
Integrating Symphony™ with MoSes™ User
Guide

Platform Symphony
Version 5.0

October 2009

Copyright © 1994-2009 Platform Computing Inc.

Although the information in this document has been carefully reviewed, Platform Computing Corporation (“Platform”) does not
warrant it to be free of errors or omissions. Platform reserves the right to make corrections, updates, revisions or changes to the
information in this document.

UNLESS OTHERWISE EXPRESSLY STATED BY PLATFORM, THE PROGRAM DESCRIBED IN THIS DOCUMENT IS
PROVIDED “AS IS” AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO
EVENT WILL PLATFORM COMPUTING BE LIABLE TO ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION ANY LOST PROFITS, DATA, OR SAVINGS, ARISING
OUT OF THE USE OF OR INABILITY TO USE THIS PROGRAM.

We’d like to hear
from you

You can help us make this document better by telling us what you think of the content, organization, and usefulness of the information.
If you find an error, or just want to make a suggestion for improving this document, please address your comments to
doc@platform.com.

Your comments should pertain only to Platform documentation. For product support, contact support@platform.com.

Document
redistribution and
translation

This document is protected by copyright and you may not redistribute or translate it into another language, in part or in whole.

Internal
redistribution

You may only redistribute this document internally within your organization (for example, on an intranet) provided that you continue
to check the Platform Web site for updates and update your version of the documentation. You may not make it available to your
organization over the Internet.

Trademarks LSF is a registered trademark of Platform Computing Corporation in the United States and in other jurisdictions.

ACCELERATING INTELLIGENCE, PLATFORM COMPUTING, PLATFORM SYMPHONY, PLATFORM JOBSCHEDULER,
PLATFORM ENTERPRISE GRID ORCHESTRATOR, PLATFORM EGO, and the PLATFORM and PLATFORM LSF logos are
trademarks of Platform Computing Corporation in the United States and in other jurisdictions.

UNIX is a registered trademark of The Open Group in the United States and in other jurisdictions.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Intel, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

Other products or services mentioned in this document are identified by the trademarks or service marks of their respective owners.

Third-party
license
agreements

http://www.platform.com/Company/third.part.license.htm

Contents
About the Symphony—MoSes integration .. 5

About the integration ... 5
Supported systems ... 6

How MoSes works with Symphony ... 7
Symphony concepts .. 8

Cluster concepts ... 8
Workload-related concepts ... 8

Installation overview .. 10
Installation prerequisites .. 11

Ensure you have Local Administrator privileges to install the package 11
Know the Symphony consumer .. 11
Note user accounts for the Platform Management Console ... 11
Download the packages .. 11
Install MoSes .. 11
Install Symphony .. 11
Install Symphony DE on the MoSes master ... 12
Set up a Windows share ... 12

Install the Symphony—MoSes integration package ... 13
Configure the Symphony—MoSes application .. 14
Deploy and register the Symphony—MoSes application .. 15
Install MoSes workers on compute hosts .. 16
Test the Symphony-MoSes integration ... 17
Configure MoSes to submit work to the cluster ... 18

Edit the Symphony client configuration file ... 18
Configure Symphony as the GRID integration layer provider 18

Troubleshooting ... 19
Client Configuration File Reference .. 20

Sample File ... 20
Parameters ... 20

Default Configuration for the MoSes Application ... 23
Default Values ... 23

Integrating Symphony™ with MoSes™ User Guide 3

4 Integrating Symphony™ with MoSes™ User Guide

About the Symphony—MoSes integration
About this document
The Platform Symphony™ software (“Symphony”) works with MoSes™ from the Tillinghast business of Towers Perrin.

This document provides instructions for installing the Symphony—MoSes integration package on the machine on
which the MoSes master is installed and testing the installation. Once integrated, MoSes can act as a client to Symphony
and submit work to run on the grid.

License agreement
Usage of this integration software is contingent upon acceptance of the terms and conditions of the Platform Computing
Corporate Software License Agreement (the "Clickwrap Agreement") accompanying the Symphony software.

Limitations
Summary Description Avoidance

The OpenSSL dynamic
library (libeay32.dll) in the
Mose6.2 package is not
compatible with the same
library in the Symphony
5.0 package.

Windows uses the following search path to
locate a DLL that is mentioned at: http://
msdn.microsoft.com/en-us/library/
7d83bc18(VS.80).aspx

1. The directory where the executable
module for the current process is
located.

2. The current directory.
3. The Windows system directory. The

GetSystemDirectory function retrieves
the path of this directory.

4. The Windows directory. The
GetWindowsDirectory function
retrieves the path of this directory.

5. The directories listed in the PATH
environment variable.

As a workaround, when this issue happens,
you can copy the library to the directory
where the executable is located; for
instance:

Copy the %EGO_TOP%\soam\5.0\win32-
vc7\lib\libeay32.dll to the following
directories:

%EGO_TOP%\soam\5.0\win32-vc7\bin

%EGO_TOP%\soam\5.0\win32-vc7\etc

%EGO_TOP%\1.2.4\bin

%EGO_TOP%\1.2.4\etc

%EGO_TOP%\jre\bin

About the integration
The goal of the Platform Symphony—MoSes integration is to increase MoSes performance and scalability by
distributing MoSes work units to Symphony to run in parallel.

The MoSes—Symphony integration allows MoSes to submit workload to the grid, and allows MoSes workers to be
automatically started and managed by Symphony.

MoSes acts as a client application to submit work requests to the grid. The integration layer converts MoSes requests
to Symphony tasks. Symphony then schedules workload, allocates resources, starts up MoSes workers on Symphony
compute hosts, monitors the running of MoSes workers, and returns the location of MoSes worker output data to
MoSes.

The integration is composed of the following:

About the Symphony—MoSes integration

Integrating Symphony™ with MoSes™ User Guide 5

• Integration binaries
• Symphony application profile Moses6App.xml that references the Symphony/MoSes wrapper service—

MosesService.exe
• Symphony/MoSes wrapper service package —MoSes6Service.zip
• Test utility to test that the integration works—MosesPing60.exe and associated configuration file

<SYM_MOSES_HOME>\conf\symphonyMoses.cfg.
• Configuration file for the Integration—symphonyMoses.cfg

Supported systems
MoSes version
MoSes 6.2.0.11

Symphony version
Symphony 5.0

Supported operating systems
Supported operating systems are Windows operating systems supported by MoSes for the MoSes master and worker
nodes, and by Platform Symphony 5.0 for management and compute hosts.

About the Symphony—MoSes integration

6 Integrating Symphony™ with MoSes™ User Guide

How MoSes works with Symphony
MoSes acts as a Symphony client that submits work requests to the grid. MoSes work units are submitted as Symphony
tasks.

When work is submitted to Symphony, Symphony invokes the Symphony-Moses wrapper service, which does the
following:

1. Creates a worker directory in the shared directory for each Symphony task
2. Parses the input provided by MoSes to retrieve running parameters for the MoSes worker, moses32.exe
3. Starts moses32.exe on each compute host
4. Writes result files in the shared directory for each Symphony task
5. Returns the location of the calculation results to MoSes

When all tasks are finished, MoSes starts aggregating the results and presents the results within the MoSes environment.

Should a task fail, Symphony automatically reruns the task. Note that Symphony reports only successful task runs to
MoSes.

How MoSes works with Symphony

Integrating Symphony™ with MoSes™ User Guide 7

Symphony concepts
Cluster concepts
Symphony master
The bulk of the intelligence in the system resides on the Symphony master, which receives requests from clients and
interacts with the underlying nodes to gather resource information.

Symphony hosts contain the local information collection and execution agents taking instructions from the Symphony
master.

Resources
Resources are physical and logical entities that are used by applications in order to run. A resource of a particular type
is associated with attributes. For example, a host has attributes of memory, CPU utilization, operating system type, etc.
Platform Symphony deals with resource allocation at the granularity of physical hosts, logical sub-divisions of the
physical host known as cpu slots, software license features, and includes an extensible resource model to cover storage
space, network bandwidth, or data sets as resources whose use is controlled under policies.

Consumers
A consumer is a generalized notion of something that uses a resource. A consumer may be an individual user, user
group, application, project, department, or an entire company. Consumers are organized hierarchically to model the
nature of an organization that wants to access compute resources.

Workload-related concepts
Application
A service-oriented application is a type of application software, where the business logic is encapsulated in one or
multiple software programs called services that are separated from its client logic.

Application profile
The application profile is an XML file that defines the properties of a Symphony application, including the name of the
service that performs the calculation and the scheduling parameters to apply.

The application profile contains runtime parameters for workload, service, and the middleware that define how
Symphony runs workload. An application profile provides flexibility to dynamically change application parameters
without requiring you to change your application code and rebuild the application.

An application profile is associated with an application. An application is associated with one consumer. You must
register the application profile of every application you want Symphony to manage.

Symphony client application
A program or executable that needs work done through a service. Requests are submitted via an API to the service.

Symphony concepts

8 Integrating Symphony™ with MoSes™ User Guide

Symphony service
A service is a self-contained business function that accepts one or more requests and returns one or more responses
through a well-defined, standard interface.

The service performs work for a client program. It is a component capable of performing a task, and is identified by a
name. Platform Symphony runs services on hosts in the cluster.

The Symphony service is the part of your application that does the actual calculation. The service encapsulates business
logic.

Session
A group of tasks that share common characteristics, such as data.

Connection
The connection on which a session is created provides a conduit for the tasks.

Task
A task is the unit of work that runs on each individual host when Symphony workload is running. The task consists of
a message request (input) and, when completed by a service, a response (output).

Symphony concepts

Integrating Symphony™ with MoSes™ User Guide 9

Installation overview

Installation overview

10 Integrating Symphony™ with MoSes™ User Guide

Installation prerequisites
Ensure you have Local Administrator
privileges to install the package
Ensure you have a Local Administrator account on the machine on which MoSes master is installed.

Know the Symphony consumer
The instructions in this document assume that you will use the /SampleApplications/SOASamples consumer to deploy
the Symphony—MoSes wrapper service.

If you want to deploy the service to a different consumer, create the consumer in Symphony before installing the
Symphony—MoSes integration package.

Note user accounts for the Platform
Management Console
By default, when you first install Symphony, you use the following cluster administrator account in the Platform
Management Console.

Administrator

• User name: Admin
• Password: Admin

If you have different user accounts/passwords in your Platform Management Console, make a note of them.

Download the packages
• Download the Symphony 5.0 DE msi package
• Download the Symphony—MoSes integration msi package

Install MoSes
Install MoSes and ensure it is working properly.

Refer to the MoSes documentation for more details.

Install Symphony
Install Symphony and ensure it is working properly.

1. Obtain a Symphony license file from Platform Computing.

Installation prerequisites

Integrating Symphony™ with MoSes™ User Guide 11

2. Ensure you install the Symphony compute host packages on MoSes worker hosts.
3. Install Symphony and ensure it is working properly.

Note:
Ensure the WebServiceGateway service in EGO is running. If the port of the
WebServiceGateway service is changed, change the parameter 'WSG_PORT'
in SymphonyMoses.cfg to the corresponding port.

Refer to Overview: Installing Your Platform Symphony Cluster (install_grid_sym.pdf) in the Symphony Knowledge
Center for instructions.

Install Symphony DE on the MoSes master
Symphony DE is required on the MoSes master since the master will act as a client to Symphony.

Note:
If the Symphony-Moses integration is installed on the Symphony client host rather
than on a Symphony management host and compute host, and the cluster has two
or more master management hosts, reconfigure the parameter
'EGO_MASTER_LIST' in ego.conf accordingly.

1. Install Symphony DE on the MoSes master.

Set up a Windows share
Set up a Windows share that can be accessed by both Symphony and MoSes.

Symphony writes calculation results to this directory, and MoSes retrieves results from this directory.

A shared directory is also required for the MoSes standard master/worker mode. Use the same directory for the
integration.

1. On the file server, create the shared directory.

For example, c:\moses_share
2. Create one worker directory under it.

For example, c:\moses_share\workers

MoSes workers will create subdirectories under it.
3. On the MoSes master and worker hosts, create a network drive mapping to the shared directory.
4. Ensure the following user accounts can read and write to the shared directory:

• Symphony consumer OS user account
• User account that is running MoSes on the MoSes master

Installation prerequisites

12 Integrating Symphony™ with MoSes™ User Guide

Install the Symphony—MoSes integration
package
See Installation prerequisites on page 11

1. On the MoSes master, install the Symphony 5.0 Developer Edition.

You need this package to be able to connect to Symphony from a machine that is not in the cluster.
2. Copy the Symphony—MoSes integration msi package to the MoSes master.
3. Install the Symphony—MoSes integration msi package on the MoSes master.

Install the Symphony—MoSes integration package

Integrating Symphony™ with MoSes™ User Guide 13

Configure the Symphony—MoSes
application
To distribute MoSes work units to the grid, you need to deploy the Symphony—MoSes service. To use it, you need to
have an application associated with your service.

The installation package contains an application profile to register in your cluster.

1. Modify the MoSes application profile Moses6App.xml located in <SYM_MOSES_HOME>\service.
a) In the Profile section, change: version="4.1" to version="5.0".

<Profile ... version="5.0">
b) In the Consumer section, if you have created a different consumer for the Symphony—MoSes application,

change the consumerId.
<Consumer applicationName="MosesApp"
 consumerId="/SampleApplications/SOASamples" resReq=""
policy="R_Proportion" ..."/>

c) In the SOAM section, change: version="4.1" to version="5.0".
<SOAM version="5.0">

d) In the SSM and SIM sections:

1. Add SOAM_HOME to indicate the soam subdirectory under the directory in which Symphony is installed.
For example, if Symphony 5.0 is installed in c:\Symphony, specify c:\Symphony\soam as your
SOAM_HOME.
...
 <SOAM>
 <SSM resReq="NTX86" resourceGroupName="ManagementHosts">
 <osTypes>
 <osType name="NTX86"
 ...
 <env name="SOAM_HOME">C:\symphony\soam</
env> ... </osType> </osTypes> ...
</SSM> <SIM> <osTypes> <osType
name="NTX86" ... <env name="SOAM_HOME">C:\symphony
\soam</env> ... </osType> </osTypes> ...

2. Delete the following line:
<env name="VERSION_NUM">3.1</env>

e) In the Service section, add the Control section:
...
</osTypes>
 <Control>
 <Method name="Invoke" >
 <Timeout duration="0" actionOnSI="restartService" actionOnWorkload="retry" />
 <Exit actionOnSI="restartService" actionOnWorkload="retry" />
 <Return controlCode="0" actionOnSI="keepAlive" actionOnWorkload="succeed"/>
 <Exception type="failure" controlCode="0" actionOnSI="keepAlive"
 actionOnWorkload="retry"/>
 <Exception type="fatal" controlCode="0" actionOnSI="keepAlive"
 actionOnWorkload="fail"/>
 </Method>
</Control>
</Service>
...

Configure the Symphony—MoSes application

14 Integrating Symphony™ with MoSes™ User Guide

Deploy and register the Symphony—MoSes
application
1. Log on to the MoSes master.
2. Go to the directory in which the Symphony—Moses package is located in: <SYM_MOSES_HOME>\service.
3. Deploy the MoSes6Service.zip service package with the soamdeploy command.

Important:
Your package name must match the package name specified in the application
profile, and the consumer name must be the same as specified in your application
profile.

soamdeploy add Moses6Service -p MoSes6Service.zip -c /SampleApplications/SOASamples
4. Check the list of deployed services with the soamdeploy view command:

soamdeploy view -c /SampleApplications/SOASamples

You should be able to see the Moses6Service package
5. Register the application with the soamreg command:

For example:

soamreg <SYM_MOSES_HOME>\service\MoSes6App.xml

The application is registered and enabled.
6. Check the list of applications:

soamview app

You should be able to see MoSesApp under the \SampleApplications\SOASamples consumer.

Check that the application is enabled. If it is not, use soamcontrol app enable to enable the application.
7. Restart the MoSes master.

Deploy and register the Symphony—MoSes application

Integrating Symphony™ with MoSes™ User Guide 15

Install MoSes workers on compute hosts
The MoSes worker can be installed on compute hosts by using the MoSes Worker Manager;
refer to the MoSes Version 6 Worker Manager User Guide on the MoSes installation CD for
details.

Install MoSes workers on compute hosts

16 Integrating Symphony™ with MoSes™ User Guide

Test the Symphony-MoSes integration
To test the integration, you will run the sample MosesPing60.exe client application. This client application sends
workload to a cluster to check that the cluster is working.

1. Share the <SYM_MOSES_HOME>\samples\sample_share directory. Provide full access to everyone.

Note:
Ensure that the Symphony-Moses6 integration layer is installed and the
SYM_MOSES_HOME environment variable is set.

2. Run the client application.

The MosesPing60 application sends 4 tasks to Symphony. Symphony then invokes the Symphony—Moses service
that invokes moses32.exe to retrieve inputs for calculation.
<SYM_MOSES_HOME>\bin>MosesPing60.exe

You should see output similar to the following:
SymPing60 will send 4 tasks to Symphony and will check the task status every 10 seconds.
Successfuly created job <103>
Sent task id <1>
Sent task id <2>
Sent task id <3>
Sent task id <4>
Task info id <1> submit time<7/6/2007 4:29:08 PM> elapsedTime<0> state<9> priority<0> skipCount<0>
workerName<hb04b12.lsf.platform.com>
Task info id <2> submit time<7/6/2007 4:29:08 PM> elapsedTime<0> state<9> priority<0> skipCount<0>
workerName<hb04b12.lsf.platform.com>
Task info id <3> submit time<7/6/2007 4:29:08 PM> elapsedTime<0> state<9> priority<0> skipCount<0>
workerName<hb04b09.lsf.platform.com>
Task info id <4> submit time<7/6/2007 4:29:08 PM> elapsedTime<0> state<9> priority<0> skipCount<0>
workerName<hb04b09.lsf.platform.com>
...
Task info id <1> submit time<7/6/2007 4:29:08 PM> elapsedTime<38> state<11> priority<0>
skipCount<0> workerName<hb04b12.lsf.platform.com>
Task info id <2> submit time<7/6/2007 4:29:08 PM> elapsedTime<42> state<11> priority<0>
skipCount<0> workerName<hb04b12.lsf.platform.com>
Task info id <3> submit time<7/6/2007 4:29:08 PM> elapsedTime<48> state<11> priority<0>
skipCount<0> workerName<hb04b09.lsf.platform.com>
Task info id <4> submit time<7/6/2007 4:29:08 PM> elapsedTime<53> state<11> priority<0>
skipCount<0> workerName<hb04b09.lsf.platform.com>
Get result for task id <1> worker dir<\\IB05B10\sample_share\rootWorkerDir\worker0> worker name<>
Get result for task id <2> worker dir<\\IB05B10\sample_share\rootWorkerDir\worker1> worker name<>
Get result for task id <3> worker dir<\\IB05B10\sample_share\rootWorkerDir\worker2> worker name<>
Get result for task id <4> worker dir<\\IB05B10\sample_share\rootWorkerDir\worker3> worker name<>

Test the Symphony-MoSes integration

Integrating Symphony™ with MoSes™ User Guide 17

Configure MoSes to submit work to the
cluster

MoSes has a client configuration file on the MoSes master so that MoSes can connect to
Symphony. The Symphony—MoSes integration also requires the use of a specific DLL to
configure Symphony as the GRID integration layer provider.

Edit the Symphony client configuration file
1. Open the configuration file <SYM_MOSES_HOME>\conf\symphonyMoses.cfg.
2. Edit values in the file to correspond to actual values for your application.

Generally, you only need to change the USER, PASS, and MAP_DRIVES values.

For more details on these parameters, see Client Configuration File Reference on page 20
3. To test your configuration, run MoSes and submit workload.

Use the popup dialog or the Platform Management Console to monitor progress.

Configure Symphony as the GRID
integration layer provider
1. Open the MoSes GUI.
2. Select Setup > Options > Master/Worker > Integration Layer Provider
3. Specify %SYM_MOSES_HOME%\bin\Sym4Moses60CPP.dll

Configure MoSes to submit work to the cluster

18 Integrating Symphony™ with MoSes™ User Guide

Troubleshooting
Error messages
Should errors occur, check the log files; see Log files and log levels.

Blocked hosts
Worker hosts that fail to run moses32.exe are added to the blocked host list so no other tasks are dispatched to these
hosts. To remove a host from the blocked host list, use the Platform Management Console in Symphony Workload
>Monitor Workload, or use the command egosh alloc unblock.

Log files and log levels
Log files are written in %SOAM_HOME%\logs.

• On the compute hosts you can find the log %SOAM_HOME%\logs\mosesint.service.log.
• On the MoSes master you can find the log %SOAM_HOME%\logs\mosesint.client.log.

On the MoSes master, DEBUG level information is written to
 C:\VisMoses\api.hostname.log
by default. To change the log level, set the environment variable MOSES_INT_LOGLEVEL=INFO on the MoSes master.

To change log levels for the integration layer on compute hosts, use the parameter MOSES_INT_LOGLEVEL in the
application profile associated with the Symphony—MoSes wrapper service.

Troubleshooting

Integrating Symphony™ with MoSes™ User Guide 19

Client Configuration File Reference
The client configuration file contains parameters for MoSes to connect to the cluster.

All parameters in the configuration file are mandatory.

Create a configuration file for every client application that connects to the MoSes master and submits work to MoSes,
and the cluster.

Sample File
This file is <SYM_MOSES_HOME>\conf\symphonyMoses.cfg.
#**
Symphony client application configuration file.
#
There must be one configuration file per client application.
#
Copy this configuration file to the machine on which
MoSes is installed.
#**
The user and password should be set according to the configuration of Symphony
USER = Guest
PASS = Guest
How long Symphony will allow moses32.exe process to be idle (use 0% CPU) before it
kills the process# This is to prevent moses32.exe hanging forever
CHECK_IDLE_TIME = 1500
The following parameters should be set according to the application profile.
APPLICATION_NAME = Moses6App
SESSION_NAME = MosesSession
SESSION_TYPE = ShortRunningTasks
This parameter is used to list the locally mapped drives on the master host to be
replicated on the compute
hosts. This parameter is mandatory even if the drives are already mapped on the
compute hosts.
MAP_DRIVES=X

Parameters
USER

Symphony user account to connect to the cluster. This is the same account you use to connect
to the Platform Management Console.

The user account must have been defined through the Platform Management Console.

Syntax
USER=user_name

Required/Optional
Required

Default value
There is no default. You need to create a user account with consumer administrator privileges
and specify this account.

Client Configuration File Reference

20 Integrating Symphony™ with MoSes™ User Guide

PASS
Password that corresponds to the user account specified with the USER parameter.

Syntax
PASS=password

Required/Optional
Required

Default value
There is no default. You need to specify a password.

CHECK_IDLE_TIME
Time, in seconds, that the moses32.exe can be idle before it is terminated. Idle time is based
on CPU utilization. This parameter should be set long enough to allow a task to complete.

Syntax
CHECK_IDLE_TIME=seconds

Optional
Optional

Default value
1500 seconds

SESSION_NAME
Name assigned to the session when created through the client application.

Syntax
SESSION_NAME=name

Required/Optional
Required

Default value
MosesSession

SESSION_TYPE
Session type as specified in the MoSesApp.xml application profile.

Syntax
SESSION_TYPE=type

Required/Optional
Required

Client Configuration File Reference

Integrating Symphony™ with MoSes™ User Guide 21

Default value
ShortRunningTasks

APPLICATION_NAME
Application name as indicated in the application profile. The application name is used to
identify which consumer is associated with the application, through the application profile.

Syntax
APPLICATION_NAME=name

Required/Optional
Required

Default value
MosesApp

MAP_DRIVES
List of locally mapped drives on the master host to be replicated on the compute hosts. This
parameter is mandatory even if the drives are already mapped on the compute hosts. Due to
the nature of the Symphony services in some environments, the service will not be able to pick
up the mapped network drives. This feature will automatically map the drives on the compute
hosts in the same way they are mapped on the master host.

Syntax
MAP_DRIVES=drive_letters

For example, if the user wants to replicate the mappings of drive X: and drive Y:, the parameter
should be:

MAP_DRIVES=XY

Note:
The drive letters should not be separated by any characters.

Required/Optional
Required

Client Configuration File Reference

22 Integrating Symphony™ with MoSes™ User Guide

Default Configuration for the MoSes
Application
The following are default values used for the MoSes application that is deployed in the cluster.

Should you want to change these default values, edit MoSes6App.xml and specify different values. For more details
on application profile parameters, refer to the Platform Symphony Reference.

Default Values
consumerId="/SampleApplications/SOASamples"

By default, the consumer for the application is /SampleApplications/SOASamples. If
you are using a different consumer name, you need to change this in the application profile.

SessionTypes section, <Type name="ShortRunningTasks" ...
recoverable="false"...>

By default, the session type is set to nonrecoverable, which means the session cannot be
recovered if the session manager is recovered.

Service section, <env
name="SHARE_WORKER_DIRECTORY">...</env>

When this parameter is not set, the shared directory location is automatically passed by MoSes
to Symphony. In addition, the system checks for the existence of the shared MoSes directory
when the service makes a createSession() call.

When this parameter is set, you need to specify the location of the shared directory.

Specify the Windows directory used by MoSes as a UNC path. This is the same shared directory
used for MoSes standard master/worker mode. Symphony writes calculations results to this
directory, MoSes retreives results from this directory.

In addition, the system checks for the existence of the specified shared directory when the
service makes an onCreateService() call.

Service section, <env name="MOSES_INT_LOGLEVEL">INFO</
env>

By default, log level is set to view all messages that are logged in the information level.

You may want to change this in a production environment to log only some levels.

Note that lower log levels include higher log levels. For example, if the log level is set to WARN,
messages included are WARN, ERROR, and FATAL.

Possible vallues are:

• FATAL
• ERROR
• WARN
• INFO

Default Configuration for the MoSes Application

Integrating Symphony™ with MoSes™ User Guide 23

• DEBUG
• ALL

Default Configuration for the MoSes Application

24 Integrating Symphony™ with MoSes™ User Guide

Index
A
application profile

configuring 14, 23
description 8

applications
description 8

B
blocked host list

removing hosts from 19

C
client configuration file

reference 20
concepts

basic 8
configuring

Symphony-MoSes application 14
connections

description 9
consumer

Symphony 11
consumers

about 8

G
grid integration layer provider

configuring 18

I
installing

MoSes 11
Symphony 11
Symphony DE 12
Symphony-MoSes integration package 13

integration
about 5
files 5

L

log files 19
log levels 19

M

master host
about 8

MosesPing60 17

R

resources
about 8

S

service
description 9

sessions
description 9

shared directory
setup 12

soamdeploy 15
soamreg 15
soamview 15
Symphony - MoSes application

deploying and registering 15
Symphony - MoSes integration

testing 17
Symphony client configuration file

editing 18

T

task
description 9

Integrating Symphony™ with MoSes™ User Guide 25

U
user accounts

in Platform Management Console 11

W

work flow
MoSes 7

work units 7

26 Integrating Symphony™ with MoSes™ User Guide

	Contents
	Copyright
	About the Symphony—MoSes integration
	About the integration
	Supported systems

	How MoSes works with Symphony
	Symphony concepts
	Cluster concepts
	Workload-related concepts

	Installation overview
	Installation prerequisites
	Ensure you have Local Administrator privileges to install the package
	Know the Symphony consumer
	Note user accounts for the Platform Management Console
	Download the packages
	Install MoSes
	Install Symphony
	Install Symphony DE on the MoSes master
	Set up a Windows share

	Install the Symphony—MoSes integration package
	Configure the Symphony—MoSes application
	Deploy and register the Symphony—MoSes application
	Install MoSes workers on compute hosts
	Test the Symphony-MoSes integration
	Configure MoSes to submit work to the cluster
	Edit the Symphony client configuration file
	Configure Symphony as the GRID integration layer provider

	Troubleshooting
	Client Configuration File Reference
	Sample File
	Parameters
	USER
	PASS
	CHECK_IDLE_TIME
	SESSION_NAME
	SESSION_TYPE
	APPLICATION_NAME
	MAP_DRIVES

	Default Configuration for the MoSes Application
	Default Values
	consumerId="/SampleApplications/SOASamples"
	SessionTypes section, <Type name="ShortRunningTasks" ... recoverable="false"...>
	Service section, <env name="SHARE_WORKER_DIRECTORY">...</env>
	Service section, <env name="MOSES_INT_LOGLEVEL">INFO</env>

	Index

