
Data-aware Scheduling User Guide

Platform Symphony
Version 5.0

November 2009

Copyright © 1994-2009 Platform Computing Corporation

All rights reserved.

Although the information in this document has been carefully reviewed, Platform Computing Corporation (“Platform”) does not
warrant it to be free of errors or omissions. Platform reserves the right to make corrections, updates, revisions or changes to the
information in this document.

UNLESS OTHERWISE EXPRESSLY STATED BY PLATFORM, THE PROGRAM DESCRIBED IN THIS DOCUMENT IS
PROVIDED “AS IS” AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
IN NO EVENT WILL PLATFORM COMPUTING BE LIABLE TO ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION ANY LOST PROFITS, DATA, OR SAVINGS, ARISING
OUT OF THE USE OF OR INABILITY TO USE THIS PROGRAM.

We’d like to hear
from you

You can help us make this document better by telling us what you think of the content, organization, and usefulness of the information.
If you find an error, or just want to make a suggestion for improving this document, please address your comments to
doc@platform.com.

Your comments should pertain only to Platform documentation. For product support, contact support@platform.com.

Document
redistribution and
translation

This document is protected by copyright and you may not redistribute or translate it into another language, in part or in whole.

Internal
redistribution

You may only redistribute this document internally within your organization (for example, on an intranet) provided that you continue
to check the Platform Web site for updates and update your version of the documentation. You may not make it available to your
organization over the Internet.

Trademarks ® LSF is a registered trademark of Platform Computing Corporation in the United States and in other jurisdictions.
™ ACCELERATING INTELLIGENCE, PLATFORM COMPUTING, PLATFORM SYMPHONY, PLATFORM JOBSCHEDULER,
PLATFORM ENTERPRISE GRID ORCHESTRATOR, PLATFORM EGO, and the PLATFORM and PLATFORM LSF logos are
trademarks of Platform Computing Corporation in the United States and in other jurisdictions.
® UNIX is a registered trademark of The Open Group in the United States and in other jurisdictions.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
® Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Intel®, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

Other products or services mentioned in this document are identified by the trademarks or service marks of their respective owners.

Third-party license
agreements

http://www.platform.com/Company/third.part.license.htm

Third-party
copyright notices

http://www.platform.com/Company/Third.Party.Copyright.htm

Contents
Data-aware scheduling .. 5

Scope .. 5
Feature licensing ... 5
About data-aware scheduling ... 5
Expressing a preference for data .. 6
How preference affects dispatch order ... 7
Factoring the cost of data transfer ... 7
Data-aware scheduling plug-in ... 7
Configuring data-aware scheduling .. 10
Client API .. 10
Service API ... 11
Configure data-aware scheduling ... 12

Appendix: Data-aware Scheduling Plug-in Development .. 13

Data-aware Scheduling User Guide 3

4 Data-aware Scheduling User Guide

Data-aware scheduling
Data-aware scheduling is a feature of the Data Affinity add-on product. Data Affinity reduces network traffic between
hosts in the cluster and allows for more flexible scaling of data-intensive applications with improved performance.The
data-aware scheduling feature allows Platform Symphony to intelligently schedule application tasks and improve
performance by taking into account data location when dispatching the tasks. By directing tasks to resources that already
contain the required data, application runtimes can be significantly reduced. As well, this feature can help to meet the
challenges of latency requirements for real time applications.

An additional software license is required to use this feature in a grid environment. Use of this feature with Symphony
DE does not require a license. This feature is packaged with Symphony and does not require separate deployment.

Scope
Applicability Details

Operating system • Windows
• Linux
• Solaris

Feature licensing
Follow these steps when you want to add or update a license for the data-aware scheduling feature.
1. Acquire a data-aware scheduling license key from Platform.
2. Append the license key to $EGO_CONFDIR/license.dat. Note that all management hosts running an SSM must

have access to this license file.
3. Set schedulingAffinity="DataAware" in the application profile. Configure the plug-in command, if applicable.
4. Register and enable the new application profile.

Note:
If your application was already configured and registered before you acquired
the license, you need to disable and re-enable the application so that the license
is verified and the feature is enabled.

About data-aware scheduling
Workload schedulers focus on dispatching tasks to compute hosts and transferring data either directly to the compute
hosts or delegating data retrieval to the service. The time required for this data transfer from various sources to where
the work is being processed can lead to inefficient use of CPU cycles and underutilization of the resource. With the
data-aware scheduling feature, you can specify a preferential association between a task and a service instance or host
that already possesses the data required to process the workload. This association is based on the evaluation of a user-
defined expression containing data attributes capable of being collected. The evaluation of this expression is carried
out against the data attributes of each service instance available to the session. Typically, a data attribute is an identifier
for a dataset that is already available to a service instance before it processes workload.

The following example illustrates the concept of data-aware scheduling at the task level. The data preference expression
has been evaluated and it is determined that a task in the queue prefers to run on a service instance where the service

Data-aware scheduling

Data-aware Scheduling User Guide 5

instance already possesses Dataset1. The SSM collects metadata (service attributes) from all the resources available to
the session at that moment. Service B with Dataset1 is currently available and since it is the best match for that task
according to the specified preference, the task is subsequently dispatched to Service B.

Expressing a preference for data
Specifying data attributes in a preference expression
Attributes take the form of identifiers and can be specified with the +, -, *, and / operators within an expression. An
example of an expression would be "DataSet1 + DataSet2", meaning that it is preferred to send workload to a service
instance that possesses DataSet1 and DataSet2. The operators can also be used to normalize disparate terms such as
data and memory or to give weight to specific terms.

Attribute names have a 32 character limit and can only contain alphanumeric and underscore characters; if you want
to use data attributes with names that do not comply with these rules, aliases must be defined. A resource attribute
definition can be used to define an alias and to override the default value for an attribute should the session level default
or system default be inappropriate.

How Symphony handles the result of the expression
The result of each expression is a numeric value that is obtained by applying the operators to the attributes in the
expression. If the preferred data is available to a service, it should programmatically publish a value for the attribute.
Alternatively, the value of the attribute may be collected from the data-aware scheduling plug-in, if present. Once the

Data-aware scheduling

6 Data-aware Scheduling User Guide

result is obtained for each resource being evaluated, it is used to sort the resources in ascending order. This means the
resource that evaluates to the lowest value is the most preferred.

When no information is available for a resource attribute that is involved in a resource evaluation, the resolution of the
expression still proceeds. In such cases, Symphony attempts to substitute a default value for each attribute that it cannot
resolve. The value of the attribute is resolved by the system in the following manner, in the given order:

1. attempt to find any published or collected value
2. retrieve the current default for the alias (if defined)
3. retrieve the current default for the session (if defined)
4. retrieve the system default (1.0E+300)

How preference affects dispatch order
Once a preference is specified on a task within a session, the best match for that task with every service instance currently
assigned to the session is considered during the dispatching of the task. This means that once a service becomes available,
it is given the next task with the best match for that service instance at the current moment. It is important to note that
the next task to be dispatched may not currently be at the front of the queue within the session, i.e., the order of task
dispatch depends on the currently available service instances and the preference associated with the tasks and not on
the order that tasks are submitted to the session.

Note that the data-aware scheduling feature does not affect the behavior of tasks with the PriorityTask setting enabled.
Those tasks are still dispatched before other tasks.

Factoring the cost of data transfer
When you want to specify a preference for specific data, the expectation is that attributes in the expression would have
their default value set to some number representing the cost of moving this data to that resource.

For example, if we consider the case where a task within a session requires datasets Dataset1, Dataset2 and Dataset3,
the preference for the task could be represented as "Dataset1 + Dataset2 + Dataset3". Since expressions are evaluated
and sorted in ascending order, we would expect the most preferred resource for this task would have the lowest cost to
get the data that the task requires to execute.

Since a service instance is typically able to inform the middleware about what resource attributes (i.e. data sets) it has
access to, a fixed value can be substituted for any missing attributes when evaluating the task preference against this
service instance. If you use the same fixed value to represent each missing attribute, the system will assign each missing
data set the same cost so service instances that have access to the most data sets would be the most preferred and so on.
But in reality, it is not generally true that all missing data sets would have the same cost to acquire, especially in the case
where the data sets can vary greatly in size or be located on hosts with disparate network topologies and network access
speeds. That is why to gain the most benefit from the data-aware scheduling feature, the default value for a data attribute
should be carefully considered when applied to a preference expression to ensure that it is representative in some way
of the cost of retrieving the missing data for the service instance. This default value is set through the resource attribute
definition API.

Data-aware scheduling plug-in
This direct plug-in provides an additional way for Symphony to obtain the location and cost
data associated with preferred resources. The plug-in enhances data-aware scheduling by
allowing Symphony to get this data not only from the service side publishing/subscription
mechanism, but also from a direct call to a centralized process that can be customized for
integration with 3rd party products.

Data-aware scheduling

Data-aware Scheduling User Guide 7

The plug-in process requests the information from an external application and returns it back to the SSM to be used
by Symphony as the preferred scheduling location and value for the attribute in the same way as if it were published
by a service. Sample code for the plug-in process is provided in an appendix at the end of this document.

To improve performance, this feature also provides caching for the result received from the plug-in so subsequent calls
for the same attribute will return cached values.

Here is the sequence the SSM follows to obtain the resource attribute value when data-aware scheduling is enabled.

Data-aware scheduling

8 Data-aware Scheduling User Guide

If the plug-in is configured and the preferred attributes do not have any published values during the current evaluation
cycle, the SSM requests locations and values from the plug-in. The following describes the functional flow when the
plug-in is used to retrieve resource attribute data for a task.

Data-aware scheduling

Data-aware Scheduling User Guide 9

1. A task is submited with one or more preference attributes.
2. Upon the task's submission, the SSM parses the preferences and puts the task in the pending queue.
3. The preferences are evaluated and the SSM tries to find values for the corresponding attributes. Since, in this case,

the attribute was not published by the service, the expression is not resolved.
4. The SSM checks if the direct plug-in is configured for the application. The direct plug-in process is started using a

startup command defined in the application profile.
5. The SSM repeatedly calls the plug-in interface with the attribute names to retrieve the corresponding locations and

values.
6. Tasks are dispatched to currently available resources for the session that are the best match according to the preferred

attributes.

Configuring data-aware scheduling
Enabling data-aware scheduling for tasks
Data-aware scheduling is enabled at the application level with the schedulingAffinity attribute in the Consumer element
of the application profile. When the attribute is set to DataAware, the SSM collects data attributes of service instances
and hosts and evaluates them against a user-defined preference expression. Note that setting the attribute to
DataAware automatically enables resource-aware scheduling. When the attribute is set to None (default), no metadata
is collected by the SSM and no preference is applied.

Example:
<Consumer applicationName="SharingDataCPP" ...schedulingAffinity="DataAware" />

The schedulingAffinity attribute can be configured through the PMC or by manually editing the application profile.

Configuring the plug-in
The data-aware scheduling plug-in is configured using the following attributes in the application profile.

• SSMResPubPluginCmd

Specifies a command line for starting the plug-in process , one per Symphony application, in the application profile.
• SSMResPubCacheEnabled

Sets data caching on or off. The default is on.

Here is an example of the attributes configuration in the application profile.
<SSM resReq="" workDir="${EGO_SHARED_TOP}/soam/work"
 startUpTimeout="60" shutDownTimeout="300" SSMResPubPluginCmd="C:\extplugin.exe"
 SSMResPubCacheEnabled="false">
</SSM>

Client API
Configuring data-aware scheduling for tasks is only possible through the client-side API. For
more information about the API, refer to the API reference documentation.

Defining default attribute values for the session
You can define a substitute value for attributes in a preference expression in the event that those attributes are unknown
at the time of evaluation. If this default value is not specified, the system default, i.e., 1.0E+300, is substituted.

Example:

Data-aware scheduling

10 Data-aware Scheduling User Guide

SessionCreationAttributes.setDefaultResourceAttributeValue (float)

Specifying data preference
You can programmatically describe data preference for resources.

• ResourcePreference()

This method creates an empty preference that can be populated by data attribute definitions.
• ResourcePreference(...)

This method allows you to construct an expression for the data preference.

Example:

ResourcePreference ("Dataset1 + Dataset2")

This expression means that it is preferred to run this workload on a service that has Dataset1 and Dataset2.

Creating attribute definitions
You are not required to use an attribute definition with your preference unless your application has the following
requirements:

• The attribute in the expression has a different name than the attribute that will be published to the application.
• The attribute in the expression requires a default value that cannot be satisfied by either session-level or system

default values.

Example:
ResourceAttributeDefinition A ("/dir/filenameA.dat", "A", 100);
ResourceAttributeDefinition B ("/dir/filenameB.dat", "B", 150);

Adding attribute definitions to a data preference
The AddDefinition(ResourceAttributeDefinition) method allows a definition to be associated with a data preference.

Example:
ResourceAttributeDefinition A ("/dir/filenameA.dat", "A", 100);
ResourceAttributeDefinition B ("/dir/filenameB.dat", "B", 150);
ResourcePreference rp ();
rp.addDefinition(A);
rp.addDefinition(B);

This code would result in the following data preference expression: "A + B".

As a best practice, you should call addDefinition() on the SessionCreationAttributes object at session
creation time as it is more efficient than calling addDefinition on the ResourcePreference object that is associated
with each task.

Associating a data preference with a task
A data preference is associated with a task by binding it to a TaskSubmissionAttributes object.

Example:

TaskSubmissionAttributes.setResourcePreference(ResourcePreference)

Service API

Data-aware scheduling

Data-aware Scheduling User Guide 11

Publishing details about your datasets
The ResourceAttributes object allows you to publish details about resource attributes such as datasets that are available
to the service instance. The application makes these details available to the middleware to help with optimizing the
scheduling in the event the workload defines a preference that includes this attribute. Resource attributes can exist
either at a service instance level or be generally available to any service instance on a host.

Example:

ResourceAttribute.setName(name)

ResourceAttribute.setValue(value)

ResourceAttribute.setScope(Host)

ServiceContext.publish(ResourceAttribute)

A service can unpublish resource attributes using the ServiceContext.unPublish(ResourceAttribute) method. When
calling unPublish(), only the name of the resource attribute is required.

As a best practice, when you publish details about datasets that have been acquired by the service, you can treat the
data as having no cost to acquire. This means a value of ‘0’ would be ideal for these types of attributes.

Configure data-aware scheduling
Data-aware scheduling is configured in the application profile. The following steps describe
configuration using the Platform Management Console (PMC). To configure data-aware
scheduling manually, set the appropriate attributes in the application profile as described in
the data-aware scheduling feature reference.

1. In the PMC, click Symphony Workload > Configure Applications.

The Applications page displays.
2. Select the application you want to modify.

The Application Profile page displays.
3. Expand the Resource and Data Aware Scheduling section. In the Scheduling Affinity dropdown list, select Data

Aware.

Note:
When Data Aware is configured, data-aware scheduling at the task level is
enabled. This configuration also enables resource-aware scheduling at the
session level. For more information about resource-aware scheduling, refer to
the Cluster and Application Management Guide.

4. If you are using a plug-in to collect data attributes, select true to enable the plug-in cache. In the textbox, enter the
plug-in start command including the path.

5. In the Default Resource Attribute Value textbox, enter a value that will be substituted by the middleware if the
preferred data attribute value is not available.

6. Click Save to apply your changes.

Symphony reregisters the application for the changes to take effect.

Data-aware scheduling

12 Data-aware Scheduling User Guide

Appendix: Data-aware Scheduling Plug-in
Development
Protocol for interactions between the SSM and the plug-in process
This section describes the protocol that must be implemented by the plug-in code to interact with the SSM.

1. The protocol is ASCII and line-based with the <CR (\n)> character used as the line separator for portability between
platforms and programming languages. Note that on Windows, CR='\r''\n' and on Unix (including Linux), CR='\n'.

2. The protocol implements synchronous communication with the SSM where the SSM initiates the request and the
plug-in replies with a response. As a result, the response from any plug-in operation can be success or failure. To
distinguish between success or failure, the very first number in any response line is either an error code (non-zero
value) or 0 (successful response). An error code is followed by the accompanying error message, such as:

"1 ERROR: bad initialization parameters.<CR>"
3. During the initial sequence, the SSM spawns the plug-in process and waits for the first initialization response. The

plug-in process, starts up and after finishing its initialization (parameter for the initialization can be passed as
command line arguments), replies to standard output on success:

"Status version <error>" , status = 0 for success or non-zero for failure.

"0 1.0.0.0"

where the first number is success code 0 followed by the current protocol version supported by this plug-in (current
version 1.0.0.0)

-Have timeout to detect hang, default=30 seconds.
4. The SSM specifies request commands identified by one character (so protocol can be potentially extended up to

256 commands) followed by command arguments separated by a space character (' '). Currently the SSM provides
only one command specified by character 'L' ("Location") followed by a space-separated list of attribute names.

Example:

"Command attr1 …attrN CR"

where Command=L(return locations and Cost)

"L attr1 attr2 attr3 attr4<CR>"
5. The plug-in process responds to the "Location" command with multiple response lines, one per attribute and in the

same attributes order. Each successful response line starts with the success code 0 followed by (separated by space)
the cost value and then one or more locations until the <CR>-character.

Example:

"Status Cost1 Location1 Cost 2 Location2…CostN LocationN CR"

The following example assumes the values for four attributes are available:

"0 1.0 host1" for attr1

"0 2.0 host2 0.0 host3" for attr2

"0 3.123 host4 7 host5 10000 host6 0 host7" for attr3

"0 1.0 *" for attr4

The following example assumes the value for attr3 is not available to the plugin:

Appendix: Data-aware Scheduling Plug-in Development

Data-aware Scheduling User Guide 13

"0 1.0 host1" for attr1

"0 2.0 host2 0.0 host3" for attr2

"1 Do not have the value" for attr3; this value will be cached and returned in subsequent calls.

Note:
: The plug-in has to return number of response lines equal to number of attributes
in the previous "Location" command and in the same order. The response can
be a mix of successes and failures.

The asterisk (*) character for location means "any available host".
6. The plug-in should be ready at any time to get EOF character or error from standard input (e,g, "broken pipe"),

which means a shutdown request from the SSM. In this case, the plug-in process must do appropriate cleanup and
exit by itself, as the SSM will never kill the plug-in process.

Code sample
This section provides sample code for the data-aware scheduling plug-in process. Use the sample code as a template
and add the necessary logic to retrieve the host location and transfer cost data from the metadata repositories.

Appendix: Data-aware Scheduling Plug-in Development

14 Data-aware Scheduling User Guide

#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#ifndef WIN32
#include <unistd.h>
#endif
#include <errno.h>
static const char DELIMITER = ' ';
#ifndef WIN32
#define STDIN 0
#endif
int main(int argc, char* argv[])
{
 // reply initialization OK and plugin's protocol version number (1.0.0.0)
 fprintf(stdout, "0 1.0.0.0\n");
 fflush(stdout);
 // loop forever
#ifndef WIN32
 while(true)
 {
 fd_set fds;
 struct timeval tv;
 FD_ZERO(&fds);
 FD_SET(STDIN, &fds);
 tv.tv_sec = 0;
 tv.tv_usec = 100;
 int retVal = select (STDIN + 1, &fds, NULL, NULL, &tv);
 //select time out
 if (retVal == 0)
 {
 if (getppid() != 1)
 {
 continue;
 }
 //parent process is dead.
 else
 {
 break;
 }
 }
 //select error
 else if (retVal == -1)
 {
 break;
 }

 char line[1024]="";
 if (fgets(line, sizeof(line), stdin) == 0)
 {
 break;
 }

Appendix: Data-aware Scheduling Plug-in Development

Data-aware Scheduling User Guide 15

#else
 for(char line[1024]="";fgets(line, sizeof(line), stdin) != 0;line[0]=0)
 {
#endif
 // trim <CR> in the end
 char* ptr = line+strlen(line)-1;
 if(*ptr == '\n')
 *ptr = '\0';
 // tokenize
 char* token = strtok(line, &DELIMITER);
 if(token == 0)
 {
 fprintf(stdout,
 "3 ERROR: unknown command received by the plug-in process '%s'\n",
 argv[0]);
 fflush(stdout);
 continue;
 }
 switch(token[0])
 {
 case 'L': // GET_LOCATION
 { // block

 int cnt=0;
 while((token = strtok(0, &DELIMITER)) != 0)
 {
 ++cnt;
 // return status=0, cost/location
 fprintf(stdout, "0 0 hosta 0 oparmar.noam.corp.platform.com\n");
 fflush(stdout);

 }
 if(!cnt)
 {
 // print error
 fprintf(stdout,
 "6 ERROR: cannot get any parameters for the command '%s'\n",
 line);
 fflush(stdout);
 }
 } // end of block
 break;
 case 'T': // GET_TOPOLOGY
 {
 }

 break;
 case 'Q': // QUIT

 return(0); // break pipe with parent
 break;

 default: // unknown command!
 fprintf(stdout, "3 ERROR: unknown command received by the plug-in process
 '%s'\n", argv[0]);

 fflush(stdout);
 }
 }

 return(0); // break pipe with parent
}

Appendix: Data-aware Scheduling Plug-in Development

16 Data-aware Scheduling User Guide

Index
A

API
client-side 10
service-side 12

attribute
default value 7

attribute definitions 11
adding 11
best practice 11

C

caching 8

D

data attribute 5
data transfer

cost 7
default value

alias 7
session 7
system 7

E

expression evaluation 7
expression operators 6

M

missing attribute 7

P

plug-in process 8

S

schedulingAffinity
configuring 10

setDefaultResourceAttributeValue 10
SSMResPubCacheEnabled

configuring 10
standby service

configure 12

T

task
dispatch order 7

task-level scheduling 5

U

user-defined expression 5

Data-aware Scheduling User Guide 17

	Contents
	Copyright
	Data-aware scheduling
	Scope
	Feature licensing
	About data-aware scheduling
	Expressing a preference for data
	How preference affects dispatch order
	Factoring the cost of data transfer
	Data-aware scheduling plug-in
	Configuring data-aware scheduling
	Client API
	Service API
	Configure data-aware scheduling

	Appendix: Data-aware Scheduling Plug-in Development
	Index

