
Administering Platform Process Manager

Platform Process Manager
Version 8.0.2

November 2011

Copyright © 1994-2011 Platform Computing Corporation.

Although the information in this document has been carefully reviewed, Platform Computing Corporation (“Platform”)
does not warrant it to be free of errors or omissions. Platform reserves the right to make corrections, updates, revisions
or changes to the information in this document.

UNLESS OTHERWISE EXPRESSLY STATED BY PLATFORM, THE PROGRAM DESCRIBED IN THIS
DOCUMENT IS PROVIDED “AS IS” AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL PLATFORM COMPUTING BE LIABLE TO
ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
WITHOUT LIMITATION ANY LOST PROFITS, DATA, OR SAVINGS, ARISING OUT OF THE USE OF OR
INABILITY TO USE THIS PROGRAM.

We’d like to hear
from you

You can help us make this document better by telling us what you think of the content, organization, and usefulness of
the information. If you find an error, or just want to make a suggestion for improving this document, please address
your comments to doc@platform.com.

Your comments should pertain only to Platform documentation. For product support, contact support@platform.com.

Document
redistribution
and translation

This document is protected by copyright and you may not redistribute or translate it into another language, in part or
in whole.

Internal
redistribution

You may only redistribute this document internally within your organization (for example, on an intranet) provided
that you continue to check the Platform Web site for updates and update your version of the documentation. You may
not make it available to your organization over the Internet.

Trademarks LSF is a registered trademark of Platform Computing Corporation in the United States and in other jurisdictions.

ACCELERATING INTELLIGENCE, PLATFORM COMPUTING, PLATFORM SYMPHONY, PLATFORM JOB
SCHEDULER, PLATFORM ISF, PLATFORM ENTERPRISE GRID ORCHESTRATOR, PLATFORM EGO, and the
PLATFORM and PLATFORM LSF logos are trademarks of Platform Computing Corporation in the United States and
in other jurisdictions.

UNIX is a registered trademark of The Open Group in the United States and in other jurisdictions.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other
countries.

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Intel, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

Other products or services mentioned in this document are identified by the trademarks or service marks of their
respective owners.

Third-party
license
agreements

http://www.platform.com/Company/third.part.license.htm

Contents
1 New Features in Process Manager 8.0.2 ... 7

General new features .. 8
New features in Flow Manager ... 10
New features in Flow Editor .. 12
Flow-related new features available only in Platform Application Center 16

2 About Process Manager ... 19
Components .. 20
Data flow ... 23
Security ... 24
About Failover ... 26
About Calendars ... 27
About Exceptions .. 30
User-specified conditions .. 31
Behavior when an exception occurs ... 32
About Exception Handling ... 34
IPv6 support .. 38

3 Maintaining Process Manager .. 39
Install and configure a failover host on UNIX (managed by failover daemon) 40
Add a UNIX client .. 42
Add a Windows client .. 43
Run the Process Manager server on system startup .. 44
About Process Manager variables .. 45
Types of variables .. 46
Scope of variables .. 47
How variables are set ... 48
Dedicate the Process Manager Server Host ... 50
Configure an alarm ... 51
Configure to support user variables .. 52
Configure variables for UNIX hosts ... 53
Configure variables for Windows hosts ... 54
Configure variables for both UNIX and Windows hosts .. 55
Configure a queue to support setting user variables .. 56
Increase the number of variables that can be substituted .. 57
Control the Process Manager Server .. 58
Start and stop the Server on Windows ... 59

Administering Platform Process Manager 3

Forcing a system snapshot ... 60
Change the Configuration ... 61
Add an administrator ... 62
Sign on as a guest .. 63
Allow users to trigger other users’ flows ... 64
Restrict who can see the flow chart view .. 65
Create system calendars .. 66
Calendar names .. 67
Update the Holidays@Sys calendar ... 68
Delete a calendar .. 69
Maintain User Passwords ... 70
Specify the mail host ... 71
Change the job start retry value .. 72
About local jobs on Linux and UNIX ... 73
About local jobs on Windows .. 74
Change the history setting .. 75
View History .. 76
View the history of a flow definition ... 77
View the history of a flow .. 78
View the history of a job or job array ... 79
Troubleshooting .. 80

4 Mainframe support .. 83
Configure for Mainframe ... 84

5 Daemons .. 85
jfd .. 86
fod ... 87

6 Commands ... 89
caleditor .. 91
floweditor ... 92
flowmanager ... 93
jadmin ... 94
jalarms .. 96
jcadd ... 99
jcals ... 104
jcdel ... 105
jcmod .. 106
jcomplete ... 110
jdefs .. 112
jflows ... 114
jhist .. 116
jhold .. 121
jid .. 122
jjob .. 123

4 Administering Platform Process Manager

jkill ... 126
jmanuals .. 128
jreconfigadmin ... 129
jreconfigalarm ... 130
jrelease ... 131
jremove ... 132
jrerun ... 134
jresume ... 135
jrun .. 137
jsetvars .. 138
jsinstall .. 140
jstop .. 141
jsub ... 143
jtrigger ... 150

7 Files .. 153
File Structure ... 154
history.log .. 156
install.config .. 157
js.conf .. 163
name.alarm ... 188

Administering Platform Process Manager 5

6 Administering Platform Process Manager

1
New Features in Process Manager 8.0.2

This chapter provides a summary of new features available in this version. Some new features available
in Process Manager are also available or visible in Platform Application Center.

C H A P T E R

Administering Platform Process Manager 7

General new features
Enhancements to local jobs on Linux and UNIX

This feature is available in:

• Platform Process Manager

Description:

These enhancements to local jobs only apply to Linux and UNIX.

A local job is a job that will execute immediately on the Process Manager host without going through LSF.
A local job is usually a short and small job.

Enhancements that have been made:

• Local jobs are now non-blocking. This means that multiple local jobs can run at the same time.
• You can now kill a local job. If a local job is killed outside of Process Manager, Process Manager can

identify the local job’s exit status and resource usage.
• Local jobs are now suspended and resumed when you suspend or resume the flow that contains them.
• In the job’s runtime attributes, you can now view the exit status and CPU usage of a local job after the

job completes. The process ID identifies the local job and you can view CPU usage for the job. You
can also view the process ID of the job and CPU usage information with jflows -l flow_id and
jhist -C job.

• To avoid overloading the Process Manager host with too many local jobs, there is a new parameter
JS_LOCAL_JOBS_LIMIT in js.conf to control the maximum number of local jobs that can
simultaneously run on the Process Manager host.

• By default, local jobs now have no timeout. The default value of
JS_LOCAL_EXECUTION_TIMEOUT in js.conf has been changed to unlimited.

• The parameter JS_LOCAL_EXECUTION_THREADS in js.conf is now obsolete. Its value is now
fixed at 1 and cannot be changed, as local jobs are now non-blocking.

• Should jfd terminate abnormally, when it restarts it can recover running and finished local jobs and
determine their status and resource usage.

• A new binary is installed in JS_SERVERDIR: eem.local. It is started by jfd and handles job
submission, control, and status checking for local jobs and reports back to jfd.

• Two additional port numbers are now used by jfd and eem.local: JS_PORT + 1 and JS_PORT +
2 .

New built-in user variable JS_FLOW_FULL_NAME
This feature is available in: Platform Process Manager and Platform Application Center.

Description:

You use the built-in user variable JS_FLOW_FULL_NAME when you need to use the long version of a
subflow name.

For example:

• For a subflow named 11:usr1:F1:SF1:SSF1, this variable is set to 11:usr1:F1:SF1:SSF1.
• For a main flow named 11:usr1:F1, this variable is set to 11:usr1:F1.

New Features in Process Manager 8.0.2

8 Administering Platform Process Manager

Use a custom mail program to send email
This feature is available in:

• Platform Process Manager: Set JS_MAILPROG in js.conf to your custom mail program. After
setting your custom mail program, you will need to restart jfd with the commands jadmin
start and jadmin stop to make changes take effect.

Description:

By default, Process Manager sends email through /usr/lib/sendmail on UNIX or lsmail.exe on
Windows.

You can now specify a custom mail program to send emails. Your custom mail program can be a shell
script, a binary executable, or, a .bat file on Windows. Your custom mail program must follow the same
protocol as sendmail.

Restrict who can see the flow chart view
This feature is available in:

• Platform Process Manager: You set the parameter JS_LIMIT_FLOW_CHART_VIEW in js.conf and
affects display of the flow chart and associated actions in Flow Manager and Platform Application
Center.

• Platform Application Center: Flow Chart view is restricted along with associated actions based on the
parameter set in Platform Process Manager.

Description:

There is a new parameter in js.conf, JS_LIMIT_FLOW_CHART_VIEW. This parameter allows you
to restrict viewing the chart view of a flow and flow definition to only the Process Manager administrator
and users who are both the flow definition owner and flow owner.

When this parameter is set to false, users who can view a flow or flow definition, can see everything about
the flow: flow chart, general information, subflows and jobs, flow data, and flow history. These users can
also perform job and subflow-specific actions.

When this parameter is set to true, there are restrictions on which users can see the flow chart of a flow
and flow definition and associated actions the user can take on components of the flow.

New Features in Process Manager 8.0.2

Administering Platform Process Manager 9

New features in Flow Manager

Hold and release for jobs
This feature is available in:
• Flow Manager: You can hold and release jobs through Flow Manager By State tab, display a flow, and

select the job in the Waiting state, right-click and choose Hold, or the new options in the jjob
command, -p for hold, and -g for release.

• Platform Application Center: Go to Jobs > Jobs > By State > Running, select the flow, select the Flow
Chart tab, select the job in the Waiting state, right-click, and choose Hold.

Description:

In some cases, you may want to stop a flow at a specific point so that you can fix problems. You can do
this by putting a job in the Waiting state in the flow on hold.

Only the branch of the flow that contains the job that is On Hold pauses. Other branches of the flow
continue to run.

You can put on hold LSF jobs, job submission scripts, local jobs and job arrays.

Allow users to trigger other users’ flows
This feature is available in:
• Platform Process Manager: Set JS_CHANGE_FLOW_OWNER in js.conf. There is also now one more

tab in Flow Manager, the By Definition tab. This tab displays flow definitions organized by the user
who submitted them. In addition, what is displayed in the tree view has been enhanced for all tabs to
indicate the flow owner and flow submitter.

• Platform Application Center: The parameter setting in Process Manager also controls who can trigger
other users’ flows in Platform Application Center. Select Jobs > Flow Definitions > By User to trigger
flows.

Description:

By default, only Process Manager administrators and Process Manager control administrators can trigger
flows created by other users.

This feature only applies to flow definitions that have the status Published.

With the new parameter JS_CHANGE_FLOW_OWNER=true in js.conf, non-administrator users can
trigger other users’ flows. In this way, one user can submit flow definitions, and another user can trigger
the flow from the flow definition, own the flow, and control it. The user who submitted the flow definition
is the owner of the flow definition, the user who triggered the flow is the owner of the flow.

Rerun a flow while a job is still running
This feature is available in:
• Platform Process Manager: In Flow Manager, the Rerun Now and Rerun with variables menu items

have been replaced with Rerun, and a window is displayed in which you can choose what to rerun in
the flow.

• Platform Application Center: Select Jobs > Jobs > By State, select the flow, and click the Rerun button
to display a window in which you can choose what to rerun in the flow.

Description:

New Features in Process Manager 8.0.2

10 Administering Platform Process Manager

In previous versions, you could only rerun flows that were in an Exited state. You can now rerun flows
when the flow state is Running, Exited, or Done.

This is useful for flows that have several branches. When one branch fails, you can rerun the branch
without waiting for other branches of the flow to complete.

You can:

• Set or unset starting points when there are still jobs running in the flow.
• Choose whether to rerun the flow from:
• • Starting points and exited jobs. The flow will rerun from any starting points, exited jobs, and, from

the item following any manually completed jobs provided dependencies are met.
• Starting points only. The flow will rerun only from starting points.

Note that you can only rerun a running flow if the part of the flow to be rerun does not overlap with items
that are currently running.

Exit codes for manual jobs
This feature is available in:

• Platform Process Manager: In Flow Manager, you can now specify exit codes when completing a
manual job, or by using the new option in the jcomplete command, -e exit_code. Manual jobs can
now fail. In Flow Editor, you can now specify in the manual Job Event Definition the dependencies
Fails, Ends with any exit code, and Ends with exit code....

• Platform Application Center: You can complete a manual job and specify an exit code through Jobs
> Jobs > By State > Pending User Input, select the manual job, click the Complete Manual Job
button.

New Features in Process Manager 8.0.2

Administering Platform Process Manager 11

New features in Flow Editor

New Other Options field for additional LSF job
submission options

This feature is available in:

• Flow Editor: Job Definition or Job Array Definition dialog, Advanced tab, Other Options field.
• Platform Application Center: In the Job Definition or Job Array Definition dialog, Advanced tab,

Other Options field. To access the Job Definition, in the Jobs tab, select Jobs, select a Flow, select the
Flow Chart tab, right-click a job to display the Job Definition.

Description:

This allows you to use options that are not available from the job definition dialog. The options you specify
are added to the bsub command when you submit the job or job array.

For example:
-w "done('#{JS_FLOW_FULL_NAME}:JobArray1')"

You can also specify user variables in the Other Options field.

Configure custom exit codes for successful jobs
This feature is available in:

• Platform Process Manager: In Flow Editor, open the Job Definition dialog, Job Script Definition dialog,
Manual Job Definition dialog, or Local Job Definition dialog, and configure the new field Non-zero
success exit codes.

• Platform Application Center: You can view settings for the field Non-zero success exit codes in the
Job Definition, but you cannot change them.

Description:

By default, for a job to complete successfully, the exit code must be 0. Any other exit code indicates the
job failed.

In some cases, however, you may want to use exit codes to pass information to subsequent work items
and may want to use numbers other than 0 to indicate success.

You can now do so by specifying a space-separated list of exit codes in the Job Definition dialog, Job Script
Definition dialog, Manual Job Definition dialog, or Local Job Definition dialog, with the new Non-zero
success exit codes field.

Configure how to calculate flow exit codes
This feature is available in:

• Platform Process Manager: In Flow Editor, select Action > Specify Flow Completion Attributes, new
section Determine the flow exit code from

• Platform Application Center: You can view Flow Completion Attributes but you cannot change them.

Description:

By default, a Done flow or subflow has an exit code of 0, since the default way that Process Manager
determines the flow exit code is through the sum of all exit codes of all work items in the flow.

New Features in Process Manager 8.0.2

12 Administering Platform Process Manager

However, it is possible to specify custom success exit codes for LSF jobs, job scripts, local jobs, and manual
jobs. For this case, you can configure the flow to inherit the exit code of the last item that was successfully
completed or that failed in the Flow Completion Attributes dialog.

New dependencies
This feature is available in:

• Platform Process Manager: In Flow Editor, new dependencies have been added for subflows, flow
arrays, and jobs.

Flow Event Definition, for subflows:

• The flow completes successfully with exit code...
• The flow fails with exit code...
• The flow fails

Flow Array Event Definition:

• Any flow fails

Job Event Definition:

• Fails
• Is Submitted

Job Array Event Definition:

• Any job fails
• Platform Application Center: You can view dependency settings but you cannot change them.

User variables in more fields when defining jobs and
job arrays

This feature is available in:

• Platform Process Manager: In Flow Editor, Job Definition and Job Array Definition dialogs.
• Platform Application Center: User variables are displayed, but cannot be specified.

Description:

You can now use user variables in more fields in the Job Definition and Job Array Definition dialogs.
When you select a field and hover, the help that displays indicates whether you can use a user variable or
not in the field.

User variables for job parameters are resolved at runtime, just before the job is submitted.

The following fields now support user variables:

Tab Field

Processing tab Number of Processors for Parallel Jobs, Minimum

Number of Processors for Parallel Jobs, Maximum

Before Execution, Run command

User Group, Associate job with user group

New Features in Process Manager 8.0.2

Administering Platform Process Manager 13

Tab Field

Limits tab All fields under Job Limits

Host Limits, Maximum run time

Host Limits, Maximum CPU time

Submit a dependent job after selected jobs start
running or are submitted

This feature is available in:

• Platform Process Manager

Description:

• In Flow Editor, Advanced tab, Pre-submit section, you can now select jobs upon the current job
depends. This now applies not only to jobs and job scripts, but also to job arrays, job array scripts, and
template jobs.

• You can now specify either Starts or Submitted as the dependency. In this way, you can identify that
the current job is to be submitted right after the selected jobs have started to run in LSF, or that the
current job is to be submitted right after the selected jobs have been submitted to LSF.

• Create proxy events for jobs with the new Starts or Is Submitted events
• Create proxy events for job arrays with the new Number of jobs started is..., and The job array is

submitted events.

Static and dynamic flow arrays can now run
sequentially

This feature is available in:

• Platform Process Manager: In Flow Editor, Flow Array Attributes dialog.

Description:

In Flow Editor, there is now an option in the Flow Array Attributes to run in parallel or sequentially. As
a result, you now have the choice of running static or dynamic flow array elements in parallel, or
sequentially. In previous versions, flow arrays always ran in parallel.

Determining success or failure based on specific exit
codes in the dependency condition

This feature is available in:

• Platform Process Manager: In Flow Editor, Job Event Definition, Proxy Event Definition, and
Exception Handler Definition with the events Ends with exit code equal to and Ends with Exit
code not equal to.

Description:

You can now define dependencies to take action if any of the specified exit codes are encountered.

You can specify a list of exit codes in:

• Dependencies between jobs, job scripts, template jobs, local jobs, and manual jobs.

New Features in Process Manager 8.0.2

14 Administering Platform Process Manager

• Proxy event definitions for a proxy job, proxy template job, proxy job script, and proxy local job. For
proxy dependencies, you can also use jsub -p and specify a list of exit codes.

• Exception Handler Definition for a job, job script, template job.

Command to run field can now display multiple lines
This feature is available in:

• Platform Process Manager: Flow Editor, in the definition of a job, job array, or local job.
• Platform Application Center: You can enter the command to run in Jobs > Submission Forms >

Flow Forms. You can view a command that spans multiple lines in Jobs > By State, by selecting the
state, selecting a flow, selecting the Flow Chart tab, right-clicking and selecting Open Definition for
a job, job array, or local job.

New Features in Process Manager 8.0.2

Administering Platform Process Manager 15

Flow-related new features available only in
Platform Application Center
Jobs and Flows can now be monitored in the same
window

This feature is available in: Platform Application Center.

Description:

Jobs and flows are now in the same window, accessible through Jobs > Jobs > By State. There is now a
Type column by which you can sort.

Possible types are:

• Job
• Flow
• Array

Completion attributes now visible for subflows and
flow arrays in Flow Chart tab

This feature is available in: Platform Application Center.

Description:

You can now view completion attributes for static and dynamic subflows, and flow attributes and
completion attributes for static and dynamic flow arrays.

For subflows, select Jobs > Submission Forms > Flow Forms, select a flow, select the Flow Chart tab,
select a subflow, right-click and choose Completion Attributes.

For flow arrays, select Jobs > Submission Forms > Flow Forms, select a flow, select the Flow Chart tab,
select the flow array, right-click and select Expand. When the new page is displayed, right-click on the
page, and select the Attributes or Completion Attributes menu items.

Reorganization of pages for flow definitions
This feature is available in:

• Platform Application Center: Pages related to flow definitions have been reorganized.

Description:

• Resources > Submission Templates > Flow Definitions: view flow definitions as a list or graphically
and perform actions on the flow definitions: Hold, Release, Remove, Publish, Unpublish.

• Settings > System Services > Flow Manager Service: View the Process Manager server name, port,
and statistics about the number of flows and flow definitions in each state, and set global variables for
all flows.

• Jobs > Submission Forms > Flow Forms by User: Trigger a flow from a flow definition. Non-
administrator users can see their own submitted flow definitions and all published flow definitions.

New Features in Process Manager 8.0.2

16 Administering Platform Process Manager

Process Manager administrators and control administrators can see all submitted flow definitions and
flows.

• Jobs > By State > Pending User Input: View and complete manual jobs.
• Jobs > Job Alerts: View open alarms in the system.

New Features in Process Manager 8.0.2

Administering Platform Process Manager 17

New Features in Process Manager 8.0.2

18 Administering Platform Process Manager

2
About Process Manager

This chapter introduces Process Manager concepts and contains an overview of the Process Manager
architecture. It also briefly describes the Process Manager Client components and their use.

Overview
Process Manager is a workload management tool that allows users to automate their business processes
in UNIX and Windows environments. Process Manager provides flexible scheduling capabilities and load
balancing in an extensible, robust execution environment.

Using the Process Manager Client, users can create and submit complex flow definitions to Process
Manager Server, which manages the dependencies within a flow and controls the submission of jobs to
LSF master host. LSF provides resource management and load balancing, and runs the jobs and returns
job status to the Process Manager Server. From Process Manager Client, users can also monitor and
control their workflows within Process Manager.

An optional failover host provides Process Manager Server redundancy in the event that it experiences
an outage.

C H A P T E R

Administering Platform Process Manager 19

Components

The system is made up of the following components:

• The Process Manager (Server) host
• The Process Manager (Server) failover host
• The Master host
• Process Manager Client, which consists of the following:

• Process Manager Designer

• The Flow Editor
• The Calendar Editor

• The Flow Manager
• The Command Line Interface (CLI)

Process Manager Server
The Process Manager Server consists of a single daemon, jfd. The Process Manager Server controls the
submission of jobs to LSF, managing any dependencies between work items.

Running multiple Process Manager servers and daemons
You can have multiple Process Manager servers in a single Platform LSF cluster, and you can install and
run multiple instances of jfd on one or more Process Manager servers. This is useful, for example, if you
have different Process Manager environments running in one cluster.

To support running multiple instances of jfd, set JS_MULTI_INSTANCE=true in js.conf.

To avoid conflicts and to ensure that each job is unique among multiple Process Manager servers, you
must ensure that each combination of user name and flow name is unique within the cluster.

Process Manager licenses
Process Manager software is licensed per core, not per host or per cluster, so hosts with multicore
processors require multiple licenses.

For example, if you run Process Manager on an eight-core host, you will require at least eight licenses.

About Process Manager

20 Administering Platform Process Manager

To support running multiple instances of jfd in your Platform LSF cluster, you need either a number of
licenses equal to the total number of cores on all Process Manager servers, or the maximum number of
jfd instances that you are required to run, whichever is greater.

For example, if you run Process Manager on an eight-core host and a four-core host, you will require at
least 12 licenses. If you intend to run a total of 16 instances of jfd on the two hosts, you will require 16
licenses, rather than 12.

The Process Manager Server failover host
An optional failover daemon (fod) is available for UNIX servers. The failover daemon starts the Process
Manager Server and monitors its health. If required, the failover daemon starts the Process Manager
Server on the failover machine.

Master host
The master host receives jobs from the Process Manager Server, manages any resource dependencies the
job may have, and dispatches the job to an appropriate LSF host.

LSF master host
LSF dispatches all jobs submitted to it by the Process Manager Server, and returns the status of each job
to the Process Manager Server. It also manages any resource requirements and load balancing within the
compute cluster.

Process Manager Client
The Process Manager Client contains the graphical client applications that work with Process Manager:
the Process Manager Designer and the Flow Manager.

Process Manager Designer
The Process Manager Designer allows users to edit Process Manager flows and calendars by using the
Flow Editor and the Calendar Editor.

Flow Editor
Users use the Flow Editor to create flow definitions: the jobs and their relationships with other jobs in the
flow, any dependencies they have on files, and any time dependencies they may have. Users also use the
Flow Editor to submit their flow definitions, which places them under the control of Process Manager.

Calendar Editor
Users use the Calendar Editor to define calendars, which Process Manager uses to calculate the days on
which a job or flow should run. Calendars contain either specific dates or expressions that resolve to a
series of dates. Process Manager calendars are independent of jobs, flow definitions and flows, so that
they can be reused.

Users can create and modify their own calendars. These are referred to as user calendars. The Process
Manager administrator can create calendars that can be used by any user of Process Manager. These are
referred to as system calendars. Process Manager includes a number of built-in system calendars so you
do not need to define some of the more commonly used expressions.

About Process Manager

Administering Platform Process Manager 21

Flow Manager
Users use the Flow Manager to trigger, monitor and control running flows, and to obtain history
information about completed flows.

The command line interface
Users use the command line interface to submit predefined flows to the Process Manager Server, to trigger,
monitor and control running flows, and to obtain history information about completed flows.

About Process Manager

22 Administering Platform Process Manager

Data flow
The following describes how Process Manager Server interacts with LSF master host to process flows:

1. The user uses the Flow Editor to create a flow definition and submits it to the Process Manager Server.
2. Process Manager Server stores the flow definition in its working directory.
3. When the flow is triggered, Process Manager Server manages the dependencies within the flow. When

a job is ready to be run, Process Manager Server submits it to LSF master host.
4. The LSF master host manages any resource dependencies the job may have, and dispatches the job to

an appropriate compute host.
5. When the job runs, the compute host sends the status of the job to the LSF master host, which writes

the job status to lsb.events.
6. Process Manager Server reads lsb.events periodically to obtain the status of the jobs it submitted.
7. Process Manager Server uses the status of the job to determine the next appropriate action in the flow.
8. On request from the user, Process Manager Server presents flow status to the Flow Manager.

About Process Manager

Administering Platform Process Manager 23

Security
Process Manager, in its default configuration, provides security through the following methods:

• User authentication
• Role-based access control

User authentication
We support two models for user authentication. In js.conf, specify JS_LOGIN_REQUIRED=true|
false, which indicates whether a user is asked to log in when they start Process Manager Clients or not.

If JS_LOGIN_REQUIRED=false , no log in is required.

If JS_LOGIN_REQUIRED=true, when the user starts Calendar Editor or Flow Manager they are prompted
for a user name and password which is verified by the Process Manager Server. If the user name is a
Windows user name, it must also include the domain name. The domain name and user name are passed
to the server for verification. The Process Manager Server tries to verify the user name from the domain.

Communications are encrypted using a CAST Cipher with a 64-bit private key.

LDAP
Process Manager supports LDAP authentication through PAM (Pluggable Authentication Modules, a
3rd-party tool) if JS_LOGIN_REQUIRED=true.

To enable LDAP authentication, you need to configure your PAM policy to add a service name
eauth_userpass for the module type: auth.

For example, in a Solaris system, you may add the following entry in the /etc/pam.conf file:
eauth_userpass auth required pam_ldap.so.1

Role-based access control
In addition to authentication, Process Manager uses role-based access control to secure certain types of
objects. Any user of Process Manager can create and submit their own flow definitions, and monitor and
control their own flows within the Process Manager system, provided that their user ID is recognized by
LSF. In addition, all users can view calendars and flows submitted by another user. However, special
permissions are required to install and configure Process Manager, or to modify Process Manager items
on behalf of another user.

Process Manager recognizes the following roles:

• Primary Process Manager administrator—required to install a Process Manager server and change
permissions. It is also the user under which the Process Manager server runs, and is the minimum
authority required to stop the Process Manager server.

• Process Manager administrator—can create, delete, modify flows on behalf of another user.
• Process Manager control administrator—can control existing Process Manager items on behalf of

another user. This user cannot submit or remove flows belonging to another user.
• Process Manager user—can view calendars and flows owned by another user, but cannot modify them.

About Process Manager

24 Administering Platform Process Manager

Encrypted communications
You can enable encrypted communications between Process Manager Server and its clients, to further
secure the Process Manager network by installing the strong encryption package for your platform. If you
want to use this feature, encryption must be enabled on all clients, as well as on the server.

About Process Manager

Administering Platform Process Manager 25

About Failover
Process Manager supports an optional failover feature, which provides redundancy for the Process
Manager Server. The failover feature allows you to configure a second Process Manager Server host to
take over the responsibilities of the primary Process Manager Server host if it should fail. The failover
feature includes the Platform EGO or failover daemon (fod, in case of UNIX), which starts the Process
Manager Server on the primary Process Manager Server host. The failover daemon monitors the health
of the primary Process Manager Server, starting Process Manager Server on the failover host if the primary
fails to respond within a certain time period.

The failover feature relies on a shared file system for access to the working directory of the Process Manager
Server.

1. Process Manager Server updates flow status in its working directory based on data it reads from
lsb.events.

2. The fod or EGO on the failover host monitors the primary host. If it receives no response from the
heartbeat, it assumes the primary host is down, and starts jfd on the failover host. Process Manager
Server is now running on the failover host.

3. The fod or EGO on the failover host continues to monitor for a response from the primary host.
When it receives a response, it stops jfd on the failover host, returning control to the primary host.

The failover host requires access to both the Process Manager working directory JS_TOP/work, and
the events file lsb.events.

About Process Manager

26 Administering Platform Process Manager

About Calendars
Process Manager uses calendars to define the dates in a time event, which is used to determine when a
flow triggers or a job runs. Calendars are defined independently of flows and jobs so that they can be
associated with multiple time events.

A time event consists of the date and time to trigger the event, and the duration in which the event is valid
(in time or number of occurrences). The calendar provides the date specification for the time event.

Process Manager has two types of calendars:
• User calendars
• System calendars

You create both types of calendars using the Calendar Editor.

Users can only manipulate their own calendars, but they can use system calendars and calendars
belonging to other users when combining calendars.

About user calendars
User calendars are created by individual users. Users create a new calendar when they have a requirement
for a unique time event, and no calendar in the current list of calendars resolves to the correct date or set
of dates. Users can create simple calendars, or calendars that combine multiple calendars, both user and
system, to create complex schedule criteria.

These calendars are owned by the user who created them and can be used by any user. Only the owner
can modify or delete these calendars.

About system calendars
System calendars are built-in or created by a Process Manager administrator. These calendars are owned
by the virtual user Sys and can be used by any user.

Process Manager comes with a set of pre-defined system calendars that you can use as is to suit the needs
of your site. In addition to these built-in calendars, the Process Manager administrator may define other
system calendars.

About changing or deleting calendars
Once created, calendars can be changed or deleted. However, if you change or delete a calendar when it
is in use (that is, when a flow definition is triggered by an event that uses the calendar, when a flow is
running and contains a time event that uses that calendar, or when the calendar is referenced by another
calendar), your changes will only take effect on any new instances; current instances will continue to use
the previous calendar definition.

Time zones
It is possible for users to run their Process Manager Clients from a different geographic time zone than
the Process Manager Server. Therefore it is important to note that, by default, all time events specified in
a flow definition are based on the time zone set in JS_TIME_ZONE. For example, Joe is in Los Angeles
and is connected to a Process Manager server in New York. He has set JS_TIME_ZONE=server. When
Joe defines a flow to trigger at 5 p.m, it triggers at 5 p.m. New York time, not Los Angeles time.

If you change the time zone, you must restart Process Manager.

You can also change the time zone of a specific time event when you create that time event.

About Process Manager

Administering Platform Process Manager 27

All start times displayed for a work item in Flow Manager are in GMT (Universal Time).

Tip:
Note that the time used with the calendars is based on the time zone set
in JS_TIME_ZONE. The time zone can be set as server, client (default),
or Universal Time (UTC also known as GMT).

Default change
In Process Manager 3.0, the default for JS_TIME_ZONE was server. The default is now client.

Built-in system calendars
Types of Calendars Calendar Names

Weekly calendars Mondays@Sys

Tuesdays@Sys

Wednesdays@Sys

Thursdays@Sys

Fridays@Sys

Saturdays@Sys

Sundays@Sys

Daily@Sys

Weekdays@Sys

Weekends@Sys

Businessdays@Sys

Monthly calendars First_monday_of_month@Sys

First_tuesday_of_month@Sys

First_wednesday_of_month@Sys

First_thursday_of_month@Sys

First_friday_of_month@Sys

First_saturday_of_month@Sys

First_sunday_of_month@Sys

First_weekday_of_month@Sys

Last_weekday_of_month@Sys

First_businessday_of_month@Sys

Last_businessday_of_month@Sys

Biweekly_pay_days@Sys

About Process Manager

28 Administering Platform Process Manager

Types of Calendars Calendar Names

Yearly calendars Holidays@Sys

First_day_of_year@Sys

Last_day_of_year@Sys

First_businessday_of_year@Sys

Last_businessday_of_year@Sys

First_weekday_of_year@Sys

Last_weekday_of_year@Sys

The Holidays@Sys calendar
When you receive Process Manager, it comes with some predefined system calendars. Most of these
calendars are ready to be used. The calendar Holidays@Sys can be a particularly important calendar for
use in creating schedules, but it should be edited to reflect your company holidays, before users begin
creating schedules. It should also be updated annually, to reflect the current year’s statutory holidays,
company-specific holidays, and so on.

Some of the other built-in calendars rely on the accuracy of Holidays@Sys, including any calendar that
defines business days, since a business day is a weekday that is not a holiday.

The Biweekly_pay_days@Sys calendar
The Biweekly_pay_days@Sys calendar assumes a Friday pay day. If biweekly pay days are a different day
of the week, edit this calendar to specify the correct day of the week for pay days.

About Process Manager

Administering Platform Process Manager 29

About Exceptions
Process Manager provides flexible ways to handle certain job processing failures so that you can define
what to do when these failures occur. A failure of a job to process is indicated by an exception. Process
Manager provides some built-in exception handlers you can use to automate the recovery process, and
an alarm facility you can use to notify people of particular failures.

Process Manager monitors for the following exceptions:

• Misschedule
• Overrun
• Underrun
• Start Failed
• Cannot Run

Misschedule
A Misschedule exception occurs when a work item depends on a time event, but is unable to start during
the duration of that event. There are many reasons why your job can miss its schedule. For example, you
may have specified a dependency that was not satisfied while the time event was active.

Overrun
An Overrun exception occurs when a work item exceeds its maximum allowable run time. You use this
exception to detect run away or hung jobs.

Underrun
An Underrun exception occurs when a work item finishes sooner than its minimum expected run time.
You use this exception to detect when a job finishes prematurely.

Start Failed
A Start Failed exception occurs when a job or job array is unable to run because its execution environment
could not be set up properly. Typical reasons for this exception include lack of system resources such as
a process table was full on the compute host, or a file system was not mounted properly.

Cannot Run
A Cannot Run exception occurs when a job or job array cannot proceed because of an error in submission.
A typical reason for this exception might be an invalid job parameter.

About Process Manager

30 Administering Platform Process Manager

User-specified conditions
In addition to the exceptions, you can specify and handle other conditions, depending on the type of work
item you are defining. For example, when you are defining a job, you can monitor the job for a particular
exit code, and automatically rerun the job if the exit code occurs. The behavior when one of these
conditions occurs depends on what you specify in the flow definition.

You can monitor for the following conditions:

Work Item Condition

Flow An exit code of n (sum of all exit codes)

n unsuccessful jobs

A work item has exit code of n

Subflow An exit code of n

n unsuccessful jobs

A work item has exit code of n

Job An exit code of n

Job array An exit code of n

n unsuccessful jobs

About Process Manager

Administering Platform Process Manager 31

Behavior when an exception occurs
The following describes the behavior when an exception occurs, and no automatic exception handling is
specified:

When a… Experiences this exception… This happens…

Flow definition Misschedule The flow is not triggered.

Flow Overrun The flow continues to run after the exception occurs. The run
time is calculated from when the flow is first triggered until its
status changes from Running to Exit or Done, or until the
Overrun time is reached, whichever comes first.

Underrun The time is calculated from when the flow is first triggered until
its status changes from Running to Exit or Done.

Subflow Misschedule The subflow is not run.

Overrun The subflow continues to run after the exception occurs. The
run time is calculated from when the subflow is first triggered
until its status changes from Running to Exit or Done, or until
the Overrun time is reached, whichever comes first.

Underrun The time is calculated from when the subflow first starts
running until its status changes from running to Exit or Done.

Job Misschedule The job is not run.

Cannot Run The job is not run.

Start Failed The job is still waiting. Submission of the job is retried until the
configured number of retry times. If the job still cannot run, a
Cannot Run exception is raised. The default number of retry
times is 20.

Overrun The job continues to run after the exception occurs. The run
time is calculated from when the job is successfully submitted
until it reaches Exit or Done state, or until the Overrun time is
reached, whichever comes first.

Underrun The time is calculated from when the job is successfully
submitted until it reaches Exit or Done state.

About Process Manager

32 Administering Platform Process Manager

When a… Experiences this exception… This happens…

Job array Misschedule The job array is not run.

Cannot Run The job array is not run.

Start Failed The job array is still waiting. Submission of the job array is
retried the configured number of retry times. If the job array still
cannot be started, a Cannot Run exception is raised. The
default number of retry times is 20.

Overrun The job array continues to run after the exception occurs. The
run time is calculated from when the job array is successfully
submitted until its status changes from Running to Exit or
Done, or until the Overrun time is reached, whichever comes
first.

Underrun The time is calculated from when the job array is successfully
submitted until each element in the array reaches Exit or Done
state.

About Process Manager

Administering Platform Process Manager 33

About Exception Handling
Process Manager provides built-in exception handlers you can use to automatically take corrective action
when certain exceptions occur, minimizing the human intervention required. You can also define your
own exception handlers for certain conditions.

Built-in exception handlers
The built-in exception handlers are:

• Rerun
• Kill
• Opening an alarm

Rerun
The Rerun exception handler reruns the entire work item. Use this exception handler in situations where
rerunning the work item can fix the problem. The Rerun exception handler can be used with Underrun,
Exit and Start Failed exceptions. Work items that have a dependency on a work item that is being rerun
cannot have their dependency met until the work item has rerun the last time. When selecting the Rerun
exception handler, you can specify the maximum number of times the exception handler reruns the work
item.

Kill
The Kill exception handler kills the work item. Use this exception handler when a work item has overrun
its time limits. The Kill exception handler can be used with the Overrun exception, and when you are
monitoring for the number of jobs done or exited in a flow or subflow.

If you are running z/OS mainframe jobs on Windows, you need to configure a special queue and submit
jobs to that queue to be able kill them.

Alarm
An alarm provides both a visual cue that an exception has occurred, and either sends an email notification
or executes a script. You use an alarm to notify key personnel, such as database administrators, of problems
that require attention. An alarm has no effect on the flow itself.

You can use an alarm as an automated exception handler for many types of exceptions.

For other types of exceptions where alarms are not available as exception handlers, you can create an
alarm directly in the Flow Editor.

An opened alarm appears in the list of open alarms in the Flow Manager until the history log file containing
the alarm is deleted or archived.

Alarms are configured by the Process Manager administrator.

Behavior when built-in exception handlers are used
The following describes the behavior when an exception handler is used:

About Process Manager

34 Administering Platform Process Manager

When a… Experiences
this
Exception…

and the Handler
Used is…

This Happens…

Flow Overrun Kill The flow is killed. All incomplete jobs in the flow are killed. The
flow status is ‘Killed’.

Alarm The alarm is opened. The flow continues execution as
designed.

Underrun Rerun Flows that have a dependency on the success of this flow may
not be triggered, depending on the type of dependency. The
flow is recreated with the same flow ID. The flow is rerun from
the first job, as many times as required until the execution time
exceeds the underrun time specified.

Alarm The alarm is opened.

Flow has exit
code of n

Rerun Flows that have a dependency on this flow may not be
triggered, depending on the type of dependency. The flow is
recreated with the same flow ID. The flow is rerun from the
first job, as many times as required until an exit code other
than n is reached.

Alarm The alarm is opened. Flows that have a dependency on this
flow may not be triggered, depending on the type of
dependency.

n unsuccessful
jobs

Kill The flow is killed. All incomplete jobs in the flow are killed. The
flow status is ‘Killed’.

Alarm The alarm is opened. Flows that have a dependency on this
flow may not be triggered, depending on the type of
dependency. The flow continues execution as designed.

Work item has
exit code of n

Rerun Flows that have a dependency on this flow may not be
triggered, depending on the type of dependency. The flow is
rerun from the first job, as many times as required until the
work item has a different exit code.

About Process Manager

Administering Platform Process Manager 35

When a… Experiences
this
Exception…

and the Handler
Used is…

This Happens…

Subflow Overrun Kill The subflow is killed. The flow behaves as designed.

Alarm The alarm is opened. Both the flow and subflow continue
execution as designed.

Underrun Rerun Work items that have a dependency on this subflow may not
be triggered, depending on the type of dependency. The
subflow is rerun from the first job, as many times as required
until the execution time exceeds the underrun time specified.

Alarm The alarm is opened. The flow continues execution as
designed.

Subflow has exit
code of n

Rerun Work items that have a dependency on this subflow may not
be triggered, depending on the type of dependency. The
subflow is rerun from the first job, as many times as required
until an exit code other than n is reached.

Alarm The alarm is opened. The flow continues execution as
designed.

n unsuccessful
jobs

Kill The subflow is killed. The flow behaves as designed.

Alarm The alarm is opened. The flow and subflow continue
execution as designed.

A work item has
exit code of n

Rerun Work items that have a dependency on this flow may not be
triggered, depending on the type of dependency. The flow is
rerun from the first job, as many times as required until the
work item has a different exit code.

Job or job array Overrun Kill The job or job array is killed. The flow behaves as designed.
The job or job array status is determined by its exit value.

Alarm The alarm is opened. Both the flow and job or job array
continue to execute as designed.

Underrun Rerun Objects that have a dependency on this job or job array may
not be triggered, depending on the type of dependency. The
job or job array is rerun as many times as required until the
execution time exceeds the underrun time specified.

Alarm The alarm is opened. The flow continues execution as
designed.

An exit code of
n

Rerun The job or job array is rerun as many times as required until
it ends successfully.

Alarm The alarm is opened. The flow behaves as designed.

n unsuccessful
jobs

Kill The job array is killed. The flow behaves as designed. The job
array status is determined by its exit value.

Alarm The alarm is opened. The flow continues execution as
designed.

About Process Manager

36 Administering Platform Process Manager

User-defined exception handlers
In addition to the built-in exception handlers, you can create your flow definitions to handle exceptions
by:

• Running a recovery job
• Triggering another flow

Recovery job
You can use a job dependency in a flow definition to run a job that performs some recovery function
when an exception occurs.

Recovery flow
You can create a flow that performs some recovery function for another flow. When you submit the
recovery flow, specify the name of the flow and exception as an event to trigger the recovery flow.

About Process Manager

Administering Platform Process Manager 37

IPv6 support
The Process Manager Server daemon (JFD) handles communication between the IPv4 and IPv6 hosts in
the following manner:

• IPv4 only

JFD listens on an IPv4 socket and can only accept connections from IPv4 clients.
• IPv6 only

JFD listens on an IPv6 socket and can only accept connections from IPv6 clients.
• IPv4/IPv6 dual stack

JFD can accept connections from both IPv4 and IPv6 clients. Most operating systems that support
IPv6 can accept both IPv6 and IPv4 connections by emulating an IPv6 address: the operating system
converts the IPv4 address to an IPv4-mapped IPv6 address.

Since Windows XP and Windows Server 2003 do not have this feature, Process Manager creates two
sockets for IPv4 and IPv6 on a dual-stack host to handle separate connections from IPv4 and IPv6.
This allows all operating systems to handle an IPv4/IPv6 dual-stack host, including supported
Windows operating systems.

About Process Manager

38 Administering Platform Process Manager

3
Maintaining Process Manager

This chapter describes how to add components to the Process Manager system, how to maintain the
system, how to obtain historical information, and some troubleshooting techniques.

C H A P T E R

Administering Platform Process Manager 39

Install and configure a failover host on UNIX
(managed by failover daemon)

Note:
Follow this procedure only if you have not installed Process Manager as
an EGO service.

When you install Process Manager Server, the failover daemon fod is automatically installed. You only
need to license and configure the failover host. It is recommended that you do this prior to installing a
large number of Process Manager clients, because each client needs to be configured to connect to the
failover host automatically if the primary host is unavailable.

Procedure overview:

1. Configure the primary host to recognize the failover host.
2. Prepare the installation files on the failover host.
3. Prepare the configuration on the failover host.
4. Install Process Manager Server on the failover host, and start the failover host.

Configure the primary host
1. Log on to the Process Manager Server host as root or as the primary Process Manager administrator.
2. Run jadmin stop.
3. Edit JS_TOP/conf/js.conf.
4. For the JS_FAILOVER parameter, specify true. Be sure to remove the comment character #.
5. For the JS_FAILOVER_HOST parameter, specify the fully-qualified name of the failover host.
6. Optional. Add JS_FOD_PORT parameter and specify the port number of the failover daemon. If you

do not specify a port number, it defaults to 1999.
7. Save js.conf.
8. Run jadmin start to start Process Manager Server and make your changes take effect.

Prepare the installation files on the failover host
1. Make sure that you have access to the Process Manager distribution files.

a) Copy the installer to the Process Manager directory.
b) Untar the package (for example, ppm7.1_pinstall.tar.Z).

% zcat ppm7.1_pinstall.tar.Z|tar xvf -

This creates a directory called ppm7.1_pinstall. For example:
% ls /usr/share/pmanager/ppm7.1_pinstall/

c) Copy the Process Manager Server and Process Manager Client distribution files for your operating
system to the Process Manager directory. Do not untar these files.

Maintaining Process Manager

40 Administering Platform Process Manager

Prepare the configuration on the failover host
1. Log on to the failover host as root or as the primary Process Manager administrator.
2. Make the Process Manager directory current. For example:

cd /usr/share/pmanager/ppm7.1_pinstall
3. Copy install.config from the Process Manager Server host to the failover host, replacing the one

in the installation package.
4. Edit install.config as follows:

a) Add JS_FAILOVER parameter and specify true.
b) Optional. For the JS_FOD_PORT parameter, specify the port number of the failover daemon. If

you do not specify a port number, it defaults to 1999. Be sure to remove the comment character
#.

5. Save install.config.

Install the software on the failover host
1. Run jsinstall to start the installation:

./jsinstall -f install.config

Logging installation sequence in /usr/share/pmanager/ppm7.1_pinstall/
ppm7.1_pinstall/Install.log

2. Select the Process Manager Server. For example:
Searching for Process Manager tar files in /usr/share/pmanager/ppm7.1_pinstall
please wait ...
1) Linux 2.6-glibc2.3-x86 Server
2) Linux 2.6-glibc2.3-x86 Flow Editor and Calendar Editor Client
3) Linux 2.6-glibc2.3-x86 Flow Manager Client
List the numbers separated by spaces that you want to install. (E.g. 1 3 7, or press
Enter for all): 1 2

3. After the installation is complete, set the Process Manager environment:

• On csh or tcsh:

source JS_TOP/conf/cshrc.js

• On sh, ksh or bash:

. JS_TOP/conf/profile.js

Where JS_TOP is the top-level Process Manager installation directory, the value specified in the
install.config file.

4. Run jadmin start to start the Process Manager daemon on the failover host:
jadmin start

Maintaining Process Manager

Administering Platform Process Manager 41

Add a UNIX client
1. Copy the client tar file for the operating system Process Manager Client will run on to the UNIX host

on which you want to install Process Manager.

For example, ppm7.1_pinstall.tar.Z.
2. Untar ppm7.1_pinstall.tar.Z as follows:

% zcat ppm7.1_pinstall.tar.Z|tar xvf -

This creates a directory called ppm7.1_pinstall.
3. In ppm7.1_pinstall, edit section 1 of the file install.config to define your configuration.

Remove the comment symbol (#) and set values for the following parameters:

• For JS_TOP, specify the full path to the top-level Process Manager installation directory. The
installation script will create the directory you specify.

• For JS_HOST, specify the fully qualified hostname of the host on which the Process Manager
daemon will run. You can specify only one host, as each host requires its own configuration files.

• For JS_PORT, specify the port number through which the clients will access the Process Manager
Server. The default is 1966.

• For JS_TARDIR, specify the full path to the directory containing the Process Manager distribution
tar files. The default is the parent directory of the current working directory where jsinstall
is running.

Maintaining Process Manager

42 Administering Platform Process Manager

Add a Windows client
1. Copy ppm7.1_pinstall_win.exe to the desktop or a shared file location from which you can run

it.
2. Run ppm7.1_pinstall_win.exe to start the installation.
3. In the Welcome dialog, click Next
4. In the Choose Destination Location dialog, click Next to use to the default location; or click

Browse... to select a different directory. Click Next.
5. In the Select Components dialog, select the components to install and click Next.

• Flow Editor and Calendar Editor
• Flow Manager

Click Next to continue.
6. In the Client Configuration dialog:

a) In the Host name field, specify the name of the Process Manager host the desktop will connect to.
b) In the Port field, specify the port number of the Process Manager host. If you used the default port

number for the Server, leave the value at 1966.
c) Click Next.

7. Verify that the settings are correct, and click Next to complete the installation.
8. Click Finish.
9. When the installation is complete, from the Start menu, select Platform Computing and Process

Manager, and the appropriate application: Flow Editor, Flow Manager, or Calendar Editor.

Both the Flow Manager and the Calendar Editor require a connection to the Server to be able to start.
If you are unable to start either of these applications, there is an error in the configuration, or the
Server is not yet started.

Maintaining Process Manager

Administering Platform Process Manager 43

Run the Process Manager server on system
startup

On UNIX, the Process Manager Server can be configured to start and stop at system startup or shutdown.
On Windows, the Process Manager Server runs as a service, and by default, starts and stops automatically
with the system.

1. Ensure installation of the Process Manager daemon is complete, and that you have sourced the correct
environment.

2. Log on as root to the host where the Process Manager daemon is installed.
3. Run the following script:

#./bootsetup

This script picks up your environment information and enables the daemon to start and stop at system
boot time.

Maintaining Process Manager

44 Administering Platform Process Manager

About Process Manager variables
Process Manager provides substitution capabilities through the use of variables. When Process Manager
encounters a variable, it substitutes the current value of that variable.

Process Manager users can use variables as part or all of a file name to make file names flexible, or use
them to pass arguments to any job, or from scripts. They can export the value of a variable to one or more
jobs in a flow, or to other flows that are currently running on the same Process Manager Server.

Process Manager users can set a value for a single variable within a script, or set values for a list of variables,
and make all of the values available to the flow or to the Process Manager Server. They can use a single
variable or a list of variables within a job, job array or file event definition.

Maintaining Process Manager

Administering Platform Process Manager 45

Types of variables
Process Manager supports three types of variables:

• Built-in variables
• User variables
• Environment variables

Built-in variables
Built-in variables are those defined by Process Manager, where the value is obtained automatically by
Process Manager and made available for use by a flow. No special setup is required to use Process Manager
built-in variables. You can use these variables in many of the job definition fields in Flow Editor.

User variables
User variables are those created by a user, where the value is set at runtime within a UNIX script or
Windows .bat file, and made available to Process Manager. To use a user variable, you must first create
a job that sets a runtime value for the variable and exports it to Process Manager. You submit that job to
a special queue that is configured to set variables. See your Process Manager administrator for the queue
name. Once a value has been set for the variable, you can use the variable in many of the job definition
fields in Flow Editor.

There are two types of user variables Process Manager users can set:

• Local variables—those whose values are available only to jobs, job arrays, subflows or events within
the current flow. These variables are set in JS_FLOW_VARIABLE_LIST or in a file specified by
JS_FLOW_VARIABLE_FILE.

• Parent variables are local variables whose values are set at the parent flow scope. If the current flow
is the main flow, the variables are set at the main flow scope. These variables are set in
JS_PARENT_FLOW_VARIABLE_FILE.

You use the built-in variable JS_FLOW_SHORT_NAME when you need to use the shortened
version of the flow name to avoid a potential name conflict issue when using
JS_PARENT_FLOW_VARIABLE_FILE to set parent flow variables. For more details, refer to
Using Platform Process Manager.

• Global variables—those whose values are available to all the flows within the Process Manager Server.
These variables are set in JS_GLOBAL_VARIABLE_LIST or in a file specified by
JS_GLOBAL_VARIABLE_FILE.

User variables can also be used inside environment variables.

Environment variables
You can submit a job that has environment variables that are used when the job runs. Environment
variables can contain user variables.

Maintaining Process Manager

46 Administering Platform Process Manager

Scope of variables
The variables set by the job have similar scope to variables in any programming language (C, for example).
If the job sets the variable in JS_FLOW_VARIABLE_LIST (or in the file specified by
JS_FLOW_VARIABLE_FILE) within a subflow, the scope of the variable is limited to the jobs and events
within the subflow. This means that the variable is only visible to that subflow and is not visible to the
main flow or any other subflows. If the same variable is overwritten by another job within the subflow,
the new value is used for all subsequent jobs or events inside that subflow.

If the job sets variables in the file specified by JS_PARENT_FLOW_VARIABLE_FILE within a subflow,
the user variable is passed to the parent flow.

Local variable values override global variable values. Similarly, a value set within a subflow overrides any
value set at the flow level, only within the subflow itself.

Environment variables are set in the job definition and the job runs with the variables that are set.

Maintaining Process Manager

Administering Platform Process Manager 47

How variables are set
How user variables are set

User variables are set using the following methods:
• Job starter
• External file

Job starter
Process Manager uses a job starter as a wrapper to a job to export any user variables that are set within
the job. The job starter actually runs the executable the job is defined to run. When the executable finishes,
the job starter obtains any variables and values that were set by the job from JS_FLOW_VARIABLE_LIST
and JS_GLOBAL_VARIABLE_LIST. The variables are written to the shared directory under JS_TOP/
work/var_comm, where they are stored temporarily. The Process Manager Server retrieves the variables
and their values and saves them in permanent storage under JS_TOP/work/variable.

External file
Process Manager can set user variables by writing to an external file. This method does not require a job
starter, and the job command is not required to use shell scripts. Any binary or script will work, as long
as it can write to the file. Process Manager sets environment variables for each job or job array:
JS_FLOW_VARIABLE_FILE, JS_GLOBAL_VARIABLE_FILE, and
JS_PARENT_FLOW_VARIABLE_FILE. In addition, LSF sets the LSB_JOBINDEX environment variable
for job arrays to indicate the index of each job array element.

For jobs to set flow variables, the job must write to the file specified by the JS_FLOW_VARIABLE_FILE
environment variable. For jobs to set global variables, the job must write to the file specified by the
JS_GLOBAL_VARIABLE_FILE environment variable. For jobs to set parent flow variables, the job must
write to the file specified by the JS_PARENT_FLOW_VARIABLE_FILE environment variable.

Therefore, for job arrays to set flow variables, the job array must be able to write to the file specified by
the JS_FLOW_VARIABLE_FILE[LSB_JOBINDEX] environment variable; for job arrays to set global
variables, the job array must write to the file specified by the JS_GLOBAL_VARIABLE_FILE
[LSB_JOBINDEX] environment variable; and for job arrays to set variables for parent flows, the job array
must write to the file specified by JS_PARENT_FLOW_VARIABLE_FILE[LSB_JOBINDEX].

The jobs or job arrays write to the files in the following format (each line contains a variable-value pair):
VAR1=VALUE1
VAR2=VALUE2
...

The values must not contain semicolons (;) or control characters. Process Manager will not initially create
these files — the files need to be created by the jobs.

The following example illustrates a Perl script fragment for jobs that assigns file names to set flow, global,
and parent flow variables:
$flowVarFile = $ENV{JS_FLOW_VARIABLE_FILE};
$globalVarFile=$ENV{JS_GLOBAL_VARIABLE_FILE};
$parentflowVarFile=$ENV{JS_PARENT_FLOW_VARIABLE_FILE};

The following example illustrates a Perl script fragment for job arrays that assigns file names to set flow,
global, and parent flow variables:

$flowVarFile = $ENV{JS_FLOW_VARIABLE_FILE} . "[" . $ENV{LSB_JOBINDEX} . "]";
$globalVarFile=$ENV{JS_GLOBAL_VARIABLE_FILE} . "[" . $ENV{LSB_JOBINDEX} . "]";

Maintaining Process Manager

48 Administering Platform Process Manager

$parentflowVarFile=$ENV{JS_PARENT_FLOW_VARIABLE_FILE} . "[" . $ENV{LSB_JOBINDEX} . "]";

How environment variables are set
For environment variables, a new job attribute is created to store the environment variables. In a Linux
environment, a script file is written to a temporary directory to run the bsub command. In a Windows
environment, a temporary directory is used to create and run batch files. The system tries the following
directories until it finds one that is writable:

• %TEMP%
• %TMP%
• C:\

Maintaining Process Manager

Administering Platform Process Manager 49

Dedicate the Process Manager Server Host
If you are running large flows or a large number of flows, it is recommended that you designate your
Process Manager Server host as an LSF client host, rather than an LSF server host.

1. Edit the LSF cluster file lsf.cluster.cluster_name.
2. In the Host section of the file, locate the name of the host on which the Process Manager Server.
3. In the Server column for the primary Process Manager host, enter 0, which specifies that this is a client

host and does not run LSF jobs. For example:
Begin Host HOSTNAME model type server r1m pg tmp RESOURCES RUNWINDOW
hostA SparcIPC Sparc 1 3.5 15 0 (sunos frame) ()
hostD Sparc10 Sparc 1 3.5 15 0 (sunos) (5:18:30-1:8:30)
jshost ! ! 0 2.0 10 0 () () End Host

4. Save the file.
5. Run lsadmin reconfig and badmin reconfig to reconfigure the LSF cluster.

Maintaining Process Manager

50 Administering Platform Process Manager

Configure an alarm
An alarm is used to send a notification when an exception occurs. The alarm definition specifies how a
notification should be sent if an exception occurs. When a user defines a flow to schedule work, they can
select an alarm to open if an exception occurs. They select an alarm from a configured list of alarms.
Alarms are configured by the Process Manager administrator.

Alarms are stored in JS_TOP/work/alarms. Each alarm is in a separate file named alarm_name.alarm.
The file name and its contents are case-sensitive. Each alarm can either notify one or more email addresses,
or execute a script.

The alarm file contains the following parameters:
DESCRIPTION=<description>
NOTIFICATION=command_name[command_parameters]

Any alarm files with an invalid alarm definition will not be registered. Any extra unrecognized parameters
are ignored, but the alarm will still be registered.

1. As the Process Manager administrator, create a new file in JS_TOP/work/alarms. Specify a name
for the file that is a meaningful name for the alarm, with a file suffix of alarm. For example:
DBError.alarm

The name you specify will appear in the Flow Editor in the list of available alarms.
2. Optional. Specify a meaningful description for the alarm. For example:

DESCRIPTION=Send DBA a message indicating DBMS failure

3. Required. Specify the alarm type and definition.

• Email notification
NOTIFICATION=Email[user_name ...]

Specify the "Email" command, followed by a space-delimited list of email addresses to notify
regarding the exception. Specify the complete email address, or just the user name if
JS_MAILHOST was defined in js.conf. For example:
NOTIFICATION=Email[bsmith ajones]

You must specify a valid notification statement with at least one email address, or the alarm is not
valid.

• Script execution
NOTIFICATION=CMD[/file_path/script_file user_variable ...]

Specify the "CMD" command, followed by the path to the script file and any user variables (such as
the error code). For example:
NOTIFICATION=CMD[/home/admin/pageadmin.sh #{ERRORCODE}]

Variable values cannot contain the backquote character (‘).
4. To enable the alarm, reload the alarm list using the following command:

jreconfigalarm

Maintaining Process Manager

Administering Platform Process Manager 51

Configure to support user variables
If users in your Process Manager system will be setting and using user variables, you need to configure
the system to support this.

1. If the Process Manager Server runs on UNIX, and users will be setting variables in jobs that run on
UNIX hosts, go to Configure variables for UNIX hosts on page 53.

2. If the Process Manager Server runs on Windows, and users will be setting variables in jobs that run
on Windows hosts, go to Configure variables for Windows hosts on page 54.

3. If the Process Manager Server runs on UNIX and users will be setting variables from both UNIX and
Windows hosts, go to you need to follow both sets of instructions.

4. If your users will be using many variables in any job definition field, you may need to increase the
number of variables that can be substituted at a time per field. Go to Increase the number of variables
that can be substituted on page 57 for instructions.

Maintaining Process Manager

52 Administering Platform Process Manager

Configure variables for UNIX hosts
1. Configure one or more UNIX-specific queues to accept jobs that set variables. See Configure a queue

to support setting user variables on page 56 for instructions.
2. Ensure that the korn shell (ksh) is available on the host, as the korn shell is required to export variables

on UNIX.
3. Ensure that the JS_TOP directory is accessible by all LSF hosts that will run jobs that set variables—

on a shared file system.

Maintaining Process Manager

Administering Platform Process Manager 53

Configure variables for Windows hosts
1. Configure one or more Windows-specific queues to accept jobs that set variables. See Configure a

queue to support setting user variables on page 56 for instructions.
2. Ensure that the JS_TOP directory is accessible by all LSF hosts that will run jobs that set variables—

on a shared file system.

Maintaining Process Manager

54 Administering Platform Process Manager

Configure variables for both UNIX and Windows
hosts

1. Configure at least one Windows-specific queue and at least one Linux-specific queue to accept jobs
that set variables. See Configure a queue to support setting user variables on page 56 for instructions.

2. On the UNIX LSF hosts, ensure that the korn shell (ksh) is available, as the korn shell is required to
export variables on UNIX.

3. Log on to the Process Manager Server host as root or as the primary Process Manager administrator.
4. Configure the Server host as follows:

a) Copy ppm7.1_writevar_w2k.tar.Z to the directory containing the Process Manager
distribution files.

b) Run jsinstall to start the installation:
./jsinstall -f install.config

c) Select Windows 2000 Variables from the list of components to install.
d) Press Enter to complete the installation.

5. Edit jsstarter.bat
6. Set a value for JS_TOP. For example:

set JS_TOP=\\user\share\js

7. Save jsstarter.bat.
8. Ensure that the JS_TOP directory is accessible by all LSF hosts that will run jobs that set variables—

on a shared file system.
9. Restart LSF.

Maintaining Process Manager

Administering Platform Process Manager 55

Configure a queue to support setting user
variables

Any jobs submitted to the queues for setting variables must be wrapped in a script. It is recommended
that you create these queues exclusively for setting variables to avoid confusion.

1. Create a new queue in the LSF queues file lsb.queues. If users will be setting variables in both UNIX
and Windows jobs, you will need a separate queue for each.

2. Add the variable JOB_STARTER in the queue configuration to point to the starter script shipped with
Process Manager. Starter scripts are available in JS_TOP/7.1/bin.

For example, for a UNIX queue:
JOB_STARTER=JS_TOP/7.1/bin/jsstarter

For example, for a Windows queue:
JOB_STARTER=JS_TOP\7.1\bin\jsstarter.bat

Ensure that the value you specify for JS_TOP is a fully-qualified UNC (Universal Naming Convention)
name on a shared file system.

3. Run badmin reconfig to reconfigure LSF.

Maintaining Process Manager

56 Administering Platform Process Manager

Increase the number of variables that can be
substituted

1. Stop the Process Manager Server and edit js.conf.
2. Add a line that specifies the maximum number of variable substitutions that can be performed in a

single job definition field by specifying a value for JS_MAX_VAR_SUBSTITUTIONS For example:
JS_MAX_VAR_SUBSTITUTIONS=20

The default is 10 substitutions.
3. Complete the instructions for changing your configuration, saving js.conf, and starting Process

Manager Server.

Maintaining Process Manager

Administering Platform Process Manager 57

Control the Process Manager Server
Starting and stopping the Server on UNIX

On UNIX, the Process Manager Server has a single daemon, jfd. You control jfd with the jadmin command.

Start the Process Manager daemon
1. Log on to the Process Manager Server host as root.
2. Run jadmin start. This command starts jfd.

Stop the Process Manager daemon
1. Log on to the Process Manager Server host as root or as the primary Process Manager administrator.
2. Run jadmin stop. This command stops jfd.

Maintaining Process Manager

58 Administering Platform Process Manager

Start and stop the Server on Windows
On Windows, the Process Manager Server runs as a service. By default, it is configured to start and stop
automatically when the host is started and stopped.

Start the Process Manager service
1. Click Start, select Settings,and select Control Panel.
2. Double-click Administrative Tools.
3. Double-click Services.
4. Right-click on the service Process Manager and select Start.

Stop the Process Manager service
1. Click Start, select Settings,and select Control Panel.
2. Double-click Administrative Tools.
3. Double-click Services.
4. Right-click on the service Process Manager and select Stop.

Maintaining Process Manager

Administering Platform Process Manager 59

Forcing a system snapshot
Periodically, Process Manager automatically takes a snapshot of the workload in the system and the
current status of each work item. The time period between automatic snapshots is determined by the
value set in JS_DATACAPTURE_TIME in js.conf. A snapshot is also taken automatically when Process
Manager Server is shut down normally. The information captured is stored in JS_HOME/work/
system. The information captured in the snapshot is used for recovery purposes, to reconcile job and
flow status. The more current the data in the snapshot, the faster the recovery time. When a snapshot is
being performed, Process Manager Server pauses its processing—jobs that are running continue to run,
but no new work is submitted.

When considering snapshots, you need to balance the time it takes to process the snapshot versus the
time it may take to recover from a failure.

It is recommended that you force a snapshot at a time when Process Manager Server is least busy—if that
time occurs at a regular interval, schedule it then using the JS_DATACAPTURE_TIME parameter in
js.conf.

1. Log on to the Process Manager Server host as root or as the primary Process Manager administrator.
2. Run jadmin snapshot. The following text appears in the log file:

Starting data capture. This may take a while depending upon system workload.

When the snapshot is completed, the following text appears in the log file:
Data capture completed.

Maintaining Process Manager

60 Administering Platform Process Manager

Change the Configuration
After you have installed the basic Process Manager configuration, you may need to change a configuration
value, such as adding administrators.

Change a configuration value on UNIX
1. Log on to the Process Manager Server host as root or as the primary Process Manager administrator.
2. Run jadmin stop.
3. Edit JS_TOP/conf/js.conf.
4. Make your changes.
5. Save js.conf.
6. Run jadmin start to start the Process Manager Server and make your changes take effect.

Change a configuration value on Windows
1. Stop the Process Manager Server service.
2. Edit JS_TOP/conf/js.conf.
3. Make your changes.
4. Save js.conf.
5. Start the Process Manager Server service to make your changes take effect.

Maintaining Process Manager

Administering Platform Process Manager 61

Add an administrator
Process Manager uses role-based access control to secure certain types of objects. Special permissions are
required to install and configure Process Manager, or to modify Process Manager items on behalf of
another user.

Process Manager recognizes the following kinds of administrators:

• Primary Process Manager administrator—required to install a Process Manager Server and change
permissions. It is also the user under which the Process Manager Server runs, and is the minimum
authority required to stop the Process Manager Server. This is the first administrator defined in the
list of administrators for the JS_ADMINS parameter in js.conf—there can be only one.

• Process Manager administrator—can create, delete, modify flows on behalf of another user. You can
specify as many of these as required. You can also specify UNIX user group names or Windows active
directory user group names as administrators. These are the administrators specified after the primary
administrator for the JS_ADMINS parameter in js.conf.

• Process Manager control administrator—can control existing Process Manager items on behalf of
another user. This user cannot submit or remove flows belonging to another user. You can specify as
many of these as required. You can also specify UNIX user group names or Windows active directory
user group names as control administrators. These are the administrators specified in the
JS_CONTROL_ADMINS parameter in js.conf.

1. Stop the Process Manager Server and edit js.conf.
2. To add a Process Manager administrator, for the JS_ADMINS parameter, specify one or more user

IDs or user group names after the primary administrator name.

To specify a list, separate the names with a comma. If the Windows user ID or active directory user
group contains spaces, enclose the user ID or group name in quotation marks.

For example, to specify Windows users and user groups:

JS_ADMINS=DOMAIN\lsfadmin,"DOMAIN\Engineering Group",DOMAIN\userA
3. For JS_CONTROL_ADMINS, specify one or more user IDs or UNIX user group names.

To specify a list, separate the names with a comma. If the Windows user ID or active directory user
group contains spaces, enclose the user ID or group name in quotation marks.

For example, to specify Windows users and user groups:

JS_CONTROL_ADMINS=DOMAIN\admin,"DOMAIN\QA Group",DOMAIN\userA
4. Complete the instructions for changing your configuration, saving js.conf and starting the Process

Manager Server.

Maintaining Process Manager

62 Administering Platform Process Manager

Sign on as a guest
A guest account allows you to have view access to flows and jobs.

As a guest, you have access to the view-only functionality of Flow Manager and Calendar Editor. You can
view but not operate on flow definitions, flows, and jobs. You can view but not create, modify, or delete
calendars.

Guest accounts also have access to the following commands:

• jid
• jalarms
• jflows
• jdefs
• jmanuals
• jcals

Guest accounts do not have access to the Flow Editor or to any other commands.

JS_LOGIN_REQUIRED must be set to true. You can only sign on to the Calendar Editor or Flow Manager.
You cannot log on to the Flow Editor.

1. Start Calendar Editor or Flow Manager.
2. Login user name: guest

The user name is case-sensitive.
3. Leave the password blank.
4. Click OK.

Limit the guest account
Administrators can limit the guest account so that it cannot view any flows.

1. Open js.conf for editing.
2. Set the parameter JS_LIMIT_USER_VIEW=true.

Maintaining Process Manager

Administering Platform Process Manager 63

Allow users to trigger other users’ flows
By default, only Process Manager administrators and Process Manager control administrators can trigger
flows created by other users.

Non-administrator users can only trigger flows from flow definitions that they have submitted to Process
Manager.

There are situations, however, in which you may want some users to create and submit flow definitions
and other users to be able to trigger flows from these flow definitions and control them. In these cases,
you want to create flow definitions that can be shared across users and you want the users who triggered
the flow to own the flow.

When a user owns the flow, the user also has permission to control the flow and jobs in that flow. See the
description of JS_CHANGE_FLOW_OWNER in the js.conf reference for more details on
permissions.

To allow users to trigger flows from flow definitions created by other users:

1. Enable the parameter JS_CHANGE_FLOW_OWNER=true in js.conf. When this parameter is set to
true:

• Note:
This feature only applies to flow definitions that have the status
Published.

• Users other than the user who submitted the flow definition can trigger the flow.
• When the flow is triggered, the flow owner is the user who triggered the flow. Jobs in the flow run

as the user who triggered the flow.
• In Flow Manager, the value defined in the job definition RunAs field is replaced with the user

name of the user who triggered the flow.
2. Restart the Process Manager Server.
3. Publish the flow definition to Process Manager.

Maintaining Process Manager

64 Administering Platform Process Manager

Restrict who can see the flow chart view
By default, users who can view a flow or flow definition in Flow Manager can see everything about the
flow: the flow chart, general information, subflows and jobs, flow data, and flow history.

In some cases, however, you may not want users to see the chart view of a flow.

It is possible to restrict viewing the chart view of a flow and flow definition, to only the Process Manager
administrator and users who are both the flow definition owner and flow owner.

This restriction takes effect in Flow Manager and Platform Application Center. In Flow Manager, if the
user does not have permission to see the flow chart, the related menu items will be grayed out. In Platform
Application Center, if the user does not have permission to see the flow chart, it will not be visible in the
interface.

To restrict who can see the flow chart view:

1. Set the parameter JS_LIMIT_FLOW_CHART_VIEW=true in js.conf.
2. Restart the Process Manager Server.

Maintaining Process Manager

Administering Platform Process Manager 65

Create system calendars
Process Manager uses system calendars to share scheduling expressions that are commonly used. System
calendars are created by the Process Manager administrator, and are owned by the virtual user Sys. They
can be viewed and referenced by everyone. Each system calendar is stored as an individual file in
JS_TOP/work/calendars—one calendar per file. You create a calendar using the Calendar Editor, then
save it as a system calendar.

Maintaining Process Manager

66 Administering Platform Process Manager

Calendar names
When you create a calendar, you need to save it with a unique name. Some rules apply:

• Calendar names can contain the digits 0 to 9, the characters a to z and A to Z, and underscore (_)
• Calendar names cannot begin with a number
• System calendars are named as follows:

calendar_name@Sys

1. Using the Calendar Editor, create the calendar and save it. The calendar will be saved with your own
user ID as the owner. For instructions on using the Calendar Editor, see Using Process Manager, or
the Calendar Editor online help.

2. In JS_TOP/work/calendars, locate the calendar you created. Change the owner of the calendar by
editing the file and changing the owner from your user ID to Sys. Refer to the following example,
where the owner is highlighted:

3. Rename the file or save the file with a new name. Ensure the suffix of the calendar is Sys.
4. If applicable, delete the original calendar you created.

Maintaining Process Manager

Administering Platform Process Manager 67

Update the Holidays@Sys calendar
1. Open the Holidays@Sys calendar.
2. Save the calendar with a new name.
3. Edit the list of dates to include all those dates that are company-wide holidays.
4. In JS_TOP/work/calendars, locate the calendar you created. Change the owner of the calendar by

editing the file and changing the owner from your user ID to Sys. Refer to the following example,
where the owner is highlighted:

5. Delete the original Holidays@Sys calendar.
6. Rename the file to Holidays@Sys. Ensure the suffix of the calendar is Sys.

Maintaining Process Manager

68 Administering Platform Process Manager

Delete a calendar
Periodically, you or a user may need to delete a calendar. This can be done from the Calendar Editor, or
by using the jcdel command.

You cannot delete a calendar that is currently in use by a flow definition, flow, or another calendar. A
calendar is in use under the following conditions:

• If a flow definition is triggered by a time event that uses the calendar, or uses a calendar that references
this calendar

• If a flow is running, and contains a time event that uses the calendar or uses a calendar that references
this calendar

• If another calendar references this calendar to build a schedule statement

You can temporarily delete a system calendar—installing a new version of Process Manager Server
reinstalls the system calendars that come with Process Manager.

1. Stop Process Manager Server.
2. In JS_TOP/work/calendars, locate the calendar you want to delete.
3. Delete the file from the calendars directory.
4. Restart the Process Manager to have the change take effect.

Maintaining Process Manager

Administering Platform Process Manager 69

Maintain User Passwords
Every job has a user ID associated with it. That user ID must always have a current password in the LSF
password file, or the job is unable to run.

If user passwords at your site never expire, you simply need to ensure that all user IDs under which jobs
might run initially have a password entered for them in the LSF password file. After that, maintenance is
only required to add passwords for new users.

If user passwords at your site expire on a regular basis, you and your users need to be aware that a user’s
jobs cannot run if their passwords change and the LSF password file is not updated.

Update the LSF password file
There are two ways that a user’s password can be updated:

• Automatically
• By running the lspasswd command

Automatic updates
Every time a user logs into either the Flow Manager or the Calendar Editor, the user’s password is updated
in the LSF password file.

Run lspasswd
A user can update their own password without logging into the Flow Manager or Calendar Editor by
running the lspasswd command. Simply run lspasswd and enter the current password when
prompted.

Run a job as another user
If you, as the administrator, define a flow that runs a job on behalf of another user, you need to ensure
that user’s password is in the LSF password file. If the user logs on to either the Flow Manager or Calendar
Editor regularly, the password is probably up to date. If not, either you or the user needs to run
lspasswd to update the user’s password so the job can run. Obviously, if you run lspasswd on behalf
of the user, you need to know the user’s password.

Maintaining Process Manager

70 Administering Platform Process Manager

Specify the mail host
The mail host parameter in js.conf defines the type of email server used and the name of the email host.
This information is important for receiving email notifications from the Process Manager Server.

1. Stop the Process Manager Server and edit js.conf.
2. If the parameter JS_MAILHOST is already defined, change the value to specify the new email host.

Otherwise, add a line that specifies the type of mail host and the name of the mail server host. For an
SMTP mail host, specify SMTP:hostname as shown:
JS_MAILHOST=SMTP:barney

For an Exchange mail host, specify Exchange:hostname, as shown:
JS_MAILHOST=Exchange:fred

The default is SMTP on the local host.
3. Complete the instructions for changing your configuration, saving js.conf and starting the Process

Manager Server.

Maintaining Process Manager

Administering Platform Process Manager 71

Change the job start retry value
The job start retry value controls the number of times that the Process Manager Server tries to start a job
or job array before it raises a Start Failed exception.

1. Stop the Process Manager Server and edit js.conf.
2. If the parameter JS_START_RETRY is already defined, change the value to specify the new number

of retry times. Otherwise, add a line like the following to the file:

JS_START_RETRY=n

where n is the number of times to retry starting a job or job array before raising a Start Failed exception.
3. Complete the instructions for changing your configuration, saving js.conf and starting the Process

Manager Server.

Maintaining Process Manager

72 Administering Platform Process Manager

About local jobs on Linux and UNIX
You can include a local job in the flow diagram.

A local job is a job that will execute immediately on the Process Manager host without going through LSF.
A local job is usually a short and small job. It is not recommended to run long, computational-intensive
or data-intensive local jobs as it can overload the Process Manager host.

A local job is non-blocking: that is, several local jobs can run in parallel.

Controlling a local job
You can kill a local job in the same way as you kill any other job. The local job may also be killed as a
result of the flow being killed.

If you suspend or resume a flow that contains local jobs, the local jobs will also be suspended or resumed.

The following signals are sent to the local job:

• Kill—The system sends SIGINT, waits for 10 seconds, SIGTERM, waits for 10 seconds, then SIGKILL.
The 10 second delay between signals allows you to catch the signal and perform any cleanup required
by the job before it is terminated.

• Suspend—The system sends SIGSTOP.
• Resume—The system sends SIGCONT.

In the job’s runtime attributes, you can view the exit status and CPU usage of a local job after the job
completes. The process ID identifies the local job and you can view CPU usage for the job. You can also
view the process ID of the job and CPU usage information with jflows -l flow_id and jhist -C
job.

Parameters related to local jobs
By default, a local job can run indefinitely, it does not have a timeout. To define a timeout value for a local
job so that it will be killed if it was running for too long, use the parameter
JS_LOCAL_EXECUTION_TIMEOUT in js.conf.

To avoid overloading the Process Manager host with too many local jobs, the parameter
JS_LOCAL_JOBS_LIMIT in js.conf controls the maximum number of local jobs that can run
concurrently on the Process Manager host.

jfd and eem.local
To monitor local jobs, jfd communicates with eem.local. This binary is started by jfd, handles job
submission, control, and status checking for local jobs, and reports back to jfd.

jfd listens on the port number JS_PORT + 1 to receive status updates from eem.local, and
eem.local listens on port number JS_PORT + 2 . The parameter JS_PORT is defined in js.conf.

Should jfd terminate abnormally, when it restarts it can recover running and finished local jobs and
determine their status and resource usage.

Maintaining Process Manager

Administering Platform Process Manager 73

About local jobs on Windows
You can include a local job in the flow diagram.

A local job is a job that will execute immediately on the Process Manager host without going through LSF.
A local job is usually a short and small job. It is not recommended to run long, computational-intensive
or data-intensive local jobs as it can overload the Process Manager host.

A local job is blocking: each local job has its own thread for execution, but the dedicated local job thread
will not be freed up to execute another local job until the local job that is executing has completed.

Controlling a local job
You cannot directly kill a local job in the same way as you kill any other job. The local job can only be
killed as a result of the flow being killed, or if it runs for longer than the configured timeout value.

If you suspend or resume a flow that contains local jobs, the local jobs will be killed and rerun.

You can view a local job’s runtime attributes in Flow Manager. Note, however, that no resource usage is
a available for the local job.

Parameters related to local jobs
By default, a local job has a timeout so that it will be killed if it was running for too long. The parameter
JS_LOCAL_EXECUTION_TIMEOUT in js.conf defines how long a local job is allowed to run before
it is killed by the system.

To speed up the local job submission rate and run local jobs in parallel, configure the parameter
JS_LOCAL_EXECUTION_THREADS in js.conf.

Maintaining Process Manager

74 Administering Platform Process Manager

Change the history setting
History information is stored in a history log file. Data is added to this file for either a set period of time
after a flow has completed, or when the history log file reaches a certain size. By default, these values are
set to 24 hours or 500 KB, whichever occurs first. You can change these values after installation. After the
set amount of time has elapsed, or the file reaches the specified size, a new history log file is created. The
previous file remains in the log directory until you archive it or delete it.

1. Follow the instructions in “Changing the Configuration” to stop the Process Manager Server and edit
js.conf.

2. Locate the following parameters in the file:
JS_HISTORY_LIFETIME=24 # JS_HISTORY_SIZE=500000

and change them as follows:
a) Delete the comment symbol (#) from the lines you want to change.
b) Change the JS_HISTORY_LIFETIME value to the maximum number of hours of data you want

to keep in each file.
c) Change the JS_HISTORY_SIZE value to the maximum number of bytes of data you want to keep

before creating a new file.

Historical data will be kept in the current log file until either the size limit or the time limit is
reached, whichever is reached first.

3. Complete the instructions for changing your configuration, saving js.conf and starting the Process
Manager Server.

Maintaining Process Manager

Administering Platform Process Manager 75

View History
You can see the history of a work item, which shows details about when and how the item was run, by
using the Flow Manager or jhist.

When you use the jhist command with no time interval specified, you see data for the past seven days.

Maintaining Process Manager

76 Administering Platform Process Manager

View the history of a flow definition
For a flow definition, you can see the following information:

• If and when it was submitted
• If and when it was submitted to run immediately
• If and when it was removed from Process Manager
• If and when it was placed on hold or released
• If and when it was triggered by an event
• If and when a flow was created, and any IDs of those flows
• Time zone information for Process Manager Client

From the command line
From the command line, run:

%jhist -C flowdef -f flow_definition_name

where flow_name is the name of the flow definition whose history you want to display.

Maintaining Process Manager

Administering Platform Process Manager 77

View the history of a flow
For a flow, you can see the following information:

• When it started
• If and when it was killed
• If and when it was suspended
• If and when it was resumed
• When it completed
• Time zone information for Process Manager Client

From the command line
From the command line, run:

%jhist -C flow -i flow_id

where flow_id is the unique ID of the flow whose history you want to display.

Maintaining Process Manager

78 Administering Platform Process Manager

View the history of a job or job array
For a job or job array, you can see the following information:

• The user name
• The ID of the flow in which it ran
• The job name
• The job ID
• The state of the job
• The status of the job
• When the job started
• When the job completed
• The CPU usage of the job
• The memory usage of the job
• Time zone information for Process Manager Client

From the command line
From the command line, run:

%jhist -C job -j job_name

where job_name is the name of the job or job array.

Maintaining Process Manager

Administering Platform Process Manager 79

Troubleshooting
Process Manager daemon cannot restart—port is in
use
The problem:

If LSF is down, and the Process Manager daemon is killed or goes down before LSF comes back up, it is
possible that one or more jobs were in the process of being submitted before the Process Manager Server
went down. The processes for these jobs may be using the port the Process Manager daemon used before
it went down.

The solution:
Search for the bsub process of any job that Process Manager was trying to submit and kill it. The job will
be resubmitted when the Process Manager Server restarts.

Overrun exception triggers at incorrect time
The problem

An overrun exception is to trigger if a job runs longer than a specified number of minutes, for example
10 minutes. The overrun exception is flagged when the job runs for 9 minutes.

The solution
The clock on the machine used to determine the start time of the job, and the clock on the machine on
which the job is running are out of synchronization. Either adjust the overrun time to account for clock
discrepancies, or synchronize the clocks on all machines.

After deleting a calendar, user cannot find flow
The problem

The user deleted a calendar that was used, either to trigger a flow or to trigger a job within a flow. Then
the Process Manager Server was restarted. After the Server restarts, the user cannot find the flow in the
Flow Manager.

The solution
Upon restart of the Process Manager Server, the flow is no longer associated with its flow definition in
the Flow Manager. This is because the flow definition has an error. The flow now resides in the JS_TOP/
work/storage/error directory.

Unable to run GUI on linux 2.2 through XTERM
The problem

This problem is related to JRE defect #4466587. If the stack size is less than a certain limit on some linux
platforms, a segmentation fault occurs.

Maintaining Process Manager

80 Administering Platform Process Manager

The solution
Increase the stack size to at least 2048. For tcsh or csh:

limit stacksize 2048

For bash:

ulimit -s 2048

Not all user variables are replaced
The problem

The user specified more than the configured maximum number of user variables that can be substituted
in a single field.

The solution
Increase the value for JS_MAX_VAR_SUBSTITUTIONS in js.conf.

User is unable to trigger their own flow
The problem

On Windows, if a user submits a flow under a user ID that is specified in one case, but logs in to Flow
Manager with the same user ID typed in a different case, the Process Manager Server does not recognize
the two user IDs as the same. The user cannot trigger the flow.

For example, when John creates a flow, he is logged in as jdoe. When he logs into Flow Manager to trigger
the flow, he logs in as JDOE. To the Process Manager Server, he is not authorized to trigger this flow
because it is not his.

The solution
A Windows user must always log in using the same case. The following are seen as different users:

• jdoe
• Jdoe
• JDOE

Maintaining Process Manager

Administering Platform Process Manager 81

Maintaining Process Manager

82 Administering Platform Process Manager

4
Mainframe support

Process Manager with IBM® z/OS® mainframe support allows you to dispatch jobs to a mainframe and
monitor their progress using FTP (file transfer protocol) technology on Microsoft® Windows® or UNIX.

z/OS is an operating system for IBM’s zSeries mainframes.

For more information about z/OS, see IBM’s z/OS website: http://www-03.ibm.com/servers/eserver/
zseries/zos/.

How does it work?
The Process Manager daemon (the jfd) supports mainframe by submitting an LSF proxy job which
controls the FTP to the mainframe host. The LSF proxy job (through FTP) submits, monitors, and retrieves
the output of the mainframe job. This means that mainframe jobs specify both mainframe and LSF details.

Requirements
• A valid z/OS mainframe user ID

Limitations
• z/OS does not support suspending or resuming jobs
• Job arrays for mainframe jobs are not supported
• On Windows, if you want to be able to kill a mainframe job, you must submit the job to a queue set

up specifically for that purpose.

C H A P T E R

Administering Platform Process Manager 83

Configure for Mainframe
To use the mainframe support, you must:

1. Copy the template file z/OS_Template.xml from JS_TOP/7.1/examples to JS_TOP/work/templates.
2. Edit zos.conf with your customized settings. The zos.conf file contains all the information you

need to configure your settings for the FTP environment you are using.

The status of mainframe jobs is displayed in Flow Manager.

Killing a job (Windows only)
For a user to be able to kill a job in a Windows environment, the Administrator must create a
queue. For jobs to be eligible to be killed, they must be submitted by the user to that queue.

In lsb.queues in your z/OS-specific queue section, add a job control and the path to the script
that kills the job.

For example,
Begin Queue
QUEUE_NAME= zos_queue
DESCRIPTION= Bkill for zos jobs.
JOB_CONTROLS= TERMINATE[C:\ppm\7.1\etc\zos -k]
End Queue

Mainframe support

84 Administering Platform Process Manager

5
Daemons

• jfd
• fod

C H A P T E R

Administering Platform Process Manager 85

jfd
Process Manager Server daemon.

Synopsis
jfd [-2 | -3 | -4]

jfd [-V]

Description
jfd is responsible for managing flow definitions and flows. When a flow definition is submitted to Process
Manager Server, jfd ensures that it is run according to its schedule or based on any triggering events,
and manages any dependency conditions for each job in the flow before submitting the job to LSF master
host for processing.

Options
-2

Specifies to run jfd as not daemonized, and log debug information to the log file
specified in JS_LOGDIR. This option is used by failover. You cannot use it manually.

-3

Specifies to run jfd as not daemonized, and log debug information to stderr (normally
the terminal). This option may be used for debugging purposes. Use only under the
direction of Platform Technical Support.

-4

Specifies to run jfd as daemonized, and log debug information to the
jfd.log.hostname log file. This option may be used for debugging purposes, and allows
you to run jfd as a user other than root. Use only under the direction of Platform
Technical Support.

-V

Prints the Process Manager release version to stderr and exits.

See also
fod, jadmin

Daemons

86 Administering Platform Process Manager

fod
Process Manager Server failover daemon.

Synopsis
fod

Description
When used, fod is responsible for starting the Process Manager Server daemon jfd, and ensuring that
it continues to run. fod monitors jfd and restarts it on the failover host if jfd fails.

Description
When used, fod is responsible for starting the blcollect daemon, and ensuring that it continues to
run. fod monitors blcollect and restarts it on the failover host if blcollect fails.

See also
jfd, jadmin

Daemons

Administering Platform Process Manager 87

Daemons

88 Administering Platform Process Manager

6
Commands

Process Manager includes a command line interface you can use to issue commands to Process Manager.
You can use commands to submit flow definitions to Process Manager, trigger flows to run, monitor and
control running flows, and obtain history information about many Process Manager work items.

Process Manager provides commands for various purposes: creating and editing calendars, manipulating
flow definitions, monitoring and controlling active flows, and obtaining history about various work items.

You cannot use commands to create a flow definition.

Calendar commands
You can use the following commands to work with Process Manager calendars:
• caleditor—to start the Calendar Editor graphical user interface
• jcadd—to create a calendar
• jcals—to display a list of calendars
• jcdel—to delete a calendar
• jcmod—to edit a calendar

Flow definition commands
You can use the following commands to work with flow definitions:
• floweditor—to start the Flow Editor graphical user interface
• jrun—to submit and run a flow immediately, without storing the flow definition in Process Manager
• jsub—to submit a flow definition to Process Manager
• jtrigger—to trigger the creation of a flow
• jhold—to place a flow definition on hold, preventing automatic triggering of the flow
• jrelease—to release a flow definition from hold, enabling automatic triggering of the flow
• jdefs—to display information about flow definitions
• jremove—to remove a flow definition from Process Manager

Flow monitor and control commands
You can use the following commands to monitor and control flows that are in the process of running or
have recently completed:

C H A P T E R

Administering Platform Process Manager 89

• flowmanager—to start the Flow Manager graphical user interface
• jalarms—to list open alarms
• jcomplete—to complete a manual job
• jflows—to display information about a flow
• jjob—to kill or run a job, or to mark a job complete
• jkill—to kill a flow
• jmanuals—to list all manual jobs waiting for completion
• jpublish—to publish target flows for use by dynamic flows and flow arrays
• jrerun—to rerun an exited flow
• jresume—to resume a suspended flow
• jsetvars—to change the value of a local or global variable while a flow is running
• jstop—to suspend a flow
• junpublish—to unpublish target flows and remove them from the list for use by dynamic flows and

flow arrays

Other commands
• jid—to verify the connection between the Process Manager Client and the Process Manager Server
• jadmin—to control the Process Manager daemon on Unix
• jhist—to view the historic information about server, flow definitions, flows, and jobs.
• jreconfigalarm—to reload the alarm definitions.

Commands

90 Administering Platform Process Manager

caleditor
starts the Calendar Editor.

Synopsis
caleditor

You use the caleditor command to start the Calendar Editor, where you can create new calendars, edit
or delete existing calendars.

Examples
caleditor

opens the Calendar Editor.

Commands

Administering Platform Process Manager 91

floweditor
starts the Flow Editor.

Synopsis
floweditor [file_name [file_name ...]]

Description
You use the floweditor command to start the Flow Editor. You can specify one or more flow definition
file names to open automatically when the Flow Editor starts. You can use this as a shortcut to quickly
open a flow definition for editing.

Options
file_name

Specifies the name of the file to be opened when the Flow Editor starts. If you do not
specify a file name, the Flow Editor starts with no files opened. You can specify a list of
files by separating the file names with a space.

Examples
floweditor /tmp/myflow.xml /flows/payupdt.xml

opens the Flow Editor, and opens myflow.xml and payupdt.xml at the same time.

floweditor

opens the Flow Editor with no files opened.

Commands

92 Administering Platform Process Manager

flowmanager
starts the Flow Manager.

Synopsis
flowmanager

Description
You use the flowmanager command to start the Flow Manager, which allows you to monitor and control
existing flows.

Example
flowmanager

opens the Flow Manager.

Commands

Administering Platform Process Manager 93

jadmin
controls the Process Manager daemon jfd on UNIX.

Synopsis
jadmin [-s] start

jadmin stop

jadmin [-h|-V]

Description
You use the jadmin command to start and stop the Process Manager daemon. You must be either
root or the primary Process Manager administrator to stop the Process Manager daemon.

Options
start

Starts the Process Manager daemon on UNIX. Ensure Process Manager is up and
running before you start the Process Manager daemon. You must be root to use this
option.

-s start

Starts the Process Manager daemon on UNIX in single-user mode. Ensure Process
Manager is up and running before you start the Process Manager daemon. You must
be the primary Process Manager administrator to use this option.

stop

Stops the Process Manager daemon on UNIX. You must be root or the primary Process
Manager administrator to use this option.

-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Examples
jadmin start

Starts the Process Manager daemon.

jadmin -s start

Starts the Process Manager daemon in single-user mode.

jadmin stop

Stops the Process Manager daemon.

Commands

94 Administering Platform Process Manager

See also
jfd, js.conf

Commands

Administering Platform Process Manager 95

jalarms
lists the open alarms in Process Manager.

Synopsis
jalarms [-u user_name|-u all] [-f flow_name|-i flow_id] [-t start_time,end_time]

jalarms [-h]|[-V]

Description
You use the jalarms command to display an open alarm or a list of the open alarms. The following
information is displayed:

• alarm name
• user who owns the flow
• the date and time the alarm occurred
• alarm type
• Description of the problem that caused the alarm, if it was specified by the creator of the flow

Options
-u user_name

Specifies the name of the user who owns the alarm. If you do not specify a user name,
user name defaults to the user who invoked this command. If you specify -u all,
information is displayed about alarms owned by all users.

-f flow_name

Specifies the name of the flow definition for which to display alarm information.
Displays alarm information for flow definitions with the specified name.

-i flow_ID

Specifies the ID of the flow for which to display alarm information. Displays alarm
information for flows with the specified ID.

-t start_time,end_time

Specifies the span of time for which you want to display the alarms. If you do not specify
a start time, the start time is assumed to be the time the first alarm was opened. If you
do not specify an end time, the end time is assumed to be now.

Specify the times in the format "yyyy/mm/dd/HH:MM". Do not specify spaces in the
time interval string.

The time interval can be specified in many ways.
-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Commands

96 Administering Platform Process Manager

Time interval format
You use the time interval to define a start and end time for collecting the data to be retrieved and displayed.
While you can specify both a start and an end time, you can also let one of the values default. You can
specify either of the times as an absolute time, by specifying the date or time, or you can specify them
relative to the current time.

Specify the time interval is follows:

start_time,end_time|start_time,|,end_time|start_time

Specify start_time or end_time in the following format:

[year/][month/][day][/hour:minute|/hour:]|.|.-relative_int

Where:

• year is a four-digit number representing the calendar year.
• month is a number from 1 to 12, where 1 is January and 12 is December.
• day is a number from 1 to 31, representing the day of the month.
• hour is an integer from 0 to 23, representing the hour of the day on a 24-hour clock.
• minute is an integer from 0 to 59, representing the minute of the hour.
• . (period) represents the current month/day/hour:minute.
• .-relative_int is a number, from 1 to 31, specifying a relative start or end time prior to now.

start_time,end_time

Specifies both the start and end times of the interval.
start_time,

Specifies a start time, and lets the end time default to now.
,end_time

Specifies to start with the first logged occurrence, and end at the time specified.
start_time

Starts at the beginning of the most specific time period specified, and ends at the
maximum value of the time period specified. For example, 3/ specifies the month
of March—start March 1 at 00:00 a.m. and end at the last possible minute in March:
March 31st at midnight.

Absolute time examples
Assume the current time is May 9 17:06 2002:

1,8 = May 1 00:00 2002 to May 8 23:59 2002

,4 = the time of the first occurrence to May 4 23:59 2002

6 = May 6 00:00 2002 to May 6 23:59 2002

3/ = Mar 1 00:00 2002 to Mar 31 23:59 2002

/12: = May 9 12:00 2002 to May 9 12:59 2002

2/1 = Feb 1 00:00 2002 to Feb 1 23:59 2002

2/1, = Feb 1 00:00 to the current time

Commands

Administering Platform Process Manager 97

,. = the time of the first occurrence to the current time

,2/10: = the time of the first occurrence to May 2 10:59 2002

2001/12/31,2002/5/1 = from Dec 31, 2001 00:00:00 to May 1st 2002 23:59:59

Relative time examples
.-9, = April 30 17:06 2002 to the current time

,.-2/ = the time of the first occurrence to Mar 9 17:06 2002

.-9,.-2 = nine days ago to two days ago (April 30, 2002 17:06 to May 7, 2002 17:06)

Example
jalarms -u all -t ".-7,."

displays all of the opened alarms for the last seven days.

Commands

98 Administering Platform Process Manager

jcadd
creates a calendar and adds it to the set of Process Manager calendars for the user.

Synopsis
jcadd [-d description] [-s] -t "cal_expression" "cal_name"

jcadd [-h]|[-V]

Description
You use the jcadd command when you need to define a new time expression for use in scheduling either
a flow or a work item within a flow. You define a new time expression by creating a calendar with that
expression. The calendar is owned by the user who runs this command. You must define a calendar
expression when you use this command.

Options
-d description

Specifies a description for the calendar. Specify a meaningful description for the
calendar that summarizes the expression.

-s

Specifies that you are creating a system calendar. You must be a Process Manager
administrator to create system calendars.

-t cal_expression

Specifies the dates on which you want some action to take place. You can enter specific
dates, a range of dates, or a more complex expression that resolves to a series of dates.

Note:
If you want the calendars you create to be viewable in the Calendar
Editor, specify abbreviated month and day names in all uppercase.
For example: MON for Monday, MAR for March.

cal_name

Specifies the name of the calendar you are creating. Specify a unique name for the
calendar. The first character cannot be a number. You can also use an underscore (_)
in the calendar name.

-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Commands

Administering Platform Process Manager 99

Limitations
Note that only merged calendars or calendar expressions with the following format can be viewed through
the Calendar Editor graphical user interface:
RANGE(startdate[, enddate]):PERIOD(1,*,step):occurrence

Some examples that follow this format are:
RANGE(2001/1/1,2002/1/1):day(1,*,3) RANGE(2001/1/1,2002/1/1):week(1,*,3):MON,TUE RANGE
(2001/1/1,2002/1/1):week(1,*,3):ABC(1) RANGE(2001/1/1,2002/1/1):month(1,*,3):1,3,5
RANGE(2001/1/1,2002/1/1):month(1,*,3):MON(1),TUE(1) RANGE(2001/1/1,2002/1/1):month
(1,*,3):ABC(1) RANGE(2001/1/1,2002/1/1):JAN:1||RANGE(2001/1/1,2002/1/1):JAN:2 ABC &&
DEF || HIJ

where ABC, DEF, HIJ are predefined calendars.

Creating calendar expressions
You can create several types of calendar expressions when you are creating or modifying a calendar. You
use these expressions within system calendar definitions or calendars defined or modified using the
jcadd or jcmod commands:

• Absolute dates
• Schedules that recur daily
• Schedules that recur weekly
• Schedules that recur monthly
• Schedules that recur yearly
• Combined calendars

To create absolute dates:
Specify the date in the following standard format:
(yyyy/mm/dd)

For example:
(2001/12/31)

Specify multiple dates separated by commas. For example:
(2001/12/31,2002/12/31)

To create schedules that recur daily:
Specify the expression in the following format:
RANGE(startdate[,enddate]):day(1,*,step)

The ending date is optional. If it is not specified, the calendar is valid indefinitely. For example:
RANGE(2003/2/1,2003/12/31):day(1,*,2)

In the above example, the expression is true every other day, beginning February 1, 2003, until December
31, 2003.

To create schedules that recur weekly:
Specify the expression in one of the following formats:
RANGE(startdate[,enddate]):week(1,*,step):day_of_week

Commands

100 Administering Platform Process Manager

where step is the interval between weeks and day_of_week is one or more days of the week, separated by
commas. For example:
RANGE(2002/12/31):week(1,*,2):MON,FRI,SAT

or
RANGE(startdate[,enddate]):week(1,*,step):abc(ii)

where step is the interval between weeks, abc is a previously defined calendar name and ii is an integer
indicating a specific occurrence of a day within that calendar. For example:
RANGE(2002/01/01):week(1,*,3):MON(-1)

In the above example, MON(-1) refers to last Monday.

To create schedules that recur monthly:
Specify the expression in one of the following formats:
RANGE(startdate[,enddate]):month(1,*,step):day_of_month

where step is the interval between months and day_of_month is one or more days of the month by number,
separated by commas. For example:
RANGE(2002/12/31):month(1,*,2):1,15,30

or
RANGE(startdate[,enddate]):month(1,*,step):abc(ii)

where step is the interval between months, abc is a previously defined calendar name or built-in keyword
and ii is an integer indicating a specific occurrence of a day within that calendar. For example:
RANGE(2002/01/01):month(1,*,3):MON(-1)

In the above example, MON(-1) refers to last Monday.

or
RANGE(startdate[,enddate]):month(1,*,step):day_of_week(ii)

where step is the interval between months, day_of_week is one or more days of the week separated by
commas, and ii is an integer indicating a specific occurrence of a day within that calendar. For example:
RANGE(2002/01/01):month(1,*,3):MON(-1)

In the above example, MON(-1) refers to last Monday.

To create schedules that recur yearly:
Specify the expression in the following format:
RANGE(startdate[,enddate]):month:day

where month is the name of the month (JAN, FEB, MAR...DEC) and day is the day of the month
(1,2,3...29,30,31). For example:
RANGE(2002/1/1,2004/12/31):JAN:1

To merge calendar expressions:
You can use Boolean logic to further qualify your schedule expressions. For example:
Mondays@Sys||Fridays@Sys && !Holidays@Sys

where Mondays@Sys, Fridays@Sys and Holidays@Sys are all predefined system calendars.

Commands

Administering Platform Process Manager 101

Built-in keywords-reserved words
Process Manager reserves words that are used as building blocks to create calendars. You cannot use these
reserved words in a calendar name. However, you can use them within calendar expressions, and they
are recognized by Process Manager. The following are the reserved words:

• apr, april, APR
• aug, august, AUG
• dates, DATES
• day, DAY
• dec, december, DEC
• feb, february, FEB
• fri, friday, FRI
• fy, FY
• h, HH
• jan, january, JAN
• jul, july, JUL
• jun, june, JUN
• m, MM
• mar, march, MAR
• may, MAY
• mon, monday, MON
• month, MONTH
• nov, november, NOV
• oct, october, OCT
• quarter, QUARTER
• range, RANGE
• sat, saturday, SAT
• sep, september, SEP
• sun, sunday, SUN
• thu, thursday, THU
• tue, tuesday, TUE
• wed, wednesday, WED
• yy, YY
• zzz, ZZZZ

Examples
jcadd -d "Mondays but not holidays" -t "Mondays@Sys && ! Holidays@Sys"
Mon_Not_Holiday

Creates a calendar called Mon_Not_Holiday. This calendar resolves to any Monday that is not
a holiday, as defined in the Holidays system calendar.
jcadd -d "Mondays, Wednesdays and Fridays" -t "Mondays@Sys || Wednesdays@Sys ||
Fridays@Sys" Everyotherday

Creates a calendar called Everyotherday that resolves to Mondays, Wednesdays and Fridays.
jcadd -d "Monday to Thursday" -t "*:*:MON-THU" Shortweek

Commands

102 Administering Platform Process Manager

Creates a calendar called Shortweek that resolves to Mondays, Tuesdays, Wednesdays and
Thursdays, every month.
jcadd -d "Db report dates" -t "*:JAN,JUN,DEC:day(1)" dbrpt

Creates a calendar called dbrpt that resolves to the first day of January, June and December,
every year.

See also
jcdel, jcals

Commands

Administering Platform Process Manager 103

jcals
displays the list of calendars in Process Manager. The calendars are listed by owning user ID.

Synopsis
jcals [-l] [-u user_name|-u all] [cal_name]

jcals [-h]|[-V]

Description
You use the jcals command to display information about one or more calendars. When using the default
display option, the following information is displayed:

• user name
• calendar name
• the expression

Options
-l

Specifies to display the information in long format. In addition to the information listed
above, this option displays the status of calendar (whether it is true today or not), the
last date the calendar resolved to, the next date the calendar resolves to, and the calendar
description.

-u user_name

Specifies the name of the user who owns the calendar. If you do not specify a user name,
user name defaults to the user who invoked this command. If you specify -u all,
information is displayed about calendars owned by all users.

cal_name

Specifies the name of the calendar. If you do not specify a calendar name, all calendars
meeting the other criteria are displayed.

-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Examples
jcals -u all

Displays all calendars in Process Manager.

Commands

104 Administering Platform Process Manager

jcdel
deletes an existing calendar.

Synopsis
jcdel [-f][-u user_name] cal_name [cal_name ...]

jcdel [-h]|[-V]

Description
You use the jcdel command to delete one or more calendars from Process Manager. You must be the
owner of a calendar to delete it.

If you delete a calendar that is currently in use by a flow definition or flow, or another calendar, the deleted
calendar will continue to be available to these existing instances, but will no longer be available to new
instances.

Options
-f

Specifies to force the deletion of the calendar.
-u user_name

Specifies the name of the user who owns the calendar. If you do not specify a user name,
the user name defaults to the user who invoked this command.

cal_name

Specifies the name of the calendar you are deleting. You can specify multiple calendar
names by separating the names with a space.

-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Examples
jcdel -u "barneyt" Rundays2001

Deletes the calendar Rundays2001 owned by the user barneyt.

See also
jcadd, jcals

Commands

Administering Platform Process Manager 105

jcmod
edits an existing calendar. Using this command, you can change the calendar expression and the
description of the calendar.

Synopsis
jcmod [-d description] [-u user_name] [-t cal_expression] cal_name

jcmod [-h]|[-V]

Description
You use the jcmod command when you need to change either the calendar expression or the description
of an existing calendar. You must be the owner of the calendar or be a Process Manager administrator to
change a calendar.

If you modify a calendar that is in use by a flow definition or flow, or another calendar, your changes will
only take effect on any new instances; current instances will continue to use the previous calendar
definition.

Options
-d description

Specifies a description for the calendar. Specify a meaningful description for the
calendar that summarizes the expression.

-u user_name

Specifies the name of the user who owns the calendar. If you do not specify a user name,
the user name defaults to the user who invoked this command.

-t cal_expression

Specifies the dates on which you want some action to take place. You can enter specific
dates, a range of dates, or a more complex expression that resolves to a series of dates.

cal_name

Specifies the name of the calendar you are changing. You cannot change the name of
the calendar.

-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Creating calendar expressions
You can create several types of calendar expressions when you are creating or modifying a calendar. You
use these expressions within system calendar definitions or calendars defined or modified using the
jcadd or jcmod commands:

• Absolute dates

Commands

106 Administering Platform Process Manager

• Schedules that recur daily
• Schedules that recur weekly
• Schedules that recur monthly
• Schedules that recur yearly
• Combined calendars

To create absolute dates:
Specify the date in the following standard format:
(yyyy/mm/dd)

For example:
(2001/12/31)

Specify multiple dates separated by commas. For example:
(2001/12/31,2002/12/31)

To create schedules that recur daily:
Specify the expression in the following format:
RANGE(startdate[,enddate]):day(1,*,step)

The ending date is optional. If it is not specified, the calendar is valid indefinitely. For example:
RANGE(2003/2/1,2003/12/31):day(1,*,2)

In the above example, the expression is true every other day, beginning February 1, 2003, until December
31, 2003.

To create schedules that recur weekly:
Specify the expression in one of the following formats:
RANGE(startdate[,enddate]):week(1,*,step):day_of_week

where step is the interval between weeks and day_of_week is one or more days of the week, separated by
commas. For example:
RANGE(2002/12/31):week(1,*,2):MON,FRI,SAT

or
RANGE(startdate[,enddate]):week(1,*,step):abc(ii)

where step is the interval between weeks, abc is a previously defined calendar name and ii is an integer
indicating a specific occurrence of a day within that calendar. For example:
RANGE(2002/01/01):week(1,*,3):MON(-1)

In the above example, MON(-1) refers to last Monday.

To create schedules that recur monthly:
Specify the expression in one of the following formats:
RANGE(startdate[,enddate]):month(1,*,step):day_of_month

where step is the interval between months and day_of_month is one or more days of the month by number,
separated by commas. For example:
RANGE(2002/12/31):month(1,*,2):1,15,30

Commands

Administering Platform Process Manager 107

or
RANGE(startdate[,enddate]):month(1,*,step):abc(ii)

where step is the interval between months, abc is a previously defined calendar name or built-in keyword
and ii is an integer indicating a specific occurrence of a day within that calendar. For example:
RANGE(2002/01/01):month(1,*,3):MON(-1)

In the above example, MON(-1) refers to last Monday.

or
RANGE(startdate[,enddate]):month(1,*,step):day_of_week(ii)

where step is the interval between months, day_of_week is one or more days of the week separated by
commas, and ii is an integer indicating a specific occurrence of a day within that calendar. For example:
RANGE(2002/01/01):month(1,*,3):MON(-1)

In the above example, MON(-1) refers to last Monday.

To create schedules that recur yearly:
Specify the expression in the following format:
RANGE(startdate[,enddate]):month:day

where month is the name of the month (JAN, FEB, MAR...DEC) and day is the day of the month
(1,2,3...29,30,31). For example:
RANGE(2002/1/1,2004/12/31):JAN:1

To merge calendar expressions:
You can use Boolean logic to further qualify your schedule expressions. For example:
Mondays@Sys||Fridays@Sys && !Holidays@Sys

where Mondays@Sys, Fridays@Sys and Holidays@Sys are all predefined calendars.

Built-in keywords—reserved words
Process Manager reserves words that are used as building blocks to create calendars. You cannot use these
reserved words in a calendar name. However, you can use them within calendar expressions, and they
are recognized by Process Manager. The following are the reserved words:

• apr, april, APR
• aug, august, AUG
• dates, DATES
• day, DAY
• dec, december, DEC
• feb, february, FEB
• fri, friday, FRI
• fy, FY
• h, HH
• jan, january, JAN
• jul, july, JUL
• jun, june, JUN
• m, MM

Commands

108 Administering Platform Process Manager

• mar, march, MAR
• may, MAY
• mon, monday, MON
• month, MONTH
• nov, november, NOV
• oct, october, OCT
• quarter, QUARTER
• range, RANGE
• sat, saturday, SAT
• sep, september, SEP
• sun, sunday, SUN
• thu, thursday, THU
• tue, tuesday, TUE
• wed, wednesday, WED
• yy, YY
• zzz, ZZZZ

EXAMPLES
jcmod -d "Valentines Day" -u "barneyt" -t "*:Feb:14" SpecialDays

Modifies a calendar called SpecialDays. This calendar resolves to February 14th every year.

Commands

Administering Platform Process Manager 109

jcomplete
acknowledges that a manual job is complete and specifies to continue processing the flow.

Synopsis
jcomplete [-d description] [-u user_name] [-e exit_code]-i flow_id flow_name
[:subflow_name]:manual_job_name

jcomplete [-h]|[-V]

Description
You use the jcomplete command to mark a manual job complete, to tell Process Manager to continue
processing that part of the flow. Only the branch of the flow that contains the manual job is affected by
the manual job—other branches continue to process as designed. You must be the owner of the manual
job or a Process Manager administrator to complete a manual job.

Options
-d description

Describes the manual process completed. You can use this field to describe results of
the process, or any pertinent comments.

-e exit_code

Specifies the exit code with which to complete the manual job.

The exit code you specify determines the state of the manual job. Exit codes can be any
number from 0 to 255.

If you did not define custom success exit codes in the Manual Job Definition, an exit
code of 0 indicates the manual job was successful and the state is set to Done. Any other
exit code indicates the manual job failed and its state is set to Exited.

If you defined custom success exit codes in the Manual Job Definition, an exit code of
0 and any of the numbers you specified in the Non-zero success exit codes field indicates
the manual job was successful and the state is set to Done. Any other exit code indicates
the manual job failed and its state is set to Exited.

-i flow_id

Specifies the ID of the flow in which the manual job is to be completed. This option is
required to differentiate between multiple occurrences of the flow, ensuring the correct
job is completed.

flow_name:subflow_name:manual_job_name

Specifies the name of the manual job to complete. Specify the fully-qualified manual
job name, which is the flow name followed by the subflow name, if applicable, followed
by the name of the manual job. For example:
myflow:prtcheck:prtpage

Specify the manual job name in the same format as it is displayed by the jmanuals
command.

Commands

110 Administering Platform Process Manager

-u user_name

Specifies the name of the user who owns the manual job you are completing. If you do
not specify a user name, user name defaults to the user who invoked this command.

-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Examples
jcomplete -d "printed check numbers 4002 to 4532" -i 42 payprt:checkprinter

completes the manual job checkprinter in the flow payprt with flow ID 42, and adds the
comment "printed check numbers 4002 to 4532".

See also
jmanuals jjob

Commands

Administering Platform Process Manager 111

jdefs
displays information about the flow definitions stored in Process Manager for the specified user.

Synopsis
jdefs [-l] [-u user_name|-u all] [-s status] [definition_name [definition_name ...]] [-v]

jdefs [-h]|[-V]

Description
You use the jdefs command to display information about flow definitions and any associated flows.
When using the default display option, the following information is displayed:

• user name
• flow name
• the status of the flow definition
• flow IDs of any associated flows
• the state of each flow
• flow version history and details

Options
-l

Specifies to display the information in long format. In addition to the information listed
above, this option displays the following information:

• any events defined to trigger the flow
• any exit conditions specified in the flow definition
• the default version and the latest version of the flow

-u user_name

Specifies the name of the user who owns the flow definitions. If you do not specify a
user name, user name defaults to the user who invoked this command. If you specify -
u all, information is displayed about flow definitions owned by all users.

-s status

Specifies to display information about only the flow definitions that have the specified
status. The default is to display all flow definitions regardless of status. Specify one of
the following values for status:

ONHOLD

Displays information about flow definitions that are on hold: these are
definitions that are not currently eligible to trigger automatically.

RELEASE

Displays information about flow definitions that are not on hold. This includes
any flow definitions that were submitted with events and flow definitions that
were submitted to be triggered manually. This does not include flows that were
submitted on an adhoc basis, to be run once, immediately.

Commands

112 Administering Platform Process Manager

definition_name

Specifies the name of the flow definition. If you do not specify a flow name, all flow
definitions meeting the criteria are displayed. To specify a list of flow definitions,
separate the flow definition names with a space.

-v

Displays the version history of the flow.
-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Examples
jdefs -u barneyt -s RELEASE

Displays all flow definitions owned by barneyt that are not on hold.

Commands

Administering Platform Process Manager 113

jflows
displays information about the flows in Process Manager for the specified user. The information listed
includes the current state and version of the flow.

Synopsis
jflows [-l] [-u user_name|-u all] [-f flow_name] [-s state]

jflows [-l] [flow_id [flow_id ...] | 0]

jflows [-h]|[-V]

Description
You use the jflows command to display information about one or more flows. When using the default
display option, the following information is displayed:
• user name
• flow name
• flow ID
• the state of the flow
• start and end time for each flow

Options
-l

Specifies to display the information in long format. In addition to the information listed
above, this option displays the states of all jobs, job arrays, subflows, and flow arrays in
the flow, and displays the currently-used version in the flow.

-u user_name

Specifies the name of the user who owns the flow. If you do not specify a user name,
user name defaults to the user who invoked this command. If you specify -u all,
information is displayed about flows owned by all users.

-f flow_name

Specifies the name of the flow definition. If you do not specify a flow definition name,
all flow definitions meeting the other criteria you specify are displayed. This option is
mutually exclusive with the other options—if you specify a flow name, you cannot
specify a flow ID.

-s state

Specifies to display information about only the flows that have the specified state. If you
do not specify a state, flows of all states that meet the other criteria you specify are
displayed. Specify one of the following values for state:

Done

Displays information about flows that completed successfully.
Exit

Displays information about flows that failed.

Commands

114 Administering Platform Process Manager

Killed

Displays information about flows that were killed.
Running

Displays information about flows that are running.
Suspended

Displays information about flows that were suspended.
Waiting

Displays information about flows that are waiting.
flow_id

Specify the ID number of the flow. If you do not specify a flow ID, all flows meeting the
other criteria you specify are displayed. This option is mutually exclusive with the other
options—if you specify a flow ID, you cannot specify a flow name. To specify a list of
flows, separate the flow IDs with a space.

0

Specifies to display all flows.
-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Examples
jflows -f myflow

Displays all flows associated with the flow definition myflow.

Commands

Administering Platform Process Manager 115

jhist
displays historical information about Process Manager Server, calendars, flow definitions, flows, and jobs.

Synopsis
jhist -C category[,category,...] [-u user_name|-u all] [-c calendar_name] [-f flow_name] [-i flow_ID] [-j
job_name] [-t start_time,end_time]

jhist [-h|-V]

Description
You use the jhist command to display historical information about the specified object, such as a
calendar, job, or flow. You can display information about a single type of work item or multiple types of
work items, for a single user or for all users.

If you do not specify a user name, jhist displays information for the user who invoked the command.
If you do not specify a time interval, jhist displays information for the past 7 days, starting at the time
the jhist command was invoked.

If your Process Manager Client and Process Manager Server are on separate hosts, the number of history
records retrieved is limited to 1500 records by default. If the limit is reached, only the first (oldest) 1500
are retrieved. This limit is configurable with the variable JS_HISTORY_LIMIT in js.conf.

Options
-C category

Specifies the type of object for which you want to see history. Choose from the following
values:

• alarm-displays historical information about one or more alarms
• calendar-displays historical information about one or more calendars
• daemon-displays historical information about Process Manager Server
• flowdef-displays historical information about one or more flow definitions
• flow-displays historical information about one or more flows
• job-displays historical information about one or more jobs or job arrays

You can specify more than one category by separating categories with a comma (,).

-u user_name

Displays information about categories owned by the specified user. If you do not
specify a user name, user name defaults to the user who invoked this command. If
you specify -u all, information is displayed about flows owned by all users.

-t start_time,end_time

Specifies the span of time for which you want to display the history. If you do not
specify a start time, the start time is assumed to be 7 days prior to the time the
jhist command is issued. If you do not specify an end time, the end time is assumed
to be now.

Specify the times in the format "yyyy/mm/dd/HH:MM". Do not specify spaces in the
time interval string.

Commands

116 Administering Platform Process Manager

The time interval can be specified in many ways.
-c calendar_name

Specifies the name of the calendar for which to display historical information. If you
do not specify a calendar name when displaying calendars, information is displayed
for all calendars owned by the specified user.

Valid only when used with the calendar category.
-f flow_name

Specifies the name of the flow definition for which to display historical information.
Displays flow definition, flow, or job information for flow definitions with the
specified name.

Valid only with the flowdef, flow, and job categories.
-i flow_ID

Specifies the ID of the flow for which to display historical information. Displays flow
and job information for flows with the specified ID.

Valid only with the flow and job categories.
-j job_name

Specifies the name of the job, job array or alarm to display historical information
about. Displays information about the job, job array or alarm with the specified
name.

Valid with the job or alarm categories.
-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Usage
-C alarm

Displays the time when the alarm was raised and the type and description of the alarm.
-C calendar

Displays the times when calendars are added or deleted.
-C daemon

Displays the server startup and shutdown times. These values are only displayed when
root invokes jhist or the -u root option is used.

-C flowdef

Displays information about when a flow definition state is:

• Submit-When a flow definition is submitted

Commands

Administering Platform Process Manager 117

• SubmitAndRun-When a flow runs immediately
• Remove-When a flow definition is removed from the system
• Release-When a flow definition is released from on hold
• Hold-When a flow definition is placed on hold
• Trigger-When a flow definition is triggered manually or by an event
• Instantiate-When a flow is created

-C flow

Displays information about when a flow state is:
• Start-When a flow is started
• Kill-When a flow is killed
• Suspend-When a flow is suspended
• Resume-When a flow is resumed from the Suspended state
• Finished-When a flow is completed

-C job

Displays information about when a job or job array is:
• Started
• Killed
• Suspended
• Resumed
• Finished

Time interval format
You use the time interval to define a start and end time for collecting the data to be retrieved and displayed.
Although you can specify both a start and an end time, you can also let one of the values default. You can
specify either of the times as an absolute time, by specifying the date or time, or you can specify them
relative to the current time.

Specify the time interval is follows:

start_time,end_time|start_time,|,end_time|start_time

Specify start_time or end_time in the following format:

[year/][month/][day][/hour:minute|/hour:]|.|.-relative_int

Where:
• year is a four-digit number representing the calendar year.
• month is a number from 1 to 12, where 1 is January and 12 is December.
• day is a number from 1 to 31, representing the day of the month.
• hour is an integer from 0 to 23, representing the hour of the day on a 24-hour clock.
• minute is an integer from 0 to 59, representing the minute of the hour.
• . (period) represents the current month/day/hour:minute.
• .-relative_int is a number, from 1 to 31, specifying a relative start or end time prior to now.

start_time,end_time

Specifies both the start and end times of the interval.
start_time,

Specifies a start time, and lets the end time default to now.

Commands

118 Administering Platform Process Manager

,end_time

Specifies to start with the first logged occurrence, and end at the time specified.
start_time

Starts at the beginning of the most specific time period specified, and ends at the
maximum value of the time period specified. For example, 3/ specifies the month
of March-start March 1 at 00:00 a.m. and end at the last possible minute in March:
March 31st at midnight.

Absolute time examples
Assume the current time is May 9 17:06 2005:

1,8 = May 1 00:00 2005 to May 8 23:59 2005

,4 = the time of the first occurrence to May 4 23:59 2005

6 = May 6 00:00 2005 to May 6 23:59 2005

3/ = Mar 1 00:00 2005 to Mar 31 23:59 2005

/12: = May 9 12:00 2005 to May 9 12:59 2005

2/1 = Feb 1 00:00 2005 to Feb 1 23:59 2005

2/1, = Feb 1 00:00 to the current time

,. = the time of the first occurrence to the current time

,2/10: = the time of the first occurrence to May 2 10:59 2005

2001/12/31,2005/5/1 = from Dec 31, 2001 00:00:00 to May 1st 2005 23:59:59

Relative time examples
.-9, = April 30 17:06 2005 to the current time

,.-2/ = the time of the first occurrence to Mar 7 17:06 2005

.-9,.-2 = nine days ago to two days ago (April 30, 2005 17:06 to May 7, 2005 17:06)

Examples
Display information about the calendar mycalendar and all flows for user1:
jhist -C calendar,flow -u user1 -c mycalendar

Display information about the daemon and calendar for the past 30 days:
jhist -C calendar,daemon -t .-30,. -u all

Display information for all flows with the name flow1, for user1 in the past week (counting 7
days back from today):
jhist -C flow -u user1 -f flow1 -t .-7,.

Display information for all flows with the ID 231 for the past 3 days:
jhist -C flow -i 231 -t .-3,.

Commands

Administering Platform Process Manager 119

Display information for all flows with the ID 231 and all related jobs from March 25, 2005 to
March 31, 2005:
jhist -C flow,job -i 231 -t 2005/3/25,2005/3/31

Display information for all flows with the ID 101 and all related jobs with the name myjob:
jhist -C flow,job -i 101 -j myjob

Display information for all flows associated with the flow definition myflow and flows dated
later than January 31, 2005
jhist -C flowdef,flow -f myflow 2005/1/31,.

Commands

120 Administering Platform Process Manager

jhold
places a previously submitted flow definition on hold. No automatic events can trigger this definition
until it has been explicitly released. Use this command when you want to temporarily interrupt automatic
triggering of a flow. When a flow is on hold, it can still be triggered manually, such as for testing purposes.

Synopsis
jhold [-u user_name] flow_name [flow_name ...]

jhold [-h]|[-V]

Description
You use the jhold command to place a submitted flow definition on hold. This prevents it from being
triggered automatically by any events. You must be the owner of a flow definition or the Process Manager
administrator to place a flow definition on hold.

Options
-u user_name

Specifies the name of the user who owns the flow. Use this option if you have
administrator authority and you are holding the flow on behalf of another user. If you
do not specify a user name, user name defaults to the user who invoked this command.

flow_name

Specifies the name of the flow definition. To specify a list of flow definitions, separate
the flow definition names with a space.

-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Examples
jhold myflow

Places the flow definition myflow, which is owned by the current user, on hold.
jhold -u "user01" payupdt

Places the flow definition payupdt, which is owned by user01, on hold.

See also
jrelease

Commands

Administering Platform Process Manager 121

jid
displays the host name, version number and copyright date of the current Process Manager Server.

Synopsis
jid [-h|-V]

Description
You use the jid command to verify the connection between Process Manager Client and Process Manager
Server. If the command returns the host name of Process Manager Server, you have successfully connected
to the server. If server failover is enabled, the jid command displays the host where the server is currently
running.

Options
-h

Prints command usage to stderr and exits.
-V

Prints Process Manager release version to stderr and exits.

Commands

122 Administering Platform Process Manager

jjob
controls a job in a running flow.

Synopsis
jjob [-u user_name] -i flow_id -c | -k | -r | -p | -g | -l flow_name[:subflow_name]:job_name

Flow arrays in UNIX:

jjob [-u user_name] -i flow_id -c | -k | -r | -p | -g | -l "flow_name[:subflow_name]:job_name"

jjob [-h]|[-V]

Description
You use the jjob command to kill or run a job, or mark a job complete. You must be the owner of the
job or a Process Manager administrator or control administrator to control it.

Options
-u user_name

Specifies the name of the user who owns the job you are controlling. If you do not specify
a user name, user name defaults to the user who invoked this command.

-i flow_id

Specifies the ID of the flow containing the job to be controlled. This option is required
to differentiate between multiple occurrences of the flow, ensuring the correct job is
selected.

-c

Specifies to mark the job complete. You can only complete a job in a flow that has exited.
you use this option before rerunning a flow, to continue processing the remainder of
the flow.

-k

Specifies to kill the job.
-r

Specifies to run or rerun the job.
-p

Specifies to put the job on hold. Only jobs in the Waiting state can be put on hold. You
can put on hold LSF jobs, job submission scripts, local jobs, and job arrays.

If the selected job is in a flow array, by default the hold applies to the job in the element
the job is in. You can, alternatively, apply the hold to jobs in all elements in the flow
array.

When you put a job in the flow on hold, the flow pauses at that specific job. Only the
branch of the flow that contains the job that is On Hold pauses. Other branches of the
flow continue to run. The status of the flow is not affected.

Commands

Administering Platform Process Manager 123

When desired, you can then release the job that you have put on hold.
-g

Specifies to release a job that has been put on hold. You can release LSF jobs, job
submission scripts, local jobs, and job arrays that have been put on hold.

When you release a job that has been put on hold, the flow instance continues to run
and the job receives the status Waiting.

-l

Specifies to view the detailed history of local and input variables that the job uses. This
does not show global variables.

flow_name:subflow_name:manual_job_name

Specifies the name of the job to control. Specify the fully-qualified job name, which is
the flow name followed by the subflow name, if applicable, followed by the name of the
job. For example:
myflow:print:prtreport

Note:
When specifying the job name for a flow array, you must enclose
the name in quotation marks ("). This is because the Linux
command line does not process parentheses characters ((or))
properly unless you use quotation marks.

For example:

"myflow:print(5):prtreport"

-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Examples

Kill a specific flow
jjob -i 42 -k payprt:report

kill the job report in the flow payprt with flow ID 42.

Hold and release a job
• Hold a job

jjob -i 42 -p "myflow:myjob"

Commands

124 Administering Platform Process Manager

In flow with ID 42, flow name myflow, put the job named myjob on hold. The job receives
the status On Hold and the flow stops running when it reaches that specific job.

• Release the job
jjob -i 42 -g "myflow:myjob"

In flow with ID 42, flow name myflow, release the job named myjob. The flow will resume
running from that point onward in the flow.

Hold and release a job array
• Hold a job array

jjob -i 42 -p -a "myflow:myarray"

In flow with ID 42, flow name myflow, put the job array named myarray on hold. The job
array receives the status On Hold and the flow stops running when it reaches that specific
job array.

• Release the job array
jjob -i 42 -g -a "myflow:myarray"

In flow with ID 42, flow name myflow, release the job array named myarray. The flow will
resume running from that point onward in the flow.

Hold and release a job in a flow array
• Hold a job in a flow array

jjob -i 45 -p "mymainflow:myflowarray(1):myjob"

In flow with ID 45, flow name mymainflow, flow array myflowarray hold the job named
myjob in the first element only. The job receives the status On Hold and the subflow stops
running when it reaches that specific job in the flow array.

• Release the job in the flow array
jjob -i 45 -g "mymainflow:myflowarray(1):myjob"

In flow with ID 45, flow name mymainflow, flow array named myflowarray, release the
job named myjob in the first element only. The job receives the status Waiting and the
subflow will continue running once it reaches that job in the flow.

• Hold all jobs in all elements in the flow array
jjob -i 45 -p "mymainflow:myflowarray:myjob"

• Release all jobs in all elements in the flow array
jjob -i 45 -g "mymainflow:myflowarray:myjob"

See Also
jmanuals

Commands

Administering Platform Process Manager 125

jkill
kills a flow.

Synopsis
jkill [-u user_name|-u all] [-f flow_name]

jkill flow_id [flow_id ...] | 0

jkill [-h]|[-V]

Description
You use the jkill command to kill all flows, all flows belonging to a particular user, all flows associated
with a flow definition, or a single flow. Any incomplete jobs in the flow are killed. Any work items that
depend on the successful completion of this flow do not run. Only users with administrator authority can
kill flows belonging to another user.

Options
-u user_name

Specifies the name of the user who owns the flow. Use this option if you have
administrator authority and you are killing the flow on behalf of another user. If you
do not specify a user name, user name defaults to the user who invoked this command.
If you specify -u all, and you have administrator authority, you can kill flows belonging
to all users.

-f flow_name

Specifies the name of the flow definition. Use this option if you want to kill all flows
associated with the same flow definition. This option is mutually exclusive with the
other options, if you specify a flow name, you cannot specify a flow ID.

flow_id

Specifies the ID of the flow you want to kill. Use this option if you want to kill one or
more specific flow IDs. This option is mutually exclusive with the other options—if you
specify a flow ID, you cannot specify a flow name. To specify a list of flow IDs, separate
the flow IDs with a space.

0

Specifies to kill all flows.
-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Commands

126 Administering Platform Process Manager

Examples
jkill -f myflow

Kills all flows associated with the flow definition myflow. Does not affect the flow definition.

Commands

Administering Platform Process Manager 127

jmanuals
displays all manual jobs that have not yet been completed.

Synopsis
jmanuals [-i flow_ID] [-u username |-u all] [-f flow_definition] [-r yes | -r no]

jmanuals [-h]|[-V]

Description
You use the jmanuals command to list the flows that contain manual jobs that have not yet been
completed.

Options
-i flow_ID

Specifies the ID of the flow for which to display manual jobs.
-u user_name

Displays manual jobs in flows owned by the specified user. If you do not specify a user
name, user name defaults to the user who invoked this command. If you specify -u all,
manual jobs are displayed for flows owned by all users.

-f flow_definition

Specifies the name of the flow definition for which to display manual jobs. Manual jobs
are displayed for all flows associated with this flow definition.

-r yes

Specifies to display only those manual jobs that require completion at this time.
-r no

Specifies to display only those manual jobs that do not require completion at this time.
-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

See also
jcomplete

Commands

128 Administering Platform Process Manager

jreconfigadmin
dynamically reconfigures and updates the list of administrators.

Synopsis
jreconfigadmin [-h]|[-V]

Description
You use the jreconfigadmin command to manually trigger a dynamic reconfiguration and update of
the list of administrators.

Run the jreconfigadmin command if you changed the list of administrators (either by changing the
JS_ADMINS or JS_CONTROL_ADMINS parameters in the js.conf file, or by changing the
membership in a user group specified in the JS_ADMINS or JS_CONTROL_ADMINS parameters in the
js.conf file) and require this change to apply immediately rather than at the next scheduled update.

If you disabled scheduled updates of the list of administrators (by setting
JS_ADMIN_UPDATE_INTERVAL in js.conf to 0), you need to manually run jsreconfigadmin
whenever you modify the JS_ADMINS or JS_CONTROL_ADMINS parameters, or whenever you modify
any user groups specified in the JS_ADMINS or JS_CONTROL_ADMINS parameters.

You must be a Process Manager administrator account to use this command.

Options
-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Commands

Administering Platform Process Manager 129

jreconfigalarm
reloads the alarm definitions.

Synopsis
jreconfigalarm [-h|-V]

Description
You use the jreconfigalarm command to reload the alarm definitions. You use this command to add
or change alarm definitions without restarting Process Manager Server. You must be a Process Manager
administrator to use this command.

Options
-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Commands

130 Administering Platform Process Manager

jrelease
releases a previously held flow definition.

Synopsis
jrelease [-u user_name] flow_name [flow_name ...]

jrelease [-h]|[-V]

Description
You use the jrelease command to release a submitted flow definition from hold. The flow definition
is now eligible to be triggered automatically by any of its triggering events. Use this command when you
want to resume automatic triggering of a flow.

Options
-u user_name

Specifies the name of the user who owns the flow. Use this option if you have
administrator authority and you are releasing the flow on behalf of another user. If you
do not specify a user name, user name defaults to the user who invoked this command.

flow_name

Specifies the name of the flow definition. To specify a list of flow definitions, separate
the flow definition names with a space.

-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Examples
jrelease myflow

Releases the flow definition myflow, which is owned by the current user, from hold.
jrelease -u "user01" payupdt

Releases the flow definition payupdt, which is owned by user01, from hold.

See also
jhold

Commands

Administering Platform Process Manager 131

jremove
removes a previously submitted flow definition from Process Manager.

Synopsis
jremove [-u user_name] -f flow_name [flow_name ...]

jremove [-h]|[-V]

Description
You use the jremove command to remove a submitted flow definition from Process Manager. Issuing
this command has no impact on any flows associated with the definition, but no further flows can be
triggered from it. Use this command when you no longer require this definition, or when you want to
replace a definition that was created by a user ID that no longer exists. If you want to temporarily interrupt
the automatic triggering of a flow, use the jhold command.

Options
-u user_name

Specifies the name of the user who owns the flow. Use this option if you have
administrator authority and you are removing the flow on behalf of another user. If you
do not specify a user name, user name defaults to the user who invoked this command.

-f

Forces the removal of a flow definition that other flows have dependencies upon.
flow_name

Specifies the name of the flow definition. To specify a list of flow definitions, separate
the flow definition names with a space.

-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Examples
jremove myflow

Removes the definition myflow from Process Manager. In this example, myflow is owned by
the current user.
jremove -u "user01" payupdt

Removes the definition payupdt from Process Manager. In this example, payupdt is owned
by user01.

Commands

132 Administering Platform Process Manager

See also
jsub, jhold

Commands

Administering Platform Process Manager 133

jrerun
reruns an exited, done, or running flow.

Synopsis
jrerun [-v "var=value[;var1=value1;...]"] flow_id [flow_id ...]

jrerun [-h]|[-V]

Description
You use the jrerun command to rerun a flow. The flow must have a state of Exit, Done, or Running.

The flow is rerun from the first exited job or starting point, and the flow continues to process as designed.

If the flow contains multiple branches, the flow is rerun from the first exited jobs or starting points in
each branch and continues to process as designed.

You must be the owner of a flow or a Process Manager administrator to use this command.

You cannot use this command to rerun a flow that was killed—you must trigger the flow again.

Options
-v var=value

Specifies to pass variables and their values to the flow when rerunning it. To specify a
list of variables, separate the variable and value pairs with a semi-colon (;). The value of
the variable is available only within the scope of the flow itself—local variables only.

flow_id

Specifies the ID of the flow to rerun. To specify a list of flows, separate the flow IDs with
a space.

-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Examples
jrerun 1234

reruns the flow with the flow ID 1234.
jrerun -v "USER=jdoe" 277

reruns the flow with the flow ID 277 and passes it a value of jdoe for the USER variable.

Commands

134 Administering Platform Process Manager

jresume
resumes a suspended flow.

Synopsis
jresume [-u user_name|-u all] [-f flow_name]

jresume flow_id [flow_id ...] | 0

jresume [-h]|[-V]

Description
You use the jresume command to resume all flows, all flows belonging to a particular user, all flows
associated with a particular flow definition, or a single flow. Only users with administrator authority can
resume flows belonging to another user.

Options
-u user_name

Specifies the name of the user who owns the flow. Use this option if you have
administrator authority and you are resuming the flow on behalf of another user. If you
do not specify a user name, user name defaults to the user who invoked this command.
If you specify -u all, and you have administrator authority, you can resume flows
belonging to all users.

-f flow_name

Specifies the name of the flow definition. Use this option if you want to resume all
suspended flows associated with the same definition. This option is mutually exclusive
with the other options—if you specify a flow name, you cannot specify a flow ID.

flow_id

Specifies the ID of the flow you want to resume. Use this option if you want to resume
one or more specific flow IDs. This option is mutually exclusive with the other options
—if you specify a flow ID, you cannot specify a flow name. To specify a list of flow IDs,
separate the flow IDs with spaces.

0

Specifies to resume all suspended flows.
-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Examples
jresume 14 17 22

Commands

Administering Platform Process Manager 135

Resumes the flows with IDs 14, 17 and 22.
jresume 0

Resumes all suspended flows owned by the user invoking the command.
jresume -u all

Resumes all suspended flows owned by all users.

See also
jstop

Commands

136 Administering Platform Process Manager

jrun
triggers a flow definition from a file and runs the flow immediately without storing the flow definition in
Process Manager.

Synopsis
jrun [-v "var=value[;var1=value1;...]"] flow_file_name

jrun [-h]|[-V]

Description
You use the jrun command when you want to trigger and run a flow immediately, without storing the
flow definition within Process Manager. A flow ID is displayed when the flow is successfully submitted.
This command is most useful for flows that run only once, or for testing a flow definition prior to putting
it into production. You must be the owner of a flow definition or have Process Manager administrative
authority to use this command.

Options
-v var=value

Specifies to pass variables and their values to the flow when running it. To specify a list
of variables, separate the variable and value pairs with a semi-colon (;). The value of the
variable is available only within the scope of the flow itself—local variables only.

flow_file_name

Specifies the name of the file containing the flow definition.
-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Examples
jrun /flows/backup.xml

Runs the flow defined in /flows/backup.xml. It does not store the definition of the flow in
Process Manager.
jrun -v "USER=bsmith;YEAR=2003" /flows/payupdt.xml

Runs the flow defined in /flows/payupdt.xml, and passes it a value of bsmith and 2003 for
the USER and YEAR variables respectively. It does not store the definition of the flow in Process
Manager.

Commands

Administering Platform Process Manager 137

jsetvars
sets values for variables during the runtime of a flow.

Synopsis
jsetvars -i flow_ID -s [scope_1]:variable_1a=value_1a [;variable_1b=value_1b ...]
[[scope_2]:variable_2a=value_2a [;variable_2b=value_2b ...] ...] jsetvars -i flow_ID -r
[scope_1]:variable_1a [variable_1b ...] [[scope_2]:variable_2a [variable_2b ...] ...] jsetvars -i flow_ID -l
[scope_1[;scope_2 ...]] jsetvars [-g] -s [scope_1]:variable_1a=value_1a [;variable_1b=value_1b ...]
[[scope_2]:variable_2a=value_2a [;variable_2b=value_2b ...] ...] jsetvars [-g] -r [scope_1]:variable_1a
[variable_1b ...] [[scope_2]:variable_2a [variable_2b ...] ...] jsetvars [-g] -l [scope_1[;scope_2 ...]]
jsetvars [-h]|[-V]

Description
You use the jsetvars command to change the value of one or more local variables in a flow at runtime
or to change the value of one or more global variables at runtime.

Options
-i flow_ID

Specifies the ID of the flow in which to take action.
-g

Specifies that the action is to take place on global variables. The -g option is assumed
if -i flow_ID is not specified,

scope_n

Specifies the name of the flow indicating the scope for the following variables. If
unspecified, this defaults to the main flow scope. You can combine variables of the same
scope together and specify multiple scope levels.

variable_nx

Specifies the name of the variable you are setting.
value_nx

Specifies the value to which you will set the specified variable.
-s

Adds new or edits existing variables
-r

Removes existing variables
-l

Lists all variables.
-h

Prints the command usage to stderr and exits.

Commands

138 Administering Platform Process Manager

-V

Prints the Process Manager release version to stderr and exits.

Examples
jsetvars -i 1234 priority=10

Changes the value of the priority variable to 10 for the flow with the ID 1234.

jsetvars -g -s date=05-09-2007

Sets the date global variable value to 05-09-2007. If the date variable already exists, this
changes the value of the date variable, otherwise, this adds a new variable called date).

jsetvars -i 1234 -r time

Deletes the time variable from the flow with the ID 1234.

jsetvars -i 21 -s mainvar1=123;mainvar2=456 mainvarX=zzz MF:SF1:myvar1=abc;myvar2=xyz
MF:SF2:svar1=333 MF:SF2:svar2=555

For the flow with the ID 21, this command sets the mainvar1 and mainvar2 variables at the
main flow scope level, sets the myvar1 and myvar2 variables at the subflow level (specifically,
the MF:SF1 subflow), and sets the svar2 variable at the subflow level (specifically, the
MF:SF2 subflow). If these variables already exist, this command changes the value of these
variables, otherwise, this command adds any new variables that do not already exist.

jsetvars -i 212 -s MF:FA:myarrayvar=abc#{JS_FLOW_INDEX}

For the flow with the ID 212 and assuming MF:FA is a flow array, this command sets the
myarrayvar variable to abc1, abc2, abcX, for all the different flow array elements (for
example, for 212:MF:FA(1), 212:MF:FA(2), and the remaining flow array elements to
212:MF:FA(X)).

jsetvars -i 21 -l MF:SF1

For the flow with the ID 21, lists all variables at the MF:SF1 subflow scope.

jsetvars -i 21 -r mainvar MF:SF1:myvar1;myvar2 MF:SF2:myvar3

For the flow with the ID 21, removes the mainvar variable at the main flow scope, removes
myvar1 and myvar2 variables at the MF:SF1 subflow scope, and removes the myvar3 variable
at the MF:SF2 subflow scope.

Commands

Administering Platform Process Manager 139

jsinstall
runs jsinstall, the Process Manager installation and configuration script

Synopsis
jsinstall -f install.config

jsinstall -h

Description
jsinstall runs the Process Manager installation scripts and configuration utilities to install a new
Process Manager component. You should install as root.

Before installing and configuring Process Manager, jsinstall checks the installation prerequisites,
outputs the results to prechk.rpt, writes any unrecoverable errors to the Install.err file and
exits. You must correct these errors before continuing to install and configure Process Manager.

During installation, jsinstall logs installation progress in the Install.log file, uncompresses,
extracts and copies Process Manager files, installs a Process Manager license, and configures Process
Manager Server.

Commands

140 Administering Platform Process Manager

jstop
suspends a running flow.

Synopsis
jstop [-u user_name|-u all] [-f flow_name]

jstop flow_id [flow_id ...] | 0

jstop [-h]|[-V]

Description
You use the jstop command to suspend all flows, all flows belonging to a user, all flows associated with
a flow definition, or a single flow. All incomplete jobs within the flow are suspended. Only users with
administrator authority can suspend flows belonging to another user.

Options
-u user_name

Specifies the name of the user who owns the flows. Use this option if you have
administrator authority and you are suspending the flow on behalf of another user. If
you do not specify a user name, user name defaults to the user who invoked this
command. If you specify -u all, and you have administrator authority, you can suspend
flows belonging to all users.

-f flow_name

Specifies the name of the flow definition. Use this option if you want to suspend all flows
associated with a particular flow definition. This option is mutually exclusive with the
other options—if you specify a flow name, you cannot specify a flow ID.

flow_id

Specifies the ID of the flow you want to suspend. Use this option if you want to suspend
one or more specific flow IDs. This option is mutually exclusive with the other options
—if you specify a flow ID, you cannot specify a flow name. To specify a list of flow IDs,
separate the flow IDs with a space.

0

Specifies to suspend all flows.
-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Examples
jstop -f "myflow"

Commands

Administering Platform Process Manager 141

Suspends all flows associated with the definition myflow. Does not affect the flow definition.
jstop 14

Suspends flow ID 14.
jstop 0

Suspends all flows.

See also
jresume

Commands

142 Administering Platform Process Manager

jsub
submits a flow definition to Process Manager.

Synopsis
jsub [-H] [-r|-d] [-m "ver_comment"] [[[-T time_event] ...] [[-F "file_event"] ...] [[-p "proxy_event"] ...] [-
C combination_type]] flow_file_name

jsub [-h]|[-V]

Description
You use the jsub command to submit a flow definition to Process Manager. When you submit the flow
definition, you may specify the event that triggers the flow, if applicable. If you do not specify an event to
trigger the flow, it requires a manual trigger. You must be the owner of the flow definition, or have Process
Manager administrator authority to submit a flow definition.

Note: The flow definition you are submitting may contain pre-defined events that trigger the flow. When
you submit this flow using the jsub command, those events are overwritten by any specified in the
command. If the flow definition contains triggering events, and you submit the flow definition without
specifying a triggering event, those events are deleted from the definition that is submitted, and the flow
definition requires a manual trigger.

Options
-H

Submits the flow definition on hold. No automatic events can trigger this definition
until it has been explicitly released. Use this option when the flow definition is complete,
but you are not yet ready to start running flows on its defined schedule. When a
definition is on hold, it can still be triggered manually, such as for testing purposes.

-r

Replace. Specifies that, if a flow definition with the same name already exists in Process
Manager, it is replaced with the definition being submitted. If you do not specify -r and
the flow definition already exists, the submission fails.

-d

Duplicate. Specifies that, if a flow definition with the same name already exists in Process
Manager, a unique number is appended to the flow definition name to make it unique.
The new name of the flow definition is displayed in the confirmation message when the
flow definition is successfully submitted.

-m "ver_comment"

Submit the flow with version comments. jsub returns a flow version number after each
successful submission.

-T time_event

Specifies to automatically trigger a flow when the specified time events are true. Specify
the time event in the following format:

Commands

Administering Platform Process Manager 143

[cal_name[@username]:]hour:minute[%duration]][#occurences][+time_zone_id]
cal_name

Specify the name of an existing calendar, which is used to calculate the days on which
the flow runs. If you do not specify a calendar name, it defaults to Daily@Sys. If you do
not specify a user name, the submitter’s user name is assumed. Therefore, the calendar
must exist under that user name.

hour:minute

Specify the time within each calendar day that the time event begins. You can specify
the time in the following formats:

• hour:minutes, for example, 13:30 for 1:30 p.m. You can also specify the wildcard character * in the
hour or minutes fields to indicate every hour or every minute, respectively.

• A list of hours, separated by commas, for example, 5,12,23 for 5:00 a.m., noon and 11:00 p.m.
• A range of numbers—for example, 14-17 for on the hour, every hour from 2:00 p.m. to 5:00 p.m.

The value you specify for hour must be a number between 0 and 23. The value for minute must be a
number between 0 and 59. All numbers are values in the 24-hour clock.

%duration

Specify the number of minutes for which the time event should remain valid after it
becomes true. After the duration expires, the event can no longer trigger any activity.
The default duration is 1 minute. The minimum duration you can specify is also 1
minute.

-F "file_event"

Specifies to automatically trigger a flow when the specified file events are true.

When specifying the file name, you can also specify wildcard characters: * to represent
a string or ? to represent a single character. For example, a*.dat* matches abc.dat,
another.dat and abc.dat23. S??day* matches Satdays.tar and Sundays.dat. *e
matches smile.

Note:
There are some differences between UNIX and Windows when using
wildcard characters. Because UNIX is case-sensitive and Windows is not,
if you specify A*, on UNIX it matches only files beginning with A. On
Windows, it matches files beginning with A and a. Also, on UNIX, if you
specify ??, it matches exactly two characters. On Windows, it matches
one or two characters. These behaviors are consistent with UNIX ls
command behavior, and Windows dir command behavior.

Specify the file event in one of the following formats:

arrival(file_location)

Trigger a flow when the specified file arrives in the specified location, and subsequently only if the file is
deleted and arrives again. This option looks for a transition from nonexistence of the file to existence.
When the file is on a shared file system, specify the file location in the following format:
absolute_directory/filename

exist(file_location)

Commands

144 Administering Platform Process Manager

Trigger a flow if the specified file exists in the specified location, and continue to trigger the flow every
time the test for the file is performed, as long as the file continues to exist. When the file is on a shared
file system, specify the file location in the following format:
absolute_directory/filename

! exist(file_location)

Trigger a flow if the specified file does not exist in the specified location, and continue to trigger the flow
every time the test for the file is performed, as long as the file does not exist. When the file is on a shared
file system, specify the file location in the following format:
absolute_directory/filename

size(file_location) operator size

Trigger a flow when the size of the file meets the criteria specified with operator and size. When the file
is on a shared file system, specify the file location in the following format:
absolute_directory/filename

Valid values for operator are: >, <, >=, <=, == and !=.

Note:
For csh, if you specify != (not equal), you need to precede the operator
with a backslash escape character

Specify the size in bytes.

age(file_location) operator age

Trigger a flow when the age of the file meets the criteria specified with operator and age.

When the file is on a shared file system, specify the file location in the following format:
absolute_directory/filename

Valid values for operator are: >, <, >=, <=, == and !=.

Note:
For csh, if you specify != (not equal), you need to precede the operator
with a backslash escape character.

Specify the age in minutes.

-p "proxy_event"

Specifies to automatically trigger a flow when the specified proxy event is true.

Specify the proxy event in one the following formats:
job(exit|done|start|end(user_name:flow_name:[subflow_name:]job_name) [operator value])

Trigger a flow when the specified job meets the specified condition. You must specify the user name to
fully qualify the flow containing the job. You only specify a subflow name if the job is contained within
a subflow.

Valid operators are >=, >, <=, <, != and ==.

If you are specifying exit codes, you can specify multiple exit codes when using the operators != and ==.
Separate the exit codes with spaces, and specify a number from 0 to 255.

Commands

Administering Platform Process Manager 145

Note:
For csh, if you specify != (not equal), you need to precede the operator
with a backslash escape character.

• Example: on successful completion of J1:

-p "job(done(jdoe:myflow:J1))"
• Example: if payjob exits with an exit code greater than 5:

-p "job(exit(jdoe:myflow:testflow:payjob)>5)"
• Example: if payjob ends with any of the following exit codes: 5, 10, 12, or 14:

-p "job(exit(jdoe:myflow:testflow:payjob)==5 10 12 14)"
• Example: if payjob does NOT end with any of the following exit codes: 7, 9, 11:

-p "job(exit(jdoe:myflow:testflow:payjob)!=7 9 11)"
jobarray(exit|done|end|numdone|numexit|numend|numstart(user_name:flow_name:[subflow_name:]
job_array_name)[operator value])

Trigger a flow when the specified job array meets the specified condition. You must specify the user name
to fully qualify the flow containing the job array. You only specify a subflow name if the job array is
contained within a subflow.

Valid operators are >=, >, <=, <, != and ==.
• Example: on successful completion of all jobs in Array1:

-p "jobarray(done(jdoe:myflow:Array1))"
• Example: if arrayjob exits with an exit code greater than 5:

-p "jobarray(exit(jdoe:myflow:testflow:arrayjob)>5)"
• Example: if more than 3 jobs in A1 exit:

-p "jobarray(numexit(jdoe:myflow:testflow:arrayjob)>3)"
flow(exit|done|end|numdone|numexit|numstart(user_name: flow_name:[subflow_name])[operator
value])

Trigger a flow when the specified flow or subflow meets the specified condition. You must specify the
user name to fully qualify the flow. Specify a subflow name if applicable.

Valid operators are >=, >, <=, <, !=, ==.

Example: on successful completion of all jobs in myflow:

-p "flow(done(jdoe:myflow))"

Example: if myflow exits with an exit code greater than 5:

-p "flow(exit(jdoe:myflow)>5)"

Example: if more than 3 jobs in the subflow testflow exit:

-p "flow(numexit(jdoe:myflow:testflow)>3)"

Note: When Process Manager calculates the number of jobs in a flow, for successful jobs, failed jobs, and
so on, it does not count the jobs in a subflow, and it counts a job array as a single job. It also does not
count other objects in the flow, such as events or alarms.

-f "flow_event"

Specifies to automatically trigger a flow when the specified flow event(s) are true.

Commands

146 Administering Platform Process Manager

Specify the flow event in one of the following formats:
done(flow_definition_name)

Trigger a flow when the specified flow completes successfully. Specify the flow
definition name as follows:

user_name:flow_definition

If you do not specify a user name, it defaults to your own.
end(flow_definition_name)

Trigger a flow when the specified flow ends, regardless of exit code. Specify the
flow definition name as follows:

user_name:flow_definition

If you do not specify a user name, it defaults to your own.
numdone(flow_definition_name) operator nn

Trigger a flow when the specified number of jobs in the specified flow complete
successfully. Specify the flow definition name as follows:

user_name:flow_definition

If you do not specify a user name, it defaults to your own.
Valid operators are >=, >, <=, <, !=, ==.

For example:

numdone(jdoe:payflow)>=5

will trigger the flow you are submitting when 5 jobs complete successfully in payflow.

numstart(flow_definition_name) operator nn

Trigger a flow when the specified number of jobs in the specified flow have started.
Specify the flow definition name as follows:

user_name:flow_definition

If you do not specify a user name, it defaults to your own.
Valid operators are >=, >, <=, <, !=, ==.

numexit(flow_definition_name) operator nn

Trigger a flow when the specified number of jobs in the specified flow exit. Specify the
flow definition name as follows:

user_name:flow_definition
If you do not specify a user name, it defaults to your own.

Valid operators are >=, >, <=, <, !=, ==.

For example:

numexit(jdoe:payflow)>=3

will trigger the flow you are submitting if more than 3 jobs in payflow exit.

Commands

Administering Platform Process Manager 147

exit(flow_definition_name) operator nn

Trigger a flow when the specified flow ends with the specified exit code. Specify the flow
definition name as follows:

user_name:flow_definition

If you do not specify a user name, it defaults to your own.
Valid operators are >=, >, <=, <, !=, ==.

For example:

exit(jdoe:payflow)>=2

will trigger the flow you are submitting if payflow has an exit code greater than or equal to 2.

Note: When Process Manager calculates the number of jobs in a flow, for successful jobs, failed jobs, and
so on, it does not count the jobs in a subflow, and it counts a job array as a single job. It also does not
count other objects in the flow, such as events or alarms.

-C combination_type

When multiple events are specified, the combination type specifies whether one event
is sufficient to trigger a flow, or if all of the events must be true to trigger it. The default
is all.

AND

Specifies that all events must be true before a flow is triggered. This is the default.
OR

Specifies that a flow will trigger when any event is true.
flow_file_name

Specifies the name of the file containing the flow definition.
-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Examples
jsub -r -T "Weekends@Sys:0-8:30%30" -F "exists(/tmp/1.dat)" -C AND myflow.xml

Submits the flow definition in myflow.xml, to be triggered when both of the following are
true:

• Saturdays and Sundays every hour on the half hour, beginning at midnight until 8:00 a.m.
• The file /tmp/1.dat exists

Any triggering information defined within the flow definition is overwritten. If this flow
definition already exists, replace it.
% jsub -d -F "size(/data/tmp.log) >3500000" -F "arrival(/tmp/1.dat)" -C OR
backup.xml

Commands

148 Administering Platform Process Manager

Submits the flow definition in backup.xml, to be triggered when one of the following is
true:

• The size of /data/tmp.log exceeds 3.5 MB
• The file /tmp/1.dat arrives

Any triggering information defined within the flow definition is overwritten. If this flow
definition already exists, create a duplicate.

Commands

Administering Platform Process Manager 149

jtrigger
manually triggers a previously submitted flow definition.

Synopsis
jtrigger [-u user_name] [-v "var=value[;var1=value1;...]"] flow_name low_name... [f]

jtrigger [-h]|[-V]

Description
You use the jtrigger command to trigger a submitted flow definition, which creates a flow associated
with that definition. Any events normally used to trigger this definition are ignored at this time.

If the flow definition is on hold, you can use this command to trigger a flow. If the flow definition is not
on hold, this command triggers an additional execution of the flow. If you want to trigger a flow whose
definition is not yet stored in Process Manager, use the jrun command.

Options
-u user_name

Specifies the name of the user who owns the flow definition. Use this option if you have
administrator authority and you are triggering the flow on behalf of another user.

-v var=value

Specifies to pass variables and their values to the flow when triggering it. To specify a
list of variables, separate the variable and value pairs with a semi-colon (;). The value of
the variable is available only within the scope of the flow itself (local variables only).

flow_name

Specifies the name of the flow definition. To specify a list of flow definitions, separate
the flow definition names with a space.

-h

Prints the command usage to stderr and exits.
-V

Prints the Process Manager release version to stderr and exits.

Examples
jtrigger myflow

Triggers the flow definition myflow, which is owned by the current user.
jtrigger -u "user01" payupdt

Triggers the flow definition payupdt, which is owned by user01.
jtrigger -v "PMONTH=October" payflow

Commands

150 Administering Platform Process Manager

Triggers the flow definition payflow, which is owned by the current user, and passes it a value
of October for the variable PMONTH.

See also
jrun

Commands

Administering Platform Process Manager 151

Commands

152 Administering Platform Process Manager

7
Files

This chapter describes the Process Manager file structure, and provides descriptions and formats of those
files you may be required to change while administering Process Manager.

C H A P T E R

Administering Platform Process Manager 153

File Structure
When Process Manager is installed, it creates several directories under its top directory. Some of these
directories contain scheduling data, others contain working files, or historical data. Some directories are
created when the Process Manager server is started, rather than immediately after installation.

Files created on the server host
The directories on the left are those that exist on UNIX after the Process Manager server has been started.
The directories on the right are those that exist on a Windows server after installation is complete:

The following describes what each directory contains:

Directory Contents

<version>/app Contains the files required to run Process Manager Client.

<version>/bin Contains the executables for all of the Process Manager commands and the Process Manager
Client applications.

<version>/etc Contains the Process Manager messages and the data specification used by the Process
Manager software when creating flows.

<version>/
examples

Contains example flows you can use and customize.

<version>/jre On Windows only, contains the Java runtime environment files for the client applications.

<version>/install On UNIX only, contains the Process Manager README file and install.config and other
installation-specific information.

<version>/lib Contains the Process Manager Java files.

<version>/
resources

Contains the properties files used by Process Manager.

<version>/man On UNIX only, contains the man pages for each of the Process Manager commands.

<version>/platform Contains files specifically for running the Process Manager software on each platform. In the
above example, the files are for running the Process Manager software on Solaris 7 and 8.

conf Contains the configuration files used by the install script to define the Process Manager
environment, including js.conf and fod.conf, (if failover is installed) cshrc.js and
profile.js.

log Contains the log files created by Process Manager to store Process Manager Server and
failover error logs. Process Manager creates a log file called jfd.log.hostname, which
contains the error logs.

Files

154 Administering Platform Process Manager

Directory Contents

work Contains working information required by Process Manager to complete its processing,
including the following directories:

• alarms—contains all alarm definitions
• calendar—contains all system calendar definitions
• events—contains persisted flow events and manual jobs
• history—contains all historical data
• lock—contains lock files to prevent multiple Process Manager Servers from accessing

the same working files
• storage—contains copies of active and completed flows
• system—contains system status data used byProcess Manager Server during recovery
• templates—contains templates for inserting custom applications in a flow
• var_comm—contains temporary values for user variables
• variable—contains the current values of any global or local user variables
• proxy_storage—contains persisted proxy event definitions

Process Manager history files
The log files containing Process Manager audit data are located in JS_TOP/work/history. Process
Manager writes audit data to a history file called history.log.1. When the file reaches the maximum
size specified in the configuration file js.conf (the default is 500 KB), a new file is created, and the suffix
is incremented by 1. Periodically, you may want to manually archive or delete these files.

Process Manager log files
Process Manager creates a log file called jfd.log.hostname, which contains the error logs. The file is
located within the directory defined by the JS_LOGDIR configuration setting in js.conf. By default,
this directory is JS_TOP/log. However, after installation, you can change the value in js.conf to use a
different directory.

Files

Administering Platform Process Manager 155

history.log
Process Manager Server stores audit data in a history log file. This log file contains a record of all of the
work items that run in the system. It tracks each work item as it enters the Process Manager system, is
submitted to LSF master host, and tracks its state as it completes. It records the CPU usage of each job in
the system, start time, finish time, and other pertinent information.

When the history log file reaches the maximum size specified in JS_HISTORY_SIZE or the maximum
number of hours of data, as specified in JS_HISTORY_LIFETIME in the js.conf file, a new history log
file is created. The numeric suffix of the file increases as each new file is created.

Example
The following is an excerpt from a history log file:

"JOB" "bhorner" "1035277212" "5:bhorner:daily:J1" "Started job" "JobId=1360"
"JOB" "bhorner" "1035277222" "5:bhorner:daily:J1" "Execute job" "JobId=1360|Host=curie"
"JOB" "bhorner" "1035277242" "5:bhorner:daily:J1" "Finished job" "JobId=1360|State=Done|
Status=0|StartTime=1035277208|FinishTime=1035277237|CPUUsage=0.170000 sec"
"FLOW" "bhorner" "1035277242" "5:bhorner:daily" "Finished flow" "State=Done|Status=0|
StartTime=1035277202|FinishTime=1035277242"
"FLOWDEF" "bhorner" "1035309105" "bhorner:untitled1" "Remove flow definition" ""
"FLOWDEF" "bhorner" "1035309105" "bhorner:untitled1" "Submit flow definition" ""
"FLOWDEF" "bhorner" "1035309127" "bhorner:untitled1" "Instantiated flow definition"
"FlowId=6"
"FLOWDEF" "bhorner" "1035309127" "bhorner:untitled1" "Trigger flow definition" ""
"FLOW" "bhorner" "1035309127" "6:bhorner:untitled1" "Start flow" ""

Description
Data in the file is listed from top (earliest events) to bottom (latest events).

In the above example, the first line shows when J1 in the flow daily was submitted to LSF master host.
The second line indicates when LSF master host dispatched the job, and the name of the host to which it
was dispatched. When the job completes, the job ID and its resulting state and CPU usage are listed, as
shown in the third line.

Files

156 Administering Platform Process Manager

install.config
Process Manager configuration file for installation on UNIX or Linux. Run jsinstall -f
install.config to install Process Manager using the options specified in install.config.

Template location
A template install.config is located in the installation script directory created when extracting the
Process Manager installation script tar file. Edit the file to specify the options for your Process Manager
installation.

Format
Each entry in install.config has one of the following formats:
NAME=VALUE
NAME=
NAME="STRING1 STRING2 ..."

The equal sign (=) must follow each NAME even if no value follows and there should be no space beside
the equal sign.

Lines starting with a pound sign (#) are comments and are ignored. Do not use #if as this is reserved
syntax.

JS_ADMINS
Syntax

JS_ADMINS=primary_admin [admin2 admin3 ...]

Description
REQUIRED.

Specifies the administrators who run Process Manager. The first entry is the primary Process Manager
administrator, and must be a valid user ID. This name is set at installation time. Any additional
administrators specified can be user IDs, UNIX user group names, or Windows active directory user
group names.

To specify a list, separate the names with a space. If the Windows user ID or active directory user group
contains spaces, enclose the user ID or group name in quotation marks.

For example, to specify Windows users and user groups:

JS_ADMINS=DOMAIN\lsfadmin,"DOMAIN\Engineering Group",DOMAIN\userA

Default
There is no default for this parameter. A value for the primary Process Manager administrator is set at
installation time.

JS_CONTROL_ADMINS
Syntax

JS_CONTROL_ADMINS=cadmin [cadmin1 cadmin2 ...]

Files

Administering Platform Process Manager 157

Description
OPTIONAL.

Specifies one or more control administrators who can control any flows or jobs in the Process Manager
system, regardless of who the owner is. These administrators cannot submit or remove flows belonging
to other users.

Any administrators specified can be user IDs, UNIX user group names, or Windows active driectory user
group names.

To specify a list, separate the names with a space. If the Windows user ID or active directory user group
contains spaces, enclose the user ID or group name in quotation marks.

For example, to specify Windows users and user groups:

JS_CONTROL_ADMINS=DOMAIN\admin,"DOMAIN\QA Group",DOMAIN\userA

Default
There is no default for this parameter.

See also
JS_ADMINS

JS_FAILOVER
Syntax

JS_FAILOVER=false | true

Description
OPTIONAL if failover is not used. REQUIRED if failover is used.

Specifies that the failover feature is to be enabled. The failover feature provides automatic failover in the
event the Process Manager Server host becomes unavailable.

Default
The default is false—no failover.

See also
JS_FAILOVER_HOST, JS_FOD_PORT

JS_FAILOVER_HOST
Syntax

JS_FAILOVER_HOST=hostname

Description
OPTIONAL if failover is not used. REQUIRED if failover is used.

Specifies the fully-qualified hostname of the failover host.

Files

158 Administering Platform Process Manager

If you specified JS_FAILOVER=true, specify the name of the host where Process Manager Server will run
if the primary Process Manager Server host is unavailable.

Default
The default is the same hostname as that specified for Process Manager Server.

See also
JS_FAILOVER, JS_FOD_PORT

JS_FOD_PORT
Syntax

JS_FOD_PORT=number

Description
OPTIONAL if failover is not used. REQUIRED if failover is used.

Specifies the port number of the failover daemon fod.

If you specified JS_FAILOVER=true, specify the port number to be used for communication between the
failover daemon and the Process Manager Server daemon.

Default
The default is 1999.

See also
JS_FAILOVER, JS_FAILOVER_HOST

JS_TOP
Syntax

JS_TOP=/path

Description
REQUIRED.

Specifies the full path to the top-level installation directory.

Corresponds to JS_HOME in js.conf.

Default
There is no default for this parameter.

JS_HOST
Syntax

JS_HOST=hostname

Files

Administering Platform Process Manager 159

Description
REQUIRED.

Specifies the fully-qualified domain name of the host on which Process Manager Server runs—the name
of the host to which the clients connect under normal operations. You cannot specify more than one host.

Default
There is no default for this parameter.

See also
JS_PORT

JS_LICENSE
Syntax

JS_LICENSE=/path/filename

Description
Specifies the location of the copy that Process Manager makes of the license.dat file.

Default
The default is the parent directory of the current working directory where jsinstall is run.

JS_MAILHOST
Syntax

JS_MAILHOST=hostname

Description
OPTIONAL.

Specifies the name of the mail server host.

On Windows, specify the protocol and name of the mail server host. For an SMTP mail host, specify
SMTP:hostname. For an exchange mail host, specify Exchange:hostname.

On UNIX, specify just the name of the mail server host.

Default
If Process Manager Server is installed on Windows, the default is Exchange:localhostname. If Process
Manager Server is installed on UNIX, the default is localhostname.

JS_PORT
Syntax

JS_PORT=number

Files

160 Administering Platform Process Manager

Description
REQUIRED.

Specifies the port number to be used by Process Manager Client to connect with Process Manager Server.

Default
The default port number is 1966.

See also
JS_HOST

JS_TARDIR
Syntax

JS_TARDIR=/path

Description
OPTIONAL.

Specifies the full path to the directory containing the Process Manager distribution files to be installed.

Default
The default is the parent directory of the current working directory where jsinstall is run.

LSF_ENVDIR
Syntax

LSF_ENVDIR=/path

Description
REQUIRED.

Default
Specifies the directory where LSF master host configuration files are stored. There is no default for this
value.

EGO_DAEMON_CONTROL
Syntax

EGO_DAEMON_CONTROL=false | true

Description
OPTIONAL

Specifies whether or not to install Process Manager as an EGO service and enable to control JFD.

Files

Administering Platform Process Manager 161

Default
The default is EGO_DAEMON_CONTROL=false.

EGO_CONFDIR
Syntax

EGO_CONFDIR=/path

Description
REQUIRED if EGO_DAEMON_CONTROL=true

Specifies the directory containing the path to the EGO configuration file ego.conf.

Default
Specifies the directory where EGO configuration files are stored. There is no default for this value.

Files

162 Administering Platform Process Manager

js.conf
This is the configuration file for Process Manager. Process Manager Server receives its configuration
information on startup from its configuration file js.conf.

When you make changes in this file, restart jfd with the commands jadmin start and jadmin
stop to make changes take effect.

The file js.conf is created automatically during the installation of Process Manager. The values in
js.conf are set automatically when you install Process Manager Server as follows:

• On UNIX, from the values you specify in install.config before running jsinstall
• On Windows, from the values you specify when prompted by the installation program
• Some values default during installation

If, for example, when you installed the failover daemon, the default port was already in use, you can
change that value directly in js.conf. The next time Process Manager Server is started, the new values
take effect.

Some values in js.conf are generated and cannot be changed without causing problems. This is
indicated in the parameter description.

Format
Each entry in js.conf has one of the following formats:
NAME=VALUE
NAME=
NAME="STRING1,STRING2,..."

The equal sign (=) must follow each NAME even if no value follows and there should be no space beside
the equal sign.

Lines starting with a pound sign (#) are comments and are ignored. Do not use #if as this is reserved
syntax.

Parameters
JS_ADMINS
Syntax

JS_ADMINS=primary_admin[,admin2,admin3,...]

Description
REQUIRED.

Specifies the administrators who run Process Manager. The first entry is the primary Process Manager
administrator, and must be a valid user ID. This name is set at installation time. Any additional
administrators specified can be user IDs, UNIX user group names, or Windows active directory user
group names.

If you change the list of administrators specified in this parameter, or change the membership in a user
group specified in this parameter, these changes will be applied at the next scheduled update or by running
jreconfigadmin.

Files

Administering Platform Process Manager 163

Windows user IDs and active directory user group names must include the domain name. To specify a
list, separate the names with a comma without a space. If the Windows user ID or active directory user
group name contains spaces, enclose the user ID or group name in quotation marks.

For example, to specify Windows users and user groups:
JS_ADMINS=DOMAIN\lsfadmin,"DOMAIN\Engineering Group",DOMAIN\userA

Default
There is no default for this parameter. A value for the primary Process Manager administrator is set at
installation time.

JS_ADMIN_UPDATE_INTERVAL
Syntax

JS_ADMIN_UPDATE_INTERVAL=days

If set to 0, scheduled updates is disabled.

Description
Specifies the interval between scheduled updates of the list of Process Manager administrators.

If the membership in a user group changes, the list of Process Manager administrators needs updating.
This parameter specifies the interval of time between scheduled updates. You can also manually update
the list of Process Manager administrators using the jreconfigadmin command.

If you disable scheduled updates (by setting this interval to 0), you need to manually run
jsreconfigadmin whenever you modify the JS_ADMINS or JS_CONTROL_ADMINS parameters, or
whenever you modify any user groups specified in the JS_ADMINS or JS_CONTROL_ADMINS
parameters.

Default
The default is one day.

See also
JS_ADMINS, JS_CONTROL_ADMINS

JS_ALARM_CMD_TIMEOUT
Syntax

JS_ALARM_CMD_TIMEOUT=seconds

Description
Specifies the maximum number of seconds that an alarm script executes before Process Manager forcefully
terminates it.

Default
The default is 180 seconds.

Files

164 Administering Platform Process Manager

JS_CHANGE_FLOW_OWNER
Syntax

JS_CHANGE_FLOW_OWNER=false | true

Description
Specifies whether non-administrator users can trigger flows from other users’ flow definitions and own
the triggered flows.

Applies only to Published flows.

When this parameter is set to false:

• Only the Process Manager administrator, the Process Manager control administrator, and the user
who submitted the flow definition can trigger the flow. The user who submitted the flow definition is
the owner of the flow. In Flow Manager, the Run As field in the job definition has this user name.

When this parameter is set to true:

• Any user can trigger the flow. The user who triggers the flow is the owner of the flow.
• In Flow Manager, the value defined in the job definition Run As field is replaced with the user name

of the user who triggered the flow.

If a flow definition has a trigger event defined, the flow owner is the user who submitted the flow definition.

If a user runs a flow with the jrun command or through Run Now in Flow Editor, the flow owner is the
user who invokes the command or the Run Now action.

Permissions
The following table illustrates control permissions when JS_CHANGE_FLOW_OWNER=true.

Can trigger other users’
non-published flow
definitions

Can trigger other
users’ published
flow definitions

Flow owner/ job owner

Primary administrator, Control
administrator

Y Y User who triggered the flow.

Non-administrator users N Y User who triggered the flow.

The following table illustrates control permissions when JS_CHANGE_FLOW_OWNER=false.

Users Can trigger other users’
non-published flow
definitions

Can trigger other
users’ published
flow definitions

Flow owner/ job owner

Primary administrator, Control
administrator

Y Y User defined in the flow
definition.

Non-administrator users N N Not applicable.

User interface affected
In Flow Manager:

Files

Administering Platform Process Manager 165

• When a user opens the a job definition dialog from the flow diagram, the Run As field always displays
the actual job owner.

• Flow and job control action permissions are based on flow owner. The flow owner can:

• Flows: kill, suspend, resume, rerun, query
• Jobs: kill, rerun, resume, set job complete, set rerun point
• Set variables
• Complete dependencies
• Complete/query manual jobs

Commands:

• jtrigger -u user_name

When JS_CHANGE_FLOW_OWNER=false, -u specifies the name of the user who owns the flow
definition. This is the user who submitted the flow definition to Process Manager. Use this option if
you have administrator authority and you are triggering the flow on behalf of another user.

When JS_CHANGE_FLOW_OWNER=true, -u specifies the name of the user who is to own the
triggered flow. Jobs in the flow run under this user name and this user is able to control the flow and
its jobs.

• Flow commands:

For flow-related commands such as jflows, jkill, jmanuals, jrerun, jresume, jstop, -u
specifies the owner of the flow: the user who triggered the flow.

In the output of the jflows command, the USER field indicates the flow owner: the user who triggered
the flow. In the NAME field, the full name of the flow definition is displayed (example: LSFAD/
lsfadmin:untitled).

• Job commands:

For job-related commands such as jcomplete, jjob, -u specifies the owner of the job.
• For the jhist command, -u specifies the user who owns the category specified by the -C option.

In the following example, -u indicates the owner of the flow definition (user who submitted the flow
definition):
jhist -C myflowdef -u user1 -f myflow

In the following example, -u specifies the owner of the flow (user who triggered the flow):
jhist -C flow -u user1 -f myflow

In the following example, -u specifies the owner of the job (user who triggered the flow):
jhist -C job -u user1 -f myflow

• In the history.log file, the user in the User Name field is the owner of the category. For example,
the user name in the FLOWDEF category is the flow definition owner(user who submitted the flow
definition), the user name in the FLOW category is the flow owner(user who triggered the flow) and
the user in the JOB category is the job owner(user who triggered the flow).

Default
JS_CHANGE_FLOW_OWNER=false

See also
JS_LIMIT_USER_VIEW

Files

166 Administering Platform Process Manager

If you are using JS_LIMIT_USER_VIEW to limit a user’s view of flows to his own flows, when you set
JS_CHANGE_FLOW_OWNER=true:

• The user who is logged on can view and control flows that he owns. For example, if userA submitted
the flow definition, but userB who is logged on triggered a flow from the flow definition, in the
Definition tab in Flow Editor, userB will see the flow defnition because he is the owner of the flow.

• The user who is logged on can view and control flow definitions that he owns.
• If the flow definition was not submitted by the user who is logged on, operations on the flow definition

are disabled.

JS_CONN_TIMEOUT
Syntax

JS_CONN_TIMEOUT=seconds

Description
Specifies the maximum number of seconds a Process Manager Client waits for a response from Process
Manager Server.

Default
The default is 1024 seconds.

JS_CONTROL_ADMINS
Syntax

JS_CONTROL_ADMINS=cadmin[,cadmin1,cadmin2,...]

Description
OPTIONAL.

Specifies one or more control administrators who can control any flows or jobs in Process Manager,
regardless of who the owner is. These administrators cannot submit or remove flows belonging to other
users.

Any administrators specified can be user IDs, UNIX user group names, or Windows active directory user
group names.

If you change the list of administrators specified in this parameter, or change the membership in a user
group specified in this parameter, these changes will be applied at the next scheduled update or by running
jreconfigadmin.

Windows user IDs and active directory user group names must include the domain name. To specify a
list, separate the names with a comma without a space. If the Windows user ID or active directory group
name contains spaces, enclose the user ID or group name in quotation marks.

For example, to specify Windows users and user groups:
JS_CONTROL_ADMINS=DOMAIN\admin,"DOMAIN\QA Group",DOMAIN\userA

Default
There is no default for this parameter.

Files

Administering Platform Process Manager 167

See also
JS_ADMINS

JS_DATACAPTURE_TIME
Syntax

JS_DATACAPTURE_TIME="cal_name@user_name:hour[:minute]"

Description
Periodically, Process Manager Server interrupts its processing to take an image of the workload in Process
Manager, and saves it for recovery purposes. Depending on the amount of workload that passes through
your server, recovery of Process Manager following an outage may take some time. The more recent the
system image, the shorter the recovery time.

JS_DATACAPTURE_TIME specifies the schedule that determines when an image of the workload in the
system is saved for recovery purposes. The schedule is specified in the form of a calendar name and owner
and time, and is enclosed in double quotes. You can specify one or more schedules in a comma-separated
list.

During data capture, Process Manager Server does not submit new work. Ideally, schedule this activity
at a time when Process Manager is least busy. You may need to adjust this schedule to find the balance
between frequency and duration of the process, to ensure server productivity.

Default
The default is Daily@Sys:0:0 (daily at midnight).

JS_DTD_DIR
Syntax

JS_DTD_DIR=JS_HOME/7.1/etc

Description
DO NOT CHANGE THIS VALUE.

Specifies the directory containing the DTD files required by Process Manager.

Default
The default is JS_HOME/7.1/etc

JS_ENCRYPTION
Syntax

JS_ENCRYPTION=true | false

Description
Specifies whether to encrypt communication between Process Manager Server and Process Manager
Client. If you set this value to true, ensure that the strong encryption package is installed.

Files

168 Administering Platform Process Manager

Default
The default is false—do not encrypt communication.

JS_EVENTS_LIFETIME
Syntax

JS_EVENTS_LIFETIME=hours

Description
Specifies the time period in hours for which event data is collected before a new event log file is created.
If the size of the log file exceeds the file size specified in JS_EVENTS_SIZE, a new log file is created,
regardless of how many hours of data it contains.

Default
The default is 168 hours (7 days).

See also
JS_EVENTS_DEFAULT_SIZE

JS_EVENTS_DEFAULT_SIZE
Syntax

JS_EVENTS_DEFAULT_SIZE=bytes

Description
Specifies the maximum number of bytes an event log file can grow to before a new log file is created. If
the number of hours of data exceeds the time period specified in JS_EVENTS_LIFETIME, a new log file
is created, regardless of its size.

Default
The default is 1000000 bytes (1 MB).

See also
JS_EVENTS_LIFETIME

JS_EXTERNAL_EXECUTION
Syntax

JS_EXTERNAL_EXECUTION=false | true

Description
UNIX only.

Specifies that the external execution daemon (EED) is to be enabled. This allows the Process Manager
daemon (JFD) to delegate any command execution to the EED so that the JFD does not need to use the
fork() function to execute commands. This provides a significant performance enhancement if the JFD’s
memory footprint is large (usually greater than 1 GB).

Files

Administering Platform Process Manager 169

JFD communicates with EEDs through full-duplex pipes. JFD passes the commands to execute to the
EEDs and reads the output of the commands from the EEDs. The EEDs collect the exit status of the
commands.

JFD maintains the connection between itself and the EEDs, and restarts any EED that shuts down. If JFD
is shut down, the EED will exit in 15 seconds.

Default
The default is JS_EXTERNAL_EXECUTION=false.

JS_FAILOVER
Syntax

JS_FAILOVER=false | true

Description
OPTIONAL if failover is not used. REQUIRED if failover is used.

Specifies that the failover feature is to be enabled. The failover feature provides automatic failover in the
event the Process Manager Server host becomes unavailable.

Default
The default is JS_FAILOVER=false.

See also
JS_FAILOVER_HOST, JS_FOD_PORT

JS_FAILOVER_HOST
Syntax

JS_FAILOVER_HOST=host_name

Description
OPTIONAL if failover is not used. REQUIRED if failover is used.

Specifies the fully-qualified host name of the failover host.

If you specified JS_FAILOVER=true, specify the name of the host where Process Manager Server will run
if the primary Process Manager Server host is unavailable.

Default
The default is the same host name as that specified for Process Manager Server.

See also
JS_FAILOVER, JS_FOD_PORT

Files

170 Administering Platform Process Manager

JS_FILEAGENT_SENSITIVITY
Syntax

JS_FILEAGENT_SENSITIVITY=seconds

Description
Specifies the time interval in seconds at which Process Manager checks for changes in the file system. This
value is used when testing file events.

Default
The default is 30 seconds.

JS_FLOW_STATE_MAIL
Syntax

JS_FLOW_STATE_MAIL=true | false

Description
Specifies whether or not to allow flow email notifications. When set to true, flow email notification occurs
as specified by the user in each flow. When set to false, flow email notification does not occur. This setting
has no effect on individual job email notifications or alarm email notifications.

Default
The default is true—enable flow email notification.

See also
JS_MAIL_SIZE

JS_FOD_PORT
Syntax

JS_FOD_PORT=number

Description
OPTIONAL if failover is not used. REQUIRED if failover is used.

Specifies the port number of the failover daemon fod.

If you specified JS_FAILOVER=true, specify the port number to be used for communication between the
failover daemon and the Process Manager Server daemon.

Default
The default is 1999.

See also
JS_FAILOVER, JS_FAILOVER_HOST

Files

Administering Platform Process Manager 171

JS_FY_MONTH
Syntax

JS_FY_MONTH=n

Description
OPTIONAL.

Specifies the number that corresponds to the starting month of the fiscal year. This value is used in certain
system calendars. Specify a value from 1 (January) to 12 (December). For example, to specify March,
specify JS_FY_MONTH=3.

Default
The default is 7 (July).

JS_HISTORY_CLEAN_PERIOD
Syntax

JS_HISTORY_CLEAN_PERIOD=days

Description
Specifies the time period in days for which history log files are stored. Any history log files older than the
specified time period is cleaned up by Process Manager.

Default
The default is 15 days.

JS_HISTORY_LIFETIME
Syntax

JS_HISTORY_LIFETIME=hours

Description
Specifies the time period in hours for which history data is collected before a new history log file is created.
If the size of the log file exceeds the file size specified in JS_HISTORY_SIZE, a new log file is created,
regardless of how many hours of data it contains.

Default
The default is 24 hours.

See also
JS_HISTORY_SIZE

JS_HISTORY_LIMIT
Syntax

JS_HISTORY_LIMIT=number_of_records

Files

172 Administering Platform Process Manager

Description
Specifies the maximum number of history records retrieved when the jhist command is used and your
Process Manager Client and Process Manager Server are on different hosts. If more than the maximum
number of records are available, only the oldest number of records you specify in this parameter are
retrieved.

Default
The default is 1500 history records.

JS_HISTORY_SIZE
Syntax

JS_HISTORY_SIZE=bytes

Description
Specifies the maximum number of bytes a history log file can grow to before a new log file is created. If
the number of hours of data exceeds the time period specified in JS_HISTORY_LIFETIME, a new log file
is created, regardless of its size.

Default
The default is 500000 bytes (500 KB).

See also
JS_HISTORY_LIFETIME

JS_HOME
Syntax

JS_HOME=/path

Description
Specifies the full path to the top-level installation directory.

Corresponds to JS_TOP in install.config.

Default
There is no default for this parameter. A value is set at installation time.

JS_HOST
Syntax

JS_HOST=host_name

Description
REQUIRED.

Files

Administering Platform Process Manager 173

Specifies the fully-qualified domain name of the host on which Process Manager Server runs—the name
of the host to which the clients connect under normal operations. You cannot specify more than one host.

Default
There is no default for this parameter. A value is set at installation time.

See also
JS_PORT

JS_IM_ACTIVEPOLICY
Syntax

JS_IM_ACTIVEPOLICY=JF_IM_IPolicy | JF_IM_TPolicy

Description
Specifies the criteria used by Process Manager to determine when to delete a copy of a completed flow
from the working set. Also controls the amount of information saved to the cache file.

Specify JF_IM_IPolicy if you want to use the number of occurrences of the flow as the criteria to delete
the flow. The oldest occurrence is deleted first.

Specify JF_IM_TPolicy if you want to use the length of time since the flow completed as the criteria to
delete the flow. The oldest occurrence is deleted first.

Default
The default policy is JF_IM_IPolicy.

See also
JS_IM_POLICY_CHECKING_INTERVAL

JS_IM_POLICY_CHECKING_INTERVAL
Syntax

JS_IM_POLICY_CHECKING_INTERVAL=minutes

Description
Specifies the time interval in minutes at which Process Manager applies the policy specified in
JS_IM_ACTIVEPOLICY.

Default
The default interval is 12 minutes.

See also
JS_IM_ACTIVEPOLICY, JS_IM_POLICY_LIFETIME, JS_IM_POLICY_NOOFFLOWS

Files

174 Administering Platform Process Manager

JS_IM_POLICY_LIFETIME
Syntax

JS_IM_POLICY_LIFETIME=days

Description
Specifies the time interval in days after which completed flows are deleted from the Process Manager
working set.

This value takes effect when JS_IM_ACTIVEPOLICY = JF_IM_TPolicy. The oldest occurrence is deleted
first.

Default
The default is 5 days.

See also
JS_IM_ACTIVEPOLICY, JS_IM_POLICY_CHECKING_INTERVAL, JS_IM_POLICY_NOOFFLOWS

JS_IM_POLICY_NOOFFLOWS
Syntax

JS_IM_POLICY_NOOFFLOWS=number

Description
Specifies the number of copies of a completed flow that are retained within the Process Manager working
set. Specify a number greater than 0.

This value takes effect when JS_IM_ACTIVEPOLICY = JF_IM_IPolicy. The oldest occurrence is deleted
first.

Default
The default is 36 copies.

See also
JS_IM_ACTIVEPOLICY, JS_IM_POLICY_LIFETIME, JS_IM_POLICY_CHECKING_INTERVAL

JS_JOB_SUBMISSION_SCRIPT_TIME_OUT
Syntax

JS_JOB_SUBMISSION_SCRIPT_TIME_OUT=seconds

Description
Specifies the length of time for which the job submission script can run before the Process Manager
daemon (JFD) kills the script.

Default
The default is 300 seconds.

Files

Administering Platform Process Manager 175

JS_JOB_SUBMIT_NOTICE_THRESHOLD
Syntax

JS_JOB_SUBMIT_NOTICE_THRESHOLD=number

Description
Specifies when job queue size is logged. When the job queue reaches the size specified by
JS_JOB_SUBMIT_NOTICE_THRESHOLD and every multiple of that number, the job queue size is
logged in $JS_TOP/log/jfd.log.host_name. It is logged at LOG_NOTICE level.

Default
100 entries

JS_LICENSE_FILE
Syntax

JS_LICENSE_FILE=/path/filename

Description
DO NOT CHANGE THIS VALUE.

Specifies the location of the copy that Process Manager makes of the license.dat file.

Default
The default is JS_HOME/conf.

JS_LIMIT_FLOW_CHART_VIEW
Syntax

JS_LIMIT_FLOW_CHART_VIEW=true | false

Description
Specifies whether users can see the chart view of a flow and flow definition.

When this parameter is set to false, users who can view a flow or flow definition, can see everything about
the flow: flow chart, general information, subflows and jobs, flow data, and flow history. These users can
also perform job and subflow-specific actions.

When this parameter is set to true, there are restrictions on which users can see the flow chart of a flow
and flow definition and associated actions the user can take on components of the flow.

Permissions
The following table illustrates permissions when JS_LIMIT_FLOW_CHART_VIEW=true.

Can see the flow chart of a
flow definition

Can see the flow chart of a flow

Process Manager administrator (as
defined by JS_ADMINS)

Y Y

Files

176 Administering Platform Process Manager

Can see the flow chart of a
flow definition

Can see the flow chart of a flow

Control administrator (as defined by
JS_CONTROL_ADMINS)

Y, if the user is the flow
definition owner.

Y, if the user is both the flow definition owner
and flow owner.

For example, if a user triggered a flow from
another user's published flow definition, he
will not be able to view the flow chart. He is
the flow owner, but not the flow definition
owner.

Non-administrator users Y, if the user is the flow
definition owner.

Y, if the user is both the flow definition owner
and flow owner.

For example, if a user triggered a flow from
another user's published flow definition, he
will not be able to view the flow chart. He is
the flow owner, but not the flow definition
owner.

The following table illustrates permissions when JS_LIMIT_FLOW_CHART_VIEW=false.

Can see the flow chart of a flow
definition

Can see the flow chart of a flow

Process Manager administrator (as
defined by JS_ADMINS)

Y Y

Control administrator (as defined by
JS_CONTROL_ADMINS)

Y, if the user can see the flow
definition.

Y, if the user can see the flow.

Non-administrator users Y, if the user can see the flow
definition.

Y, if the user can see the flow.

User interface affected
In Flow Manager:

• If the user does not have permission to see the flow chart: the Open and Open in New Frame on the
right-click menu and top drop-down menu will be disabled.

In Platform Application Center:

• If the user does not have permission to see the flow chart, the Flow Chart tab will not be displayed in
the flow definition list page, flow submission form page, and flow/job list page. Consequently, any
actions that can only be taken from the Flow Chart view will also not be available. Users can select the
Subflows and Jobs tab, and click on the ID of a job to navigate to the Jobs page and take action on
individual jobs.

Default
The default is false.

See also
JS_ADMINS, JS_CONTROL_ADMINS, JS_LIMIT_USER_VIEW, JS_CHANGE_FLOW_OWNER

Files

Administering Platform Process Manager 177

JS_LIMIT_USER_VIEW
Syntax

JS_LIMIT_USER_VIEW=true | false

Description
Specifies whether a user’s view of flows is limited to their own flows, or includes all flows in Process
Manager. For a guest user, limits the access so that no flows are viewable.

When this parameter is set to true and JS_CHANGE_FLOW_OWNER is set to true:
• The user who is logged on can view and control flow definitions that he owns
• If the flow was not created by the user who is logged on, operations on the flow definition are disabled.
• The user who is logged on can view and control flows that he owns.

Default
The default is false.

See also
JS_CHANGE_FLOW_OWNER

JS_LIMIT_MODIFY_GLOBALVAR
Syntax

JS_LIMIT_MODIFY_GLOBALVAR=true | false

Description
Specifies whether to allow or deny users the privilege of controlling global variables through jsetvars or
flow manager. When set to true, only administrators can modify global variables. When set to false, users
and administratos can modify global variables.

Default
The default is true.

JS_LOCAL_EXECUTION_THREADS
Syntax

JS_LOCAL_EXECUTION_THREADS=number_of_jobs

Description
This parameter is obsolete for Linux and Solaris since Process Manager version 8.0.2.

For Windows, this parameter specifies the maximum number of local jobs that can be run in parallel
independent of flows. There is one thread created per job.

Valid values are integers starting at 1.

Default
Linux and UNIX:1. The parameter value is fixed to one, regardless of the value that you configure.

Files

178 Administering Platform Process Manager

Windows: The default is 1.

JS_LOCAL_EXECUTION_TIMEOUT
Syntax

JS_LOCAL_EXECUTION_TIMEOUT=seconds

Description
Specifies the amount of time, in seconds, that each local job is allowed to run before Process Manager
forcefully terminates the job. If you set this to be zero or less, Process Manager uses the default value.

Default
Linux and UNIX: no timeout on the job. There is no limit on how long the local job can run.

Windows: 180 seconds.

JS_LOCAL_JOBS_LIMIT
Syntax

JS_LOCAL_JOBS_LIMIT=number_of_jobs

Description
This parameter only applies to local jobs on Linux and UNIX.

Used to avoid overloading the Process Manager host when too many local jobs are running at the same
time.

Specifies the maximum number of local jobs that may be run in parallel independent of flows. When the
number of running local jobs is reached, no new local jobs will be able to execute until the currently
running local jobs complete.

Default
The larger number between 1, and the number of cores on the Process Manager host - 2. For example, if
the Process Manager host has 4 cores, the maximum number of local jobs that can be run in parallel is 2.

JS_LOGDIR
Syntax

JS_LOGDIR=/path

Description
Specifies the name of the directory containing the jfd.log file, the error log file for the Process Manager
Server daemon.

Default
The default is JS_HOME/log.

Files

Administering Platform Process Manager 179

JS_LOGIN_REQUIRED
Syntax

JS_LOGIN_REQUIRED=true | false

Description
Specifies if a user login is required to access Process Manager. Set as true if you want to require users to
log in before using Process Manager.

Default
The default is false; users do not have to log in to use Process Manager.

JS_LOGON_RETRY
Syntax

JS_LOGON_RETRY=number

Description
Specifies the number of times Process Manager should resubmit the same job to LSF when logon fails.

Default
The default is 0.

JS_LOGON_RETRY_DELAY
Syntax

JS_LOGON_RETRY_DELAY=seconds

Description
Specifies the number of seconds to wait in between each try to resubmit the same job to LSF when logon
fails.

Default
The default is 10 seconds.

JS_LOG_MASK
Syntax

JS_LOG_MASK=value

Description
Specifies the error logging level used. Change this value only as directed by Platform Technical Support.
Valid values from highest to lowest are:

• LOG_EMERG
• LOG_ALERT

Files

180 Administering Platform Process Manager

• LOG_CRIT
• LOG_ERR
• LOG_WARNING
• LOG_NOTICE
• LOG_INFO
• LOG_DEBUG
• LOG_DEBUG1
• LOG_DEBUG2
• LOG_DEBUG3

The level specified by the log mask determines which messages are recorded and which are discarded.
All messages logged at the specified level or higher are recorded, while lower level messages are
discarded.

For debugging purposes, the level LOG_DEBUG contains the fewest number of debugging messages
and is used for basic debugging. The level LOG_DEBUG3 records all debugging messages, and can
cause log files to grow very large; it is not often used. Most debugging is done at the level
LOG_DEBUG2.

Default
The default is JS_LOG_MASK=LOG_NOTICE.

JS_MAILHOST
Syntax

JS_MAILHOST=[SMTP: | Exchange:]hostname

Description
OPTIONAL.

Specifies the name of the mail server host.

On Windows, specify the protocol and name of the mail server host. For an SMTP mail host, specify
SMTP:hostname. For an exchange mail host, specify Exchange:hostname.

On UNIX, specify just the name of the mail server host.

Default
If Process Manager Server is installed on Windows, the default is Exchange:localhostname. If Process
Manager Server is installed on UNIX, the default is localhostname.

JS_MAILPROG
Syntax

JS_MAILPROG=file_name

Description
Path and file name of the mail program used by Process Manager to send email. It affects all emails sent,
such as the sending of messages from the Flow Attribute, from alarms, and from manual jobs.

Files

Administering Platform Process Manager 181

You can write your own custom mail program and set JS_MAILPROG to the path where this program is
located.

The program:

• Can be a shell script, a binary executable, or, a .bat file on Windows. Any program or shell script
that accepts the arguments and input, and delivers the mail correctly, can be used.

• Must read the body of the mail message from standard input. The end of the message is marked by
end-of-file.

• Must be executable by any user.
• Must follow the same protocol as sendmail. For example:

/usr/mymail.sh -oi -F "Subject" -f "JFD" usera@platform.com </dev/stdin

Process Manager calls JS_MAILPROG with three arguments: one argument gives the full name of the
subject -F "Subject", the other argument gives the address of the sender -f , and the third argument
the email address to which to send the message.

If you change your mail program, restart jfd with the commands jadmin start and jadmin stop
to make changes take effect.

Examples
JS_MAILPROG=/serverA/tools/lsf/bin/unixhost.exe

Default
By default, this parameter is undefined and the following default mail programs are used:

• UNIX: /usr/lib/sendmail
• Windows: lsmail.exe

See also
JS_MAILHOST to specify the name of the mail server host.

JS_MAILSENDER to specify the email address of the sender.

JS_MAILSENDER
Syntax

JS_MAILSENDER=emailaddress@emaildomain

Description
OPTIONAL.

Specifies the email address that is used to send the job notification email. This email address is the sender
address of any job notification or alarm emails.

Valid values
Any valid email address. There cannot be any spaces in the email address.

Default
The default name of the email sender is JFD.

Files

182 Administering Platform Process Manager

JS_MAIL_SIZE
Syntax

JS_MAILSIZE=bytes

Description
OPTIONAL.

Specifies the maximum size allowed for a flow email notifications. An email larger than the maximum
size specified is truncated.

Default
The default is 1000000 (1MB).

JS_MAX_VAR_SUBSTITUTIONS
Syntax

JS_MAX_VAR_SUBSTITUTIONS=number

Description
OPTIONAL.

Specifies the maximum number of variable substitutions that can be performed in a single job definition
field.

Default
20 substitutions

JS_MAX_VAR_SUBSTITUTIONS
Syntax

JS_MAX_VAR_SUBSTITUTIONS=number

Description
OPTIONAL.

Specifies the maximum number of variable substitutions that can be performed in a single job definition
field.

Default
10 substitutions

JS_MULTI_INSTANCE
Syntax

JS_MULTI_INSTANCE=true | false

Files

Administering Platform Process Manager 183

Description
Specifies whether there will be multiple instances of the Process Manager daemon (jfd) running in
Platform LSF clusters.

If set to false, the Process Manager daemon checks out the number of licenses equal to the number of
cores in the Process Manager server.

If set to true, the Process Manager daemon checks out one licenses for each instance. This allows the
Process Manager servers to run multiple instances of the Process Manager daemon, up to the number of
cores in the Process Manager server.

Default
The default is false.

JS_PORT
Syntax

JS_PORT=number

Description
REQUIRED.

Specifies the port number to be used by the Process Manager Client to connect with the Process Manager
Server.

Default
The default port number is 1966.

See also
JS_HOST

JS_PROXY_DURATION
Syntax

JS_PROXY_DURATION=minutes

Description
Specifies the length of time for which to publish events that occur in Process Manager, keeping the event
information available for flows that contain proxies looking for that event. This is required if the event
can occur before the flow looking for it requires it.

Default
The default is 0.

JS_REALTIME_UPDATE
Syntax

JS_REALTIME_UPDATE=true | false

Files

184 Administering Platform Process Manager

Description
Specifies whether or not to enable real-time updates to the data displayed in the Flow Manager. When
enabled, the status of work items in the Flow Manager updates automatically as a change occurs. Users
can choose real-time updates, automatic refreshes at a specified time interval, or manual refreshes. If you
disable this option, and a user has selected real-time updates, the client updates automatically at the
specified refresh interval instead.

Default
The default is false.

JS_REALTIME_OBJECT_URL
Syntax

JS_REALTIME_OBJECT_URL=url

Description
Required when JS_REALTIME_UPDATE is set to true. Specifies the url to the JMS (Java Message Service),
used by Process Manager Server when obtaining status updates. This url must match the url specified
when configuring the JMS broker—IMQ_JNDI_URL.

Default
There is no default for this parameter.

JS_SERVICE_STOP_PEND_WAIT
Syntax

JS_SERVICE_STOP_PEND_WAIT=milliseconds

Description
Windows only.

Specifies the amount of time that the Process Manager daemon (JDF) instructs the Windows service
controller to wait before killing the service during a system reboot or shutdown.

When a host is being rebooted or shut down, the Process Manager daemon (JFD) sends a STOP_PEND
message together with a waitHint to the Windows service controller to wait for this amount of time before
allowing the system to kill the service.

The system registry key HKEY_LOCAL_MACHINE > SYSTEM > CurrentControlSet > Control >
WaitToKillServiceTimeout normally specifies the amount of time that Windows waits before killing all
services. JS_SERVICE_STOP_PEND_WAIT must be less than or equal to this value; otherwise the
Windows service controller kills the service in the amount of time as specified in this registry key, before
this parameter can take effect.

Default
The default is specified in the system registry key HKEY_LOCAL_MACHINE > SYSTEM >
CurrentControlSet > Control > WaitToKillServiceTimeout. The default value for this system registry
key is 20000 milliseconds (20 seconds).

Files

Administering Platform Process Manager 185

JS_START_RETRY
Syntax

JS_START_RETRY=retries

Description
Specifies the maximum number of times Process Manager tries again to start a job or job array before
raising a Start Failed exception.

Default
The default is 20 times.

JS_SU_NEW_LOGIN
Syntax

JS_SU_NEW_LOGIN=true | false

Description
Specifies whether or not to start a new login shell when Process Manager server submits jobs to LSF..
When this parameter is set to true, a new login shell is started when a job is submitted to LSF.

Default
The default is true.

JS_TIME_ZONE
Syntax

JS_TIME_ZONE=client | server | UTC

Description
Specifies the time zone displayed by the client. The time zone is displayed and used to define and schedule
flows.

Server time zone is the time at the server.

Client time zone is the time at the client.

UTC time zone is Coordinated Universal Time (also known as Greenwich Mean Time or GMT).

Note: If you are scheduling a future event that takes place after a seasonal time change (such as Daylight
Savings Time) and you have configured either server or client time zones, the time displayed at submission
is the time at which the job runs.

When the server and the client are in the same time zone, the server time zone is displayed.

Default
The default is client.

Files

186 Administering Platform Process Manager

JS_VARIABLE_CLEANUP_PERIOD
Syntax

JS_VARIABLE_CLEANUP_PERIOD=hours

Description
Specifies the cleanup frequency of variable log files. At the specified cleanup period, the JFD Process
Manager daemon rewrites the variable.log file to reduce its size. This helps to reduce the startup time
next time JFD restarts.

Default
The default cleanup period is set to 24 hours: JS_VARIABLE_CLEANUP_PERIOD=24

JS_WORK_DIR
Syntax

JS_WORK_DIR=/path

Description
Specifies the name of the directory containing work data.

Default
The default is JS_HOME/work.

LSF_ENVDIR
Syntax

LSF_ENVDIR=/path

Description
REQUIRED.

Default
Specifies the directory where the LSF configuration files are stored. There is no default for this value. A
value is set at installation time.

Files

Administering Platform Process Manager 187

name.alarm
When you define an alarm, you create an individual file for each alarm. The file name is the name of the
alarm and the file type is alarm.

Format
Each alarm file has the following format:
DESCRIPTION=<description>
NOTIFICATION=Email[user1 user2 user3]

Example
The following example shows a database failure alarm definition. The alarm is called
DBMSfail.alarm. It’s contents are:
DESCRIPTION=Send DBA a message indicating DBMS failure
NOTIFICATION=Email[bsmith ajones]

Files

188 Administering Platform Process Manager

	Contents
	Copyright
	New Features in Process Manager 8.0.2
	General new features
	Enhancements to local jobs on Linux and UNIX
	New built-in user variable JS_FLOW_FULL_NAME
	Use a custom mail program to send email
	Restrict who can see the flow chart view

	New features in Flow Manager
	New features in Flow Editor
	Flow-related new features available only in Platform Application Center
	Jobs and Flows can now be monitored in the same window
	Completion attributes now visible for subflows and flow arrays in Flow Chart tab
	Reorganization of pages for flow definitions

	About Process Manager
	Components
	Process Manager Server
	Running multiple Process Manager servers and daemons
	Process Manager licenses

	The Process Manager Server failover host
	Master host
	LSF master host

	Process Manager Client
	Process Manager Designer
	Flow Editor
	Calendar Editor

	Flow Manager

	The command line interface

	Data flow
	Security
	About Failover
	About Calendars
	About Exceptions
	User-specified conditions
	Behavior when an exception occurs
	About Exception Handling
	Built-in exception handlers
	Behavior when built-in exception handlers are used
	User-defined exception handlers

	IPv6 support

	Maintaining Process Manager
	Install and configure a failover host on UNIX (managed by failover daemon)
	Configure the primary host
	Prepare the installation files on the failover host
	Prepare the configuration on the failover host
	Install the software on the failover host

	Add a UNIX client
	Add a Windows client
	Run the Process Manager server on system startup
	About Process Manager variables
	Types of variables
	Scope of variables
	How variables are set
	How user variables are set
	Job starter
	External file

	How environment variables are set

	Dedicate the Process Manager Server Host
	Configure an alarm
	Configure to support user variables
	Configure variables for UNIX hosts
	Configure variables for Windows hosts
	Configure variables for both UNIX and Windows hosts
	Configure a queue to support setting user variables
	Increase the number of variables that can be substituted
	Control the Process Manager Server
	Starting and stopping the Server on UNIX
	Start the Process Manager daemon
	Stop the Process Manager daemon

	Start and stop the Server on Windows
	Start the Process Manager service
	Stop the Process Manager service

	Forcing a system snapshot
	Change the Configuration
	Change a configuration value on UNIX
	Change a configuration value on Windows

	Add an administrator
	Sign on as a guest
	Limit the guest account

	Allow users to trigger other users’ flows
	Restrict who can see the flow chart view
	Create system calendars
	Calendar names
	Update the Holidays@Sys calendar
	Delete a calendar
	Maintain User Passwords
	Update the LSF password file

	Specify the mail host
	Change the job start retry value
	About local jobs on Linux and UNIX
	About local jobs on Windows
	Change the history setting
	View History
	View the history of a flow definition
	View the history of a flow
	View the history of a job or job array
	Troubleshooting
	Process Manager daemon cannot restart—port is in use
	Overrun exception triggers at incorrect time
	After deleting a calendar, user cannot find flow
	Unable to run GUI on linux 2.2 through XTERM
	Not all user variables are replaced
	User is unable to trigger their own flow

	Mainframe support
	Configure for Mainframe

	Daemons
	jfd
	fod

	Commands
	caleditor
	floweditor
	flowmanager
	jadmin
	jalarms
	Absolute time examples
	Relative time examples

	jcadd
	Creating calendar expressions
	Built-in keywords-reserved words

	jcals
	jcdel
	jcmod
	Creating calendar expressions
	Built-in keywords—reserved words

	jcomplete
	jdefs
	jflows
	jhist
	jhold
	jid
	jjob
	Synopsis
	Description
	Options
	Examples
	See Also

	jkill
	jmanuals
	jreconfigadmin
	jreconfigalarm
	jrelease
	jremove
	jrerun
	jresume
	jrun
	jsetvars
	jsinstall
	jstop
	jsub
	jtrigger

	Files
	File Structure
	history.log
	install.config
	JS_ADMINS
	JS_CONTROL_ADMINS
	JS_FAILOVER
	JS_FAILOVER_HOST
	JS_FOD_PORT
	JS_TOP
	JS_HOST
	JS_LICENSE
	JS_MAILHOST
	JS_PORT
	JS_TARDIR
	LSF_ENVDIR
	EGO_DAEMON_CONTROL
	EGO_CONFDIR

	js.conf
	JS_ADMINS
	JS_ADMIN_UPDATE_INTERVAL
	JS_ALARM_CMD_TIMEOUT
	JS_CHANGE_FLOW_OWNER
	JS_CONN_TIMEOUT
	JS_CONTROL_ADMINS
	JS_DATACAPTURE_TIME
	JS_DTD_DIR
	JS_ENCRYPTION
	JS_EVENTS_LIFETIME
	JS_EVENTS_DEFAULT_SIZE
	JS_EXTERNAL_EXECUTION
	JS_FAILOVER
	JS_FAILOVER_HOST
	JS_FILEAGENT_SENSITIVITY
	JS_FLOW_STATE_MAIL
	JS_FOD_PORT
	JS_FY_MONTH
	JS_HISTORY_CLEAN_PERIOD
	JS_HISTORY_LIFETIME
	JS_HISTORY_LIMIT
	JS_HISTORY_SIZE
	JS_HOME
	JS_HOST
	JS_IM_ACTIVEPOLICY
	JS_IM_POLICY_CHECKING_INTERVAL
	JS_IM_POLICY_LIFETIME
	JS_IM_POLICY_NOOFFLOWS
	JS_JOB_SUBMISSION_SCRIPT_TIME_OUT
	JS_JOB_SUBMIT_NOTICE_THRESHOLD
	JS_LICENSE_FILE
	JS_LIMIT_FLOW_CHART_VIEW
	JS_LIMIT_USER_VIEW
	JS_LIMIT_MODIFY_GLOBALVAR
	JS_LOCAL_EXECUTION_THREADS
	JS_LOCAL_EXECUTION_TIMEOUT
	JS_LOCAL_JOBS_LIMIT
	JS_LOGDIR
	JS_LOGIN_REQUIRED
	JS_LOGON_RETRY
	JS_LOGON_RETRY_DELAY
	JS_LOG_MASK
	JS_MAILHOST
	JS_MAILPROG
	JS_MAILSENDER
	JS_MAIL_SIZE
	JS_MAX_VAR_SUBSTITUTIONS
	JS_MAX_VAR_SUBSTITUTIONS
	JS_MULTI_INSTANCE
	JS_PORT
	JS_PROXY_DURATION
	JS_REALTIME_UPDATE
	JS_REALTIME_OBJECT_URL
	JS_SERVICE_STOP_PEND_WAIT
	JS_START_RETRY
	JS_SU_NEW_LOGIN
	JS_TIME_ZONE
	JS_VARIABLE_CLEANUP_PERIOD
	JS_WORK_DIR
	LSF_ENVDIR

	name.alarm

