
 Platform Symphony™ - Calypso Integration
User Guide

Symphony Version 3.x
May 2007

Comments to: doc@platform.com
Support: support@platform.com

Copyright © 1994-2007, Platform Computing Corporation
Although the information in this document has been carefully reviewed, Platform Computing
Corporation (“Platform”) does not warrant it to be free of errors or omissions. Platform reserves the
right to make corrections, updates, revisions or changes to the information in this document.
UNLESS OTHERWISE EXPRESSLY STATED BY PLATFORM, THE PROGRAM DESCRIBED IN
THIS DOCUMENT IS PROVIDED “AS IS” AND WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO
EVENT WILL PLATFORM COMPUTING BE LIABLE TO ANYONE FOR SPECIAL,
COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT
LIMITATION ANY LOST PROFITS, DATA, OR SAVINGS, ARISING OUT OF THE USE OF OR
INABILITY TO USE THIS PROGRAM.

We’d like to hear from you You can help us make this document better by telling us what you think of the content, organization,
and usefulness of the information. If you find an error, or just want to make a suggestion for improving
this document, please address your comments to doc@platform.com.
Your comments should pertain only to Platform documentation. For product support, contact
support@platform.com.

Document redistribution
and translation

This document is protected by copyright and you may not redistribute or translate it into another
language, in part or in whole.

Internal redistribution You may only redistribute this document internally within your organization (for example, on an
intranet) provided that you continue to check the Platform Web site for updates and update your
version of the documentation. You may not make it available to your organization over the Internet.

Trademarks LSF is a registered trademark of Platform Computing Corporation in the United States and in other
jurisdictions.
ACCELERATING INTELLIGENCE, PLATFORM COMPUTING, PLATFORM SYMPHONY,
PLATFORM JOBSCHEDULER, PLATFORM ENTERPRISE GRID ORCHESTRATOR, PLATFORM
EGO, and the PLATFORM and PLATFORM LSF logos are trademarks of Platform Computing
Corporation in the United States and in other jurisdictions.
UNIX is a registered trademark of The Open Group in the United States and in other jurisdictions.
Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the United
States and/or other countries.
Windows is a registered trademark of Microsoft Corporation in the United States and other countries.
Other products or services mentioned in this document are identified by the trademarks or service
marks of their respective owners.

Third-party license
agreements

http://www.platform.com/Company/third.part.license.htm

Third-party copyright
notices

http://www.platform.com/Company/Third.Party.Copyright.htm

3

Overview
This document provides instructions for installing and configuring the
Symphony—Calypso integration package on the host on which Calypso is
installed. Once integrated, Calypso can submit work to Symphony to run on the
grid.

Contents
About the Symphony-Calypso integration
Prerequisites for integrating Calypso and Symphony
Basic concepts
How Calypso works with Symphony
Installing the application (Windows)
Installing the application (Linux)
Configuring the application (Windows)
Configuring the application (Linux)
Generating the service package (Windows)
Generating the service package (Linux)
Configuring Symphony dispatcher
Testing the application (Windows)
Testing the application (Linux)

4 Symphony-Calypso Integration User Guide

About the Symphony-Calypso integration
The goal of the Platform Symphony-Calypso integration is to increase Calypso
performance and scalability by distributing Calypso work units to Symphony to
run in parallel.
The integration layer will enable Calypso users to take advantage of Symphony
features including resource allocation, workload and service scheduling, workload
distribution, remote execution, and failover.
The Calypso integration layer consists of the following components:

Symphony dispatcher for Calypso
Symphony service
logging facility (each component will generate its own set of logging messages
in individual files.)
troubleshooting utility

License agreement
Usage of this integration software is contingent upon acceptance of the terms and
conditions of the Platform Computing Corporate Software License Agreement
(the "Clickwrap Agreement") accompanying the Symphony software.

Symphony-Calypso Integration User Guide 5

Prerequisites for integrating Calypso and
Symphony
Install Calypso

Install Calypso on the client hosts and ensure it is working properly. The system
environment variable CALYPSO_HOME should point to the Calypso installation
directory. Refer to the Calypso documentation for more details.

Install JDK/JRE
Install JDK and JRE 1.4.2 and higher on the client and compute hosts. The system
environment variable JAVA_HOME should point to the JDK/JRE installation
directory.

Install Symphony
Install either Symphony or Symphony DE on the client host and Symphony on the
compute and management hosts. The system environment variable
SOAM_HOME should point to the Symphony installation directory.

Calypso version
Calypso version 8.3

Symphony version and platforms
Symphony Version 3.x on the following operating system platforms:

Operating System Linux kernel, glibc

Windows Server 2003 Windows Server 2003 Standard Edition
Windows Server 2003 Enterprise Edition
Windows Server 2003 R2 Standard
Edition
Windows Server 2003 R2 Enterprise
Edition

n/a

Windows XP Windows XP Professional n/a

Windows 2000 Windows 2000 Server
Windows 2000 Professional

n/a

Linux 32-bit

Red Hat Enterprise Linux AS 4
SuSE Linux Enterprise Server 9

Kernel 2.6.x, glibc 2.3.x

Red Hat Enterprise Linux AS 2.1
SuSE Linux Enterprise Server 8

Kernel 2.4.x, glibc 2.2.x

Red Hat Enterprise Linux AS 3 Kernel 2.4.x, glibc 2.3.x

Solaris (client only) Solaris 8 sparc-sol8-32

6 Symphony-Calypso Integration User Guide

Basic concepts
Application

A service-oriented application is a type of application software, where the business
logic is encapsulated in one or multiple software programs called services that are
separated from its client logic.

Application profile
The application profile is an XML file that defines the properties of a Symphony
application, including the name of the service that performs the calculation and the
scheduling parameters to apply.
The application profile contains runtime parameters for workload, service, and the
middleware that define how Symphony runs workload. An application profile
provides flexibility to dynamically change application parameters without
requiring you to change your application code and rebuild the application.
An application profile is associated with an application. An application is associated
with one consumer. You must register the application profile of every application
you want Symphony to manage.

Symphony client application
 A program or executable that needs work done through a service. Requests are
submitted via an API to the service.

Symphony service
A service is a self-contained business function that accepts one or more requests
and returns one or more responses through a well-defined, standard interface.
The service performs work for a client program. It is a component capable of
performing a task, and is identified by a name. Platform Symphony runs services
on hosts in the cluster.
The Symphony service is the part of your application that does the actual
calculation. The service encapsulates business logic.

Session
A group of tasks that share common characteristics, such as data.

Connection
The connection on which a session is created provides a conduit for the tasks.

Task
A task is the unit of work that runs on each individual host when Symphony
workload is running. The task consists of a message request (input) and, when
completed by a service, a response (output).

Basic concepts

Symphony-Calypso Integration User Guide 7

Consumer
A consumer is a generalized notion of something that uses resources.

Log files and levels
The integration software uses the log4j logging framework. Log classes can be
found in the log4j properties files located in the conf directory. Here are the most
commonly-used logging levels in the log4j framework:
◆ ALL has the lowest possible rank and is intended to turn on all logging.
◆ DEBUG level designates fine-grained informational events that are most useful

for debugging an application.
◆ ERROR level designates error events that might still allow the application to

continue running.
◆ FATAL level designates very severe error events that will presumably lead the

application to abort.
◆ INFO level designates informational messages that highlight the progress of the

application at coarse-grained level.
◆ TRACE level designates finer-grained informational events than the DEBUG

level.
◆ WARN level designates potentially harmful situations.

8

How Calypso works with Symphony
Before describing how Symphony fits in with Calypso, it is helpful to know how
Calypso works on its own in a distributed environment.

Calypso model
The user works with the applications. When the user chooses to run the analysis in
distributed mode, the application uses the DistAnalysis class. Here is the execution
flow for task processing:

The application splits the job into smaller units of work (tasks).
The application requests a list of Calculators from the Dispatcher.
The Dispatcher determines which Calculators to use for the application.
The application sends tasks to the assigned Calculators.
The Calculators perform the calculations and send the results back to the
application.

Symphony-Calypso integration model
When Calypso is integrated with Symphony, Calypso acts as the client application
that submits work requests to the grid.
The Calypso integration enables Calypso to send tasks to Symphony, get the result
back, and monitor the status of running tasks. Here is the execution flow for task
processing:

Calypso chooses pre-registered Symphony as the Dispatcher.
Calypso splits an analysis request into smaller tasks.
Calypso sends the task definition to Symphony Dispatcher through the
Calypso Grid Interface, which invokes the Symphony API to contact the
Symphony grid management host.
Symphony grid management host dispatches tasks to compute hosts and runs
the tasks in parallel.
Symphony compute host invokes Calypso Calculator (wrapped in the
calculation service) to process the tasks. The Calculator will contact Calypso
Data Server directly to retrieve all the required information.

How Calypso works with Symphony

9

each compute host sends output from the calculation service to the
Management host, which, in turn, sends the result back to the Calypso
Application.

DistAnalysis class
This class is the integration point. The integration overrides this class and replaces
the part that sends jobs to the Dispatcher and receives results from the Calculators.
Instead of sending to the Dispatcher, the tasks are sent to Symphony. and instead of
getting results from the Calculator, we get results from Symphony.

Symphony Calculation Service
The Symphony Calculation Service runs on the compute hosts. It is implemented
as a wrapper for the Calypso Calculator. The service gets tasks from Symphony and
performs the calculation and sends the result back to the application through
Symphony.

10 Symphony-Calypso Integration User Guide

Installing the application (Windows)
Perform the following steps on the client host.

1 Create a destination directory for the Calypso integration package.
2 Set the %SYM_CAL_INT_HOME% environment variable to the destination

directory.
3 Add the directory path <SYM_CAL_INT_HOME>\tools to the Path environment

variable so that you can run the troubleshooting tools from any directory.
4 Add the following jar files to the classpath so that Calypso can invoke the

Symphony dispatcher:
◆ %SYM_CAL_INT_HOME%\dispatcher\SymphonyDispatcher.jar

◆ %SYM_CAL_INT_HOME%\dispatcher\log4j-1.2.14.jar

◆ %SOAM_HOME%\<version>\<os name>\lib\JavaSoamApi.jar

5 Copy Cal803_Sym301.jar to the %SYM_CAL_INT_HOME% directory. At the
command prompt, run the following command to extract the integration
package files:
jar xvf Cal803_Sym301.jar

The following table lists the files that are typically in the integration package.
The actual file list may vary.

Files Location Description

SymphonyDispatcher.jar %SYM_CAL_INT_HOME%\dispatcher Symphony dispatcher

log4j-1.2.14.jar %SYM_CAL_INT_HOME%\dispatcher log4j library

isvClient.log4j.properties %SYM_CAL_INT_HOME%\dispatcher log4j property file

dispatcher.properties %SYM_CAL_INT_HOME%\dispatcher dispatcher property configuration
file

CalypsoApp.xml %SYM_CAL_INT_HOME%\service Service application file

DistAnalysisSymphonyService.class %SYM_CAL_INT_HOME%\service\
package

Symphony Java service

isvService.log4j.properties %SYM_CAL_INT_HOME%\service\
package

log4j property file for service

log4j-1.2.14.jar %SYM_CAL_INT_HOME%\service\
package

log4j library

CalypsoPing.class %SYM_CAL_INT_HOME%\tools CalypsoPing tool

calypsoping.bat %SYM_CAL_INT_HOME%\tools CalypsoPing wrapper for Windows

testdsserver.bat %SYM_CAL_INT_HOME%\tools Test DS tool wrapper for Windows

TestDSServer.class %SYM_CAL_INT_HOME%\tools Test DS tool

DistAnalysisSymphonyService.jar %SYM_CAL_INT_HOME%\tools Calypsoping service

calypso.jar %SYM_CAL_INT_HOME%\tools Package for emulated Calypso
environment for use with
Calypsoping tool

calypsopingApp.xml %SYM_CAL_INT_HOME%\tools Calypsoping application profile

Installing the application (Windows)

Symphony-Calypso Integration User Guide 11

6 Configure the application; refer to Configuring the application (Windows).

isvClient.log4j.properties %SYM_CAL_INT_HOME%\tools log4j property file

SymphonyDispatcher.jar %SYM_CAL_INT_HOME%\tools Dispatcher for use with Calypsoping
tool

dispatcher.properties %SYM_CAL_INT_HOME%\tools calypsoping dispatcher property
configuration file

Files Location Description

12 Symphony-Calypso Integration User Guide

Installing the application (Linux)
Perform the following steps on the client host.

1 Create a destination directory for the Calypso integration package.
2 Set the $SYM_CAL_INT_HOME environment variable to the destination

directory.
3 Add the directory path <SYM_CAL_INT_HOME>/tools to the Path environment

variable so that you can run the troubleshooting tools from any directory.
4 Add the following jar files to the classpath so that Calypso can invoke the

Symphony dispatcher:
◆ $SYM_CAL_INT_HOME/dispatcher/SymphonyDispatcher.jar

◆ $SYM_CAL_INT_HOME/dispatcher/log4j-1.2.14.jar

◆ $SOAM_HOME/<version>/<os name>/lib/JavaSoamApi.jar

5 Copy Cal803_Sym301.jar to the $SYM_CAL_INT_HOME directory. Run the
following command to extract the integration package files:
jar xvf Cal803_Sym301.jar

The following table lists the files that are typically in the integration package.
The actual file list may vary.

Files Source Directory Description

SymphonyDispatcher.jar Cal803_Sym301/release/dispatcher Symphony dispatcher

log4j-1.2.14.jar Cal803_Sym301/release/dispatcher log4j library

isvClient.log4j.properties Cal803_Sym301/release/dispatcher log4j property file

dispatcher.properties Cal803_Sym301/release/dispatcher dispatcher property configuration
file

CalypsoApp.xml Cal803_Sym301/release/service Service application file

DistAnalysisSymphonyService.class Cal803_Sym301/release/service/
package

Symphony Java service

isvService.log4j.properties Cal803_Sym301/release/service/
package

log4j property file for service

log4j-1.2.14.jar Cal803_Sym301/release/service/
package

log4j library

CalypsoPing.class Cal803_Sym301/release/tools CalypsoPing tool

calypsoping.sh Cal803_Sym301/release/tools CalypsoPing wrapper for Windows

testdsserver.sh Cal803_Sym301/release/tools Test DS tool wrapper for Windows

TestDSServer.class Cal803_Sym301/release/tools Test DS tool

DistAnalysisSymphonyService.jar Cal803_Sym301/release/tools Calypsoping service

calypso.jar Cal803_Sym301/release/tools Package for emulated Calypso
environment for use with
Calypsoping tool

calypsopingApp.xml Cal803_Sym301/release/tools Calypsoping application profile

Installing the application (Linux)

Symphony-Calypso Integration User Guide 13

6 Configure the application; refer to Configuring the application (Linux).

isvClient.log4j.properties Cal803_Sym301/release/tools log4j property file

SymphonyDispatcher.jar Cal803_Sym301/release/tools Dispatcher for use with Calypsoping
tool

dispatcher.properties Cal803_Sym301/release/tools calypsoping dispatcher property
configuration file

Files Source Directory Description

14 Symphony-Calypso Integration User Guide

Configuring the application (Windows)

1 The integration package includes templates for the CalypsoApp and
Calypsoping application profiles. Modify these application profiles on the
client host.
a In CalypsoApp.xml and CalypsopingApp.xml, replace the following

placeholders with the appropriate directory paths or values:
◆ Replace @SOAM_HOME@ with <SOAM_HOME>
◆ Replace @MACHINE_TYPE@ with <MACHINE_TYPE>

For example, on 32-bit Windows hosts, replace @MACHINE_TYPE@
with win32-vc7.

◆ Replace @VERSION_NUM@ with <VERSION_NUM>
For example, if Sym301 is installed, replace @VERSION_NUM@ with
3.0 or if Sym3.1 is installed, replace it with 3.1.

b If Sym3.1 is installed, add "packageName
="DistAnalysisSymphonyService"" to the Service element in
CalypsoApp.xml and CalypsopingApp.xml.
Example of Service element in CalypsoApp.xml file:

c The application profiles have default settings for the service log level, log
file name, and log file size. If necessary, modify the settings in the Service
section of CalypsoApp.xml and CalypsopingApp.xml.
Example of Service section in CalypsoApp.xml file:

2 If Sym3.1 is installed, open the calypsoping.bat file and set VERSION_NUM
= 3.1 (default is 3.0).
Example of calypsoping.bat file:

<Service name="CalypsoService" description="Calypso Integration Service"
packageName="DistAnalysisSymphonyService">
 ...

<Service name="CalypsoService" description="Calypso Integration Service"
packageName="DistAnalysisSymphonyService">
 <osTypes>
 <osType name="NTX86"
 startCmd="java -DSOAM_DEPLOY_DIR=${SOAM_DEPLOY_DIR}
 -DLOG4J_LOG_LEVEL=DEBUG
 -DLOG4J_APPENDER_FILE=@SOAM_HOME@/work/isv.${LOG4J_HOSTNAME}.log
 -DLOG4J_MAX_FILE_SIZE=100000KB
 -classpath @SOAM_HOME@; ...
 </osType>

Configuring the application (Windows)

Symphony-Calypso Integration User Guide 15

3 Set the client log level, log file name, and log file size in %SYM_CAL_INT_HOME%\
dispatcher\isvClient.log4j.properties.

4 Generate the service package; refer to Generating the service package
(Windows).

@echo off

set VERSION_NUM=3.1

...

16 Symphony-Calypso Integration User Guide

Configuring the application (Linux)

1 The integration package includes templates for the CalypsoApp and
Calypsoping application profiles. Modify these application profiles on the
client host.
a In CalypsoApp.xml and CalypsopingApp.xml, replace the following

placeholders with the appropriate directory paths or values :
◆ Replace @SOAM_HOME@ with <SOAM_HOME>
◆ Replace @MACHINE_TYPE@ with <MACHINE_TYPE>

For example, on Linux hosts with Red Hat AS 3, replace
@MACHINE_TYPE@ with linux2.4-glibc2.3-x86.

◆ Replace @VERSION_NUM@ with <VERSION_NUM>
For example, if Sym301 is installed, replace @VERSION_NUM@ with
3.0 or if Sym3.1 is installed, replace it with 3.1.

b The application profiles have default settings for the service log level, log
file name, and log file size. If necessary, modify the settings in the Service
section of CalypsoApp.xml and CalypsopingApp.xml.
Example of Service section in CalypsoApp.xml file:

2 Set the client log level, log file name, and log file size in
$SYM_CAL_INT_HOME/dispatcher/isvClient.log4j.properties.

3 Generate the service package; refer to Generating the service package (Linux).

 <osType name="LINUX86"
 startCmd="java -DSOAM_DEPLOY_DIR=${SOAM_DEPLOY_DIR}
 -DLOG4J_LOG_LEVEL=DEBUG
 -DLOG4J_APPENDER_FILE=@SOAM_HOME@/work/isv.${LOG4J_HOSTNAME}.log
 -DLOG4J_MAX_FILE_SIZE=100000KB
 -classpath @SOAM_HOME@: ...
 </osType>
 </osTypes>
 </Service>

Symphony-Calypso Integration User Guide 17

Generating the service package (Windows)

1 Copy calypso.jar from %CALYPSO_HOME%\jars to %SYM_CAL_INT_HOME%\
service\package.

2 Copy all Calypso software patches, if applicable, to %SYM_CAL_INT_HOME%\
service\package.

3 Select the JDBC driver that is appropriate for your database. The following
table lists the databases and their associated drivers. For example, if you are
using Oracle 10, the JDBC driver should be ojdbc14.jar. Copy the driver
from %CALYPSO_HOME%\jars to %SYM_CAL_INT_HOME%\service\package.

4 Copy the Calypso system environment file calypsosystem.properties.xxx
to %SYM_CAL_INT_HOME%\service\package.

NOTE: The system environment file is located in the Calypso environment. The format of the
filename is calypsosystem.properties.xxx where xxx is user-defined.

5 Generate the Symphony service:
a Open a command prompt window.
b Change the current directory.

cd %SYM_CAL_INT_HOME%\service

c Create the service package in the %SYM_CAL_INT_HOME%\service
directory.
jar cvf DistAnalysisSymphonyService.jar -C package .

6 Deploy the service package with the soamdeploy command.
❖ Symphony 3.0

soamdeploy add -p DistAnalysisSymphonyService.jar -a

CalypsoApp.xml
❖ Symphony 3.1

soamdeploy add DistAnalysisSymphonyService -p
DistAnalysisSymphonyService.jar -c

/SampleApplications/SOASamples

7 Deploy the calypsopingApp service package.
a Change the current directory.

cd %SYM_CAL_INT_HOME%\tools

JDBC Driver Database

jconn2.jar Sybase

oracle92jdbc14.jar Oracle 9

ojdbc14.jar Oracle 10

18 Symphony-Calypso Integration User Guide

b Deploy the calypsopingApp service package with the soamdeploy
command.

❖ Symphony 3.0
soamdeploy add -p DistAnalysisSymphonyService.jar -a

CalypsopingApp.xml

❖ Symphony 3.1
soamdeploy add DistAnalysisSymphonyService -p
DistAnalysisSymphonyService.jar -c

/SampleApplications/SOATesting

8 Check the list of deployed services with the soamdeploy view command:
❖ Symphony 3.0

soamdeploy view

❖ Symphony 3.1
soamdeploy view -c /SampleApplications/SOASamples

soamdeploy view -c /SampleApplications/SOATesting

9 Register the application with the soamreg command:
soamreg CalypsopingApp.xml

The application is registered and enabled.
10 Enable the CalypsopingApp service.

a soamcontrol app disable symping

b soamcontrol app enable calypsopingApp

11 Add Symphony dispatcher in Calypso. The dispatcher location points to
%SYM_CAL_INT_HOME%\dispatcher

12 Configure Symphony dispatcher; refer to Configuring Symphony dispatcher.

Symphony-Calypso Integration User Guide 19

Generating the service package (Linux)

1 Copy calypso.jar from $CALYPSO_HOME/jars to
$SYM_CAL_INT_HOME/service/package.

2 Copy all Calypso software patches, if applicable, to
$SYM_CAL_INT_HOME/service/package.

3 Select the JDBC driver that is appropriate for your database. The following
table lists the databases and their associated drivers. For example, if you are
using Oracle 10, the JDBC driver should be ojdbc14.jar. Copy the driver
from $CALYPSO_HOME/jars to $SYM_CAL_INT_HOME/service/package.

4 Copy the Calypso system environment file calypsosystem.properties.xxx
to $SYM_CAL_INT_HOME/service/package.

NOTE: The system environment file is located in the Calypso environment. The format of the
filename is calypsosystem.properties.xxx where xxx is user-defined.

5 Generate the Symphony service:
a Change the current directory.

cd $SYM_CAL_INT_HOME/service

b Create the service package in the $SYM_CAL_INT_HOME/service directory.
jar cvf DistAnalysisSymphonyService.jar -C package .

6 Deploy the service package with the soamdeploy command.
❖ Symphony 3.0

soamdeploy add -p DistAnalysisSymphonyService.jar -a

CalypsoApp.xml
❖ Symphony 3.1

soamdeploy add DistAnalysisSymphonyService -p
DistAnalysisSymphonyService.jar -c

/SampleApplications/SOASamples

7 Deploy the calypsopingApp service package.
a Change the current directory.

cd $SYM_CAL_INT_HOME/tools

b Deploy the calypsopingApp service package with the soamdeploy
command.

❖ Symphony 3.0

JDBC Driver Database

jconn2.jar Sybase

oracle92jdbc14.jar Oracle 9

ojdbc14.jar Oracle 10

20 Symphony-Calypso Integration User Guide

soamdeploy add -p DistAnalysisSymphonyService.jar -a

CalypsopingApp.xml

❖ Symphony 3.1
soamdeploy add DistAnalysisSymphonyService -p
DistAnalysisSymphonyService.jar -c

/SampleApplications/SOATesting

8 Check the list of deployed services with the soamdeploy view command:
soamdeploy view -c /SampleApplications/SOASamples

soamdeploy view -c /SampleApplications/SOATesting

9 Register the application with the soamreg command:
soamreg CalypsopingApp.xml

The application is registered and enabled.
10 Enable the CalypsopingApp service.

a soamcontrol app disable symping

b soamcontrol app enable calypsopingApp

11 Configure Symphony dispatcher; refer to Configuring Symphony dispatcher.

Symphony-Calypso Integration User Guide 21

Configuring Symphony dispatcher
The Symphony dispatcher is responsible for dispatching Calypso tasks into the
Symphony environment and returning the results back to Calypso.
Before using the Symphony dispatcher, you must create the Symphony dispatcher
type and make it available to Calypso. SymphonyDispatcher.sql contains the SQL
statements that must be run on the Calypso database in order to create a dispatcher
of type Symphony.

NOTE: Since Calypso menus are user-configurable, your set-up may vary from the menu
sequence indicated in this procedure.

1 Create a new dispatcher type in Calypso.
a Start the Calypso SQL Execute application.
b Load the SymphonyDispatcher.sql file and click the Execute button.

2 Add Symphony dispatcher to Calypso.

NOTE: The Data Server and Event Server must be running before starting the Main Entry
application.

a Start the Calypso Main Entry application.
b From the main menu, select Configuration > System >

Dispatcher Config.
c In the Dispatcher Config window, click the New button and provide a

name for the new configuration, e.g., Symphony Config.
d In the Dispatcher Type dropdown list, select Symphony.
e Input the Symphony parameters.
f Click the Save button to save the configuration. Click Close.

3 Test the application.
❖ Windows:

Refer to Testing the application (Windows).
❖ Linux:

Refer to Testing the application (Linux).

22 Symphony-Calypso Integration User Guide

Testing the application (Windows)

1 Use calypsoping to test the installation and configuration of the application.

NOTE: The calypsoping tool must be run in the Calypso environment, i.e., on a host that has
Calypso installed.

a At the command prompt, enter:
calypsoping

NOTE: If the command does not run, check that <SYM_CAL_INT_HOME>\tools was
added to the Path environment variable.

Sample output:
Starting calypsoping!

SOAM_HOME=C:\SOAM\

CALYPSO_HOME=D:\Sym3Calypso

SYM_CAL_INT_HOME=C:\share

Preparing Calypso Jobs, Total Jobs: 10

Job Created, JobID: 1, Message: Calypso Job

Job Created, JobID: 2, Message: Calypso Job

Job Created, JobID: 3, Message: Calypso Job

Job Created, JobID: 4, Message: Calypso Job

Job Created, JobID: 5, Message: Calypso Job

Job Created, JobID: 6, Message: Calypso Job

Job Created, JobID: 7, Message: Calypso Job

……………………………..

2 To test the data server connection, enter testdsserver.bat with associated
input parameters at the command prompt.

NOTE: The testdsserver tool must be run in the Calypso environment, i.e., on a host that has
Calypso installed.

Command syntax:
testdsserver.bat username password appName envName envLocation
Example:
testdsserver.bat calypso_user calypso Symphony systemTestENV d:\

Sym3Calypso

Starting client ...

Client Started on port 3864...

[LOG|SYSTEM|2007 January 25, 14:14:07
(921)|LOG|main|172.20.33.147 (user)]

Env File Used (not correct with JavaWebStart):
systemTestENV; UserHome: C:

Symphony-Calypso Integration User Guide 23

\Documents and Settings\user

[END]

[LOG|SYSTEM|2007 January 25, 14:14:07
(968)|LOG|main|172.20.33.147 (user)]

Category Item(s) logged: None

[END]

[LOG|SYSTEM|2007 January 25, 14:14:07
(968)|LOG|main|172.20.33.147 (jcui)]

Level(s) logged: ALL

[END]

NOTE: If the data server is unavailable or cannot be reached, the tool will try to connect
10 times, then exit.

24 Symphony-Calypso Integration User Guide

Testing the application (Linux)

1 Use calypsoping to test the installation and configuration of the application.

NOTE: The calypsoping tool must be run in the Calypso environment, i.e., on a host that has
Calypso installed.

a Change the current directory.
cd $SYM_CAL_INT_HOME/tool

b Change the mode of calypsoping.sh.
chmod +x calypsoping.sh

c Run the command.
calypsoping.sh

NOTE: If the command does not run, check that <SYM_CAL_INT_HOME>/tools was
added to the $PATH environment variable.

Sample output:
Starting calypsoping!

SOAM_HOME=/scratch/dev/user/Sym301DE

CALYPSO_HOME=/scratch/dev/user/Calypso

SYM_CAL_INT_HOME=/scratch/dev/user/Cal_Int

Prepareing Calypso Jobs, Total Jobs: 5

Job Created, JobID: 1, Message: Calypso Job

Job Created, JobID: 2, Message: Calypso Job

Job Created, JobID: 3, Message: Calypso Job

Job Created, JobID: 4, Message: Calypso Job

Job Created, JobID: 5, Message: Calypso Job

Creating Symphony Dispatcher...

Initializing Connection to Dispatcher...

Sending Jobs to Dispatcher...

Progress: Finish Sending Jobs to Symphony Grid, Total Jobs

 Sent: 5

Progress: Job Received from Grid, JobID: 1 (5 remaining)

Job Received, JobID:1, Message: Calypso Job Output

Progress: Job Received from Grid, JobID: 2 (4 remaining)

Job Received, JobID:2, Message: Calypso Job Output

Progress: Job Received from Grid, JobID: 3 (3 remaining)

Job Received, JobID:3, Message: Calypso Job Output

Progress: Job Received from Grid, JobID: 4 (2 remaining)

Job Received, JobID:4, Message: Calypso Job Output

Progress: Job Received from Grid, JobID: 5 (1 remaining)

Symphony-Calypso Integration User Guide 25

Job Received, JobID:5, Message: Calypso Job Output

Ending calypsoping!

2 To test the data server connection, enter testdsserver.sh with associated
input parameters at the command prompt.

NOTE: The testdsserver tool must be run in the Calypso environment, i.e., on a host that has
Calypso installed.

Command syntax:
testdsserver.sh username password appName envName envLocation
Example:
sh ./testdsserver.sh calypso_user calypso Symphony systemTestENV

/scratch/dev/user/Calypso

Starting client ...

Client Started on port 51182...

[LOG|SYSTEM|2007 February 08, 17:16:50
(927)|LOG|main|172.20.1.107 (symlinux1)]

Env File Used (not correct with
JavaWebStart):systemTestENV; UserHome: /home/user

[END]

[LOG|SYSTEM|2007 February 08, 17:16:50
(934)|LOG|main|172.20.1.107 (symlinux1)]

Category Item(s) logged: None

[END]

[LOG|SYSTEM|2007 February 08, 17:16:50
(935)|LOG|main|172.20.1.107 (symlinux1)]

Level(s) logged: ALL

[END]

NOTE: If the data server is unavailable or cannot be reached, the tool will try to connect
10 times, then exit.

