page 45) in the tables specified in the
FROM clause. For example:

column1, ..., column_n, aggregate_function

(expression)

Notes

 The expression cannot include aggregate functions (page 107); however, the GROUP BY
clause is often used with aggregate functions (page 107) to return summary values for each
group.

 The GROUP BY clause without aggregates is similar to using SELECT DISTINCT. For
example, the following two queries are equal:

SELECT DISTINCT household_id from customer_dimension;

 SELECT household_id from customer_dimension GROUP BY household_id;

 All non-aggregated columns in the SELECT list must be included in the GROUP BY clause.

 Using the WHERE clause with the GROUP BY clause is useful in that all rows that do not
satisfy the WHERE clause conditions are eliminated before any grouping operations are
computed.

 The GROUP BY clause does not order data. If you want to sort data a particular way, place the
ORDER BY clause (page 629) after the GROUP BY clause.

Examples

In the following example, the WHERE clause filters out all employees whose last name does not
begin with S. The GROUP BY clause returns the groups of last names that begin with S, and the
SUM aggregate function computes the total vacation days for each group.

=> SELECT employee_last_name, SUM(vacation_days)

 FROM employee_dimension

 WHERE employee_last_name ILIKE 'S%'

 GROUP BY employee_last_name;

 employee_last_name | SUM

--------------------+------

 Sanchez | 2892

 Smith | 2672

 Stein | 2660

(3 rows)

=> SELECT vendor_region, MAX(deal_size) as "Biggest Deal"

 FROM vendor_dimension

 GROUP BY vendor_region;

 vendor_region | Biggest Deal

-627-

 SQL Statements

---------------+--------------

 East | 990889

 MidWest | 699163

 NorthWest | 76101

 South | 854136

 SouthWest | 609807

 West | 964005

(6 rows)

The only difference between the following query and the one before it is the HAVING clause filters
the groups to deal sizes greater than $900,000:

=> SELECT vendor_region, MAX(deal_size) as "Biggest Deal"

 FROM vendor_dimension

 GROUP BY vendor_region

 HAVING MAX(deal_size) > 900000;

 vendor_region | Biggest Deal

---------------+--------------

 East | 990889

 West | 964005

(2 rows)

-628-

 628

HAVING Clause

Restricts the results of a GROUP BY clause (page 626).

Syntax

HAVING condition [, ...]

Parameters

condition Must unambiguously reference a grouping column, unless
the reference appears within an aggregate function

Notes

 Semantically the having clause occurs after the group by operation.

 You can use expressions in the HAVING clause.

 The HAVING clause was added to the SQL standard because you cannot use WHERE with
aggregate functions (page 107).

Example

The following example returns the employees with salaries greater than $50,000:

=> SELECT employee_last_name, MAX(annual_salary) as "highest_salary"

 FROM employee_dimension

 GROUP BY employee_last_name

 HAVING MAX(annual_salary) > 50000;

 employee_last_name | highest_salary

--------------------+----------------

 Bauer | 920149

 Brown | 569079

 Campbell | 649998

 Carcetti | 195175

 Dobisz | 840902

 Farmer | 804890

 Fortin | 481490

 Garcia | 811231

 Garnett | 963104

 Gauthier | 927335

(10 rows)

-629-

 629

ORDER BY Clause

Sorts a query result set on one or more columns.

Syntax

ORDER BY expression [ASC | DESC] [, ...]

Parameters

expression Can be:

 The name or ordinal number
(http://en.wikipedia.org/wiki/Ordinal_number) of a
SELECT list item

 An arbitrary expression formed from columns that do not
appear in the SELECT list

 A CASE (page 44) expression

Notes

 The ordinal number refers to the position of the result column, counting from the left beginning
at one. This makes it possible to order by a column that does not have a unique name. (You
can assign a name to a result column using the AS clause.)

 Vertica uses the ASCII collating sequence to store data and to compare character strings. The
ordering varies by collation.

 For INTEGER, INT, and DATE/TIME data types, NULL appears first (smallest) in ascending
order.

 For FLOAT, BOOLEAN, CHAR, and VARCHAR, NULL appears last (largest) in ascending
order.

Example

The follow example returns all the city and deal size for customer Metamedia, sorted by deal size
in descending order.

=> SELECT customer_city, deal_size

 FROM customer_dimension

 WHERE customer_name = 'Metamedia'

 ORDER BY deal_size DESC;

 customer_city | deal_size

------------------+-----------

 El Monte | 4479561

 Athens | 3815416

 Ventura | 3792937

 Peoria | 3227765

 Arvada | 2671849

 Coral Springs | 2643674

 Fontana | 2374465

 Rancho Cucamonga | 2214002

 Wichita Falls | 2117962

 Beaumont | 1898295

 Arvada | 1321897

http://en.wikipedia.org/wiki/Ordinal_number

-630-

SQL Reference Manual

 Waco | 1026854

 Joliet | 945404

 Hartford | 445795

(14 rows)

-631-

 631

LIMIT Clause

Specifies the maximum number of result set rows to return.

Syntax

LIMIT { rows | ALL }

Parameters

rows Specifies the maximum number of rows to return

ALL Returns all rows (same as omitting LIMIT)

Notes

When both LIMIT and OFFSET (page 632) are used, Vertica skips the specified number of rows
before it starts to count the rows to be returned.

You can use LIMIT without an ORDER BY clause (page 629) that includes all columns in the
select list, but the query could produce nondeterministic results.

Nondeterministic: Omits the ORDER BY
clause and returns any five records from the
customer_dimension table:

Deterministic: Specifies the ORDER
BY clause:

=> SELECT customer_city

 FROM customer_dimension

 LIMIT 5;

 customer_city

 Baltimore

 Nashville

 Allentown

 Clarksville

 Baltimore

(5 rows)

=> SELECT customer_city

 FROM customer_dimension

 ORDER BY customer_city

 LIMIT 5;

 customer_city

 Abilene

 Abilene

 Abilene

 Abilene

 Abilene

(5 rows)

-632-

 632

OFFSET Clause

Omits a specified number of rows from the beginning of the result set.

Syntax

OFFSET rows

Parameters

rows specifies the number of result set rows to omit.

Notes

 When both LIMIT (page 631) and OFFSET are specified, specified number of rows are
skipped before starting to count the rows to be returned.

 When using OFFSET, use an ORDER BY clause (page 629). Otherwise the query returns an
undefined subset of the result set.

Example

The following example is similar to the the example used in the LIMIT clause (page 631). If you
want to see just records 6-10, however, use the OFFSET clause to skip over the first five cities:

=> SELECT customer_city

 FROM customer_dimension

 WHERE customer_name = 'Metamedia'

 ORDER BY customer_city

 OFFSET 5;

 customer_city

 El Monte

 Fontana

 Hartford

 Joliet

 Peoria

 Rancho Cucamonga

 Ventura

 Waco

 Wichita Falls

(9 rows)

The following are the results without the OFFSET clause:

 customer_city

 Arvada

 Arvada

 Athens

 Beaumont

 Coral Springs

 El Monte

 Fontana

 Hartford

 Joliet

-633-

 SQL Statements

 Peoria

 Rancho Cucamonga

 Ventura

 Waco

 Wichita Falls

(14 rows)

SET
Sets one of several run-time parameters.

Syntax

SET run-time-parameter

Parameters

run-time-parameter Is one of the following:

 DATESTYLE (page 634)

 ESCAPE_STRING_WARNING (page 635)

 INTERVALSTYLE (page 635)

 LOCALE (page 636)

 SEARCH_PATH (page 639)

 SESSION CHARACTERISTICS (page 641)

 SESSION MEMORYCAP (page 642)

 SESSION RESOURCE POOL (page 643)

 SESSION RUNTIMECAP (page 643)

 SESSION TEMPSPACECAP (page 645)

 STANDARD_CONFORMING_STRINGS
(page 646)

 TIME ZONE (page 647)

Notes

For syntax, usage notes, and examples, click the links in the above table.

-634-

 634

DATESTYLE

Changes the DATESTYLE run-time parameter for the current session.

Syntax

SET DATESTYLE TO { value | 'value' } [,...]

Parameters

The DATESTYLE parameter can have multiple, non-conflicting values:

Value Interpretation Example

MDY month-day-year 12/17/2007

DMY day-month-year 17/12/2007

YMD year-month-day 2007-12-17

ISO ISO 8601/SQL standard
(default)

2007-12-17 07:37:16-08

SQL traditional style 12/17/2007 07:37:16.00 PST

GERMAN regional style 17.12.2007 07:37:16.00 PST

In the SQL style, day appears before month if DMY field ordering has been specified, otherwise
month appears before day. (See Date/Time Literals (page 27) for how this setting also affects
interpretation of input values.) The table below shows an example.

DATESTYLE Input Ordering Example Output

SQL, DMY day/month/year 17/12/2007 15:37:16.00 CET

SQL, MDY month/day/year 12/17/2007 07:37:16.00 PST

Notes

 The SQL standard requires the use of the ISO 8601 format. The name of the "SQL" output
format is a historical accident.

 INTERVAL output looks like the input format, except that units like CENTURY or WEEK are

converted to years and days and AGO is converted to an appropriate sign. In ISO mode the

output looks like

[quantity unit [...]] [days] [hours:minutes:seconds]

 The SHOW (page 650) command displays the run-time parameters.

Example

=> SET DATESTYLE TO SQL, MDY;

=> SHOW DATESTYLE;

 name | setting

-----------+----------

 datestyle | ISO, MDY

-635-

 SQL Statements

(1 row)

ESCAPE_STRING_WARNING

Issues a warning when a backslash is used in a string literal during the current session.

Syntax

SET ESCAPE_STRING_WARNING TO { ON | OFF }

Parameters

ON [Default] Issues a warning when a back slash is used in a string literal.

Tip: Organizations that have upgraded from earlier versions of Vertica can use this as

a debugging tool for locating backslashes that used to be treated as escape characters,
but are now treated as literals.

OFF Ignores back slashes within string literals.

Notes

 This statement works under vsql only.

 Turn off standard conforming strings before you turn on this parameter.

Tip: To set escape string warnings across all sessions, use the EscapeStringWarnings
configuration parameter. See the Internationalization Parameters in the Administrator's Guide.

Examples

The following example shows how to turn OFF escape string warnings for the session.

=> SET ESCAPE_STRING_WARNING TO OFF;

See Also

STANDARD_CONFORMING_STRINGS (page 646)

INTERVALSTYLE

Changes the INTERVALSTYLE run-time parameter for the current session.

Syntax

SET INTERVALSTYLE TO [plain | units (see "interval-literal" on page 30)]

Parameters

plain [Default] Returns no units on output.

When interval units are enabled, their format is controlled by
DATESTYLE (page 634)

-636-

SQL Reference Manual

units Returns units on output.

Notes

 Use the SHOW (page 650) command displays the run-time parameters.

 When units are enabled, their format is controlled by DATESTYLE (page 634). If you are

expecting units on output but not seeing them, issue the SHOW DATESTYLE command.

DATESTYLE must be set to ISO for INTERVAL to display units on output.

Examples

The following command sets the INTERVALSTYLE to show units on output:

=> SET INTERVALSTYLE TO UNITS;

 SET

=> SELECT INTERVAL '3 2' DAY TO HOUR;

 ?column?

 3 days 02:00

(1 row)

The following command sets the INTERVALSTYLE to no units on output:

=> SET INTERVALSTYLE TO PLAIN;

 SET

=> SELECT INTERVAL '3 2' DAY TO HOUR;

 ?column?

 3 02

(1 row)

Use the SHOW (page 650) command to display the run-time parameters:

=> SHOW INTERVALSTYLE;

 name | setting

---------------+---------

 intervalstyle | plain

(1 row)

See Also

INTERVAL (page 70)

LOCALE

Specifies the locale for the current session.

Syntax

SET LOCALE TO < ICU-locale-identifier >

Parameters

< ICU-locale-identifier > Specifies the ICU locale identifier to use.

By default, the locale for the database is en_US@collation=binary

-637-

 SQL Statements

(English as in the United States of America).

ICU Locales were developed by the ICU Project. See the ICU User
Guide (http://userguide.icu-project.org/locale) for a complete list of
parameters that can be used to specify a locale.

Note: The only keyword Vertica supports is the COLLATION

keyword.

Notes

Though not inclusive, the following are some commonly-used locales:

 German (Germany) de_DE

 English (Great Britain) en_GB

 Spanish (Spain) es_ES

 French (France) fr_FR

 Portuguese (Brazil) pt_BR

 Portuguese (Portugal) pt_PT

 Russian (Russia) ru_RU

 Japanese (Japan) ja_JP

 Chinese (China, simplified Han) zh_CN

 Chinese (Taiwan, traditional Han) zh_Hant_TW

Session related:

 The locale setting is session scoped and applies to queries only (no DML/DDL) run in that
session. You cannot specify a locale for an individual query.

 The default locale for new sessions can be set using a configuration parameter

Query related:

The following restrictions apply when queries are run with locale other than the default
en_US@collation=binary:

 Multicolumn NOT IN subqueries are not supported when one or more of the left-side NOT IN
columns is of CHAR or VARCHAR data type. For example:

=> CREATE TABLE test (x VARCHAR(10), y INT);

=> SELECT ... FROM test WHERE (x,y) NOT IN (SELECT ...);

 ERROR: Multi-expression NOT IN subquery is not supported because a

left hand expression could be NULL

Note: An error is reported even if columns test.x and test.y have a "NOT NULL"

constraint.

 Correlated HAVING clause subqueries are not supported if the outer query contains a GROUP

BY on a CHAR or a VARCHAR column. In the following example, the GROUP BY x in the outer

query causes the error:

=> DROP TABLE test CASCADE;

=> CREATE TABLE test (x VARCHAR(10));

http://userguide.icu-project.org/locale

-638-

SQL Reference Manual

=> SELECT COUNT(*) FROM test t GROUP BY x HAVING x IN (SELECT x FROM test

WHERE t.x||'a' = test.x||'a');

 ERROR: subquery uses ungrouped column "t.x" from outer query

 Subqueries that use analytic functions in the HAVING clause are not supported. For example:

=> DROP TABLE test CASCADE;

=> CREATE TABLE test (x VARCHAR(10));

=> SELECT MAX(x)OVER(PARTITION BY 1 ORDER BY 1)

 FROM test GROUP BY x HAVING x IN (

 SELECT MAX(x) FROM test);

 ERROR: Analytics query with having clause expression that involves

aggregates

 and subquery is not supported

 The operators LIKE/ILIKE do not currently respect UTF-8 character boundaries. Therefore,
expressions such as 'SS' LIKE 'ß' and 'SS' ILIKE 'ß' always return false even in locales where
'SS' = 'ß' return true.

DML/DDL related:

 SQL identifiers (such as table names, column names, and so on) are restricted to ASCII
characters. For example, the following CREATE TABLE statement fails because it uses the
non-ASCII ß in the table name:

=> CREATE TABLE straße(x int, y int);

 ERROR: Non-ASCII characters are not supported in names

 Projection sort orders are made according to the default en_US@collation=binary collation.
Thus, regardless of the session setting, issuing the following command creates a projection

sorted by col1 according to the binary collation:

=> CREATE PROJECTION p1 AS SELECT * FROM table1 ORDER BY col1;

Note that in such cases, straße and strasse would not be near each other on disk.

Sorting by binary collation also means that sort optimizations do not work in locales other than
binary. Vertica returns the following warning if you create tables or projections in a non-binary
locale:

WARNING: Projections are always created and persisted in the default

Vertica locale. The current locale is de_DE

 When creating pre-join projections, the projection definition query does not respect the locale
or collation setting. This means that when you insert data into the fact table of a pre-join
projection, referential integrity checks are not locale or collation aware.

For example:

\locale LDE_S1 -- German

=> CREATE TABLE dim (col1 varchar(20) primary key);

=> CREATE TABLE fact (col1 varchar(20) references dim(col1));

=> CREATE PROJECTION pj AS SELECT * FROM fact JOIN dim ON fact.col1 =

dim.col1 UNSEGMENTED ALL NODES;

=> INSERT INTO dim VALUES('ß');

=> COMMIT;

The following INSERT statement fails with a "nonexistent FK" error even though 'ß' is in the
dim table, and in the German locale 'SS' and 'ß' refer to the same character.

-639-

 SQL Statements

=> INSERT INTO fact VALUES('SS');

 ERROR: Nonexistent foreign key value detected in FK-PK join (fact

x dim)

 using subquery and dim_node0001; value SS

=> => ROLLBACK;

=> DROP TABLE dim, fact CASCADE;

 When the locale is non-binary, the collation function is used to transform the input to a binary
string which sorts in the proper order.

This transformation increases the number of bytes required for the input according to this
formula:

result_column_width = input_octet_width * CollationExpansion + 4

CollationExpansion defaults to 5 and should be changed only under the supervision of Vertica
Technical Support (on page 1).

 CHAR fields are displayed as fixed length, including any trailing spaces. When CHAR fields
are processed internally, they are first stripped of trailing spaces. For VARCHAR fields, trailing
spaces are usually treated as significant characters; however, trailing spaces are ignored
when sorting or comparing either type of character string field using a non-BINARY locale.

Examples

This example sets the locale for the session to en_GB (English as in Great Britain).

SET LOCALE TO en_GB;

SET LOCALE TO en_GB;

INFO: Locale: 'en_GB'

INFO: English (United Kingdom)

INFO: Short form: 'LEN'

You can also use the short form of a locale in this command:

SET LOCALE TO LEN;

INFO: Locale: 'en'

INFO: English

INFO: Short form: 'LEN'

See Also

Implement Locales for International Data Sets and Appendix: Locales in the Administrator's Guide

SEARCH_PATH

Specifies the order in which Vertica searches schemas when a SQL statement contains an
unqualified table name.

Vertica provides the SET search_path statement instead of the CURRENT_SCHEMA statement
found in some other databases.

Syntax

SET SEARCH_PATH TO schemaname [, ...]

-640-

SQL Reference Manual

Parameters

schemaname A comma-delimited list of schemas that indicates the order in which Vertica
searches schemas when a SQL statement contains an unqualified table name.

The default value for this parameter is '"$user", public'

Where:

 $User is the schema with the same name as the current user. If the schema
does not exist, $User is ignored.

 public is the public database. Public is ignored if there is no schema named
'public'.

Notes

The first schema named in the search path is called the current schema. The current schema is
the first schema that Vertica searches. It is also the schema in which new tables are created if the
CREATE TABLE (page 546) command does not specify a schema name.

Restrictions

None

Examples

The following example shows the current search path settings:

=> SHOW SEARCH_PATH;

 name | setting

-------------+---

 search_path | "$user", public, v_catalog, v_monitor, v_internal

(1 row)

The following example sets the order in which Vertica searches schemas to T1, U1, and V1:

=> SET SEARCH_PATH TO T1, U1, V1;

-641-

 641

SESSION CHARACTERISTICS

Sets the transaction characteristics for subsequent transactions of a user session. These are the
isolation level and the access mode (read/write or read-only).

Syntax

SET SESSION CHARACTERISTICS AS

... TRANSACTION ISOLATION LEVEL {

... SERIALIZABLE

... | REPEATABLE READ

... | READ COMMITTED

... | READ UNCOMMITTED }

... { READ WRITE | READ ONLY }

Parameters

Isolation levels, described in the following table, determines what data the transaction can access
when other transactions are running concurrently. It does not apply to temporary tables. The

isolation level cannot be changed after the first query (SELECT) or DML statement (INSERT,

DELETE, UPDATE) of a transaction has been run. A transaction retains its isolation level until it

completes, even if the session's transaction isolation level has changed mid-transaction. Vertica
internal processes (such as the Tuple Mover and Refresh operations) and DDL operations are run

at SERIALIZABLE isolation to ensure consistency.

SERIALIZABLE Provides the strictest level of SQL transaction isolation. This level
emulates transactions run one after another, serially, rather than
concurrently. It holds locks and blocks write operations and is thus not
recommended for normal query operations.

REPEATABLE READ Is automatically converted to SERIALIZABLE by Vertica.

READ COMMITTED (Default) Allows concurrent transactions. Use READ COMMITTED
isolation or Snapshot Isolation for normal query operations but be aware
that there is a subtle difference between them. (See section below this
table.)

READ UNCOMMITTED Is automatically converted to READ COMMITTED by Vertica.

READ WRITE

READ ONLY

Determines whether the transaction is read/write or read-only.
Read/write is the default. When a transaction is read-only, the following
SQL commands are disallowed: INSERT, UPDATE, DELETE, and
COPY if the table they would write to is not a temporary table; all
CREATE, ALTER, and DROP commands; GRANT, REVOKE, and
EXPLAIN if the command it would run is among those listed. This is a
high-level notion of read-only that does not prevent all writes to disk.

READ COMMITTED vs. Snapshot Isolation

By itself, AT EPOCH LATEST produces purely historical query behavior. However, with READ
COMMITTED, SELECT queries return the same result set as AT EPOCH LATEST plus any changes made
by the current transaction.

This is standard ANSI SQL semantics for ACID transactions. Any select query within a transaction
sees the transactions's own changes regardless of isolation level.

-642-

SQL Reference Manual

Notes

 SERIALIZABLE isolation does not apply to temporary tables, which are isolated by their
transaction scope.

 Applications using SERIALIZABLE must be prepared to retry transactions due to serialization
failures.

Example

=> SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL SERIALIZABLE;

SET

SESSION MEMORYCAP

Specifies a limit on the amount of memory that any request issued by the session can consume.

Syntax

SET SESSION MEMORYCAP 'memory-limit' | = default

Parameters

memory-limit | = default The maximum amount of memory the session can use. To set a
value, supply number followed by a unit. Units can be one of the
following:

 % percentage of total memory available to the Resource
Manager. (In this case, size must be 0-100).

 K Kilobytes

 M Megabytes

 G Gigabytes

 T Terabytes

If you use the value = default the session's MEMORYCAP is set to

the user's MEMORYCAP value.

Notes

 This command requires superuser privileges if the MEMORYCAP is being increased over the
user's MEMORYCAP limit (see CREATE USER (page 576) for details).

 Non-superusers can change this value to anything below or equal to their MEMORYCAP limit.

Example

The following command sets a memorycap of 4 gigabytes on the session:

=> SET SESSION MEMORYCAP '4G';

To return the memorycap to the previous setting:

=> SET SESSION MEMORYCAP NONE;

=> SHOW MEMORYCAP;

 name | setting

-----------+-----------

 memorycap | UNLIMITED

(1 row)

-643-

 SQL Statements

See Also

ALTER RESOURCE POOL (page 481)

CREATE RESOURCE POOL (page 531)

CREATE USER (page 576)

DROP RESOURCE POOL (page 586)

SET SESSION RESOURCE POOL (page 643)

Managing Workloads in the Administrator's Guide

SESSION RESOURCE POOL

Associates the user session with the specified resource pool.

Syntax

SET SESSION RESOURCE POOL pool-name | = default

Parameters

pool-name | = default Specifies the name of the resource pool to be associated with

session. If you use the value = default, then the session's

resource pool is set to the default resource pool for the user.

Notes

 The pool must have been created beforehand.

 This command requires non-superusers to have usage privileges for the resource pool.

 Superusers can assign their session to any resource pool they want.

See Also

ALTER RESOURCE POOL (page 481)

CREATE RESOURCE POOL (page 531)

CREATE USER (page 576)

DROP RESOURCE POOL (page 586)

GRANT (Resource Pool) (page 598)

SET SESSION MEMORYCAP (page 642)

Managing Workloads in the Administrator's Guide

SESSION RUNTIMECAP

Sets the maximum amount of time a session's query can run.

-644-

SQL Reference Manual

Syntax

SET SESSION RUNTIMECAP ['duration' | NONE | = default]

Parameters

'duration' | NONE | DEFAULT One of three values:

 An interval such as '1 minute' or '100

seconds' (see Interval Values (page 29) for a

full explanation) setting the maximum amount of
time this session's queries should be allowed to
run.

 NONE which eliminates any limit on the amount of

time the session's queries can run (the default
value).

 = default which sets the session's

RUNTIMECAP to the user's RUNTIMECAP value.

Notes

 The largest allowable RUNTIMECAP value is 1 year (365 days).

 This command requires superuser privileges if the RUNTIMECAP is being increased over the
user's RUNTIMECAP limit.

 Normal users can change the RUNTIMECAP of their own sessions to any value below their
own RUNTIMECAP. They cannot increase the RUNTIMECAP beyond any limit set for them by
the superuser.

 The timeout is not precise, so a query may run a little longer than the value set in
RUNTIMECAP.

 Queries that violate the RUNTIMECAP are terminated with the error message Execution

time exceeded run time cap.

Example

The following command sets the session's runtimecap to 10 minutes:

=> SET SESSION RUNTIMECAP '10 minutes';

To return the RUNTIMECAP to the user's default setting:

=> SET SESSION RUNTIMECAP DEFAULT;

SET

=> SHOW RUNTIMECAP;

 name | setting

------------+-----------

 runtimecap | UNLIMITED

(1 row)

See Also

CREATE USER (page 576)

ALTER USER (page 494)

Managing Workloads in the Administrator's Guide

-645-

 SQL Statements

SESSION TEMPSPACECAP

Sets the maximum amount of temporary file storage space that any request issued by the session
can consume.

Syntax

SET SESSION TEMPSPACECAP 'space-limit' | = default | NONE

Parameters

'space-limit' The maximum amount of temporary file space the session can
use. To set a limit, use a numeric value followed by a unit (for
example: '10G'). The unit can be one of the following:

 % percentage of total temporary storage space
available. (In this case, the numeric value must be
0-100).

 K Kilobytes

 M Megabytes

 G Gigabytes

 T Terabytes

Setting this value to = default sets the session's

TEMPSPACECAP to the user's TEMPSPACECAP value.

Setting this value to NONE results in the session having unlimited

temporary storage space. This is the default value.

Notes

 This command requires superuser privileges to increase the TEMPSPACECAP over the
user's TEMPSPACECAP limit.

 Regular users can change the TEMPSPACECAP associated with their own sessions to any
value less than or equal to their own TEMPSPACECAP. They cannot increase its value
beyond their own TEMPSPACECAP value.

 Any execution plan that exceeds its TEMPSPACECAP usage results in the error:

ERROR: Exceeded temp space cap.

Example

The following command sets a TEMPSPACECAP of 20gigabytes on the session:

=> SET SESSION TEMPSPACECAP '20G';

SET

=> SHOW TEMPSPACECAP;

 name | setting

--------------+----------

 tempspacecap | 20971520

(1 row)

Note: SHOW displays the TEMPSPACECAP in kilobytes.

To return the memorycap to the previous setting:

-646-

SQL Reference Manual

=> SET SESSION TEMPSPACECAP NONE;

SET

=> SHOW TEMPSPACECAP;

 name | setting

--------------+-----------

 tempspacecap | UNLIMITED

(1 row)

See Also

ALTER USER (page 494)

CREATE USER (page 576)

Managing Workloads in the Administrator's Guide

STANDARD_CONFORMING_STRINGS

Treats backslashes as escape characters for the current session.

Syntax

SET STANDARD_CONFORMING_STRINGS TO { ON | OFF }

Parameters

ON Makes ordinary string literals ('...') treat back slashes (\) literally. This
means that back slashes are treated as string literals, not escape
characters. (This is the default.)

OFF Treats back slashes as escape characters.

Notes

 This statement works under vsql only.

 When standard conforming strings are on, Vertica supports SQL-2008 string literals within
Unicode escapes.

 Standard conforming strings must be ON to use Unicode-style string literals (U&'\nnnn').

TIP: To set conforming strings across all sessions (permanently), use the

StandardConformingStrings as described in Internationalization Parameters in the

Administrator's Guide.

Examples

The following example shows how to turn off conforming strings for the session.

=> SET STANDARD_CONFORMING_STRINGS TO OFF;

The following command lets you verify the settings:

=> SHOW STANDARD_CONFORMING_STRINGS;

 name | setting

-----------------------------+---------

 standard_conforming_strings | off

-647-

 SQL Statements

(1 row)

The following example shows how to turn on conforming strings for the session.

=> SET STANDARD_CONFORMING_STRINGS TO ON;

See Also

ESCAPE_STRING_WARNING (page 635)

TIME ZONE

Changes the TIME ZONE run-time parameter for the current session.

Syntax

SET TIME ZONE TO { value | 'value' }

Parameters

value Is one of the following:

 One of the time zone names specified in the tz database, as
described in Sources for Time Zone and Daylight Saving Time
Data http://www.twinsun.com/tz/tz-link.htm. Time Zone Names
for Setting TIME ZONE (page 648) listed in the next section are for
convenience only and could be out of date.

 A signed integer representing an offset from UTC in hours

 An interval value (page 29)

Notes

 TIME ZONE is a synonym for TIMEZONE. Both are allowed in Vertica syntax.

 The built-in constants LOCAL and DEFAULT, which set the time zone to the one specified in
the TZ environment variable or, if TZ is undefined, from the operating system time zone. See
Set the Default Time Zone and Using Time Zones with Vertica in the Installation Guide.

 When using a Country/City name, do not omit the country or the city. For example:

SET TIME ZONE TO 'Africa/Cairo'; -- valid

SET TIME ZONE TO 'Cairo'; -- invalid

 Include the required keyword TO.

 Positive integer values represent an offset east from UTC.

 The SHOW (page 650) command displays the run-time parameters.

Examples

=> SET TIME ZONE TO DEFAULT;

=> SET TIME ZONE TO 'PST8PDT'; -- Berkeley, California

=> SET TIME ZONE TO 'Europe/Rome'; -- Italy

=> SET TIME ZONE TO '-7'; -- UDT offset equivalent to PDT

=> SET TIME ZONE TO INTERVAL '-08:00 HOURS';

See Also

Using Time Zones with Vertica in the Installation Guide

http://www.twinsun.com/tz/tz-link.htm

-648-

SQL Reference Manual

Time Zone Names for Setting TIME ZONE

The following time zone names are recognized by Vertica as valid settings for the SQL time zone
(the TIME ZONE run-time parameter).

Note: The names listed here are for convenience only and could be out of date. Refer to the
Sources for Time Zone and Daylight Saving Time Data
http://www.twinsun.com/tz/tz-link.htm page for precise information.

These names are not the same as the names shown in

/opt/<DBMS_LOWERCASE/share/timezonesets, which are recognized by Vertica in

date/time input values. The TIME ZONE names shown below imply a local daylight-savings time
rule, where date/time input names represent a fixed offset from UTC.

In many cases there are several equivalent names for the same zone. These are listed on the
same line. The table is primarily sorted by the name of the principal city of the zone.

In addition to the names listed in the table, Vertica accepts time zone names of the form STDoffset
or STDoffsetDST, where STD is a zone abbreviation, offset is a numeric offset in hours west from
UTC, and DST is an optional daylight-savings zone abbreviation, assumed to stand for one hour

ahead of the given offset. For example, if EST5EDT were not already a recognized zone name, it

would be accepted and would be functionally equivalent to USA East Coast time. When a
daylight-savings zone name is present, it is assumed to be used according to USA time zone
rules, so this feature is of limited use outside North America. Be wary that this provision can lead to
silently accepting bogus input, since there is no check on the reasonableness of the zone

abbreviations. For example, SET TIME ZONE TO FOOBANKO works, leaving the system effectively

using a rather peculiar abbreviation for GMT.

Time Zone

Africa

America

Antarctica

Asia

Atlantic

Australia

CET

EET

Etc/GMT

Europe

http://www.twinsun.com/tz/tz-link.htm

-649-

 SQL Statements

Factory

GMT GMT+0 GMT-0 GMT0 Greenwich
Etc/GMT Etc/GMT+0 Etc/GMT-0 Etc/GMT0
Etc/Greenwich

Indian

MET

Pacific

UCT Etc/UCT

UTC Universal Zulu Etc/UTC Etc/Universal
Etc/Zulu

WET

-650-

 650

SHOW
Displays run-time parameters for the current session.

Syntax

SHOW { name | ALL }

Parameters

name Is one of the following:

 DATESTYLE (page 634)

 ESCAPE_STRING_WARNING
(page 635)

 INTERVALSTYLE (page 635)

 LOCALE (page 636)

 SEARCH_PATH (page 639)

 SESSION CHARACTERISTICS
(page 641)

 MEMORYCAP (page 642)

 RESOURCE POOL (page 643)

 RUNTIMECAP (page 643)

 TEMPSPACECAP (page 645)

 STANDARD_CONFORMING_ST
RINGS (page 646)

 TIMEZONE (page 647)

 DATESTYLE (page 634)

ALL Shows all run-time parameters.

Notes

The SET (page 633) < runtime-parameter > command sets the run-time parameters.

Examples

The following command returns all the run-time parameter settings:

=> SHOW ALL;
 name | setting

-----------------------------+---

 locale | en_US@collation=binary (LEN_KBINARY)

 standard_conforming_strings | off

 escape_string_warning | on

 datestyle | ISO, MDY

 intervalstyle | plain

 timezone | America/New_York

 search_path | "$user", public, v_catalog, v_monitor, v_internal

 transaction_isolation | READ COMMITTED

 resource_pool | general

 memorycap | UNLIMITED

 tempspacecap | UNLIMITED

 runtimecap | UNLIMITED

(12 rows)

-651-

 SQL Statements

The following command returns only the search path settings:

=> SHOW SEARCH_PATH;

 name | setting

-------------+-----------------

 search_path | "$user", public

(1 row)

The following commands shows the session transaction isolation level:

=> SHOW TRANSACTION ISOLATION LEVEL;

 name | setting

-----------------------+----------------

 transaction_isolation | READ COMMITTED

(1 row)

TRUNCATE TABLE
Removes all storage associated with a table, while preserving the table definitions. TRUNCATE
TABLE auto-commits the current transaction after statement execution and cannot be rolled back.

Syntax

TRUNCATE TABLE [schema_name.]table

Parameters

[schema_name.] Specifies the name of an optional schema.

table Specifies the name of a base table or temporary
table.

Notes

 The superuser, database owner, and table owner can truncate a table.

 The schema owner can drop a table but cannot truncate a table.

 TRUNCATE TABLE is useful for testing; you can remove all table data without having to
recreate projections when you reload table data.

 TRUNCATE TABLE commits the entire transaction, even if the TRUNCATE statement fails.

 If the truncated table is a large single (fact) table that contains prejoin projections, the
projections show 0 rows after the transaction completes and are ready for data reload.

 If the truncated table is a dimension table, the system returns the following error:

Cannot truncate a dimension table with pre-joined projections

Drop the prejoin projection first, and then issue the TRUNCATE command.

 If the truncated table has out-of-date projections, those projections are cleared and marked
up-to-date after the truncation operation completes.

 TRUNCATE TABLE takes an O (Owner) lock on the table until the truncation process
completes, when savepoint is then released.

-652-

SQL Reference Manual

 To truncate an ON COMMIT DELETE ROWS temporary table without ending the transaction, use

DELETE FROM temp_table (page 580) syntax.

Note: The effect of DELETE FROM depends on the table type. If the table is specified as ON
COMMIT DELETE ROWS, then DELETE FROM works like TRUNCATE TABLE; otherwise it
behaves like a normal delete in that it does not truncate the table.

 After truncate operations complete, the data recovers from that current epoch onward.
Because TRUNCATE TABLE removes table history, AT EPOCH queries return nothing.
TRUNCATE TABLE behaves the same when you have data in WOS, ROS, or both, as well as
for unsegmented/segmented projections.

See Also

DELETE (page 580), DROP TABLE (page 589), and LOCKS (page 712)

Transactions in the Concepts Guide

Deleting Data and Best Practices for DELETE and UPDATE in the Administrator's Guide

UNION
Combines the results of two or more select statements.

Syntax

SELECT

... UNION [ALL] select

... [UNION [ALL] select]...

... [ORDER BY { column-name

... | ordinal-number }

... [ASC | DESC] [, ...]]

... [LIMIT { integer | ALL }]

... [OFFSET integer]

Note: SELECT statements can contain ORDER BY, LIMIT or OFFSET clauses if the statement
is enclosed within parentheses.

Notes

The results of several SELECT statements can be combined into a larger result using UNION.
Each SELECT statement produces results in which the UNION combines all those results into a
final single result. Specifically, a row in the results of a UNION operation must have existed in the
results from one of the SELECT statements. Each SELECT statement must have the same
number of items in the select list as well as compatible data types. If the data types are
incompatible, Vertica returns an error.

The results of a UNION contain only distinct rows. so use UNION ALL to keep duplicate rows.
UNION pays the performance price of eliminating duplicates; therefore, unless duplicate rows are
not wanted, use UNION ALL for its performance benefits.

-653-

 SQL Statements

A SELECT statement containing ORDER BY, LIMIT, or OFFSET clauses must be enclosed in
parentheses . If the statement is not enclosed in parentheses an error is returned. However, the
rightmost ORDER BY, LIMIT, or OFFSET clause in the UNION query does not need to be
enclosed in parentheses to the rightmost query. This indicates to perform these operations on
results of the UNION operation. GROUP BY and HAVING operations cannot be applied to the
results.

The ordering of the results of a UNION operation does not necessarily depend on the ordering of
the results for each SELECT statement. The resulting rows can be ordered by adding an ORDER
BY to the UNION operation, as in the syntax above. If ORDER BY is used, only integers and
column names from the first (leftmost) SELECT statement are allowed in the order by list. The
integers specify the position of the columns on which to sort. The column names displayed in the
results are the same column names that display for the first (leftmost) select statement.

UNION correlated and noncorrelated subquery predicates are also supported.

=> SELECT * FROM T1

 WHERE T1.x IN

 (SELECT MAX(c1) FROM T2

 UNION ALL

 SELECT MAX(cc1) FROM T3

 UNION ALL

 SELECT MAX(d1) FROM T4);

Examples

Consider the following two tables:

Company_A

Id emp_lname dept sales

------+------------+-------------+-------

1234 | Vincent | auto parts | 1000

5678 | Butch | auto parts | 2500

9012 | Marcellus | floral | 500

Company B
Id emp_lname dept sales

------+------------+-------------+-------

4321 | Marvin | home goods | 250

9012 | Marcellus | home goods | 500

8765 | Zed | electronics | 20000

The following query lists all distinct IDs and surnames of employees:

=> SELECT id, emp_lname

 FROM company_A

 UNION

 SELECT id, emp_lname

 FROM company_B;

 id | emp_lname

------+-----------

 1234 | Vincent

 4321 | Marvin

-654-

SQL Reference Manual

 5678 | Butch

 8765 | Zed

 9012 | Marcellus

(5 rows)

The following query lists all IDs and surnames of employees:

=> SELECT id, emp_lname

 FROM company_A

 UNION ALL

 SELECT id, emp_lname

 FROM company_B;

 id | emp_lname

------+-----------

 1234 | Vincent

 5678 | Butch

 9012 | Marcellus

 4321 | Marvin

 8765 | Zed

 9012 | Marcellus

(6 rows)

The next example returns the top two performing salespeople in each company combined:

=> (SELECT id, emp_lname, sales

 FROM company_A

 ORDER BY sales

 LIMIT 2)

 UNION ALL

 (SELECT id, emp_lname, sales

 FROM company_B

 ORDER BY sales

 LIMIT 2);

 id | emp_lname | sales

------+-----------+-------

 4321 | Marvin | 250

 9012 | Marcellus | 500

 9012 | Marcellus | 500

 1234 | Vincent | 1000

(4 rows)

In this example, return all employee orders by sales. Note that the ORDER BY clause is applied to
the entire result:

=> SELECT id, emp_lname, sales

 FROM company_A

 UNION

 SELECT id, emp_lname, sales

 FROM company_B

 ORDER BY sales;

 id | emp_lname | sales

------+-----------+-------

 4321 | Marvin | 250

 9012 | Marcellus | 500

-655-

 SQL Statements

 1234 | Vincent | 1000

 5678 | Butch | 2500

 8765 | Zed | 20000

(5 rows)

And now sum the sales for each company, ordered by sales in descending order, and grouped
by department:

=> (SELECT 'company a' as company, dept, SUM(sales)

 FROM company_a

 GROUP BY dept

 ORDER by 2 DESC)

 UNION

 (SELECT 'company b' as company, dept, SUM(sales)

 FROM company_b

 GROUP BY dept

 ORDER by 2 DESC)

 ORDER BY 1;

 company | dept | sum

-----------+-------------+-------

 company a | auto parts | 3500

 company a | floral | 500

 company b | electronics | 20000

 company b | home goods | 750

(4 rows)

The final query shows the results of a mismatched data types:

=> SELECT id, emp_lname

 FROM company_a

 UNION

 SELECT emp_lname, id

 FROM company_b;

 ERROR: UNION types int8 and character varying cannot be matched

See Also

SELECT (page 617)

Subqueries and UNION in Subqueries in the Programmer's Guide

-656-

 656

UPDATE
Replaces the values of the specified columns in all rows for which a specific condition is true. All
other columns and rows in the table are unchanged. By default UPDATE uses the WOS and if the
WOS fills up, overflows to the ROS.

Syntax

UPDATE [/*+ direct */] [schemaname.]table SET column =

... { expression | DEFAULT } [, ...]

... [FROM from-list]

... [WHERE clause (on page 622)]

Parameters

/*+ direct */ Writes the data directly to disk (ROS) bypassing memory (WOS).

Note: If you update using the direct hint, you still need to issue a COMMIT

or ROLLBACK command to finish the transaction.

[schemaname.]table Specifies the name of a table in the schema. When using more than one
schema, specify the schema that contains the table.

You cannot update a projection.

column Specifies the name of a non-key column in the table.

expression Specifies a value to assign to the column. The expression can use the
current values of this and other columns in the table. For example:

UPDATE T1 SET C1 = C1+1;

from-list A list of table expressions, allowing columns from other tables to appear in

the WHERE condition and the UPDATE expressions. This is similar to the list

of tables that can be specified in the FROM (see "FROM Clause" on page

620) clause of a SELECT command. Note that the target table must not

appear in the from-list.

Notes

 Subqueries and joins are permitted in UPDATE statements, which is useful for updating values
in a table based on values that are stored in other tables. See Examples section below.

UPDATE changes the values of the specified columns in all rows that satisfy the condition.
Only the columns to be modified need to be specified in the SET clause. Columns that are not
explicitly modified retain their previous values. On successful completion, an UPDATE
operation returns a count, which represents the number of rows updated. A count of 0 is not an
error; it means that no rows matched the condition.

 You cannot use the SET column = {expression} to specify a subquery.

 The table specified in the UPDATE list cannot also appear in the from-list (no self joins); for
example:

=> BEGIN;

=> UPDATE result_table SET address='new' || r2.address FROM result_table

r2

-657-

 SQL Statements

 WHERE r2.cust_id = result_table.cust_id + 10;

 ERROR: Self joins in UPDATE statements are not allowed

 DETAIL: Target relation result_table also appears in the FROM list

 If the joins specified in the WHERE predicate produce more than one copy of the row in the
table to be updated, the new value of the row in the table is chosen arbitrarily.

 UPDATE inserts new records into the WOS and marks the old records for deletion.

 You cannot UPDATE columns that have primary key or foreign key referential integrity
constraints.

 To use the DELETE (page 580) or UPDATE (page 656) commands with a WHERE clause
(page 622), you must have both SELECT and DELETE privileges on the table.

Examples

=> UPDATE FACT SET PRICE = PRICE - COST * 80 WHERE COST > 100;

=> UPDATE Retail.CUSTOMER SET STATE = 'NH' WHERE CID > 100;

The following series of commands illustrate the use of subqueries in UPDATE statements; they all

use the following simple schema:

=> CREATE TABLE result_table(

 cust_id INTEGER,

 address VARCHAR(2000)

);

Enter some customer data:

=> COPY result_table FROM stdin delimiter ',' DIRECT;

 20, Lincoln Street

 30, Booth Hill Road

 30, Beach Avenue

 40, Mt. Vernon Street

 50, Hillside Avenue

 \.

Query the table you just created:

=> SELECT * FROM result_table;

 cust_id | address

---------+--------------------

 20 | Lincoln Street

 30 | Beach Avenue

 30 | Booth Hill Road

 40 | Mt. Vernon Street

 50 | Hillside Avenue

(5 rows)

Create a second table called new_addresses:

=> CREATE TABLE new_addresses(

 new_cust_id integer,

 new_address VARCHAR(200)

);

Enter some customer data.

-658-

SQL Reference Manual

Note: The following COPY statement creates an entry for a customer ID with a value of 60,

which does not have a matching value in the result_table table:

=> COPY new_addresses FROM stdin delimiter ',' DIRECT;

 20, Infinite Loop

 30, Loop Infinite

 60, New Addresses

 \.

Query the new_addresses table:

=> SELECT * FROM new_addresses;

 new_cust_id | new_address

-------------+----------------

 20 | Infinite Loop

 30 | Loop Infinite

 60 | New Addresses

(3 rows)

Commit the changes:

=> COMMIT;

In the following example, a noncorrelated subquery is used to change the address record in

results_table to 'New Address' when the query finds a customer ID match in both tables:

=> UPDATE result_table

 SET address='New Address'

 WHERE cust_id IN (SELECT new_cust_id FROM new_addresses);

The output returns the expected count indicating that three rows were updated:

 OUTPUT

 3

(1 row)

Now query the result_table table to see the changes for matching customer ID 20 and 30.

Addresses for customer ID 40 and 50 are not updated:

=> SELECT * FROM result_table;

 cust_id | address

---------+------------------

 20 | New Address

 30 | New Address

 30 | New Address

 40 | Mt. Vernon Street

 50 | Hillside Avenue

(5 rows)

To preserve your original data, issue the ROLLBACK command:

=> ROLLBACK;

In the following example, a correlated subquery is used to replace all address records in the

results_table with the new_address record from the new_addresses table when the query

finds match on the customer ID in both tables:

=> UPDATE result_table

-659-

 SQL Statements

 SET address=new_addresses.new_address

 FROM new_addresses

 WHERE cust_id = new_addresses.new_cust_id;

Again, the output returns the expected count indicating that three rows were updated:

 OUTPUT

 3

(1 row)

Now query the result_table table to see the changes for customer ID 20 and 30. Addresses

for customer ID 40 and 50 are not updated, and customer ID 60 is omitted because there is no
match:

=> SELECT * FROM result_table;

 cust_id | address

---------+------------------

 20 | Infinite Loop

 30 | Loop Infinite

 30 | Loop Infinite

 40 | Mt. Vernon Street

 50 | Hillside Avenue

(5 rows)

See Also

Subqueries in the Programmer's Guide

-660-

SQL System Tables (Monitoring APIs)

Vertica provides system tables that let you monitor the health of your database. These tables can
be queried the same way you perform query operations on base or temporary tables using
SELECT. Queries against system tables may use expressions, predicates, aggregates, analytics,
subqueries, joins, and historical query syntax. It is also possible to save the results of a system

table query into a user table for future analysis using, for example, INSERT INTO <user_table>
SELECT * FROM <system_table>;

System tables are grouped into the following schemas:

 V_CATALOG (page 664) — information about persistent objects in the catalog

 V_MONITOR (page 689) — information about transient system state

These schemas reside in the default search path so there is no need to specify schema.table in

your queries unless you change the search path to exclude V_MONITOR or V_CATALOG or both.

Notes and Restrictions

 You can use external monitoring tools or scripts to query the system tables and act upon the
information, as necessary. For example, when a host failure causes the K-safety level to fall
below a desired level, the tool or script can notify the database administrator and/or
appropriate IT personnel of the change, typically in the form of an e-mail.

Note: When a cluster is a recovering state, the database refuses connection requests and
cannot be monitored using the SQL monitoring API.

 To view all of the system tables issue the following command:

=> SELECT * FROM system_tables;

 DDL and DML operations are not supported on system tables.

 With the exception of the PROJECTION_REFRESHES (page 717) table, system tables do not

hold historical data.

 Vertica reserves some memory to help monitor busy systems. Using simple system table

queries makes it easier to troubleshoot issues. See also sysquery and sysdata pools

under Built-in pools (page 536) topic in SQL Reference Manual.

 In V_CATALOG.TABLES, columns TABLE_SCHEMA and TABLE_NAME are case sensitive

when equality (=) predicates are used in queries. For example, given the following schema:

=> CREATE SCHEMA SS;

=> CREATE TABLE SS.TT (c1 int);

=> INSERT INTO ss.tt VALUES (1);

If you run a query using the = predicate, Vertica returns 0 rows:

=> SELECT table_schema, table_name FROM v_catalog.tables WHERE

table_schema ='ss';

 table_schema | table_name

--------------+------------

(0 rows)

Use the case-insensitive ILIKE predicate to return the expected results:

-661-

 SQL System Tables (Monitoring APIs)

=> SELECT table_schema, table_name FROM v_catalog.tables WHERE

table_schema ILIKE 'ss';

 table_schema | table_name

--------------+------------

 SS | TT

(1 row)Querying case-sensitive data in system tables

The V_CATALOG.TABLES (page 681).TABLE_SCHEMA and TABLE_NAME columns are case

sensitive when used with an equality (=) predicate in queries. For example, given the following
schema:

=> CREATE SCHEMA SS;

=> CREATE TABLE SS.TT (c1 int);

=> INSERT INTO ss.tt VALUES (1);

If you execute a query using the = predicate, Vertica returns 0 rows:

=> SELECT table_schema, table_name FROM v_catalog.tables WHERE table_schema ='ss';

table_schema | table_name

--------------+------------

(0 rows)

Use the case-insensitive ILIKE predicate to return the expected results:

=> SELECT table_schema, table_name FROM v_catalog.tables WHERE table_schema ILIKE

'ss';

 table_schema | table_name

--------------+------------

 SS | TT

(1 row)

Examples

See Using the SQL Monitoring API in the Administrator's Guide

Summary of tables

The following table lists all system tables with a brief description and link to the details about an
individual table.

Monitor Tables Description Schema

ACTIVE_EVENTS (page 689) Displays all the active events in the cluster. V_MONITOR

COLUMN_STORAGE (page
691)

Returns the amount of disk storage used by each
column of each projection on each node.

V_MONITOR

COLUMNS (page 664) Provides information about columns. V_CATALOG

CONFIGURATION_PARAMETE
RS (page 693)

Provides information about configuration
parameters currently in use by the system.

V_MONITOR

CURRENT_SESSION (page
694)

Returns information about the current active
session.

V_MONITOR

DELETE_VECTORS (page 697) Holds information on deleted rows to speed up the
delete process.

V_MONITOR

-662-

SQL Reference Manual

DISK_RESOURCE_REJECTIO
NS (page 698)

Returns requests for resources that are rejected due
to disk space shortages.

V_MONITOR

DISK_STORAGE (page 699) Returns the amount of disk storage used by the
database on each node.

V_MONITOR

DUAL (page 665) A single-column "dummy" table with one record
whose value is X.

V_CATALOG

EVENT_CONFIGURATIONS
(page 703)

Returns configuration information about current
events.

V_MONITOR

EXECUTION_ENGINE_PROFIL
ES (page 704)

Returns information regarding query execution
runs.

V_MONITOR

FOREIGN_KEYS (page 666) Provides foreign key information. V_CATALOG

GRANTS (page 667) Provides grant information. V_CATALOG

HOST_RESOURCES (page 708) Returns information about host profiling. V_MONITOR

LOAD_STREAMS (page 710) Returns load metrics for each load stream on each
node.

V_MONITOR

LOCKS (page 712) Monitors lock grants and requests for all nodes. V_MONITOR

NODE_RESOURCES (page
714)

Provides a snapshot of the node. This is useful for
regularly polling the node with automated tools or
scripts.

V_MONITOR

PARTITIONS (page 716) Displays partition metadata, one row per partition
key, per ROS container.

V_MONITOR

PASSWORDS (page 669) Contains password information. V_CATALOG

PRIMARY_KEYS (page 669) Provides primary key information. V_CATALOG

PROFILE_PARAMETERS (page
670)

Defines what user profiles conatin. V_CATALOG

PROFILES (page 671) Provides user profile information. V_CATALOG

PROJECTION_COLUMNS
(page 672)

Provides projection column information. V_CATALOG

PROJECTION_REFRESHES
(page 717)

Returns information about refresh operations for
projections.

V_MONITOR

PROJECTION_STORAGE
(page 719)

Returns the amount of disk storage used by each
projection on each node.

V_MONITOR

PROJECTIONS (page 673) Provides information about projections. V_CATALOG

QUERY_METRICS (page 721) Monitors the sessions and queries executing on
each node.

V_MONITOR

QUERY_PROFILES (page 722) Provides information regarding queries that have
run.

V_MONITOR

RESOURCE_ACQUISITIONS
(page 724)

Provides details of resources (memory, open file
handles, threads) acquired by each running request
for each resource pool in the system.

V_MONITOR

-663-

 SQL System Tables (Monitoring APIs)

RESOURCE_ACQUISITIONS_
HISTORY (page 727)

Provides details of resources (memory, open file
handles, threads) acquired by any profiled query for
each resource pool in the system.

V_MONITOR

RESOURCE_POOL_STATUS
(page 730)

Provides resource pool usage information. V_MONITOR

RESOURCE_POOLS (page
676)

Provides configuration of resource pools, both
user-defined and built-in.

V_CATALOG

RESOURCE_QUEUES (page
734)

Provides information about queries waiting for
resources

V_MONITOR

RESOURCE_REJECTIONS
(page 735)

Returns requests for resources that are rejected by
the resource manager.

V_MONITOR

RESOURCE_USAGE (page
736)

Returns system resource management on each
node.

V_MONITOR

SESSION_PROFILES (page
739)

Provides basic session parameters and lock time
out data.

V_MONITOR

SESSIONS (page 741) Monitors external sessions. V_MONITOR

STORAGE_CONTAINERS
(page 743)

Monitors information about each storage container
in the database.

V_MONITOR

STRATA (page 746) Provides information of strata used in Tuple Mover,
one row per stratum. (Vertica Internal use only)

V_MONITOR

STRATA_STRUCTURES (page
749)

Provides information of strata structures used in
Tuple Mover, one row per strata structure. (Vertica
Internal use only)

V_MONITOR

SYSTEM (page 751) Monitors the overall state of the database. V_MONITOR

SYSTEM_TABLES (page 679) Displays a list of all system table names. V_CATALOG

TABLE_CONSTRAINTS (page
680)

Provides information about table constraints. V_CATALOG

TABLES (page 681) Provides information about all tables in the
database.

V_CATALOG

TUPLE_MOVER_OPERATIONS
(page 752)

Monitors the status of the Tuple Mover on each
node.

V_MONITOR

TYPES (page 682) Provides information about supported data types. V_CATALOG

USER_FUNCTIONS (page 683) Returns metadata about user-defined SQL Macros,
which store commonly used SQL expressions in a
function.

V_CATALOG

USER_PROCEDURES (page
684)

Provides information about external procedures that
have been defined for Vertica

V_CATALOG

USERS (page 685) Provides information about users. V_CATALOG

VIEW_COLUMNS (page 686) Provides view attribute information. V_CATALOG

VIEWS (page 688) Provides information about all views within the V_CATALOG

-664-

SQL Reference Manual

system.

WOS_CONTAINER_STORAGE
(page 753)

Monitors information about WOS storage, which is
divided into regions.

V_MONITOR

V_CATALOG Schema
The system tables in this section reside in the v_catalog schema. These tables provide

information (metadata) about the objects in a database; for example, tables, constraints, users,
projections, and so on.

COLUMNS

Provides table column information.

Column Name Data Type Description

TABLE_ID INTEGER A unique numeric ID assigned by the Vertica catalog,
which identifies the table.

TABLE_SCHEMA VARCHAR The schema name for which information is listed.

TABLE_NAME VARCHAR The table name for which information is listed.

IS_SYSTEM_TABLE BOOLEAN Indicates whether the table is a system table, where t is
true and f is false.

COLUMN_NAME VARCHAR The column name for which information is listed in the
database.

DATA_TYPE VARCHAR The data type assigned to the column; for example
VARCHAR.

DATA_TYPE_DESCRIPTION VARCHAR The description of the data type; for example
VARCHAR(16).

DATA_TYPE_ID INTEGER A unique numeric ID assigned by the Vertica catalog,
which identifies the data type.

DATA_TYPE_LENGTH INTEGER The maximum allowable length of the data type.

CHARACTER_MAXIMUM_

LENGTH

VARCHAR The maximum allowable length of the column.

NUMERIC_PRECISION INTEGER The number of significant decimal digits.

NUMERIC_SCALE INTEGER The number of fractional digits.

DATETIME_PRECISION INTEGER For TIMESTAMP data type, returns the declared
precision; returns null if no precision was declared.

INTERVAL_PRECISION INTEGER The number of fractional digits retained in the seconds
field.

ORDINAL_POSITION VARCHAR The position of the column respective to other columns

-665-

 SQL System Tables (Monitoring APIs)

in the table.

IS_NULLABLE BOOLEAN Indicates whether the column can contain null values,
where t is true and f is false.

COLUMN_DEFAULT VARCHAR The default value of a column, such as empty or
expression.

Example

=> SELECT table_schema, table_name, column_name, data_type, is_nullable

 FROM columns WHERE table_schema = 'store' AND data_type = 'Date';

 table_schema | table_name | column_name | data_type |

is_nullable

--------------+-------------------+------------------------+-----------+------

 store | store_dimension | first_open_date | Date | f

 store | store_dimension | last_remodel_date | Date | f

 store | store_orders_fact | date_ordered | Date | f

 store | store_orders_fact | date_shipped | Date | f

 store | store_orders_fact | expected_delivery_date | Date | f

 store | store_orders_fact | date_delivered | Date | f

6 rows)

NULL results indicate that those columns were not defined. For example, given the following table,
the result for the Datetime_precision column is NULL because no precision was declared:

=> CREATE TABLE c (c TIMESTAMP);

CREATE TABLE

=> SELECT table_name, column_name, datetime_precision FROM columns WHERE

table_name = 'c';

 table_name | column_name | datetime_precision

------------+-------------+--------------------

 c | c |

(1 row)

In this example, the datetime_precision column returns 4 because the precision was declared as 4
in the CREATE TABLE statement:

=> DROP TABLE c;

=> CREATE TABLE c (c TIMESTAMP(4));

CREATE TABLE

=> SELECT table_name, column_name, datetime_precision FROM columns WHERE

table_name = 'c';

 table_name | column_name | datetime_precision

------------+-------------+--------------------

 c | c | 4

DUAL

DUAL is a single-column "dummy" table with one record whose value is X; for example:

=> SELECT * FROM DUAL;

 dummy

 X

(1 row)

-666-

SQL Reference Manual

You can now write the following types of queries:

mydb=> SELECT 1 FROM dual;

 ?column?

 1

(1 row)

=> SELECT current_timestamp, current_user FROM dual;

 ?column? | current_user

-------------------------------+--------------

 2010-03-08 12:57:32.065841-05 | release

(1 row)

mydb=> CREATE TABLE t1(col1 VARCHAR(20), col2 VARCHAR(2));

mydb=> INSERT INTO T1(SELECT 'hello' AS col1, 1 AS col2 FROM dual);)

mydb=> SELECT * FROM t1;

 col1 | col2

-------+------

 hello | 1

(1 row

Because DUAL is a system table, you cannot create projections for it, nor can you use it in pre-join
projections for normal tables. For example, the following is not permitted:

=> CREATE TABLE foo (a varchar(20), b varchar(2));

=> CREATE PROJECTION t1_prejoin AS SELECT * FROM t1 JOIN dual ON t1.col1 =

dual.dummy;

 ERROR: Virtual tables are not allowed in FROM clause of projection

The following is also not permitted:

Note: Only the rows where the PROJECTION_REFRESHES.IS_EXECUTING column equals

false are cleared.

=> CREATE PROJECTION dual_proj AS SELECT * FROM dual;

 ERROR: Virtual tables are not allowed in FROM clause of projection

FOREIGN_KEYS

Provides foreign key information.

Column Name Data Type Description

CONSTRAINT_ID INTEGER A unique numeric ID assigned by the Vertica
catalog, which identifies the constraint.

CONSTRAINT_NAME VARCHA
R

The constraint name for which information is listed.

COLUMN_NAME VARCHA
R

The name of the column that is constrained.

ORDINAL_POSITION VARCHA
R

The position of the column respective to other
columns in the table.

TABLE_NAME VARCHA
R

The table name for which information is listed.

-667-

 SQL System Tables (Monitoring APIs)

REFERENCE_TABLE_NAME VARCHA
R

References the TABLE_NAME column in the
PRIMARY_KEY table.

CONSTRAINT_TYPE VARCHA
R

The constraint type, f, for foreign key.

REFERENCE_COLUMN_NAME VARCHA
R

References the COLUMN_NAME column in the
PRIMARY_KEY table.

TABLE_SCHEMA VARCHA
R

The schema name for which information is listed.

REFERENCE_TABLE_SCHEMA VARCHA
R

References the TABLE_SCHEMA column in the
PRIMARY_KEY table.

Example

mydb=> SELECT constraint_name, table_name, ordinal_position, reference_table_name

 FROM foreign_keys ORDER BY 3;

 constraint_name | table_name | ordinal_position | reference_table_name

---------------------------+-------------------+------------------+-----------------------

 fk_store_sales_date | store_sales_fact | 1 | date_dimension

 fk_online_sales_saledate | online_sales_fact | 1 | date_dimension

 fk_store_orders_product | store_orders_fact | 1 | product_dimension

 fk_inventory_date | inventory_fact | 1 | date_dimension

 fk_inventory_product | inventory_fact | 2 | product_dimension

 fk_store_sales_product | store_sales_fact | 2 | product_dimension

 fk_online_sales_shipdate | online_sales_fact | 2 | date_dimension

 fk_store_orders_product | store_orders_fact | 2 | product_dimension

 fk_inventory_product | inventory_fact | 3 | product_dimension

 fk_store_sales_product | store_sales_fact | 3 | product_dimension

 fk_online_sales_product | online_sales_fact | 3 | product_dimension

 fk_store_orders_store | store_orders_fact | 3 | store_dimension

 fk_online_sales_product | online_sales_fact | 4 | product_dimension

 fk_inventory_warehouse | inventory_fact | 4 | warehouse_dimension

 fk_store_orders_vendor | store_orders_fact | 4 | vendor_dimension

 fk_store_sales_store | store_sales_fact | 4 | store_dimension

 fk_store_orders_employee | store_orders_fact | 5 | employee_dimension

 fk_store_sales_promotion | store_sales_fact | 5 | promotion_dimension

 fk_online_sales_customer | online_sales_fact | 5 | customer_dimension

 fk_store_sales_customer | store_sales_fact | 6 | customer_dimension

 fk_online_sales_cc | online_sales_fact | 6 | call_center_dimension

 fk_store_sales_employee | store_sales_fact | 7 | employee_dimension

 fk_online_sales_op | online_sales_fact | 7 | online_page_dimension

 fk_online_sales_shipping | online_sales_fact | 8 | shipping_dimension

 fk_online_sales_warehouse | online_sales_fact | 9 | warehouse_dimension

 fk_online_sales_promotion | online_sales_fact | 10 | promotion_dimension

(26 rows)

GRANTS

Provides information about privileges granted on various objects, the granting user and grantee
user. The order of columns in the table corresponds to the order in which they appear in the
GRANT command.

Column Name Data Type Description

GRANTOR VARCHAR The user granting permission.

PRIVILEGES_DESCRIPTION VARCHAR A readable description of the privileges being
granted; for example INSERT, SELECT.

-668-

SQL Reference Manual

OBJECT_SCHEMA VARCHAR The name of the schema that is being granted
privileges.

OBJECT_NAME VARCHAR The name of the object that is being granted
privileges. Note that for schema privileges, the
schemaname appears in the OBJECT_NAME
column rather than the OBJECT_SCHEMA column.

GRANTEE VARCHAR The user being granted permission.

Notes

The vsql commands \dp and \z both include the schema name in the output:

=> \dp

 Access privileges for database "vmartdb"

 Grantee | Grantor | Privileges | Schema | Name

---------+---------+------------+--------+-----------------

 | release | USAGE | | public

 | release | USAGE | | v_internal

 | release | USAGE | | v_catalog

 | release | USAGE | | v_monitor

 | release | USAGE | | v_internal

 | release | USAGE | | v_catalog

 | release | USAGE | | v_monitor

 | release | USAGE | | v_internal

 | release | USAGE | | designer_system

(9 rows)

=> \z

 Access privileges for database "vmartdb"

 Grantee | Grantor | Privileges | Schema | Name

---------+---------+------------+--------+-----------------

 | release | USAGE | | public

 | release | USAGE | | v_internal

 | release | USAGE | | v_catalog

 | release | USAGE | | v_monitor

 | release | USAGE | | v_internal

 | release | USAGE | | v_catalog

 | release | USAGE | | v_monitor

 | release | USAGE | | v_internal

 | release | USAGE | | designer_system

(9 rows)

The vsql command \dp *.tablename displays table names in all schemas. This command lets

you distinguish the grants for same-named tables in different schemas:

=> \dp *.events;
 Access privileges for database "dbadmin"

 Grantee | Grantor | Privileges | Schema | Name

---------+---------+--+---------+--------

 user2 | dbadmin | INSERT, SELECT, UPDATE, DELETE, REFERENCES | schema1 | events

 user1 | dbadmin | SELECT | schema1 | events

 user2 | dbadmin | INSERT, SELECT, UPDATE, DELETE, REFERENCES | schema2 | events

 user1 | dbadmin | INSERT, SELECT | schema2 | events

(4 rows)

The vsql command \dp schemaname.* displays all tables in the named schema:

-669-

 SQL System Tables (Monitoring APIs)

=> \dp schema1.*
 Access privileges for database "dbadmin"

grantee | grantor | privileges_description | table_schema | table_name

---------+---------+--+--------------+------------

 user2 | dbadmin | INSERT, SELECT, UPDATE, DELETE, REFERENCES | schema1 | events

 user1 | dbadmin | SELECT | schema1 | events

(2 rows)

Example

In the following example, online_sales is the schema that first gets privileges, and then inside that
schema the anchor table gets SELECT privileges:

=> SELECT grantee, grantor, privileges_description, object_schema, object_name

 FROM grants WHERE grantee='u1' ORDER BY object_name;
 grantee | grantor | privileges_description | object_schema | object_name

---------+---------+------------------------+-------- ------+------------------

 u1 | release | CREATE | | online_sales

 u1 | release | SELECT | online_sales | online_sales_fact

PASSWORDS

Contains user passwords information. This table stores not only current passwords, but also past

passwords if any profiles have PASSWORD_REUSE_TIME or PASSWORD_REUSE_MAX parameters

set. See CREATE PROFILE (page 519) for details.

Column Name Data Type Description

USER_ID INTEGER The ID of the user who owns the password.

USER_NAME VARCHAR The name of the user who owns the password.

PASSWORD VARCHAR The encrypted password.

PASSWORD_CREATE_TIME DATETIME The date and time when the password was created.

IS_CURRENT_PASSWORD BOOLEAN Denotes whether this is the user's current password.
Non-current passwords are retained to enforce password
reuse limitations.

PROFILE_ID INTEGER The ID number of the profile to which the user is
assigned.

PROFILE_NAME VARCHAR The name of the profile to which the user is assigned.

PASSWORD_REUSE_MAX VARCHAR The number password changes that must take place
before an old password can be reused.

PASSWORD_REUSE_TIME VARCHAR The amount of time that must pass before an old
password can be reused.

PRIMARY_KEYS

Provides primary key information.

-670-

SQL Reference Manual

Column Name Data Type Description

CONSTRAINT_ID INTEGER A unique numeric ID assigned by the Vertica catalog, which
identifies the constraint.

CONSTRAINT_NAME VARCHAR The constraint name for which information is listed.

COLUMN_NAME VARCHAR The column name for which information is listed.

ORDINAL_POSITION VARCHAR The position of the column respective to other columns in
the table.

TABLE_NAME VARCHAR The table name for which information is listed.

CONSTRAINT_TYPE VARCHAR The constraint type, p, for primary key.

TABLE_SCHEMA VARCHAR The schema name for which information is listed.

Example

Request specific columns from the PRIMARY_KEYS table:

=> SELECT constraint_name, table_name, ordinal_position, table_schema

 FROM primary_keys ORDER BY 3;

 constraint_name | table_name | ordinal_position | table_schema

-----------------+-----------------------+------------------+--------------

 C_PRIMARY | customer_dimension | 1 | public

 C_PRIMARY | product_dimension | 1 | public

 C_PRIMARY | store_dimension | 1 | store

 C_PRIMARY | promotion_dimension | 1 | public

 C_PRIMARY | date_dimension | 1 | public

 C_PRIMARY | vendor_dimension | 1 | public

 C_PRIMARY | employee_dimension | 1 | public

 C_PRIMARY | shipping_dimension | 1 | public

 C_PRIMARY | warehouse_dimension | 1 | public

 C_PRIMARY | online_page_dimension | 1 | online_sales

 C_PRIMARY | call_center_dimension | 1 | online_sales

 C_PRIMARY | product_dimension | 2 | public

(12 rows)

PROFILE_PARAMETERS

Defines what information is stored in profiles.

Column Name Data Type Description

PROFILE_ID INTEGER The ID of the profile to which this parameter belongs.

PROFILE_NAME VARCHAR The name of the profile to which this parameter belongs.

PARAMETER_TYPE VARCHAR The policy type of this parameter (password_complexity,

password_security, etc.)

PARAMETER_NAME VARCHAR The name of the parameter.

PARAMETER_LIMIT VARCHAR The parameter's value.

-671-

 SQL System Tables (Monitoring APIs)

PROFILES

Provides information about profiles.

Column Name Data Type Description

PROFILE_ID INTEGER The unique identifier for the profile.

PROFILE_NAME VARCHAR The profile's name.

PASSWORD_LIFE_TIME VARCHAR The number of days before the user's
password expires. After expiration, the user
is forced to change passwords during login
or warned that their password has expired if
password_grace_time is set to a value other
than zero or unlimited.

PASSWORD_GRACE_TIME VARCHAR The number of days users are allowed to log
in after their passwords expire. During the
grace time, users are warned about their
expired passwords when they log in. After
the grace period, the user is forced to
change passwords if he or she hasn't
already.

PASSWORD_REUSE_MAX VARCHAR The number of password changes that must
occur before the current password can be
reused.

PASSWORD_REUSE_TIME VARCHAR The number of days that must pass after
setting a password before it can be used
again.

FAILED_LOGIN_ATTEMPTS VARCHAR The number of consecutive failed login
attempts that triggers Vertica to lock the
account.

PASSWORD_LOCK_TIME VARCHAR The number of days an account is locked
after being locked due to too many failed
login attempts.

PASSWORD_MAX_LENGTH VARCHAR The maximum number of characters allowed
in a password.

PASSWORD_MIN_LENGTH VARCHAR The minimum number of characters required
in a password.

PASSWORD_MIN_LETTERS VARCHAR The minimum number of letters (either
uppercase or lowercase) required in a
password.

PASSWORD_MIN_LOWERCASE_LETTERS VARCHAR The minimum number of lowercase.

PASSWORD_MIN_UPPERCASE_LETTERS VARCHAR The minimum number of uppercase letters
required in a password.

PASSWORD_MIN_DIGITS VARCHAR The minimum number of digits required in a

-672-

SQL Reference Manual

password.

PASSWORD_MIN_SYMBOLS VARCHAR The minimum of symbols (for example, !, #,
$, etc.) required in a password.

Notes

Non-superusers querying this table see only the information for the profile to which they are
assigned.

PROJECTION_COLUMNS

Provides column information about projections.

Column Name Data Type Description

PROJECTION_NAME VARCHAR The projection name for which information is listed.

PROJECTION_COLUMN_NAME VARCHAR The projection column name.

COLUMN_POSITION INTEGER The projection column position used in the CREATE
PROJECTION statement.

SORT_POSITION INTEGER The projection's column sort specification, as specified
in CREATE PROJECTION ORDER BY.

COLUMN_ID INTEGER A unique numeric ID (OID) assigned by the Vertica
catalog that identifies the projection column.

DATA_TYPE VARCHAR The data type of the projection column.

ENCODING_TYPE VARCHAR The encoding type of the projection column.

ACCESS_RANK INTEGER The access rank of the projection column.

GROUP_ID INTEGER A unique numeric ID (OID) assigned by the Vertica
catalog that identifies the group.

TABLE_SCHEMA VARCHAR The schema name for the projection.

TABLE_NAME VARCHAR The schema name for the projection.

TABLE_COLUMN_NAME VARCHAR The projection's corresponding table column name.

Example

The following example creates a table named trades and groups the highly correlated columns

bid and ask, storing the stock column separately.

=> CREATE TABLE trades (stock CHAR(5), bid INT, ask INT);

=> CREATE PROJECTION trades_p (stock ENCODING RLE, GROUPED(bid ENCODING DELTAVAL, ask))

 AS (SELECT * FROM trades) ORDER BY stock, bid;

Now query the PROJECTION_COLUMNS table for table trades:

=> SELECT * FROM PROJECTION_COLUMNS where table_name ILIKE 'trades';

-673-

 SQL System Tables (Monitoring APIs)

-[RECORD 1]----------+------------------

projection_name | trades_p

projection_column_name | stock

column_position | 0

sort_position | 0

column_id | 45035996273724456

data_type | Char

encoding_type | RLE

access_rank | 0

group_id | 0

table_schema | public

table_name | trades

table_column_name | stock

-[RECORD 2]----------+------------------

projection_name | trades_p

projection_column_name | bid

column_position | 1

sort_position | 1

column_id | 45035996273724458

data_type | Integer

encoding_type | DELTAVAL

access_rank | 0

group_id | 45035996273724460

table_schema | public

table_name | trades

table_column_name | bid

-[RECORD 3]----------+------------------

projection_name | trades_p

projection_column_name | ask

column_position | 2

sort_position |

column_id | 45035996273724462

data_type | Integer

encoding_type | AUTO

access_rank | 0

group_id | 45035996273724460

table_schema | public

table_name | trades

table_column_name | ask

PROJECTIONS

Provides information about projections.

Column Name Data Type Description

PROJECTION_SCHEMA_ID INTEGER A unique numeric ID assigned by the Vertica
catalog, which identifies the specific schema that
contains the projection.

PROJECTION_SCHEMA VARCHAR The name of the schema that contains the
projection.

-674-

SQL Reference Manual

PROJECTION_ID INTEGER A unique numeric ID assigned by the Vertica
catalog, which identifies the projection.

PROJECTION_NAME VARCHAR The projection name for which information is listed.

OWNER_ID INTEGER A unique numeric ID assigned by the Vertica
catalog, which identifies the projection owner.

OWNER_NAME VARCHAR The name of the projection's owner.

ANCHOR_TABLE_ID INTEGER The unique numeric identification (OID) of the
anchor table for pre-join projections, or the OID of
the table from which the projection was created if it
is not a pre-join projection.

Note: A projection has only one anchor (fact)

table.

ANCHOR_TABLE_NAME VARCHAR The name of the anchor table for pre-join
projections, or the name of the table from which the
projection was created if it is not a pre-join
projection.

NODE_ID INTEGER A unique numeric ID (OID) that identifies the
node(s) that contain the projection.

NODE_NAME VARCHAR The name of the node(s) that contain the
projection.

Note: this column returns information for

unsegmented projections only, not for segmented
and pinned projections.

IS_PREJOIN BOOLEAN Indicates whether the projection is a pre-join
projection, where t is true and f is false.

CREATED_EPOCH INTEGER The epoch in which the projection was created.

CREATE_TYPE VARCHAR The method in which the projection was created:

 CREATE PROJECTION—A custom
projection created through the CREATE
PROJECTION statement.

 CREATE TABLE—A superprojection that
was automatically created when its
associated table was created through the
CREATE TABLE statement.

 DELAYED_CREATION—A
superprojection that was automatically
created when data was loaded into its
associated table.

 DESIGNER—A projection created through
Database Designer

 IMPLEMENT_TEMP_DESIGN—A
temporary projection. Note that Vertica no
longer requires temp designs.

 SYSTEM—A projection that was
automatically created for a system table.

-675-

 SQL System Tables (Monitoring APIs)

VERIFIED_FAULT_TOLERANCE INTEGER The K-safety value for the projection.

IS_UP_TO_DATE BOOLEAN Indicates whether the projection is up to date,
where t is true and f is false. Projections must be up
to date to be used in queries.

HAS_STATISTICS BOOLEAN Indicates whether there are statistics for any
column in the projection, where t is true and f is
false. See ANALYZE_STATISTICS (page 327).

Example

=> SELECT projection_name, anchor_table_name, is_prejoin, is_up_to_date

 FROM projections;

 projection_name | anchor_table_name | is_prejoin | is_up_to_date

------------------------------+-----------------------+------------+---------------

 customer_dimension_site01 | customer_dimension | f | t

 customer_dimension_site02 | customer_dimension | f | t

 customer_dimension_site03 | customer_dimension | f | t

 customer_dimension_site04 | customer_dimension | f | t

 product_dimension_site01 | product_dimension | f | t

 product_dimension_site02 | product_dimension | f | t

 product_dimension_site03 | product_dimension | f | t

 product_dimension_site04 | product_dimension | f | t

 store_sales_fact_p1 | store_sales_fact | t | t

 store_sales_fact_p1_b1 | store_sales_fact | t | t

 store_orders_fact_p1 | store_orders_fact | t | t

 store_orders_fact_p1_b1 | store_orders_fact | t | t

 online_sales_fact_p1 | online_sales_fact | t | t

 online_sales_fact_p1_b1 | online_sales_fact | t | t

 promotion_dimension_site01 | promotion_dimension | f | t

 promotion_dimension_site02 | promotion_dimension | f | t

 promotion_dimension_site03 | promotion_dimension | f | t

 promotion_dimension_site04 | promotion_dimension | f | t

 date_dimension_site01 | date_dimension | f | t

 date_dimension_site02 | date_dimension | f | t

 date_dimension_site03 | date_dimension | f | t

 date_dimension_site04 | date_dimension | f | t

 vendor_dimension_site01 | vendor_dimension | f | t

 vendor_dimension_site02 | vendor_dimension | f | t

 vendor_dimension_site03 | vendor_dimension | f | t

 vendor_dimension_site04 | vendor_dimension | f | t

 employee_dimension_site01 | employee_dimension | f | t

 employee_dimension_site02 | employee_dimension | f | t

 employee_dimension_site03 | employee_dimension | f | t

 employee_dimension_site04 | employee_dimension | f | t

 shipping_dimension_site01 | shipping_dimension | f | t

 shipping_dimension_site02 | shipping_dimension | f | t

 shipping_dimension_site03 | shipping_dimension | f | t

 shipping_dimension_site04 | shipping_dimension | f | t

 warehouse_dimension_site01 | warehouse_dimension | f | t

 warehouse_dimension_site02 | warehouse_dimension | f | t

 warehouse_dimension_site03 | warehouse_dimension | f | t

 warehouse_dimension_site04 | warehouse_dimension | f | t

 inventory_fact_p1 | inventory_fact | f | t

 inventory_fact_p1_b1 | inventory_fact | f | t

 store_dimension_site01 | store_dimension | f | t

 store_dimension_site02 | store_dimension | f | t

 store_dimension_site03 | store_dimension | f | t

 store_dimension_site04 | store_dimension | f | t

 online_page_dimension_site01 | online_page_dimension | f | t

 online_page_dimension_site02 | online_page_dimension | f | t

 online_page_dimension_site03 | online_page_dimension | f | t

 online_page_dimension_site04 | online_page_dimension | f | t

-676-

SQL Reference Manual

 call_center_dimension_site01 | call_center_dimension | f | t

 call_center_dimension_site02 | call_center_dimension | f | t

 call_center_dimension_site03 | call_center_dimension | f | t

 call_center_dimension_site04 | call_center_dimension | f | t

(52 rows)

RESOURCE_POOLS

Displays information about the parameters specified for the resource pool in the CREATE
RESOURCE POOL (page 531) statement.

Column Name Data Type Description

NAME VARCHAR The name of the resource pool.

IS_INTERNAL BOOLEAN Denotes whether a pool is one of the built-in pools (page
534).

MEMORYSIZE VARCHAR Value of the amount of memory allocated to the resource
pool

MAXMEMORYSIZE VARCHAR Value assigned as the maximum size the resource pool

could grow by borrowing memory from the GENERAL pool.

PRIORITY INTEGER Value of PRIORITY parameter specified when defining

the pool.

QUEUETIMEOUT INTEGER Value in seconds of QUEUETIMEOUT parameter specified

when defining the pool. Represents the maximum amount
of time the request is allowed to wait for resources to
become available before being rejected.

PLANNEDCONCURRENCY INTEGER Value of PLANNEDCONCURRENCY parameter specified

when defining the pool, which represents number of
concurrent queries that are normally expected to be
running against the resource pool.

MAXCONCURRENCY INTEGER Value of MAXCONCURRENCY parameter specified when

defining the pool, which represents the maximum number
of concurrent execution slots available to the resource
pool.

SINGLEINITIATOR BOOLEAN Value that indicates whether all requests using this pool
are issued against the same initiator node or whether
multiple initiator nodes can be used; for instance in a
round-robin configuration.

Notes

Column names in the RESOURCE_POOL table mirror syntax in the CREATE RESOURCE POOL
table; therefore, column names do not use underscores.

Example

=> SELECT * FROM RESOURCE_POOLS;
 name | is_internal | memorysize | maxmemorysize | priority | queuetimeout | plannedconcurrency

| maxconcurrency | singleinitiator

----------+-------------+------------+---------------+----------+--------------+-----------------

---+----------------+-----------------

-677-

 SQL System Tables (Monitoring APIs)

 general | t | | Special: 95% | 0 | 300 | 4

| | f

 sysquery | t | 64M | | 20 | 300 | 4

| | f

 sysdata | t | 100M | 10% | | |

| |

 wosdata | t | 0% | 25% | | | 2

| |

 tm | t | 200M | | 10 | 300 | 2

| 3 | t

 refresh | t | 0% | | -10 | 300 | 4

| | t

 recovery | t | 0% | | 15 | 300 | 10

| 5 | t

 dbd | t | 0% | | 0 | 0 | 4

| | t

(8 rows)

See Also

CREATE RESOURCE POOL (page 531)

Managing Workloads and Monitoring Resource Pools and Resource Usage by Queries in the
Administrator's Guide for usage and examples.

SEQUENCES

Displays information about the parameters specified for a sequence using the CREATE
SEQUENCE (page 540) statement.

Column Name Data Type Description

SEQUENCE_SCHEMA VARCHAR Schema in which the sequence was created.

SEQUENCE_NAME VARCHAR Name of the sequence defined in the CREATE
SEQUENCE statement.

OWNER_NAME VARCHAR Name of the owner; for example, dbadmin.

IDENTITY_TABLE_NAME VARCHAR If created by an identity column, the name of the table to
which it belongs. See column constraints (page 556) in
the CREATE TABLE (page 546) statement.

SESSION_CACHE_COUNT INTEGER Count of values cached in a session.

ALLOW_CYCLE BOOLEAN Values allowed to cycle when max/min is reached. See

CYCLE | NO CYCLE parameter in CREATE SEQUENCE

(page 540).

OUTPUT_ORDERED BOOLEAN Values guaranteed to be ordered (always false).

INCREMENT_BY INTEGER Sequence values are incremented by this number
(negative for reverse sequences).

MINIMUM INTEGER Minimum value the sequence can generate.

MAXIMUM INTEGER Maximum value the sequence can generate.

CURRENT_VALUE INTEGER Current value of the sequence.

SEQUENCE_SCHEMA_ID INTEGER A unique numeric ID assigned by the Vertica catalog,
which identifies the schema.

-678-

SQL Reference Manual

SEQUENCE_ID INTEGER A unique numeric ID assigned by the Vertica catalog,
which identifies the sequence.

OWNER_ID INTEGER A unique numeric ID assigned by the Vertica catalog,
which identifies the user who created the sequence.

IDENTITY_TABLE_ID INTEGER A unique numeric ID assigned by the Vertica catalog,
which identifies the table to which the column belongs (if
created by an identity column).

Example

Create a simple sequence:

=> CREATE SEQUENCE my_seq MAXVALUE 5000 START 150;

CREATE SEQUENCE

Return information about the sequence you just created:

=> \x

Expanded display is on.

=> SELECT * FROM sequences;

-[RECORD 1]-------+------------------

sequence_schema | public

sequence_name | my_seq

owner_name | dbadmin

identity_table_name |

session_cache_count | 250000

allow_cycle | f

output_ordered | f

increment_by | 1

minimum | 1

maximum | 5000

current_value | 149

sequence_schema_id | 45035996273704966

sequence_id | 45035996273844996

owner_id | 45035996273704962

identity_table_id | 0

You can also issue the vsql command \ds to return a list of sequences. The results below show

the sequence created in the previous example. If more sequences existed, they would appear in
this table.

=> \ds

 List of Sequences

 Schema | Sequence | CurrentValue | IncrementBy | Minimum | Maximum | AllowCycle

--------+----------+--------------+-------------+---------+---------+---------

 public | my_seq | 149 | 1 | 1 | 5000 | f

(1 row)

See Also

CREATE SEQUENCE (page 540)

The \d [PATTERN] meta-commands in the Programmer's Guide

-679-

 SQL System Tables (Monitoring APIs)

Using Sequences in the Administrator's Guide

SYSTEM_TABLES

Returns a list of all system table names.

Column Name Data Type Description

TABLE_SCHEMA VARCHAR The schema name in which the system table resides; for

example, V_CATALOG (page 664) or V_MONITOR (page

689).

TABLE_NAME VARCHAR The name of the system table.

TABLE_DESCRIPTION VARCHAR A description of the system table's purpose.

Example

Call all the system tables and order them by schema:

=> SELECT * FROM system_tables ORDER BY 1, 2;

 table_schema | table_name | table_description

--------------+-------------------------------+--

 v_catalog | columns | Table column information

 v_catalog | dual | Oracle(TM) compatibility DUAL table

 v_catalog | foreign_keys | Foreign key information

 v_catalog | grants | Grant information

 v_catalog | passwords | User password history and password reuse policy

 v_catalog | primary_keys | Primary key information

 v_catalog | profile_parameters | Profile Parameters information

 v_catalog | profiles | Profile information

 v_catalog | projection_columns | Projection columns information

 v_catalog | projections | Projection information

 v_catalog | resource_pools | Information about defined resource pools

 v_catalog | system_tables | Displays a list of all non-internal system tables

 v_catalog | table_constraints | Constraint information

 v_catalog | tables | Table information

 v_catalog | types | Information about supported data types

 v_catalog | user_functions | User Defined Function information

 v_catalog | user_procedures | User procedure information

 v_catalog | users | User information

 v_catalog | view_columns | View column information

 v_catalog | views | View information

 v_monitor | active_events | Displays all of the active events in the cluster

 v_monitor | column_storage | Information on the amount of disk storage in use

 v_monitor | configuration_parameters | Configuration Parameters information

 v_monitor | current_session | Information on current Session

 v_monitor | database_snapshots | Information on stored database snapshots

 v_monitor | delete_vectors | Information on delete vectors

 v_monitor | disk_resource_rejections | Disk Resource Rejection Summarizations

 v_monitor | disk_storage | Disk usage information

 v_monitor | event_configurations | Current Event configuration

 v_monitor | execution_engine_profiles | Per EE operator profiling information

 v_monitor | host_resources | Per host profiling information

 v_monitor | load_streams | Load metrics for each load stream on each node.

 v_monitor | locks | Lock grants and requests for all nodes

 v_monitor | node_resources | Per node profiling information

 v_monitor | partitions | Partition metadata

 v_monitor | projection_refreshes | Refresh information on each Projection

 v_monitor | projection_storage | Storage information on each Projection

-680-

SQL Reference Manual

 v_monitor | query_metrics | Summarized query information

 v_monitor | query_profiles | Query Profiling

 v_monitor | resource_acquisitions | Resources in use by queries

 v_monitor | resource_acquisitions_history | Resources used by completed queries

 v_monitor | resource_pool_status | Resource pool usage Information

 v_monitor | resource_queues | Queries waiting to acquire resources

 v_monitor | resource_rejections | Resource Rejection Summarizations

 v_monitor | resource_usage | Resource usage Information

 v_monitor | session_profiles | Per session profiling information

 v_monitor | sessions | Information on each Session

 v_monitor | storage_containers | Information on each storage container

 v_monitor | strata | Information of strata used in Tuple Mover

 v_monitor | strata_structures | Information of strata structures used in Tuple Mover

 v_monitor | system | System level information

 v_monitor | tuple_mover_operations | Information about (automatic) Tuple Mover

 v_monitor | wos_container_storage | Storage information on WOS allocator

(53 rows)

TABLE_CONSTRAINTS

Provides information about table constraints.

Column Name Data Type Description

CONSTRAINT_ID VARCHAR A unique numeric ID assigned by the Vertica catalog,
which identifies the constraint.

CONSTRAINT_NAME VARCHAR The name of the constraint, if specified as UNIQUE,
FOREIGN KEY, NOT NULL, or PRIMARY KEY.

CONSTRAINT_SCHEMA_ID INTEGER A unique numeric ID assigned by the Vertica catalog,
which identifies the schema containing the constraint.

CONSTRAINT_KEY_COUNT INTEGER The number of constraint keys.

FOREIGN_KEY_COUNT INTEGER The number of foreign keys.

TABLE_ID INTEGER A unique numeric ID assigned by the Vertica catalog,
which identifies the table.

FOREIGN_TABLE_ID INTEGER The unique object ID of the foreign table referenced in a
foreign key constraint (zero if not a foreign key
constraint).

CONSTRAINT_TYPE INTEGER Is one of 'c', 'f', 'p', 'U' or 'd,' which refer to 'check',

'foreign', 'primary', 'unique' and 'determines',
respectively.

Example

The following command returns constraint column names and types against the VMart schema.

vmartdb=> SELECT constraint_name, constraint_type FROM table_constraints

 ORDER BY constraint_type;

 constraint_name | constraint_type

---------------------------+-----------------

 fk_online_sales_promotion | f

 fk_online_sales_warehouse | f

 fk_online_sales_shipping | f

-681-

 SQL System Tables (Monitoring APIs)

 fk_online_sales_op | f

 fk_online_sales_cc | f

 fk_online_sales_customer | f

 fk_online_sales_product | f

 fk_online_sales_shipdate | f

 fk_online_sales_saledate | f

 fk_store_orders_employee | f

 fk_store_orders_vendor | f

 fk_store_orders_store | f

 fk_store_orders_product | f

 fk_store_sales_employee | f

 fk_store_sales_customer | f

 fk_store_sales_promotion | f

 fk_store_sales_store | f

 fk_store_sales_product | f

 fk_store_sales_date | f

 fk_inventory_warehouse | f

 fk_inventory_product | f

 fk_inventory_date | f

 - | p

 - | p

 - | p

 - | p

 - | p

 - | p

 - | p

 - | p

 - | p

 - | p

 - | p

(33 rows)

See Also

ANALYZE_CONSTRAINTS (page 321)

Adding Constraints in the Administrator's Guide

TABLES

Provides information about all tables in the database.

Column Name Data Type Description

TABLE_SCHEMA_ID INTEGER A unique numeric ID assigned by the Vertica catalog,
which identifies the schema.

TABLE_SCHEMA VARCHAR The schema name for which information is listed.

TABLE_ID INTEGER A unique numeric ID assigned by the Vertica catalog,
which identifies the table.

TABLE_NAME VARCHAR The table name for which information is listed.

OWNER_ID INTEGER A unique numeric ID assigned by the Vertica catalog,
which identifies the owner.

-682-

SQL Reference Manual

OWNER_NAME VARCHAR The name of the user who created the table.

IS_SYSTEM_TABLE BOOLEAN Indicates whether table is a system table, where t is
true and f is false.

SYSTEM_TABLE_CREATOR VARCHAR The name of the process that created the table, such
as Designer.

PARTITION_EXPRESSION VARCHAR The partition expression for the table.

Notes

The TABLE_SCHEMA and TABLE_NAME columns are case sensitive when you run queries that

contain the equality (=) predicate. Use the ILIKE predicate instead:

=> SELECT table_schema, table_name FROM v_catalog.tables WHERE table_schema ILIKE

'schema1';

Example

The following command returns information on all tables in the Vmart schema:

vmartdb=> SELECT table_schema, table_name, owner_name, is_system_table FROM

TABLES;

 table_schema | table_name | owner_name | is_system_table

--------------+-----------------------+------------+-----------------

 public | customer_dimension | release | f

 public | product_dimension | release | f

 public | promotion_dimension | release | f

 public | date_dimension | release | f

 public | vendor_dimension | release | f

 public | employee_dimension | release | f

 public | shipping_dimension | release | f

 public | warehouse_dimension | release | f

 public | inventory_fact | release | f

 store | store_dimension | release | f

 store | store_sales_fact | release | f

 store | store_orders_fact | release | f

 online_sales | online_page_dimension | release | f

 online_sales | call_center_dimension | release | f

 online_sales | online_sales_fact | release | f

(15 rows)

TYPES

Provides information about supported data types.

Column Name Data Type Description

TYPE_ID INTEGER A unique numeric ID assigned by the Vertica catalog, which
identifies the specific data type.

TYPE_NAME VARCHAR The data type name associated with a particular data type ID.

-683-

 SQL System Tables (Monitoring APIs)

Example

=> SELECT * FROM types;

 type_id | type_name

---------+-------------

 5 | Boolean

 6 | Integer

 7 | Float

 8 | Char

 9 | Varchar

 10 | Date

 11 | Time

 12 | Timestamp

 13 | TimestampTz

 14 | Interval

 15 | TimeTz

 16 | Numeric

 17 | Varbinary

 117 | Binary

(14 rows)

USER_FUNCTIONS

Returns metadata about user-defined SQL Macros, which store commonly used SQL expressions
as a function in the Vertica catalog.

Column Name Data Type Description

FUNCTION_NAME VARCHAR The SQL Macro (function) name assigned by the user.

FUNCTION_RETURN_TYPE VARCHAR The data type name that the SQL Macro returns.

FUNCTION_DEFINITION VARCHAR The SQL expression that the user defined in the SQL
Macro's function body.

VOLATILITY VARCHAR The SQL Macro's volatility (whether a function returns
the same output given the same input). Can be
immutable, volatile, or stable.

IS_STRICT BOOLEAN Indicates whether the SQL Macro is strict, where t is
true and f is false.

Notes

The volatility and strictness of a SQL Macro are automatically inferred from the function definition
in order that Vertica perform constant folding optimization, when possible, and determine the
correctness of usage, such as where an immutable function is expected but a volatile function is
provided.

Example

Create a SQL Macro called zeroifnull in the public schema:

=> CREATE FUNCTION zeroifnull(x INT) RETURN INT

 AS BEGIN

-684-

SQL Reference Manual

 RETURN (CASE WHEN (x IS NOT NULL) THEN x ELSE 0 END);

 END;

Now query the USER_FUNCTIONS table. The query returns just the zeroifnull macro because

it is the only one created in this schema:

=> SELECT * FROM user_functions;

-[RECORD 1]----------+---

schema_name | public

function_name | zeroifnull

function_return_type | Integer

function_argument_type | x Integer

function_definition | RETURN CASE WHEN (x IS NOT NULL) THEN x ELSE 0 END

volatility | immutable

is_strict | f

See Also

CREATE FUNCTION (page 515)

ALTER FUNCTION (page 477)

DROP FUNCTION (page 582)

GRANT (Function) (page 596)

REVOKE (Function) (page 607)

See also Using SQL Macros in the Programmer's Guide

USER_PROCEDURES

Provides information about external procedures that have been defined for Vertica. User see only
the procedures they can execute.

Column Name Data Type Description

PROCEDURE_NAME VARCHAR The name given to the external procedure through the
CREATE PROCEDURE statement.

PROCEDURE_ARGUMENTS VARCHAR Lists arguments for the external procedure.

SCHEMA_NAME VARCHAR Indicates the schema in which the external procedure is
defined.

Example

=> SELECT * FROM user_procedures;

 procedure_name | procedure_arguments | schema_name

----------------+---------------------+-------------

 helloplanet | arg1 Varchar | public

(1 row)

-685-

 SQL System Tables (Monitoring APIs)

USERS

Provides information about all users in the database.

Column Name Data Type Description

USER_ID INTEGER A unique numeric ID assigned by the Vertica catalog, which
identifies the user.

USER_NAME VARCHAR The user name for which information is listed.

IS_SUPER_USER BOOLEAN Indicates whether the current user is superuser, where t is
true and f is false.

PROFILE_NAME VARCHAR The name of the profile to which the user is assigned. The
profile controls the user's password policy.

IS_LOCKED BOOLEAN Whether the user's account is locked. A locked user cannot
log into the system.

LOCK_TIME DATETIME When the user's account was locked. Used to determine
when to automatically unlock the account, if the user's

profile has a PASSWORD_LOCK_TIME parameter set.

RESOURCE_POOL VARCHAR The resource pool to which the user is assigned.

MEMORY_CAP_KB VARCHAR The maximum amount of memory a query run by the user
can consume, in kilobytes.

TEMP_SPACE_CAP_KB VARCHAR The maximum amount of temporary disk space a query run
by the user can consume, in kilobytes.

RUN_TIME_CAP VARCHAR The maximum amount of time any of the user's queries is
allowed to run.

Example

=> \x

Expanded display is on.

=> SELECT * FROM users;

-[RECORD 1]-----+------------------

user_id | 45035996273704962

user_name | dbadmin

is_super_user | t

profile_name | default

is_locked | f

lock_time |

resource_pool | general

memory_cap_kb | unlimited

temp_space_cap_kb | unlimited

run_time_cap | unlimited

-[RECORD 2]-----+------------------

user_id | 45035996273708334

user_name | exampleuser

is_super_user | f

-686-

SQL Reference Manual

profile_name | default

is_locked | f

lock_time |

resource_pool | general

memory_cap_kb | unlimited

temp_space_cap_kb | unlimited

run_time_cap | unlimited

VIEW_COLUMNS

Provides view attribute information.

Column Name Data Type Description

TABLE_ID INTEGER A unique numeric ID assigned by the Vertica
catalog, which identifies the view of the table.

TABLE_SCHEMA VARCHAR The schema name for which information is listed.

TABLE_NAME VARCHAR The table name for which information is listed.

COLUMN_NAME VARCHAR The column name for which information is listed.

DATA_TYPE VARCHAR The data type of the column for which information
is listed; for example, VARCHAR(128).

DATA_TYPE_ID INTEGER A unique numeric ID assigned by the Vertica
catalog, which identifies the data type.

DATA_TYPE_LENGTH INTEGER The maximum allowable length for the data type.

CHARACTER_MAXIMUM_LENGTH INTEGER The maximum allowable length for the column,
valid for character types.

NUMERIC_PRECISION INTEGER The number of significant decimal digits.

NUMERIC_SCALE INTEGER The number of fractional digits.

DATETIME_PRECISION INTEGER For TIMESTAMP data type, returns the declared
precision; returns null if no precision was
declared.

INTERVAL_PRECISION INTEGER The number of fractional digits retained in the
seconds field.

ORDINAL_POSITION VARCHAR The position of the column respective to other
columns.

Notes

A warning like the following means only that view <t> had its associated table dropped. The view

is not returned by the SELECT * FROM view_columns command, and the warning is returned

merely to notify users about an orphaned view.

WARNING: invalid view v: relation "public.t" does not exist

-687-

 SQL System Tables (Monitoring APIs)

Example

=>\pset expanded

Expanded display is on.

=> SELECT * FROM view_columns;

-[RECORD 3]------------+------------------

table_id | 45035996273881226

table_schema | public

table_name | t_cpp_v

column_name | c3

data_type | Char

data_type_id | 8

data_type_length | 10

character_maximum_length | 10

numeric_precision |

numeric_scale |

datetime_precision |

interval_precision |

ordinal_position | 3

-[RECORD 4]------------+------------------

table_id | 45035996273881226

table_schema | public

table_name | t_cpp_v

column_name | c4

data_type | Date

data_type_id | 10

data_type_length | 8

character_maximum_length |

numeric_precision |

numeric_scale |

datetime_precision |

interval_precision |

ordinal_position | 4

NULL fields in the above results indicate that those columns were not defined. For example, given

the following table, the result for the datetime_precision column is NULL because no

precision was declared:

=> CREATE TABLE c (c TIMESTAMP);

CREATE TABLE

=> SELECT table_name, column_name, datetime_precision FROM columns WHERE

table_name = 'c';

 table_name | column_name | datetime_precision

------------+-------------+--------------------

 c | c |

(1 row)

In this example, the datetime_precision column returns 4 because the precision was

declared as 4 in the CREATE TABLE statement:

=> DROP TABLE c;

=> CREATE TABLE c (c TIMESTAMP(4));

CREATE TABLE

=> SELECT table_name, column_name, datetime_precision FROM columns WHERE

table_name = 'c';

-688-

SQL Reference Manual

 table_name | column_name | datetime_precision

------------+-------------+--------------------

 c | c | 4

(1 row)

See Also

VIEWS (page 688)

VIEWS

Provides information about all views within the system. See Implementing Views for more
information.

Column Name Data Type Description

TABLE_SCHEMA_ID INTEGER A unique numeric ID assigned by the Vertica catalog,
which identifies the table schema.

TABLE_SCHEMA VARCHAR The name of the schema that contains the view.

TABLE_ID INTEGER A unique numeric ID assigned by the Vertica catalog,
which identifies the table.

TABLE_NAME VARCHAR The table name for which information is listed.

OWNER_ID INTEGER A unique numeric ID assigned by the Vertica catalog,
which identifies the owner.

OWNER_NAME VARCHAR The name of the view owner.

VIEW_DEFINITION VARCHAR The query used to define the view.

IS_SYSTEM_VIEW BOOLEAN Indicates whether the table is a system view, where t
is true and f is false.

SYSTEM_VIEW_CREATOR VARCHAR The user name who created the view.

Example

Query the VIEWS table:

=>\pset expanded

Expanded display is on.

=> SELECT * FROM VIEWS;
-[RECORD 1]-------+--

table_schema_id | 45035996273704963

table_schema | public

table_id | 45035996273823130

table_name | temp

owner_id | 45035996273704961

owner_name | release

view_definition | SELECT to_date('F'::character varying, 'dd mm yyyy'::character

 varying) AS to_date FROM public.customer_dimension

is_system_view | f

system_view_creator |

See Also

Implementing Views

-689-

 SQL System Tables (Monitoring APIs)

VIEW_COLUMNS (page 686)

V_MONITOR Schema
The system tables in this section reside in the v_monitor schema. These tables provide

information about the health of the Vertica database.

ACTIVE_EVENTS

Returns all active events in the cluster. See Monitoring Events.

Column Name Data Type Description

NODE_NAME VARCHAR The node name where the event occurred.

EVENT_CODE INTEGER A numeric ID that indicates the type of event. See
Event Types for a list of event type codes.

EVENT_ID INTEGER A unique numeric ID assigned by the Vertica
catalog, which identifies the specific event.

EVENT_SEVERITY VARCHAR The severity of the event from highest to lowest.
These events are based on standard syslog
severity types.

 0—Emergency

 1—Alert

 2—Critical

 3—Error

 4—Warning

 5—Notice

 6—Informational

 7—Debug

EVENT_POSTED_TIMESTAMP TIMESTAM
P

The year, month, day, and time the event was
reported. The time is posted in military time.

EVENT_EXPIRATION VARCHAR The year, month, day, and time the event expire.
The time is posted in military time. If the cause of
the event is still active, the event is posted again.

EVENT_CODE_DESCRIPTION VARCHAR A brief description of the event and details
pertinent to the specific situation.

EVENT_PROBLEM_DESCRIPTION VARCHAR A generic description of the event.

REPORTING_NODE VARCHAR The name of the node within the cluster that
reported the event.

EVENT_SENT_TO_CHANNELS VARCHAR The event logging mechanisms that are
configured for Vertica. These can include

vertica.log, (configured by default) syslog,

and SNMP.

EVENT_POSTED_COUNT INTEGER Tracks the number of times an event occurs.
Rather than posting the same event multiple

-690-

SQL Reference Manual

times, Vertica posts the event once and then
counts the number of additional instances in
which the event occurs.

Example

Query the ACTIVE_EVENTS table:

=>\pset expanded

Expanded display is on.

=> SELECT * FROM active_events;

-[RECORD 1]-------------+---

current_timestamp | 2009-08-11 14:38:18.083285

node_name | site01

event_code | 6

event_id | 6

event_severity | Informational

is_event_posted | 2009-08-11 09:38:39.008458

event_expiration | 2077-08-29 11:52:46.008458

event_code_description | Node State Change

event_problem_description | Changing node site01 startup state to UP

reporting_node | site01

event_sent_to_channels | Vertica Log

event_posted_count | 1

-[RECORD 2]-------------+---

current_timestamp | 2009-08-11 14:38:34.226377

node_name | site02

event_code | 6

event_id | 6

event_severity | Informational

is_event_posted | 2009-08-11 09:38:39.018172

event_expiration | 2077-08-29 11:52:46.018172

event_code_description | Node State Change

event_problem_description | Changing node site02 startup state to UP

reporting_node | site02

event_sent_to_channels | Vertica Log

event_posted_count | 1

-[RECORD 3]-------------+---

current_timestamp | 2009-08-11 14:38:48.859987

node_name | site03

event_code | 6

event_id | 6

event_severity | Informational

is_event_posted | 2009-08-11 09:38:39.027258

event_expiration | 2077-08-29 11:52:46.027258

event_code_description | Node State Change

event_problem_description | Changing node site03 startup state to UP

reporting_node | site03

event_sent_to_channels | Vertica Log

event_posted_count | 1

-[RECORD 4]-------------+---

current_timestamp | 2009-08-11 14:39:04.226379

node_name | site04

event_code | 6

-691-

 SQL System Tables (Monitoring APIs)

event_id | 6

event_severity | Informational

is_event_posted | 2009-08-11 09:38:39.008288

event_expiration | 2077-08-29 11:52:46.008288

event_code_description | Node State Change

event_problem_description | Changing node site04 startup state to UP

reporting_node | site04

event_sent_to_channels | Vertica Log

event_posted_count | 1

...

COLUMN_STORAGE

Returns the amount of disk storage used by each column of each projection on each node.

Column Name Data Type Description

NODE_NAME VARCHAR The node name for which information is listed.

COLUMN_NAME VARCHAR The column name for which information is listed.

ROW_COUNT INTEGER The number of rows in the column.

USED_BYTES INTEGER The disk storage allocation of the column in bytes.

ENCODINGS VARCHAR The encoding type for the column.

COMPRESSION VARCHAR The compression type for the column.

WOS_ROW_COUNT INTEGER The number of WOS rows in the column.

ROS_ROW_COUNT INTEGER The number of ROS rows in the column.

ROS_USED_BYTES INTEGER The number of ROS bytes in the column.

ROS_COUNT INTEGER The number of ROS containers.

PROJECTION_NAME VARCHAR The associated projection name for the column.

PROJECTION_SCHEMA VARCHAR The name of the schema associated with the
projection.

ANCHOR_TABLE_NAME VARCHAR The associated table name.

ANCHOR_TABLE_SCHEMA VARCHAR The associated table's schema name.

Notes

 WOS data is stored by row, so per-column byte counts are not available.

 The ENCODINGS and COMPRESSION columns let you comparing the affect of different

encoding types on column storage, when optimizing for compression.

Example

Query the COLUMN_STORAGE table:

=> \pset expanded

Expanded display is on.

-692-

SQL Reference Manual

=> SELECT * FROM COLUMN_STORAGE;

-[RECORD 1]-------+------------------------------

node_name | node0001

column_name | bincol

row_count | 2

used_bytes | 0

encodings | String

compressions | lzo

wos_row_count | 0

ros_row_count | 2

ros_used_bytes | 0

ros_count | 1

projection_name | allTypes_super

projection_schema | public

anchor_table_name | allTypes

anchor_table_schema | public

-[RECORD 12]------+---------------------------------

-

node_name | node0001

column_name | boolcol

row_count | 2

used_bytes | 0

encodings | Uncompressed

compressions | lzo

wos_row_count | 0

ros_row_count | 2

ros_used_bytes | 0

ros_count | 1

projection_name | allTypes_super

projection_schema | public

anchor_table_name | allTypes

anchor_table_schema | public

-[RECORD 13]------+---------------------------------

-

node_name | node0001

column_name | charcol

row_count | 2

used_bytes | 0

encodings | String

compressions | lzo

wos_row_count | 0

ros_row_count | 2

ros_used_bytes | 0

ros_count | 1

projection_name | allTypes_super

projection_schema | public

anchor_table_name | allTypes

anchor_table_schema | public

-[RECORD 4]-------+------------------------------

...

Call specific columns from the COLUMN_STORAGE table:

SELECT column_name, row_count, projection_name, anchor_table_name

FROM COLUMN_STORAGE

WHERE node_name = 'site02' AND row_count = 1000;

-693-

 SQL System Tables (Monitoring APIs)

 column_name | row_count | projection_name | anchor_table_name

----------------------+-----------+------------------------------+-----------------------

 end_date | 1000 | online_page_dimension_site02 | online_page_dimension

 epoch | 1000 | online_page_dimension_site02 | online_page_dimension

 online_page_key | 1000 | online_page_dimension_site02 | online_page_dimension

 page_description | 1000 | online_page_dimension_site02 | online_page_dimension

 page_number | 1000 | online_page_dimension_site02 | online_page_dimension

 page_type | 1000 | online_page_dimension_site02 | online_page_dimension

 start_date | 1000 | online_page_dimension_site02 | online_page_dimension

 ad_media_name | 1000 | promotion_dimension_site02 | promotion_dimension

 ad_type | 1000 | promotion_dimension_site02 | promotion_dimension

 coupon_type | 1000 | promotion_dimension_site02 | promotion_dimension

 display_provider | 1000 | promotion_dimension_site02 | promotion_dimension

 display_type | 1000 | promotion_dimension_site02 | promotion_dimension

 epoch | 1000 | promotion_dimension_site02 | promotion_dimension

 price_reduction_type | 1000 | promotion_dimension_site02 | promotion_dimension

 promotion_begin_date | 1000 | promotion_dimension_site02 | promotion_dimension

 promotion_cost | 1000 | promotion_dimension_site02 | promotion_dimension

 promotion_end_date | 1000 | promotion_dimension_site02 | promotion_dimension

 promotion_key | 1000 | promotion_dimension_site02 | promotion_dimension

 promotion_media_type | 1000 | promotion_dimension_site02 | promotion_dimension

 promotion_name | 1000 | promotion_dimension_site02 | promotion_dimension

20 rows)

CONFIGURATION_PARAMETERS

Provides information about configuration parameters currently in use by the system.

Caution: Contact Technical Support (on page 1) before changing any of the parameters that
are not explicitly included in the documentation.

Column Name Data Type Description

NODE_NAME VARCHAR The node names on the cluster for which
information is listed.

PARAMETER_NAME VARCHAR The name of the configurable parameter.

See Configuration Parameters in the
Administrator's Guide for a detailed list of
supported parameters.

CURRENT_VALUE INTEGER The value of the current setting for the
parameter.

DEFAULT_VALUE INTEGER The default value for the parameter.

CHANGE_UNDER_SUPPORT_GUIDANCE BOOLEAN A t (true) setting indicates that changes to
configuration parameters require guidance
from Vertica Technical Support (on page 1).

CHANGE_REQUIRES_RESTART BOOLEAN Indicates whether the configuration change
requires a restart, where t is true and f is false.

DESCRIPTION VARCHAR A description of the parameter's purpose.

Notes

The CONFIGURATION_PARAMETERS function returns the following error in non-default locales:

-694-

SQL Reference Manual

ERROR: ORDER BY is not supported with UNION/INTERSECT/EXCEPT in non-default

locales

HINT: Please move the UNION to a FROM clause subquery.

See the SET LOCALE (page 636) command for details.

Example

The following command returns all current configuration parameters in Vertica:

=> SELECT * FROM CONFIGURATION_PARAMETERS;

See Also

Configuration Parameters in the Administrator's Guide.

CURRENT_SESSION

Returns information about the current active session. You can use this table to find out the current
session's sessionID and get the duration of the previously-run query.

Column Name Data Type Description

NODE_NAME VARCHAR The node name for which information is listed.

USER_NAME VARCHAR The name used to log into the database or NULL if
the session is internal.

CLIENT_HOSTNAME VARCHAR The host name and port of the TCP socket from
which the client connection was made; NULL if
the session is internal

CLIENT_PID INTEGER The process identifier of the client process that
issued this connection.

Note: Remember that the client process could be

on a different machine than the server.

LOGIN_TIMESTAMP TIMESTAM
P

The date and time the user logged into the
database or when the internal session was
created. This column can be useful for identifying
sessions that have been left open and could be
idle.

SESSION_ID VARCHAR The identifier required to close or interrupt a
session. This identifier is unique within the cluster
at any point in time but can be reused when the
session closes.

CLIENT_LABEL VARCHAR A user-specified label for the client connection
that can be set when using ODBC. See

SessionLabel in DSN Parameters in

Programmer's Guide.

TRANSACTION_START TIMESTAM
P

The date/time the current transaction started or
NULL if no transaction is running.

TRANSACTION_ID VARCHAR A string containing the hexadecimal
representation of the transaction ID, if any;

-695-

 SQL System Tables (Monitoring APIs)

otherwise NULL.

TRANSACTION_DESCRIPTION VARCHAR A description of the current transaction.

STATEMENT_START TIMESTAM
P

The date/time the current statement started
execution, or NULL if no statement is running.

STATEMENT_ID VARCHAR An ID for the currently-running statement. NULL
indicates that no statement is currently being
processed.

LAST_STATEMENT_DURATION_US INTEGER The duration of the last completed statement in
microseconds.

CURRENT_STATEMENT VARCHAR The currently-running statement, if any. NULL
indicates that no statement is currently being
processed.

LAST_STATEMENT VARCHAR NULL if the user has just logged in; otherwise the
currently running statement or the most recently
completed statement.

EXECUTION_ENGINE_PROFILING

_CONFIGURATION

VARCHAR Returns a value that indicates whether profiling is
turned on. Results are:

 Empty when no profiling

 'Local' when profiling on for this session

 'Global' when on by default for all

sessions

 'Local, Global' when on by default for

all sessions and on for current session

QUERY_PROFILING_

CONFIGURATION

VARCHAR Returns a value that indicates whether profiling is
turned on. Results are:

 Empty when no profiling

 'Local' when profiling on for this session

 'Global' when on by default for all

sessions

 'Local, Global' when on by default for

all sessions and on for current session

SESSION_PROFILING_

CONFIGURATION

VARCHAR Returns a value that indicates whether profiling is
turned on. Results are:

 Empty when no profiling

 'Local' when profiling on for this session

 'Global' when on by default for all

sessions

 'Local, Global' when on by default for

all sessions and on for current session

Notes

 The default for profiling is ON ('1') for all sessions. Each session can turn profiling ON or OFF.

-696-

SQL Reference Manual

 Profiling parameters (such as GlobalEEProfiling in the examples below) are set in the

Vertica configuration file (vertica.conf). To turn profiling off, set the parameter to '0'. To

turn profiling on, set the parameter to '1'.

Examples

Query the CURRENT_SESSION table:

=> SELECT * FROM CURRENT_SESSION;
-[RECORD 1]----------------------------+--

node_name | v_vmartdb_node01

user_name | release

client_hostname | xxx.x.x.x:xxxxx

client_pid | 18082

login_timestamp | 2010-10-07 10:10:03.114863-04

session_id | myhost-17956:0x1d

client_label |

transaction_start | 2010-10-07 11:52:32.43386

transaction_id | 45035996273727909

transaction_description | user release (select * from passwords;)

statement_start | 2010-10-07 12:30:42.444459

statement_id | 11

last_statement_duration_us | 85241

current_statement | SELECT * FROM CURRENT_SESSION;

last_statement | SELECT * FROM CONFIGURATION_PARAMETERS;

execution_engine_profiling_configuration | Local

query_profiling_configuration |

session_profiling_configuration |

Request specific columns from the table:

=> SELECT node_name, session_id, execution_engine_profiling_configuration

 FROM CURRENT_SESSION;

 node_name | session_id | execution_engine_profiling_configuration

-----------+---------------------+--

 site01 | myhost-17956:0x1d | Global

(1 row)

The sequence of commands in this example shows the use of disabling and enabling profiling for
local and global sessions.

This command disables EE profiling for query execution runs:

=> SELECT disable_profiling('EE');

disable_profiling

EE Profiling Disabled

(1 row)

The following command sets the GlobalEEProfiling configuration parameter to 0, which turns

off profiling:

=> SELECT set_config_parameter('GlobalEEProfiling', '0'); set_config_parameter

Parameter set successfully

(1 row)

The following command tells you whether profiling is set to 'Local' or 'Global' or none:

=> SELECT execution_engine_profiling_configuration FROM CURRENT_SESSION;

ee_profiling_config

-697-

 SQL System Tables (Monitoring APIs)

(1 row)

Note: The result set is empty because profiling was turned off in the preceding example.

This command now enables EE profiling for query execution runs:

=> SELECT enable_profiling('EE');

enable_profiling

EE Profiling Enabled

(1 row)

Now when you run a select on the CURRENT_SESSION table, you can see profiling is ON for the
local session:

=> SELECT execution_engine_profiling_configuration FROM CURRENT_SESSION;

ee_profiling_config

Local

(1 row)

Now turn profiling on for all sessions by setting the GlobalEEProfiling configuration parameter to 1:

=> SELECT set_config_parameter('GlobalEEProfiling', '1'); set_config_parameter

Parameter set successfully

(1 row)

Now when you run a select on the CURRENT_SESSION table, you can see profiling is ON for the
local sessions, as well as for all sessions:

=> SELECT execution_engine_profiling_configuration FROM CURRENT_SESSION;

ee_profiling_config

Local, Global

(1 row)

See Also

CLOSE_SESSION (page 330), CLOSE_ALL_SESSIONS (page 333),
EXECUTION_ENGINE_PROFILES (page 704), QUERY_PROFILES (page 722),
SESSION_PROFILES (page 739), and SESSIONS (page 741)

Managing Sessions and Configuration Parameters in the Administrator's Guide

DELETE_VECTORS

Holds information on deleted rows to speed up the delete process.

Column Name Data Type Description

NODE_NAME VARCHAR The name of the node storing the deleted rows.

SCHEMA_NAME VARCHAR The name of the schema where the deleted rows are
located.

-698-

SQL Reference Manual

PROJECTION_NAME VARCHAR The name of the projection where the deleted rows are
located.

STORAGE_TYPE VARCHAR The type of storage containing the delete vector (WOS or
ROS).

DV_OID INTEGER The unique numeric ID (OID) that identifies this delete
vector.

STORAGE_OID INTEGER The unique numeric ID (OID) that identifies the storage
container that holds the delete vector.

DELETED_ROW_COUNT INTEGER The number of rows deleted.

USED_BYTES INTEGER The number of bytes used to store the deletion.

START_EPOCH INTEGER The start epoch of the data in the delete vector.

END_EPOCH INTEGER The end epoch of the data in the delete vector.

DISK_RESOURCE_REJECTIONS

Returns requests for resources that are rejected due to disk space shortages.

Column Name Data Type Description

NODE_NAME VARCHAR The node name for which information is listed.

RESOURCE_TYPE VARCHAR The resource request requester (example: Temp
files).

REJECTED_REASON VARCHAR One of 'Insufficient disk space' or 'Failed

volume'.

REJECTED_COUNT INTEGER Number of times this REJECTED_REASON has

been given for this RESOURCE_TYPE.

FIRST_REJECTED_TIMESTAMP TIMESTAM
P

The time of the first rejection for this

REJECTED_REASON and RESOURCE_TYPE.

LAST_REJECTED_TIMESTAMP TIMESTAM
P

The time of the most recent rejection for this

REJECTED_REASON and RESOURCE_TYPE.

LAST_REJECTED_VALUE INTEGER The value of the most recent rejection for this

REJECTED_REASON and RESOURCE_TYPE.

Notes

Output is aggregated by both RESOURCE_TYPE and REJECTED_REASON to provide more

comprehensive information.

Example

=>\pset expanded

-699-

 SQL System Tables (Monitoring APIs)

Expanded display on.

=> SELECT * FROM disk_resource_rejections;

-[RECORD 1]------------+---------------------------

node_name | e0

resource_type | Table Data

rejected_reason | Insufficient disk space

rejected_count | 2

first_rejected_timestamp | 2009-10-16 15:55:16.336246

last_rejected_timestamp | 2009-10-16 15:55:16.336391

last_rejected_value | 1048576

-[RECORD 2]------------+---------------------------

node_name | e1

resource_type | Table Data

rejected_reason | Insufficient disk space

rejected_count | 2

first_rejected_timestamp | 2009-10-16 15:55:16.37908

last_rejected_timestamp | 2009-10-16 15:55:16.379207

last_rejected_value | 1048576

See Also

RESOURCE_REJECTIONS (page 735)

CLEAR_RESOURCE_REJECTIONS (page 330)

Managing Workloads and Managing System Resource Usage in the Administrator's Guide

DISK_STORAGE

Returns the amount of disk storage used by the database on each node.

Column Name Date Type Description

NODE_NAME VARCHAR The node name for which information is listed.

STORAGE_PATH VARCHAR The path where the storage location is mounted.

STORAGE_USAGE VARCHAR The type of information stored in the location:

 DATA: Only data is stored in the location.

 TEMP: Only temporary files that are created
during loads or queries are stored in the
location.

 DATA,TEMP: Both types of files are stored in
the location.

 CATALOG

RANK INTEGER The rank assigned to the storage location based on its
performance. Ranks are used to create a tiered disk
architecture in which projections, columns, and
partitions are stored on different disks based on
predicted or measured access patterns. See Creating
and Configuring Storage Locations in the
Administrator's Guide.

-700-

SQL Reference Manual

THROUGHPUT INTEGER The measure of a storage location's performance in
MB/sec. 1/throughput is the time taken to read 1MB of
data.

LATENCY INTEGER The measure of a storage location's performance in
seeks/sec. 1/latency is the time taken to seek to the
data.

STORAGE_STATUS VARCHAR The status of the storage location: active or retired.

DISK_BLOCK_SIZE_BYTES INTEGER The block size of the disk in bytes.

DISK_SPACE_USED_BLOCKS INTEGER The number of disk blocks in use.

DISK_SPACE_USED_MB INTEGER The number of megabytes of disk storage in use.

DISK_SPACE_FREE_BLOCKS INTEGER The number of free disk blocks available.

DISK_SPACE_FREE_MB INTEGER The number of megabytes of free storage available.

DISK_SPACE_FREE_PERCENT INTEGER The percentage of free disk space remaining.

Notes

 The storage usage annotation called CATALOG indicates the location is used to store the
catalog. However, CATALOG location can only be specified when Creating a new database
and no new locations can be added as CATALOG locations using ADD_LOCATION (page
318). Existing CATALOG annotations cannot be removed.

 A storage location's performance is measured in throughput in MB/sec and latency in
seeks/sec. These two values are converted to single number(Speed) with the following
formula:

 ReadTime (time to read 1MB) = 1/throughput + 1 / latency

 1/throughput is the time taken to read 1MB of data

 1/latency is the time taken to seek to the data.

 ReadTime is the time taken to read 1MB of data.

 A disk is faster than another disk if its ReadTime is less.

 There can be multiple storage locations per node, and these locations can be on different disks
with different free/used space, block size, etc. This information is useful in letting you know
where the data files reside.

Example

Query the DISK_STORAGE table:

=>\pset expanded

Expanded display is on.

=> SELECT * FROM DISK_STORAGE;

-[RECORD 1]-----------+-----------------------------

current_timestamp | 2009-08-11 14:48:35.932541

node_name | site01

storage_path | /mydb/node01_catalog/Catalog

storage_usage | CATALOG

rank | 0

-701-

 SQL System Tables (Monitoring APIs)

throughput | 0

latency | 0

storage_status | Active

disk_block_size_bytes | 4096

disk_space_used_blocks | 34708721

disk_space_used_mb | 135581

disk_space_free_blocks | 178816678

disk_space_free_mb | 698502

disk_space_free_percent | 83%

-[RECORD 2]-----------+-----------------------------

current_timestamp | 2009-08-11 14:48:53.884255

node_name | site01

storage_path | /mydb/node01_data

storage_usage | DATA,TEMP

rank | 0

throughput | 0

latency | 0

storage_status | Active

disk_block_size_bytes | 4096

disk_space_used_blocks | 34708721

disk_space_used_mb | 135581

disk_space_free_blocks | 178816678

disk_space_free_mb | 698502

disk_space_free_percent | 83%

-[RECORD 3]-----------+-----------------------------

current_timestamp | 2009-08-11 14:49:08.299012

node_name | site02

storage_path | /mydb/node02_catalog/Catalog

storage_usage | CATALOG

rank | 0

throughput | 0

latency | 0

storage_status | Active

disk_block_size_bytes | 4096

disk_space_used_blocks | 19968349

disk_space_used_mb | 78001

disk_space_free_blocks | 193557050

disk_space_free_mb | 756082

disk_space_free_percent | 90%

-[RECORD 4]-----------+-----------------------------

current_timestamp | 2009-08-11 14:49:22.696772

node_name | site02

storage_path | /mydb/node02_data

storage_usage | DATA,TEMP

rank | 0

throughput | 0

latency | 0

storage_status | Active

disk_block_size_bytes | 4096

disk_space_used_blocks | 19968349

disk_space_used_mb | 78001

disk_space_free_blocks | 193557050

disk_space_free_mb | 756082

disk_space_free_percent | 90%

-702-

SQL Reference Manual

-[RECORD 5]-----------+-----------------------------

current_timestamp | 2009-08-11 14:50:03.960157

node_name | site03

storage_path | /mydb/node03_catalog/Catalog

storage_usage | CATALOG

rank | 0

throughput | 0

latency | 0

storage_status | Active

disk_block_size_bytes | 4096

disk_space_used_blocks | 19902595

disk_space_used_mb | 77744

disk_space_free_blocks | 193622804

disk_space_free_mb | 756339

disk_space_free_percent | 90%

-[RECORD 6]-----------+-----------------------------

current_timestamp | 2009-08-11 14:50:27.415735

node_name | site03

storage_path | /mydb/node03_data

storage_usage | DATA,TEMP

rank | 0

throughput | 0

latency | 0

storage_status | Active

disk_block_size_bytes | 4096

disk_space_used_blocks | 19902595

disk_space_used_mb | 77744

disk_space_free_blocks | 193622804

disk_space_free_mb | 756339

disk_space_free_percent | 90%

-[RECORD 7]-----------+-----------------------------

current_timestamp | 2009-08-11 14:50:39.398879

node_name | site04

storage_path | /mydb/node04_catalog/Catalog

storage_usage | CATALOG

rank | 0

throughput | 0

latency | 0

storage_status | Active

disk_block_size_bytes | 4096

disk_space_used_blocks | 19972309

disk_space_used_mb | 78017

disk_space_free_blocks | 193553090

disk_space_free_mb | 756066

disk_space_free_percent | 90%

-[RECORD 8]-----------+-----------------------------

current_timestamp | 2009-08-11 14:50:57.879302

node_name | site04

storage_path | /mydb/node04_data

storage_usage | DATA,TEMP

rank | 0

throughput | 0

latency | 0

storage_status | Active

-703-

 SQL System Tables (Monitoring APIs)

disk_block_size_bytes | 4096

disk_space_used_blocks | 19972309

disk_space_used_mb | 78017

disk_space_free_blocks | 193553090

disk_space_free_mb | 756066

disk_space_free_percent | 90%

Request only specific columns from the table:

=> SELECT node_name, storage_path, storage_status, disk_space_free_percent FROM disk_storage;

 node_name | storage_path | storage_status | disk_space_free_percent

-----------+------------------------------+----------------+-------------------------

 site01 | /mydb/node01_catalog/Catalog | Active | 83%

 site01 | /mydb/node01_data | Active | 83%

 site02 | /mydb/node02_catalog/Catalog | Active | 90%

 site02 | /mydb/node02_data | Active | 90%

 site03 | /mydb/node03_catalog/Catalog | Active | 90%

 site03 | /mydb/node03_data | Active | 90%

 site04 | /mydb/node04_catalog/Catalog | Active | 90%

 site04 | /mydb/node04_data | Active | 90%

(8 rows)

EVENT_CONFIGURATIONS

Monitors the configuration of events.

Column Name Date Type Description

EVENT_ID VARCHAR The name of the event.

EVENT_DELIVERY_CHANNELS VARCHAR The delivery channel on which the event occurred.

Example

=> SELECT * FROM event_configurations;

 event_id | event_delivery_channels

---+-------------------------

 Low Disk Space | Vertica Log, SNMP Trap

 Read Only File System | Vertica Log, SNMP Trap

 Loss Of K Safety | Vertica Log, SNMP Trap

 Current Fault Tolerance at Critical Level | Vertica Log, SNMP Trap

 Too Many ROS Containers | Vertica Log, SNMP Trap

 WOS Over Flow | Vertica Log, SNMP Trap

 Node State Change | Vertica Log, SNMP Trap

 Recovery Failure | Vertica Log, SNMP Trap

 Recovery Error | Vertica Log

 Recovery Lock Error | Vertica Log

 Recovery Projection Retrieval Error | Vertica Log

 Refresh Error | Vertica Log

 Refresh Lock Error | Vertica Log

 Tuple Mover Error | Vertica Log

 Timer Service Task Error | Vertica Log

 Stale Checkpoint | Vertica Log, SNMP Trap

(16 rows)

-704-

SQL Reference Manual

EXECUTION_ENGINE_PROFILES

Provides information regarding query execution runs.

For additional details about profiling and debugging, see Profiling Database Performance in the
Troubleshooting Guide.

Column Name Data Type Description

NODE_NAME VARCHAR The node name for which information is listed.

SESSION_ID VARCHAR The identification of the session for which profiling
information is captured. This identifier is unique within the
cluster at any point in time but can be reused when the
session closes.

TRANSACTION_ID INTEGER An identifier for the transaction within the session if any;

otherwise NULL.

STATEMENT_ID INTEGER An ID for the currently-running statement. NULL indicates

that no statement is currently being processed.

USER_ID INTEGER A unique numeric ID assigned by the Vertica catalog, which
identifies the user.

USER_NAME VARCHAR The user name for which query profile information is listed.

OPERATOR_NAME VARCHAR The name of the Execution Engine component; for example,

NetworkSend.

OPERATOR_ID INTEGER The ID of the Execution Engine component.

BASEPLAN_ID INTEGER The ID in the original plan by the optimizer (EXPLAIN plan).

LOCALPLAN_ID INTEGER The ID in the plan that was actually executed (EXPLAIN

LOCAL plan).

COUNTER_NAME VARCHAR The name of the counter. See the "COUNTER_NAME
Values" section below this table.

COUNTER_TAG VARCHAR A string that uniquely identifies the counter for operators that
might need to distinguish between different instances. For

example, COUNTER_TAG is used to identify to which of the

node bytes are being sent to or received from for the

NetworkSend operator.

COUNTER_VALUE INTEGER The value of the counter.

IS_EXECUTING VARCHAR Distinguishes between active and completed profiles.

COUNTER_NAME Values

The value of COUNTER_NAME can be any of the following:

-705-

 SQL System Tables (Monitoring APIs)

COUNTER_NAME Description

buffers spilled [NetworkSend] Buffers spilled to disk by NetworkSend.

bytes received [NetworkRecv] The number of bytes received over the network

for query execution.

bytes sent [NetworkSend] Size of data after encoding and compression sent

over the network (actual network bytes).

bytes spilled [NetworkSend] Bytes spilled to disk by NetworkSend.

bytes total Only relevant to SendFiles operator (that is,

recover-by-container plan) total number of bytes to send / receive.

clock time (µs) Real-time clock in microseconds.

Note: This counter was called execution time (us) in

previous Vertica releases.

completed merge phases Number of merge phases already completed by an LSort or

DataTarget operator. Compare to the total merge phases.

Variants on this value include "join inner completed merge
phases."

cumulative size of raw

temp data (bytes)

Compare to cumulative size of temp files (bytes) to

understand impact of encoding and compression in an

externalizing operator. Variants on this value include join inner

cumulative size of raw temp files (bytes).

cumulative size of temp

files (bytes)

For externalizing operators only, the total number of bytes the
operator has written to temp files. A sort operator might go through
multiple merge phases, where at each pass sorted chunks of data
are merged into fewer chunks. This counter remembers the
cumulative size of all temp files past and present. Variants on this

value include join inner cumulative size of temp files

(bytes).

current size of temp

files (bytes)

For externalizing operators only, the current size of the operator's

temp files in bytes. Variants on this value include join inner

current size of temp files (bytes).

encoded bytes received [NetworkRecv] Size of received data after decompressed (but

still encoded) received over the network.

encoded bytes sent [NetworkSend] Size of data sent over the network after encoding.

executable time (ms) Thread CPU clock time in milliseconds.

files completed Relevant only to SendFiles/RecvFiles operators (that is,

recover-by-container plan) number of files sent / received.

file handles Number of file handles used by the operator.

files total Relevant only to SendFiles/RecvFiles operators (that is,

recover-by-container plan) total number of files to send / receive.

input queue wait (µs) Time in microseconds that an operator spends waiting for
upstream operators.

-706-

SQL Reference Manual

input size (bytes) Total number of bytes of the Load operator's input source, where

NULL is unknown (read from FIFO).

memory allocated (bytes) Actual memory in bytes that the operator allocated at run time.

memory reserved (bytes) Memory reserved by the operator in the ResourceManager

operator.

Note: An allocation slightly more than the reservation (a few MB)

is not a cause for concern and is built into ResourceManager

calculations.

network wait (µs) [NetworkSend, NetworkRecv] Time in microseconds spent

waiting on the network.

output queue wait (µs) Time in microseconds that an operator spends waiting for the
output buffer to be consumed by a downstream operator.

phj sort cumulative size

of raw temp files (bytes)

Less common counter for partitioned hash join.

Note: Used only for joins of dynamically-redistributed data.

 phj inner cumulative size

of raw temp files (bytes)

phj outer cumulative size

of raw temp files (bytes)

phj sort cumulative size

of temp files (bytes)

phj inner cumulative size

of temp files (bytes)

phj outer cumulative size

of temp files (bytes)

phj sort current size of

temp files (bytes)

phj inner current size of

temp files (bytes)

phj outer current size of

temp files (bytes)

phj total partitions Total number of partitions created. This counter is null until all input
is consumed and the number of partitions is known.

phj completed partitions Number of partitions that have been processed.

producer stall (µs) [NetworkSend] Time in microseconds spent by NetworkSend

when stalled waiting for network buffers to clear.

producer wait (µs) [NetworkSend] Time in microseconds spent by the input operator

making rows to send.

rle rows produced Number of physical tuples produced by an operator. Complements

the rows produced counter, which shows the number of logical

rows produced by an operator. For example, if a value occurs 1000

rows consecutively and is RLE encoded, it counts as 1000 rows

-707-

 SQL System Tables (Monitoring APIs)

produced not only 1 rle rows produced.

read (bytes) Number of bytes read from the input source by the Load operator.

receive time (µs) Time in microseconds that a Recv operator spends reading data

from its socket.

rows produced Number of logical rows produced by an operator. See also the rle

rows produced counter.

rows received [NetworkRecv] Number of received sent over the network.

rows rejected The number of rows rejected by the Load operator.

rows sent [NetworkSend] Number of rows sent over the network.

send time (µs) Time in microseconds that a Send operator spends writing data to

its socket.

total merge phases Number of merge phases an LSort or DataTarget operator

must complete to finish sorting its data. NULL until the operator
can compute this value (all data must first be ingested by the

operator). Variants on this value include join inner total

merge phases.

WOS bytes acquired Number of bytes acquired from the WOS by a DataTarget

operator.

Note: This is usually more but can be less than WOS bytes

written if an earlier statement in the transaction acquired some

WOS memory.

WOS bytes written Number of bytes written to the WOS by a DataTarget operator.

Example

=> SELECT operator_name, operator_id, counter_name, counter_value

 FROM EXECUTION_ENGINE_PROFILES WHERE operator_name = 'Scan'

 ORDER BY counter_value DESC;

 operator_name | operator_id | counter_name | counter_value

---------------+-------------+--------------------------+---------------

 Scan | 6 | memory allocated (bytes) | 15688

 Scan | 6 | estimated rows produced | 9999

 Scan | 6 | estimated rows produced | 9999

 Scan | 6 | memory allocated (bytes) | 2152

 Scan | 6 | clock time (us) | 572

 Scan | 6 | execution time (us) | 187

 Scan | 6 | clock time (us) | 0

 Scan | 6 | memory reserved (bytes) | 0

 Scan | 6 | file handles | 0

 Scan | 6 | rows produced | 0

 Scan | 6 | memory reserved (bytes) | 0

 Scan | 6 | rows produced | 0

 Scan | 6 | file handles | 0

 Scan | 6 | execution time (us) | 0

(14 rows)

=> SELECT DISTINCT counter_name FROM execution_engine_profiles; counter_name

-708-

SQL Reference Manual

 file handles

 estimated rows produced

 memory reserved (bytes)

 clock time (us)

 output queue wait (us)

 input queue wait (us)

 wait clock time (us)

 wait execution time (us)

 execution time (us)

 memory allocated (bytes)

 rows produced

(11 rows)

See Also

Profiling Database Performance in the Troubleshooting Guide, particularly Viewing Profiling Data

HOST_RESOURCES

Provides a snapshot of the node. This is useful for regularly polling the node with automated tools
or scripts.

Column Name Data Type Description

HOST_NAME VARCHAR The host name for which information is listed.

OPEN_FILES_LIMIT INTEGER The maximum number of files that can be open
at one time on the node.

THREADS_LIMIT INTEGER The maximum number of threads that can
coexist on the node.

CORE_FILE_LIMIT_MAX_SIZE_BYTES INTEGER The maximum core file size allowed on the
node.

PROCESSOR_COUNT INTEGER The number of system processors.

PROCESSOR_CORE_COUNT INTEGER The number of processor cores in the system.

PROCESSOR_DESCRIPTION VARCHAR A description of the processor. For example:
Inter(R) Core(TM)2 Duo CPU T8100
@2.10GHz (1 row)

OPENED_FILE_COUNT INTEGER The total number of open files on the node.

OPENED_SOCKET_COUNT INTEGER The total number of open sockets on the node.

OPENED_NONFILE_NONSOCKET_COUNT INTEGER The total number of other file descriptions open
in which 'other' could be a directory or FIFO. It
is not an open file or socket.

TOTAL_MEMORY_BYTES INTEGER The total amount of physical RAM, in bytes,
available on the system.

TOTAL_MEMORY_FREE_BYTES INTEGER The amount of physical RAM, in bytes, left
unused by the system.

TOTAL_BUFFER_MEMORY_BYTES INTEGER The amount of physical RAM, in bytes, used
for file buffers on the system

-709-

 SQL System Tables (Monitoring APIs)

TOTAL_MEMORY_CACHE_BYTES INTEGER The amount of physical RAM, in bytes, used as
cache memory on the system.

TOTAL_SWAP_MEMORY_BYTES INTEGER The total amount of swap memory available, in
bytes, on the system.

TOTAL_SWAP_MEMORY_FREE_BYTES INTEGER The total amount of swap memory free, in
bytes, on the system.

DISK_SPACE_FREE_MB INTEGER The free disk space available, in megabytes,
for all storage location file systems (data
directories).

DISK_SPACE_USED_MB INTEGER The disk space used, in megabytes, for all
storage location file systems.

DISK_SPACE_TOTAL_MB INTEGER The total free disk space available, in
megabytes, for all storage location file
systems.

Examples

Query the HOST_RESOURCES table:

=>\pset expanded

Expanded display is on.

=> SELECT * FROM HOST_RESOURCES;

-[RECORD 1]------------------+--------------------------------------

host_name | myhost-s1

open_files_limit | 65536

threads_limit | 15914

core_file_limit_max_size_bytes | 1649680384

processor_count | 2

processor_core_count | 8

processor_description | Intel(R) Xeon(R) CPU E5504 @ 2.00GHz

opened_file_count | 5

opened_socket_count | 4

opened_nonfile_nonsocket_count | 3

total_memory_bytes | 16687161344

total_memory_free_bytes | 4492627968

total_buffer_memory_bytes | 1613922304

total_memory_cache_bytes | 9349111808

total_swap_memory_bytes | 36502126592

total_swap_memory_free_bytes | 36411580416

disk_space_free_mb | 121972

disk_space_used_mb | 329235

disk_space_total_mb | 451207

-[RECORD 2]------------------+--------------------------------------

host_name | myhost-s2

open_files_limit | 65536

threads_limit | 15914

core_file_limit_max_size_bytes | 3772891136

processor_count | 2

processor_core_count | 4

processor_description | Intel(R) Xeon(R) CPU E5504 @ 2.00GHz

opened_file_count | 5

opened_socket_count | 3

opened_nonfile_nonsocket_count | 3

total_memory_bytes | 16687161344

total_memory_free_bytes | 9525706752

total_buffer_memory_bytes | 2840420352

total_memory_cache_bytes | 3060588544

-710-

SQL Reference Manual

total_swap_memory_bytes | 34330370048

total_swap_memory_free_bytes | 34184642560

disk_space_free_mb | 822190

disk_space_used_mb | 84255

disk_space_total_mb | 906445

-[RECORD 3]------------------+--------------------------------------

host_name | myhost-s3

open_files_limit | 65536

threads_limit | 15914

core_file_limit_max_size_bytes | 3758211072

processor_count | 2

processor_core_count | 4

processor_description | Intel(R) Xeon(R) CPU E5504 @ 2.00GHz

opened_file_count | 5

opened_socket_count | 3

opened_nonfile_nonsocket_count | 3

total_memory_bytes | 16687161344

total_memory_free_bytes | 9718706176

total_buffer_memory_bytes | 2928369664

total_memory_cache_bytes | 2757115904

total_swap_memory_bytes | 34315689984

total_swap_memory_free_bytes | 34205523968

disk_space_free_mb | 820789

disk_space_used_mb | 85640

disk_space_total_mb | 906429

-[RECORD 4]------------------+--------------------------------------

host_name | myhost-s4

open_files_limit | 65536

threads_limit | 15914

core_file_limit_max_size_bytes | 3799433216

processor_count | 2

processor_core_count | 8

processor_description | Intel(R) Xeon(R) CPU E5504 @ 2.00GHz

opened_file_count | 5

opened_socket_count | 3

opened_nonfile_nonsocket_count | 3

total_memory_bytes | 16687161344

total_memory_free_bytes | 8772620288

total_buffer_memory_bytes | 3792273408

total_memory_cache_bytes | 2831040512

total_swap_memory_bytes | 34356912128

total_swap_memory_free_bytes | 34282590208

disk_space_free_mb | 818896

disk_space_used_mb | 55291

disk_space_total_mb | 874187

LOAD_STREAMS

Monitors load metrics for each load stream on each node.

Column Name Date Type Description

STREAM_NAME VARCHAR The optional identifier that names a stream, if
specified.

TABLE_NAME VARCHAR The name of the table being loaded.

LOAD_START VARCHAR The Linux system time when the load started.

ACCEPTED_ROW_COUNT INTEGER The number of rows loaded.

REJECTED_ROW_COUNT INTEGER The number of rows rejected.

-711-

 SQL System Tables (Monitoring APIs)

READ_BYTES INTEGER The number of bytes read from the input file.

INPUT_FILE_SIZE_BYTES INTEGER The size of the input file in bytes.

Note: When using STDIN as input size of input file

size is zero (0).

PARSE_COMPLETE_PERCENT INTEGER The percent of the rows in the input file that have
been loaded.

UNSORTED_ROW_COUNT INTEGER The cumulative number rows not sorted across all
projections.

Note: UNSORTED_ROW_COUNT could be greater

than ACCEPTED_ROW_COUNT because data is

copied and sorted for every projection in the target
table.

SORTED_ROW_COUNT INTEGER The cumulative number of rows sorted across all
projections.

SORT_COMPLETE_PERCENT INTEGER The percent of the rows in the input file that have
been sorted.

Notes

If a COPY ... DIRECT operation is in progress, the ACCEPTED_ROW_COUNT field could increase

up to the maximum number of rows in the input file as the rows are being parsed. If COPY reads

from many named pipes, PARSE_COMPLETE_PERCENT shows 0 until it receives an EOF from all

named pipes. This can take a significant amount of time, and it is easy to mistake this state as a
hang. Check your system CPU and disk accesses to determine if any activity is in progress before
canceling COPY or reporting a hang.

In a typical load, you might notice PARSE_COMPLETE_PERCENT creep up to 100% or jump to

100% if loading from named pipes or STDIN, while SORT_COMPLETE_PERCENT is at 0. Once

PARSE_COMPLETE_PERCENT reaches 100%, SORT_COMPLETE_PERCENT creeps up to 100%.

Depending on the data sizes, there could be significant lag between the time

PARSE_COMPLETE_PERCENT reaches 100% and the time SORT_COMPLETE_PERCENT begins to

increase.

Example

=> \pset expanded

Expanded display is on.

=> SELECT * FROM load_streams;

-[RECORD 1]----------+---------------------------

stream_name | fact-13

table_name | fact

load_start | 2010-09-28 15:07:41.132053

accepted_row_count | 900

rejected_row_count | 100

read_bytes | 11975

input_file_size_bytes | 0

parse_complete_percent | 0

unsorted_row_count | 3600

-712-

SQL Reference Manual

sorted_row_count | 3600

sort_complete_percent | 100

LOCKS

Monitors lock grants and requests for all nodes.

Column Name Date Type Description

NODE_NAMES VARCHAR The nodes on which lock interaction occurs.

Note on node rollup: If a transaction has the

same lock in the same mode in the same scope on
multiple nodes, it gets one (1) line in the table.

NODE_NAMES are separated by commas.

OBJECT_NAME VARCHAR Name of object being locked; can be a table or an
internal structure (projection, global catalog, or local
catalog).

OBJECT_ID INTEGER A unique numeric ID assigned by the Vertica
catalog, which identifies the object being locked.

TRANSACTION_DESCRIPTION VARCHAR ID of transaction and associated description,
typically the query that caused the transaction's
creation.

LOCK_MODE VARCHAR Describes the intended operations of the
transaction:

 S — Share lock needed for select
operations

 I — Insert lock needed for insert operations

 X — Exclusive lock is always needed for
delete operations. X lock is also the result of
lock promotion (see Table 2)

 T — Tuple Mover lock used by the Tuple
Mover and also used for COPY into pre-join
projections

 U — Usage lock needed for moveout and
mergeout operations in the first phase; they
then upgrade their U lock to a T lock for the
second phase. U locks conflicts with no
other locks but O.

 O — Owner lock needed for
DROP_PARTITION, TRUNCATE TABLE,
and ADD COLUMN. O locks conflict with all
locks. O locks never promote.

LOCK_SCOPE VARCHAR The expected duration of the lock once it is granted.
Before the lock is granted, the scope is listed as

REQUESTED.

Once a lock has been granted, the following scopes
are possible:

 STATEMENT_LOCALPLAN

-713-

 SQL System Tables (Monitoring APIs)

 STATEMENT_COMPILE

 STATEMENT_EXECUTE

 TRANSACTION_POSTCOMMIT

 TRANSACTION

All scopes, other than TRANSACTION, are transient

and are used only as part of normal query
processing.

Notes

 Locks acquired on tables that were subsequently dropped by another transaction can result in

the message, Unknown or deleted object, appearing in the output's OBJECT column.

 If a SELECT..FROM LOCKS query times out after five minutes, it is possible the cluster has

failed. Run the Diagnostics Utility and contact Technical Support (on page 1).

The following two tables are from Transaction Processing: Concepts and Techniques
http://www.amazon.com/gp/product/1558601902/ref=s9sdps_c1_14_at1-rfc_p-frt_p-3237_g1_si
1?pf_rd_m=ATVPDKIKX0DER&pf_rd_s=center-1&pf_rd_r=1QHH6V589JEV0DR3DQ1D&pf_rd_
t=101&pf_rd_p=463383351&pf_rd_i=507846 by Jim Gray (Figure 7.11, p. 408 and Figure 8.6, p.
467).

Table 1: Compatibility matrix for granular locks

This table is for compatibility with other users. The table is symmetric.

 Granted Mode

Requested Mode S I X T U O

S Yes No No Yes Yes No

I No Yes No Yes Yes No

X No No No No Yes No

T Yes Yes No Yes Yes No

U Yes Yes Yes Yes Yes No

O No No No No No No

The following two examples refer to Table 1 above:

 Example 1: If someone else has an S lock, you cannot get an I lock.

 Example 2: If someone has an I lock, you can get an I lock.

Table 2: Lock conversion matrix

This table is used for upgrading locks you already have. For example, If you have an S lock and
you want an I lock, you request an X lock. If you have an S lock and you want an S lock, no lock
requests is required.

http://www.amazon.com/gp/product/1558601902/ref=s9sdps_c1_14_at1-rfc_p-frt_p-3237_g1_si1?pf_rd_m=ATVPDKIKX0DER&pf_rd_s=center-1&pf_rd_r=1QHH6V589JEV0DR3DQ1D&pf_rd_t=101&pf_rd_p=463383351&pf_rd_i=507846
http://www.amazon.com/gp/product/1558601902/ref=s9sdps_c1_14_at1-rfc_p-frt_p-3237_g1_si1?pf_rd_m=ATVPDKIKX0DER&pf_rd_s=center-1&pf_rd_r=1QHH6V589JEV0DR3DQ1D&pf_rd_t=101&pf_rd_p=463383351&pf_rd_i=507846
http://www.amazon.com/gp/product/1558601902/ref=s9sdps_c1_14_at1-rfc_p-frt_p-3237_g1_si1?pf_rd_m=ATVPDKIKX0DER&pf_rd_s=center-1&pf_rd_r=1QHH6V589JEV0DR3DQ1D&pf_rd_t=101&pf_rd_p=463383351&pf_rd_i=507846

-714-

SQL Reference Manual

 Granted Mode

Requested Mode S I X T U O

S S X X S S 0

I X I X I I 0

X X X X X X 0

T S I X T T 0

U S I X T U O

O O O O O O O

Example

The following table call shows that there are no current locks in use:

=> SELECT * FROM LOCKS;

 node_names | object_name | object_id | transaction_description | lock_mode |

lock_scope

------------+-------------+-----------+-------------------------+-----------+-

(0 rows)

The next example shows an insert lock in use:

=>\pset expanded

Expanded display is on.

vmartdb=> SELECT * FROM LOCKS;

-[RECORD 1

]-----------+---

node_names | node01,node02,node03,node04

object_name | Table:fact

object_id | 45035996273772278

transaction_description | Txn: a000000000112b 'COPY fact FROM '/data_dg/fact.dat'

 DELIMITER '|' NULL '\\N';'

lock_mode | I

lock_scope | TRANSACTION

start_timestamp | 2010-09-17 14:01:07.662325-04

See Also

DUMP_LOCKTABLE (page 346)

PROJECTION_REFRESHES (page 717)

SELECT (page 617) FOR UPDATE clause

SESSION_PROFILES (page 739)

NODE_RESOURCES

Provides a snapshot of the node. This is useful for regularly polling the node with automated tools
or scripts.

-715-

 SQL System Tables (Monitoring APIs)

Column Name Data Type Description

NODE_NAME VARCHA
R

The node name for which information is
listed.

HOST_NAME VARCHA
R

The hostname associated with a particular
node.

PROCESS_SIZE_BYTES INTEGER The total size of the program.

PROCESS_RESIDENT_SET_SIZE_BYTES INTEGER The total number of pages that the process
has in memory.

PROCESS_SHARED_MEMORY_SIZE_BYTES INTEGER The amount of shared memory used.

PROCESS_TEXT_MEMORY_SIZE_BYTES INTEGER The total number of text pages that the
process has in physical memory. This does
not include any shared libraries.

PROCESS_DATA_MEMORY_SIZE_BYTES INTEGER The amount of physical memory, in pages,
used for performing processes. This does
not include the executable code.

PROCESS_LIBRARY_MEMORY_SIZE_BYTES INTEGER The total number of library pages that the
process has in physical memory.

PROCESS_DIRTY_MEMORY_SIZE_BYTES INTEGER The number of pages that have been
modified since they were last written to disk.

Example

Query the NODE_RESOURCES table:

=>\pset expanded

Expanded display is on.

=> SELECT * FROM NODE_RESOURCES;

-[RECORD 1]---------------------+-------------------

node_name | v_vmartdb_node01

host_name | myhost-s1

process_size_bytes | 2001829888

process_resident_set_size_bytes | 40964096

process_shared_memory_size_bytes | 16543744

process_text_memory_size_bytes | 46649344

process_data_memory_size_bytes | 0

process_library_memory_size_bytes | 1885351936

process_dirty_memory_size_bytes | 0

-[RECORD 2]---------------------+-------------------

node_name | v_vmartdb_node02

host_name | myhost-s2

process_size_bytes | 399822848

process_resident_set_size_bytes | 31453184

process_shared_memory_size_bytes | 10862592

process_text_memory_size_bytes | 46649344

process_data_memory_size_bytes | 0

process_library_memory_size_bytes | 299356160

process_dirty_memory_size_bytes | 0

-716-

SQL Reference Manual

-[RECORD 3]---------------------+-------------------

node_name | v_vmartdb_node03

host_name | myhost-s3

process_size_bytes | 399822848

process_resident_set_size_bytes | 31100928

process_shared_memory_size_bytes | 10735616

process_text_memory_size_bytes | 46649344

process_data_memory_size_bytes | 0

process_library_memory_size_bytes | 299356160

process_dirty_memory_size_bytes | 0

-[RECORD 4]---------------------+-------------------

node_name | v_vmartdb_node04

host_name | myhost-s4

process_size_bytes | 466923520

process_resident_set_size_bytes | 31309824

process_shared_memory_size_bytes | 10735616

process_text_memory_size_bytes | 46649344

process_data_memory_size_bytes | 0

process_library_memory_size_bytes | 366456832

process_dirty_memory_size_bytes | 0

PARTITIONS

Displays partition metadata, one row per partition key, per ROS container.

Column Name Data Type Description

PARTITION_KEY VARCHAR The partition value(s).

TABLE_SCHEMA VARCHAR The schema name for which information is listed.

PROJECTION_NAME VARCHAR The projection name for which information is listed.

ROS_ID VARCHAR A unique numeric ID assigned by the Vertica catalog,
which identifies the ROS container.

ROS_SIZE_BYTES INTEGER The ROS container size in bytes.

ROS_ROW_COUNT INTEGER Number of rows in the ROS container.

NODE_NAME VARCHAR Node where the ROS container resides.

Notes

 A many-to-many relationship exists between partitions and ROS containers. PARTITIONS
displays information in a denormalized fashion.

 To find the number of ROS containers having data of a specific partition, aggregate

PARTITIONS over the partition_key column.

 To find the number of partitions stored in a ROS container, aggregate PARTITIONS over the

ros_id column.

-717-

 SQL System Tables (Monitoring APIs)

Example

Given a projection named p1 with three ROS containerS (RC1, RC2 and RC3), the values are

defined as follow:

 COLUMN NAME RC1 RC2 RC3

----------------+--------------------+--------------------+--------------------

 PARTITION_KEY | (20,30,40) | (20) | (30,60)

 ROS_ID | 45035986273705000 | 45035986273705001 | 45035986273705002

 SIZE | 1000 | 20000 | 30000

 ROW_ROW_COUNT | 100 | 200 | 300

 NODE_NAME | node01 | node01 | node01

The PARTITIONS function returns six rows:

=> SELECT PARTITION_KEY, PROJECTION_NAME, ROS_ID, ROS_SIZE_BYTES, ROS_ROW_COUNT,NODE_NAME

 FROM PARTITIONS;

PARTITION_KEY | PROJECTION_NAME | ROS_ID | ROS_SIZE_BYTES | ROS_ROW_COUNT | NODE_NAME

-------------+-----------------+--------------------+----------------+---------------+-----------

 20 | p1 | 45035986273705000 | 10000 | 100 | node01

 30 | p1 | 45035986273705000 | 10000 | 100 | node01

 40 | p1 | 45035986273705000 | 10000 | 100 | node01

 20 | p1 | 45035986273705001 | 20000 | 200 | node01

 30 | p1 | 45035986273705002 | 30000 | 300 | node01

 60 | p1 | 45035986273705002 | 30000 | 300 | node01

PROJECTION_REFRESHES

Provides information about refresh operations for projections.

Column Name Data Type Description

NODE_NAME VARCHAR The node where the refresh was initiated.

PROJECTION_SCHEMA VARCHAR The name of the schema associated with the projection.

PROJECTION_NAME VARCHAR The name of the projection that is targeted for refresh.

ANCHOR_TABLE_NAME VARCHAR The name of the projection's associated anchor table.

REFRESH_STATUS VARCHAR The status of the projection:

 Queued — Indicates that a projection is queued
for refresh.

 Refreshing — Indicates that a refresh for a
projection is in process.

 Refreshed — Indicates that a refresh for a
projection has successfully completed.

 Failed — Indicates that a refresh for a projection
did not successfully complete.

REFRESH_PHASE VARCHAR Indicates how far the refresh has progressed:

 Historical – Indicates that the refresh has reached
the first phase and is refreshing data from
historical data. This refresh phase requires the
most amount of time.

 Current – Indicates that the refresh has reached
the final phase and is attempting to refresh data

-718-

SQL Reference Manual

from the current epoch. To complete this phase,
refresh must be able to obtain a lock on the table.
If the table is locked by some other transaction,
refresh is put on hold until that transaction
completes.

 The LOCKS (page 712) system table is useful for
determining if a refresh has been blocked on a table
lock. To determine if a refresh has been blocked,
locate the term "refresh" in the transaction description.
A refresh has been blocked when the scope for the
refresh is REQUESTED and one or more other
transactions have acquired a lock on the table.

Note: The REFRESH_PHASE field is NULL until the

projection starts to refresh and is NULL after the refresh
completes.

REFRESH_METHOD VARCHAR The method used to refresh the projection:

 Buddy – Uses the contents of a buddy to refresh
the projection. This method maintains historical
data. This enables the projection to be used for
historical queries.

 Scratch – Refreshes the projection without using
a buddy. This method does not generate historical
data. This means that the projection cannot
participate in historical queries from any point
before the projection was refreshed.

REFRESH_FAILURE_COUNT INTEGER The number of times a refresh failed for the projection.
FAILURE_COUNT does not indicate whether the
projection was eventually refreshed. See
REFRESH_STATUS to determine how the refresh
operation is progressing.

SESSION_ID VARCHAR A unique numeric ID assigned by the Vertica catalog,
which identifies the refresh session.

REFRESH_START TIMESTAM
P

The time the projection refresh started (provided as a
timestamp).

REFRESH_DURATION_SEC INTEGER The length of time that the projection refresh ran in
seconds.

IS_EXECUTING BOOLEAN Indicates if the refresh is currently running (t) or if the
refresh occurred in the past (f).

Notes

 Information about a refresh operation—whether successful or unsuccessful—is maintained in
the PROJECTION_REFRESHES system table until either the
CLEAR_PROJECTION_REFRESHES() (page 329) function is executed or the storage quota
for the table is exceeded.

-719-

 SQL System Tables (Monitoring APIs)

 Tables and projections can be dropped while a query runs against them. The query continues
to run, even after the drop occurs. Only when the query finishes does it notice the drop, which
could cause a rollback. The same is true for refresh queries. PROJECTION_REFRESHES,
therefore, could report that a projection failed to be refreshed before the refresh query
completes. In this case, the REFRESH_DURATION_SEC column continues to increase until
the refresh query completes.

Example

Query the PROJECTION_REFRESHES table:

=>\pset expanded

Expanded display on.

=> SELECT * FROM projection_refreshes;

-[RECORD 1]---------+-----------------------------------

node_name | node02

projection_schema | public

projection_name | fact_p1_b1

anchor_table_name | fact

refresh_status | refreshed

refresh_phase |

refresh_method | buddy

refresh_failure_count | 0

session_id | myhost.verticacorp-15750:0x6b38

refresh_start | 2010-09-28 15:09:12.411551

refresh_duration_sec | 2

is_executing | f

The following command purges projection refresh history from the PROJECTION_REFRESHES
table:

=> SELECT clear_projection_refreshes();

 clear_projection_refreshes

 CLEAR

(1 row)

Only the rows where the IS_EXECUTING column equals false are cleared.

See Also

CLEAR_PROJECTION_REFRESHES (page 329)

Clearing PROJECTION_REFRESHES History in the Administrator's Guide

PROJECTION_STORAGE

Monitors the amount of disk storage used by each projection on each node.

Column Name Data Type Description

NODE_NAME VARCHAR The node name for which information is listed.

PROJECTION_NAME VARCHAR The projection name for which information is listed.

PROJECTION_SCHEMA VARCHAR The name of the schema associated with the

-720-

SQL Reference Manual

projection.

PROJECTION_COLUMN_COUNT INTEGER The number of columns in the projection.

ROW_COUNT INTEGER The number of rows in the table's projections,
excluding any rows marked for deletion.

USED_BYTES INTEGER The number of bytes of disk storage used by the
projection.

WOS_ROW_COUNT INTEGER The number of WOS rows in the projection.

WOS_USED_BYTES INTEGER The number of WOS bytes in the projection.

ROS_ROW_COUNT INTEGER The number of ROS rows in the projection.

ROS_USED_BYTES INTEGER The number of ROS bytes in the projection.

ROS_COUNT INTEGER The number of ROS containers in the projection.

ANCHOR_TABLE_NAME VARCHAR The associated table name for which information is
listed.

ANCHOR_TABLE_SCHEMA VARCHAR The associated table schema for which information
is listed.

Example

=> SELECT projection_name, row_count, ros_used_bytes, used_bytes

 FROM PROJECTION_STORAGE WHERE projection_schema = 'store' ORDER BY used_bytes;

 projection_name | row_count | ros_used_bytes |

used_bytes

--+-----------+----------------+-------

 store_dimension_DBD_4_seg_vmartdb_design_vmartdb_design | 53 | 2791 |

2791

 store_dimension_DBD_29_seg_vmartdb_design_vmartdb_design | 53 | 2791 |

2791

 store_dimension_DBD_29_seg_vmartdb_design_vmartdb_design | 56 | 2936 |

2936

 store_dimension_DBD_4_seg_vmartdb_design_vmartdb_design | 56 | 2936 |

2936

 store_dimension_DBD_4_seg_vmartdb_design_vmartdb_design | 68 | 3360 |

3360

 store_dimension_DBD_29_seg_vmartdb_design_vmartdb_design | 68 | 3360 |

3360

 store_dimension_DBD_29_seg_vmartdb_design_vmartdb_design | 73 | 3579 |

3579

 store_dimension_DBD_4_seg_vmartdb_design_vmartdb_design | 73 | 3579 |

3579

 store_orders_fact_DBD_31_seg_vmartdb_design_vmartdb_design | 53974 | 1047782 |

1047782

 store_orders_fact_DBD_6_seg_vmartdb_design_vmartdb_design | 53974 | 1047782 |

1047782

 store_orders_fact_DBD_6_seg_vmartdb_design_vmartdb_design | 66246 | 1285786 |

1285786

 store_orders_fact_DBD_31_seg_vmartdb_design_vmartdb_design | 66246 | 1285786 |

1285786

 store_orders_fact_DBD_31_seg_vmartdb_design_vmartdb_design | 71909 | 1395258 |

1395258

 store_orders_fact_DBD_6_seg_vmartdb_design_vmartdb_design | 71909 | 1395258 |

1395258

 store_orders_fact_DBD_6_seg_vmartdb_design_vmartdb_design | 107871 | 2090941 |

2090941

 store_orders_fact_DBD_31_seg_vmartdb_design_vmartdb_design | 107871 | 2090941 |

-721-

 SQL System Tables (Monitoring APIs)

2090941

 store_sales_fact_DBD_5_seg_vmartdb_design_vmartdb_design | 1235825 | 24285740 |

24285740

 store_sales_fact_DBD_30_seg_vmartdb_design_vmartdb_design | 1235825 | 24285740 |

24285740

 store_sales_fact_DBD_30_seg_vmartdb_design_vmartdb_design | 1245865 | 24480819 |

24480819

 store_sales_fact_DBD_5_seg_vmartdb_design_vmartdb_design | 1245865 | 24480819 |

24480819

 store_sales_fact_DBD_5_seg_vmartdb_design_vmartdb_design | 1249547 | 24551817 |

24551817

 store_sales_fact_DBD_30_seg_vmartdb_design_vmartdb_design | 1249547 | 24551817 |

24551817

 store_sales_fact_DBD_30_seg_vmartdb_design_vmartdb_design | 1268763 | 24930549 |

24930549

 store_sales_fact_DBD_5_seg_vmartdb_design_vmartdb_design | 1268763 | 24930549 |

24930549

(24 rows)

QUERY_METRICS

Monitors the sessions and queries running on each node.

Column Name Data Type Description

NODE_NAME VARCHAR The node name for which information is listed.

ACTIVE_USER_SESSION_COUNT INTEGER The number of active user sessions
(connections).

ACTIVE_SYSTEM_SESSION_COUNT INTEGER The number of active system sessions.

TOTAL_USER_SESSION_COUNT INTEGER The total number of user sessions.

TOTAL_SYSTEM_SESSION_COUNT INTEGER The total number of system sessions.

TOTAL_ACTIVE_SESSION_COUNT INTEGER The total number of active user and system
sessions.

TOTAL_SESSION_COUNT INTEGER The total number of user and system
sessions.

RUNNING_QUERY_COUNT INTEGER The number of queries currently running.

EXECUTED_QUERY_COUNT INTEGER The total number of queries that ran.

Notes

Totals get reset each time you restart the database.

Example

=>\pset expanded

Expanded display is on.

=> SELECT * FROM QUERY_METRICS;

-[RECORD 1]---------------+-------------------

node_name | v_vmartdb_node01

active_user_session_count | 1

active_system_session_count | 2

-722-

SQL Reference Manual

total_user_session_count | 2

total_system_session_count | 6248

total_active_session_count | 3

total_session_count | 6250

running_query_count | 1

executed_query_count | 42

-[RECORD 2]---------------+-------------------

node_name | v_vmartdb_node02

active_user_session_count | 1

active_system_session_count | 2

total_user_session_count | 2

total_system_session_count | 6487

total_active_session_count | 3

total_session_count | 6489

running_query_count | 0

executed_query_count | 0

-[RECORD 3]---------------+-------------------

node_name | v_vmartdb_node03

active_user_session_count | 1

active_system_session_count | 2

total_user_session_count | 2

total_system_session_count | 6489

total_active_session_count | 3

total_session_count | 6491

running_query_count | 0

executed_query_count | 0

-[RECORD 4]---------------+-------------------

node_name | v_vmartdb_node04

active_user_session_count | 1

active_system_session_count | 2

total_user_session_count | 2

total_system_session_count | 6489

total_active_session_count | 3

total_session_count | 6491

running_query_count | 0

executed_query_count | 0

QUERY_PROFILES

Provides information about queries that have run. To obtain information about query profiling, see
Collecting Query Information in the Troubleshooting Guide.

Column Name Data Type Description

NODE_NAME VARCHAR The node name for which information is listed.

SESSION_ID VARCHAR The identification of the session for which profiling
information is captured. This identifier is unique within the
cluster at any point in time but can be reused when the
session closes.

TRANSACTION_ID INTEGER An identifier for the transaction within the session if any;

otherwise NULL.

-723-

 SQL System Tables (Monitoring APIs)

STATEMENT_ID INTEGER A unique numeric ID assigned by the Vertica catalog,
which identifies the currently-executing statement.

Note: NULL indicates that no statement is currently

being processed.

IDENTIFIER VARCHAR A string to identify the query in virtual tables.

QUERY VARCHAR The query string used for the query.

QUERY_SEARCH_PATH VARCHAR A list of schemas in which to look for tables.

SCHEMA_NAME VARCHAR The schema name in which the query is being profiled.

TABLE_NAME VARCHAR The table name in the query being profiled.

PROJECTIONS_USED VARCHAR The projections used in the query.

QUERY_DURATION_US INTEGER The duration of the query in microseconds.

QUERY_START_EPOCH VARCHAR The epoch number at the start of the given query.

QUERY_START VARCHAR The Linux system time of query execution in a format that

can be used as a DATE/TIME expression.

QUERY_TYPE VARCHAR Is one of INSERT, SELECT, UPDATE, DELETE, UTILITY,

or UNKNOWN.

ERROR_CODE INTEGER The return error code for the query.

USER_NAME VARCHAR The name of the user who ran the query.

PROCESSED_ROW_COUNT INTEGER The number of rows returned by the query.

RESERVED_EXTRA_MEMORY INTEGER The amount of extra memory reserved for the query.
Extra memory is the amount of memory reserved for the
plan but not assigned to a particular operator. This is the
memory from which unbounded operators pull first. If
they acquire all of the extra memory, then the plan must
go back to the Resource Manager for more memory.

See Notes section below this table.

IS_EXECUTING BOOLEAN Displays information about actively running queries,
regardless of whether profiling is enabled.

Notes

 The total memory reserved by the query is available in

RESOURCE_ACQUISITIONS.MEMORY_INUSE_KB (page 724). The difference between

RESOURCE_ACQUISITIONS.MEMORY_INUSE_KB and QUERY_PROFILES.EXTRA_MEMORY

is the "essential memory."

 RESOURCE_ACQUISITIONS.MEMORY_INUSE_KB is the total memory acquired.

 QUERY_PROFILES.EXTRA_MEMORY is the unused portion of the acquired memory.

 The difference gives you the memory in use.

 If the query has finished executing, query the RESOURCE_ACQUISITIONS_HISTORY (page

727) table.

-724-

SQL Reference Manual

Example

Query the QUERY_PROFILES table:

=>\pset expanded

Expanded display is on.

=> SELECT * FROM QUERY_PROFILES;

-[RECORD 1]-------+---

...

-[RECORD 18]------+---

node_name | v_vmartdb_node0001

session_id | raster-s1-17956:0x1d

transaction_id | 45035996273728061

statement_id | 6

identifier |

query | SELECT * FROM event_configurations;

query_search_path | "$user", public, v_catalog, v_monitor, v_internal

schema_name |

table_name |

projections_used | v_monitor.event_configurations_p

query_duration_us | 9647

query_start_epoch | 429

query_start | 2010-10-07 12:46:24.370044-04

query_type | SELECT

error_code | 0

user_name | release

processed_row_count | 16

reserved_extra_memory | 0

is_executing | f

-[RECORD ...]------+---

...

See Also

RESOURCE_ACQUISITIONS (page 724)

RESOURCE_ACQUISITIONS_HISTORY (page 727)

Profiling Database Performance, Collecting Query Information, and Monitoring the
QUERY_REPO Table in the Troubleshooting Guide

Managing Workloads in the Administrator's Guide

RESOURCE_ACQUISITIONS

Provides information about resources (memory, open file handles, threads) acquired by each
running request for each resource pool in the system.

Column Name Data Type Description

NODE_NAME VARCHAR The node name for which information is listed.

TRANSACTION_ID INTEGER Transaction identifier for this request.

STATEMENT_ID INTEGER Statement identifier for this request.

POOL_NAME VARCHAR The name of the resource pool.

THREAD_COUNT INTEGER Number of threads in use by this request.

-725-

 SQL System Tables (Monitoring APIs)

OPEN_FILE_HANDLE_COUNT INTEGER Number of open file handles in use by this request.

MEMORY_INUSE_KB INTEGER Amount of memory in Kilobytes acquired by this
request. See Notes section below this table.

QUEUE_ENTRY_TIMESTAMP TIMESTAMP Timestamp when the request was queued.

ACQUISITION_TIMESTAMP TIMESTAMP Timestamp when the request was admitted to run.

Notes

 The total memory reserved by the query is available in

RESOURCE_ACQUISITIONS.MEMORY_INUSE_KB. The difference between

RESOURCE_ACQUISITIONS.MEMORY_INUSE_KB and QUERY_PROFILES.EXTRA_MEMORY

(page 722) is the "essential memory."

 RESOURCE_ACQUISITIONS.MEMORY_INUSE_KB is the total memory acquired.

 QUERY_PROFILES.EXTRA_MEMORY is the unused portion of the acquired memory.

 The difference gives you the memory in use.

 If the query has finished executing, query the RESOURCE_ACQUISITIONS_HISTORY (page

727) table.

Example

vmartdb=> \x

Expanded display is on.

vmartdb=> SELECT * FROM resource_acquisitions;

-[RECORD 1]----------+------------------------------

node_name | v_vmartdb_node01

transaction_id | 45035996273744830

statement_number | 3

pool_name | sysquery

thread_count | 4

open_file_handle_count | 0

memory_inuse_kb | 4110

queue_entry_timestamp | 2010-05-05 16:22:43.272117-04

acquisition_timestamp | 2010-05-05 16:22:43.272123-04

-[RECORD 2]----------+------------------------------

node_name | v_vmartdb_node01

transaction_id | -1

statement_number | 45035996273708350

pool_name | sysdata

thread_count | 0

open_file_handle_count | 0

memory_inuse_kb | 4096

queue_entry_timestamp | 2010-05-05 14:22:52.863803-04

acquisition_timestamp | 2010-05-05 14:22:52.863828-04

-[RECORD 3]----------+------------------------------

node_name | v_vmartdb_node01

transaction_id | -1

statement_number | 45035996273708352

pool_name | wosdata

thread_count | 0

-726-

SQL Reference Manual

open_file_handle_count | 0

memory_inuse_kb | 0

queue_entry_timestamp | 2010-05-05 14:32:46.997389-04

acquisition_timestamp | 2010-05-05 15:21:38.447699-04

-[RECORD 4]----------+------------------------------

node_name | v_vmartdb_node02

transaction_id | -1

statement_number | 45035996273708352

pool_name | wosdata

thread_count | 0

open_file_handle_count | 0

memory_inuse_kb | 0

queue_entry_timestamp | 2010-05-05 14:32:47.00394-04

acquisition_timestamp | 2010-05-05 15:21:38.448964-04

-[RECORD 5]----------+------------------------------

node_name | v_vmartdb_node03

transaction_id | -1

statement_number | 45035996273708352

pool_name | wosdata

thread_count | 0

open_file_handle_count | 0

memory_inuse_kb | 0

queue_entry_timestamp | 2010-05-05 14:32:47.005306-04

acquisition_timestamp | 2010-05-05 15:21:38.454139-04

-[RECORD 6]----------+------------------------------

node_name | v_vmartdb_node04

transaction_id | -1

statement_number | 45035996273708352

pool_name | wosdata

thread_count | 0

open_file_handle_count | 0

memory_inuse_kb | 0

queue_entry_timestamp | 2010-05-05 14:32:47.003121-04

acquisition_timestamp | 2010-05-05 15:21:38.452377-04

See Also

QUERY_PROFILES (page 722)

RESOURCE_ACQUISITIONS_HISTORY (page 727)

RESOURCE_POOL_STATUS (page 730)

RESOURCE_POOLS (page 676)

RESOURCE_QUEUES (page 734)

RESOURCE_REJECTIONS (page 735)

Managing Workloads and Scenario: Setting a Hard Limit on Concurrency For An Application in the
Administrator's Guide

-727-

 SQL System Tables (Monitoring APIs)

RESOURCE_ACQUISITIONS_HISTORY

Provides information about resources (memory, open file handles, threads) acquired by any
profiled query for each resource pool in the system. The data in this table is retained as long as the
equivalent data is stored in the QUERY_PROFILES (page 722) table. This means that the data
may be cleared from this table when the CLEAR_PROFILING function is called, or when data from
QUERY_PROFILES is moved to the query repository.

Column Name Data Type Description

NODE_NAME VARCHAR The node name for which information is listed.

TRANSACTION_ID INTEGER Transaction identifier for this request.

STATEMENT_ID INTEGER Statement identifier for this request.

POOL_NAME VARCHAR The name of the resource pool.

THREAD_COUNT INTEGER Number of threads in use by this request.

OPEN_FILE_HANDLE_COUNT INTEGER Number of open file handles in use by this request.

MEMORY_INUSE_KB INTEGER Amount of memory in kilobytes acquired by this
request.

QUEUE_ENTRY_TIMESTAMP TIMESTAMP TIMESTAMP when the request was queued.

ACQUISITION_TIMESTAMP TIMESTAMP TIMESTAMP when the request was admitted to run.

Example

vmartdb=> \x

Expanded display is on.

vmartdb=> SELECT * FROM resource_acquisitions_history;

-[RECORD 1]----------+------------------------------

node_name | v_vmartdb_node01

transaction_id | 45035996273734167

statement_id | 1

pool_name | sysquery

thread_count | 4

open_file_handle_count | 0

memory_inuse_kb | 4110

queue_entry_timestamp | 2010-10-19 17:57:32.830559-04

acquisition_timestamp | 2010-10-19 17:57:32.830566-04

-[RECORD 2]----------+------------------------------

node_name | v_vmartdb_node01

transaction_id | 45035996273733629

statement_id | 1

pool_name | sysquery

thread_count | 4

open_file_handle_count | 0

memory_inuse_kb | 4232

queue_entry_timestamp | 2010-10-19 15:06:38.568905-04

acquisition_timestamp | 2010-10-19 15:06:38.568914-04

-728-

SQL Reference Manual

-[RECORD 3]----------+------------------------------

node_name | v_vmartdb_node01

transaction_id | 45035996273733629

statement_id | 2

pool_name | sysquery

thread_count | 4

open_file_handle_count | 0

memory_inuse_kb | 4232

queue_entry_timestamp | 2010-10-19 15:12:23.296074-04

acquisition_timestamp | 2010-10-19 15:12:23.296082-04

-[RECORD 4]----------+------------------------------

node_name | v_vmartdb_node01

transaction_id | 45035996273733629

statement_id | 3

pool_name | sysquery

thread_count | 4

open_file_handle_count | 0

memory_inuse_kb | 4232

queue_entry_timestamp | 2010-10-19 15:51:44.131538-04

acquisition_timestamp | 2010-10-19 15:51:44.131545-04

-[RECORD 5]----------+------------------------------

node_name | v_vmartdb_node01

transaction_id | 45035996273733629

statement_id | 4

pool_name | sysquery

thread_count | 4

open_file_handle_count | 0

memory_inuse_kb | 4232

queue_entry_timestamp | 2010-10-19 15:52:06.91811-04

acquisition_timestamp | 2010-10-19 15:52:06.918117-04

-[RECORD 6]----------+------------------------------

node_name | v_vmartdb_node01

transaction_id | 45035996273733629

statement_id | 5

pool_name | sysquery

thread_count | 4

open_file_handle_count | 0

memory_inuse_kb | 4232

queue_entry_timestamp | 2010-10-19 15:52:56.427166-04

acquisition_timestamp | 2010-10-19 15:52:56.427174-04

-[RECORD 7]----------+------------------------------

node_name | v_vmartdb_node01

transaction_id | 45035996273733629

statement_id | 6

pool_name | sysquery

thread_count | 4

open_file_handle_count | 0

memory_inuse_kb | 4229

queue_entry_timestamp | 2010-10-19 15:54:04.529661-04

acquisition_timestamp | 2010-10-19 15:54:04.529668-04

-[RECORD 8]----------+------------------------------

node_name | v_vmartdb_node01

transaction_id | 45035996273733629

statement_id | 7

-729-

 SQL System Tables (Monitoring APIs)

pool_name | sysquery

thread_count | 4

open_file_handle_count | 0

memory_inuse_kb | 4232

queue_entry_timestamp | 2010-10-19 16:00:34.279086-04

acquisition_timestamp | 2010-10-19 16:00:34.279093-04

-[RECORD 9]----------+------------------------------

node_name | v_vmartdb_node01

transaction_id | 45035996273733629

statement_id | 8

pool_name | sysquery

thread_count | 4

open_file_handle_count | 0

memory_inuse_kb | 4232

queue_entry_timestamp | 2010-10-19 16:01:01.112476-04

acquisition_timestamp | 2010-10-19 16:01:01.112484-04

-[RECORD 10]---------+------------------------------

node_name | v_vmartdb_node01

transaction_id | 45035996273733629

statement_id | 9

pool_name | sysquery

thread_count | 4

open_file_handle_count | 0

memory_inuse_kb | 4232

queue_entry_timestamp | 2010-10-19 16:02:38.263142-04

acquisition_timestamp | 2010-10-19 16:02:38.26315-04

-[RECORD 11]---------+------------------------------

node_name | v_vmartdb_node01

transaction_id | 45035996273733629

statement_id | 10

pool_name | sysquery

thread_count | 4

open_file_handle_count | 0

memory_inuse_kb | 4232

queue_entry_timestamp | 2010-10-19 16:02:44.278322-04

acquisition_timestamp | 2010-10-19 16:02:44.278329-04

-[RECORD 12]---------+------------------------------

node_name | v_vmartdb_node01

transaction_id | 45035996273733629

statement_id | 11

pool_name | sysquery

thread_count | 4

open_file_handle_count | 0

memory_inuse_kb | 4232

queue_entry_timestamp | 2010-10-19 16:04:05.409825-04

acquisition_timestamp | 2010-10-19 16:04:05.409832-04

-[RECORD 13]---------+------------------------------

node_name | v_vmartdb_node01

transaction_id | 0

statement_id | 0

pool_name |

thread_count | 0

open_file_handle_count | 0

memory_inuse_kb | 0

-730-

SQL Reference Manual

queue_entry_timestamp | 1999-12-31 19:00:00-05

acquisition_timestamp | 1999-12-31 19:00:00-05

See Also

QUERY_PROFILES (page 722)

RESOURCE_ACQUISITIONS (page 724)

RESOURCE_POOL_STATUS (page 730)

RESOURCE_POOLS (page 676)

RESOURCE_QUEUES (page 734)

RESOURCE_REJECTIONS (page 735)

Managing Workloads in the Administrator's Guide

RESOURCE_POOL_STATUS

Provides configuration settings of the various resource pools in the system, including internal
pools.

Column Name Data Type Description

NODE_NAME VARCHAR The name of the node for which information is
provided.

POOL_OID INTEGER A unique numeric ID assigned by the Vertica
catalog that identifies the pool.

POOL_NAME VARCHAR The name of the resource pool.

IS_INTERNAL BOOLEAN Denotes whether a pool is one of the built-in
pools (page 534).

MEMORY_SIZE_KB INTEGER Value of MemorySize setting of the pool in

kilobytes

MEMORY_SIZE_ACTUAL_KB INTEGER Current amount of memory in kilobytes allocated
to the pool by the resource manager. Note that the
actual size can be less than specified in the DDL,
if the pool has been recently altered in a running
system and the request to shuffle memory is
pending. See ALTER RESOURCE POOL (page
481).

MEMORY_INUSE_KB INTEGER Amount of memory in Kilobytes acquired by
requests running against this pool.

GENERAL_MEMORY_BORROWED_KB INTEGER Amount of memory in Kilobytes borrowed from the
General pool by requests running against this

pool. The sum of MEMORY_INUSE_KB and

GENERAL_MEMORY_BORROWED_KB should be

less than MAX_MEMORY_SIZE_KB (see below).

-731-

 SQL System Tables (Monitoring APIs)

QUEUEING_THRESHOLD_KB INTEGER Calculated as MAX_MEMORY_SIZE_KB * 75%.

When the amount of memory used by all requests
against this queue exceed the

QUEUEING_THRESHOLD_KB (but less than

MAX_MEMORY_SIZE_KB), new requests against

the pool will be queued until memory becomes
available.

MAX_MEMORY_SIZE_KB INTEGER Value of MAXMEMORYSIZE size parameter

specified when defining the pool. Provides an
upper limit on the amount of memory that can be
taken up by requests running against this pool.
Once this threshold is reached, new requests
against this pool are rejected until memory
becomes available.

RUNNING_QUERY_COUNT INTEGER Number of queries actually running using this
pool.

PLANNED_CONCURRENCY INTEGER Value of PLANNEDCONCURRENCY parameter

specified when defining the pool.

MAX_CONCURRENCY INTEGER Value of MAXCONCURRENCY parameter specified

when defining the pool.

IS_STANDALONE BOOLEAN If the pool is configured to have MEMORYSIZE

equal to MAXMEMORYSIZE, it does not borrow any

memory from the General pool and hence said to
be standalone.

QUEUE_TIMEOUT_SECONDS INTEGER Value of QUEUETIMEOUT parameter specified

when defining the pool.

PRIORITY INTEGER Value of PRIORITY parameter specified when

defining the pool.

SINGLE_INITIATOR INTEGER Value of SINGLEINITIATOR parameter specified

when defining the pool.

QUERY_BUDGET_KB INTEGER The current amount of memory that queries are
tuned to use.

Example

The following command finds all the configuration settings of the various resource pools on
node01:

vmartdb=> SELECT * FROM RESOURCE_POOL_STATUS WHERE node_name ILIKE 'node02';

-[RECORD 1]--------------+------------------

node_name | v_vmartdb_node02

pool_oid | 45035996273708346

pool_name | general

is_internal | t

memory_size_kb | 7562919

memory_size_actual_kb | 7562919

-732-

SQL Reference Manual

memory_inuse_kb | 0

general_memory_borrowed_kb | 0

queueing_threshold_kb | 5672189

max_memory_size_kb | 7562919

running_query_count | 0

planned_concurrency | 4

max_concurrency |

is_standalone | t

queue_timeout_in_seconds | 300

priority | 0

single_initiator | false

query_budget_kb | 1398847

-[RECORD 2]--------------+------------------

node_name | v_vmartdb_node02

pool_oid | 45035996273708348

pool_name | sysquery

is_internal | t

memory_size_kb | 65536

memory_size_actual_kb | 65536

memory_inuse_kb | 0

general_memory_borrowed_kb | 0

queueing_threshold_kb | 5721341

max_memory_size_kb | 7628455

running_query_count | 0

planned_concurrency | 4

max_concurrency |

is_standalone | f

queue_timeout_in_seconds | 300

priority | 20

single_initiator | false

query_budget_kb | 16384

-[RECORD 3]--------------+------------------

node_name | v_vmartdb_node02

pool_oid | 45035996273708350

pool_name | sysdata

is_internal | t

memory_size_kb | 102400

memory_size_actual_kb | 102400

memory_inuse_kb | 0

general_memory_borrowed_kb | 0

queueing_threshold_kb | 587493

max_memory_size_kb | 783325

running_query_count | 0

planned_concurrency | 1

max_concurrency | 0

is_standalone | f

queue_timeout_in_seconds | 0

priority | 0

single_initiator | false

query_budget_kb |

-[RECORD 4]--------------+------------------

node_name | v_vmartdb_node02

pool_oid | 45035996273708352

pool_name | wosdata

-733-

 SQL System Tables (Monitoring APIs)

is_internal | t

memory_size_kb | 0

memory_size_actual_kb | 0

memory_inuse_kb | 0

general_memory_borrowed_kb | 0

queueing_threshold_kb | 1468734

max_memory_size_kb | 1958313

running_query_count | 0

planned_concurrency | 2

max_concurrency | 0

is_standalone | f

queue_timeout_in_seconds | 0

priority | 0

single_initiator | false

query_budget_kb |

-[RECORD 5]--------------+------------------

node_name | v_vmartdb_node02

pool_oid | 45035996273708354

pool_name | tm

is_internal | t

memory_size_kb | 102400

memory_size_actual_kb | 102400

memory_inuse_kb | 0

general_memory_borrowed_kb | 0

queueing_threshold_kb | 5748989

max_memory_size_kb | 7665319

running_query_count | 0

planned_concurrency | 1

max_concurrency | 2

is_standalone | f

queue_timeout_in_seconds | 300

priority | 10

single_initiator | true

query_budget_kb | 102400

-[RECORD 6]--------------+------------------

node_name | v_vmartdb_node02

pool_oid | 45035996273708356

pool_name | refresh

is_internal | t

memory_size_kb | 0

memory_size_actual_kb | 0

memory_inuse_kb | 0

general_memory_borrowed_kb | 0

queueing_threshold_kb | 5672189

max_memory_size_kb | 7562919

running_query_count | 0

planned_concurrency | 4

max_concurrency |

is_standalone | f

queue_timeout_in_seconds | 300

priority | -10

single_initiator | true

query_budget_kb | 1398847

-[RECORD 7]--------------+------------------

-734-

SQL Reference Manual

node_name | v_vmartdb_node02

pool_oid | 45035996273708358

pool_name | recovery

is_internal | t

memory_size_kb | 0

memory_size_actual_kb | 0

memory_inuse_kb | 0

general_memory_borrowed_kb | 0

queueing_threshold_kb | 5672189

max_memory_size_kb | 7562919

running_query_count | 0

planned_concurrency | 3

max_concurrency | 3

is_standalone | f

queue_timeout_in_seconds | 300

priority | 15

single_initiator | true

query_budget_kb | 932564

-[RECORD 8]--------------+------------------

node_name | v_vmartdb_node02

pool_oid | 49539595901158692

pool_name | dbd

is_internal | t

memory_size_kb | 0

memory_size_actual_kb | 0

memory_inuse_kb | 0

general_memory_borrowed_kb | 0

queueing_threshold_kb | 5672189

max_memory_size_kb | 7562919

running_query_count | 0

planned_concurrency | 4

max_concurrency |

is_standalone | f

queue_timeout_in_seconds | 0

priority | 0

single_initiator | true

query_budget_kb | 1398847

See Also

RESOURCE_ACQUISITIONS (page 724)

RESOURCE_ACQUISITIONS_HISTORY (page 727)

RESOURCE_POOLS (page 676)

RESOURCE_QUEUES (page 734)

RESOURCE_REJECTIONS (page 735)

Managing Workloads, Monitoring Resource Pools and Resource Usage by Queries, Scenario:
Restricting Resource Usage of Ad-hoc Query Application in the Administrator's Guide

RESOURCE_QUEUES

Provides information about requests pending for various resource pools.

-735-

 SQL System Tables (Monitoring APIs)

Column Name Data Type Description

NODE_NAME VARCHAR The name of the node for which information is listed.

TRANSACTION_ID INTEGER Transaction identifier for this request

STATEMENT_ID INTEGER Statement identifier for this request

POOL_NAME VARCHAR The name of the resource pool

MEMORY_REQUESTED_KB INTEGER Amount of memory in kilobytes requested by this
request

PRIORITY INTEGER Value of PRIORITY parameter specified when defining
the pool.

POSITION_IN_QUEUE INTEGER Position of this request within the pool‘s queue

QUEUE_ENTRY_TIMESTAMP TIMESTAM
P

Timestamp when the request was queued

See Also

RESOURCE_ACQUISITIONS (page 724)

RESOURCE_ACQUISITIONS_HISTORY (page 727)

RESOURCE_POOLS (page 676)

RESOURCE_REJECTIONS (page 735)

Managing Workloads in the Administrator's Guide

RESOURCE_REJECTIONS

Monitors requests for resources that are rejected by the Resource Manager.

 Column Name Data Type Description

NODE_NAME VARCHAR The node name for which information is listed.

POOL_NAME VARCHAR The name of the resource pool.

REASON VARCHAR The reason for rejecting this request; for example:

 Usage of single request exceeds high limit

 Timed out waiting for resource reservation

 Canceled waiting for resource reservation

RESOURCE_TYPE VARCHAR Memory, threads, file handles or execution slots.

The following list shows the resources that are limited
by the resource manager. A query might need some
amount of each resource, and if the amount needed
is not available, the query is queued and could
eventually time out of the queue and be rejected.

 Number of running plans

-736-

SQL Reference Manual

 Number of running plans on initiator node
(local)

 Number of requested threads

 Number of requested file handles

 Number of requested KB of memory

 Number of requested KB of address space

Note: Execution slots are determined by

MAXCONCURRENCY parameter.

REJECTION_COUNT INTEGER Number of requests rejected due to specified reason

and RESOURCE_TYPE.

FIRST_REJECTED_TIMESTAMP TIMESTAM
P

The time of the first rejection for this pool

LAST_REJECTED_TIMESTAMP TIMESTAM
P

The time of the last rejection for this pool

LAST_REJECTED_VALUE INTEGER The amount of the specific resource requested by the
last rejection

Notes

Information is valid only as long as the node is up and the counters reset to 0 upon node restart.

Example

The following command returns the type of queries currently running on the node:

=> SELECT resource_type FROM resource_rejections;

 request_type

 UPDATE_QUERY

 UPDATE_QUERY

 UPDATE_QUERY

(3 rows)

See Also

CLEAR_RESOURCE_REJECTIONS (page 330)

DISK_RESOURCE_REJECTIONS (page 698)

Managing Workloads and Managing System Resource Usage in the Administrator's Guide

Managing and Viewing Query Repository in the Administrator's Guide

RESOURCE_USAGE

Monitors system resource management on each node.

-737-

 SQL System Tables (Monitoring APIs)

Column Name Data Type Description

NODE_NAME VARCHAR The node name for which information is
listed.

REQUEST_COUNT INTEGER The cumulative number of requests for
threads, file handles, and memory (in
kilobytes).

LOCAL_REQUEST_COUNT INTEGER The cumulative number of local requests.

REQUEST_QUEUE_DEPTH INTEGER The current request queue depth.

ACTIVE_THREAD_COUNT INTEGER The current number of active threads.

OPEN_FILE_HANDLE_COUNT INTEGER The current number of open file handles.

MEMORY_REQUESTED_KB INTEGER The memory requested in kilobytes.

ADDRESS_SPACE_REQUESTED_KB INTEGER The address space requested in kilobytes.

WOS_USED_BYTES INTEGER The size of the WOS in bytes.

WOS_ROW_COUNT INTEGER The number of rows in the WOS.

ROS_USED_BYTES INTEGER The size of the ROS in bytes.

ROS_ROW_COUNT INTEGER The number of rows in the ROS.

TOTAL_USED_BYTES INTEGER The total size of storage (WOS + ROS) in
bytes.

TOTAL_ROW_COUNT INTEGER The total number of rows in storage (WOS +
ROS).

RESOURCE_REQUEST_REJECT_COUNT INTEGER The number of rejected plan requests.

RESOURCE_REQUEST_TIMEOUT_COUNT INTEGER The number of resource request timeouts.

RESOURCE_REQUEST_CANCEL_COUNT INTEGER The number of resource request
cancelations.

DISK_SPACE_REQUEST_REJECT_COUNT INTEGER The number of rejected disk write requests.

FAILED_VOLUME_REJECT_COUNT INTEGER The number of rejections due to a failed
volume.

TOKENS_USED INTEGER For internal use only.

TOKENS_AVAILABLE INTEGER For internal use only.

Example

=>\pset expanded

Expanded display is on.

=> SELECT * FROM RESOURCE_USAGE;

-[RECORD 1]-------------------+---------------------------

node_name | node01

request_count | 1

local_request_count | 1

-738-

SQL Reference Manual

request_queue_depth | 0

active_thread_count | 4

open_file_handle_count | 2

memory_requested_kb | 4352

address_space_requested_kb | 106752

wos_used_bytes | 0

wos_row_count | 0

ros_used_bytes | 10390319

ros_row_count | 324699

total_used_bytes | 10390319

total_row_count | 324699

resource_request_reject_count | 0

resource_request_timeout_count | 0

resource_request_cancel_count | 0

disk_space_request_reject_count | 0

failed_volume_reject_count | 0

tokens_used | 1

tokens_available | 7999999

-[RECORD 2]-------------------+---------------------------

node_name | node02

request_count | 0

local_request_count | 0

request_queue_depth | 0

active_thread_count | 0

open_file_handle_count | 0

memory_requested_kb | 0

address_space_requested_kb | 0

wos_used_bytes | 0

wos_row_count | 0

ros_used_bytes | 10359489

ros_row_count | 324182

total_used_bytes | 10359489

total_row_count | 324182

resource_request_reject_count | 0

resource_request_timeout_count | 0

resource_request_cancel_count | 0

disk_space_request_reject_count | 0

failed_volume_reject_count | 0

tokens_used | 0

tokens_available | 8000000

-[RECORD 3]-------------------+---------------------------

node_name | node03

request_count | 0

local_request_count | 0

request_queue_depth | 0

active_thread_count | 0

open_file_handle_count | 0

memory_requested_kb | 0

address_space_requested_kb | 0

wos_used_bytes | 0

wos_row_count | 0

ros_used_bytes | 10355231

ros_row_count | 324353

total_used_bytes | 10355231

-739-

 SQL System Tables (Monitoring APIs)

total_row_count | 324353

resource_request_reject_count | 0

resource_request_timeout_count | 0

resource_request_cancel_count | 0

disk_space_request_reject_count | 0

failed_volume_reject_count | 0

tokens_used | 0

tokens_available | 8000000

-[RECORD 4]-------------------+---------------------------

node_name | node04

request_count | 0

local_request_count | 0

request_queue_depth | 0

active_thread_count | 0

open_file_handle_count | 0

memory_requested_kb | 0

address_space_requested_kb | 0

wos_used_bytes | 0

wos_row_count | 0

ros_used_bytes | 10385744

ros_row_count | 324870

total_used_bytes | 10385744

total_row_count | 324870

resource_request_reject_count | 0

resource_request_timeout_count | 0

resource_request_cancel_count | 0

disk_space_request_reject_count | 0

failed_volume_reject_count | 0

tokens_used | 0

tokens_available | 8000000

SESSION_PROFILES

Provides basic session parameters and lock time out data. To obtain information about sessions,
see Profiling Database Performance.

Column Name Data Type Description

NODE_NAME VARCHAR The node name for which information is
listed.

USER_NAME VARCHAR The name used to log in to the database or
NULL if the session is internal.

CLIENT_HOSTNAME VARCHAR The host name and port of the TCP socket
from which the client connection was
made; NULL if the session is internal.

LOGIN_TIMESTAMP TIMESTAM
P

The date and time the user logged into the
database or when the internal session was
created. This field is useful for identifying
sessions that have been left open for a
period of time and could be idle.

-740-

SQL Reference Manual

LOGOUT_TIMESTAMP TIMESTAM
P

The date and time the user logged out of
the database or when the internal session
was closed.

SESSION_ID VARCHAR A unique numeric ID assigned by the
Vertica catalog, which identifies the
session for which profiling information is
captured. This identifier is unique within
the cluster at any point in time but can be
reused when the session closes.

EXECUTED_STATEMENT_SUCCESS_COUNT INTEGER The number of successfully run
statements.

EXECUTED_STATEMENT_FAILURE_COUNT INTEGER The number of unsuccessfully run
statements.

LOCK_GRANT_COUNT INTEGER The number of locks granted during the
session.

DEADLOCK_COUNT INTEGER The number of deadlocks encountered
during the session.

LOCK_TIMEOUT_COUNT INTEGER The number of times a lock timed out
during the session.

LOCK_CANCELLATION_COUNT INTEGER The number of times a lock was canceled
during the session.

LOCK_REJECTION_COUNT INTEGER The number of times a lock was rejected
during a session.

LOCK_ERROR_COUNT INTEGER The number of lock errors encountered
during the session.

Example

Query the SESSION_PROFILES table:

=>\pset expanded

Expanded display on.

=> SELECT * FROM SESSION_PROFILES;

-[RECORD 1]-------------------+---------------------------------

node_name | node04

user_name | dbadmin

client_hostname | 192.168.1.1:46816

login_timestamp | 2009-09-28 11:40:34.01518

logout_timestamp | 2009-09-28 11:41:01.811484

session_id | myhost.verticacorp-20790:0x32f

executed_statement_success_count | 51

executed_statement_failure_count | 1

lock_grant_count | 579

deadlock_count | 0

lock_timeout_count | 0

lock_cancellation_count | 0

lock_rejection_count | 0

lock_error_count | 0

-741-

 SQL System Tables (Monitoring APIs)

See Also

LOCKS (page 712)

SESSIONS

Monitors external sessions. You can use this table to:

 Identify users who are running long queries

 Identify users who are holding locks due to an idle but uncommitted transaction

 Disconnect users in order to shut down the database

 Determine the details behind the type of database security (Secure Socket Layer (SSL) or
client authentication) used for a particular session.

Column Name Data Type Description

NODE_NAME VARCHA
R

The node name for which information is listed.

USER_NAME VARCHA
R

The name used to log into the database or NULL if
the session is internal.

CLIENT_HOSTNAME VARCHA
R

The host name and port of the TCP socket from
which the client connection was made; NULL if the
session is internal.

CLIENT_PID INTEGER The process identifier of the client process that
issued this connection. Remember that the client
process could be on a different machine than the
server.

LOGIN_TIMESTAMP TIMESTA
MP

The date and time the user logged into the database
or when the internal session was created. This can
be useful for identifying sessions that have been left
open for a period of time and could be idle.

SESSION_ID VARCHA
R

The identifier required to close or interrupt a
session. This identifier is unique within the cluster at
any point in time but can be reused when the
session closes.

CLIENT_LABEL VARCHA
R

A user-specified label for the client connection that

can be set when using ODBC. See SessionLabel

in DSN Parameters in Programmer's Guide.

TRANSACTION_START DATE The date/time the current transaction started or
NULL if no transaction is running.

TRANSACTION_ID VARCHA
R

A string containing the hexadecimal representation
of the transaction ID, if any; otherwise NULL.

TRANSACTION_DESCRIPTION VARCHA
R

A description of the current transaction.

STATEMENT_START DATE The date/time the current statement started
execution, or NULL if no statement is running.

-742-

SQL Reference Manual

STATEMENT_ID VARCHA
R

A unique numeric ID assigned by the Vertica
catalog, which identifies the currently-executing
statement.

Note: NULL indicates that no statement is currently

being processed.

LAST_STATEMENT_DURATION_US INTEGER The duration of the last completed statement in
microseconds.

CURRENT_STATEMENT VARCHA
R

The currently executing statement, if any. NULL
indicates that no statement is currently being
processed.

SSL_STATE VARCHA
R

Indicates if Vertica used Secure Socket Layer (SSL)
for a particular session. Possible values are:

 None – Vertica did not use SSL.

 Server – Sever authentication was used, so
the client could authenticate the server.

 Mutual – Both the server and the client
authenticated one another through mutual
authentication.

See Implementing Security and Implementing SSL.

AUTHENTICATION_METHOD VARCHA
R

The type of client authentication used for a particular
session, if known. Possible values are:

 Unknown

 Trust

 Reject

 Kerberos

 Password

 MD5

 LDAP

 Kerberos-GSS

See Implementing Security and Implementing Client
Authentication.

Notes

 The superuser has unrestricted access to all session information, but users can only view
information about their own, current sessions.

 During session initialization and termination, you might see sessions running only on nodes
other than the node on which you ran the virtual table query. This is a temporary situation that
corrects itself as soon as session initialization and termination completes.

Example

=>\pset expanded

Expanded display is on.

=> SELECT * FROM SESSIONS;

-743-

 SQL System Tables (Monitoring APIs)

-[RECORD 1]--------------+---

node_name | v_vmartdb_node01

user_name | dbadmin

client_hostname | xxx.x.x.x:xxxxx

client_pid | 18082

login_timestamp | 2010-10-07 10:10:03.114863-04

session_id | myhost-17956:0x1d

client_label |

transaction_start | 2010-10-07 12:40:15.243772

transaction_id | 45035996273728061

transaction_description | user dbadmin(SELECT * FROM database_snapshots;)

statement_start | 2010-10-07 13:33:56.542804

statement_id | 34

last_statement_duration_us | 19194

current_statement | SELECT * FROM SESSIONS;

ssl_state | None

authentication_method | Trust

See Also

CLOSE_SESSION (page 330) and CLOSE_ALL_SESSIONS (page 333)

Managing Sessions and Configuration Parameters in the Administrator's Guide

STORAGE_CONTAINERS

Monitors information about WOS and ROS storage containers in the database.

Column Name Data Type Description

NODE_NAME VARCHAR The node name for which information is listed.

SCHEMA_NAME VARCHAR The schema name for which information is listed.

PROJECTION_NAME VARCHAR The projection name for which information is listed on that
node.

STORAGE_TYPE VARCHAR Type of storage container: ROS or WOS.

STORAGE_OID INTEGER A unique numeric ID assigned by the Vertica catalog, which
identifies the storage.

TOTAL_ROW_COUNT VARCHAR Total rows in the storage container listed for that projection.

DELETED_ROW_COUNT INTEGER Total rows in the storage container deleted for that projection.

USED_BYTES INTEGER Total bytes in the storage container listed for that projection.

START_EPOCH INTEGER The number of the start epoch in the storage container for
which information is listed.

END_EPOCH INTEGER The number of the end epoch in the storage container for
which information is listed.

GROUPING VARCHAR The group by which columns are stored:

-744-

SQL Reference Manual

 ALL – All columns are grouped

 PROJECTION – Columns grouped according to
projection definition

 NONE – No columns grouped, despite grouping in
the projection definition

 OTHER – Some grouping but neither all nor
according to projection (e.g., results from add
column)

Example

The following command returns all the nodes on which a segmented projection has data on the
TickStore database:

TickStore=> SELECT node_name, projection_name, total_row_count

FROM storage_containers ORDER BY projection_name;
 node_name | projection_name | total_row_count

-----------------+--------------------------+-----------------

 v_tick_node0001 | Quotes_Fact_tmp_node0001 | 512

 v_tick_node0001 | Quotes_Fact_tmp_node0001 | 480176

 v_tick_node0002 | Quotes_Fact_tmp_node0002 | 512

 v_tick_node0002 | Quotes_Fact_tmp_node0002 | 480176

 v_tick_node0003 | Quotes_Fact_tmp_node0003 | 480176

 v_tick_node0003 | Quotes_Fact_tmp_node0003 | 512

 v_tick_node0004 | Quotes_Fact_tmp_node0004 | 480176

 v_tick_node0004 | Quotes_Fact_tmp_node0004 | 512

 v_tick_node0001 | Trades_Fact_tmp_node0001 | 512

 v_tick_node0001 | Trades_Fact_tmp_node0001 | 500334

 v_tick_node0002 | Trades_Fact_tmp_node0002 | 500334

 v_tick_node0002 | Trades_Fact_tmp_node0002 | 512

 v_tick_node0003 | Trades_Fact_tmp_node0003 | 500334

 v_tick_node0003 | Trades_Fact_tmp_node0003 | 512

 v_tick_node0004 | Trades_Fact_tmp_node0004 | 500334

 v_tick_node0004 | Trades_Fact_tmp_node0004 | 512

(16 rows)

The following command returns information on inventory_fact projections on all nodes on the
Vmart schema:

=> SELECT * FROM storage_containers WHERE projection_name LIKE

'inventory_fact_p%';

-[RECORD 1]-----+--------------------------

node_name | node01

schema_name | public

projection_name | inventory_fact_p_node0001

storage_type | WOS

storage_oid | 45035996273720173

total_row_count | 3000

deleted_row_count | 100

used_bytes | 196608

start_epoch | 1

end_epoch | 2

grouping | ALL

-[RECORD 2]-----+--------------------------

node_name | node01

schema_name | public

projection_name | inventory_fact_p_node0001

-745-

 SQL System Tables (Monitoring APIs)

storage_type | ROS

storage_oid | 45035996273722211

total_row_count | 500

deleted_row_count | 25

used_bytes | 5838

start_epoch | 1

end_epoch | 1

grouping | ALL

-[RECORD 3]-----+--------------------------

node_name | node01

schema_name | public

projection_name | inventory_fact_p_node0001

storage_type | ROS

storage_oid | 45035996273722283

total_row_count | 500

deleted_row_count | 25

used_bytes | 5794

start_epoch | 1

end_epoch | 1

grouping | ALL

-[RECORD 4]-----+--------------------------

node_name | node01

schema_name | public

projection_name | inventory_fact_p_node0001

storage_type | ROS

storage_oid | 45035996273723379

total_row_count | 500

deleted_row_count | 25

used_bytes | 5838

start_epoch | 1

end_epoch | 1

grouping | ALL

-[RECORD 5]-----+--------------------------

node_name | node01

schema_name | public

projection_name | inventory_fact_p_node0001

storage_type | ROS

storage_oid | 45035996273723451

total_row_count | 500

deleted_row_count | 25

used_bytes | 5794

start_epoch | 1

end_epoch | 1

grouping | ALL

-[RECORD 6]-----+--------------------------

node_name | node01

schema_name | public

projection_name | inventory_fact_p_node0001

storage_type | ROS

storage_oid | 45035996273724547

total_row_count | 500

deleted_row_count | 0

used_bytes | 5838

start_epoch | 2

-746-

SQL Reference Manual

end_epoch | 2

grouping | ALL

-[RECORD 7]-----+--------------------------

node_name | node01

schema_name | public

projection_name | inventory_fact_p_node0001

storage_type | ROS

storage_oid | 45035996273724619

total_row_count | 500

deleted_row_count | 0

used_bytes | 5794

start_epoch | 2

end_epoch | 2

grouping | ALL

-[RECORD 8]-----+--------------------------

...

See Also

Column Store Architecture with FlexStore in the Concepts Guide

STRATA

This table contains internal details of how the Tuple Mover combines ROSs in each projection,
broken down by stratum. For a brief overview of how the Tuple Mover combines ROSs, see Tuple
Mover topic in Administrator's Guide. The STRATA table contains detailed information on how the
ROS containers are classified by size and partition. The related STRATA_STRUCTURES (page
749) virtual table provides a summary of the strata values.

Column Name Data Type Description

NODE_NAME VARCHAR The node name for which information is listed

SCHEMA_NAME VARCHAR The schema name for which information is listed

PROJECTION_NAME VARCHAR The projection name for which information is listed on
that node

PARTITION_KEY VARCHAR The data partition for which information is listed

STRATA_COUNT INTEGER The total number of strata for this projection partition

STRATUM_CAPACITY INTEGER The maximum number of ROS containers for the stratum
before they must be merged.

STRATUM_HEIGHT FLOAT The size ratio between the smallest and largest ROS
container in this stratum

STRATUM_NO INTEGER The stratum number. Strata are numbered starting at 0,
for the stratum containing the smallest ROS containers

STRATUM_LOWER_SIZE INTEGER The smallest ROS container size allowed in this stratum

STRATUM_UPPER_SIZE INTEGER The largest ROS container size allowed in this stratum

ROS_CONTAINER_COUNT INTEGER The current number of ROS containers in the projection

-747-

 SQL System Tables (Monitoring APIs)

partition

Example

vmartdb=> \pset expanded

Expanded display is on.

vmartdb=> SELECT * from STRATA WHERE node_name ILIKE 'node01'

 AND stratum_upper_size < '15MB';

-[RECORD 1

]-------+---

node_name | v_vmartdb_node01

schema_name | online_sales

projection_name |

call_center_dimension_DBD_32_seg_vmart_design_vmart_design

partition_key |

strata_count | 5

stratum_capacity | 19

stratum_height | 8.97589786696783

stratum_no | 0

stratum_lower_size | 0B

stratum_upper_size | 13MB

ROS_container_count | 1

-[RECORD 2

]-------+---

node_name | v_vmartdb_node01

schema_name | online_sales

projection_name |

call_center_dimension_DBD_8_seg_vmart_design_vmart_design

partition_key |

strata_count | 5

stratum_capacity | 19

stratum_height | 8.97589786696783

stratum_no | 0

stratum_lower_size | 0B

stratum_upper_size | 13MB

ROS_container_count | 1

-[RECORD 3

]-------+---

node_name | v_vmartdb_node01

schema_name | online_sales

projection_name | online_sales_fact_DBD_33_seg_vmart_design_vmart_design

partition_key |

strata_count | 5

stratum_capacity | 13

stratum_height | 8.16338338718601

stratum_no | 1

stratum_lower_size | 19MB

stratum_upper_size | 155.104MB

ROS_container_count | 1

-[RECORD 4

]-------+---

node_name | v_vmartdb_node01

schema_name | online_sales

projection_name | online_sales_fact_DBD_9_seg_vmart_design_vmart_design

-748-

SQL Reference Manual

partition_key |

strata_count | 5

stratum_capacity | 13

stratum_height | 8.16338338718601

stratum_no | 1

stratum_lower_size | 19MB

stratum_upper_size | 155.104MB

ROS_container_count | 1

-[RECORD 5

]-------+---

node_name | v_vmartdb_node01

schema_name | public

projection_name | promotion_dimension_DBD_16_seg_vmart_design_vmart_design

partition_key |

strata_count | 5

stratum_capacity | 19

stratum_height | 8.97589786696783

stratum_no | 0

stratum_lower_size | 0B

stratum_upper_size | 13MB

ROS_container_count | 1

-[RECORD 6

]-------+---

node_name | v_vmartdb_node01

schema_name | public

projection_name | promotion_dimension_DBD_17_seg_vmart_design_vmart_design

partition_key |

strata_count | 5

stratum_capacity | 19

stratum_height | 8.97589786696783

stratum_no | 0

stratum_lower_size | 0B

stratum_upper_size | 13MB

ROS_container_count | 1

-[RECORD 7

]-------+---

node_name | v_vmartdb_node01

schema_name | store

projection_name | store_sales_fact_DBD_29_seg_vmart_design_vmart_design

partition_key |

strata_count | 5

stratum_capacity | 16

stratum_height | 8.52187248329035

stratum_no | 1

stratum_lower_size | 16MB

stratum_upper_size | 136.35MB

ROS_container_count | 1

-[RECORD 8

]-------+---

node_name | v_vmartdb_node01

schema_name | store

projection_name | store_sales_fact_DBD_5_seg_vmart_design_vmart_design

partition_key |

strata_count | 5

-749-

 SQL System Tables (Monitoring APIs)

stratum_capacity | 16

stratum_height | 8.52187248329035

stratum_no | 1

stratum_lower_size | 16MB

stratum_upper_size | 136.35MB

ROS_container_count | 1

STRATA_STRUCTURES

This table provides an overview of the Tuple Mover's internal details. It summarizes how the ROS
containers are classified by size. A more detailed view can be found in the STRATA (page 746)
virtual table.

Column Name Data Type Description

NODE_NAME VARCHAR The node name for which information is listed

SCHEMA_NAME VARCHAR The schema name for which information is listed

PROJECTION_NAME VARCHAR The projection name for which information is listed on
that node

PARTITION_KEY VARCHAR The data partition for which the information is listed

STRATA_COUNT INTEGER The total number of strata for this projection partition

STRATUM_CAPACITY INTEGER The maximum number of ROS containers that the
strata can contained before it must merge them

STRATUM_HEIGHT FLOAT The size ratio between the smallest and largest ROS
container in a stratum.

ACTIVE_STRATA_COUNT INTEGER The total number of strata that have ROS containers
in them

Example

vmartdb=> \pset expanded

Expanded display is on.

vmartdb=> SELECT * FROM strata_structures WHERE stratum_capacity > 60;

-[RECORD 1]-------+--

node_name | v_vmartdb_node01

schema_name | public

projection_name | shipping_dimension_DBD_22_seg_vmart_design_vmart_design

partition_key |

strata_count | 4

stratum_capacity | 62

stratum_height | 25.6511590887058

active_strata_count | 1

-[RECORD 2]-------+--

node_name | v_vmartdb_node01

schema_name | public

projection_name | shipping_dimension_DBD_23_seg_vmart_design_vmart_design

partition_key |

strata_count | 4

stratum_capacity | 62

stratum_height | 25.6511590887058

-750-

SQL Reference Manual

active_strata_count | 1

-[RECORD 3]-------+--

node_name | v_vmartdb_node02

schema_name | public

projection_name | shipping_dimension_DBD_22_seg_vmart_design_vmart_design

partition_key |

strata_count | 4

stratum_capacity | 62

stratum_height | 25.6511590887058

active_strata_count | 1

-[RECORD 4]-------+--

node_name | v_vmartdb_node02

schema_name | public

projection_name | shipping_dimension_DBD_23_seg_vmart_design_vmart_design

partition_key |

strata_count | 4

stratum_capacity | 62

stratum_height | 25.6511590887058

active_strata_count | 1

-[RECORD 5]-------+--

node_name | v_vmartdb_node03

schema_name | public

projection_name | shipping_dimension_DBD_22_seg_vmart_design_vmart_design

partition_key |

strata_count | 4

stratum_capacity | 62

stratum_height | 25.6511590887058

active_strata_count | 1

-[RECORD 6]-------+--

node_name | v_vmartdb_node03

schema_name | public

projection_name | shipping_dimension_DBD_23_seg_vmart_design_vmart_design

partition_key |

strata_count | 4

stratum_capacity | 62

stratum_height | 25.6511590887058

active_strata_count | 1

-[RECORD 7]-------+--

node_name | v_vmartdb_node04

schema_name | public

projection_name | shipping_dimension_DBD_22_seg_vmart_design_vmart_design

partition_key |

strata_count | 4

stratum_capacity | 62

stratum_height | 25.6511590887058

active_strata_count | 1

-[RECORD 8]-------+--

node_name | v_vmartdb_node04

schema_name | public

projection_name | shipping_dimension_DBD_23_seg_vmart_design_vmart_design

partition_key |

strata_count | 4

stratum_capacity | 62

stratum_height | 25.6511590887058

-751-

 SQL System Tables (Monitoring APIs)

active_strata_count | 1

SYSTEM

Monitors the overall state of the database.

Column Name Data Type Description

CURRENT_EPOCH INTEGER The current epoch number.

AHM_EPOCH INTEGER The AHM epoch number.

LAST_GOOD_EPOCH INTEGER The smallest (min) of all the checkpoint epochs
on the cluster.

REFRESH_EPOCH INTEGER The oldest of the refresh epochs of all the nodes
in the cluster

DESIGNED_FAULT_TOLERANCE INTEGER The designed or intended K-Safety level.

NODE_COUNT INTEGER The number of nodes in the cluster.

NODE_DOWN_COUNT INTEGER The number of nodes in the cluster that are
currently down.

CURRENT_FAULT_TOLERANCE INTEGER The number of node failures the cluster can
tolerate before it shuts down automatically.

CATALOG_REVISION_NUMBER INTEGER The catalog version number.

WOS_USED_BYTES INTEGER The WOS size in bytes (cluster-wide).

WOS_ROW_COUNT INTEGER The number of rows in WOS (cluster-wide).

ROS_USED_BYTES INTEGER The ROS size in bytes (cluster-wide).

ROS_ROW_COUNT INTEGER The number of rows in ROS (cluster-wide).

TOTAL_USED_BYTES INTEGER The total storage in bytes (WOS + ROS)
(cluster-wide).

TOTAL_ROW_COUNT INTEGER The total number of rows (WOS + ROS)
(cluster-wide).

Example

Query the SYSTEM table:

=>\pset expanded

Expanded display is on.

=> SELECT * FROM SYSTEM;

-[RECORD 1]------------+----------

current_epoch | 429

ahm_epoch | 428

last_good_epoch | 428

refresh_epoch | -1

designed_fault_tolerance | 1

node_count | 4

node_down_count | 0

current_fault_tolerance | 1

-752-

SQL Reference Manual

catalog_revision_number | 1590

wos_used_bytes | 0

wos_row_count | 0

ros_used_bytes | 443131537

ros_row_count | 21809072

total_used_bytes | 443131537

total_row_count | 21809072

If there are no projections in the system, LAST_GOOD_EPOCH returns the following:

=> SELECT get_last_good_epoch();

ERROR: Last good epoch not set

And if there are projections in the system:

=> SELECT get_last_good_epoch();

 get_last_good_epoch

 428

(1 row)

TUPLE_MOVER_OPERATIONS

Monitors the status of the Tuple Mover (ATM) on each node.

Column Name Data Type Description

OPERATION_START_TIMESTAMP TIMESTAM
P

The start time of a Tuple Mover operation.

NODE_NAME VARCHAR The node name for which information is
listed.

OPERATION_NAME VARCHAR One of the following operations:

Moveout

Mergeout

Analyze Statistics

OPERATION_STATUS VARCHAR Returns Running or an empty string to

indicate 'not running.'

TABLE_SCHEMA VARCHAR The schema name for the specified
projection.

TABLE_NAME VARCHAR The table name for the specified projection

PROJECTION_NAME VARCHAR The name of the projection being processed.

EARLIEST_CONTAINER_START_EPOCH INTEGER Populated for mergeout, purge and
merge_partitions operations only. For an
ATM-invoked mergeout, for example, the
returned value represents the lowest epoch
of containers involved in the mergeout.

LATEST_CONTAINER_END_EPOCH INTEGER Populated for mergeout, purge and
merge_partitions operations only. For an
ATM-invoked mergeout, for example, the
returned value represents the highest epoch

-753-

 SQL System Tables (Monitoring APIs)

of containers involved in the mergeout.

ROS_COUNT INTEGER The number of ROS containers.

TOTAL_ROS_USED_BYTES INTEGER The size in bytes of all ROS containers in the
mergeout operation. (Not applicable for other
operations.)

PLAN_TYPE VARCHAR One of the following values:

Moveout

Mergeout

Analyze

Replay Delete

Notes

Manual mergeouts are invoked using one of the following APIs:

 DO_TM_TASK (page 339)()

 PURGE (page 371)

 MERGE_PARTITIONS (page 367)

Note: No output from TUPLE_MOVER_OPERATIONS means that the Tuple Mover is not

performing an operation.

Example

=> SELECT node_name, operation_status, projection_name, plan_type

 FROM TUPLE_MOVER_OPERATIONS;

 node_name | operation_status | projection_name | plan_type

-----------+------------------+------------------+-----------

 node0001 | Running | p1_b2 | Mergeout

 node0002 | Running | p1 | Mergeout

 node0001 | Running | p1_b2 | Replay Delete

 node0001 | Running | p1_b2 | Mergeout

 node0002 | Running | p1_b2 | Mergeout

 node0001 | Running | p1_b2 | Replay Delete

 node0002 | Running | p1 | Mergeout

 node0003 | Running | p1_b2 | Replay Delete

 node0001 | Running | p1 | Mergeout

 node0002 | Running | p1_b1 | Mergeout

See Also

DO_TM_TASK (page 339), MERGE_PARTITIONS (page 367), and PURGE (page 371)

Understanding the Tuple Mover and Partitioning Tables in the Administrator's Guide

WOS_CONTAINER_STORAGE

Monitors information about WOS storage, which is divided into regions. Each region allocates
blocks of a specific size to store rows.

Column Name Data Type Description

NODE_NAME VARCHAR The node name for which information is listed.

-754-

SQL Reference Manual

WOS_TYPE VARCHAR Returns one of the following:

 system – for system table queries

 user – for other user queries

WOS_ALLOCATION_REGION VARCHAR The block size allocated by region in KB. The
summary line sums the amount of memory used
by all regions.

REGION_VIRTUAL_SIZE_KB INTEGER The amount of virtual memory in use by region in
KB. Virtual size is greater than or equal to
allocated size, which is greater than or equal to
in-use size.

REGION_ALLOCATED_SIZE_KB INTEGER The amount of physical memory in use by a
particular region in KB.

REGION_IN_USE_SIZE_KB INTEGER The actual number of bytes of data stored by the
region in KB.

REGION_SMALL_RELEASE_COUNT INTEGER Internal use only.

REGION_BIG_RELEASE_COUNT INTEGER Internal use only.

Notes

 The WOS allocator can use large amounts of virtual memory without assigning physical
memory.

 To see the difference between virtual size and allocated size, look at the

REGION_IN_USE_SIZE column to see if the WOS is full. The summary line tells you the

amount of memory used by the WOS, which is typically capped at one quarter of physical
memory per node.

Examples

=>\pset expanded

Expanded display is on.

=> SELECT * FROM WOS_CONTAINER_STORAGE;

-[RECORD 1]--------------+---------------------------

node_name | host01

wos_type | user

wos_allocation_region | 16 KB Region

region_virtual_size_kb | 2045408

region_allocated_size_kb | 0

region_in_use_size_kb | 0

region_small_release_count | 656

region_big_release_count | 124

-[RECORD 2]--------------+---------------------------

node_name | host01

wos_type | system

wos_allocation_region | 16 KB Region

region_virtual_size_kb | 1024

region_allocated_size_kb | 960

region_in_use_size_kb | 0

region_small_release_count | 78

-755-

 SQL System Tables (Monitoring APIs)

region_big_release_count | 9

-[RECORD 3]--------------+---------------------------

node_name | host01

wos_type | system

wos_allocation_region | 64 KB Region

region_virtual_size_kb | 1024

region_allocated_size_kb | 64

region_in_use_size_kb | 0

region_small_release_count | 19

region_big_release_count | 0

-[RECORD 4]--------------+---------------------------

node_name | host01

wos_type | system

wos_allocation_region | Summary

region_virtual_size_kb | 2048

region_allocated_size_kb | 1024

region_in_use_size_kb | 0

region_small_release_count | 97

region_big_release_count | 9

-[RECORD 5]--------------+---------------------------

node_name | host01

wos_type | user

wos_allocation_region | Summary

region_virtual_size_kb | 2045408

region_allocated_size_kb | 0

region_in_use_size_kb | 0

region_small_release_count | 656

region_big_release_count | 124

-[RECORD 6]--------------+---------------------------

node_name | host02

wos_type | user

wos_allocation_region | 16 KB Region

region_virtual_size_kb | 2045408

region_allocated_size_kb | 0

region_in_use_size_kb | 0

region_small_release_count | 666

region_big_release_count | 121

-[RECORD 7]--------------+---------------------------

node_name | host02

wos_type | system

wos_allocation_region | 16 KB Region

region_virtual_size_kb | 1024

region_allocated_size_kb | 960

region_in_use_size_kb | 0

region_small_release_count | 38

region_big_release_count | 2

-[RECORD 8]--------------+---------------------------

node_name | host02

wos_type | system

wos_allocation_region | 64 KB Region

region_virtual_size_kb | 1024

region_allocated_size_kb | 64

region_in_use_size_kb | 0

region_small_release_count | 10

-756-

SQL Reference Manual

region_big_release_count | 0

-[RECORD 9]--------------+---------------------------

...

-757-

Appendix: Compatibility with Other RDBMS

This section describes compatibility of Vertica with other relational database management
systems.

Information in this appendix is intended to simplify database migration to Vertica.

Data Type Mappings Between Vertica and Oracle
Oracle uses proprietary data types for all main data types (for example, VARCHAR, INTEGER,
FLOAT, DATE), if you plan to migrate your database from Oracle to Vertica, Vertica strongly
recommends that you convert the schema—a simple and important exercise that can minimize
errors and time lost spent fixing erroneous data issues.

The following table compares the behavior of Oracle data types to Vertica data types.

Oracle Vertica Notes

NUMBER

(no explicit
precision)

INT, NUMERIC

or FLOAT

In Oracle, the NUMBER data type with no explicit precision stores
each number N as an integer M, together with a scale S. The scale
can range from -84 to 127, while the precision of M is limited to 38
digits. So N = M * 10^S.

When precision is specified, precision/scale applies to all entries in
the column. If omitted, the scale defaults to 0.

For the common case where Oracle‘s NUMBER with no explicit
precision data type is used to store only integer values, INT is the
best suited and the fastest Vertica data type. However, INT (the
same as BIGINT) is limited to a little less than 19 digits, with a scale
of 0; if the Oracle column contains integer values outside of the
range [-9223372036854775807, +9223372036854775807], use
the Vertica data type NUMERIC(p,0) where p is the maximum
number of digits required to represent the values of N.

Even though no explicit scale is specified for an Oracle NUMBER
column, Oracle allows non-integer values, each with its own scale.
If the data stored in the column is approximate, Vertica
recommends using the Vertica data type FLOAT, which is standard
IEEE floating point, like ORACLE BINARY_DOUBLE. If the data is
exact with fractional places, for example dollar amounts, Vertica

recommends NUMERIC(p,s) where p is the precision (total

number of digits) and s is the maximum scale (number of decimal

places).

Vertica conforms to standard SQL, which requires that p >= s and s
>= 0. Vertica's NUMERIC data type is most effective for p=18,
and increasingly expensive for p=37, 58, 67, etc., where p <= 1024.

Vertica recommends against using the data type NUMERIC(38,s)
as a default "failsafe" mapping to guarantee no loss of precision.
NUMERIC(18,s) is better, and INT or FLOAT are better yet, if one
of these data types will do the job.

-758-

SQL Reference Manual

NUMBER (P,0),

P <= 18

INT In Oracle, when precision is specified the precision/scale applies to
all entries in the column. If omitted the scale defaults to 0. For the
Oracle NUMBER data type with 0 scale, and a precision less than
or equal to 18, use INT in Vertica.

NUMBER (P,0),

P > 18

NUMERIC (p,0) An Oracle column precision greater than 18 is often more than an
application really needs.

If all values in the Oracle column are within the INT range

[-9223372036854775807,+9223372036854775807], use INT for
best performance. Otherwise, use the Vertica data type
NUMERIC(p, 0), where p = P.

NUMBER (P,S)

all cases other
than previous 3
rows

NUMERIC (p,s)

or FLOAT

When P >= S and S >= 0, use p = P and s = S, unless the data
allows reducing P or using FLOAT as discussed above.

If S > P, use p = S, s = S. If S < 0, use p = P – S, s = 0.

NUMERIC (P,S) See notes --> Rarely used in Oracle. See notes for the NUMBER type.

DECIMAL (P,S) See notes --> DECIMAL is a synonym for NUMERIC. See notes for the NUMBER
type.

BINARY_FLOAT FLOAT Same as FLOAT(53) or DOUBLE PRECISION.

BINARY_DOUBLE FLOAT Same as FLOAT(53) or DOUBLE PRECISION.

RAW VARBINARY(RAW

)
The maximum size of RAW in Oracle is 2,000 bytes.

The maximum size of CHAR/BINARY in Vertica is 65000 bytes.

In Vertica, RAW is a synonym for VARBINARY.

LONG RAW VARBINARY(RAW

)
The maximum size of Oracle‘s LONG RAW is 2GB.

The maximum size of Vertica‘s VARBINARY is 65000 bytes.
Vertica user should exercise caution to avoid truncation during
data migration from Oracle.

CHAR(n) CHAR(n) The maximum size of CHAR in Oracle is 2,000 bytes.

The maximum size of CHAR in Vertica is 65000 bytes.

NCHAR(n) CHAR(n*3) Vertica supports national characters with CHAR(n) as
variable-length UTF8-encoded UNICODE character string. UTF-8
represents ASCII in 1 byte, most European characters in 2 bytes,
and most oriental and Middle Eastern characters in 3 bytes.

VARCHAR2(n) VARCHAR(n) The maximum size of VARCHAR2 in Oracle is 4,000 bytes.

The maximum size of VARCHAR in Vertica is 65000 .

Note: The behavior of Oracle‘s VARCHAR2 and Vertica‘s

VARCHAR is semantically different. Vertica‘s VARCHAR exhibits
standard SQL behavior, whereas Oracle‘s VARCHAR2 is not
completely consistent with standard behavior – it treats an empty
string as NULL value and uses non-padded comparison if one
operand is VARCHAR2.

NVARCHAR2 (n) VARCHAR(n*3) See notes for NCHAR().

DATE TIMESTAMP or

possibly DATE

Oracle‘s DATE is different from the SQL standard DATE data type
implemented by Vertica. Oracle‘s DATE includes the time (no

-759-

 Appendix: Compatibility with Other RDBMS

fractional seconds), while Vertica DATE type includes only date
per SQL specification.

TIMESTAMP TIMESTAMP TIMESTAMP defaults to six places, that is, to microseconds

TIMESTAMP WITH

TIME ZONE

TIMESTAMP

WITH

TIME ZONE

TIME ZONE defaults to the currently SET or system time zone.

INTERVAL YEAR

TO MONTH

INTERVAL YEAR

TO MONTH

Per the SQL standard, INTERVAL can be qualified with YEAR TO
MONTH sub-type in Vertica.

INTERVAL DAY

TO SECOND

INTERVAL DAY

TO SECOND

In Vertica, DAY TO SECOND is the default sub-type for
INTERVAL.

-761-

Index

A

About the Documentation • 2

ABS • 237

ACOS • 237

ACTIVE_EVENTS • 681, 709

ADD_LOCATION • 329, 332, 379, 401, 402,

406, 486, 487, 489, 490, 491, 721

ADD_MONTHS • 88, 183

ADVANCE_EPOCH • 331, 354, 433, 440

AGE_IN_MONTHS • 84, 184, 186

AGE_IN_YEARS • 84, 185

Aggregate Expressions • 44, 110, 637

Aggregate Functions • 44, 110, 216, 515, 646,

648

Alphabetical List of Vertica Functions • 329

ALTER FUNCTION • 494, 534, 535, 601, 704

ALTER PROFILE • 496

ALTER PROFILE RENAME • 498

ALTER PROJECTION RENAME • 331, 354,

369, 370, 371, 433, 440, 450, 451, 496

ALTER RESOURCE POOL • 498, 500, 552,

605, 663, 752

ALTER SCHEMA • 501, 559

ALTER SEQUENCE • 264, 265, 267, 424, 502,

563, 607

ALTER TABLE • 337, 420, 505, 574, 587

ALTER USER • 511, 595, 596, 617, 628, 665,

666

ALTER_LOCATION_USE • 330, 331, 379, 486,

489

Analytic Functions • 110, 115, 116, 117, 118,

119, 122, 123, 124, 132, 133, 134, 135, 136,

138, 139, 142, 145, 148, 149, 151, 152, 154,

155, 156, 159, 161, 162, 164, 166, 167, 168,

169, 171, 172, 173, 515, 637

ANALYZE_CONSTRAINTS • 332, 350, 385,

415, 422, 425, 524, 532, 702

ANALYZE_STATISTICS • 338, 355, 365, 374,

482, 484, 485, 586, 695

AND operator • 37

Appendix

Compatibility with Other RDBMS • 779

ASCII • 268, 273

ASIN • 238

ATAN • 238

ATAN2 • 239

AVG [Aggregate] • 110, 115, 120, 132

AVG [Analytic] • 111, 131, 136

B

Backslashes • 10, 23, 26, 57, 226, 298, 514, 655,

666

Basic names • 11

BETWEEN-predicate • 52, 642

BIGINT • 12, 95, 100

Binary Data Types • 38, 63, 179, 180, 181, 517,

570

Binary Operators • 34, 64, 65, 66

BINARY VARYING • 63

BIT_AND • 35, 65, 66, 178

BIT_LENGTH • 269, 272, 288, 293

BIT_OR • 35, 65, 66, 179

BIT_XOR • 65, 66, 180

BITCOUNT • 67, 220, 270, 310

BITSTRING_TO_BINARY • 64, 67, 220, 271,

310

Boolean Data Type • 37, 38, 53, 67, 570

Boolean Functions • 178

Boolean Operators • 37, 53, 67, 642

Boolean-predicate • 37, 51, 53, 67, 642

BTRIM • 271, 292, 303, 313

Built-in Pool Configuration • 554, 680

Built-in Pools • 499, 500, 549, 551, 552, 605, 696,

752

BYTEA • 63

C

CASE Expressions • 37, 44, 46, 257, 258, 261,

262, 274, 637, 649

CAST • 12, 14, 34, 38, 43, 63, 179, 180, 220, 223

Catalog Management Functions • 329, 409

CBRT • 239

CEILING (CEIL) • 240, 243

CHAR • 68

Character Data Types • 38, 64, 68, 570

Character string literals • 23, 298, 514

CHARACTER VARYING • 12, 68

CHARACTER_LENGTH • 270, 272, 288, 293

Characters in hexadecimal, entering • 23

CHR • 269, 273

CLEAR_PROJECTION_REFRESHES • 340,

385, 387, 408, 452, 453, 454, 740, 741

CLEAR_QUERY_REPOSITORY • 339, 425

CLEAR_RESOURCE_REJECTIONS • 341,

425, 720, 758

-762-

SQL Reference Manual

CLOCK_TIMESTAMP • 186, 204, 211, 217

CLOSE_ALL_SESSIONS • 344, 357, 407, 427,

432, 471, 477, 718, 765

CLOSE_SESSION • 341, 347, 357, 427, 474,

718, 765

COALESCE • 256, 258, 260, 261, 262

Coercion • 17, 38, 63, 104

Column length limits

fixed length • 11

variable length • 11

Column References • 47, 56, 115, 116, 151, 154,

244, 247, 547, 548, 579, 581, 591, 592, 593,

637, 646

COLUMN_STORAGE • 351, 354, 440, 492,

681, 711

column-constraint • 265, 266, 423, 563, 570, 574,

697

column-definition (table) • 564, 566, 570

column-definition (temp table) • 565, 582, 583,

585, 587

column-name-list (table) • 564, 571

column-name-list (temp table) • 582, 588

COLUMNS • 681, 684

Columns per table • 11

column-value-predicate • 54, 642

Comments • 48

COMMIT • 513, 525

Commutative • 37

Comparison Operators • 37, 54

Compound key • 509

Concurrent connections

per cluster • 11

per node • 11

CONDITIONAL_CHANGE_EVENT [Analytic]

• 133, 134, 325

CONDITIONAL_TRUE_EVENT [Analytic] •

133, 134, 325

CONFIGURATION_PARAMETERS • 343,

344, 346, 347, 473, 474, 476, 477, 681, 714

Constraint Management Functions • 329, 415

COPY • 19, 67, 68, 97, 98, 101, 323, 333, 337,

416, 420, 514, 569, 576, 620, 623, 631

COPY Formats • 524

Copyright Notice • 792

COS • 241

COT • 241

COUNT [Aggregate] • 111, 120, 136

COUNT [Analytic] • 132, 135

CREATE FUNCTION • 495, 532, 601, 704

CREATE PROCEDURE • 535, 602

CREATE PROFILE • 536, 689

CREATE PROJECTION • 540, 604

CREATE RESOURCE POOL • 501, 549, 605,

663, 696, 697

CREATE SCHEMA • 502, 558

CREATE SEQUENCE • 264, 265, 266, 267, 423,

424, 504, 559, 578, 607, 697, 698, 699

CREATE TABLE • 266, 337, 354, 420, 423, 440,

526, 558, 564, 566, 585, 587, 622, 660, 697

CREATE TEMPORARY TABLE • 566, 569,

582

CREATE USER • 501, 512, 552, 594, 615, 626,

662, 663, 665, 666

CREATE VIEW • 533, 596

CUME_DIST [Analytic] • 136, 158, 161

CURRENT_DATABASE • 321

CURRENT_DATE • 50, 184, 185, 187

CURRENT_SCHEMA • 321, 347

CURRENT_SESSION • 681, 715

CURRENT_TIME • 50, 188

CURRENT_TIMESTAMP • 51, 188, 209, 217

CURRENT_USER • 322, 323, 324

CURRVAL • 264, 504, 560, 561, 563, 607

D

Data Type Coercion • 19, 39, 69, 104

Data Type Coercion Chart • 107, 178, 179, 181

Data Type Coercion Operators (CAST) • 18, 38,

65, 67, 107, 108

Data Type Mappings Between Vertica and Oracle

• 779

Database Management Functions • 329, 425

Database size • 11

DATE • 27, 71, 195

Date/Time Data Types • 38, 70, 189, 517, 570

Date/Time Expressions • 27, 49, 200, 204, 211

Date/Time Functions • 182, 515

Date/Time Literals • 27, 654

Date/Time Operators • 39

DATE_PART • 189, 200, 203

DATE_TRUNC • 193

DATEDIFF • 194

DATESTYLE • 71, 76, 84, 367, 405, 434, 438,

653, 654, 656, 670

DATETIME • 72

Day of the Week Names • 28

DECIMAL • 12, 95, 100

DECODE • 273

-763-

 Index

DEGREES • 242

DELETE • 10, 360, 447, 586, 587, 598, 608, 620,

672, 677

DELETE_VECTORS • 681, 718

DENSE_RANK [Analytic] • 137, 162, 164

Depth of nesting subqueries • 11

DISABLE_DUPLICATE_KEY_ERROR • 333,

337, 347, 385, 416, 420, 424

DISK_RESOURCE_REJECTIONS • 341, 425,

682, 719, 758

DISK_STORAGE • 330, 486, 682, 720

DISPLAY_LICENSE • 350, 425

DO_TM_TASK • 350, 354, 357, 358, 359, 381,

383, 427, 440, 441, 442, 445, 446, 492, 775

DOUBLE PRECISION • 17

DOUBLE PRECISION (FLOAT) • 17, 41, 97,

101, 200, 237, 249

Doubled single quotes • 23, 298

DROP FUNCTION • 495, 534, 535, 600, 704

DROP PROCEDURE • 536, 602

DROP PROFILE • 602

DROP PROJECTION • 375, 435, 569, 604, 608

DROP RESOURCE POOL • 501, 552, 605, 663

DROP SCHEMA • 502, 559, 606

DROP SEQUENCE • 264, 265, 267, 424, 504,

561, 563, 606

DROP TABLE • 568, 584, 587, 600, 604, 608,

672

DROP USER • 595, 596, 610

DROP VIEW • 596, 597, 610

DROP_LOCATION • 351, 402, 488, 490

DROP_PARTITION • 351, 352, 358, 359, 381,

383, 428, 439, 441, 442, 445, 446, 492, 569

DROP_STATISTICS • 339, 354, 365, 374, 483,

485

DUAL • 682, 685

DUMP_CATALOG • 356, 410

DUMP_LOCKTABLE • 357, 427, 736

DUMP_PARTITION_KEYS • 351, 354, 357,

358, 381, 383, 427, 440, 441, 445, 446, 492,

569

DUMP_PROJECTION_PARTITION_KEYS •

351, 354, 358, 359, 381, 383, 428, 440, 441,

442, 445, 446, 492, 569

DUMP_TABLE_PARTITION_KEYS • 351,

354, 358, 359, 360, 381, 383, 428, 440, 441,

442, 445, 446, 493, 569

E

encoding-type • 540, 544, 567, 570, 571, 588, 589

Epoch Management Functions • 329, 432

ESCAPE_STRING_WARNING • 22, 25, 26,

653, 655, 667, 670

EVALUATE_DELETE_PERFORMANCE •

360, 447

EVENT_CONFIGURATIONS • 682, 724

Examples • 526

EXECUTION_ENGINE_PROFILES • 682, 718,

725

EXP • 242

EXPLAIN • 612

EXPONENTIAL_MOVING_AVERAGE

[Analytic] • 139

EXPORT_CATALOG • 362, 410

EXPORT_OBJECTS • 364, 411

EXPORT_STATISTICS • 339, 355, 365, 374,

483, 484, 485

EXPORT_TABLES • 363, 365, 410, 428

Expressions • 43

Extended String Literals • 19, 25

Extended string syntax • 23, 514

EXTRACT • 189, 193, 200, 220

F

FALSE • 37

FIRST_VALUE [Analytic] • 141, 148, 216

fixed length • 11

FLOAT • 12, 95, 97, 103, 120, 703

FLOAT(n) • 95, 97, 103

FLOAT8 • 95, 97, 103

FLOOR • 240, 243

FOREIGN_KEYS • 682, 686

Formatting Functions • 219, 515

FROM Clause • 54, 55, 56, 61, 111, 636, 640, 676

G

GET_AHM_EPOCH • 366, 433

GET_AHM_TIME • 367, 434

GET_CURRENT_EPOCH • 367, 434

GET_LAST_GOOD_EPOCH • 367, 434

GET_NUM_ACCEPTED_ROWS • 368, 477

GET_NUM_REJECTED_ROWS • 368, 478

GET_PROJECTION_STATUS • 368, 371, 449,

451, 542, 604

-764-

SQL Reference Manual

GET_PROJECTIONS,

GET_TABLE_PROJECTIONS • 369, 450,

542, 604

GETDATE • 203, 211

GETUTCDATE • 204

GRANT (Database) • 558, 615

GRANT (Function) • 495, 534, 535, 601, 615,

627, 704

GRANT (Procedure) • 536, 616, 628

GRANT (Resource Pool) • 617, 628, 663

GRANT (Schema) • 616, 618, 619, 620

GRANT (Sequence) • 504, 563, 607, 618

GRANT (Table) • 618, 620, 629

GRANT (View) • 597, 618, 621, 629

GRANTS • 682, 687

GREATEST • 275, 286

GREATESTB • 276, 287

GROUP BY Clause • 68, 110, 636, 646, 648

H

HAS_TABLE_PRIVILEGE • 322

HASH • 244, 247, 546, 547, 579, 580, 591

hash-segmentation-clause • 540, 541, 546

hash-segmentation-clause (table) • 564, 565, 566,

579

hash-segmentation-clause (temp table) • 582,

583, 584, 585, 590

HAVING Clause • 110, 636, 648

HEX_TO_BINARY • 64, 65, 67, 278

Hexadecimal • 23, 63, 97, 223, 715, 762

HOST_RESOURCES • 682, 729

I

Identifiers • 15, 297, 500, 551

IMPORT_STATISTICS • 339, 355, 365, 373,

483, 484, 485

INET_ATON • 67, 229, 231, 236, 278, 280, 320

INET_NTOA • 67, 230, 279, 280

INITCAP • 280

INITCAPB • 281

IN-predicate • 55, 642

INSERT • 622

INSTALL_LICENSE • 412

INSTR • 282, 285

INSTRB • 284

INT • 12, 95, 100

INT8 • 95, 100

INTEGER • 17, 100, 101

INTERRUPT_STATEMENT • 371, 478

INTERVAL • 71, 72, 91, 185, 186, 195, 196, 656

Interval Values • 29, 84, 512, 595, 664, 667

interval-literal • 31, 72, 76, 84, 655

interval-qualifier • 33, 71, 72, 76, 83, 86

INTERVALSTYLE • 71, 73, 76, 84, 653, 655,

670

INTO Clause • 636, 637

IP Conversion Functions • 229

ISFINITE • 204

ISNULL • 257, 261

ISO 8601 • 27

ISUTF8 • 374, 457

J

joined-table • 640, 641

join-predicate • 56, 540, 641, 642

K

Key size • 11

Keywords • 12, 297

Keywords and Reserved Words • 12

L

LAG [Analytic] • 144, 151

LAST_DAY • 205

LAST_INSERT_ID • 265, 423

LAST_VALUE [Analytic] • 144, 147, 216

LCOPY • 514, 532, 623

LEAD [Analytic] • 145, 147, 148

LEAST • 276, 285

LEASTB • 277, 286

LEFT • 287

Length

Basic names • 11

Length for a variable-length column • 11

LENGTH • 35, 67, 270, 272, 288, 293

Length of basic names • 11

LIKE-predicate • 57, 392, 457, 462, 642

LIMIT Clause • 636, 651, 652

Limits

-765-

 Index

Basic names • 11

Columns per table • 11

Concurrent connections per cluster • 11

Connections per node, number • 11

Database size • 11

Depth of nesting subqueries • 11

Key size • 11

Projections per database • 11

Row size • 11

Rows per load • 11

Table size • 11

Tables per database • 11

Variable-length column • 11

Literals • 17, 637

LN • 244

LOAD_STREAMS • 368, 477, 478, 524, 682,

731

LOCALE • 653, 656, 670, 714

LOCALTIME • 51, 206

LOCALTIMESTAMP • 51, 206

LOCKS • 333, 357, 416, 427, 637, 672, 682, 733,

739, 762

LOG • 245

LOWER • 289

LOWERB • 290

LPAD • 290

LTRIM • 272, 291, 303, 313

M

MAKE_AHM_NOW • 375, 404, 405, 435, 437,

438

MARK_DESIGN_KSAFE • 375, 377, 409, 414,

435, 454, 604

Mathematical Functions • 103, 237, 515

Mathematical Operators • 40, 637

MAX [Aggregate] • 65, 66, 115, 116, 152

MAX [Analytic] • 151, 154

MD5 • 292

MEASURE_LOCATION_PERFORMANCE •

378, 406, 488, 491

MEDIAN [Analytic] • 152, 159, 160

MERGE_PARTITIONS • 353, 354, 379, 383,

384, 385, 439, 440, 443, 455, 456, 457, 775

MIN [Aggregate] • 65, 66, 115, 116, 154

MIN [Analytic] • 152, 153

MOD • 41, 246

MODULARHASH • 244, 247, 546, 547, 579,

580, 591

MONEY • 12, 95, 100

Month Names • 29

MONTHS_BETWEEN • 207

Multi-column key • 509

N

named_windows • 130

NaN • 17, 51, 103

NEXTVAL • 263, 264, 265, 504, 560, 561, 563,

607

NODE_RESOURCES • 549, 581, 593, 682, 736

Nonstandard conforming strings • 22, 23

Notes • 525

NOW [Date/Time] • 50, 209

NTILE [Analytic] • 155, 256

NULL Operators • 41

NULL Value • 51, 61, 67

NULL-handling Functions • 51, 256, 515

NULLIF • 258

NULL-predicate • 53, 54, 61, 642

Number of columns per table • 11

Number of connections per node • 11

Number of rows per load • 11

Number-type Literals • 17, 29

NUMERIC • 17, 100

Numeric Data Type Overflow • 103

Numeric Data Types • 38, 95, 111, 117, 118, 120,

121, 122, 123, 152, 166, 167, 168, 169, 170,

171, 172, 173, 570

Numeric Expressions • 18, 51

NVL • 257, 258, 260

NVL2 • 261

O

Octal • 22, 63, 514

OCTET_LENGTH • 270, 272, 288, 292

OFFSET Clause • 636, 651, 652

Operators • 34

OR operator • 37

ORDER BY Clause • 110, 127, 128, 159, 161,

636, 646, 649, 651, 652

OVERLAPS • 209

OVERLAY • 293

OVERLAYB • 294

P

Pacific Standard Time • 27

Parameters • 515

Partition Management Functions • 329, 438

-766-

SQL Reference Manual

PARTITION_PROJECTION • 351, 354, 358,

359, 360, 380, 382, 383, 428, 441, 442, 444,

445, 446, 493, 569

PARTITION_TABLE • 354, 358, 359, 360, 380,

381, 383, 428, 441, 442, 444, 445, 455, 569

PARTITIONS • 358, 428, 682, 737

PASSWORDS • 682, 689

Pattern-matching predicates • 57

PERCENT_RANK [Analytic] • 137, 156

PERCENTILE_CONT [Analytic] • 153, 156,

158, 162

PERCENTILE_DISC [Analytic] • 137, 160

Performance Optimization for Analytic Sort

Computation • 125, 127, 174

PI • 248

POSITION • 296, 306

POSITIONB • 297, 306

POWER • 248

Predicates • 52

Preface • 9

PRIMARY_KEYS • 682, 690

Printing Full Books • 4

PROFILE • 624

PROFILE_PARAMETERS • 682, 690

PROFILES • 682, 691

Projection Management Functions • 329, 446

PROJECTION_COLUMNS • 682, 692

PROJECTION_REFRESHES • 340, 385, 387,

408, 409, 452, 453, 454, 553, 680, 682, 736,

738

PROJECTION_STORAGE • 682, 741

PROJECTIONS • 354, 359, 408, 409, 441, 442,

454, 682, 694

Projections per database • 11

PST • 27

PURGE • 383, 384, 385, 403, 436, 455, 456, 457,

775

Purge Functions • 329, 455

PURGE_PROJECTION • 383, 384, 455

PURGE_TABLE • 384, 385, 455, 456, 457

Q

QUERY_METRICS • 682, 742

QUERY_PROFILES • 682, 718, 744, 746, 748,

751

QUOTE_IDENT • 16, 297

QUOTE_LITERAL • 298

Quoted identifiers • 15

R

RADIANS • 249

RANDOM • 249

RANDOMINT • 250

range-segmentation-clause • 540, 542, 547

range-segmentation-clause (table) • 564, 565,

566, 580

range-segmentation-clause (temp table) • 582,

583, 584, 585, 592

RANK [Analytic] • 138, 139, 162, 165

RAW • 12, 63

Reading the Online Documentation • 2

REAL • 95, 97

REENABLE_DUPLICATE_KEY_ERROR •

333, 348, 350, 385, 416, 420, 423, 424

REFRESH • 340, 385, 452

REGEXP_COUNT • 387, 458

REGEXP_INSTR • 389, 460

REGEXP_LIKE • 374, 392, 457, 462

REGEXP_REPLACE • 396, 466

REGEXP_SUBSTR • 399, 469

Regular Expression Functions • 329, 457

RELEASE SAVEPOINT • 625, 634, 635

REPEAT • 35, 67, 299

REPLACE • 300, 396, 466

Reserved Words • 14

RESOURCE_ACQUISITIONS • 683, 745, 746,

751, 756

RESOURCE_ACQUISITIONS_HISTORY •

683, 745, 746, 748, 756

RESOURCE_POOL_STATUS • 501, 683, 748,

751

RESOURCE_POOLS • 500, 551, 683, 696, 748,

751, 756

RESOURCE_QUEUES • 683, 748, 751, 756

RESOURCE_REJECTIONS • 341, 425, 683,

720, 748, 751, 756, 757

RESOURCE_USAGE • 683, 758

RESTORE_LOCATION • 401, 402, 489, 490,

491

RETIRE_LOCATION • 330, 332, 352, 379, 401,

486, 487, 488, 489, 490

REVOKE (Database) • 626

REVOKE (Function) • 495, 534, 535, 601, 616,

626, 704

REVOKE (Procedure) • 617, 627

REVOKE (Resource Pool) • 605, 617, 628

REVOKE (Schema) • 629

-767-

 Index

REVOKE (Sequence) • 629

REVOKE (Table) • 631

REVOKE (View) • 597, 631

RIGHT • 301

ROLLBACK • 525, 633

ROLLBACK TO SAVEPOINT • 625, 633, 635

ROUND • 250

Row size • 11

ROW_NUMBER [Analytic] • 133, 164

RPAD • 302

RTRIM • 272, 292, 302, 313

S

SAVE_QUERY_REPOSITORY • 402, 429

SAVEPOINT • 625, 634

SEARCH_PATH • 48, 559, 564, 582, 653, 660,

670

See Also • 532

SELECT • 110, 565, 569, 596, 597, 599, 622,

636, 675, 736

Sequence Functions • 263

SEQUENCES • 697

SESSION CHARACTERISTICS • 10, 653, 661,

670

Session Management Functions • 329, 471

SESSION MEMORYCAP • 501, 552, 653, 662,

664, 670

SESSION RESOURCE POOL • 501, 552, 617,

653, 663, 670

SESSION RUNTIMECAP • 653, 664, 670

SESSION TEMPSPACECAP • 653, 665, 670

SESSION_PROFILES • 683, 718, 736, 761

SESSION_USER • 322, 324

SESSIONS • 341, 344, 347, 357, 373, 407, 427,

432, 471, 474, 477, 481, 683, 718, 762

SET • 653, 670

SET_AHM_EPOCH • 375, 403, 405, 435, 436,

438

SET_AHM_TIME • 375, 403, 404, 436, 437

SET_CONFIG_PARAMETER • 429

SET_LOCATION_PERFORMANCE • 406, 491

SET_LOGLEVEL • 431

SHOW • 73, 654, 656, 668, 670

SHUTDOWN • 343, 344, 346, 347, 406, 431,

473, 474, 476, 477

SIGN • 252

SIN • 252

Single quotes, doubled • 23, 298

SMALLDATETIME • 87

SMALLINT • 12, 95, 100

SPLIT_PART • 303

SPLIT_PARTB • 304

SQL Data Types • 62, 494, 532, 533, 536, 601

SQL Functions • 109, 637

SQL Language Elements • 12

SQL Overview • 10

SQL Statements • 494

SQL System Tables (Monitoring APIs) • 378,

415, 553, 680

SQRT • 253

Standard conforming strings • 10, 22, 23, 514,

653, 655, 666, 670

STANDARD_CONFORMING_STRINGS • 20,

22, 23, 25, 26, 653, 655, 666, 670

START_REFRESH • 340, 387, 408, 453, 542

STATEMENT_TIMESTAMP • 187, 210, 217

Statistic Management Functions • 329, 481

Statistical analysis • 116, 117, 118, 121, 122, 123

STDDEV [Aggregate] • 116, 119, 167, 168, 169

STDDEV [Analytic] • 165, 169

STDDEV_POP [Aggregate] • 117, 168

STDDEV_POP [Analytic] • 167

STDDEV_SAMP [Aggregate] • 116, 117, 118,

167, 169

STDDEV_SAMP [Analytic] • 165, 167, 168

Storage Management Functions • 329, 485

STORAGE_CONTAINERS • 384, 385, 455,

456, 457, 683, 765

STRATA • 683, 768, 771

STRATA_STRUCTURES • 683, 768, 771

String Concatenation Operators • 42, 637

String Functions • 268, 515

String literals • 10, 72, 298, 514, 655, 666

String Literals • 19, 519, 525

String Literals (Character) • 23, 299, 519, 521

String Literals (Dollar-Quoted) • 26

String Literals (Standard) • 22

Strings, standard conforming • 10, 22, 514, 653,

655, 666, 670

STRPOS • 305

STRPOSB • 306

SUBSTR • 288, 301, 307

SUBSTRB • 308

SUBSTRING • 35, 67, 307, 308

Suggested Reading Paths • 2, 4

SUM [Aggregate] • 100, 103, 111, 115, 119, 170

SUM [Analytic] • 132, 136, 169

SUM_FLOAT [Aggregate] • 100, 103, 120, 170

-768-

SQL Reference Manual

SYSDATE • 203, 211

SYSTEM • 378, 403, 404, 415, 436, 437, 683,

772

System Information Functions • 321, 515

System Limits • 11

SYSTEM_TABLES • 683, 699

T

Table size • 11

TABLE_CONSTRAINTS • 683, 700

table-constraint • 505, 506, 509, 570, 578

table-primary • 640, 641

table-reference • 640

TABLES • 17, 58, 681, 683, 702

Tables per database • 11

TAN • 253

Technical Support • 1, 4, 356, 357, 410, 427, 612,

659, 714, 734

Template Pattern Modifiers for Date/Time

Formatting • 223, 225, 226, 227, 237, 517

Template Patterns for Date/Time Formatting •

182, 220, 222, 224, 225, 226, 517

Template Patterns for Numeric Formatting • 220,

222, 224, 225, 228

TIME • 27, 87, 195, 196

TIME AT TIME ZONE • 87, 88, 89

TIME ZONE • 653, 667, 670

Time Zone Names for Setting TIME ZONE •

667, 668

Time Zone Values • 27

TIME_SLICE • 144, 148, 211, 644, 645

TIMEOFDAY • 217

Timeseries Aggregate (TSA) Functions • 325

TIMESERIES Clause • 141, 216, 325, 326, 327,

328, 636, 643

TIMESTAMP • 72, 87, 89, 195, 367, 404, 405,

434, 437, 438

TIMESTAMP AT TIME ZONE • 94

TINYINT • 12, 95, 100

TO_BITSTRING • 67, 219, 309

TO_CHAR • 220

TO_DATE • 222, 517

TO_HEX • 35, 65, 67, 223, 278, 310

TO_NUMBER • 225

TO_TIMESTAMP • 223

TRANSACTION_TIMESTAMP • 187, 210, 211,

217

TRANSLATE • 311

TRIM • 272, 292, 303, 312

TRUE • 37

TRUNC • 193, 254

TRUNCATE TABLE • 586, 600, 609, 671

TS_FIRST_VALUE • 216, 326, 328, 644, 645

TS_LAST_VALUE • 216, 327, 644, 645

Tuple Mover Functions • 329, 491

TUPLE_MOVER_OPERATIONS • 683, 774

TYPES • 683, 703

Typographical Conventions • 7

U

Unicode characters • 666

Unicode String Literals • 25

UNION • 636, 672

Unquoted identifiers • 15

UPDATE • 10, 599, 620, 676, 677

UPPER • 313

UPPERB • 314

USER • 322, 324

USER_FUNCTIONS • 495, 534, 535, 601, 683,

703

USER_PROCEDURES • 683, 705

USERS • 683, 705

UTC • 27

V

V_CATALOG Schema • 680, 684, 699

V_MONITOR Schema • 680, 699, 709

V6_ATON • 67, 231, 233, 314, 316

V6_NTOA • 67, 232, 315, 316

V6_SUBNETA • 67, 233, 235, 317, 318

V6_SUBNETN • 67, 234, 317

V6_TYPE • 67, 235, 318

VAR_POP [Aggregate] • 121, 171

VAR_POP [Analytic] • 170

VAR_SAMP [Aggregate] • 122, 123, 173, 174

VAR_SAMP [Analytic] • 172, 173, 174

VARBINARY • 34, 63, 703

VARCHAR2 • 12

variable length • 11

VARIANCE [Aggregate] • 122, 123, 174

VARIANCE [Analytic] • 173

VERSION • 325

Vertica Functions • 109, 329, 515

VIEW_COLUMNS • 684, 706, 709

VIEWS • 684, 708

-769-

 Index

W

WHERE Clause • 598, 620, 636, 642, 676, 677

Where to Find Additional Information • 6

Where to Find the Vertica Documentation • 2

WIDTH_BUCKET • 156, 254

window_frame_clause • 124, 128, 131, 135, 141,

147, 151, 154, 166, 167, 168, 169, 171, 172,

173

window_order_clause • 124, 127, 131, 133, 134,

135, 136, 138, 139, 141, 144, 147, 148, 151,

154, 155, 156, 162, 164, 166, 167, 168, 169,

171, 172, 173, 645

window_partition_clause • 124, 125, 127, 128,

131, 133, 134, 135, 136, 138, 139, 141, 144,

147, 148, 151, 152, 153, 155, 156, 158, 160,

162, 164, 166, 167, 168, 169, 171, 172, 173

WOS_CONTAINER_STORAGE • 684, 775

Z

Zulu • 27

-770-

Copyright Notice

Copyright© 2006-2011 Vertica Systems, Inc., and its licensors. All rights reserved.

Vertica Systems, Inc.

8 Federal Street

Billerica, MA 01821

Phone: (978) 600-1000

Fax: (978) 600-1001

E-Mail: info@vertica.com

Web site: http://www.vertica.com
(http://www.vertica.com)

The software described in this copyright notice is furnished under a license and may be used or
copied only in accordance with the terms of such license. Vertica Systems, Inc. software contains
proprietary information, as well as trade secrets of Vertica Systems, Inc., and is protected under
international copyright law. Reproduction, adaptation, or translation, in whole or in part, by any
means — graphic, electronic or mechanical, including photocopying, recording, taping, or
storage in an information retrieval system — of any part of this work covered by copyright is
prohibited without prior written permission of the copyright owner, except as allowed under the
copyright laws.

This product or products depicted herein may be protected by one or more U.S. or international
patents or pending patents.

Trademarks

Vertica™, the Vertica® Analytic Database™, and FlexStore™ are trademarks of Vertica Systems, Inc..

Adobe®, Acrobat®, and Acrobat® Reader® are registered trademarks of Adobe Systems Incorporated.

AMD™ is a trademark of Advanced Micro Devices, Inc., in the United States and other countries.

DataDirect® and DataDirect Connect® are registered trademarks of Progress Software Corporation in the
U.S. and other countries.

Fedora™ is a trademark of Red Hat, Inc.

Intel® is a registered trademark of Intel.

Linux® is a registered trademark of Linus Torvalds.

Microsoft® is a registered trademark of Microsoft Corporation.

Novell® is a registered trademark and SUSE™ is a trademark of Novell, Inc., in the United States and other
countries.

Oracle® is a registered trademark of Oracle Corporation.

Red Hat® is a registered trademark of Red Hat, Inc.

VMware® is a registered trademark or trademark of VMware, Inc., in the United States and/or other
jurisdictions.

Other products mentioned may be trademarks or registered trademarks of their respective
companies.

mailto:info@vertica.com
http://www.vertica.com/
http://www.vertica.com/

-771-

 Copyright Notice

Open Source Software Acknowledgments

Vertica makes no representations or warranties regarding any third party software. All third-party
software is provided or recommended by Vertica on an AS IS basis.

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

ASMJIT

Copyright (c) 2008-2010, Petr Kobalicek <kobalicek.petr@gmail.com>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Boost

Boost Software License - Version 1.38 - February 8th, 2009

Permission is hereby granted, free of charge, to any person or organization obtaining a copy of the
software and accompanying documentation covered by this license (the "Software") to use,
reproduce, display, distribute, execute, and transmit the Software, and to prepare derivative works
of the Software, and to permit third-parties to whom the Software is furnished to do so, all subject
to the following:

The copyright notices in the Software and this entire statement, including the above license grant,
this restriction and the following disclaimer, must be included in all copies of the Software, in whole
or in part, and all derivative works of the Software, unless such copies or derivative works are
solely in the form of machine-executable object code generated by a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE
LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

mailto:eay@cryptsoft.com
mailto:kobalicek.petr@gmail.com

-772-

SQL Reference Manual

bzip2

This file is a part of bzip2 and/or libbzip2, a program and library for lossless, block-sorting data
compression.

Copyright © 1996-2005 Julian R Seward. All rights reserved.

1 Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

2 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

3 The origin of this software must not be misrepresented; you must not claim that you wrote the
original software. If you use this software in a product, an acknowledgment in the product
documentation would be appreciated but is not required.

4 Altered source versions must be plainly marked as such, and must not be misrepresented as
being the original software.

5 The name of the author may not be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Julian Seward, Cambridge, UK.

jseward@bzip.org <mailto:jseward@bzip.org>

bzip2/libbzip2 version 1.0 of 21 March 2000

This program is based on (at least) the work of:

Mike Burrows

David Wheeler

Peter Fenwick

Alistair Moffat

Radioed Neal

Ian H. Witten

Robert Sedgewick

Jon L. Bentley

Daemonize

Copyright © 2003-2007 Brian M. Clapper.

All rights reserved.

mailto:jseward@bzip.org
mailto:jseward@bzip.org

-773-

 Copyright Notice

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

 Neither the name of the clapper.org nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Ganglia Open Source License

Copyright © 2001 by Matt Massie and The Regents of the University of California.

All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose, without fee, and without written agreement is hereby granted, provided that the above
copyright notice and the following two paragraphs appear in all copies of this software.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE
UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER
IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO
PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

ICU (International Components for Unicode) License - ICU 1.8.1 and later

COPYRIGHT AND PERMISSION NOTICE

Copyright © 1995-2009 International Business Machines Corporation and others

All rights reserved.

-774-

SQL Reference Manual

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, provided
that the above copyright notice(s) and this permission notice appear in all copies of the Software
and that both the above copyright notice(s) and this permission notice appear in supporting
documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY
RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS
NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in advertising
or otherwise to promote the sale, use or other dealings in this Software without prior written
authorization of the copyright holder.

All trademarks and registered trademarks mentioned herein are the property of their respective
owners.

Keepalived Vertica IPVS (IP Virtual Server) Load Balancer

Copyright © 2007 Free Software Foundation, Inc.

http://fsf.org/

The keepalived software contained in the

VerticaIPVSLoadBalancer-4.1.x.RHEL5.x86_64.rpm software package is licensed

under the GNU General Public License ("GPL"). You are entitled to receive the source code for
such software. For no less than three years from the date you obtained this software package, you
may download a copy of the source code for the software in this package licensed under the GPL
at no charge by visiting http://www.vertica.com/licenses/keepalived-1.1.17.tar.gz
http://www.vertica.com/licenses/keepalived-1.1.17.tar.gz. You may download this source
code so that it remains separate from other software on your computer system.

jQuery

Copyright © 2009 John Resig, http://jquery.com/

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

http://fsf.org/
http://www.vertica.com/licenses/keepalived-1.1.17.tar.gz
http://www.vertica.com/licenses/keepalived-1.1.17.tar.gz
http://jquery.com/

-775-

 Copyright Notice

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Lighttpd Open Source License

Copyright © 2004, Jan Kneschke, incremental

All rights reserved.

1 Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

2 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

3 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

4 Neither the name of the 'incremental' nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

MersenneTwister.h

Copyright © 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,

Copyright © 2000 - 2009, Richard J. Wagner

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3 The names of its contributors may not be used to endorse or promote products derived from
this software without specific prior written permission.

-776-

SQL Reference Manual

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

MIT Kerberos

Copyright © 1985-2007 by the Massachusetts Institute of Technology.

Export of software employing encryption from the United States of America may require a specific
license from the United States Government. It is the responsibility of any person or organization
contemplating export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that the above
copyright notice appear in all copies and that both that copyright notice and this permission notice
appear in supporting documentation, and that the name of M.I.T. not be used in advertising or
publicity pertaining to distribution of the software without specific, written prior permission.
Furthermore if you modify this software you must label your software as modified software and not
distribute it in such a fashion that it might be confused with the original MIT software. M.I.T. makes
no representations about the suitability of this software for any purpose. It is provided ―as is‖
without express or implied warranty.

Individual source code files are copyright MIT, Cygnus Support, Novell, OpenVision Technologies,
Oracle, Red Hat, Sun Microsystems, FundsXpress, and others.

Project Athena, Athena, Athena MUSE, Discuss, Hesiod, Kerberos, Moira, and Zephyr are
trademarks of the Massachusetts Institute of Technology (MIT). No commercial use of these
trademarks may be made without prior written permission of MIT.

―Commercial use‖ means use of a name in a product or other for-profit manner. It does NOT
prevent a commercial firm from referring to the MIT trademarks in order to convey information
(although in doing so, recognition of their trademark status should be given).

Portions of src/lib/crypto have the following copyright:

Copyright © 1998 by the FundsXpress, INC.

All rights reserved.

Export of this software from the United States of America may require a specific license from the
United States Government. It is the responsibility of any person or organization contemplating
export to obtain such a license before exporting.

-777-

 Copyright Notice

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that the above
copyright notice appear in all copies and that both that copyright notice and this permission notice
appear in supporting documentation, and that the name of FundsXpress. not be used in
advertising or publicity pertaining to distribution of the software without specific, written prior
permission. FundsXpress makes no representations about the suitability of this software for any
purpose. It is provided ―as is‖ without express or implied warranty.

THIS SOFTWARE IS PROVIDED ―AS IS‖ AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

The implementation of the AES encryption algorithm in src/lib/crypto/aes has the following
copyright:

Copyright © 2001, Dr Brian Gladman <brg@gladman.uk.net>, Worcester, UK.
All rights reserved.

LICENSE TERMS

The free distribution and use of this software in both source and binary form is allowed (with or
without changes) provided that:

1 Distributions of this source code include the above copyright notice, this list of conditions and
the following disclaimer.

2 Distributions in binary form include the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other associated materials.

3 The copyright holder's name is not used to endorse products built using this software without
specific written permission.

DISCLAIMER

This software is provided 'as is' with no explicit or implied warranties in respect of any properties,
including, but not limited to, correctness and fitness for purpose.

The implementations of GSSAPI mechglue in GSSAPI-SPNEGO in src/lib/gssapi, including the
following files:

 lib/gssapi/generic/gssapi_err_generic.et

 lib/gssapi/mechglue/g_accept_sec_context.c

 lib/gssapi/mechglue/g_acquire_cred.c

 lib/gssapi/mechglue/g_canon_name.c

 lib/gssapi/mechglue/g_compare_name.c

 lib/gssapi/mechglue/g_context_time.c

 lib/gssapi/mechglue/g_delete_sec_context.c

 lib/gssapi/mechglue/g_dsp_name.c

 lib/gssapi/mechglue/g_dsp_status.c

 lib/gssapi/mechglue/g_dup_name.c

 lib/gssapi/mechglue/g_exp_sec_context.c

 lib/gssapi/mechglue/g_export_name.c

 lib/gssapi/mechglue/g_glue.c

 lib/gssapi/mechglue/g_imp_name.c

mailto:brg@gladman.uk.net

-778-

SQL Reference Manual

 lib/gssapi/mechglue/g_imp_sec_context.c

 lib/gssapi/mechglue/g_init_sec_context.c

 lib/gssapi/mechglue/g_initialize.c

 lib/gssapi/mechglue/g_inquire_context.c

 lib/gssapi/mechglue/g_inquire_cred.c

 lib/gssapi/mechglue/g_inquire_names.c

 lib/gssapi/mechglue/g_process_context.c

 lib/gssapi/mechglue/g_rel_buffer.c

 lib/gssapi/mechglue/g_rel_cred.c

 lib/gssapi/mechglue/g_rel_name.c

 lib/gssapi/mechglue/g_rel_oid_set.c

 lib/gssapi/mechglue/g_seal.c

 lib/gssapi/mechglue/g_sign.c

 lib/gssapi/mechglue/g_store_cred.c

 lib/gssapi/mechglue/g_unseal.c

 lib/gssapi/mechglue/g_userok.c

 lib/gssapi/mechglue/g_utils.c

 lib/gssapi/mechglue/g_verify.c

 lib/gssapi/mechglue/gssd_pname_to_uid.c

 lib/gssapi/mechglue/mglueP.h

 lib/gssapi/mechglue/oid_ops.c

 lib/gssapi/spnego/gssapiP_spnego.h

 lib/gssapi/spnego/spnego_mech.c

are subject to the following license:

Copyright © 2004 Sun Microsystems, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the ―Software‖), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED ―AS IS‖, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Npgsql-.Net Data Provider for Postgresql

Copyright © 2002-2008, The Npgsql Development Team

-779-

 Copyright Notice

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose, without fee, and without a written agreement is hereby granted, provided that the above
copyright notice and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE NPGSQL DEVELOPMENT TEAM BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE NPGSQL DEVELOPMENT TEAM HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

THE NPGSQL DEVELOPMENT TEAM SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER
IS ON AN "AS IS" BASIS, AND THE NPGSQL DEVELOPMENT TEAM HAS NO OBLIGATIONS
TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR
MODIFICATIONS.

Open LDAP

The OpenLDAP Public License

Version 2.8, 17 August 2003

Redistribution and use of this software and associated documentation ("Software"), with or without
modification, are permitted provided that the following conditions are met:

1 Redistributions in source form must retain copyright statements and notices,

2 Redistributions in binary form must reproduce applicable copyright statements and notices,
this list of conditions, and the following disclaimer in the documentation and/or other materials
provided with the distribution, and

3 Redistributions must contain a verbatim copy of this document.

The OpenLDAP Foundation may revise this license from time to time. Each revision is
distinguished by a version number. You may use this Software under terms of this license
revision or under the terms of any subsequent revision of the license.

THIS SOFTWARE IS PROVIDED BY THE OPENLDAP FOUNDATION AND ITS
CONTRIBUTORS ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OPENLDAP
FOUNDATION, ITS CONTRIBUTORS, OR THE AUTHOR(S) OR OWNER(S) OF THE
SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

The names of the authors and copyright holders must not be used in advertising or otherwise to
promote the sale, use or other dealing in this Software without specific, written prior permission.
Title to copyright in this Software shall at all times remain with copyright holders.

-780-

SQL Reference Manual

OpenLDAP is a registered trademark of the OpenLDAP Foundation.

Copyright 1999-2003 The OpenLDAP Foundation, Redwood City, California, USA. All Rights Reserved.
Permission to copy and distribute verbatim copies of this document is granted.

Open SSL

OpenSSL License

Copyright © 1998-2008 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3 All advertising materials mentioning features or use of this software must display the following
acknowledgment: "This product includes software developed by the OpenSSL Project for use
in the OpenSSL Toolkit. (http://www.openssl.org/)"

4 The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact openssl-core@openssl.org.

5 Products derived from this software may not be called "OpenSSL" nor may "OpenSSL" appear
in their names without prior written permission of the OpenSSL Project.

6 Redistributions of any form whatsoever must retain the following acknowledgment: "This
product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ̀ `AS IS'' AND ANY EXPRESSED
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR ITS CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

PCRE LICENCE

PCRE is a library of functions to support regular expressions whose syntax and semantics are as
close as possible to those of the Perl 5 language.

Release 8 of PCRE is distributed under the terms of the "BSD" licence, as specified below. The
documentation for PCRE, supplied in the "doc" directory, is distributed under the same terms as
the software itself.

http://www.openssl.org/
mailto:openssl-core@openssl.org
http://www.openssl.org/

-781-

 Copyright Notice

The basic library functions are written in C and are freestanding. Also included in the distribution is
a set of C++ wrapper functions.

THE BASIC LIBRARY FUNCTIONS

Written by: Philip Hazel

Email local part: ph10

Email domain: cam.ac.uk

University of Cambridge Computing Service,

Cambridge, England.

Copyright (c) 1997-2010 University of Cambridge

All rights reserved.

THE C++ WRAPPER FUNCTIONS

Contributed by: Google Inc.

Copyright (c) 2007-2010, Google Inc.

All rights reserved.

THE "BSD" LICENCE

 Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

Neither the name of the University of Cambridge nor the name of Google Inc. nor the names of
their contributors may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF ERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

End

Perl Artistic License

Copyright © August 15, 1997

Preamble

-782-

SQL Reference Manual

The intent of this document is to state the conditions under which a Package may be copied, such
that the Copyright Holder maintains some semblance of artistic control over the development of
the package, while giving the users of the package the right to use and distribute the Package in a
more-or-less customary fashion, plus the right to make reasonable modifications.

Definitions

"Package" refers to the collection of files distributed by the Copyright Holder, and derivatives of
that collection of files created through textual modification.

"Standard Version" refers to such a Package if it has not been modified, or has been modified in
accordance with the wishes of the Copyright Holder as specified below.

"Copyright Holder" is whoever is named in the copyright or copyrights for the package.

"You" is you, if you're thinking about copying or distributing this Package.

"Reasonable copying fee" is whatever you can justify on the basis of media cost, duplication
charges, time of people involved, and so on. (You will not be required to justify it to the Copyright
Holder, but only to the computing community at large as a market that must bear the fee.)

"Freely Available" means that no fee is charged for the item itself, though there may be fees
involved in handling the item. It also means that recipients of the item may redistribute it under the
same conditions they received it.

1 You may make and give away verbatim copies of the source form of the Standard Version of
this Package without restriction, provided that you duplicate all of the original copyright notices
and associated disclaimers.

2 You may apply bug fixes, portability fixes and other modifications derived from the Public
Domain or from the Copyright Holder. A Package modified in such a way shall still be
considered the Standard Version.

3 You may otherwise modify your copy of this Package in any way, provided that you insert a
prominent notice in each changed file stating how and when you changed that file, and
provided that you do at least ONE of the following:

4 place your modifications in the Public Domain or otherwise make them Freely Available, such
as by posting said modifications to Usenet or an equivalent medium, or placing the
modifications on a major archive site such as uunet.uu.net, or by allowing the Copyright Holder
to include your modifications in the Standard Version of the Package.

1. use the modified Package only within your corporation or organization.

2. rename any non-standard executables so the names do not conflict with standard
executables, which must also be provided, and provide a separate manual page for each
non-standard executable that clearly documents how it differs from the Standard Version.

3. make other distribution arrangements with the Copyright Holder.

5 You may distribute the programs of this Package in object code or executable form, provided
that you do at least ONE of the following:

1. distribute a Standard Version of the executables and library files, together with instructions
(in the manual page or equivalent) on where to get the Standard Version.

2. accompany the distribution with the machine-readable source of the Package with your
modifications.

-783-

 Copyright Notice

3. give non-standard executables non-standard names, and clearly document the
differences in manual pages (or equivalent), together with instructions on where to get the
Standard Version.

4. make other distribution arrangements with the Copyright Holder.

6 You may charge a reasonable copying fee for any distribution of this Package. You may
charge any fee you choose for support of this Package. You may not charge a fee for this
Package itself. However, you may distribute this Package in aggregate with other (possibly
commercial) programs as part of a larger (possibly commercial) software distribution provided
that you do not advertise this Package as a product of your own. You may embed this
Package's interpreter within an executable of yours (by linking); this shall be construed as a
mere form of aggregation, provided that the complete Standard Version of the interpreter is so
embedded.

7 The scripts and library files supplied as input to or produced as output from the programs of
this Package do not automatically fall under the copyright of this Package, but belong to
whomever generated them, and may be sold commercially, and may be aggregated with this
Package. If such scripts or library files are aggregated with this Package via the so-called
"undump" or "unexec" methods of producing a binary executable image, then distribution of
such an image shall neither be construed as a distribution of this Package nor shall it fall under
the restrictions of Paragraphs 3 and 4, provided that you do not represent such an executable
image as a Standard Version of this Package.

8 C subroutines (or comparably compiled subroutines in other languages) supplied by you and
linked into this Package in order to emulate subroutines and variables of the language defined
by this Package shall not be considered part of this Package, but are the equivalent of input as
in Paragraph 6, provided these subroutines do not change the language in any way that would
cause it to fail the regression tests for the language.

9 Aggregation of this Package with a commercial distribution is always permitted provided that
the use of this Package is embedded; that is, when no overt attempt is made to make this
Package's interfaces visible to the end user of the commercial distribution. Such use shall not
be construed as a distribution of this Package.

10 The name of the Copyright Holder may not be used to endorse or promote products derived
from this software without specific prior written permission.

THIS PACKAGE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

The End

Pexpect

Copyright © 2010 Noah Spurrier

Credits: Noah Spurrier, Richard Holden, Marco Molteni, Kimberley Burchett, Robert Stone,
Hartmut Goebel, Chad Schroeder, Erick Tryzelaar, Dave Kirby, Ids vander Molen, George
Todd, Noel Taylor, Nicolas D. Cesar, Alexander Gattin, Geoffrey Marshall, Francisco
Lourenco, Glen Mabey, Karthik Gurusamy, Fernando Perez, Corey Minyard, Jon Cohen,
Guillaume Chazarain, Andrew Ryan, Nick Craig-Wood, Andrew Stone, Jorgen Grahn (Let me
know if I forgot anyone.)

Free, open source, and all that good stuff.

-784-

SQL Reference Manual

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

PHP License

The PHP License, version 3.01

Copyright © 1999 - 2009 The PHP Group. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, is permitted
provided that the following conditions are met:

1 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3 The name "PHP" must not be used to endorse or promote products derived from this software
without prior written permission. For written permission, please contact group@php.net.

4 Products derived from this software may not be called "PHP", nor may "PHP" appear in their
name, without prior written permission from group@php.net. You may indicate that your
software works in conjunction with PHP by saying "Foo for PHP" instead of calling it "PHP Foo"
or "phpfoo"

5 The PHP Group may publish revised and/or new versions of the license from time to time.
Each version will be given a distinguishing version number.

 Once covered code has been published under a particular version of the license, you may always
continue to use it under the terms of that version. You may also choose to use such covered code under
the terms of any subsequent version of the license published by the PHP Group. No one other than the
PHP Group has the right to modify the terms applicable to covered code created under this
License.

6 Redistributions of any form whatsoever must retain the following acknowledgment:

"This product includes PHP software, freely available from <http://www.php.net/software/>".

mailto:group@php.net
mailto:group@php.net
http://www.php.net/software/

-785-

 Copyright Notice

THIS SOFTWARE IS PROVIDED BY THE PHP DEVELOPMENT TEAM ``AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE PHP DEVELOPMENT TEAM OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the PHP
Group.

The PHP Group can be contacted via Email at group@php.net.

For more information on the PHP Group and the PHP project, please see <http://www.php.net>.

PHP includes the Zend Engine, freely available at <http://www.zend.com>.

PostgreSQL

This product uses the PostgreSQL Database Management System(formerly known as Postgres,
then as Postgres95)

Portions Copyright © 1996-2005, The PostgreSQL Global Development Group

Portions Copyright © 1994, The Regents of the University of California

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose, without fee, and without a written agreement is hereby granted, provided that the above
copyright notice and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER
IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO
PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Python Dialog

The Administration Tools part of this product uses Python Dialog, a Python module for doing
console-mode user interaction.

Upstream Author:

Peter Astrand <peter@cendio.se>

Robb Shecter <robb@acm.org>

mailto:group@php.net
http://www.php.net/
http://www.zend.com/
mailto:peter@cendio.se
mailto:robb@acm.org

-786-

SQL Reference Manual

Sultanbek Tezadov <http://sultan.da.ru>

Florent Rougon <flo@via.ecp.fr>

Copyright © 2000 Robb Shecter, Sultanbek Tezadov

Copyright © 2002, 2003, 2004 Florent Rougon

License:

This package is free software; you can redistribute it and/or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This package is distributed in the hope that it is useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this
package; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA

The complete source code of the Python dialog package and complete text of the GNU Lesser
General Public License can be found on the Vertica Systems Web site at
http://www.vertica.com/licenses/pythondialog-2.7.tar.bz2
http://www.vertica.com/licenses/pythondialog-2.7.tar.bz2

RRDTool Open Source License

Note: rrdtool is a dependency of using the ganglia-web third-party tool. RRDTool allows the
graphs displayed by ganglia-web to be produced.

RRDTOOL - Round Robin Database Tool

A tool for fast logging of numerical data graphical display of this data.

Copyright © 1998-2008 Tobias Oetiker

All rights reserved.

GNU GPL License

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if
not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA

FLOSS License Exception

(Adapted from http://www.mysql.com/company/legal/licensing/foss-exception.html)

http://sultan.da.ru/
mailto:flo@via.ecp.fr
http://www.vertica.com/licenses/pythondialog-2.7.tar.bz2
http://www.vertica.com/licenses/pythondialog-2.7.tar.bz2
http://www.mysql.com/company/legal/licensing/foss-exception.html

-787-

 Copyright Notice

I want specified Free/Libre and Open Source Software ("FLOSS") applications to be able to use
specified GPL-licensed RRDtool libraries (the "Program") despite the fact that not all FLOSS
licenses are compatible with version 2 of the GNU General Public License (the "GPL").

As a special exception to the terms and conditions of version 2.0 of the GPL:

You are free to distribute a Derivative Work that is formed entirely from the Program and one or
more works (each, a "FLOSS Work") licensed under one or more of the licenses listed below, as
long as:

1 You obey the GPL in all respects for the Program and the Derivative Work, except for
identifiable sections of the Derivative Work which are not derived from the Program, and which
can reasonably be considered independent and separate works in themselves

2 All identifiable sections of the Derivative Work which are not derived from the Program, and
which can reasonably be considered independent and separate works in themselves

 are distributed subject to one of the FLOSS licenses listed below, and

 the object code or executable form of those sections are accompanied by the complete
corresponding machine-readable source code for those sections on the same medium and
under the same FLOSS license as the corresponding object code or executable forms of
those sections.

3 Any works which are aggregated with the Program or with a Derivative Work on a volume of a
storage or distribution medium in accordance with the GPL, can reasonably be considered
independent and separate works in themselves which are not derivatives of either the
Program, a Derivative Work or a FLOSS Work.

If the above conditions are not met, then the Program may only be copied, modified, distributed or
used under the terms and conditions of the GPL.

FLOSS License List

License name Version(s)/Copyright Date

Academic Free License 2.0

Apache Software License 1.0/1.1/2.0

Apple Public Source License 2.0

Artistic license From Perl 5.8.0

BSD license "July 22 1999"

Common Public License 1.0

GNU Library or "Lesser" General Public License (LGPL) 2.0/2.1

IBM Public License, Version 1.0

Jabber Open Source License 1.0

MIT License (As listed in file MIT-License.txt) -

Mozilla Public License (MPL) 1.0/1.1

Open Software License 2.0

OpenSSL license (with original SSLeay license) "2003" ("1998")

PHP License 3.0

Python license (CNRI Python License) -

Python Software Foundation License 2.1.1

Sleepycat License "1999"

-788-

SQL Reference Manual

W3C License "2001"

X11 License "2001"

Zlib/libpng License -

Zope Public License 2.0/2.1

Spread

This product uses software developed by Spread Concepts LLC for use in the Spread toolkit. For
more information about Spread see http://www.spread.org (http://www.spread.org).

Copyright © 1993-2006 Spread Concepts LLC.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer and request.

2 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer and request in the documentation and/or other materials provided
with the distribution.

3 All advertising materials (including web pages) mentioning features or use of this software, or
software that uses this software, must display the following acknowledgment: "This product
uses software developed by Spread Concepts LLC for use in the Spread toolkit. For more
information about Spread see http://www.spread.org"

4 The names "Spread" or "Spread toolkit" must not be used to endorse or promote products
derived from this software without prior written permission.

5 Redistributions of any form whatsoever must retain the following acknowledgment:

6 "This product uses software developed by Spread Concepts LLC for use in the Spread toolkit.
For more information about Spread, see http://www.spread.org"

7 This license shall be governed by and construed and enforced in accordance with the laws of
the State of Maryland, without reference to its conflicts of law provisions. The exclusive
jurisdiction and venue for all legal actions relating to this license shall be in courts of competent
subject matter jurisdiction located in the State of Maryland.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, SPREAD IS PROVIDED
UNDER THIS LICENSE ON AN AS IS BASIS, WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES THAT
SPREAD IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE OR
NON-INFRINGING. ALL WARRANTIES ARE DISCLAIMED AND THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE CODE IS WITH YOU. SHOULD ANY CODE PROVE
DEFECTIVE IN ANY RESPECT, YOU (NOT THE COPYRIGHT HOLDER OR ANY OTHER
CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY SERVICING, REPAIR OR
CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL PART OF
THIS LICENSE. NO USE OF ANY CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER
THIS DISCLAIMER.

http://www.spread.org/
http://www.spread.org/
http://www.spread.org/
http://www.spread.org/

-789-

 Copyright Notice

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR ANY OTHER CONTRIBUTOR BE LIABLE FOR ANY SPECIAL,
INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES FOR LOSS OF PROFITS,
REVENUE, OR FOR LOSS OF INFORMATION OR ANY OTHER LOSS.

YOU EXPRESSLY AGREE TO FOREVER INDEMNIFY, DEFEND AND HOLD HARMLESS THE
COPYRIGHT HOLDERS AND CONTRIBUTORS OF SPREAD AGAINST ALL CLAIMS,
DEMANDS, SUITS OR OTHER ACTIONS ARISING DIRECTLY OR INDIRECTLY FROM YOUR
ACCEPTANCE AND USE OF SPREAD.

Although NOT REQUIRED, we at Spread Concepts would appreciate it if active users of Spread
put a link on their web site to Spread's web site when possible. We also encourage users to let us
know who they are, how they are using Spread, and any comments they have through either
e-mail (spread@spread.org) or our web site at (http://www.spread.org/comments).

SNMP

Various copyrights apply to this package, listed in various separate parts below. Please make
sure that you read all the parts. Up until 2001, the project was based at UC Davis, and the first part
covers all code written during this time. From 2001 onwards, the project has been based at
SourceForge, and Networks Associates Technology, Inc hold the copyright on behalf of the wider
Net-SNMP community, covering all derivative work done since then. An additional copyright
section has been added as Part 3 below also under a BSD license for the work contributed by
Cambridge Broadband Ltd. to the project since 2001. An additional copyright section has been
added as Part 4 below also under a BSD license for the work contributed by Sun Microsystems,
Inc. to the project since 2003.

Code has been contributed to this project by many people over the years it has been in
development, and a full list of contributors can be found in the README file under the THANKS
section.

Part 1: CMU/UCD copyright notice: (BSD like)

Copyright © 1989, 1991, 1992 by Carnegie Mellon University

Derivative Work - 1996, 1998-2000

Copyright © 1996, 1998-2000 The Regents of the University of California

All Rights Reserved

Permission to use, copy, modify and distribute this software and its documentation for any
purpose and without fee is hereby granted, provided that the above copyright notice appears in all
copies and that both that copyright notice and this permission notice appear in supporting
documentation, and that the name of CMU and The Regents of the University of California not be
used in advertising or publicity pertaining to distribution of the software without specific written
permission.

mailto:spread@spread.org
http://www.spread.org/comments

-790-

SQL Reference Manual

CMU AND THE REGENTS OF THE UNIVERSITY OF CALIFORNIA DISCLAIM ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL CMU OR THE
REGENTS OF THE UNIVERSITY OF CALIFORNIA BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
THE LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH
THE USE OR PERFORMANCE OF THIS SOFTWARE.

Part 2: Networks Associates Technology, Inc copyright notice (BSD)

Copyright © 2001-2003, Networks Associates Technology, Inc

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

 Neither the name of the Networks Associates Technology, Inc nor the names of its contributors
may be used to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Part 3: Cambridge Broadband Ltd. copyright notice (BSD)

Portions of this code are copyright (c) 2001-2003, Cambridge Broadband Ltd.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

-791-

 Copyright Notice

 The name of Cambridge Broadband Ltd. may not be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Part 4: Sun Microsystems, Inc. copyright notice (BSD)

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,

California 95054, U.S.A. All rights reserved.

Use is subject to license terms below.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo and Solaris are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and other countries.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

 Neither the name of the Sun Microsystems, Inc. nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Part 5: Sparta, Inc copyright notice (BSD)

Copyright © 2003-2006, Sparta, Inc

-792-

SQL Reference Manual

All rights reserved.

 Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

 Neither the name of Sparta, Inc nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Part 6: Cisco/BUPTNIC copyright notice (BSD)

Copyright © 2004, Cisco, Inc and Information Network Center of Beijing University of Posts
and Telecommunications.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

 Neither the name of Cisco, Inc, Beijing University of Posts and Telecommunications, nor the
names of their contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

-793-

 Copyright Notice

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Part 7: Fabasoft R&D Software GmbH & Co KG copyright notice (BSD)

Copyright © Fabasoft R&D Software GmbH & Co KG, 2003

oss@fabasoft.com

Author: Bernhard Penz

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

 The name of Fabasoft R&D Software GmbH & Co KG or any of its subsidiaries, brand or
product names may not be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Tecla Command-line Editing

Copyright © 2000 by Martin C. Shepherd.

All rights reserved.

mailto:oss@fabasoft.com

-794-

SQL Reference Manual

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, provided
that the above copyright notice(s) and this permission notice appear in all copies of the Software
and that both the above copyright notice(s) and this permission notice appear in supporting
documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY
RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS
NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in advertising
or otherwise to promote the sale, use or other dealings in this Software without prior written
authorization of the copyright holder.

Webmin Open Source License

Copyright © Jamie Cameron

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2 Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3 Neither the name of the developer nor the names of contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE DEVELOPER ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE DEVELOPER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

-795-

 Copyright Notice

xerces

NOTICE file corresponding to section 4(d) of the Apache License,

Version 2.0, in this case for the Apache Xerces distribution.

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

Portions of this software were originally based on the following:

Software copyright © 1999, IBM Corporation., http://www.ibm.com.

zlib

This is used by the project to load zipped files directly by COPY command. www.zlib.net/

zlib.h -- interface of the 'zlib' general purpose compression library version 1.2.3, July 18th, 2005

Copyright © 1995-2005 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied warranty. In no event will the
authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial
applications, and to alter it and redistribute it freely, subject to the following restrictions:

1 The origin of this software must not be misrepresented; you must not claim that you wrote the
original software. If you use this software in a product, an acknowledgment in the product
documentation would be appreciated but is not required.

2 Altered source versions must be plainly marked as such, and must not be misrepresented as
being the original software.

3 This notice may not be removed or altered from any source distribution.

Jean-loup Gailly jloup@gzip.org

Mark Adler madler@alumni.caltech.edu

http://www.apache.org/
http://www.ibm.com/
http://www.zlib.net/
mailto:jloup@gzip.org
mailto:madler@alumni.caltech.edu

	Technical Support
	About the Documentation
	Where to Find the Vertica Documentation
	Reading the Online Documentation
	Printing Full Books
	Suggested Reading Paths
	Where to Find Additional Information
	Typographical Conventions

	Preface
	SQL Overview
	System Limits
	SQL Language Elements
	Keywords and Reserved Words
	Keywords
	Reserved Words

	Identifiers
	Literals
	Number-type Literals
	String Literals
	String Literals (Standard)
	String Literals (Character)
	Extended String Literals
	Unicode String Literals
	String Literals (Dollar-Quoted)

	Date/Time Literals
	Time Zone Values
	Day of the Week Names
	Month Names
	Interval Values
	interval-literal
	interval-qualifier

	Operators
	Binary Operators
	Boolean Operators
	Comparison Operators
	Data Type Coercion Operators (CAST)
	Date/Time Operators
	Mathematical Operators
	NULL Operators
	String Concatenation Operators

	Expressions
	Aggregate Expressions
	CASE Expressions
	Column References
	Comments
	Date/Time Expressions
	NULL Value
	Numeric Expressions

	Predicates
	BETWEEN-predicate
	Boolean-predicate
	column-value-predicate
	IN-predicate
	join-predicate
	LIKE-predicate
	NULL-predicate

	SQL Data Types
	Binary Data Types
	Boolean Data Type
	Character Data Types
	Date/Time Data Types
	DATE
	DATETIME
	INTERVAL
	interval-literal
	interval-qualifier

	SMALLDATETIME
	TIME
	TIME AT TIME ZONE

	TIMESTAMP
	TIMESTAMP AT TIME ZONE

	Numeric Data Types
	DOUBLE PRECISION (FLOAT)
	INTEGER
	NUMERIC
	Numeric Data Type Overflow

	Data Type Coercion
	Data Type Coercion Chart

	SQL Functions
	Aggregate Functions
	AVG [Aggregate]
	COUNT [Aggregate]
	MAX [Aggregate]
	MIN [Aggregate]
	STDDEV [Aggregate]
	STDDEV_POP [Aggregate]
	STDDEV_SAMP [Aggregate]
	SUM [Aggregate]
	SUM_FLOAT [Aggregate]
	VAR_POP [Aggregate]
	VAR_SAMP [Aggregate]
	VARIANCE [Aggregate]

	Analytic Functions
	window_partition_clause
	window_order_clause
	window_frame_clause
	named_windows
	AVG [Analytic]
	CONDITIONAL_CHANGE_EVENT [Analytic]
	CONDITIONAL_TRUE_EVENT [Analytic]
	COUNT [Analytic]
	CUME_DIST [Analytic]
	DENSE_RANK [Analytic]
	EXPONENTIAL_MOVING_AVERAGE [Analytic]
	FIRST_VALUE [Analytic]
	LAG [Analytic]
	LAST_VALUE [Analytic]
	LEAD [Analytic]
	MAX [Analytic]
	MEDIAN [Analytic]
	MIN [Analytic]
	NTILE [Analytic]
	PERCENT_RANK [Analytic]
	PERCENTILE_CONT [Analytic]
	PERCENTILE_DISC [Analytic]
	RANK [Analytic]
	ROW_NUMBER [Analytic]
	STDDEV [Analytic]
	STDDEV_POP [Analytic]
	STDDEV_SAMP [Analytic]
	SUM [Analytic]
	VAR_POP [Analytic]
	VAR_SAMP [Analytic]
	VARIANCE [Analytic]
	Performance Optimization for Analytic Sort Computation

	Boolean Functions
	BIT_AND
	BIT_OR
	BIT_XOR

	Date/Time Functions
	ADD_MONTHS
	AGE_IN_MONTHS
	AGE_IN_YEARS
	CLOCK_TIMESTAMP
	CURRENT_DATE
	CURRENT_TIME
	CURRENT_TIMESTAMP
	DATE_PART
	DATE_TRUNC
	DATEDIFF
	EXTRACT
	GETDATE
	GETUTCDATE
	ISFINITE
	LAST_DAY
	LOCALTIME
	LOCALTIMESTAMP
	MONTHS_BETWEEN
	NOW [Date/Time]
	OVERLAPS
	STATEMENT_TIMESTAMP
	SYSDATE
	TIME_SLICE
	TIMEOFDAY
	TRANSACTION_TIMESTAMP

	Formatting Functions
	TO_BITSTRING
	TO_CHAR
	TO_DATE
	TO_HEX
	TO_TIMESTAMP
	TO_NUMBER
	Template Patterns for Date/Time Formatting
	Template Pattern Modifiers for Date/Time Formatting

	Template Patterns for Numeric Formatting

	IP Conversion Functions
	INET_ATON
	INET_NTOA
	V6_ATON
	V6_NTOA
	V6_SUBNETA
	V6_SUBNETN
	V6_TYPE

	Mathematical Functions
	ABS
	ACOS
	ASIN
	ATAN
	ATAN2
	CBRT
	CEILING (CEIL)
	COS
	COT
	DEGREES
	EXP
	FLOOR
	HASH
	LN
	LOG
	MOD
	MODULARHASH
	PI
	POWER
	RADIANS
	RANDOM
	RANDOMINT
	ROUND
	SIGN
	SIN
	SQRT
	TAN
	TRUNC
	WIDTH_BUCKET

	NULL-handling Functions
	COALESCE
	ISNULL
	NULLIF
	NVL
	NVL2

	Sequence Functions
	NEXTVAL
	CURRVAL
	LAST_INSERT_ID

	String Functions
	ASCII
	BIT_LENGTH
	BITCOUNT
	BITSTRING_TO_BINARY
	BTRIM
	CHARACTER_LENGTH
	CHR
	DECODE
	GREATEST
	GREATESTB
	HEX_TO_BINARY
	INET_ATON
	INET_NTOA
	INITCAP
	INITCAPB
	INSTR
	INSTRB
	LEAST
	LEASTB
	LEFT
	LENGTH
	LOWER
	LOWERB
	LPAD
	LTRIM
	MD5
	OCTET_LENGTH
	OVERLAY
	OVERLAYB
	POSITION
	POSITIONB
	QUOTE_IDENT
	QUOTE_LITERAL
	REPEAT
	REPLACE
	RIGHT
	RPAD
	RTRIM
	SPLIT_PART
	SPLIT_PARTB
	STRPOS
	STRPOSB
	SUBSTR
	SUBSTRB
	SUBSTRING
	TO_BITSTRING
	TO_HEX
	TRANSLATE
	TRIM
	UPPER
	UPPERB
	V6_ATON
	V6_NTOA
	V6_SUBNETA
	V6_SUBNETN
	V6_TYPE

	System Information Functions
	CURRENT_DATABASE
	CURRENT_SCHEMA
	CURRENT_USER
	HAS_TABLE_PRIVILEGE
	SESSION_USER
	USER
	VERSION

	Timeseries Aggregate (TSA) Functions
	TS_FIRST_VALUE
	TS_LAST_VALUE

	Vertica Functions
	Alphabetical List of Vertica Functions
	ADD_LOCATION
	ADVANCE_EPOCH
	ALTER_LOCATION_USE
	ANALYZE_CONSTRAINTS
	ANALYZE_STATISTICS
	CLEAR_QUERY_REPOSITORY
	CLEAR_PROJECTION_REFRESHES
	CLEAR_RESOURCE_REJECTIONS
	CLOSE_SESSION
	CLOSE_ALL_SESSIONS
	CURRENT_SCHEMA
	DISABLE_DUPLICATE_KEY_ERROR
	DISPLAY_LICENSE
	DO_TM_TASK
	DROP_LOCATION
	DROP_PARTITION
	DROP_STATISTICS
	DUMP_CATALOG
	DUMP_LOCKTABLE
	DUMP_PARTITION_KEYS
	DUMP_PROJECTION_PARTITION_KEYS
	DUMP_TABLE_PARTITION_KEYS
	EVALUATE_DELETE_PERFORMANCE
	EXPORT_CATALOG
	EXPORT_OBJECTS
	EXPORT_STATISTICS
	EXPORT_TABLES
	GET_AHM_EPOCH
	GET_AHM_TIME
	GET_CURRENT_EPOCH
	GET_LAST_GOOD_EPOCH
	GET_NUM_ACCEPTED_ROWS
	GET_NUM_REJECTED_ROWS
	GET_PROJECTION_STATUS
	GET_PROJECTIONS, GET_TABLE_PROJECTIONS
	INTERRUPT_STATEMENT
	IMPORT_STATISTICS
	ISUTF8
	MAKE_AHM_NOW
	MARK_DESIGN_KSAFE
	MEASURE_LOCATION_PERFORMANCE
	MERGE_PARTITIONS
	PARTITION_PROJECTION
	PARTITION_TABLE
	PURGE
	PURGE_PROJECTION
	PURGE_TABLE
	REENABLE_DUPLICATE_KEY_ERROR
	REFRESH
	REGEXP_COUNT
	REGEXP_INSTR
	REGEXP_LIKE
	REGEXP_REPLACE
	REGEXP_SUBSTR
	RESTORE_LOCATION
	RETIRE_LOCATION
	SAVE_QUERY_REPOSITORY
	SET_AHM_EPOCH
	SET_AHM_TIME
	SET_LOCATION_PERFORMANCE
	SHUTDOWN
	START_REFRESH

	Catalog Management Functions
	DUMP_CATALOG
	EXPORT_CATALOG
	EXPORT_OBJECTS
	INSTALL_LICENSE
	MARK_DESIGN_KSAFE

	Constraint Management Functions
	ANALYZE_CONSTRAINTS
	DISABLE_DUPLICATE_KEY_ERROR
	LAST_INSERT_ID
	REENABLE_DUPLICATE_KEY_ERROR

	Database Management Functions
	CLEAR_QUERY_REPOSITORY
	CLEAR_RESOURCE_REJECTIONS
	DISPLAY_LICENSE
	DUMP_LOCKTABLE
	DUMP_PARTITION_KEYS
	EXPORT_TABLES
	SAVE_QUERY_REPOSITORY
	SET_CONFIG_PARAMETER
	SET_LOGLEVEL
	SHUTDOWN

	Epoch Management Functions
	ADVANCE_EPOCH
	GET_AHM_EPOCH
	GET_AHM_TIME
	GET_CURRENT_EPOCH
	GET_LAST_GOOD_EPOCH
	MAKE_AHM_NOW
	SET_AHM_EPOCH
	SET_AHM_TIME

	Partition Management Functions
	DROP_PARTITION
	DUMP_PROJECTION_PARTITION_KEYS
	DUMP_TABLE_PARTITION_KEYS
	MERGE_PARTITIONS
	PARTITION_PROJECTION
	PARTITION_TABLE

	Projection Management Functions
	EVALUATE_DELETE_PERFORMANCE
	GET_PROJECTION_STATUS
	GET_PROJECTIONS, GET_TABLE_PROJECTIONS
	REFRESH
	START_REFRESH

	Purge Functions
	PURGE
	PURGE_PROJECTION
	PURGE_TABLE

	Regular Expression Functions
	ISUTF8
	REGEXP_COUNT
	REGEXP_INSTR
	REGEXP_LIKE
	REGEXP_REPLACE
	REGEXP_SUBSTR

	Session Management Functions
	CLOSE_ALL_SESSIONS
	CLOSE_SESSION
	GET_NUM_ACCEPTED_ROWS
	GET_NUM_REJECTED_ROWS
	INTERRUPT_STATEMENT

	Statistic Management Functions
	ANALYZE_STATISTICS
	DROP_STATISTICS
	EXPORT_STATISTICS
	IMPORT_STATISTICS

	Storage Management Functions
	ADD_LOCATION
	ALTER_LOCATION_USE
	DROP_LOCATION
	MEASURE_LOCATION_PERFORMANCE
	RESTORE_LOCATION
	RETIRE_LOCATION
	SET_LOCATION_PERFORMANCE

	Tuple Mover Functions
	DO_TM_TASK

	SQL Statements
	ALTER FUNCTION
	ALTER PROJECTION RENAME
	ALTER PROFILE
	ALTER PROFILE RENAME
	ALTER RESOURCE POOL
	ALTER SCHEMA
	ALTER SEQUENCE
	ALTER TABLE
	table-constraint

	ALTER USER
	COMMIT
	COPY
	Parameters
	COPY Formats
	Notes
	Examples
	See Also

	CREATE FUNCTION
	CREATE PROCEDURE
	CREATE PROFILE
	CREATE PROJECTION
	encoding-type
	hash-segmentation-clause
	range-segmentation-clause

	CREATE RESOURCE POOL
	Built-in Pools
	Built-in Pool Configuration

	CREATE SCHEMA
	CREATE SEQUENCE
	CREATE TABLE
	column-definition (table)
	column-name-list (table)
	column-constraint
	table-constraint
	hash-segmentation-clause (table)
	range-segmentation-clause (table)

	CREATE TEMPORARY TABLE
	column-definition (temp table)
	column-name-list (temp table)
	hash-segmentation-clause (temp table)
	range-segmentation-clause (temp table)

	CREATE USER
	CREATE VIEW
	DELETE
	DROP FUNCTION
	DROP PROCEDURE
	DROP PROFILE
	DROP PROJECTION
	DROP RESOURCE POOL
	DROP SCHEMA
	DROP SEQUENCE
	DROP TABLE
	DROP USER
	DROP VIEW
	EXPLAIN
	GRANT (Database)
	GRANT (Function)
	GRANT (Procedure)
	GRANT (Resource Pool)
	GRANT (Schema)
	GRANT (Sequence)
	GRANT (Table)
	GRANT (View)
	INSERT
	LCOPY
	PROFILE
	RELEASE SAVEPOINT
	REVOKE (Database)
	REVOKE (Function)
	REVOKE (Procedure)
	REVOKE (Resource Pool)
	REVOKE (Schema)
	REVOKE (Sequence)
	REVOKE (Table)
	REVOKE (View)
	ROLLBACK
	ROLLBACK TO SAVEPOINT
	SAVEPOINT
	SELECT
	INTO Clause
	FROM Clause
	table-reference
	table-primary
	joined-table

	WHERE Clause
	TIMESERIES Clause
	GROUP BY Clause
	HAVING Clause
	ORDER BY Clause
	LIMIT Clause
	OFFSET Clause

	SET
	DATESTYLE
	ESCAPE_STRING_WARNING
	INTERVALSTYLE
	LOCALE
	SEARCH_PATH
	SESSION CHARACTERISTICS
	SESSION MEMORYCAP
	SESSION RESOURCE POOL
	SESSION RUNTIMECAP
	SESSION TEMPSPACECAP
	STANDARD_CONFORMING_STRINGS
	TIME ZONE
	Time Zone Names for Setting TIME ZONE

	SHOW
	TRUNCATE TABLE
	UNION
	UPDATE

	SQL System Tables (Monitoring APIs)
	V_CATALOG Schema
	COLUMNS
	DUAL
	FOREIGN_KEYS
	GRANTS
	PASSWORDS
	PRIMARY_KEYS
	PROFILE_PARAMETERS
	PROFILES
	PROJECTION_COLUMNS
	PROJECTIONS
	RESOURCE_POOLS
	SEQUENCES
	SYSTEM_TABLES
	TABLE_CONSTRAINTS
	TABLES
	TYPES
	USER_FUNCTIONS
	USER_PROCEDURES
	USERS
	VIEW_COLUMNS
	VIEWS

	V_MONITOR Schema
	ACTIVE_EVENTS
	COLUMN_STORAGE
	CONFIGURATION_PARAMETERS
	CURRENT_SESSION
	DELETE_VECTORS
	DISK_RESOURCE_REJECTIONS
	DISK_STORAGE
	EVENT_CONFIGURATIONS
	EXECUTION_ENGINE_PROFILES
	HOST_RESOURCES
	LOAD_STREAMS
	LOCKS
	NODE_RESOURCES
	PARTITIONS
	PROJECTION_REFRESHES
	PROJECTION_STORAGE
	QUERY_METRICS
	QUERY_PROFILES
	RESOURCE_ACQUISITIONS
	RESOURCE_ACQUISITIONS_HISTORY
	RESOURCE_POOL_STATUS
	RESOURCE_QUEUES
	RESOURCE_REJECTIONS
	RESOURCE_USAGE
	SESSION_PROFILES
	SESSIONS
	STORAGE_CONTAINERS
	STRATA
	STRATA_STRUCTURES
	SYSTEM
	TUPLE_MOVER_OPERATIONS
	WOS_CONTAINER_STORAGE

	Appendix: Compatibility with Other RDBMS
	Data Type Mappings Between Vertica and Oracle

	Index
	Copyright Notice

